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6.0 Introduction 

The method of gradients or “method of steepest descent,” as it is some- 
times called, is an elementary concept for the solutioil of minimum problems. 
It dates back to C a ~ c h y l - ~  and, in variational version, to Hadamard.4,5 
A particularly clear and attractive exposition of the method was given by 
Courant in a 1941 address to the American RIathematical S o ~ i e t y . ~  In 
recent years the computational appeal of the method has led to its adoption 
in a variety of applications-multivariable minimum problems of ordinary 
c a l c u 1 ~ s , ~ ~ ~ - ~  solution of systems of algebraic equations,lo integral equa- 
tions,12 and variational p r ~ b l e m s . ~ J ~  

The gradient method has been applied to variational problems of flight 
path optimization by the prescnt writer in the investigation of reference 14, 
a main source of material for this chapter. A similar scheme has been de- 
veloped independently by Bryson and his colleagues.1b 

We will first discuss sonie of the main features of the gradient method 
in the context of ordinary minimum prohlcms subject to constraints. 
Although this class of problems is chosen primarily for simplicity of 
explanation, it is one which is increasingly of interest per se in aero- 
nautical and astronautical applications. Wc will then turn to variational 
problems of flight performance, introducing Green’s functions in the role 
played by partial derivatives in ordinary minimum problems, and at- 
tempting to preserve an analogy between the two classes of problems in the 
subsequent development. Some numerical results illustrating the com- 
putational successive approximation procedure in examples mill then be 
presented. 

6.1 Gradient Technique in Ordinary Minimum Problems 

6.11 The Continuous Descent Process 

To present the basic idea of the gradient method we consider a function f 
of several variables 21, - - - , xn, defined on an open domain, which possesses 
continuous partial derivatives with respect to these variables. Starting a t  
some point z i  = zi, i = 1, - * -, n, we move a small distance ds defined in the 
Euclidean sense 

n 

ds2 = dx? 
i=l 
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Seeking to move toward a minimum off, we consider directions in which 
the rate of change off with respect to s 

(6.2) 

is negative. In fact we may find the direction of “steepest descent” (most 
negative d j / d s )  among the directions which make (6.2) stationary subject 
to (6.1). 

Proceeding formally, we write the constraint (6.1) 

in terms of direction cosines dx, /ds  and adjoin it to (6.2) by means of a 
Lagrange multiplier ho, forming 

(6.4) 

Equating partial derivatives taken with respect to the dxi/ds to zero, 

we obtain 

From the constraint cguation (6.3) the multiplier Xo is determined as 

(6.7) 

Provided the pwtial derivatives df/dsi are not all zero, there are two 
distinct sets of direction numbers which make d j / d s  stationary, namely, 

Inspection of the expression for the directional derivative d j /ds  in the two 
cases 
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enables identification of the two stationary directions as those of steepest 
ascent and steepest descent. 

A simple geometric interpretation of these formulas is possible if the 
various quantities are regarded in vector terms: the x i  as components of a 
vector X, the direction cosines dxi lds  as components of a unit vector 
dX/ds ,  and the partial derivatives af /dx i  as components of a gradient 
vector. The derivative d f / d s  is then the dot product 

df dX 
- = grad f.- 
d s  d s  

(6.10) 

and, with the direction of motion oriented along the gradient as per Eq. 
(6.8), the magnitude is equal to that of the gradient vector as given by 
Eq. (6.9). Thus, steepest ascent corresponds to motion in the gradient 
direction and steepest descent to that along the negative gradient. 

We now introduce a time parameter u and consider motion along the 
negative gradient direction as a continuous process. For motion in n-space 
a t  a velocity of magnitude V 

(6.11) 

The expressions for the velocity components dx Jdu become 

as a consequence of (6.8). These expressions become particularly simple 
if the velocity magnitude is t,aken proportional to that of the gradient 

(6.13) 

(6.14) 

so that motion in the negative gradient direction is assured by merely 
setting the time derivatives of the coordinates proportional to the partial 
derivatives off. 

It is clear that in this continuous process, wherein the point X moves 
according to the system of ordinary differential equations (6.14), the 
process will for u -+ 00 approach a position for which grad f = 0, if f is 
bounded below. The stationary value so approached will correspond to a 
minimum of f if the x i  remain finite in the limit; otherwise a lower bound 
is approached. 
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6.12 Stepwise Version 

As an alternative to the continuous procedure described by Eqs. (6.14) 
we may proceed stepwise, correcting a set of approximations to the 
solution df/ax, = 0 by increments proportional to the negative of the 
gradient : 

, n  (6.15) 

It is clear that in this stepwise process, the proportionality constant k may 
be absorbed in the step size ACT; hence we take k = 1. 

Since the determination of the partial derivatives df/d~:i may be ex- 
pensive in terms of volume of numerical computations in case the number 
of variables n is large, it is desirable to exploit each calculation of local 
gradient direction to the utmost, taking Au as large as possible. One pro- 
cedure is to follow the local gradient direction until f reaches a minimum, 
i.e., evaluate Eqs. (6.15) and the function f for a number of step sizes, 
determining Au for minimum f by some suitable one-dimensional search 
technique. A new gradient direction is then calculated and the procedure 
repeated. 

In  this way an n-dimensional minimum problem is reduced to  a sequence 
of one-dimensional problems. The gradient method shares this feature 
with another computational technique to be described in later chapters. 

The continuous and stepwise processes are contrasted in the sketch of 
Fig. 1 which depicts the two types of motion as they may occur in the 

af 
x ( z P + 1 )  = x ( , P )  - k - ACT, i = 1, . . . 

z 

XI  

500 

I x 2  

FIG. 1. Continuous and stepwise descent processes. 
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vicinity of a minimum of a function of two variables f(z,, z2).  The gradicxnt 
direction, as shown, is normal to a contour while the local minimum in the 
gradient direction is attained at  a point of tangency to a contour. These 
characteristics are also common to higher dimensional cases. 

It is apparent that the stepwise path is not independent of the coordinate 
system selected. If a transformation of coordinates could be found which 
maps the oval contours of Fig. 1 into circles, for example, the number of 
steps required to attain the minimum would be reduced to one. In the 
usual situation, of course, insufficient information is available a priori  to 
permit a sophisticated choice of coordinates; otherwise the character of the 
surface would be known and gradient determination of minima unnecessary. 

With typical engineering problems, however, one will often have some 
idea of the “practical range” of the variables xi, and this will facilitate the 
introduction of normalized variables for gradient computations. Such a 
procedure is virtually a necessity where the variables have different 
dimensions and are numerically of different orders of magnitude. As a 
result of normalization some semblance of meaiiing may be attached to the 
concept of distance in the n-space in which the operations are performed. 

6.13 Ordinary Minimum Problems with Constrainls: Gradient Projection 
Technique 

In many problems of practical interest, we may wish to determine a 
minimum of the function f(z1, - - - ,  zn) subject to subsidiary conditions 
relating the variables z,. An important class of subsidiary conditions are 
equations 

(6.16) 

numbering m < n, sometimes referred to in the literature as equality 
constraints. 

If the functions g3 are given analytically, it may be possible to solve the 
set of Eqs. (6.16) for m of the variables z, in terms of the others and, by 
their elimination from the function f, to reduce the problem to one without 
constraints. Such an approach will very often not be practicable in applica- 
tions. 

We may, however, consider a version of this procedure “in the small,” 
i.e., in a neighborhood of the starting point z, = 3%. Retaining only first- 
order terms in a Taylor expansion 

g3(z1, ..., 2,) = 0, j = 1, . - .  I m  

g,(z*, -.., z,) E g3(z1, . - - ,  3 I I )  

ag, 

1=1 ax, 
+ - ( 3 1 ,  . - * ,  f“,) ( T ~  - 3 % ) ,  j = 1, - * . ,  nz (6.17) 

and assuming that Eqs. (6.16) are satisfied at  the point z2 = Z,, we obtain 
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a system of linear equations in the increments Ax, = xi - 2 ,  for the vanish- 
ing of the g, to  first order: 

(6.18) 

We may then attempt to solve this system for m of thc increments Ax, 
in terms of the remaining ones. This will be possible unless all of the m X m 
Jacobian determinants of the system vanish at the point 2 ,  = 2,. The 
procedure breaks down at  such singular poznts.16 

If solution is possible, the n - m partial derivatives off with respect to 
the n - m remaining variables may be calculated by the chain rule of 
differentiation, and the gradient of f subject to the constraints thus deter- 
mined. Geometrically, this is the projection of the free gradient vector 
upon the n - m subspace determined by the intersection of the m hyper- 
planes (6.18). The terminology gradient projection for this scheme, as em- 
ployed in the nonlinear programming in connection with 
related problems involving inequality constraints, seems appropriate. 

We may perform an analysis similar to that of Section 6.11 to determine 
the projected gradient direction. Again introducing direction cosines dx Jds, 
we seek stationary directions of d f / d s  as given by (6.2) subject to (6.3) 
and to 

893 

2=1 ax, 
c- AX, = 0, j = 1, . - -  , m  

(6.19) 

Introducing Lagrange multipliers Xo and x j ,  j = 1, - - - ,  m, we form 

Equating partial derivatives taken with respect to the dxi /ds  to  zero, we 
obtain 

(6.22) 
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Substituting this result into (6.19), we obtain relations determining the 
x j  : 

This system of linear equations in the multipliers will have a solution 
provided that the m X m matrix whose elements are 

(6.25) 

is nonsingular. This statement is precisely the Gram determinant criterion 
for linear independence of the expressions (6.19) and it is equivalent to the 
earlier assertion concerning Jacobian determinants (see Courant and 
Hilbert,” p. 34). Fulfillment of this condition requires that the magnitudes 
of the vectors grad g3 be nonzero and that their directions be distinct from 
one another. 

Mechanization of the gradient projection procedure thus requires 
numerical solution of the system of linear equations (6.24). The relations 
appropriate to a stepwise process analogous to that given by (6.15) are 
then 

The gradient projection technique is an excellent one where the con- 
straints (6.16) are linear in the xi, or nearly so. There is a possibility of 
difficulty associated with ill-conditioning of the linear system (6.24) if the 
intersections of the hypersurfaces g j  = 0 are poorly defined, e.g., if two or 
more of the tangent hyperplanes are nearly parallel. 

A considerable complication arises from significant nonlinearities in the 
constraints. For large step sizes Au, Eqs. (6.16), having been satisfied only 
in linearized version, may long since have been violated before minimum f 
is reached. A correction cycle designed to restore the constraints must then 
be introduced. Typically this will take the form of an iterative adjustment 
of the variables xi. This feature of the gradient projection technique may 
entail a considerable increase in computation time. 

6.14 Ordinary Minimum Problems with Constraints: An Approximation 

Another approach to the handling of constraints is provided by the idea 
of approximating a minimum problem subject to  constraints by another 

Technique 
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problem without constraints. Thus, in lieu of the problem of the preceding 
section, we consider the problem of minimizing 

(6.27) 

whrre the K ,  are positive constants. 
It is intuitively reasonable that the “penalty” terms of the second 

member of (6.27) will have the effect of making the constraint “violations” 
small in this problem, owing to the fact that these terms are nonnegative. 
For increasingly large positive K,, it may be anticipated that the solution of 
this minimum problem will tend toward the desired solution of the mini- 
mum problem for f subject to the constraints (6.16). This idea is due to 
C o ~ r a n t . ~  It has been placed upon a rigorous basis in terms of an ap- 
proximation theorem by Moser (see Courant18) for the case of a single con- 
straint, and exploited in a particular class of variational problems involving 
multiple constraints by Rubin and Ungar.lS 

In the employment of this idea for computational purposes, numerically 
large values of the constants K,  are to be assigned. The choice of values 
must be decided on the basis of permissible approximations to the con- 
straints. Thus “tolerances” may be set from physical considerations. 

The penalty function technique is quite compatible with the successive 
approximation process provided by the gradient method. A plausible tech- 
nique for computer operations is comparison of the constraint “violations” 
with preassigned “tolerances” at  the end of each descent step, followed by 
appropriate adjustment of K ,  values if necessary for the succeeding step. 

Seeking a guide to the estimation and adjustment of the values of the 
Kj, we now examine the magnitudes of the ‘(violations” g j  a t  a minimum 
of (6.27). We equate to zero the derivatives of (6.27) in the m-directions 
determined by the gradients of the g,. The direction cosines of the gradient 
of gk are 

and the derivative of (6.27) in this direction is assumed to vanish: 

= 0, k = 1, -.., m (6.29) 
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We may regard this as a system of linear equations in thc products K,g,: 

This system bears a strong rcsemhlance to  that governing the multipliers 
of the (converged) gradient projection process (6.24), the distinction being 
that the partial dcrivatives in the present case are evaluated at  a minimum 
of (6 27) for which the constraint equations are satisfied only approxi- 
mately. 

Thc system (6.30) may bc solved numerically under conditions men- 
tioned previously in connection with determination of the multipliers. In 
the limit as K ,  3 m evidently 

(6.31) 

and the “violations” are seen to vary inversely with the K,  values in the 
neighborhood of the solution. 

This analysis suggests two plausible schemes for adjustment of the K ,  
values. The simplest is employment of the absolute value of “violation”/ 
“tolerance” ratio as a factor to increase or decrease the “current” K,  values 
a t  the end of each descent step. As an alternative, one may estimate the A, 
from (6.24) on the basis of “current” partial derivatives and compute 

where e j  is the “tolerance” set on the constraint g1 = 0. Preliminary indica- 
tions from numerical experiments with analogous adjustment schemes in 
variational problems indicate that the second is preferable to the first in 
regard to speed of convergence. 

The attractive feature of the “penalty function” scheme is that it 
avoids the need for iterative corrections to assure satisfaction of the 
constraint equations as the descent process continues. By the same token, 
the need for separate determination of a starting point Z A  which satisfies 
the constraints is obviated. At the time of the present writing, there is 
insufficient computational experience with this method to permit com- 
parison with other techniques in ordinary minimum problems; however, 
some experience with a similar technique in solution of variational prob- 
lems will be reported in a later section. 
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6.15 Ordinary Minimum Problems with Constraints: Inequality 
Constraints 

Constraints which take the form of inequalities 

g,(21, - * a, s,) 5 0, j = 1, - - - t m  (6.32) 

are increasingly of interest in applications. Ordinary minimum problems 
featuring such constraints form the basis of nonlinear programming theory, 
for which the reader is referred to Rosen’ and Wolfe.8 

In employing the gradient projection idea for solution of such problems, 
one must first find a suitable starting point for which relations (6.32) are 
satisfied. If the starting point is an interior point [a point for which strict 
inequality signs apply in (6.32)], one then proceeds in the negative free 
gradient direction until a minimum of f is reached or until one of the 
g3 changes sign. When the threshold of a constraint is reached, one then 
employs gradient projection, regarding the constraint as an equality. The 
subsequent possibilities for motion subjert to various degrees of coiistraint 
are numerous, and it is clear that extensive testing and provision for pro- 
jecting upon various combinations of constraints will require quite a 
sophisticated computer program if several inequality constraints are to be 
dealt with simultaneously. 

The “penalty function” notion may also be applied to minimum prob- 
lems featuring inequality constraints. To the function f are added terms 
comprising a “penalty function” of the form 

(6.33) 

Here H(g, )  is the Heaviside unit step function of argument 9,. With the 
K,  chosen as positive constants, the second member is nonnegative. 
Kote that the partial derivatives of the second member are continuous if 
the partial derivatives of the functions g, are continuous. This feature 
favors the retention of the square law form of penalty even though it is not 
required to make the second member nonnegative in the case of inequality 
constraints. 

This scheme possesses an attractive simplicity when employed in con- 
junction with the gradient method in that computer logic is minimal. In  
gradient calculations, the influence of a particular inequality constraint 
is automatically nil if the constraint is satisfied and increasingly large as it 
is violated. As in the case of equality constraint “penalties,” adjustment of 
the constants K ,  should be performed systematically, after each local 
minimum is attained, on the basis of comparison between “violations” and 
preassigned “tolerances.” 
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An analysis to determine the products Kjg, for adj ustmeiit purposes may 
be carried out in a manner similar to that of the preceding section. One 
will automatically lose a row and a column of the matrix of coefficient,s of 
the system analogous to (6.30) for each strict inequality satisfied at  the 
point under examination, in that the partial derivat,ives 

vanish at  points for which g k  < 0. 

6.2 Gradient Technique in Flight Path Optimization Problems 

An earlier chapter has developed the classical “indirect” method of the 
calculus of variations which is based upon the reduction of variational 
problems to differential equations. Although many interesting results have 
been forthcoming from analytical solutions of the Euler-Lagrange differ- 
ential equations governing optimal flight, the idealizing assumptions 
usually invoked limit their applicability in practical situations. Under 
more realistic assumptions, a numerical attack on these equations is 
required and in this approach a serious difficulty may arise in the satis- 
faction of two-point boundary conditions (see, for example, Il’lengel,20 
Irving and Blum,21 and FauldersZ2). This difficulty becomes a limiting 
factor where the order of the differential equations governing the basic 
system is four or higher. 

This situation has provided the motivation for attack on variational 
problems of flight performance by means of the gradient technique. An 
application of gradient method to fixed end-point variational problems 
was given by Stein.13 The class of problems featuring differential equations 
as constraints is more complex, and our development will be heuristic in 
character. We will, in the following, assume whatever continuity and 
differentiabilit’y properties may be necessary to avoid difficulty. 

6.21 Problem Formulation 

For present purposes it will be assumed that the system of differential 
equations to be satisfied along the flight path is given in first-order form: 

(6.34) 

These equations relate velocities and positions, forces and accelerations, 
mass and flow of propellants and coolants, and the like. The zm are termed 
problem or “state” variables, and y the control variable. Differentiation 

km = gm(x l ,  ..., zn, y, t ) ,  m = 1, . * * , n  
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with respect to the independent variable, time t ,  is denoted by a super- 
scribed dot. 

An important class of problems is that in which the performance quantity 
to be minimized is expressed as a function of the final values of the variables 
xm and t :  

P = P ( X 1 r j  ...) xntj t f )  (6.35) 

At a specified initial time t o  as many as n boundary conditions on the x, 
may be stipulated. Since an entire function y ( t )  is a t  our disposal, we may 
reasonably consider problems in which numerous conditions are imposed 
upon the x, at  various subsequent t values. In the following we will restrict 
attention to conditions imposed a t  the terminal point of the flight path. 
Among the n + 1 quantities consisting of the n final values of the x, 
plus the final time t f ,  no more than n relations may be specified in order that 
the value of P not be predetermined. 

This problem statement is essentially that employed in an earlier 
chapter in connection with the Mayer formulation of variational problems. 

6.22 Neighboring Solutions and Green's Functions 

We now assume that a solution of Eys. (6.34) is available which does not 
minimize P. This solution is required to satisfy the specified initial con- 
ditions; it may or may not be required to also satisfy the specified condi- 
tions at  the terminal point depending on the version of the gradient method 
to be adopted, as discussed in later sections. Denoting the solution by 
xm = Z m ( t ) ,  y = i j ( t )  , we examine behavior in the neighborhood of this 
solution by setting x, = 2, + axrn, y = + 6y and linearizing: 

The partial derivatives of the y, are evaluated along xm = 2,, y = and 
are therefore known functions of the independent variable t .  The functions 
6xm and 6y are the variations of x, and y in the neighborhood of f,, g .  
The motivation for study of the linearized system (6.36) is the alteration 
of the control function y ( t )  by means of a gradient process such as to 
obtain a reduction in the function P whose minimum is sought. 

A formal solution of Rqs. (6.36) mrty be written in the form: 

a r m  = 2 6 x p ( t o ) t m p ( t o l  t )  + 1' pm(Tl t )  ~ ( 7 )  dr ,  m = 1, * * .  , n 
P = l  10 

(6.37) 
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where the first member represeiits solution of the homogeneous system of 
equations and thc second a superposition of control variable effects. The 
functions pm arc Green’s functions or influence functions; p , ( ~ ,  t )  may be 
regarded as thc solution for &xm corresponding to a unit impulse (Dnac 
delta function) in control introduced at  time T . ~ ~  The pm are related to  the 
functions Emp of the homogeneous system hy 

n ag, 
~ ~ ( 7 ,  t )  = C imp(., t )  -, 

p=l aY 
m = 1, -.. , n  (6 38) 

Since interest centers on final values of the x,, we evaluate expresslons 
(6.37) at  1 = t f ;  however, to provide for determination of the effects of 
small variations in terminal tirnc 6tf from the terminal time tf = lf of aolu- 
tion Zm, 9, we include a first-order correction term: 

6x,, = 2 6z,(to)Emp(to, &) + lr p m ( r ,  i f )  6y(s) d r  + gmr 6 t f  
p=l 

m = 1, .-., n (6.39) 

Here the symbol gmf denotes the derivative &(if) = gm[&(&) ,  --., 
Z n ( l f ) ,  g(!f)] evaluated a t  the terminal point of the nonminimal solution. 

6.23 The Adjoint System 

Since computation of the functions p r n ( ~ ,  t )  over a complete range of 
both arguments will be found unnecessary, only their evaluation at t = tr 
being required for subsequent calculations, it is reasonable to seek a means 
for performing the special computation which avoids the labor of the more 
general one. Thc following development relates the functions pL,(7, t )  to  
solutions of an adjoint systcm of equations through an application of 
Green’s theorem. The scheme is based on the work of Blissz4 and Goodman 
and Lance.z5 

We rewrite Eqs. (6.36) employing a subscript notation suitable t o  our 
immediate purpose : 

and write the system of equations adjoint to this system 

(6.41) 

which by definition is the system obtained from the homogeneous system 
by transposing the matrix of coefficients and changing the sign. 
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The solutions of the two systems are related by 

(6.42) 

as may be verified directly by evaluating the derivative on the left: 

d "  

dt i=i i=l i= 1 

n n 

- C x i  6 X i  = c h i  6 X i  + c x i  6ki  

(6.43) 

and noting the cancellation of terms arising by interchange of subscripts 
i and j in thc double summations. After integration of both left and right 
members between definite limits to and f f ,  we find 

2=1 i=1 J t 0  2=1 

This is the one-dimensional form of Green's theorem. 
We now consider numerical solution of the adjoint system with all 

boundary values specified at t = if. To the special solutions corresponding 
to 

X , ( i f )  = 0, i + m 

X , ( i f )  = I, i = m 

we assign the symbols X i m ) ( t ) .  In this fashion n expressions for the values 
of the 6xm( f f )  are obtained from Eq. (6.44) : 

(6.45) 

t f  ag i 
6Z,(tf) = 2 X l " ' ( t 0 )  Sx,(to) + 1 C A'") - 6y dt, 

2=1 z=l ' aY 

m = 1, . . a ,  n (6.46) 

By comparison of Eqs. (6.39) and (6.46) me may now relate the functions 
Imp to the unit adjoint solutions defined by Eq. (6.43) as 

E m p ( t O ,  f f )  = ( t o ) ,  m = I ,  - - - , n  

p = 1, ... 
(6.47) 

, n  

[Sote that the dependence of the right-hand members upon f f  is implicit 
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in the definition of (6.45) .] The Green’s functions pm may also be expressed 
in terms of unit adjoint solutions as 

In  the preceding development the choice of symbols X for the variables 
of the adjoint system is deliberate, for Eqs. (6.41) are precisely those 
governing the Lagrange multiplier functions of the “indirect” theory. We 
note t,he important distinction, however, that the coefficients of (6.41) 
employed in the “indirect” theory are evaluated along a minimal solution 
of Eqs. (6.34), whereas in gradient computations they correspond to 
nonminimal paths. 

The close relationship between Green’s functions or influence functions 
and the “error coefficients” of guidance theory has drawn attention to the 
usefulness of the adjoint system technique in guidance analysis.26-28 

6.24 The Gradient in Function Space 

Introducing, as before, a second independent variable u, we seek anal- 
ogous means of performing gradient computations. We first evaluate the 
slope of descent of the performance quantity P a t  a “point” in function 
space determined by the nonminimal solution xm = Zm( t ) ,  y = ( t )  , 

dP dxmf dP d t f  
- =  g-- +--  (6.49) 
dP 

du m=l d ~ , ,  da atr du 

If the u derivatives of the initial and final values of the xm, the final time t f ,  
and the function y ( t ,  u) are taken and evaluated at  u = 5, corresponding 
to the nonminimal solution, Eqs. (6.39) become 

(6.50) 

and expression (6.49) may then be written in the following form 

dP + / i f  (c ~ pm) ay d~ (6.51) 
n=l axrnf au 
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In  the type of problem presently under consideration, the performance 
quantity P depends implicitly upon a finite number of parameters, the 
initial values of the xm and the final time t f ;  it also depends upon the 
function y ( t ) .  Hence the problem is of “mixed” type, having partly the 
character of an ordinary minimum problem and partly a variational char- 
acter. We will momentarily assume that the initial xm values and that of the 
final time t f  are fixed: 

dtf - = o  
(6 .52)  

da 

in order to examine independently the variational aspect. 

integral 
Under these circumstances the expression dP/du takes the form of the 

(6.53) 

We wish to determine the “direction” dy(~)/da of steepest descent in 
the function space ~ ( 7 ) .  In a procedure analogous to  the earlier treatment 
of ordinary minimum problems, we consider a differential distance ds in 
the function space y (7) , defined by 

and seek stationary values of 

subject to (6.54) as a constraint. 
We form 

dP - + A, [I - i:f c)Z dr]  

ds 

(6.54) 

(6.55) 

(6.56) 

and set the derivative of this expression with respect to dy(r)/ds to zero 
for all r, obtaining 

(6.57) 
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From (6.54) the multiplier AO is evaluated as 

and 

Taking the “velocity” of motion in function space as 

ds 

du 

we obtain 

We thus identify 
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(6.58) 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

as the (‘free’’ gradient direction and assure motion in the negative gradient 
direction by choosing the negative sign in (6.61). With k = 1 

aY 
- = - [ P I ,  
au (6.63) 

This development has been carried out by analogy with a characteristic 
property of a vector gradient, for a discussion of which the reader is 
referred to Courant5 and to Courant and HilbertI7 (pp. 222-224). 

In  this subsection the most convenient combination of boundary con- 
ditions has been assumed for simplicity of explanation, namely: t o  and t r  
fixed, xmo fixed for all m, zmf not appearing in the function P unspecified. 
The handling of other types of boundary conditions will be the subject of 
the next two subsections. 

6.25 Boundary Conditions as Constraints 

We consider boundary conditions of separated type, i.e., equations 
relating either initial values or final values. Terminal values, for example, 
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may be variable on a surface typified by 

3 j ( X l i ,  * - . ,  X n f ,  t f )  = 0 (6.64) 

and there may be a number of such relations specifiedj = 1, - - a ,  1 < n + 1 
if the final time is variable and I < n if it is fixed. 

Linearized versions of such constmints are given by 

n a3 83, 

m=l d x m f  d t f  
?ij + 63, = 3l + C 6 x m f  + - 6tf = 0, j = 1, *.., 1 (6.65) 

Similar constraints relating initial values xmo and to may also be specified. 
For the present we confine attention to the case of fixed initial values and 
fixed final time ti .  Hence we assume 

d3; 
- = 0  and l < n  
dtf 

(6.66) 

In an analysis similar to  that given in the preceding section, we write the 
constraints (6.65) in the form 

(6.67) 

and adjoin them to (6.56) by means of LLngrmge multipliers A,, j = 1, - - a ,  I .  
The omission of zero-order terms in expressions (6.63) corresponds to an 
assumption that the solution %m, k satisfies the boundary conditions (6.64). 

Leaving details of the derivation to  the interested reader, we state the 
principal result for the "projected" gradient direction 

(6.68) 

(6.69) 

The multipliers Aj, j = 1, .-., I are determined by the system of linear 
equations 
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This system of equatiolls will have a solution if the matrix of coefficients 
A = ( U k j )  

is nonsingular, and this will be the case if the matrix B = ( b k j )  

(6.72) 

is nonsingular, i.e., if the boundary conditions are not locally redundant’, 
and, further, if the matrix C = (cmP) 

is of rank r 2 1. *A proof of this due to Norman Greenspan of Grumman’s 
Research Department is given in Appelldix A. 

The technique for handling terminal constraints just discussed is es- 
sentially that employed by Bryson.15 It may be termed “gradient projec- 
tion” by analogy with the technique discussed earlier in connection with 
ordinary minimum problems. A somemhat related scheme employed by the 
present writer in the investigation of reference 14 is presented as follows. 

If in lieu of introduction of the multipliers A3, the control variable 1~ is 
broken down as 

then the I constants a, may be employed for the purposes of satisfying the 

* The latter test requires that a t  least of the n functions pm be linearly independent 
(Courant and Hilbert,’? pp. 61-62). Two circumstances where this requirement may be 
violated should be mentioned. The first concerns the case in which the system of differ- 
ential equation subsidiary conditions (6.34) contains a holonomic condition, i. e., a differ- 
ential equation obtainable by differentiation of a finite condition relating the variables 
zrn and t .  In such a case the matrix of (6.73) may degenerate in rank for all values of 
the upper limit of the integrals (see Courant and Hilbert,” p. 221). More subtle cases of 
degeneracy may arise for special values of the upper limit corresponding to other abnor- 
7nality phenomena and to the occurrence of conjugate points, as defined in connection w i t h  
Jacobi’s necessary condition. 
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constraints (6.67) which we rewrite in the form 

These equations may be rearranged as 

(6.76) 
arid regarded as a system of simultaneous equations in the da,/dc. This 
system will have a solution if the matrix D = (d jq )  

is nonsingular. 
The f,(t) are arbitrary functions to be chosen so that requirements for 

the system to have a solution are met. The da,/da determined by simul- 
ta.neous solution of (6.76) may then be substituted into 

and the gradient [PI$ determined as the collected coefficient of a4/du. 
Both of the schemes so far described in this section suffer from “drift” 

of terminal values, for large steps in Aa, as a result of the boundary lineari- 
zations. The terminal values must be restored in the course of the descent 
process, and, in the gradient projection case, this is accomplished by 
reinstatement of the zero-order terms in the linearized constraint expres- 
sions (6.65). In  the case of the process just described, the coefficients a, 
provide a natural choice of parameters by which the necessary adjustments 
may be performed. However, a difficulty in performing corrections may 
arise which is associated with the choice of the arbitrary functions f,, as 
will be illustrated in an example. 

The employment of a “penalty function” scheme has the advantage of 
“built-in” corrections. The constraints on terminal values will be satisfied 
only approximately, although within any desired tolerances. One seeks a 
minimum of 

(6.79) 

Just as in the ordinary minimum case, the products Kj3j will satisfy a 
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system resembling that determining the multipliers Aj [Eq. (6.70) 1, 
namely, 

where the p functions and the various partial derivatives are evaluated a t  a 
minimum of (6.79), for which the boundary constraints are satisfied only 
approximately. If the matrix whose coefficients are given by (6.71) is 
nonsingular, the errors in thc terminal constraint equations (6.64) may 
be reduced to within desired tolerances by appropriate adjustment of the 
K ,  as describcd in Section 6.14 in connection with ordinary minimum 
problems. 

namely, 
The expression for the gradient [P’], takes a form similar to (6.68), 

From the vanishing of [P’], along the path approached in the limit of 
the descent process, we may estimate the effects of small changes in 
specified terminal values of the &. In fact, for an arbitrary small variation 
in the control variable 6y ( r )  , we may obtain the relationship 

2 

6P = - C K J j  6Sj (6.82) 

by multiplication of (6.81) by 6y and integration from t o  to t f .  Thus the 
quantities - KjSj play the role of trade-off slopes in penalty function com- 
putations as do the quantities -A,  in the gradient projection case [see 
Eq. (6.68)]. This remarkable property of optimal paths which holds for 
small variations in their neighborhood has been noted by C i ~ a l a ~ ~  in con- 
nection with the indirect theory. 

j=1 

6.26 Variable Terminal Time: Boundary Values as Parameters 

The way in which the terminal value of the independent variable time, 
t f ,  enters into problems of the type presently under discussion is such as 
to  require special treatment if it is not fixed. If, in a particular application, 
one of the variables xm behaves monotonically and has fixed initial and ter- 
minal values, then its adoption as independent variable provides a simple 
means of avoiding complication. Such a choice may very often not bc 
available, and in these circumstances the matter is one to be left to the 
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ingenuity of the individual investigator according to the application and 
the version of gradient scheme adopted. A particular scheme suited to the 
technique involving arbitrary functions discussed in the previous section 
will be illustrated later in an example. In this section we will present a 
treatment of t f  as a free parameter in connection with the use of a penalty 
function for handling terminal constraints. It is convenient to consider 
simultaneously a similar means of handling unspecified initial values. 

In order to avoid undue complication in the expressions to follow, we 
will assume that the initial value of time, to, is fixed and that initial condi- 
tions on certain of the variables x,, are given as fixed values, the remainder 
being parameters free for optimization purposes. We proceed to determine 
the derivative with respect to a of the performance function given by 
(6.79) as follows: 

Making use of the expressions (6.50), we expand this to the following: 

(The summation over p is to be understood to range over only those initial 
values x,, which are unspecified.) 

We are now in a position to identify a “mixed” gradient direction on the 
basis of the coefficients of the various u derivatives appearing in (6.84). 
We set 

aP 
a t ,  j=l at f 

+ - + C Kj33 ”1 (6.86) 
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and, in the course of the descent process, we changc the final time t r  and 
the free initial values xp0 ,  along with the function y, linearly with incre- 
ments in the descent parameter u according to  the slopes given by these 
expressions. In such a fashion we combine the features of variational 
problems and ordinary minimum problems in a single gradient optimization 
process. 

A related scheme for determination of optimal tf is employment of the 
vanishing of the expression (6.86) as run termination criterion. This may 
be viewed as a one-dimensional search for a minimum of P' versus t f  
which niay be performed simultaneously with numerical integration of 
trajectories. 

We note again in passing that the quantities C ; m p ( & ) ,  the partial deriva- 
tives of the terminal X, values with respect to initial X, values are coii- 
veniently evaluated from unit solutions of the adjoint system of equations 
as previously discussed in Section 6.23. 

6.27 Optimization with Respect to Configuration and System Parameters 

In  many practical engineering applications, optimal performance is 
sought not only in terms of flight path selection but also in terms of vehicle 
and system parameters. We have, for clarity, avoided complicating the 
preceding analytical work by such considerations. It is of interest to note, 
however, that such parameters may conveniently be handled as initial 
conditions by means of the following artifice which is due to C i ~ a l a . ~ ~  

We characterize the parameters e, as initial values of additional system 
variables which are governed by the differential equations 

X% = 0 

~ " ( t o )  = e,  
i = n + 1) ..- (6.88) 

Considering these equations as additional members of the basic system 
(6.34)) we may obtain the partial derivatives of terminal X, values with 
respect to the e, in terms of unit solutions of the (now expanded) adjoint 
system as previously described. This offers a convenient means compatible 
with the computational scheme previously suggested for simultaneous 
treatment of variational and ordinary minimum problems. 

6.28 Inequality Constraints 

If to the problem statement of Section 6.21 one or more requirements 
in the form of inequality constraints on the variables zm, y, and t are added, 
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the problem becomes of nonclassical type. If the control variable y appears 
in the expressions &I., certain techniques developed along the lines of the 
“indirect” variational method are applicable, namely, the techniques of 
Valentine30 and Pontryagin,31 discussed in other chapters. Relatively little 
theory is available, however, for treatment of cases in which the functions 
Qi do not depend on the control variable y. Such cases are of great practical 
interest, e.g., in connection with air vehicle flight paths subject to a mini- 
mum altitude limit and to air speed/altitude envelope boundaries arising 
from structural and power plant limitations. 

Examining first the situation where the control variable y appears in the 
Q i ,  we assume that the inequalities are of the form 

Y l  I y I yz (6.90) 

which is usually the case in applications. We now introduce a parameter 
p ( t ,  u) as a new control variable by defining a function y(@) as 

Y = Y1, P I 0  (6.91) 

y = y1 + (Yz - YdP, (6.92) 

Y = Yz, 1 5 P  (6.93) 

0 I P 5 1 

This is shown in the following sketch. 

I 
I 
I 
I 
I B 0 I 

We may now apply the theory developed earlier in the absence of any 
constraint on the varinhle @. As a result of the transformation from y ( t ,  u) 
to p ( t ,  u) as control variable, the integrand typically arising in the integral 
expression for dP/du becomes 

(6.94) 
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and motion in the negative gradient direction is determined by 

(6.95) 

The derivative dy/dp  is given by the expression 

(6.96) 

where H is the Heaviside unit step function [H ( a )  = 0 for (Y < 0, H ( a )  = 1 
for (Y > 01. The derivative is undefined at the points P = 0 and p = 1. 
These ambiguities may be removed conveniently by setting 

dY 
d p  
_ -  - (Y2 - Yl)CH(P) - H(P - 111 

(6.97) dY 
- = ( Y 2  - Y1)H(- CPI,), 
d o  

_ -  dy - (y2 - YdH(CPIU), p = 1  (6.98) 

which decides the question on whether or not the negative gradient direc- 
tion leads into or out of the interval 0 5 p 5 1. 

In a continuous descent process, such a formulation will succeed in 
holding the control variable y in the desired region y1 5 y 5 yz and the 
parameter 0 will automatically remain in the region 0 5 5 1. There 
will be difficulty, however, with a stepwise version, since the right-hand 
member of(6.95) is evaluated along the solution z = g ( t ) ,  y = g ( t )  and 
with finite step size Au, the control parameter /3 will not, in general, remain 
within limits. Consequently, it will be necessary before each calculation of 
ap(t) /& to alter the function p ( t )  obtained in the course of the preceding 
descent computations to conform to the inequality 0 5 p 5 1; otherwise 
the right-hand member of (6.95) will vanish in all subsequent computations 
at  points for which the inequality is violated. 

Constraints QZ 5 0 which are independent of y may be handled ap- 
proximately by construction of suitable penalty functions. If an additional 
variable x, is introduced in connection with each constraint according to 
the equations 

P = 0 

2% = 3&22H(&J 

xz(to) = 0 
i = n + 1, n + 2,  --., s (6.99) 

where H is the Heaviside unit step function, then the terminal values of 
these z, will be 
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representing integral squares of the “violations” taken over thosc segments 
of the flight path which violate the constraints. Appropriate penalty terms 
proportional to these terminal values may then he added to Eq. (6.79), 
giving it the form 

I s 

P’= P + + C K3sj2 + C K,xi(ti), I < 12 (6.101) 

Evidently “tolerances” for comparison with the x ,  terminal values and 
adjustment of constants K ,  must be specified in similar terms. If E %  is a 
specified error tolerance in the sense of an rms average cver instantaneous 
values, thcn the appropriate “tolerance” for comparison with xZi  is 

(6.102) 

The ratio z i ( t r ) /E i  will then serve as a ‘%~latioii”/~‘tolerance” index for 
adjustment of K i  in the course of the descent process. 

6.29 Penalty Functions: Error Estimates 

In connection with computer mechanization of the penalty function 
scheme, it is useful to have available a means for estimation of the error 
in the functional P in terms of the constraint “violations.” Thus those 
“violations” which have a particularly strong effect on P may be noted 
and a more rational basis provided for the establishment of the “tolerances” 
discussed previously. 

The increment in P due to  small changes in terminal values of the xm 
and t is given to  first order as 

dP 

rn=l dx,, m=l axm, 
(6.103) 

Assuming that a minimum of P’ as given by (6.101) has been attained 
for certain fixed values of the penalty constants, we have the following 
equation for the vanishing of the gradient, [P‘],: 

(6.104) 



232 1Amt-y J .  Kelley 

$“om the condition t f  open, 

Making use of thesc expressions, wc obtain for A P  

2 

= - C Kj3j A3j - C Ki Axif  
j=l i=n+l 

(6.106) 

If we now consider corrections in control 6 y ( ~ )  and in terminal time 6tf 
such as to produce increments 

AS.  = -3. (6.107) 

AX,, = - X i f  (6.108) 

which will null the “violations,” then the resulting increase in P may be 
estimated as 

I 

(6.109) 
,=I r=n+l 

where the factor of 2 in the second member is introduced to account ap- 
proximateIy for the square-law behavior of the intcgrand in (6.100) near 

The increment in P may be conveniently evaluated in terms of known 
terminal values. The contributions of the various components of A P  
provide a basis for the setting of “tolerances” and hence for the adjust- 
ment of the K, and K,. In terms of P and P’ evaluated for finite K, and K, ,  
a “best” estimate of the limiting value of P is 

Qi  = 0. 

P + A P  = P + 2(P’  - P )  = 2P’ - P (6.1 10) 

as obtained from (6.101) and (6.109) 
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6.3 Solar Sailing Example 

For the purpose of exploring the computational aspect of the gradient 
optimization technique, we have chosen a planar case of transfer between 
planetary orbits by means of the interesting solar sailing scheme. The 
potential capabilities of solar sail propulsion have been investigated in the 
papers of Garwin,32 Cotter,33 T s u , ~ ~  and London.35 This problem has the 
simplicity appropriate to an exploration of method, yet sufficient complexity 
to render analytical solution quite difficult unless drastic simplifications are 
introduced. 

6.31 System Equations 

The equations of motion and kinematic relations are given in a notation 
nearly the same as that of T s u . ~ ~  With reference to the schematic of Fig. 2, 
these are as follows: 

Radial acceleration 

Circumferential acceleration 

Radial velocity 
R = g , = u  

(6.112) 

(6.113) 

Ref. 

FIG. 2. Orbital transfer schematic. 
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Circumferential angular velocity 

. v  + = -  
R 

(6.1 14) 

Since the heliocentric angle + does not appear in the first three equations, 
nor will it appear in the statements of boundary conditions to be con- 
sidered, Eq. (6.113) may be ignored for purposes of gradient optimization. 
This amounts to an assumption that terminal matching of the heliocentric 
angles of vehicle and “target” planet is accomplished by selection of launch 
time. 

6.32 Boundary Values 

Seeking miiiimum-time transfer, we identify the functional P as 

P = tf (6.115) 

The functions u, v, R are the variables xm of the theoretical development, 
and the sail angle 0 appears in the role of the control variable y.  

As initial conditions we specify velocity components u, v, and radius R 
corresponding to motion in the earth’s orbit approximated as a circle : 

to = 0 (6.116) 

v(0) = vo = V E  (6.118) 

R(0)  = Ro = R E  (6.119) 

We consider terminal conditions corresponding to arrival a t  the orbit of 
the planet Mars (also taken as a circle) with prescribed velocity com- 
ponents : 

u( t r )  = U f  (6.120) 

V ( t f )  = V f  (6.121) 

R(tr) = Rr = RM (6.122) 
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6.33 Correction Functions 

For fixed boundary values of u, v, and R, the equations corresponding to 
Eqs. (6.39) of the preceding theoretical development are 

t f  

6Uf = 1 p1 68 dr  + Qlf 6tr = 0 (6.123) 

l f  

6vf = 1 p z  60 dr + Qzf 6tf = 0 

6 R f  = 1 p 3  60 dr  + Q3f 6tf = 0 

(6.124) 

t f  
(6.125) 

In  this case the number of functions f, and coefficients a, required is 

We select the functions f, as 

f l ( t )  = t (6.127) 

fz(t) = t2 (6.128) 

and the control function 0 ( t )  is broken down as 

0 = + alt + ad2 (6.129) 

The system of equations (6.123)-(6.125) becomes 

(6.130) 

(6.131) 

(6.132) 
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This 3 x 3 case may conveniently be inverted analytically. There seems 
little point in listing the inverse elements here, however. 

The slope of descent d t f / d a  is given by 

(6.133) 

and the gradient of P by 

Accordingly, we set 

(6.136) 

and proceed with stepwise descent. 
A particularly suitable case for a first illustration of computational tech- 

nique is the one in which terminal velocity components are unspecified- 
“free” boundary conditions. Here Eqs. (6.123) and (6.124) may be de- 
leted and 

y = n - l - s = 3 - 1 - 2 = 0  (6.137) 

so that no functions f, are needed. Hence 

e = +  
and 

(6.138) 

(6.139) 

(6.140) 

in this case. 
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Ref. 

- 

p Ref. 

FIG. 3. Successive approximations to optimal transfer path, terminal velocity corn- 
ponents open. 

Computations have employed numerical values of the various constants 

CY = 0.1 cm/sec2 = 3.28 X ft/sec2 (6.141) 

from TSU’S paper, with 

Time- days 

Successive approximations to optimal sail angle program, terminal velocity FIG. 4. 
components open. 
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This value corresponds to about lOP4g thrust acceleration developed by 
the sail when oriented broadside to the sun (0 = 0 )  a t  earth’s orbit radius, 
or about 17 % of the sun’s gravitational attraction. 

6.34 Orbit Transfer Computations 

Results of descent computations for the case of “open” terminal velocity 
components are shown in Figs. 3-5. The control program of the original 

I 
0 10 20 30 40 

- -  dtf Au 

2 zoo+ 2nd descent 
do , f f  (001 , , 

0 3rd descent ---- ______----- - - - 
0.01 0.02 I 500 0.1 0.2 1500 

dtf A u  - -  dt f  Au - -  
d u  if tic i, 

FIG. 5. Descent curves-solar sail transfer, terminal velocity components open. 

flight path (Figs. 3 and 4) ,  chosen arbitrarily, was far from optimal in that 
the radial velocity component a t  crossing of Mars orbit was small. The 
greatest reduction in flight time-more than half of the original-is seen to 
be obtained in the course of the first descent (Fig. 5 ) .  In  three descents 
minimum flight time has been attained for practical purposes, although 
small changes in the detailed structure of the control program are still in 
evidence. 

Results for the case of terminal velocity components matched to the 
target planet 

(6.142) U f  = U y ,  W f  = W M  

are presented in Figs. 6-9. The tendency of the terminal values to depart 
from the prescribed values is shown in Fig. 6. These were restored via an 
iterative correction process employing increments in the coefficients a1 
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u (if + 2 Au) 
- ft /sec 

u ( f f +  2 Au) 
- ft  /sec 

0.02 0.04 0.06 0.08 7.8h 

dtf Au 
d u  - - -  

tf 

FIG. 6. Departure of terminal values. “matched” terminal velocity components. 

and u2 of Eq. (6.129). Typically, two or three iteration cycles were required 
to correct each point. Descent curves are shown in Fig. 7. The approach to 
the minimum-time solution is depicted in Figs. 8 and 9. 

6.35 Convergence Considerations 

The first attempt at computations for this “matched velocity” case 
employed functions f, constant and linear with time. This met with near- 

FIG. 7. Descent curves-solar sail transfer, “matched” terminal velocity compo- 
nents. 
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100 200 300 400 500 

Time - days 

FIG. 8. Successive approximations to optimal sail angle program, “matched” termi- 
nal velocity components. 

zero determinant difficulty, whereas the combination of linear and square- 
law corrections indicated above was successful in avoiding this difficulty. 

Ref. 

FIG. 9. Successive approximations to optimal transfer path, “matched” terminal 
velocity components. 



6. Method of Gradients 241 

A subsequent examination of the behavior of the determinant in question 
during the course of the descent process was instructive on the matter of 
choice of correction functions. Values of the determinant of the matrix on 
the left of Eqs. (6.130)-(6.132), which is required in calculation of the 
inverse matrix C of Eq. (6.133), were tabulated for the first few descent 
steps and for the converged trajectory as shown in Table I. 

TABLE I 
DETERMINANT BEHAVIOR 

j l  = 1 

Descent no. f2 = 1 
Case: 

i &;/Arn 

f i  = t 

fi = t 2  
Case: 

A i/A 

-2 .383  
-2.695 
-0.770 
-0.340 

1.000 

3.983 
3.268 
1.527 
1.104 
1 .ooo 

A check showed that the numerical values of both determinants eval- 
uated for the converged trajectory were large enough to permit terminal 
value adjustments without difficulty of ill-conditioning. Thus the con- 
vergence of a descent process which employs correction functions depends 
upon a choice of functions for which the determinant may not change sign. 
With the benefit of hindsight gained from this experiment, we observe that 
a choice of influence functions pm in the role of correction functions f, ap- 
pears attractive in that the determinant in question will be well behaved 
except in the special circumstances noted in the footnote of Section 6.25.  

6.4 Low-Thrust Example 

6.41 System Equations and Boundary Values 

A second, closely related, example for which numerical computations 
have been performed concerns orbit transfer by means of low-thrust pro- 
pulsion, e.g., ion rocket or plasma jet. In  this case the penalty function 
technique for tieatment of terminal constraints is adopted. The results of 
this scction are due to Lindorfer and h10yer.~~ 
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The equations of motion and kinematic relations resemble those for the 
solar sail example, with differences appearing only in &e expressions for 
thrust components : 

Radial acceleration 

Circumferential acceleration 

uv T 
R m  

+ - cos 0 v = g 2  = -- 

Radial velocity 
& = q 3 = u  

Circumferential angular velocity 

V 

i c = g 4 = R  

(6.143) 

(6.144) 

(6.145) 

(6.146) 

The thrust magnitude T has been taken as constant at a value corre- 
sponding to an initial thrust acceleration 

T 

mo9 
- = 0.8-26 x 10-4 

and the mass has been assumed to decrease linearly with time 

(6.147) 

nt = mo - Qt (6.148) 

a t  a rate corresponding to 

Q 
- = 1.29 X 
mo 

per day (6.149) 

These estimates are taken from the paper of Edwards and Brown.37 The 
thrust direction 0 is measured from the circumferential direction in the 
above. 

Boundary conditions considered in the computations are those for the 
“matched velocity” case of transfer from esrth’s orbit to the Martian 
orbit. These orhits are idealized as circular as in thc example of the pre- 
ceding section. 
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6.42 Orbit Transfer and Rendezvous Computations 

The orbit transfer case, + f  open, was examined first. The convergence 
of the successive approximation process was fairly rapid. Although the 
number of descents required mas larger than in the solar sail example 
of the preceding section, the absence of any need for correction of the 
“drift” exhibited in Fig. 6 resulted in ail over-all reduction in computation 
time. Experimentation with penalty constant adjustment schemes indi- 

Ref. 

FIG. 10. Successive approximations to optimal low-thrust transfer, terminal helio- 
centric angle open, 

cated that convergence is improved if the values of the penalty constants 
are initially taken small--“loose tolerances”-and the descent process al- 
lowed to proceed through a number of steps before the tolerances are 
“tightened.” Thus in Figs. 10 and 11 the first 25 descent steps were per- 
formed with somewhat low values of the K,  and a minimum of P’ ap- 
proached. The K,  were then increased in proportion to the absolute value 
of error/tolcrance ratio for each variable (radial velocity excepted, since 
this was employed QS run termillation variable) and the process continued 
as shown. 
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I 
350 
L 

Time - days 

FIG. 11.  Successive approximations to optimal low-thrust direction program, termi- 
nal heliocentric angle open. 

For the planetary rendezvous problem it is required that the heliocentric 
angle of thc vehicle, +, match that of Mars a t  the terminal point. r'g 41 ures 
12 and 1 3  present results obtained for various assumed initial configurations 
of the vehicle (earth)-Mars system. Minimum transfer time is plotted 

L 

100 

( % - % mars) - degrees 

FIG. 12. Minimum time for orbital rendezvous. 
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against the initial configuration angle in Fig. 12. The lowest point on this 
curve corresponds to the minimum time for the orbit transfer case (termi- 
nal angle open). On the basis of the few data points shown, the minimum 
appears to  have a cusplike character. 

This particular point also divides the solutions to the rendezvous problem 
into two operationally distinct classes. One class ($0 - $0 M~~~ > -46’) 
consists of solutions in which the vehicle “waits” for Mars to overtake it. 
To accomplish this, the vehicle flies out past the Martian orbit, decreasing 

FIG. 13. Optimal transfer paths for rendezvous, various initial corifigurations 

circumferential velocity until it becomes lower than Martian circular 
velocity. As the relative heliocentric angle decreases, the vehicle’s circum- 
ferential velocity is increased to match that of Mars. 

The second class of solutions ($0 - $0 Mars < -46’) is characterized by 
an initial inward motion toward the sun resulting in velocity build-up and 
final tangential approach to the Mars orbit from within. 

The results of Fig. 12 indicate that transit time as a function of launch 
configuration of the planets exhibits a fairly sharp minimum, and that on a 
majority of “unfavorable” launch dates the technique of pursuit from 
behind permits faster transit than the “waiting” technique. 
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6.5 Remarks on the Relative Merits of Various 
Computational Techniques 

The reader may have correctly inferred that the present chapter amounts 
to a status report on research still underway rather than a definitive ex- 
position of a standard technique. Indeed, the diversity of viewpoints in 
the various chapters of this volume serves to indicate the current general 
uncertainty regarding the applicability and relative merits of the numerous 
schemes in actual numerical computations. Accordingly, the remarks of the 
present section will be qualitative, provisional, and confined to the gradient 
and “indirect” methods with which the author has first hand experience. 

The writer has occasionally been asked to compare gradient methods 
with the classical “indirect” method (numerical solution of the Euler- 
Lagrange equations) in regard to speed and ease of computation. It is not 
easy to draw such a comparison since gradient methods have a “hammer- 
and-tongs” character while the numerical solution of the txyo-point bound- 
ary-value problem for the Euler equations is very much an art. In problems 
simple enough to yield to a survey of a one- or two-parameter family of 
Euler solutions, the classical approach is effective; yet there are few prob- 
lems of practical interest which can be manipulated into so simple a form. 
Treatments of the more complicated problems reported in the literature 
have centered on determination of the mapping between initial and final 
values, either by mechanized iterative procedures or by extensive cross- 
plotting of boundary values. This sort of process may be complicated, 
depending on the particular application, by extremely high sensitivity to 
small changes in initial values and/or by encounter with near-singular 
matrices governing successive adjustments. Even the most successful 
procedures depend upon first obtaining a trial Euler solution whose terminal 
values lie somewhere in the vicinity of those specified; and the preliminary 
search for such a solution may consume much time and effort. 

It seems possible and even likely that improved means for solution of 
the mapping problem mill materialize. The state-of-the-art in nonlinear 
differential equations is perhaps riot very encouraging, however, in regard 
to the early development of a powerful general scheme. 

Another approach based upon the Euler equations and Kewton’s method 
should be mentioned. This is a proposed iterative technique due to Hes- 
tenes38 designed to lead to an Euler solution which satisfies the specified 
boundary conditions. This idea has been pursued by K a l ~ i b a ~ ~  whose 
theoretical studies have indicated favorable convergence properties within 
the limits of a convexity assumption. Computational experience with the 
method and examination of the practical implications of the convexity 
assumption are presently lacking. 
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Insofar as comparison between the various versions of the gradient 
method presented herein are concerned, the active competition appears to 
be between gradient projection and the penalty function scheme. The former 
requires an expensive error correction cycle which is unnecessary with the 
latter. On the other hand, the concentration of effort with the penalty 
function technique is overly heavy on reduction of errors in terminal 
values. If “tight” tolerances are employed, the proceps is oscillatory and 
convergence is slowed. The employment of “loose” tolerances in initial 
computations, with later tightening, appears to represent an effective 
compromise. The writer has considered, but not yet tried, the two versions 
in combination, i.e., in alternate cycles. This would relieve the need for 
corrections during the projection cycle and perhaps combine the good 
features of the two versions. In  general, the computational experience with 
gradient methods has been sufficiently encouraging throughout the ex- 
ploratory work reported herein to warrant future attack on comparatively 
large scale problems. 

The writer and his colleagues have compared the gradient and Euler 
solutions for a limited number of cases in the problems described in the 
preceding sections. The motivation for this work happened to be a desire 
for an “exact” solution as a test extremal in some work on the second varia- 
tion, rather than a comparison of technique. The first lesson from these 
experiments was that the control variable time history for a gradient solu- 
tion converged within “engineering” accuracy (say 1% of minimum P )  did 
not agree well over certain time intervals with an Euler solution. The dis- 
agreement was confined to those portions of the path over which the 
terminal values affecting P are relatively insensitive to control variations 
(see, for example, Fig. 14). From an engineering viewpoint this is unim- 
portant if only the value of P is of main interest, as in flight performance 
xork. It is inconvenient if a family of neighboring extremals are required, 
as, for example, in connection with a guidance study, for this requires that 
additional computations be performed to converge the control variable 
history to within the desired accuracy. 

It has been speculated that an appropriate procedure for treatment of 
this situation is transition to a scheme for systematic numerical solution 
of the Euler equations, and this appears plausible on first consideration. 
One finds, however, that the appropriate liiicar combinations of adjoint 
solutions do not yield a good approximation to thc multiplier functions of 
the indirect theory, and, in particular, the initial values of the multipliers 
may be sufficiently in error to came difficulty in an iterative adjustment 
process. 

In this connection, me will present in the following section a scheme 
intended to refine the control program of a near-minimal gradient solution 
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100 200 300 400 500 
Time - seconds 

FIG. 14. Comparison of gradient and Euler equation solutions for solar sail orbital 
transfer example. 

into a close approximation to an Euler solution. Although this development 
may appear to be an afterthought, as is actually the case, an account seems 
worthwhile in the spirit of the present volume. While computational ex- 
perience with this technique is extremely limited at  the present writing, 
its potential as a primary computational scheme as well as a refinement 
scheme is perhaps of future interest. 

6.6 A Successive Approximation Scheme Employing 
the Min Operation 

While the method outlined in this section is not, properly speaking, 
a gradient method, it is a close relative both in concept and operation. We 
consider the problem of minimizing the function P’ of terminal values given 
by (6.79), referring the reader to earlier discussions on the matter of 
penalty constant determination. Initial values of the xi are presumed 
fixed. A nonminimal solution corresponding to y = Q ( t )  is generated by 
numerical integration of the basic system (6.34). For run termination we 
may employ the criterion dP’/dtf = 0, this feature being equally applicable 
to computations with the penalty function version of the gradient tech- 
nique. At the time t = if so determined, the terminal conditions 

- aP’ 
X i ( t * )  = - 

dX i 
(6.150) 
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are imposed upon the X i  and a solution of the adjoint system (6.41) 
generated by numerical integration proceeding from & to to.  

We designate this solution by X , * ( t ) ,  and from (6.44) we then have that 

(Note that the term (dP’/dtt)Gtf missing from the 6P‘ expression vanishes 
by virtue of the run termination criterion chosen above.) 

We now define a function H * ( y ,  t )  as 
n 

H *  = c X i * ( t ) g i ( & ,  * * * ,  2,, y, t )  (6.152) 

where thc functions e , ( t )  correspond to the rionminimal solution y = g ( t ) .  
We get then that 

2=1 

(6.153) 

where the partial derivative a H * ( y ,  t ) / a y  is evaluated at  y = g ( t ) .  The 
argument to this point is essentially identical with that of Section 6.5, 
and if we were to specify steepest descent subject to a Euclidean metric, 

t i  

d s  = 1, 6y2 dt (6.154) 

[cf. Ey. (6..54)] we would then have a gradient method, leading to 

aH* 
6y = k -  

aY 
( k  < 0 )  (6.155) 

A shortcoming of such a process is that over intervals in which dH*/dy 
is small in magnitude, the corresponding changes in y will be small. After 
several steps y may still be far from its optimal value over such “insensi- 
tive” intervals owing to this feature of the gradient process. This, of course, 
stems from the rather arbitrary imposition of the Euclidean distance 
measure. 

We may choose an equally arbitrary alternative, dropping the distance 
constraint altogether and adding a term 

(6.1.56) 

The only justification which can be offered for this alteration is that the 
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term provides assurance that 6P’ possesses a minimum for some finite 6y, 
if indeed this is the case. By a formal process we obtain 

(6.157) 

as the value of 6y making 6P’ stationary. The stationary value will yield 
a negative integrand only if a2H*/dy2 > 0. If dzH*/dy2 is zcro or negative, 
the integrand is not bounded below and the minimum problem for 6P’ 
ill-posed. Evidently this first attempt a t  modification, then, is a failure. 

If, however, we add enough higher order terms to  the integrand we will 
approach the operation 

miii H * 
1/ 

(6.158) 

in the limit as the solution of thc minimum problem for 6P‘, and this ap- 
pears more promising since H* can be expected to possess a minimum 
except in the unusual case where H* does not depend upon y (a  so-called 
abnormal case). 

In  adopting the control y = y * ( t )  generated by minH* as our next 
approximation, we must risk the violation of our linearizing assumptions, 
for this may represent a large step process. For the purpose intended, the 
refinement of a near-minimal solution, this represents a calculated risk. 
However, being conservative, we may elect to replace the large step 
by an exploratory series of small ones, setting 

Y = s(t)  + tCy*(t) - s(Q1 (6.159) 

and evaluating P’ versus {, a one-dimensional search analogous to that 
versus u in gradient computations. 

The reasoning leading up to the min H *  scheme for successive approxi- 
mations is presented here as a matter of interest. The result might equally 
have been arrived a t  by analogy with the Pontryagin principle of the next 
chapter. (The difference between miii H and Pontryagin’s max H is one of 
sign convention between East and West.) n‘ote that as the process con- 
verges the fuiiction H* tends toward the function H ,  the generalized 
Hamiltonian. 

111 limited experience obtained with a single lom-thrust example as of 
this writing, i t  appears that the method of this section coliverges to a 
solution which is a much better approximation to an Euler solution than 
normally obtainable with a gradient method as far as details of the control 
variable time history y ( t )  arc concerned, the improvement being in the 
“insensitive” regions discussed earlirr. The speed of convergence of the 
method appears to make it competitive with the gradient/penalty function 
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scheme, although insufficient evidence exists as yet to support any firm 
conclusion. 

Some recent publications relating to the material of this chapter are listed as references 
40-49. 
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Appendix A 

The rank of the matrix A whose elements are given by Eq. (6.71) may 
be examined by recourse to factorization as follows: 

A = PCp‘ 

where the prime indicates the transpose matrix. The elements of /3 are 

, n  m = 1, . a .  

P j r n  = -, 
ax,, j = 1, ..., 1 

and the elements of C are given by Eq. (6.73). 
We denote the ranks of p and C as s and r, respectively, and observe that 

the three-way product above must have rank I for A to be nonsingular. 
Since the rank of this product may not exceed the rank of the premulti- 
plicativc matrix P, we have that 

15 s = R ( p )  

(see reference 30, Chapter 3 ) .  Further, since the rank of p may not exceed 
the number of rows, 

R(P) = s 5 1 

and it follows t,hat 

n(p) = s = 1 
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Since the rank of the product may not exceed the rank of the post- 
multiplicative matrix, we have that 

R(PCP’) = 2 I R(C0’) 

and since the rank of a matrix may not exceed the number of columns, 

from which we conclude 

R(CP’) = I 

Similar considerations establish that 

R(C0’) = I5  r = R ( C )  

The rank of the product 

B = PP’ 

may be deduced from the special case in which C is the identity matrix 

R(PP’) = R ( A )  

The results of interest in the text may thus be summarized as 

I = R ( A )  I R ( C )  = r 

and 

i = R ( A )  = R ( B )  
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