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F, = A,p, sinf[sinf + %] (17)

taking into account the diffusely reflecting surface. The
resulting precession torque 7T, is zero since the axial forces
given by Eq. (14) and Eq. (16) are equal; however, the spin
torque (which will be used to oppose despin) is equal to

Ts = %AspsRs sinf (18)

provided care is taken to make the IR emissivities of both
black and white sides equal.

Black and white surfaces of the forementioned type may
be used with corner mirrors, such as shown in Fig. 2, with-
out affecting the precession torque of the latter but in a
manner such as to oppose the despin torque. If this is done,
the expression for the despin torque of the combination is the
difference between Egs. (9) and (18) or

T, = ps sinf[4R4 sinf — 2A4,R.] (19)
For
sinf = }[A:R./AR] (20)

there will be neither a spin-up nor a despin torque, but a
spin-up torque for smaller values of # (when the spin rate
is also small) and a despin torque for larger values of 6 (when
the spin rate is higher). Equation (20), together with Eq.
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(12), gives the asymptotic values of both angular momentum
and tracking error, although the asymptotic tracking error
is determined by Eq. (20) alone. The smaller the relative
size of the spin regulating array, the smaller this tracking
error. The array of black and white surfaces may be radial
extensions of the long side of the corner mirrors but, if the
latter are close together, mutual interference may be avoided
by using a smaller number of larger surfaces, one surface being
sufficient. Control of the asymptotic spin rate is also pos-
sible by adjusting the angle of attack of the spin regulating
surfaces by remote control or by centrifugal force. A
photograph of an attitude stabilizing array of corner mirrors
having spin regulating surfaces is shown in Fig. 5.
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Singular Extremals in Lawden’s Problem

of Optimal Rocket Flight

Henry J. KeLLey*
Analytical Mechanics Associates, Inc., Uniondale, N. Y.

The problem of optimal rocket flight in an inverse square law force field has been studied ex-
tensively by Lawden and Leitmann. Periods of zero thrust, intermediate thrust, and maxi-
mum thrust are possible subares of the solution according to analysis of the Euler-Lagrange
equations and the Weierstrass necessary condition. Arcs of intermediate thrust have been
examined recently by Lawden; however, the question of whether or not such arcs actually may
furnish a minimum has been left unresolved. The present paper derives the singular ex-
tremals of Lawden’s problem by means of the Legendre-Clebsch necessary condition applied
in a transformed system of state and control variables. These are obtained as circular orbits
along which the thrust is zero and intermediate thrust arcs are found in Lawden’s analysis.
Since these solutions satisfy only the weak form of the Legendre-Clebsch condition, i.e., the
extremals are singular in the transformed system of variables, the question of their minimal-

ity remains unanswered.

Introduction

HE problem of optimal rocket flight in an inverse square
law force field has been investigated by Lawden® 2 and

Leitmann.® Although considerable progress has been made
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in the study of properties of the solution, a question remains
as to the possible appearance of subarcs of intermediate
thrust.# 5 Such arcs are among the singular extremals of
the problem, in classical variational terminology, and are
resistant to analytical efforts owing to the unavailability of a
general theory applicable to singular cases.®

This paper first presents a brief development of the Euler-
Lagrange equations and the Weierstrass necessary condition
along the lines of previous investigations and then proceeds
to an analysis of intermediate thrust ares.

Lawden’s Problem

The equations of motion for a rocket in two-dimensional
flight are given by

% = (T/m) sinf + Y 1)
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3 = (T/m) cosf + X 2
¥ =u 3)
&= (4)
m = —(T/c) (5)

Here y and z, Cartesian coordinates in an inertial frame, 4% and
v, the corresponding velocity components, and the mass m are
the state variables of the problem. The control variables
are the thrust magnitude T and the thrust direction angle 6.
The former is subject to a constraint of inequality type

0<T<T (6)

corresponding to an assumed capability of throttling the
rocket motor over a thrust range of zero to maximum thrust
T. The gravitational force components ¥ and X are fune-
tions of the position coordinates and, in the most general
case, of time as well. The present analysis will be concerned
with the case of an inverse square law gravitational field.

Stated in the Mayer form, the optimal rocket flight prob-
lem is to determine a solution of Egs. (1-6), subject to ap-
propriate boundary conditions, which furnishes a minimum
of a function P of the state variable terminal values and the
terminal time. In terms of the generalized Hamiltonian
function

H = NJ(T/m) sinf + Y]+ N[(T/m) cosf + X] +
Mu AN+ A (=T/e) (7)

The Euler-Lagrange equations for the problem are given as

A = —(H/ou) = =)\, (8)
Ao = —(QQH/v) = =\ 9
N = —(0H/dy) = —N(dY/3y) + M(dX/0y)] (10
N\, = —(0H/0z) = — [\u(0Y/dz) + A,(0X/07)] (11)
Ao = —(QQH/OmM) = (T/m?)(\, sinf + \, cosf) (12)
in which the funections Ay, Ay, Ay, A,, and A, are the usual
Lagrange multipliers.
The control variables T' and 6 must satisfy the relation
H(T*,0% > H(T,9) (13)

for all admissible T*, 8%; which is to say that T and 6 provide
a minimum of the function H, subject to Eq. (6). This
is the extended form of the Weierstrass necessary condition
as derived by Pontryagin et al.”

A minimum of H is attained for
- )\u - )\1:

(N2 + N2 cosf = a2 + D)2 (14)

T = 0 for p== —(1/m)A? + NDY2 = (\,/e) >0 (15)
T = T for p= —(1/m)(\? + ADY2 — A\n/c) <0 (16)

sinf) =

In the case p = 0 the function H is not explicitly dependent
upon T and the thrust magnitude is not determined by the
Weierstrass necessary condition.

Portions of a solution of the FEuler-Lagrange equations for
which p vanishes identically, i.e., over a finite time interval,
are known as singular subarcs according to the terminology
of the classical theory, the criterion being the vanishing of the
determinant

2H /T2 O*H /60T
an

O2H/0To0 Q2H /062

This definition applies only if the function H is stationary at
its minimum

OH/o6 = dH/OT = 0 (18)
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Intermediate Thrust Subarcs

The possible appearance of singular subarcs in a problem
is accompanied by considerable analytical difficulty. There
is no powerful general method available for determining these
subares, or whether they may furnish a minimum even in the
local sense, i.e., over short intervals, or in what manner they
form segments of the minimizing arc. Valuable insight into.
these questions is provided by the Green’s Theorem method
of Miele,® which, however, is restricted severely in number
of variables, as regards its applicability.

For the problem presently considered, Lawden has exam-
ined ares of intermediate thrust satisfying the Euler-Lagrange
equations and the Weierstrass necessary condition.4 s His
results indicate the existence of a family of such intermediate
thrust arcs, including a spiral corresponding to the case
H = 0, analyzed in some detail. The question of whether
or not such arcs actually may furnish a minimum, however,
has been left unresolved. In the present analysis an alternate
approach to the intermediate thrust arcs is pursued.

New variables ¢, 8, v, ¢, V are introduced now replacing
u, v, 4, T, m according to the transformation

¥ = ysinf + x cosf + (1/w)(u cos® — v sind) (19)

8 = clom + u sind + v cosf (20)
¥y = y cosf — x sinf 21
¢ = y sinf + z cosf (22)
V = —c¢clom (23)

It is verified readily that this transformation is nonsingular
by the nonvanishing of the Jacobian determinant

A — a(lpi B) 7’ ¢’ V) —_

C
w0,y 7, m) - em” O @

By a formal process the equations of state in the new system
of variables are obtained as

¥ = vo + (1/0)(Y cosfd — X sinb) — (u/w)(¥ — ¢) (25)

8 = Ysinf + X cosb + ¥y — @) (26)
7= ol — 2¢) @n
dp=B8+vyo+V (28)
V="T/m=e"T (29)
6=uw (30)
=y (81)

It has been assumed tacitly in the course of the manipula-
tions leading to Eqs. (25-31) that the steering angle 6 is
twice differentiable, i.e., that the derivatives § = w and
§ = pexist. Examination of Egs. (8-14) indicates that such
an assumption is justified if the gravitational force com-
ponents ¥ and X possess first partial derivatives, except for
a finite number of points along the trajectory, corresponding
to thrust direction reversals, at which A, and A, vanish simul-
taneously. Such reversal points are excluded from the
segments of arc analyzed in the following.

It would appear upon first inspection of the Egs. (25—
31) governing the new variables that an unwarranted increase
in complexity has been realized. Our motivation becomes
clear, however, when it is observed that the variables T and
V appear only in Eqs. (28) and (29), and that as a conse-
quence of this, the multipliers Ay and A, vanish along the
singular subarcs. Means of synthesizing transformations
having this property will be discussed in another paper pres-
ently in preparation.
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Consider a segment of are of intermediate thrust, i.e.,
over which the strict inequality in_(6) holds

0<T<T (32)
it follows that neighboring thrust programs
T+ T =T@® + en(®) (33)

will also satisfy Eq. (32) if the magnitude € of the (otherwise
arbitrary) thrust variation is taken sufficiently small.

Evidently if attention is restricted to small variations in
T, V, and ¢, the variable ¢ may be regarded as a control
variable over an intermediate thrust are, as implied by the
vanishing of the multipliers Ay and A,. It is noted that the
coefficient of T in Eq. (29) and the coefficient of V in Eq.
(28) never vanish, and accordingly, that an admissible vari-
ation in thrust 8T may be found which produces an approxi-
mation as close as one wishes to an arbitrary variation é¢(¢),
provided. that the magnitude of 8¢ is sufficiently small.
With ¢ in the role of control variable and small variations
assumed, the intermediate thrust arcs must satisfy the neces-
sary conditions for a weak relative minimum.

The Euler-Lagrange equations for the system (25-27, 30,
and 31) are

)\,/, = —(QH/OY) = )\,,,(u/w) — Agw? — A (84)
A = —(QH/0B) = (35)

Ay = —(0H/dy) = —Mw +
(1/0)(2/3v)(Y cosf — X sinf)] —
Ap(0/0v)(Y sinf + X cosf) (36)

Ao = —(QH/00) = — Ay (0/00)(Y cosf —
X sinf) — Ag(0/08)(Y sinf + X cosf) (37)
Ao = —QHQw) = — Mly — /(Y cost —

X sinf) + (w/@?) (¥ — ¢)] — 2\ —
¢) — MY —2¢) — N (38)

Apl(p/@) + (1/w)(0/0¢)(¥ cost — X sinf)] +
Ag[— @? + (0/0¢)(Y sind +
X cosb)] — 2n0 = 0 (39)

OH/op = —Nl(¥ — ¢)/w] +A=0 (40)

The Legendre-Clebsch necessary condition for a weak
relative minimum is

o
56 0t 2555, a¢a

for arbitrary 8¢, du. Positive semidefiniteness of this quad-
ratic form requires that

(0?H/0¢%) > 0 (42)
(02H/op?) > 0 (43)
(02H/0¢?*)(9*H/0u?) — (0*H/d¢ou)* > 0 (44)
There is

O2H/0¢? = Ng(02/0¢?) (Y sinf + X cosf) +
(Ay/ ) (02/0¢*) (Y cosb — X sinf) (45)
A*H/ou? = 0 (46)
QH/OpOp = Ny/w 40
From Eqs. (42-44) and Eqgs. (45-47) it follows that Ay = 0.
With this simplification and the elimination of the multi-

plier variables from the Euler-Lagrange equations (34-40),
one arrives at

0H/o¢

B spou + 2> 0 (41)

w? + (0Z/0¢) =0 (48)
—u + (0Z/0y) = 0 (49)
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pop + wty — [5(0/0y) — y(0/0x)1Z = 0 (50)
in which
= Y sinf + X cosé (51)

is the component of gravitational force along the thrust direc-
tion.
In the case of an inverse square law gravitational field

-~ —ky B —kx
T @+ yz)s/z’ T @+ )

Eqgs. (48, 49, and 50) become
w? + [k(2¢* — v?)/(¢* + v»)¥*] = 0 (53)
—u + [Bkdy/ (92 + ¥?)¥2] = 0 (54)

(52)

po + {0 — [k/(¢* + v}y = 0 (35)

If w is eliminated between Egs. (63) and (55), one obtains

¢in — [Byk/(¢? + ¥)%21} = 0 (56)

The vanishing of the first factor ¢ = 0, circumferential
thrust, leads to 4 = 0, w = constant, and

o] = B/ 57)

where r = (¢2 + y?)Y2is the radius. This is the orbital fre-
quency for free fall circular motion. The vanishing of the
second factor indicates that Eq. (55) is satisfied identically
along solutions of Eqs. (53) and (54), which are the equations
of Lawden’s intermediate thrust solutions (Ref. 5), although
in rather different notation.

Concluding Remarks

The present analysis amounts to little more than an alter-
nate derivation of Lawden’s results on intermediate thrust
subares, similarly inconclusive on the question of minimality.
This is a result of the singular extremals of the original prob-
lem being also singular in the transformed system of variables,
i.e., only the weak form of the Legendre-Clebsch condition
in these variables is met. The most suggestive feature of the
analysis is the vanishing of two of the multipliers associated
with the new variables. This would seem to indicate a possi-
bility of dealing with the problem in a state space of reduced
dimension.
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