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[Author's English Abstract]

CYBERNETIC FORECASTING FILTERS

Forecasting programs designed for large general-purpose com-
puters consiitute an important new too! in the control of production and
economics. An example of such «bigs forecasting programming is the
work of Professor Richard Stone of Cambridge, who computorized the
economics of the United Kingdom for 1970.

Nevertheless, small forecasting filters have their own domain of
application. They can be realized not only as programe for general-
purpose compulers, but also as simple analog devices with hi vick
response. The first of such devices was constructed on the basis ol the
operator of Academician Kolmogorofi's formula by Professor Denris

abor at lm‘)erlal College (London) in 1955. Since then many other
forecasting filters have been designed for different purposes and in asc-
cordance with different formulee (slgorithms) — for instance, at Kiev
Polytechnic Institute, where {he authors work.

These different forecasting algorithms are considered, and many
new recommendations are given in this book.

The authors discuss three principal methods of forecasting Iin addition
to some others,

1. Forecasting of deterniined processes, 1. e. extrapolation and in-
terpolation.

; 2. tﬁorecasling of stochastic processes, based on statistical forecas-
ng theory. '

“"3. Forecasting based on adaplation or learning of the forecasting

ers. :

Prolessor Gabor's filler was a self-learning one. It is shown in the
book that the perceptron — the best known cognitive system — can
also be used as a simple forecasiing filter. Thus, there is no dividing .
line between cognitive systems and forecasting filters, for forecastii g
in the cognition of the future. The theory of cognitive systems can be
applied to the desiFnin{z of forecasting filters and, vice verss, the well
?evel:i)pt;d theory of statistical forecasting can be used in cognitive sys-
em design,

The main problem is realization of optimum forecasting precision,
the comparison of the precision and simplicity of various algorithins
of forecasling. Sometimes, as in the case of control, quick response of
the forecasting filters is also important. Some recommendation are gi-
ven on the basis of a study of the precision of forecasting in the genersl -
form; some, on the basis of calculation of examples. All calculations
were performed on digital computers.

The examples are taken from chemical induslr&. biology, ocean tur-
bu&ence rc:‘:‘esses. forecasting of the rellef of the Dnleper river bottom,
and so forth,

The most important is the original proposal to combine the forecas-
{ing method developed for non-stationary processes (presenied by Pro-
fessor Farmer at the second IFAC Congress) with Kolmogoroll’s basic
method, developed for stationary processes only. The cambined met.
hod of forecasting ylelded good resuils in forecasting intracranial pres-
sure in neurosurgery.

A special part of the book is devoted to the use of forecasting filters
or cognitive systems in production control. Extremum conirol of the
plant should be effected by a combination of open loop control and a
corrector, smoothly correcting the characteristics of the open loop part.
Cognitive systems and forecasting [ilters can be used as 0rs.

Forecasting fliters furnish the only possibility of constructing &
control system for periodical processes, since iction of the result
of the process is essential for its control. This problem is also discissed.



The book discusses some problems in the theory of
predicting determinate and random processes. Special atten-
tion is devoted to the realization of various operator
algorithms for prediction on digital computers. Space is
devoted to prohlems'of using recognition systems, and in
particular the Alpha system, as predicting filters.

The methods described are illustrated by examples
from power engineering,hydrology, petroleum chemistry,
medicine, and the control of industrial processes.

The book can be of use to specialists working in the
various branches of science and engineering who are inter-
ested in the methods of statistical prediction and the
concrete applications of these methods.



Introduction

The use of automatic systems has made it possible to
solve many complex problems of contirol without direct
participation by man, As the atructure of the objects being
controlled becomes more complex and the amount of information
about the processes occurring in them becomes larger, man
is often not able to perform the control function in the best
way. This can be explained by the lack of time in which to
choose the optimal solution, the impossibility of mobilixing
a large memory voldume in a shont time, the property of
information fergetting, and a number of other factors.,

Complex automatic contrel systems are very fast-acting
and have a large number of memory devices.

Furthermore, they must perform many functions of
an "intellectual" nature, such as comparing different vari-.
ants of the solution of a problem, choosing the best variant
in accordance with definite criteria, taking into account
change in external actions and the consequent change in the
nature of the solution and the criteria,

Since the nature of the thinking capabilities modeled
in automatic systems continuously grows more complex, in
creating analogous systems it is necessary to take into
account one of the important problems characteristic of
human thought-- the capability of learning to predict.

There is not one action performed by man in which
he does not foresee the results of this action in a sufficient-
ly definite form.

When we formulate theproblewm of prediction in engin-
eering, it is obvious that we must investigate how the
corresponding functions are performed in living organisms.,
Soviet physiologists "... have indicated not only forms of
prediction, but also some concrete physiolaogical processes
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which aid in this." points out Academician P.K.,Anokhin,
"But this whole immense prohlem connected with the mechan-
isms of foreseeing in the brain's operation which give
power over the future is still far from worked out." This
problem is important both for neurophysiology and for
engineering.

Cybernetics has already made it possible to explain
many prediction mechanisms. Cybernetic self-teaching pre-
dicting filters in the form of actual electronic circuits
can serve as models for the predicting mechanisms of the
brain,

The Basis of Prediction is the Experience of the Fast

One of the basic hypotheses on the nature of pre-
diction of the future consists of the fact that conclusions
as to the possiblity or probability of a future event or
series of events are made on the basis of study, analysis
and generalization of preceding experience, the history
of the phenomenon being predicted. This idea, in particular,
forms the basis of the statistical theory of predictions
being developed at present.

However, we may encounter facts concerning prediction
of the future which do not seem at first glance to be at
all connected with the past. It is known that experience
consists of a very much larger number of pieces of inform-
ation than man can consciously elucidate. Hence statements
to the effect that certein cases of prediction cannot be
explained by preceding experience, since precisely such and
such an event or situation was not observed in the past,
cannot be considered to be well founded.

It has been proved that much of what is remembered
by man is independent of his consciousness and is contained
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in his latent memory.

A number of works on neurophysiology bear witness
to the fact that the information registered (consciously
or unconsciously) in the memory does not disappear. The
Canadian scientist W.Penfield has shown, in particular, that,
when definite conditions are created, for example when a
wegk current is passed through electrodes attached to the
temples, sensations relating to the past. arise in the
patient. Events experienced long ago and often forgotten
are remembered. Well known is the phenomenon of hypertrophic
sharpening of the memory, or hypermnesia, which arises
as a result of some brain diseases. The person remembers
compjletely forgotten.facts which occurred in the past and
can cite from memory whole pages of books read earlier,

The volume of information on the past, the size
of experience on the past under different conditions cannot
be the same. iroceeding from this fact, we may assume that
the predictions the most unexpected at first glance, and
especially the accuracy of their coincidence with reality,
rest on firm "historical" ground. These predictions are
based on the experience of the past, on the analysis of
past events subconsciously registered in our memories and
under the influence of a definite set of causes called into
the spherd of consciousness.

It is possible that a great part of the experience of
the past is made up of information genetically registered
in the iiving organism and representing the "concentrated
experience" of ancestors.

Before we try to explain the possible structure of
the mechanism of accumulation of experience and prediction,
let us acquaint oursclves with some basic concepts. Let us
define the problems of predicting determinate and probabilis-
tic, or stochastic, processes, and let us also explain the




concept of unpredictable "pure" randomness.
Prediction of Determinate Processes

Determinate processes are those caused by the action
of & number of known causes. If we know the result of the
action of each of them, we can exactly compute thd final
result, Ordinarily (in linecar systems) the principle of
superposition is operative; this principle can be formulated
thus: the total effect of the action of sever:l causes is
equal to the sum of effects of the action of each cause
taken individually.

The study of determinate proces<es is based on the
inductive method, the method of studying caunse and effect.
The majority of the laws of classical physics are determin-
ate, primarily those relating to the mechanics of solid
bodies. The orbits of the planets and stars can be computed
to any required degree of accuracy. Hence we can quite
accurately predict a lunar or solar eclipse or compute the
position of a satellite.

The time interval separating the moment of prediction
of some phenomenon from the moment when it begins is usually
called the anticipation time.

The scientific foresecing of determinate processes
is characterized by the fact that the anticipation time

may be arbitrarily large. Increasing the anticipation tinme
does not lower the accuracy of prediction of determinate

processes.

This rule does not hold for probabilistic, or sto-
chastic, processes., The fact that processes are non-
stationary means that prediction is only possible for a
comparatively short period. Increasing the anticipation
time for a required quality of prediction is the basic




problem in working out methods for statistical prediction.,
Prediction of Random Processes

If we repeat some observation or experiment many
times, each time trying to reprcduce the same conditions
exactly, then instead of obtaining identic:l results, in
each separate mcecasurement we will obtain a result different
from the others. Influence is exerted each time not only
by the conditions we have reproduced, but also hy those
which we are not able to reproduce. An event subject to
this kind of variance is called random. Séquences of such
random events, considered as a function of time, are known
by the name of random processes. In a random process we can
follow the result of the action of a number of causes, but

we cannot calculate it.,

The study of random processes is based on the deduct-
ive method-- the causal connection of phenomena cannot be
followed, although such a connection has an objective
existence.,

In the real processes observed in life, three com-
ponents should be distinguished: A

1) a determinate part, subject to exact calculation
by the inductive method;

2) a probabilistic part, which can be elucidated
by the deductive method by prolonged observation of the
process with the aim of determining the probabilistic laws
of the process;

3) a "purely" random part, which in principle cannot
be predicted in any way.

Let us first consider examples from the field of
prediction of "random" quantities., Thus, in tossing a die,
one of whose faces is colored red, and the other five blue,



it is required to predict what color the upper face will be
at the next toss. It is easy to establish the absence of a
determinate part in the given example; a probabilitic pre-
diction gives the number 5/6, i.e. this is the probability
with which we can predict that blue will turn up,

In a coin-tossing game, it is required to predict
whether the coin will turn-up head or tail. When the number
of tosses is large, heads will turn up approximately in
approximately half the number of cases, and tails in the
remai ning half. ihis is an example of "pure" randomness, or
an equally probable outcome which cannot in: principle be
predicted in any way. |

Another good example is any sufficiently complicated
game, for example soccer, In predicting the results of the
game there is no determinate component (nothing can be
calculated), but there is a sharply expressed probabilistic
component which can be determined by observing a number of
games of the teams in question. Furthermore, the game must
have an in principle unpredictable elemat of "pure" random-
ness. Without this element the game would cease to bhe a
game,

Let us consider an example of an actual random pro-
cess,

For a long time there was uncertainty over the
question of the causes and laws of the tides. Kepler and
Newton connected this phenomenon with the moon. Later
Laplace confirmed Kepler's nnd Newton's theory in a strictly
mathematical fashion; this made it possible to predict
each day's ebb and flow time with great accuracy.

Let us consider the tides problem from the point of
view of dividing the process into a determinate, probabilis-
tic and "purely" random part. All three parts are found in
this process. The determinate part of the process is
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determined by the moon and, to a smaller degree, by the

sun and can be exactly computed by Laplace's theory. Fur-
thermore, there is a random part caused by the wind, change
in the composition and density of the water, the temperature
and many other causes, part of which gqre known to us. By
long-term obhservation of the result of the action of these
factors, we can determine the probability of deviations
‘from the exact calcnlation, somewhat in the manner of a
"wind rose" for a given locality on the ocean shore,

The aggregate of the determinate and probabilistic
parts is the bhest (optimal) prediction. Comparison of this
optimal prediction with the actual tide makes it possible to
determine the element of unpredictabhle, or "pure", random-
ness. Mistakes of measuring instruments ordinarily make up
a large part of this "pure" randomness. As measurement
technology develops, this "purely” random part decreases.
Everything which has been said relates to predicting the
time of the tide and, in even greater measure, to predicting
the incrcase in the water level., In the last problem, waves
are of essential importance. An example of predicting the
amplitude of waves is considered in detail in the fourth
chapter,

In tossing a die, the determinate part of the
process is equal to zero, since ordinarily nothing can be
calculated. In tossing a coin, the determinate and proba-
hilistic pnarts are equal to zcro, i.e. the process is purely
random, In the processe reflecting the ocean's ehbh and flow,
all three parts are present: the determinate, probalilistic
and"purely" random. As the exact sciences develop, the
determinate part, which is subject to exact calculation,
continuously increases. The development of the theory and
techniques of statistical predictions increases the reliabhili-
ty of probabilistic predictions. However, in actual processes
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the"purely" random pért cannot be reduced to zero. This part
determines the maximum level which we asymptotically ap-
proach as we raise the quality of prediction of the determin-
ate and probabilistic parts of the process.

The working out of methods for calculating determin-
ate processes and the elucidation of the probabilistic
part are the basic problems of the theay of prediction.

If a process has not been thoroughly studied, a
certain share of its determinate part should be assigned
to the probabilistic part. And further, a certain parf of
the probabilistic part should he assigned to "pure" random-
ness. This sharply decreases the accuracy of prediction.

As material is accumulated, definite regularities
become clear which make it possible to make more certain
predictions on the basis of cavse-and-effect relationships
and later to theoretical constructs. Although in many pro-
cesses the element of '"pure" randomness, which cannot be
predicted in any way, cannot in principle be reduced to
zero, yet the basic problem of the theory of prediction is
maximally to increase the causal, determinate part and
continuously to increase the accuracy of the probhabilistic
prediction. The part of the process which we refer to
"pure" randomness with the best, optimal prediction is
minimal and cannot be further decreased.

In some processes, which are called stationary, the
probability characteristics are constant, Here, as observa-
tion tine passes, the probabilistic part is predicted
with greater and greater accuracy.

In the ideal case, when the ohservation time is large
enough, the anticipation time may be considered to be arbi-
trary. Thus, we can very accurately predict the July mean
temperature for several years in advance. High and low
tides taking into account the prevailing winds can also
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be an example of a stationary process.

It is much harder to rcduce to the minimum possible
the unpredictable "pure" randomness in quasi-stationary
processes, and even harder in non-stationary ones, whonse
probability characteristics change wih the passage of tiue.,
An example could he prediction of the mean July temperature

~-for many decades or even hundreds of years taking intoc ac-

count Change in the climate of the euarth. In fact every

real process is non-stationary, but we may consider it to

be stativnary if its probability characteristics change
little during the anticipation time. lience in real random
processes, in vie: of the fact that they are non-stationary,
the prediction accuracy falls as the time .increases.

In connectinrn with this, a basic problem of the
theory of statistical predictions is the working out of
methods (formulas or algorithms) of prediction for which
the anticipation time is greater than with other methods.

Let us consider some examples.

Prediction of processes from their parameters at a given
instant

the simplest method of predicting the future con-
sists of the assumption that "tomornow will be the same as
today." Let us note that this primitive method of weather
prediction turns out to be right in 70% of the cases. The
probability of correct prediction by the "without change"
rule decreases extremely rapidly as the anticipation time
increases.,

Prediction for a longer period requires taking into
account not only the present state of the process, but
also its speed of change. A somewhat better method of pre-
diction is based on the assumption that the percentage
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(2)
‘ . . fod
‘1900 1925 1950 1975 2000

Figure 1. Growth in the population of the earth,
Key: 1) Billions of people; 2) year.

increase or decrease will remain constant. For example,

this method is used in demography. Data on the population

of individual countries and continents is processed by
computers. fhe mean number of births and deaths per 1000
people is determined, and also the annual population increase
in percent, Here the absolute growth increases from year to
year. Figure 1 shows the curve for the growth of the world's
population. From this curve we can predict that in 1975

the wald's j.opulation will reach 4 billion. The assumption
that the pecentage incre-se or decrease remains constant

is only valid for a comparatively short period of time, when
the conditions in which the predicted process takes place
are almost identical. llence there would be no sense in

using this curve extrapolated to the 2lst century.

tvery real curve has its limitations. All physical
quantities cannot exceed some "saturation",

Prediction for a prolonged period requires further
complication of the formula by which the future values are
determined. We may, for example, take into account not only
the state of the process and the velocity of change, but
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also the acceleration, and possiblyY the third and higher
tine derivatives. In a number of cases this extended con-
sideration gives good results, since theprobability of
correct'prediction for longdr periods increuases., Even so,
here too the period of correct prediction is determined by
the properties of the process, the constancy of the coef-
ficients of the prediction formula (state, velocity of
change, acceleration, etc.). In a number of processes, which
are called stationary, these coefficients are constant.
For these processes, the indicated methods of prediction
are very effective.

Prediction of processes from their parameters a a given
instant and from their prehistory

In order to increase the anticiption time in pre-
dicting many processes, at a given instant it is necessary
to take into account not only the parameters, but also their
variation during the time preceding-- their prehistory.
Weather prediction may'serve as an example.,

The first system of meteorological stations was
organized in France in 1856, and in 1858 other countries,
including Russia, joined this system.

The first meteorological observations in Russia be-
long to the time of the founding of St,Petersburg. Observa-
tions of the clearing and freezing over of the Neva dating
from 1706, of the amount of precipitation from 1741, and
of the temperature from 1753 are extant. A regular network
of meteorological stations was organized ir 1830, However,
only wide use of the telegraph made it possible to progress
from predicting the weather from observations made at one
point to more exact prediction of the weather by means of
the preparation of synoptic maps.

1
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Synoptic maps make it possihle to follow the path of
motion of cyclones and anticyclones. Thus, for the European
continent there is a rule to the effect that if a cyclone
moves to the east, there is a high pressure and high tempera-
ture region to the south of the center of the cyclone, and
if a cyclone moves to the west, such regions lie north of
the center, etc.

Phe use of s;)ecial meteorological satellites has
led to a great increase in prediction accuracy.

Long~term weather predictions are possibhle only when
probabilistic methods are used. Determinate methods are
evidently insufficient here.

The use of computers for weather prediction

In predicting the we;ther, we should also take in
account the determinite part (influence of the sun, of the
internal heat of the earth, etc.), the probabilistic part,
and the element of "pure" randomness. For example we can
compute exactly that if the sun were to be extinguished,

a uniform temperature of 141°C (i.e. a temperature much
higher than absolute zero, 273°C) would he estahlished on
the earth's surface.

Increasing the accuracy of weather prediction means to
reduce to a minimum the part which we assign to "pure"
randomness, although this part will never he equal to zero.

At the present time approximately 20% of all weather
predictions are wrong. There are reasons to assume that
this figure can be reduced to 2-3%, while the predictions
can simultaneously be made more concrete (can indicate the
exact amount of precipitation, the exact limits of the
region where it is precipitated, the exact temperature,
etc.). The unpredictable "pure" randomness can be reduced
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to this small limit value. E
For qualitative weather prediction it is necessary -
to solve a large number of equations describing the proceésel

in the atmosphere with a large number of initial data which

vary within a wide range. Thus, to predict the weather for
a 24-hour period, approximately 3000 pieces of initial
meteorological information must be taken into account.

For a 72-hour prediction, this figure has already
risen to about 20,000. To solve the problem of long-term
prediction, up to a season, about 100,000 pieces of informa-
tion must be taken into account,

Processing such a huge volume of information is
unthinkable without computers which are very fast acting and
which have a large storage volume. Hence the Moscow World
Meteorological Center has already completely switched over
to weather prediction by megns of computers,

The use of statistical methods requires the taking
into account nf various relationships and connections
between active factors which have been brought to light
by many years of investigation, At the )resent time a huge
volume of information has been accumulated, and only the use
of computers makes it possible: to mobilize the "memory
of the archives",

fhe computer makes possible continuous memorization
of weather information arriving from numerous {(counted in
the tens of thousands) meteorological stations, proces-
sing of this information, and jrediction of the weather on
the bads of the direct solution of aerodynamical equations,
and by computing probabilities (determinate and probnbilis-
tic methods). Hence weather prediction is a typical multi-
variate problem, since it requires indication of the vari-
ations of temperature, pressure .and other quantities not
only with time, but also over the surface of the planet.
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Mascow State University is carrying on operative
weather prediction. ‘he use of fast-acting computers has
made it possihble for meteorologists to predict the pressure,
wind velocity, temperature, etc. not by synoptic methods,
as has been done up till now, hut by the method of dynamic
meteorology. The basic equations connectihg pressure, wind
velocity4and temperature are the equations of motion,
continuity, state and heat flow, in which all meteorologically
unessential terms (so-called meteorological noise) are
discarded. The problem of short-term prediction of meteoro-
logical elements consists of three stages: 1) analysis and
processing of initial material; 2) prediction for time T
of these intial data (T=12, 24, 36 or 48 h); and 3) pre-
diction of the weather from the data obtained.

Solution of the problem of weather prediction for a
24-hour period takes 7 min of machine time,

At the NANWER laboratory (USA) a computer has been
set up which prepares weather maps for the navy. The machine
processes weather data arriving from 5000 meteorological
stations and on the basis of these data prepares predictions.
for 24 hours in advance over the whole northern hemisphere.
Weather information at the point of interest is found by
incterpolating the data obtaned from meteorological stations
lJocated near this point. The computer processes individually
data on pressure and temperfiture. Weather maps are drawn on
the basis of the calculations., The weather prediction
program was prepared on the basis of the statistical theory
and laws 6r meteorology. Five minutes is required to pre-
dict one weather component (for example, pressure).

Important weather predictinn data can he obtained
from investfgution of the upperlayérs of the atmosphere,
which is carried out by using meteorological satellites.
Thus, satellites help to detecrmine the places of origin

1)
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Figure: 2. Prediction of the annual runoff of the Volga.
Anticipation time 1 year.
Key: 1) ms/sec; 2) year.

of typhoons and give a clear picture of overall planetarf
atmospheric processes. Color photos of the earth made by

our cosmonauts also help in weather prediction.The huge
quantity of rapidly arriving variegated information re-
quires automation of observations and data transmission.
lience reliable weather prediction can bhe ensured only by
detailed taking Ento account of meteorological data obtai ned
on the earth and in space and by the development and use

of suitable data transmission'syétems and computers,

Other geophysical predictions

It is hard to overestimate the vale of prediction
in determining the prospects and most expadient forms for
using natural energy sources in the national economy /22/.
Energy from river runoff is converted into electrical
energy at numerous hydroelectric power stations.” Solar

4



Figure 3. Prediction of the annual runoff of the Dnepr.
Anticipation time 1 year.
Key: 1) ms/sec; 2) year.

batteries feed the instruments and apparatus of satellites
and space ships. The energy of the tides will be converted
into electrical energy at our first maritime hydropower
station, the Kislogub Tides Electric Power Station.,

As for other forms of geophysical predictions,
connected, for example, with the mean annual water discharge
at rivers, the annual precipitation totals over large areas,
the annual energy totals of earthquakes, etc., great suc-
cess has bheen obtained due precisely to the use of probabilis-
tic methods of prediction. Thus, Yu.M.Alekhin /I/ has suc-
cessfully app.lied the method of linear extrapolation of
random time sequences to predicting the annual runoff of
rivers.

Figureé 2 and 3 show graphs which reflect the results
of predicting the annual runoff of the Volga and Dnepr,

The results were obtaned for an anticipation time of one
year.
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Prediction of earthauakes

Large earthquakes liherate a huge amount of enerpy,
stored in the si.resses of the rock layersof the earth, which
is equivalent to the simultaneous explosion of several
atom bombs, larthquakes arise unexpecledly, and it has not
been possible to find whether they depend on time in any
regular way. At the same time, as far as space is concerned,
the earthquake probahility is clearly shown: 75% of all
earthquakes occur in the seismic belt surrounding the
Pacific Ocean, 20% are observed in a second seismic belt
passing through Burmg, the Himalayas, Iran, the Mediterranean
Sea and the Azoress Only 5% of all earthquakes occur outside
these two belts. Thus, prediction of the exact time of an
earthquake is the most difficult problem,

A network of observation joints is being organized
to predict earthquakes in seismic regions with sufficient
accuracy. Complex measuring devices are used to me&ire the
contraction and inclination of the earth's surface. Indirect
quantities are measured: speed of passage of seismic waves,
changes in the electrical conductivity of the earth, and
magnetic declination.

Japanese scientists, in particular, have shown
that the change in the magnetic declination caused by
contraction of the upper layers of the earth's surface is
the most essential factor in making it possible to increase
the accuracy of prediction of the time of an earthquake.
Figure 4 shows a typical curve for the variation of the
magnetic declination /357.

The charazteristic peak of the increase in the mag-
netic declination precedes a strong earthquake. It is
evident from the curve that the time can be: predicted for
several months with an accuracy of up to two or three
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Figure 4., Change in the magnetic declination.
Key: 1) Angle of declination (min.).

weeks. Further increase in prediction accuracy is also
possible,

Prediction of the level of ground water

In connection with the design and construction of
hydrotechnical installations, for example reservoirs, the
problem often arises of predicting the level of ground
water in the surrounding mountains, .

Variation of the ground water level is a protracted
and aperiodic process., Rrediction consists of calculating the
displacement of the boundary of the free surface (depression
surface), for which it is required to solve nonlinear
equations of the parabolic type. Here there are concrete
initial and boundary conditions which define the history of
the process and the geological structure of the mountains
and which take into account variation of the filtration
factors in the volume bheing investigated.

‘The difficult part of the problem is the solution of

’
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these equations. By linearization, the function under
investigation can be reduced to an equation of the type of
‘the hant conduction equation., |

Complex computing devices arc used to solve such
problems: grid integrators, models using electrohydrodynamic
analogy, computers. |

The determinateness of prediction in the given case
is determined by a clearly expressed and exactly defined
influence,

There are cascs where the variation of the ground
wvater levels is determined by a s3et of different causes.
In such cases, variation of the ground water level can he
interpreted as a stochastic process depending on irrigation,
drainage, amount of precipitation, and fluctuations of the
water level in rivers (the two latter influences ars in
themselves stochastic). In these cases, the whole theory
of prediction of random processes is completely applicable.

Prediction of correlated processes

In the example of the problem of predicting earth-
quakes, it is important to note that, unlike the other
problems, the prediction here is made by ohservation of
processes connected (correlated) with the :process in which
we are interested (by magnetic declination). This method is
a general one and has a wide range of application.

Often the prehistory of a process which we need to
predict cannot be traced, but we have data on another
process connected with the first by a functional or cor-
relational connection, For example, in regulating an in-
dustrial process, we can predict the changes in some para-
meter or other without resorting to direct measurement of
it, but using data on another parameter connected with the
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first, This is especially important in cases where some of
the parameters are hard to measure, or where directly taking
information from the object is undesirable.

In the most general predictiion formula, bhesides
terms which reflect the basic process at a given moment and
its prehistory, there are terms which determine the para-
meters and prehistory of other quantities correlated with
the given process.

Attempts at setting up formulas (rules or algorithms)
for the most exact predictions, which tnke into account
all the above factors, show that the use of such formulas
is connected with a huge volume of computational work.
Also, programming on large computers is only possible with
comparatively simple algorithms. Hence a feedback system
should be used. In the program for a computer or in a
specialized element~-by-element device, a search is carried
out for the hest prediction algorithm (wi th the given
volume of the device). The machine automatically leaves in
the program (prediction formula) only those terms whose
affect on the prediction accuracy is shown to he essential.
In ‘chapter 4 we shall consider the examples; of predictling
the amplitude of ocean waves, operational indices of un
enterprise, levels of a river bottom and prediction of
atmospheric pressure, and these examples will give more
concrete exjpression to this method of self-adjustment of
the prediction formula.

One-dimensional and multidimensional prediction problems
In the simplest case it is required to predict the
variation of a quantity or series of quantities with time.

This prediction problem may be called one-dimensional.
The prediction of the weather on the earth'g surface is an
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example of a more complicated multidimensional problem,
since it is required to consider the process not only with
respect to time, but also with respect to space. Sometimes
cases arise in which the processes are phrely random with
regpect to time and at the same time are probabilistic

with respect to space. As examples, we may cite the problems
of predicting the load of power systems, the distribution
of agricultural plant pests, the prediction of earthquakes,
and many others.

The use of mathematical prediction in the planning
and regulation of power systems

During the past years, computation centers having
digital computers at their disposal have been set up in
every large power system. These centers solve the problems
of the optimal development of the system, expansion of
the existing electric power stations and the construction
of new high;power ones. Long-term predictions are made
to determine the possible demands for electric power and
heat. This prediction must determine the level of develop-
ment of the generators and transmission network, as well
as the yield of fuel and the development of other power
sources,

This problem is obviously nultidimensional, since it
is necessary to determine the variation of the quantities
involvéd not oniy with respect to time, but also with respect
to space: it is required to point out the places of con-
centration of consumers and generating stations.



f%edictiqn for protection of plants from pests and
disease

Prediction for plant protection is also a multi-
dimensional problem., It i8 required to predict where, when
and in what quantity plant pests will appear in order to
take the necessary protective measures., As of yet, mathemati-
cal methods have not been used to solve this problem.
Prediction is made by purely empirical rules, For example,
by counting the number of pupae in spring, we can predict
the number of caterpillars in summer, etc. Reference /387
cites examples of the successful prediction of the appear-
ance of the Coloradian bectle, potato blight, etc. There is
every possibility of increasing the prediction period and
accuracy with the use of digital computers.

Prediction in bilogy and medicine

_ The past decade has hecn marked hy the intensive
introduction of mathematical methods and the techniques
of computation and technical cybernetics into medical and
bilogical research and practical medicine. For a number of
years "medical" mathematics has been in the main limited
to the use of the methods of mathematical statistics for
processing the results of ohservations and investigations
and for quantitative evaluation and confirmation of the
correctness of conclusions.

At ,resent there has been a great rise in the interest
shown by physicians and other bidogical scientists in
various mathematical methods right up to the latest achieve-
ments in the ficld of technical cybernetics (information
theory, game theory, queueing theory, theory of pattern
recognition, stc.).



THe use of the latest techniques of computation‘and
technical cyhernetics has made possible a qualitatively new
approach. to the solution of many problems connected with
the investigation of living organisms..

the new sciences which have arisen as a result of
tne fruitful cooperation of mathematicians, biologists,
and engineers--- binlogical cybernetics, bionics, neuro-
cybernetics~-- are developing rapidly and enriching biologists
with new datr on the living organsm, at the same time
helping those working in the sxact sciences to take into
account the experience accumulated by nature when they
develep their high-efficiency technical devices.

“Another big step in this direction is the use in
biology and medicine of the theory of statistical prediction
and corresponding techniques.

The development of neurosurgery and heart and lung
surgery, with the ever increasing complexity of the methods
of surgical intervention in vitally important organs,
brings out the importance of the problem of developing
automatic regulators for a number of physiological para-
meters of the human organism,

In the procesgs of developing these regulators, it
is necessary to take into account the special features of the
reaction of the living organism which determine its com-
pensatory poadibilitiea. Sudden and sharp functional dis-
orders do not arise immediately after the onset of the
action of a noxious factor, but only after u definite time,
during which the compensatery mechaisms are disturbed and
then break down. Hence for timely connection of automatic
repulators and in the process of their operation, a definite

anticipation is necessary. |
Predicting devices operating in sequence with instru-

ments which register chnnges in varions indices make it
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possible to forestall possible disturbances in the course
of operation.

The use of predicting devices for processing the
data of investigation of patients with progressive illnesses
will make possible a more exact judgement as to whether a
given method of cure is timely and indicated.

Prediction in control of industrial processes

Modern industril enterprises are marked by a high
degree of automation.

The continuous increase in the number of measuring
and recording devices, modelling by means of cemputational
techniques, the study of statistical and dynamic character-
istics of units-- all these measures are intended te attain
a basic goal: the optimal regulation of industrial processes.

The technological installations of chemical enter-
prises; the units of the metallurgical industry, large
organizational and planning systemg, and many other units
are characterized hy great inertia. Fer example in the oil
industry, when automatic quality analyzers are used, the
results of the analysis become known 20 to 25 min after
selection of a product specimen.

Thus, regulation by quality index is performed with
& large lag. It is obvious that if the instruments were
capable of predicting the future changes in technological
parameters on the basis of an analysis ef their preceding
changes, the quality of regulation could be greatly increased.

Large volume and laboriousness of operation charac-
terize the enterprises: of the mining industry. All-reund
automation of large coal and ore pits is an extremely pres-
sing problem. The optimal regulation of mining machines
and transport units, dispatcher's service, and many other



problons{aro selved by using the latest mathematical methods,
the toghn;qus of cemputation and technical cybernetics.

In develeping autematic centrel systems for mining-transpert
cemplexes aad individual machines, great effect may be
obtained by using the methods ef the theery ef statistical
predictions and devices based on these methods,

Further success can be expected in comnection with
the use of the theory and techmiques of statistical pre-
diction in the sphere of organizing and planning the national
economy taking long-term plans inte account,

At different stages of preduction avtemation and
for different centrol preblems, the methods and techmiques
for solving these problems must be different, If, for example,
& control problem can be solved with sufficient effective-
ness by a single-circuit automatic control system, then in
order to raise the quality of regulation with prediction,

a specialized predicting device may be used which is based
on a definite prediction algorithm. With multicircuit
regulation we can alse develop a specialized device for
predicting preduction indices depending on many facters.

However, taking intec account the fact that centrel
problems are censtantly growing more cemplex and that
controlling cemputers are consequently used, in a number
of cases it is net necessary te develep specialized pre-
dicting devices. Their functiens can be successfully ful-
filled by the contrelling machines.

As cencerns specialized devices fer predicting the
future valuee ef various production indices, here great
success can be expected from the predictive use of pattern
and situation recegnition systems. Intensive werk is pre-
sently being done in the field beth here and abroad.

In conclusion it should be said that the use of the
achievements in the theory and techniques of predictien is
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& necesgsary condition for further improvement on the road
to optimal cont§ol.

‘The examples considered do not at all exhaust the
fields of application of the theory of statistical prediction.
As the theory is furthoer developed and porfected, ite
methods will undoubtedly be ever more widely intreduced
into the practice of scientific investigation and inteo
various sectors of the national ecenonmy,

The succeeding chapters will consider metheds for
predicting determinate and random precesses.

Much attention has been given te the medelling of
predicting filters en universal digital cemputers and to
the use of various methods for predicting actual processes.

Especial space is dévoted te expesitien of the
problems connected with the use eof recognitien systems
as predicting filters.



Chapter 1.
F asting determinate processesgs. Interpolation

and extrapelation

Problems of interpoldtion and extrapelation

In determinate processes the random deviations are
so smiéll that these processes can be calculated in advance
quite accurately. Examples of such processes are the motion
of the heavenly bodies, and also the motion of simple
nochanians, for example a pendulum, every change or dis-
placement eccurring exactly according to a time table or
a graph, etc. The laws geverning such precesses are some-
times known and can be expressed in the ferm of analytical
functions, graphs er tables (for example, a train timetable).

Often these functions are unknown. But they exist,
and in accordance with them this or that process er motion
occurs. These functions are the solutions er, in other
words, the integrals of the dynamic equations of the mech-
anisms or systems in which we are interested.

In studying determinate precesses, there arise
two types of problems cennected with the determination of
the values of eome functien at the peints which interest
us from the known values of these functiens at other points.
Let us consider these preblens. ¢

The preblem ef interpolation consists of finding
vulues of a function within the segment ef ebservatian,
Here, the function itself, as was peinted: out, may not be
knewn, But in the majority of cases it is necessary te know
te which class of functions it belengs, i.e. whether it is
expressed by a straight line, a parabola ef the second '
degree, » cubical parabela, a harmenic functien, etc,

let there be known the values of the function f(ti);
ial,2,...,0 at the peints t, < t, < see < tye It is required
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to detorlino the values of this function at the points tj
wh1ch 110 between the given peints t, < t, < il

" Por oxanple, with linear interpolaiion the value
of tho fuaction at some modian peint t, <t< t, is

1O = A= 1 ) — £ () + 1 (). (1)

The preblem of extrapolation consists of finding
values of a function at a point lying outside the region
of observation from its values within this segment. The
most cemmen types are linear and pamabelic extrapelation,
with which the function is expressed by a parabela of the
second, third er higher order. Ordinarily, the less the
time fer which the process is extrapolated, the more exact
is the determination of the future value of the function,
This is due te the fact that the indicated functiens
only approximately represent (approximate) the actual laws
goverring the precess.

Selection ef an approximating pelynemial

As has already been said, the form of an appreximating
function is determined by the physics eof the process and,
consequently, corresponds to the form of the solutions
(integrals) of the dynamical equation of the system. For
example, if it is known that some set of numbers expresses
the angle of deviation of a pendulum, it is clear that they
must satiefy the law of harmonic escillatiens. The preblem
is much more complex if the physics of the preblem is
not knewn and we do not know the form of the solution
function. Then we should chooee the form of the approxi-
mating function so that it will pass throu;h the ;1von
peints in some eptimal fashion.

In many cases the initial informatien is given in



the form of a finite set of points (selection), and the
problems of interpolation and extrapolation will be com-
pletely solved if we find an analytical expression which
all these points satisfy.

Let us assume that we are given the following
selection of data:

t = 1l 2 3 4 5
f = 1,111 1,248 1,417 1,624 1,875

It is assumed that the selection is sufficiently
representative, i.e, reflects sufficiently well all the
basic preperties of the function. Let us'bogin the selection
of the approximating polynomial with the simplest expression.
Let us assume that the precoss is described by the straight-
line equation

f*l = a + bt : (2)

Arbitrarily selecting twe points of the selection
(for example, the first and the last), let us write the
straight-line equation twice

1,111 =a + b « 1
1,875 =a +b ¢« §

We have ebtained a system of two equations in two
unknowns, i.e. the coefficients ef the approximating pely-
- nomial a and b, Selving these equations simultaneously,
we obtain

a = 0,920; b = 0,191

Now we can see whether we cerrectiy guessed the
form ef the approximating polynemial. Fer this purpose
let us find the values of the appreximating fumnction at

the same values of the argument
“Here and follewing, an asterisk indicates a predicted value.
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_ t = 1 ; 2 3 4 5
t’ = 1, 111 1,302 1,493 1,684 1,875

2

'Thilaoehracy of the approximattion can be estimated
Irom the variation

=0 I)
T

8= 100=2,2%. (3)

l{he less the variation, the more exactly we have chosen the
approximating pelynomial and the nearer will be the pre-
dicted values to the actual ones,

Let us repeat the same investigation for a parabela
of the uncond degree: '

% = a + bt + ot’ (4)
Arbitrarily cheosing three points (for example, the be-

ginning, middle, and end of the sclection), we obtain
a system of three equations in three unknowas

LWill==a+b14c¢|,

1,417 =a+ 63 4¢-9,

1,876=a + -5 + ¢-25.
S.lVin‘ tltlc oquations, we find-

a=},015;° baomm c== 0,019,

The quadrat#c.approximitin; pdlynonial gives this sequence
of values fer 'the functien:

{==] 2 3 4 5
fr=1,111 1,245 1,417 1,627 1,875,

Let us find the variatioen:

g L= 100 2 0,795,
h“L



We see that the variation has dscreased. Hence the pely-
nomial of the second degree is a much better approxination
to the given function,

In order teo raise the accuracy of approximation
still further, let us pass to the polynomial of the thirgd
degree:

[*=a+ bt +c + dov, | (5)

Preceeding ana}ogously, let us write the system of four
equations in four unknowns: '

Lill=a+b-14+c¢l14d.|,
1417=a+ 6.3 +¢94d.27,
1,624 =a 4 6.4+ ¢ 16 4 d-64,
1879=a+ 6.5+ ¢:254d-125.

Selving the equations siuultmooualy; we find
Cam=1,0; b=0,1; c=00l; d=0,00l
Determining the variation, we aee that it is zerp:
o=0 ' !

Hence the third-degree pelynomial exactly describes
the initial function. If such a result cannot be obtained
in other cases, we sheuld stop at the appreximating poly-
nomial which gives a sufficiently small variation, of the
order of a few percent. If this camnot be achieved and the
variation remains large, this may be a eign that the
initial procees is not determinate, that, besides the
regular cempoment in it, there is a large random component.
In this case the methods for selecting an approximating
polynomial discussed here are no longer valid, We wust have
receurse te the methode for predicting randem procosses,



which will be discussed in chapter 2, which is devoted to
the prediction of random processcs.,

| But if we obtain an expression which gives a small
or (botter) a zere vaniation, the problem of interpolatien
and extrapolation becomes trivial. Using the expression }
obtained, we easily find the values of the function in which
we are interested at any moment of time beth in the past and
in the future,

In the numerical eoxample considered, we can "predict"
that when ta=6, f= 2,187, We have Qeciphered.the process; we
have found and equation which describes it.

Let us consider another example. Let us cite data
on the population of Eurepe for the period from 18350 te .
1930 (ia wmillions): 1850, 267; 1860, 284; 1870, 306; 1880,
332; 1890, 364; 1900,399; 1910, 441; 1920, 449; 1930, 491,

Let us assume that we know only the values ef the
population fer 1860, 1870 and 1880. On the basis of this.
information let us determine the population in 1864; i.e.
let us solve the problem of interpeltion, Using the fermula
for quadratic interpolation (4), we obtain:

a— b+ c==284,
a = 306,
a4 b4 c=332,

For values at different distances from one another
it is convenient te denote the argument as follows: we
take the first value, 1860, to be =1, the second to be O,
and the third te be 1. Then the value of the argument at
the point to be predicted, 1864, is 0.6.

Selving these equations, we find the values of the

coefficients
a=x306, ba=24;, c=2



Taking inte account the computed values of the

ceefficients, let us write the interpelation formula in the
form |
[ =306 -1- 24 - 20,

Substituting t=-0.6 into it, we obtain
g == 306 - 24 (— 0,6) + 2 (-— 0,6)° == 292,32,

Rounding off to integral values, we obtsim a popula-
tien of 292 million.

New, proceoding from the assumption that the law
which holds within the interval is valid outside of it,
let us determine the pepulation in 1900, 1910 and 1920,

This is a problem of extrapolation,

To selve the problem, let us use the basic preperties
of interpolation formulas. For an interpolation formula of
the n-th order, these properties consists of the fellowing:

a) n-th erder differences

A7 = A7t — A7~ el A 22 AT — A == L. e cORSE,

b) differences of the n+l-th erder
At == AY — Ap -2 A = A = 0.

For quadratic extrapelation we obtain

Fioes — 3f1en0 -1+ frase — Frare =0,

whonce

Fiogn = 3-304 —3.3324- 306 =402 (p41140ns of people)

If we use cubic extrapolation, i.e. put the feurth

difference equal te zereo, .
,mm - ‘1f|m + Gfmo - 4flm - /lm = 0.

we obtain a similar result:
[y = 4:364 — 6332 - 4.306 — 284 == 404 (millions of people)



In fact the population for 1900 was 399 million.

As we soe, the deviations are not very large., By
computing the variation, we can see which formula gives the
best predicted value.

Let us use these formulas for predicting the 1920
population. ’

Fion = 3-441 — 3.399 + 364 = 490
Fow = 4+ 441 — 6399 + 4.364 — 332 = 494 (nillions of people)

But in fact the 1920 census showed a European popula-
tion of 449 wmillion. The val ues 490 and 494 calculated by
the formulas appreximately coincide with the results of the
1930 census, 491. Thus the prediction was wrong. But it
was not witheut use, since it onabled us to estimate the
great damage done te the European pepulation by the first
imperialist war.,

Automatic interpolation

The solution of problems similar to those considered
in the preceding example is the task of statistics. The
volume of information te be processed is constantly increas-
ing, and the problems themselves are bhecoming more and meore
complex. Statisticians are being helped by universal cem-
puters.

The problem of automation of industrial processes
and optimal control. ef various units has required the
development of speciulized devices which make it possible
to sulve interpelation and extrapolation problems. For
example, for programmod centrel of metal-cutting lathes,
it has been required te develop devices which could repreo-



duce the whole path of the motion from the known coordin-
ates of several points.

These dovices have received the name of automatic
intorpelators. Thoy are widely omployed im laying out
metal plates and sheets, in servomechanisms for contrelling
units which require high path accuracy, etc. Let us consider
sone examples of the simplest interpolators.

Linear interpolators

Figure 5 shows a block diagram of a linear digital
interpolator whese initial data are the values sincx and
cosA , where { is the angle of inclination of the path
to he interpolated te the x-axis.

- A similar interpolater is used for controlling the.
feed of the cutting instrument in automatic par.s working.
When a sogment of length 1 is being worked, the values of
the sine and cosine of the angle of inclinatiem ef the seg-
ment being worked te the x-axis are introduced inte registers
4 and 6. The value of the segment with given angle ef inclim-
ation at a fixed generater frequency is dotorpined'by the
time it takes the pulses to arrive at the dividing circuit 2.
This time in turn is given by the pulse sum x+y (the mumber
of pulses cerresponding to complete ceordinate displacoment).
As seon as a pulse sum x+y equal te the number rogistered
on counter 8 is established, the lattor emits a cycle
termination pulse, and pulses from the generator cease
arriving at input 2. The insturment feed is controlled by
signals at the busbars "x-axis" and "y-axis".

let us cite some more examples of linear interpola-
tors. In the interpolater whose block diagram is shown in
Fig.6, the initial data are tan and A x.

The linear interpolator in Fig.7 is censtructed
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Figure 5. Linear interpolator: 1) pulse genmerater; 2) fre-
quency divider; 3,3) rectifiors; 4,6) registers; 7) "or"
circuit; 8) counter; 9) cycle termination pulse.

on the basis of a digital integrator /42/. Its principle
of operation censists of the following.

If a constant number is introduced into the register
of the interpelator, then in accordance with the expression

t
y= g% (6)

when t=T we obtain

It
e |

Y

Here at the output during a time equal te the period

=38«
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. Figure 6. Interpolator with Figure 7. Interpolater on
" initial data A x and tan o~ the basis of a digital in-
1) pulse generator; 2)counter; terpolater: 1) frequency
3) register; 4) rectifiers; divider; 2) register; 3) ce-
5) summing device; 6) cycle incdidence circuit; 4) “er"
terminatien pulse. circuit; 5) averaging cells.

T of operation of the frequency divider there appears a
number ef pulses equal to x.

The interpolater supplies discrete values of the
function y, which we shall denote by y*.

Errers in automatic interpolation and methods fer
raising accuracy

Of especial interest is the problem eof the magnitude
of the error of digital interpolators and the methods fer
raising their accuracy.

.In /327 B.A.Sigev gives an expresion for positive
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~ Figure 8. Interpelation error as a function ef the number
of discharges of the initial number,

and negative maximum erreor:

A (i)mu = 4 Ml—au . (7)

Here m is the number of discharges of the initial
number x, It is ohvious that as m increases the error
increases, and when m > 3 we can assume that the error
increases linearly. Figure 8 shews this function in the
form of a graph.

Te decrease the error Z\ ﬁax it was prepesed teo
introduce a certain number of trigger cells, h, into the
eutput circuits. In what follews we shall call these averag-
ing cells. A dashed lin?® surrounds these cells in Fig.7.

In the absence of averaging cells, the number of
pulses at the eutput of the interpolator would be equal to

the sum of the numbers of pulses along the epen channels:
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Figure 9. Interpolation error as a runction of the number
of averaging cells.

m-1 .
y‘=>:kam- @ .

=0
Now the value of the output quantity can be written
in the form -
m—1
[ ?':‘, k, n ] )
o |20
y - 2~ ’

where h is the number of averaging cells.
For the maximum pesitive and negative errors, we will
have the expressions

. 3”' + 7 :i: 2-M+1
_— —-m+4]
A(—Jmu=—(3m=UETTT L) )



It follows from these formulas that, as the number
of averaging cells is increased, the maximum pesitive and.
negative erros decrease (Fig.9).

Thererrer can be further decreased by introducing
some initial number s (bias) inte the averaging cells.

The expression for y* can now be written in the ferm

m—| '
N\
. [mk‘nl'*" ] (12)
Yns =" |

2"

Omitting the intermediate conversiens for the above
expressions for L\~(+)mx and A (=)gax @Nd taking into
account the bias s, we obtain

. 1
lim e.(j")max =5 (‘3)

S == 2"—'
and
M A (—ase = — -
h-o~
§:= 2*-‘

Indeed, the number h is uncenditionally finite, it
being in practice very small. Usually the properties of
circuits with 4 to 5 averaging cells are very close to
limiting. For example, for m=30 we obtain

A ( ‘l‘)mn ==5,4;
h= 0, §==0

A (—)max = - 5:“.
h=05s=0



Figure 10. Decreasing the interpolation errer by the initial
bias method.

and A (+)max =0,66; A (—')mu = — (0,64,

hz5,8=24 "____5..’:2‘

Decreasing the error by means of bias is shown in Fig.l0.

The cross-hatched erreor zone is equal to the discreteness
step. By changing the bias, we can obtain enly positive

or only negative errors or locate the error zene symmetrically
with respect to the horizontal axis.

The use of averaging cells and initial bias has alse
given positive results in the circuits of quadratic imter-
polaters. These circuits also showed a great increase in
accuracy.

Linear-circular interpelator

When the path to be interpolated is a circle, linear-
circular interpolaters are used /24/.

Figure 11 shows a circuit for such an interpelator.
The device consists of twe integraters and an inverter and
is intended to solve the differential equatien of the ferm
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Figure 1ll. Linear=-circular interpolator: a) functional
diagram; b) block diagram; 1,2) reversible counters; 3) fre-
quency divider; 4,5) rectifiers; 6,7) displacement measurers;
K) keys; 9) inverter,



dy
dx

= .
y

The selution of this equation is the circular equa-

tien 2
y +x2 =R2

If the keys K are epen, interpolation is dohe on a
straight line with an angle of inclinatien te the x-axis of
X0

a = aro tg
2

When one of the keys K is open, a parabola is re-
preduced; and, when the inverter 1 is switched out of the
circuit, a hyperbola is reproduced.

At the beginning of operation ef the interpelators,
the tetal displacements are set in the displacement measurers
6 and 7 in an auxiliary code. The operatien of the circuit
continues until registers 6 and 7 are overfilled by the
eutput control pulses arriving at them. '

Quadratic interpelaters

To interpolate second-order curves of the form

Yy =8 + bX + cx2

quadratic, or parabolic, interpolaters are used. Figure 12
shows the block diagram eof a parametric quadratic interpela-
ter. Its operation, as with mest parabelic interpolators
described in the literature, is based on a difference method.
The quanmtities Xy and y; are accumulated in the summing
devices 2 and 8, integral parts of these quantities being
emitted in the form ef pulses along the x and y-axes. The
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Figure 12. Parametric quadratic interpolater: 1) pulse
generator; 2,4,8,10) sumaing devices; 3-9) rectifiers;
6,12) registers; 7) frequency divider.

current values of the first differences ﬁsxi(t) and
A y;{t) are recorded in the summing devices 4 and 10. The
values of the secend differences Azxi(t) and Azyi(t)
are kept in registers 6 and 12.

The eperation of the circuit is described by the

difference equations:

ﬁkxi (t) = [&xi,l (t) +£€ x(t)
Ay, (8) = ZXyi,l (t) A y(t)

Figure 13 shows the bleck diagram of an interpelator
‘ in which the x-cocerdinate is given by the eguation

x.—:al’+bl+c.

=40 -
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Figure 13. Quadratic interpolstor with the argument given
by the equation x-at2+bt+c: 1,2,3,4) summing devices;

6,7) squares; 5) control device; 8) counter; 9) end-inter-
polation signal. '

and the y~coordinate varies in accordance wifh the equation
y=ax+bx+o.

A difference method is used to solve these equations.
Differences with respect to the x-coordinate are summed in
summing devices 1 and 2, and those with respect to the
y-coordinate in devices 3 and 4. Before the beginning of
operatien, the difference between the finite Yk and initial
values of the coordinate Yu is registered on counter 8 in
an auxiliary code, After the counter is overfilled, a signal
for transition to the feollowing path section is emitted.



Figure 14. Cubic interpolater: 1) integrating amplifiers;
2) scaling amplifiers; 3) pulse: elements; 4) pulse generator,
Key: 1) Inonut; 2) output.

Interpelators of higher erders

Figure 14 shows the circuit of an electronic device
for cubic interpolation. A discrete sequence obtained by
means of pulse-amplitude modulation is used as input signals.
Interpolation is performed according to the formula

f(0+T+T)=f(a)+Af(a)-;,-{Af(a)+d'_’2(£l_
A '
— S5+ e (87 @1+ g (8% @
where f(Q +T+7 ) is the value of the function te be inter-
polated at instant (2 +T+7 ; < is the initial instantt
T is the arrival period of the discrete values of the
function f; A 1f, Azf, A 31‘ are respectively the first,
second and third differences of the functien f; O ST&L T,
Alecay, D2c¢a) ana ASf(a ) are compuied
from the formulas:

]88~



A'f (@) =f(a + T)—[(a),
A (a) =f(a + 2T) —2f (a -+ T) + [ (a),
A (@) = —f(a) -+ 3f (a - T) — 3f (a + 2T") + f(a -+ 3T).

The circuit of the interpolator contains three
integrating amplifiers, 1, two inverting amplifiers, 2,
three pulse elements, PE, which are centrolled from the
pulse generator, PG, PG is controlled by the input pulses.
The pulse elements synchroneusly and in phase with the
arrival of the imput pulses takes and nemembers for one
period the voltage from the outputs of the integrating
amplifiers. The constant times of the integrating amplifiers
and the transfer constant of the inverters, and also the
weighting factors for the components in the twe summing
circuits at the inputs of the integrating amplifiers 9 and
12, are chosen se that the voltage at the eutput at instant
2 +3T+ T will be equal to the value of the function te be
interpolated at instant .. +T+ 7T . This is accomplished by
suitable selection of resistances.

The interpolator operates with delay 2T. The PE
circuit consists of a memory cemmutator, a key tube
and two separation amplifiers. The key tube is a dual
triode, half of which is connected in antiparallel. It is
contrelled by pulses from the FG.

The input and output amplifiers are cathode follewers,
with a tube instead of a cathode resistance, based on a
dual triode,

Figure 15 shows the block diagram of an interpolator
of the fourth degree. The external devices of the inter-
polator are: a counting device 1 and & magnetic tape re-
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Figure 15, Interpolator ef the fourth degree: 1) counting
device; 2) memory bleck; 3) summing device; /4) deceder;/
5) converters; 6) magnetic tmpe recording device;

7) pedestal frequency cenverter; 8) rectangular pulse
generator; 9) generator; 10) circuit velecity bleck;

11) end-interpolatien block; 12) contrel bleck.

cording device. A pulse generator 9, which is contrelled
by a circuit velocity bleck 10, serves as a timing element,
A rectangular pulse generater 8 emits clearing signals

for the recording converters 5. The recording bleck is
contrelled from the pedestal frequency cenverter 7. The
initial data and intermediate results are recorded im



memory device 2. With suitable initial setups in summing
device 3, the circuit reproduces the functien

x =1 (y)

where x is a solution of the equation

ax? + bx> + cx° + dx - y=20

The results of solution are fed threugh deceder 4
and converters 5 to the recording bleck onte magmetic tape.

Central controlling device 12 and end-interpolation
block 11 contrel the operatien of the circuit.

Autematic extrapolation

Automation of the solution of extrapelatien problems
is achieved by means of specialized computing devices,
extrapolators.

If the input of these devices is fed some function,
we obtain its anticipated values at the output. Herd beth
the input and output signals -aylbe both continueous functions
and discrete sequences.

Discrete and continuous extrapolators

Let us consider some extrapelator circuits /I8/.
Let us assume that we need to find the vahe of the functien
x(t) at the peint t, from the known values of x(t) at the
peints tr ty ts (see Fig.16).

Through the known peints, we pass & second-erder

curve
x(f) =aft 4 bt + c.
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Figure 16, Extrapolation from three points: /\ ) delay;
1,2,3) multiplication block; 4) summing device.

When t=0, ta= -A , t= =2/ , we obtain Xtz = C,

Xy, == Xy, — bA + aA’v
Xy, =Xy, — 26A + 4aA?,

where A 1is the tifie quantization step.
From these equations we find an approximating poly-
nomial in the form

i
X=Xt, + 5 (%1, -—4x1, + 32} +

+ -Q%r(x‘l — X, + xf:) £,

or
Xy, == 3X(| — 3.!'(, + X, .

ihe anticipated value of the 8.oua. is w.uil te the
sum of the preceding values, whicli are s¢paratceu Jrom one
another by the interval /\ , multiplied by the corresponding
weighting factors. Figure 16 shows the block diagram of
the extrapalator.

I{ we need to extrapolate a signal for an anticipa-
tion time T , the anticipated values are cemputed in the
form of a sua
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Figure 17. Continuous-signal extrapelator: /A ) delay;
1) filter; 2) bleck for emitting delayed val ues; 3) sum-
ming device.

N
x~+i=};x,r‘. (14)

where ] is the value of the signal at the i-th point;
ry is the weighting factor of the i-th term., But let us
point out at once that this formula is the first member
of Kelmogorev's extended prediction operator, which will
be considered in detail in the succeeding chapters. The
block diagram of an extrapolator based en formula (14)
is shown in Fig. 17.

A continuous signal is fed to a memory device, where
it is divided into: n=T//A equidistant values. ‘he signal
from each memory cell, multiplied by its weighting factor
r, is fed to a summing device. Since the input signal



Figure 18, Discrete extrapelator: 1) control block; 2) cen-
verter; 3) shifting register; 4) weighting-facter block;

5) address fermatien circuit; 6) momery device; 7) sum-
ming device.

varies continuously, we ebtain its centinuous anticipated
value at the eutput of the summing device. A similar extra- .
polator may either be in the ferm of an analogue computer
or may use digital elements ¢(Fig.18). :

Cenverter 2 of the discrete extrapelator converts
the values of the continuous input signal inte digital
form. By means of shifting register 3 and weighting-factor
block 4, we can, in accordance with (14), sequentially
multiply the discrete values ef the function te be extra-
polated by the factors rye

Address ferming circuit 5 prevides fer recording the
preducts xyr, on definite cells of memory device 6. The
preoducts xyr; are then summed in summing device 7.

=b4-
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Figure 19. Extrapelator for obtaining a centimuous antici-
pated signal from discrete input data: A) delay; 1) moter;
2) summing device. ‘

Extrapolator for centimueus anticipation

Often the values of the quantity being measured czn
only be: ebtained at discrete times, and it is needed ‘o
know the probable value eof the signal not enly at some
future moment t+/\t, but also te have the continueus value
of this signal in the interval [t,t+AtJ) . Using known
mathematical methods, we can seek the law of variation ef



the weighting factors during one discreteness interval.

The circdit of a device which performs the task
of extrapolation in this form is shown in Fig.19 /T8/,

The discrete signal is fed to the memory cells with
the following signal shifted with respect to the preceding
by [X + The rememhered signals are continueusly fed in the
form of a voltage constant in the interval /A te scaling:
potentiemeters., '

The resistance of these potentiometers varies ac-
cording to the law (t+k A ), where k is an integer,

The signal from the potentiometers, multiplied by‘ri, is
fed to the input ef the summing device. At the output we
ebtain a continuous smeothed extrapolated signal.

Thus, with continueus extrapolation frem knowa
discrete values it is necessary that the weighting factors
be functiens of time, ri(t).

Invariance cenditions and the synthesis of interpolators and
extrapolators

The use of extrapolators and interpolators in con-
trol systems requires that their designers fulfill a whele
series of special requirements .

Depending on the concrete problems, these devices
must provide assigned accuracy, have a definite speed of
action, and be reliable and as simple as possible. Engineers
are aided by theoreticed methods. Great success in solving
these problems has been achieved thanks to the use of the
theory of invariance,

Invariance conditions

Figure 20 shows the.circuit of an epem pulse serve-
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Figure 20. Open pulse servemechanism: 1) pulse moment;
2) continuous part.

mechanism. The absolute invariance condition for it is the
condition that the imnput and output signals be equal at any
time.

Lot us write the mathematical expression for the
transfer function of the epen system

Z* @ ) =K*"@ ¢ X*@. (15)

Let x(t) denote the input signal, K(p) the transfer
function of the indicated continuous part of the system,
and Z(t) the output signal.

Making the usual change of variables

tl’-‘:?' pf —;‘-' t=n':a(1=0, " 2' u-;0<.<1)g

let us write the compenents of expression (15):

Z*(g. &) =D (2()) =D (2[n, &)} =D (Z(q)),
K*@ & =D {k(t)i==D (k(n, ¢]) =D (K(@)), (16)
X* (@) =D {x()}7=, == D |2 [n]} =D {X ()}

To the condition that the input signal be equal to
the eutput signal at any time

Z(n, ] =x|n, ¢} (17)

let us apply the D-transfermation.
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We obtain _
Z* (g ) = X* (g, ¢). (18)

Taking (16) into account, we find the condition of
abselute invariance for the open pulse system:

N (g, ©)

K‘(q. e) = -—R-,—m—.

(19)

In a number of problems with exact repreduction of
the form of the imput signal, & lag im the eutput signal
is allowed.

" In these cases, the invariance cenditiom is written
in the ferm

2() == x( —a), 20)

where &L is the delay time, or the shift between the
input signal x(t) and the eutput signal z(t),

Circuits based on invariance conditions

Let the input signal be known in advance. Hewever,
the infermation arriving at the imput of the asystem is
the values of the input signal at discrete instants. The
problem ef censtructing interpolators and extrapolaters
for such cases can be reduced te the censtruction of pulse
systems invariant in the sense of (17)-(20).

Methods for synthesizing such systems can be found
in more detail in Yu.V.Krementulo /27,287.

Let us consider here only one discrete-continuous
system with en interpolator (Fig.21). The values ef the
signal at times t= nT arrive at the input of the inter-
polator. At the eutput we obtain a continueus function

(O =x(@)+ Ax ()
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Figure 21. Discrete-continuous system with interpolator:
1) interpolator; 2) continous part; 3) comparison circuit;
4) input signal compeunding connection; 5) compounding
connection signal. j

where x(T) is a continous input signal, A x(t) the error
due to inaccurate eperntion of the interpolator. By com-
paring signal xl(f) with x(T) at time T=n, we can decrease
the interpolation error., The correction obtained by cem-
parison is summed with the output signal of the interpelat-
or.It is obvious that, when this method is used, correction
occurrs only at discrete instants.

Figure 22a shows an improved circuit. This circuit
uses an auxiliary memory device, also called an accumulating
filter /20/.

The correction obtained by comparing signals x(z)
and xl(t) at time t=n is stored in the memory device in the
interval n < tX n+l and is summed with the output signal
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Figure 22, Systems with interpolator: a) with accumulating
filter; b) rough-fine system; 1) rough interpolator; a
2) accumulating filter; 3) cemparison circuit; 4) fine
interpolator B

of the rough interpolator. In the following interval
n+1 < T < n+2, to the eutput signal there is added the
correction obtahed in comparing x[rn+1] with xl[:n+f3 ’
etc.

If, instead of a memory device, we uwse a second
interpolater, we obtain a more general cirouit (Fig.22b),
which is marked by the presence of rough and fine imter-
polatoers. |

The principle of combining rough and fine systems
is widely used in technology. As examples we may peint out
discrete-~continuous measuring and cemputing devices, and
servomechanisms with rough'and fine reading of angles of



rotation. The use of rough-fine interpolators and extra-

polators makes it possible in many cases to raise the ac-
curacy of operation of a system and to simplify the cir-

cuit.

The "rough interpolator" (RI) is synthesized accord-
ing to the invariance conditions. Small deviations in the
output signal ef the RI, A x(t), are decreased by the
"fine interpelator"” (FI). The FI converts the difference
between x[n} and xl[ﬁ] into the correction cf[h,i:] ,
whose law of change in the interval n < t < n+l is deter-
mined by the interpolation law of the FI. In each concrete
case this law is chosen from the conditions: 1) accuracy
of operation of the RI; 2) accuracy of the whole system;

3) simplicity of design, etc.

In this chapter we have considered the problems of
interpolation and extrapolation and have acquainted ourselves
with the devices which make it possible to automate the
solution of these problems. Here we have proceeded from the
assumption that the processes are determinate and can bde
described by some analytical functions. The positive results
obtained taking this asmumption into account confirm the
fact that the methods and devices used can be considered
acceptable,

But if we observe large deviations of the predicted
values from the actual ones,this indicates the presence in
the processes of randem components. In cases where the
random factors exert great influence on the course of the
processes, determinate predictien is invalid.

Then we can use the theory of probability, the
theory of random processes, and mathematical statistics.

On the basis of these disciplines, the past two decades
have seen the creation of new methods united under the

general name of the statistical theory of prediction.
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Chapter 2 S
Prediction of stationary random procegses

Topics in Brief from the Thoory of Probability and the'
Thoory of Random Functions |

Random events. Random variables. Random processes

The results of experiments, multiple measurements,
the turning up of a number eof pips en a die, and the falling
of a projectile at some distance from the target are all
characterized by an incenstant outcome.

In probability theory the various possible outcomes
of trials are called random events. Every trial is deter-
wmined by one or several variable quantities. If, as the
result of a trial, these variable quantities can assume
various values, these variables are called random variables.
Let us assume that we choose at random some part frem a |
large batch of parts of one type. The dimensions of the
chosen part are random variables. Since the results of
investigations and measurements are ordinarily expressed
in numbers, random variables can assume various numerical
values. If random variables assume values which are separ-
ate and iselated from ene another andiwhich can be enumerat-
ed, these random variables are called'digcrote. Random
variables which continuously vary as a function of some
parameter ana whose values cannot be enumerated in advance
are called continuous.

The classical theory of probability deals with
"mags" random phenomena. A mass phemomenon is an aggregate
of multiple repetitions of a phenemenen or actions "hap-
hazardly" considered as a whoie or without taking into
acceunt the chronelogical sequence.
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As distinct from the classicat theory of probability,
the theory of prebabiligic, or randem processes, developed
in the main by A.N.Kolmogorov and A.Ya,Khinchin, operates
with the processes and sequences (discrete processes) of
random phenomena. Random processes and sequences are ag-
gregates of random variables in the dynamics of their de-
velopment. They are the same mass phenomena, but they are
considered not in the form, for example, of a uniform
ensemble of random numbers, but in the ferm of a sequence
of numbers in the chronological order of appearance of the
quantities to which they correspond.

Examples of randem processes are changes in the
coordinate of a brownian particle, fluctuations in electric
circuits, vibrations of the units of a machine-teol during
its operation, change in the temperature of a patient
during the course of a disease, change in the bioelectric
activity of the brain, etc,

Frequency and probability

Let us assume tnat in a group of 1000 people, there
are people whose height is less than 165 cm. We carry eut
a series of trials. A trial consists of the measurement
of the height ef each person. As a result, it turns out
that there are 230 people in the group whose height is
less than 165 cm. We say that the frequency of appearance
of a persen less than 165 cm in height in the greup ef
1000 peeple is

w = 220 __ = 0.25
1000

in the overwhelming majority of cases, when a trial
is repeated many time, the frequency of appearance of an
event A in a series of N trials acquires a stability. It

-B3 =



very seldem essentially deviates from seme positive constant
number,

This pesitive number, less than ene, is the quantita-
tive expression of the possibility of random event A and
is called its probability.

The probability, usually expressed by the symbol
P(A), is, as it were, a physical constant connected with the
random event A. The frequencies of this event in various
concrete series of trials are random manifestations of this
constant characteristic, which expresses.a completely
definite objective connection between a comjilex of con-
ditions and the random event, ‘The value ¢f the probability
changes as soon as the basic complex of conditions does.

The integral distribution function of a random
variable

Let .@ (t) denote the probability that the random
variable x will assume a value less than t. 4}(t) is
called the integral distribution functions eof the variable
Xx. Since any probability must lie in the interval between
0 and 1, for all values of t we have

07 D) 1.

Let t, > t;. Then the probability that x < t, will
be greater tham or equal to the probability .that x < tl’
i.e, the function Qz (t) cannot decrease with an increase
in t. Figure 23 shows a typical form for the integral

distribution function.
If the random variable x is a result -ef the measure-

ment of some characteristic of an object selected at random
from among N objects, é (t) in practice determines the
relative: portion of the objects for which x < t. The group
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Figure 23. Integral distribution function.
of N objects is usually called the general aggregate.
Prebability density function. Normal distribution law

Let é (t) be the integral distribution function
of the random variable x. Then the prebability that

A A
l-—1r<;x<t'F7r

(when A> 0) is given by the difference

mkqugymmenu%)

As A -» 0, the limit of the ratio

Lol 4)-o(-3)

l i 2=}

is called the probability density of the randem variable x
at the point x=t. the prebability density £(t) is a functienm
of t and is called the density function of the random
variable.

If the random variable x is discrete, the integral
distribution function is a step function,and the probability
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density fumctioen does not exist..
If we integrate the prebability density function
£(t) from t, te t, (t1<f ta), the integral

fv
AUKL
will give the probability that x will assume a value between
t, and t,. | '
One of the most important probability density
functions is the so-called normal probability density func-
tion (Fig.24). It is given by the expressien

_ Jt—up
218

|
) =—5qe , (21)

where ({ and 0 are certain constants. We say that the
random variable x is subject te the normal prebability |
distributien if its prebability density function is given
by expression (21).

Hn

\
|
) |
1
lff”’ '
L
M !

Figure 24. Nermal probability ‘density function.

Mathematical expectation and higher mwements of a
random variable

The mathematical expectation, or the mean value of
a random variable, is the result ef the preobabilistic
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averaging of the possible values of this random variable.
In this averaging, the probability of every possible value
serves as a weight for this value,

In particular, the mathematical expectation (mean
value) of a discrete random variable x whose pessible values
are N (finite) in number is equal to the sum of the products
of each of these values by its prebability

hJ
MX = X x P (x), (22)
(]

where M is the sign of mathematical expectation,

A functien @ (x) of a random variable is itself a
random variable. The mathematical expectation of the functien
(x-c)k, where k is any pesitive integer and ¢ a constant, is
called the kth-order moment ¢f x with respect to c¢. Of
especial interest is the case where cs=MX, The mathematical
expectation of the function (x-MX)k is called the kth-erder
moment of x with respect to the mean. The second-order
moment with respect to the mean, i.e.

M (x — MX)* = DX, (23)

is called the dispersion.

The square root of the dispersion is called the
standard deviation, or the mean square deviatien.

Fer example, in the normal probability distribution
function cited above

({=p)?
1 H=u)t

= T
f(t) Tre

" the mathematical expectation of the random varible x is
equal to //f , and the dispersion te 0'2.
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Conditional frequency. Conditional probability.
Dependent and independent events

Often from a whole series of trial it is necessary
to separate those as a result of which some event B has
appeared and then afterwards to determine the frequency of
the event inwhich we are interested.

If the frequency of an event A is computed not for
all trials, but only for that sequence of trials as a
result of which event B appeared, this frequency is called
the conditional freguency of A with respect to B.

Conditional frequencies possess all the properties
of frequencies, including the property of stabilization
when the number of trials is increased without bound.

As an objective quantitative characteristic of event A

in its interrelations with event B, we can introduce the
concept of conditional probability in a manner analogous

to the way in which we introduced the concept ef the proba-
bility of event A.

The conditional probability of event A with respect
to B is the ratio of the probability that A and B will
occur together to the probability that B will occur

P (AIB) = -i-(-;u’l (24)

If the conditional probability of A with respect
to B is not equal te the probability of A, event A is
called dependent on B, But if the conditional prebability
of A with respect to B is equal to the probability of A,
event A is called independent of B,

Example [ié?. A mechanical shop has produced 100
cylinders, Of them, 15 are elliptical, 50 are conical,

25 are simultaneously elliptical and conical, and 10



cylinders have no defects.

Event E consists of the fact that a cylinder taken
at random will be elliptical, and event K of the fact that
the cylinder will be conical:

P(E) = 15 + 25 / 100 = 0.4

P(K) 50 + 25 / 100 = 0.75

1

P\EK)

25 / 100 = 0.25

Let us assume that a randomly chosen cylinder is
conical. But it may alse be elliptical. Let us compute
the probability that our randomly chosen cylinder with
one defect 'also has the other.

From (24) we obtain:

P(EIK) = P(EK) / P(K) = 2.25 / 0.75 2= 0.33

Analogously
P(KIE) = P(EK) / P(E) = 0.25 / 0.4 = 0.625

It is obvious that in this case P(EIK)£ P(E) and
P(KIE)# P(K)., Hence E and K are dependent.

Basic concepts and definitions of the theory of random
functions

Random functions. Distribution laws. Markev processes

A random function is a function whose value for
every value of the argument (or several arguments) is a
random variable. A function obtained as a result of one
experiment is called a realization of a random function,

Random functions of time are usually called random,



or stochastic, processes.

For every given value of the argument t, the value
of a random function X(t) is an ordinary scalar random
variable. The distribution law of a random function is a
complete probabilistic characteristic of its value.

The one-dimensional distribution law of a random
function X(t) depends oen t as a parameter and can be given
by the one-dimensional probability density f, (x,t).

The twe-dimensional distribution law of a random
function is the name given to the jeint distributien law
of its values x(tl) and x(t2) for two arbitrarily chosea
values tl and t2 of th=- argument t. In the general case,
the name n-dimensional distribution law of the random functiem
X(t) is given to the distribution law of the aggregate of
its values X(tl), coey x(th) for n arbitrarily chosen
values tl, ey th of the argument ¢t.

An example of random functions which are exhaustively
characterized by two-dimensional distribution laws are
Markov random processes.,

A markovian random process, or random process without
aftereffect, is the name given to a random function with
parameter t whose values when t1< t, < oo < t, for any n
form a simple Markov chain /I37 In accordance with the
definition of a simple Markov chain, the conditional dis-
tribution law of the value x(th+1) of the random function
at a future instant depends omnly on the value ef the ran-
variable x(th) at the present moment and does not depend
on the value¢s of the random variables x(tl), veey x(th-l)
at past instants.
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Figure 25. Random function.

Mathematical expectation and correlation funciion of
a random function. Mutual correlation function

The mathematical expectation of the random function
X(t) is the name given to the function mx(t) whose value
for every given value of the argument t is equal te the
mathematical expectation of of the value of the random
function at the same t:

me () = MIX ()],

This is a certain mean function, around which groeup
and with respect to which oscillate all possible realiza-
tions of the random function (Fig.25).

The dispersion is taken as a measure ef the scatter
of a random function. This is a function whose value for -
every given value of the argument is equal to the dispersion
of the value of the random variable fer this value of the
argument.

In erder to take into account the influence of the
values of the random function on each other for various
values of the argument, besides the disgpersioi, the cor-
relation mements of the values of the random function are



given corresponding to all possible pairs of arguments.

The correlatiion moment of the values x(t) and x(t')
of a random function X(t) is a function of the two inde-
pendent variables t and t':

Koty ') == MIX*(0) X0 (0)). (25)

This function is usually called the correlation
(or autocorrelation) function of the random functien X(t).
x°(t) denotes the deviation of the random funetion X(t)
from its mathematical expectation (centered random function).
The mutual correlation function, or correlation
function of the cennection of twe random functiong X(t)
and Y(s) is the name given to the correlation moment of the
values of these functions for arbitrarily chosen values
of their arguments t and s:

ny (’, 3) = M IX‘ (l) Y (S)I. (27)

Random functions are called correlated if their
mutual correlation function is not identically zereo. But if
the mutual correlation function of two random functions is
identically zero, these random functions are called un-
correlated.

Stationary randonn functions. Ergodic property of a
statienary random function //
The random function X(t) is called stationary in the
broad sense if its mathematical expectation is constant
and its correlation function depends only on the difference
between the arguments t and t':

my ({) == M| X (f)] = const,
Ke(t, ') =hy (%), (28)



where ¥ =t-t',

It follows from the definition that the correlation
function ef a stationary random function of one variable -
is a function of the one variable L.

The dispersion of the stationary random function
X(t) is

’ D [X (] == Kx (¢, 1) == ke (0). (29)

The dispersion of a stationary random function is
constant and is equal to the value of the correlation func-
tion at the origin.

An important class of stationary random functions
is made up hy the ergodic stationary random functions.

A stationary random function X(t) is ergodic if the
abgsolute value of its correlation function kx(T’) decreases
without bound as [1]1—>9°° | ji,e. if for any ¢> 0, we can
find a quantity TO such that

ke (D] <& whey |T]>T,. (30)

The random processes described by statiomary ergedic
random functions retain constant statistical parameters
in realizations of any length, no matter how large.

We have hecome acquainted with the basic concepts
and definitions of the theery of probability and the theory
of random functions. In what follews, we shall operate
with these cencepts and definitions when we consider various
prediction preblems.

Prediction Quality Criterien. Optimality Criterien
Crriterien of minimum mean-square error

The problem of interpolation and extrapolatisn can



also be formulated for random processes and sequences.

However, instead of speaking about finding the
values of a function within or outside of the segment of
observation, we should rather speak about finding some
function which can be determined froum the initial values
of & random process from the point of view of satisfying
some general optimality criterion.

In most cases, such a criterion is the achievement
of a minimum mean-square error of deviation of the unknown
approximating function from the initial random function
or from some point set (selection) whose points represent
the latter function. |

In the general case, there is a minimum mean~square
error when

Jom § Bl fur o 0O a1)

In (31), f£* is the function being predicted; f,,
fz, "‘”fN is a selection of the preceding values of the
function; p(f/fl,fz,...fN) is the conditional prebability
of obtaining f with fl,fz,...,fN.

A remarkable property of the criterion of the minimum
mean-square error is the fact that this criterion gives a
unique solution to the problem. Indeed, the equation

M — [ e ey

)

describes a multidimensional paraboloid and, consequently,
with any way of varying the parameters of the predicting
wodel (of the mathematical operator or predicting device),
achievement of a minimum is unavoidahle. At the beginning
of the fourth chapter we shall deal in more detail with
devices based on this criterion.

Let us consider some more prediction optimality cri-
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teria.,

Criterion of the minimum sum of the integral square error
and the dispersion of: the random error

If the function being predicted is the sum of a
regular component (useful signal) and a random stationary
component (noise)

[ =S5O+ N, (33)

we can formulate the optimality criterion as follews.
Letus write the integral square error in the form
5 erdl, (34)
where e=S({+ &) —S* (¢t + M), (35)
In expression (35), S*(t+ A t) is the resular component of
the predicted function.
The predicted function can be written in the form

[* = S*(t + Al + N* (¢ + A, (36)

Let us denote the dispersion of the random error by DN*,

The prediction will be called optimal if a minimum
is ensured for the sum with weight g of the integral square
error (34) and with weight ¢ of the dispersion of the
random error while this condition is fulfilled:

linve (f) == 0. (37)

fos

Proceeding from this, we can formulate the problem
of analytical design of an anticipator /I6/. It is required
to find functions € (t), S*(t) and some weighting function
@(t) which satisfy (35), (37) and which minimize the
functiconal



] = aJ erdt + cDN®. (38)

The criterion just considered can be expediently
used for designing an optimal system for filtering and
predicting processes described by expression (33).

Arbitrary optimality criteria

Let us consider a stationary random process which
is gaussian in the broad sense of the word. This means that
the signal is described by the expression

N
s«>==-m«)+2r,l,(o. 39
{wo

where m(t) is a normal random signal; ‘§| rifi (1) - is
a linear combination of N known functions fi with coef-
ficients ryi the coefficients r, are random functions which
also have a normal distribution.

A noise N(t) having a normal distiribution is additive-
ly superimposed on the signal.

Thus, we are again dealing with prediction of a
process of the form

FO =S+ N ().

Optimal prediction is achieved with minimizaticn of some
error criterion (value function) C(T ). In the case of the
mean-square error criterion C(‘i)-'{‘,z, the optimal nonlinear
prediction is equivalent to the optimal linear prediction

in the Wiener sense /627 with the same error criterion.

A similar result is obtained in the case of even, C(= ¢ )u
C(< ), nondecreasing criteria. The conclusion is also valid
for asymmetrical nondecreasing error criteria.
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Figure 26. Graph of error-criterion variation,

-

Let an arpbitrary errorcriterion be given, for oxample
in the form of a graph (Fig.26).

Pugachev's general theorem /397 states that in this
case an optimal nonlinear system (imn particular, a system
which achieves optimal prediction) is ‘an eptimal linear
system in the Wiener sense with weighting function w(t, 1)
with the mean-square error criterion, to which is somevimes
added some censtant "bias" f« 3

!
o= § wi. 9r@ds+p. (40)
If the orror criterion is an even function, the constant
bias is always equal to zero.

Let us cite an algerithm for synthesizing a nonlinear
optimal system which minimises the mathematical expectation
of an arbitrary error criterion.

l. Wo sook a linear optimal (in the Wiener sense)
system with waghting function w(t,T ). As a criterion we
here take the minimum mean-square error.

2.We will determine the mean-square errer by the usual
methods.

3., We will determine the mathemtical expectation and
dispersion of this errer.
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4. We will find the constant bias by minimizing
the integral

LIC@I= | Ce)f(e)de, (41)

where f(2 ) is the probability density of the error of
the optimal linear system with unknown mathematical ex-
pectation m',

Let us put

- _ (o—m’p

2 fce P de=o (42)

and let us solve this equation for m'., Then
p=m—n', (43)

The eptimal nonlinear system is described by the
equation

0if= § w, Df@dr+p. (44)

The only limitation in Pugachev's theorem is the
condition that the random component ef the signal and the
random noise have normal distribution. However, in solving
actual probleoms by the method of modelling en analog com-
puters, good results have also beon obtained when this
condition is not fulfilled /80/.

The optimal, most exact prediction is achieved when
the initial data (keys) have normal or gaussian distribution.

It is clear that even with the best, optimal predic-
tion, we cannot count on the exact coincidence of these
functions: a random process always has some unpredictable
element of "pure" randomness. The prediction accuracy can
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be estimatad from the variation

8= LIV (008,

T
But even with optimal prediction of random processes, the
variation is not edual to zero. Only in predicting non-
random determinate processes, the motion of the heavenly
bodies for example, can the variation be zero, i.e. the
functtion being predicted exactly correspands to the actual
process (with computational error)

$m+m=mam¢

Besides the above criteria, attempts have been made
of late to use various game criteria, for example minimax
criteria, for synthesising optimal systems. Especially
effective is the use of such criteria in eptimizing
"large systems" /3/.

Below we consider a number of problems in the pre-
diction of stationary random process and sequences. In all
cases, our optimality criterion will be tho minimum mean-
square error one,

Prediction of Stationary Random Sequences
The method and formula of A.N.Kolmogorov

For stationary random processes whosoe values are
known at discrete instants, the problem of extrapoMtion has
been formulated as follews /Z6a/.

Let f(t) be a real random variable corresponding
to every integral t in the interval =00 <t < 00 ,

If the mathomatical expectation



m =M [f ()] = const

and the correlatioﬂ function
Ku=MI[(f (¢ + ) —m) (F () —m)]

do not depend on t, f(t) is stationary. Without limitihf
the generality we can put

m= M|[f (f)) =0. {45)
Then
Ku=MI[f (¢t + A)-F (1)) (46)

The problem of linearly extrapolating a stationary
sequence which satisfies (48) consists of selecting for glven
n” 0and At 0 real coefficients ry for which the linear
combination

OFOI=rd(¢—D+rd¢—+..+ra [(¢—n) 47

of random variables f(t-1), f(t-2),..., is an exact as
possible approximation to tho random variable f£(t+ A t).,
As a measure of the accuracy of such an approximation
we take the criterion

Q=M+ A)—Of ().

If we know several mements K Aty e ean gzsily
solve the problem of finding r, for whichiB =g min’

The problem of interpolation consists of estimating
£f(t) from the values of £(t+l), flt+2), ¢.., £(t+n), £(t-1),
veey £(t=n).

Here, as another measure of accuracy we can take
the criterion
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T =MEO—QU

where
QU =rf¢ + NV +rft+ Dot rafl—D+. (48)

with constant real coefficients. The problem of interpola-
tion is reudced te the determination < I'i'I min®
proof of the existence of limits for EE and €7,
as well as a solution of the problem of finding their
values is given in /26a/.

Let us consider an example of the solution of a
problem of linear extrapolation of a stationary random
process.

Prediction of the change im the quality index of a preduct
of the pctrolou-~chon;ctry industry

The prediction problem

Figure 27 shows a diagram for autematic regulation
of a thermocracking installation at a petroleum-procesasing
plant /31/.

The ond product iz thermecracking benzine, one of
whose quality indices is the temperature at the end of
boiling. An autematic analyzer dotermines this index every
half hour and records the value of Ty, [tomperature at ond
of bailing7 in °C by means of a recording instrument en
a cartogram, |

Using the data on the values of TKK'C for a certain
interval of time preceding the instant t, we are required
to predict the values of TKKOC at some future time t+ At.
In practico the interval At is equal to the timo interval
botween analyses. o

1ot us rewrite the prediction operator (47) in the
form
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Figure 27. Diagram for regulation of thermocracking instal-
lation with quality analyser: I) flow of raw material into
column; II) fractionating column of thermocracking instal-
lation; III) cendenser; IV) feed tank; V) feed flow;

VI) end product (thermocracking benzine); VII; debensined
product; 1) thermocouple; 2) potentiometer; 3) summing
device; 4; quality analyser; 5) regulator; 6) predicting
filter; 7 regulating valve; 8 sampling point for analysis
of petroleum product.



N
O(f (1)) == ;; fre=fo (-1 AD, (49)

where f, (i=1,2,...N) are the values of TKK.C at the pre-
ceding instants, and £°(t+ A t) is the prodicted value of
Ty Co

The problem consists of finding coefficients ry such
that

=M (! + A)—[* (t + Al)) = Thip. (50)

The coefficients r; for which condition (50) is
satisfied are considered to be optimal, and we say of the
operator (49) that it has learned to predict the future
values of the given random seoquence.

Learning algorithm for predictien operater

Let us writo the logical schemo for the learning
algorithm of the prediction operator

e R
yECctS{Rot, (51)
In expression (351):

E is the operator for cowputing tho mean-square
error from the set of known values of the function (for
various values of the coefficients); |

C is the operator for comparing tho_iolputed error
97’ with the quantity chosen in advance £ which satis-
fies the required accuracy;

“ c is & logical condition which is considerod satis-
fiod when

min

"T'<:?Mn H

is the operator for computing new coefficients;

PRSI
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&) is an identically false condition;

S is the operator for terminating the learning pro-
cess.

The algorithw works as follows. The elements of the
scheme operate one after another from left to right, begin-
ning with the extreme left.If the following element of the
scheme is a logical condition, two cases may arise. If the
logical condition is satisfied, the next element of the
scheme operates; but if it is not satisfied, there is a
transition along the arrow. The symbolf{denotes the begin-
ning of the arrow and | the end /337.

Firgst learning step. We determine the mean-square
error of the representation of the function £(t) by the
operator (49) on a known time interval vtth arbitrary
values of the coefficients.

Frem the whole sequence we select the valuos ‘1"2’ '
ceey fk’fk+1 and we conpnto *

Ferr— Loy
fiv= g'l h
The sequenco ‘1’ rz,... of length k we call the
prehistory. Then we take the sequence rz,ra....,tk+2 and

compute (f£* Ke2™ fk+2)2 where

K+l
’;H-‘z’ A/

etc.

the mean-square error over the set ef known values
of the function £(t) at the first learning stop is given
by the expression N
y P 3 g-p

) o)
&) = N—x+1 °




Comparing the obtained error Q—% with é.Ein' we

evaluate the quality of representation of the function
£f(t) by operator_(49) for selected values of the coeffici-
ents. If ‘ll 7 % min® Ve carry out the second learning step.
We change the values of ry in accopdance with the
minimization algorithm for the function ¢ (ri).
We seek the value of the error at the second step
‘i-g and again comparc the obtained value with 8““
The learning process stops if, as a result of com-

parison of 2’1 y obtained at the l-th step, with éTEin’
we obtain

el < e?nln !

Now the operator is considered to have learned te
predictt the future values of the given function, and the
coefficients used for cemputing operator (49) are optimal.

The following value ef the function is predicted
by means of realization of the algerithm fer computing
operator (49) when " ept’

Solution anéd results

The prediction problem was programmed and solved
on a universalt digital computer.

The function < (r;) was minimized by the method ef
steepest descent /3/. Table 1 shows the actual and pre-
dicted values of TKK°C. Figure 28 shows graphs of the
variation in the actual and predicted values of Tkx°c for
a different number of peints of the prehistory (k=2,3,4,3).
It is evident that the results of prediction deperid on the
length of the prehistory. This question will be cezsidered
in chapter 4, where we will solve the problems of prediction
usitig nn extended prediction operator,
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Figure 28. Prediction of the temperature at the end of boil-
ing by the linear extrapelation method (ke3,3,4,5).

Key: 1) Number of anr'ysis.
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Ad‘tfrnlm- (2) Npeackasannue suavennn

NUe HavoNua xmt | Ked x4 | X
182. 179 178 176,5 178
182 181 181 179 177 .4
181 182 - 18} 181 180
183 181,58 181,6 181,56 181
uq 182 182,3 182 182
186 183 182,6 182 182
188 184 13,6 183 183
186 185 184,6 184 183,4
181 185 185,3 185 184, 4
178 183,58 183,3 184 )
177 179,85 182 182,56 162
178 177,56 179 180,8 181,4
178 177,8 177,6 178.5 |
178 |78 177,6 178 178.,4
In }78 178 177,78 177,8
i 178 178 177,18 177.8
177 17,8 177,6 177,78 177.8
177 177 17,3 177,58 177,68
178 177 177 177,28 177 .4
178 177,8 177,3 177,56 177,06

Tablo 1.
Key: 1) Actual values; 2) predicted values.

Prediction by exponential smoothing formulas (Browm's
method)

, The theory of exponential smoothing /30,50a/ has of
late been greatly developed.

Bxponential smoothing (Brown) is basod on the as-
sumption that the value to be predicted of some function
£(t) can be expressed by a Tayler series:

Jovar = fr + -%—-A! - -2!;- %{'—(AI}' N
- L (52)
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{he terms of the Taylor series are expressed by
exponential smoothing formulas.Here we give a formula for
an exponentially smoothed quantity of the first order:

S[(’)“‘“’g""(l"’a)sl-‘- (53)

Thus, the new averaged value S (f) is equal to the
last known value of the function t(t) multiplied by the
factor < (where o/=< 1) plus the preceding averaged value
S¢.) Multiplied by (l1=X )s When < =]l we obtain a trust-
worthy transcription of the past values, i.e. & prediction
according to the "no change" rule. ‘

Less sensitive systems, which can be used with large
noise, use values 1 > <> 0.5, and more conservative ones
0.5 > & > 0.1,

Sih=aS,h +(1—)8,_, N,
S’U)“GS’(/)'H‘—“)S'.... (D. (54)

IIIIIII L] LI BN A ]

&mnwﬂm+u~w&.m

Now there remains to express the terms of the Taylor
series in terms of the averaged quantities. Depending on
hew many terms of the serios we use, the following formulas

are used.,
One term of the series:

fo=1Fi F=S,) (65)

Two terms of the series:
Fow=l+ S A1, f, = 25, () — ST (P (56)

=218, =S (.



Three terms of the series:

fose=F+ —3{—-13! + —é— ..g:_zf (A
fy=135,(N—382 () + ) () 67
d?}

T =T IS =2+ S

df !
= plo—59S0 26— 50 +

+ (4 — 3a) 8 (N}

Numerical modelling

A predicting filter based on operator (52) should
the following operations:

1. Compute the exponentially smoothed quantities and
required orders in accordance with (54).
2. Determine the terms of the operator

ditfy a1
O =g, = in accordance with (55)-(57).

3. Sum the terms of series (52).

The algorithm for the operation of the predicting
filter can be written in the form

3 | i 2 2 4 4 3
1T1SxtX{DBt2y40]wt,
where T is the operator for emission of the values of the

points of the prehistory (shifts along the sequence being
predicted);

“ is the operator for computing the exponentially
smoo tl quantities;

A 3 a logical condition, fulfilled when St is obtained;

=80=



X is the operator for computing f(t) (first term of
the series);

D is the operator for computing terms of the second,
third, etc. orders, .

ﬁ is .a logical condition, fulfilled when an operator
term of higher order is obtained;

< is the operator for summing the terms of series (52);

Y is a logical condition, fulfiled when the anticipa-
tion cycle is terminated;

O is a stop;

(v is an identically false condition.

Figure 29 shows a fllow chart for the realization of
the algorithm on a digital computer. Besides itself real-
izing the prediction algorithm, the program provides for
operation under conditions with variable coefficient =< ,
The quality of prediction is estimatcd from the mean-square
error for various values of ¢ , As will be proved later,
the coefficient << depends on the statistical character-
istics of the sequence being predicted and can take dif-
ferent values for different real processes.

ihe program allows during the process of operation
with the initial data of the process being investigated
the selection of an optimal value of 4 for which the best
predictiion quality is obtained (in the sense of glmin )e
Thus, the digital model of the predicting filter operates
in the learning mode and, after determination, is switched
into the general program for solving the control prnblem.‘

~90-
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Fig., 29, Block diagram of modeling a predicting filter based
on the exponential smoothing algorithm

Key: 1. introduce numerical ensemble into memory; 2. convert;
3, send initial values of @ and number of intervals r; 4. erasea
cells; 5. send pseudo commands, form counter; 6. compute;

T. form commands Sn—+ W.c.; 8, form commands tﬁg> w.¢, (depend-

ing on n); 9. send numbers (prehistory) to working cells (w.c.);
10. send to cell; 11, add 1 to Lh; 12, readdress pseudo commands

for next step; 13. compute E e and print L2 ’ La; 14, change o ;
15, stop.
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Prediction of the change in quality indices of
petroleum products and investigation of a
predicting filter

As an example let us consider the prediction of the
temperature at the end of boiling of direct-distillation
benzine. In solving this problem, we shall use the data
with which we operated in solving the prediction problem
by the method of linear extrapolation.

Let us set the value ot =0,1. Let us take the predic~
tion interval equal to 30 min as a unit, As in the linear
extrapolation problem, prediction will be performed from
2,3,4 and 5 points of the prehistory..

For k=2:
when [==—2 S()=182; S§2,())==182;
when fee—1 S () ==0,1.182 +0,9.182 — 182;

S2, (/) =0,1-182 + 0,9- 182 == 182.

Let us use two terms of the Taylor series

for=25_, () — 82, () =2- 182 — 182 = 182;
_Z'IL = T%E'ls—x (D“*qu (f“=0;

fo= e+ A== 182,

For k=3:
when ;.. 3 5 ()-==182 S82,()= 182
{=—2  S_,())=0,1-182 +0,9-182 == 182;
when 82, (f)=0,1-182 + 0,9 182 == 182;



( -+ )lelcrnu- (2 ) tpeackasamine snavenn
TeAbls¢

Mmaiein a Nl | k:=3 | K4 l S
178 181 185 183,2 | 181,8
177 178 185,1 | 1834 | 183,4
178 177 185.4 | 185.1 | 183.7
178 173 180,7 | 18,7 | 1847
178 178 17,9 | 184.6 | 183.9
178 178 177,1 | 1803 | 183,8

177 178 178 178 180
177 177 178 177,2 | 177,9
177 177 178 178 1773,

178 177 177,9 | 178 178
178 178 177 177,9 | 177,9
180 178 177 177.8 | 177.8
180 180 177,1 | 177 177.7
179 180 177.9 | 1771 | 17701
177 179 178.2 | 1772 | 177.2
173 177 178 178,2 | 177.5
174 173 179,9 | 178.4 | 178.4
171 174 178,8 | 179.9 | 178,5
173 171 176,6 | 179,6 | 179,6
171 173 173,4 | 178,1 | 178.8

Table 2.
Key: 1) Actual values; 2) predicted values, .

when { o= | S.(H=0,1-181 4 0,9.182 = 181,9;

etc.

8,()=0,1.181,9 4 0,9-182 = 181,99.

Using two terms of the Taylor series, we obtain:
fos =281 (N —S%, () =182,
A 218 () — S, (N1 =0,01,

fo=s fu + 9L At = 181,99,
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Table 2 shows the results of solving the problem on a
universal digital computer. Figure 30 shows graphs of the
change in the actual and predicted values of TKKOC for a
different number of points of the prehistory (k=2,3,4,5).

Let us formulate the basic problems in investigating
the predicting filter, |

l. Investigation of the influence of the prehistory
length k on the prediction quality.

2. Investigation of the prediction quality as a
function of the parameter o< . '

3. Investigation of the prediction quality as a
function of the anticipation time,

4, Investigation of the time parameters of the pre-
dicting filter.

Figure 30e shows a graph which reflects the change
in the mean-square error of prediction due to the number of
points k participating in the computation of the exponential-
ly smoothed values and derivatives. The function g %= £(k)
has a minimum when k=3 (for X > A opt)‘ For k> k., the
error rises as k increases.

Similar investigation conducted in the prediction
of quality indices of other petroleum products have confirmed
the conclusion that we should choose kopt'3 for predicting
such processes. This conclusion is valid only for the
accepted speed of action of the automatic quality analyzer.

It can be seen from Fig.30f that for the processes
under investigation there exists some definite value
oL ="/opt for which the prediction error is minimal. In
every concrete case, the value °(0pt is characterized by
the statistics of the process. lor processes which reflect
changes in the Txxoc of petroleum products, the valhe of
lies in the range 0.2-0.4,

If we compare Fig.30e and 30f, it becomes obvious

op

o‘opt

=04~
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bofling by the exponential smoothing method (k=2,3,4,5).
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that when o<.<x°pt the prediction quality in practice
depends little on the length of the prehistory.

In Fig.30g are graphs which show the prediction
quality as a function of the anticipation time 2—2'_ f(At).
Preceding investigation were conducted with A tel, i.e.
predicting the k+l-th value from the k preceding ones.

The error was determined as the mean error over the set
of values thus predicted.

In investigating ‘gg-f(Ai) according to the k known
values, the k+l-th value was determined, and the k+2-th
value was computed taking into acccunt the k+l-th predicted
value, and not the actual one.

. It can be seen from Fig.30g that the mean-square
error of“prediction rises sharply as A t increases. However,
when °<'c*opt’ this error is minimal and depends little
on the anticipation time.

The volume of computation, and hence the realiza-
tion time of the algorithm described depend only on the
number of points of the prehistory which participate in
the computation of the exponentially smoothed values and
derivatives. Since the cycle time for computing the
exponentially smoothed quantities is constant, the function
tpredict. = f(k) is linear.

Thus, the results of these investigations make it
possible to choose the parameters of the predicting filter
in the best manner.

In connection with the change in the external con-
ditions and the parameters of the processes bheing regulated,
it is necessary periodically to switch over the predicting
filter from the prediction mode to the learning mode. Here
the greatest effect can be ohtained if we use a computer
operating on the multiprogram principle as a controlling
machine. Such a machine allows the simultaneous realization



of several independent programs and, in our case, makes- it
possible to achieve control with a predicting filter as
a parallel corrector.

An extrapolating filter based on the exponential
smoothing algorithm

Devices for predicfing the future value of a function
for linear and quadratic extrapolation can be assembled
in accordance with the block diagram in Fig.3la /34/.
As can be seen from Fig.3la, the circuit contains no sections
with constant lag.

The circuit is made up of amplifiers, summing de-
vices, and linear aperiodic section of the first order.

Figure 31b shows an experimental oscillogram of the
operation of the extrapolatirg filter for the input function
f(t). The extrapolator circuit was modelled on a type MPT-9
analog computer.

Prediction of Stationary Random Processes
Wiener's method

Let the total input signal of some system be given

by the expression
[O=8SO+N®,

where is the signal carrying the useful information, and
N(t) is the noise.

In the ideal case it is required to determine such
a system so that the signal at its output will be equal
to S(t+ A t).

When A t=0, the system is called a filter. When
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At >0 and N(t) = 0, the system is callled an anticipator,
In the general case, the system must perform both

operations, filtration and anticipation, simultaneously,

In what follows, we shall call this kind of system a pre-

dicting filter,




N.Wiener /62/ developed a theory of these systems
based on the following assumptions:

1. The functions S(t) and N(t) are stationary and
stationarily connected random processes.

2., The criterion for selecting the "best" possibhle
system is the mean-square value of the difference between
the actual signal and the desired signal at the output of

the system
e==MI[S(+ AN—S*(t + AN}

3. The operation performed for filtration and pre-
diction is assumed to be a linear operation on the informa-
tion at hand.

In other words, the system must be a linear physically
realizable filter. Physical realizability should not be
identified with the possibility of embodying the system in
an actual design. The requirement of physical realizability
consists of the fact that the reaction of the system to a
unit pulse function becomes zero for t < O.

Since the properties of a linear systom are completely
characterized by the pulse transfer function W(t), the
output signal of the system can be written in the form of
a convolution integral:

~

SU+A)=|ISU—D+Nt—DWEdr. (58)

0

Then for the mean-square error we have the expression

)=+ —20ISTTANSC—1 +
0

FSTFANNGT—OW mdr+ | W(x)dy
0

(S W (IS¢ —) +N(—T)IIS(—v) +N(f—T)l dv,.  (59)
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Noting that the correlation between x(t) and y(t) is

Koy =x )y + ), (60)
and making the notation

Kss (%) + Kns (v)um (7)), (61)
Kss (7} 4 Kns (1) - Ksw (v) + Kaw (1) = @ (7),

let us rewrite formula (59):

o= Kss(0)4—26Y¢(At+ VW ()l +

+§ W (v) dv, é( W (%) @ (t — 7)) d,. (62)

Now the problem can be formulatéd as follows. We
know the correlation functions KSS’ KNS’ KSN’ KNN’ We
must. find a pulse transfer function W(t) such that

€' = min.

Ratting w(t)t‘< o0 here, we automatically satisfy the
condition of physical realizability.

From the general problem, there follow important
special cases, such as the problem of filtering (A t=0)
and the problem of "pure" prediction (N(t) =0).

The method of Zadeh and Ragazzini

A generalization of Wiener's theory for the case of
a. finite time interval was considered by Zadeh and Ragazzini
/61/. Their method is based on the following assumptions:
1. The signals being considercd consist of: a) a non-
random time function which is representable by polynomials
of a degree not exceeding some definite number n, and about
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N (3]

(t)=S(1) Hacrontgee snauenne S({) 1 &1)
2 S*(H)=S8'(1) » » S p SUX(!)
3 S*(1)=S"(l) > » Sl p L)

(4)
byayiuee uau npoinsoe
4 S*(1)=S(t+Al)l3nagenne S({) ()Al 4> waH| edlp &1+ Al
«—)

Teble 3.

Key: 1) Relationship of S*(t) and S(t); 2) quantity
being evaluated; 3) present value; 4) future or past value
of S(t) (A t "4" or "-"),

which we know knothing except n; b) a stationary random

2. The pulse transfer function W(t)= O when t < T

Let us consider the time function f(t), consisting
of S(t) and N(t).

The output of the predicting filter 8*(t) is connect-
ed with S(t) by the linear operator Y(p):

S* () =Y (p) S (O). (63)

time function whose correlation function is known.%f:é 0
?

Let us write S* in the form of a convolution integral:

st = w@s¢—nds, (64)

where w(T ) is the pulse tranfer function of an ideal
anticipator.

In the most general case, the quantity S*(t) being
evaluated in prediction or filtration may be a functional
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Figure 32. Zadeh~Ragazzini predicting filter.

of S(t).

Table 3 gives some possible values of Y(p) and w(t)
for various S*(t). |

It is assumed that

SO =m@)+p) )

where p(t) is a nonrandom time function which can be
represented by a polynomial in t of order not higher than n;

m(t) is a stationary random component;

m(t) and n(t) are described by the correlation
functions Kmm(Tf) and Knn(T').

It is further assumed that m(t) and n(t) are centered
and uncorrelated.

Figure 32 shows a block diagram of a predicting filter
for this problem. -

In the absence of noise and with the physical realiz-
ability condition satisfied, there is no error

e=[*()--S*() (66)

Here the operator of the actuad anticipator H(p) is
identical with Y(p). This case is trivial.
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If H(p) and Y(p) do not coincide, it is necessary to
determine W(t) such that

e ={f*()—S* (I = min. (67)

LX)

The optimal predicting filter must satisfy the
following conditions:

a) the mean error over the set is zero for all
values of t;

b) vhe variation of ¢ over the set is minimal.

Let us write the output signal in the form

f* () == Q W (Of (¢ — 1) dt. (68)

In practice it is necessary to bound the interval
of the input function by some finite T. Then

T
po={wore—nd. (69)
0

Taking into account that

FO=pO+mO +n@), (70)
and expressing

PU—=N=pO— ' () + 5 P" () + o (=1 5 P ()

we obtaih "
PO=ppO—mp’ O +5-0" 0O+ . +

r
+(—-l>~%~p~w+°SW(r>m(t—r>dr+

T
+ § W (v) n (¢ — 1) d, (72)
where /«0,/41,... are the moments of W(t), equal to
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T
= § CW@EdL =01, 2 (1)

Since m(t) and n(t) are centered stationary functions,
£*(t) and S*(t) depend only on the nonrandom components of
the signal:

T
7"‘«7=°S W () p (¢ — 1) dv, (74)
or
= e ) — i O o+ (= B @ (1)
and
SFO=rpsSo (76)
or SFO=Y P r (77

Comparing (7?5) and (77), we can write condition a)
as follows:

YO P =pp O —wp' O + .. + (—1 L5000 (78)

Identity (78) determines the value of /4 .

In other words, the ideal prediction operator Y(p)
is determined from (78) by the first (n+l) moments of the
pulse transfer function of the optimal anticipator. As an
example, let us consider the case

Y(p)S(f) = S(t + Af) (wher. £ Af).

Formula (78) can be rewritten in the form
PE+ANmpp () —pwp' 0+ S 0" O + .. +

+(— 1 %- P (0), (79)
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Comparing \n
pU+A)=pO)—Ap () + 0O + o +

(=1 .-rAT:: P (1) (80)

with (79), we obtain the system

r

Be = SW(t)dt= 1,
0
r

= W (5) dv = A,
0

,,,=.§:~W(r)dr-At~. @81

When condition a) is satisfied, it follows from an
examination of (66), (72) and (78) that

T
z==§W(r)lm(t——r>+n(r——r)1dr—Y(p)m(t>. (82)

or
T
e=§W(’t)[m(l—‘¢)+n(f-—‘t)]d‘t~—-
— [ w@me—vad (83)
Then - i L
& == lim T}e'dt. (84)

After a number of intermediate transformations, the final

expression for the mean-square error has the form
Tr

el = § § W (%) W (%) [Kmen (Ty — To) + Kin (v — 1)) dTydT, —
- T

- 2_5_ 5 W (7)) W (%) Komm (73 — T,) d7,d7, +

+ S S w (%) W (Ty) Ko (ty — 7) d¥,dT,. (85)

— D
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The last term of (85) does not depend on w(t). Since w(t)
is the kernel of the (n+l) equations (83), the problem of
minimizing ¢ “ with respect to the class of w(t) which

satisfy (73) is reduced to minimization of the expression

r T
! = §W(71) dr, LSW (%) [Kimm (T — %) + Knn (ty — )] d7y —

=2 [ (%) Knm (5, — 1) dTy— 2y — 21y — .. —

—2, f?}. (86)

where )LO’;ll""’Z'n are lagrangian multipliers.
lLetting I tend to zero, we obtain the minimum error
72 for the value of W(t) satisfying the integral equation

r .
§W 0 Kom =) + K¢ = 1de=ho t bt + .
+A, 00+ S w (7) Kmm (t — ) dv, 0KELKT. (87)

The optimal predicting filter is found from equations
(73) and (87). It should be noted that solution of the
integral equations in synthesizing optimal predicting
filters presents great difficulties. Reference /61/ gives
methods of solution for individual special cases,

The method of Bode and Shannon

This methvod of filtering and predicting random pro-
cesses is based on expressing the mean-square error in
terms of the spectral densities of the noise and signal
powers.

The basic problem consists of determining Y(C))
(Fig.33). What will be the prediction error for this Y(R))?
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J(1)=S(t)+N(1)

'\-/\, §%1+a1

—i V()= ? p——

Figure 33. Bode and Shannon predicting filter.

The mean power of the error
e=8(t+ A)—S*(t + )

for incoherent frequencies can be computed by summing the
components of various frequencies

&= (Y (©PN©+1Y @ —epP@)do, (88)

where P((.,) is the signal power, and N(¢y ) is the noise
power.

It is required to minimize 572 by suitable selection
of Y(© ), taking into account .the condition of physical
realizability.

If £(t)=S(t)+N(t) is passed through a filter with
amplification LP(Q))+N(¢o)i]' ), we obtain a flat
spectrum. Let the minimal-phasefilter with characteristic
Y (<) have alpliflcation [}(QJ)+NGQ>)j]'(1/2) Then both
Yl(«J) and Y (to) are physically realisable filters.

If f(t) were known in the interval - 00 <t <00,
the best operation, applied to the input, would be the
operation satisfying the equality

P (®) -
YO = ®

If the phase characteristic is B(W ), (89) is equi-
valent to the operation
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Y, (w) = P () l efl8ta—B(w)) (90)

[P (©) 4+ n(0)]3

on Yl(a)), which has the character of white noise.
The corresponding weighting function is

Wil =gz § Ye(o)em (91)

This is the function of a physically realizable
filter. Let us put

W, (¢ + A t30,
v, (1)={ 0 (<0, (92)

Ws(t) is the weighting function of the physically realiz-
abbe filter with transfer function Y;(cy). then the transfer
function of the optimal predicting filter for f£(t)=S(t)+N(t)
can be expressed in the form

Y@ =Y @Y, (93)

As in the case of the Wiener formulation, we can
separate the special cases of pure prediction and pure
filtration from the above general problemn,

Nonlinear signal filtering
The problem of optimal nonlinear filtering
All the problems considered above were based on the

general assumption that the operation performed on the
initial information was linear. In comparison with linear

=109~



systems, nonlinear ones under definite conditions can give
a smaller mean-square error than the best (in the sense of
mean-square error) linear systems. -

Below we consider a class of systems described by
the general relationship

N w~
S 0=3 [wmo ¢~ (94)
where S*(t) is the output signal of the system;

f(t) is the input signal of the system;

wn(’t) is the weighting function of the linear part
of the system;

{;nfx] is a set of linearly independent
functions. /29/.

The problem consists of determining a set of optimal
weighting functions wn(ﬁf), if there is sufficient statis-
tical information on the input and desired output signals.

Such a system can be considered as a system of several
parallel channels, each of which consists of a nonlinear
element without memory and a linear element with memory
connected in series (Fig.34). The weighting function of
each circuit is equal to wn(qf). If wn(T )n anfx(ﬁ?), the
system turns into a multichannel system without memory.

The optimal system is defined as a system ensuring
a minimum of the expression

e =[S —S*O"
Let us inroduce the equality
S¢)=¢lf O

where g is an operator of a définite class. This operator
acts on all values of f(t) in the interval [-o02,t ) or
on a part of these values and has a finite mean square.

~-110-



The variation of the mean-square error ‘22 caused
by the variation ©h[f] of the operator g[f] is given by
the equality

Ae* = — 2ok f} (g 1) — S*) + o RIA" (95)

Here © is a small constant, and h{f] is an operator
of the same class as g[f].

In order that g[f) should be an optimal operator, we
must have the equality

2 e FA =5 =0, (96)

since O =0; h'Lf')%gl}] - S“% = 0,

Expression (96) is a necessary and sufficient con-
dition that g[f] should be optimal.

’ 00 Ka

O fx) K,(t)

s

xfl}

0,(x) Ko(t)

Oa(x) Kalt)

Figure 34. Nonlinear filter with memory.

Let us define the class of nonlinear systems (known
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by the name of multichannel systems without memory of
degree N):

N
SH=glfi= Eokmom n 97)

where the kgm are constant; the functions quIr] are ortho-
normal polynomials of f of degree m.

Every polynomial @)m(f) is characterized by some
weight, p(f) being the probability density of the input sig-
nal.

The most general formula for h[f] has the form

N
hifj= ‘2; ky O, 1f]. . (98)

Substituting (98) into (96), we have

N N
3 b {Eokemefmemm— T }.-=o.

Since (=0 Am=
0H/’(qﬂ1=[,
0,110, NP 11df = 0,1116, 1=} } M=
I'!‘ N
we obtain Dbk =X k, 6fi S*. (99)
{=0 m=0

Since the khi take arbitrary values, then, in order
that (99) should be satisfied, there must exist a unique
solution for constant khi’

kg = 01f) S*. (100)

In virtue of .'\()O[fj = 1 ke = g If) =S () = S*(). ‘ (101)
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Thus, the multichannel system without memory of
order N is given by the equality

g |
FLf0) = ,.E."S' Diy 6 = f () + S* ()], (102)

where

01 {/)(S* — ¥
D, = —. Ill(v ) |
so

From (102) we obtain

N
V=7 @ —5 0 = Z ve. D} (103)

Since f@i[f;]a 0 when n# O,

1 when { =m;

8,.[f]9mm=}0 vooiEm,

In (102) and (103), Vg and \)S‘ are respectively the

mean-square deviations of the given output signal and the

output signal of the optimal system,
Let us define the class of multichannel systems
with memory of order N.

S(t)=glfi=

?Mz

A 5 kem (%) Om [f (¢ — ¥))d. (104)

The mogt general expression for th] is

N ~
=Y Sku (8 If (¢ — V)] d.

(=0

Substitution in (97) gives

-

§ kan (%,) [ { Rem (%2) Cim (% — T) dTy —
{=0
8 —) S (i dn =0, (105)
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where Cuim (V) =8, 1F (01 8m [f ¢ — )]

Using the fundamental theorem of the calculus of
variations and noting that all the khi(T') are arbitrary
woighting functions of the physically realizable linear
part of the system (i.e. khi(T )=0 for T < 0), we obtain

N < ,
S { ken () Cim (4 — W dH=T [ C — 5, S°), (106)
o .

m=0
when T 20, i=0,1,2,3,.0..
Since
0 whenm + 0,
%ﬂﬂa{l"r;:o
0 =
then
keo () dt = by = S*()
and ,S w0 ( 0 ® (107)
N

1
> § kom (%) Cim (%, — %) d¥, = Dy (5,), +hent, >0 (108)

where

D = Oillt—0]IS* ()~ ST )]

i Vge

It follows from (107) and (108) that

N N &« ~
1= N % [ { & )&, (5) Cim (1, — W) dridTy =
(] mm| O O
N
—~—-}; oS D, (v) Vs b, (v) d. (109)
{2
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System (109) can be solved by the method of undeter-
mined coefficients /627.

The coefficients Cim(T ) and ﬂ)S.Dil(T’) can be
determined by modeclling. Here sufficiently long realizations
of the input signal of the system and of the desired output
signal should be known,

This optimization method can be used for designing
nonlinear filters. As an example, let us consider the
synthesis of a nonlinear filter for separating radio signals
from their mixture with noise /29/.

Calculation of optimal nonlinear filter

By using a nonlinear filter of the class under con-
sideration, we can obtain a great decrease in the mean-square
error. Let us assume that a useful signal which is a random
pulse sequence S(t) arrives at the input of the receiver.

A noise N(t) is additively superimposed on this
signal, i.e.

x(f) =aS () + 6N ().

when the signal is stationary, f?fg is a function
only of the time interval T .
If S(t) and N(t) are statistically independent,

h=2 (%) a br~ § N
r=0
and
n m
hio = 23 20 ) () e oom—es ST
Furthermore,

[ 8= 3 (%0 0~ 5[5, N,
re=0
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In our example, the expression for S?SE has the form

SIS = [+ (=DM + (=10 +
+ 0 (1 — (= D) (1 — (= 1P

The noise is characterized by a gaussian distribution;
it has the same autocorrelation function as the useful

signal.
NlNg= S;Sg=p = GP(‘)-

Thus, the remaining functions NTNT can easily be

found.
Let us put

a
b

In this case the orthnormal polynomials have the form:

a*'=108; =102, —=2, a*+ b =1,

O lx] =1,

8, ¥l = x;

0, [x] == 1,1785x* — |,1785;

0, [x] = 0,9836x* — 1,6918x;

0, [x] = 8510x* — 2,6852x* 4 1,2216;
0, [x] == 6194x* — 2,7823x® + 2,3127x.

The coefficients aDhl are:

aD,, = (,8;

aD,, = 0;

aD,, = —0,2518;
GD" = 0;

aD,, = 0,1414,

The equation of the fifth degree for the multichannel

-116-



filter without memory has the form
S == 1,5630x — 0,6411x* 4- 0,08764% (110)

for the required input signal aS*(t).

XY X a8 30

. 4 M3 _
10983617 ~ 1,6918x '0’83-5055}8%%"7&?"‘”' -

py7Ire
06194 2762000231275 |—— (09I DOAG, L

Figure 35. Nonlinear optimal filter.

The exact expression for the optimal nonlinear filter
can be written in the form

S=ath 43, (111)
Figure 36 shows graphs of the equations for filters
with different a and b for the two forms of equations,

(110) and (111).

0 05140 15 20 25 X

Figure 36. traph of equations for filters with different a
and b.
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A multichannel filter for the case a==0.8 and
b2-0.2 is shown in Fig.35.

The relation of the mean-square errors of this
nonlinear filter and the optimal linear filter has been
computed and plotted as a graph (Fig.37).
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Figure 37. Mean-square error of nonlinear filter and optimal

linear filter.
Key: 1) Normed mean-square error; 2) without memory;
3) with memory; 4) number of channels.

It should be note:!l that obtaining an exact filter
equation requires the use of numerical methods c¢f solution
and the performance of a large wolume of conputntibns.

In the theory of prediction §() = x(t + AY).

Hence,

Dy (1) = Gy ¢t — ). (112)

Thus, if Cil(T.) when i£l, the optimal anticipator
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is linear, since system (l11l1) takes the form

fh@Cn—ndn=vC T +%).  (113)
0

In the general case of filtering and predicting,
Jjust as with linear systems, we consider

() =FS@ n@,
S*(0) =S+ Al

‘'he methods described in this chapter are widely
used for solving various proactical problems. These problems
are: filtration and prediction of radio, telephone and
telegraph signals; problems in transmitting and receiving
telcvision signals by the deflection method; problems of
path determination and tracking of aircraft; and many others.
The statistical theory of prediction can be widely used in
biology and medicine. Thus, the hypothesis of the mechanism
of visual pattern perception by deviations looks promising.
According to this hypothesis, at every instant not all
the information about the image being perceived arrives
at the visual centers of the bhrain, but only information
on deviations from the preceding image. This principle is
used in work on the development of new systems for trans-
mitting television pictures, this work at present being
greatly expanded. The cooperagion of engineers and bhiologists
can be very fruitful from the point of view of elucidating
many still unclear problems concerning the mechanism of
pattern recognition. In turn, a correct answer to these
questions will make it possible to develop more effective
systems for recognizing not only visual, but also auditory
and tactile patterns, for example in controlling various
manipulators by means of muscle currents (miocontrol),
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Chapter 3
frediction of nonstationary random processes

Formulation of the problem

In the preceding chapter we hbecame acquainted with
the fundamentals of the Kolmogorov-Wiener theory and its
use in predicting and filtering stationary random processes
and sequences. Let us now considaer the more general problem
of predicting nonstationary random processes.

Let the values of x(t) be known in some i.terval
()sgt < TO. From these data we wish to determine the values
of x(t) in the interval TO < té T. '

The values of x(t) can be written in the form of the
following mean-convergent series /I3/:

mezm%%. (114)

In (114), the a, are random variables such that
the mathematical expectations
Ma, =0, ;g Mayay = [ PR (1 15)
<Pk(t) are eigenfunctions of the integral equation

T
Ap()={ret, Do ds, (116)
0

and the ﬂ'k are the corresponding eigenvalues.

1
1l when k=k',

)

kk” | 0 when kAk'.
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Let Lz(x) ?enote the Hilbert space generated by the
x(t) when 0 £t 8T, and let P (X) denote the progjection .
operator on this space. In thiszcase, Lz(x) coincides with
the space A extended to the orthonormal system of vectors
C (k=l1,2,...), 80 that in order to find the predicted
value at instant t+ ZXt, we must form the series

X (6 + Al = P = D, axMay x (¢ + At). (117)

But k=l
May x(t 4 At) =V Ey Mx (¢ -+ AY) § X(0) @x () df =
= V& {re+80 Do dt, (118)
T

and since when

0<T<T 7@ Dot =haox O (119)
it is natual to put

o (480
TV
Here the 4>ﬁ(t+£ST) are the eigenfunctions, extended to the
point t+ Ant, of the integral equation with kernel r(t, 7).
Thus, the best predicted value can be computed from the
formula

May x (t + Af) = (120)

x'(l+Al) = Eak Vh(‘+N)

P RS (121)

This representation was proposed by Karhunen [5§7.
It is based on the definition of the best predicted value
as the point of space L,(X) closest to x(t+ A t).
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The method of characteristic components

The processes under investigation may often contain
natural components whose values greatly facilitate the
solution of tho predicticn problem.

For a wide class of processes, the realizations
(or selection functions) can be represented by small numbers
of "characteristic components'". These components are deter=-
mined by the physical nature of the object which genec rates
the process.

Under such conditions, the usce of a large number of
selection functions is neither necessary nor desirable.
Furthermore, it is the components, and not the correlation
function, which characterize the process.

In these cases, Wiener prediction is no longer
acceptable,

Let us consider a4 method for predicting nonstationary
random processes proposed by E.D.Farmer /457.

Determination of the characteristic components

Let us assume that xm(t) (m=1,2,3,...M) are M selec~-
tion functions of a nonstationary random process. It is
required to determine the characteristic (in some sense)
components of the process.

One of the simple methods of determining the first
component consists of finding a function 4)1(t), a scalar
multiplier ijl and a sequence of coefficients a_, such
that the functions A’laml?.l(t)’ (m=1,2,...,M) are approxi-
mately, in the sense of the minimum mean-squares, equal
to the selection functions x.(t). The error for the m-th
realization has the form
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em (l) = Xm (t) —_ Vtaml ¢ (I)? (122)

The wmean-square error, averaged over time and the set,
is MT |
¢ '2 S () dit.
= 7 §lxm—VX. am @ (O AL (12)

The constants'iiqand any and the function <Ql(t) can be
selected so that this error is minimal. A minimum is achieved

when the variation ‘E? with respect to the variation of the
first order of the quantities {)“laml and the function
1(t) is equ-~l to zero, i.e. when

r
o) xm ()t =V K.'am.oS Q) dt, m=1, 2, ., M,

Mﬂ

M
G i) =8 Vi amq (), 0<t<T (124)

mea|

il

Without harming generality, the function (Pl(t) and the
vector a , can be normed so that we have tho relationships:

The conditions for a minimum then take the form

17 )

Ot = Ve § @1 () X () dt

M

v’ml(f)ﬂ-mt ”“\; amt Xm ({)

, (125)

Elimination of a from these two relafiona gives

1
LT
—r Z 5‘ @y (T) Xm (%) dTXm () = M@, (1)
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or

.
JRE Do dv =D ) (126)

where R(t,T ) is the correlation function formed by averaging
the M selection functions

M
Rty W) === ) X (1) £m (¥) (127)
mae|
It can he seen from (126) that <Pl(t) is an eigenfunction
of the modified Wiener-Hopf equation,
Combining equations (123) and (126), we obtain an
expression for the minimum mean-square error

.
e = 7‘-[5 R(, 9 dr—x,]. (128)

The error is minimal if )\l is the greatest or dom-
inant eigenvalue and, consequently,ﬁh(t)is the dominant
eigenfunction,

The second component can be determined if we require
that Ejizamz 2(t) be the greatest mean-square approxima-
tion. It follows from this that 3.2 must be the second
eigenvalue in magnitude;, and that 2(t) must be the cor-
responding eigenfunction., By continuing this reasoning,
we obtain an expansion of the function in the form of
(114), |

fhe autocorrelation function R(T ,7T') can also be
expanded in terms of the characteristic components of the
process

R(v, V) = g M Qr (T) g (). (129)
We can also show that all eigenval'ues are either
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positive or equal to zoro.
An important property of the expansion of xm(t)
consists of the fact that if the series is limited to

K terms, the mean-square error integrated with respect to
time is

T K
e'T=§R(t, V) dv — s (130)
k=1

The expressi r
xpression §R(n10dﬂ

is equal to the mean energy of the process in the interval
(0,T). Taking (129) into account, this energy cen be ex-
pressed in the form

T ©
(R, v)dv = I, (131)
0 k=)

Combining (130) and (131), we obtain

oT= XA, (132)

Thus, the integral of the mean-square crror is equal
to the sum of the omitted eigenvalues; the number of terms
necessary for achieving the given accuracy can be easily
found from (130) and (132). The eigenvalue ;Lk’ which is
essentially nonnegative, can be interpreted as the energy
connected with the k-th component of the process.

The weighting function of a Wiener anticipator can
be described by the comp nents ¥)k(t) Let us assume that it
is required that the anticipator evaluate the input selection
function at the instant T=t+ /At from the input selection
function known in the interval (O,To), where T0'< T. The

~-125-



\

weighting function satisfies the relationship
Ty .
jR(t, vV)g(To, V)dV=R(T, 7), 0Z<v<T,. (129)

. If R(T ,') is expanded in sories (129), the integ-
ral equation will take the form TO ‘

T,
Zho0) 6]' ¢T Yu@dr =S haMue. (9

Multiplication by (Pk'(t) and integration with re-
spect to T in the interval (O,To) gives
;Au- M gy = ;Aw o (1) by, (134)

where r

Any: = b{’ @ () Q') . (135)

Since the function defined by the series

;E’b P (%),

must be equal to zero in the interval T, < T,

;ngww. (136)

where
T

B = | @4 (1) 0x (v) d, (137)

0

The matrices A and B with elements A, , andB, .y,
respectively, are idempotent, i.e. satisfy the equations
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Since the functions of the compononts are orthonormal in
the whole interval (0,T),

A4+Bw=l]
ABw BA = 0 '

(139) v
where 1 is a unit matrix. The mean-square prediction error
in equation (123) expressed by the characteristic com-
ponents is:

ETo) =, M (g — s (NI (140)

ksl

This error is minimal if g, satisfies (134) and (136),
i.e. when '

T A b g = 2 Awe b oue (1)
¥ ¥ : (141)
EBN‘ gv =0
%

It follows from (138) and (139) that the sum of the
ranks of A and B is equal to the rank of the unit matrix.
Honcé, in (141) there are as many independent equations
as there unknown 8o and the solution is unique. As
a whole, these equation are completely equivalent to the
Wiener-Hopf equation.

Prediction of a process from its charucteristic
components

The problem of prediction is the problem of estimating
the values of a selection function x(t) of a nonstationary
process in the interval To< t £ T from the known values
of x(t) in the interval 0 't < Ty
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It was estnblished in (131) that if a process is
represented in the form of a combination of its character=-
istic components, the integral of the mean-square error is

. r X
FT-SR(T, tl)d't’—zk.o
) 0 k=]

Corresponding to this accuracy, the selection function x(t)
can be written in the form

’x(t)-—-,?_‘,c. Plf) 0<t<T, (142)

where the-ck are constant coefficients.

This expansion is valid in the whole interval (0,T),
including that part of it in which x(t) needs to be predic-
ted. Hence the prediction problem is reduced to the prob-
lem of determining the sequence of coefficients Cpe This
method of prediction automatically describes the selection
function as a combination of its characteristic components,

One of the methods of finding the coefficients Cy
consists of satisfying the following condition: expansion
(142) must be the best mean-square approxination'to the
function x(t) in the interval 0 £ t T, in which this
function is known. liere the coefficients are determined
from the system of linear equations

K Ts T,
a‘\:': Ca' b’ Pa (%) Que (V) d =6’ X ()P (R)dv. (149

Let us consider an example.
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Use of the method of characteristic components for
predicting changes in the load on electric power
stations

Prediction of electric power consumption is required
in order to organize the future operation of electric
power stations and to ensure future breakdown-free operation
of electric-power supply networks. '

For prediction purposes, the curves of the daily
change in the load must. be divided into section corresponding
to periods of several hours. These periods include the
interval T < t £ T and the immediately preceding segment
ogt<r

The load depends on the weather conditions, the
consumption of power by industrial enterprises, radio,
television, etc. The most important influence here is the
weather. The load Xan in the m-th section for the n-th
instant can be written in the form

Xmn = O+ [y (T} Ba + fo (Lin) Ya + fs (W) 82 + ... . (144)

In (144), fl(Tm), fz(L‘) and rs(w‘) respectively
denote functions of the temperature Th, the light intensity
L,» and the wind velocity W_. The quantity<9ﬂn is the basic
load. The factors {5“,}/ gn"“ take into account the
effect of weather parameters changing with time . In accord-
ance with (144), every load vector is linearly dependent
on the vectors + , @,'ﬁ ,8 y sees If the load is reproasented
by K terms in the form of a combination of its character-

istic aooonents, x . can be written in the form

K .
Xon = S\ Crik Phn (145)
k|



P

-
NN P WX a
S h © O O O

Hazpyixa (mucvu Mezasomm)

-
< ]

~
Q

015'

0 . . . -
4 . 15 .
#p 2 %podudyuzz %2» (2) 1000 3 )Bp:vfln 4, v w0
Figure 38. Curves of the actual and predicted load for
27 November,
Key: 1) Load (thousands of megawatts); 2) preceding
day; 3) time of day, o'clock.

sof |

0o

0.5

gf.w 2,00 00 20.00

08.00 0. 15.00
Npedwdyuuy deme (2) (3 poemn dna, v
Figure 39. Curves of the actual and predicted load for
28 November,

Key: see Figure 38,

=130-



o
Q

L
(<]

~~
-t

Hazpyaxa (muosey Mezalomm)_.
~ &~
o o

»
(<.}

g

N
(=]

-~
<]

=~
o

as

0 .
2100 24.00 05 00 10.00 15.00 2000 «
= lpedudyui dems (2) (3 J6oemn onn,

Figure 40. Curves of the actual and predicted load for
4 December.
Key: see Figure J38.

45
(1) o

Hazpy3xo (mucAvu mezaliamm
NN
Qo (4 3

[

o~
o

0.5

?IOO 24.00 0500 15.00 2200
- Mooy duc(Z) (3) Bpema dwa,y

Figure 41. Curves of the actuai and predicted load for

5 December.
Key: see Figure 38.

-13] -



The expansion error will not change if the vector of
the components is replaced by linearly independent com-
binations, _

Since the vector minimizes the expansion error, the
k-=dimensional manifold formed by the vectors of the com-
ponents and their linear combinations will, in comparison
with other k-dimensional manifolds, give a minimal error.
o\,ﬁ {X ,J\, «++ in equation (144) can be consdered as
vectors belonging to the manifold of the vectors of the
components. Thus, the components describe the basic tenden-
cies of the load under mean weather conditions for the
registration period. The weighting factors Ci 8re functions
of the weather parameters relating to the m-th part of the
day.

Figures 38-41 show curves of the actual and pre-
dicted loads for two days in November and two days in
Decewmber of 1961. Te load was predicted for an interval
of 8 hours over a large region with maximum consumption
of 5000 Mwatt. The characteristic components were computed
from data for the 20 preceding days. Lach of the predicted
curves wus computed during the half-hour before it began.

The results obtained for the morning peak are in
good agreement with the prediction made by the control
center using weather data.

The prediction of the evening peak was less exact
on the average (A5/ |

The combined method of predicting nonstationary random
processes

There is a wide class of real nonstationary random

processes which can be represented in the form of some non-
random function of time and a stationary random functiion z(t)
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Figure 42, Nonstationary random process.

additively superimposed on it /89/:
() =% () +20) - (146)

Annual precipitation in a given region, consumption
of materials and spare parts at an enterprise during an
accounting period with a fixed plan, daily consumption of
electric power, the variations in the temperature of patients
identically suffering the same disease-~- all these are
examples of nonstationary processes which can, with greater
or lesser accuracy, be described by expression (146).

Below we propose a method which makes it possible
to solve the problems of predicting such processes.

Let M realizations of a nonstationary’ random process
be known., For ease in solving the prediction problem on a
digital computer, let us represent every realization in the
form of a discrete sequence of values &xdg y J=1y24004,N
(Fig.42). From realization to realization, the values x.j
undergo changes which are described by a stationary random
function.

If we denote the j-th value of the i-th realization
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by xij’ all the elements xij can be written in the form
of a rectangular random matrix

{ = l. 2. ooy A’"
x-(x”) ];:3 " 2. sesy N'

Every colu?n v?ctor of this matrix is a stationary sequence
of values } xjﬁ , and every row vector is one realization of
the nonstationary random process.

In addition, from a set of N values of a realization
with number M+l, let some number of values n be known. Let
us denote these values by xM+1~j’

The prediction problem consists of evaluating the
values x*, (j € N-n) from the known values X3 (i=1,2,...N;
j=1,2,...,M) and X3 (i € n).

Let us write the predicted realization (row vector)
in the form

K ‘
Xy = ?:_' ¢, Fy (147)

In expression (147), let us call the Fk component vectors.

It is required to find valnes for the Fk and coef-
ficients Cx such that the vector x‘M+1 with components
""M+1,.j will approximate to x,, , for j € n in the best way
in the sense of some criterion.

Taking the stationary nature of the changes in xJ
from realization to realization into account, we can de-
termine the x‘M+l,j by using the extended prediction
operator (158):

M MM
Y ' Y
XMel, )™ %‘u'«'*'“_z' %| Xig%14 g, T o o (148)

The terms of the extended prediction operator are
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the corresponding components F

Fk’:

Kj of the component vectors

)
M M

hz_l ‘.z-l X %1y Tia, = Fapo (149)
"‘ . 0 .M. » 0 . @ K. L] (] . [] 3
Fym] " l'z-l r{‘.}KI:l x‘. = F*l *

As the criterion for the best approximation of the
predicted values to the actual ones, let us take the cri-
terien of the minimum mean-square error:

n ] )
:'—-:'—z(x,—-z c,,r,,). (J€n).  (150)

A=l

Then the coefficients ¢, can be determined from the
equations

K

2 Ca (i Fuy Fb‘l) = ;‘Fw X{, (151)
j=1 -

which are analogous to those given by Farmer for computing
the coefficients with characteristic components /45/.
The value of K determires the number of components Fk
necessary for achieving the given accuracy in accordance
with the given criterion,

- I"inding the coefficients C\ and substituting them
into (147), we obtain the predicted values of x‘“+1’d.

Thus, the values of ij ohtained earlier by means

of the extended prediction operator are in essence the
predicted values of the M+l-th realization of the process
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computed from the known realizations (prehistory). The
values x;+l j are more accurate values of the predicted:

vJ -
M+l-th realization, this increase in accuracy being achieved

due vo a certain number of known values of the realization.

sSecond modification of the combined method
The values of the x*, | j can be determined by using
b
the method of exponential smoothing:

\g ) | d“'M )

xuﬂ«) -—-XM(I)—*I‘ A"*‘ 2 dl' N’+
where the fM(t) are the éxponentially smoothed values of
the function,

Then the components ij of the component vectors
Fk can be written in the forw:

;m“f'li.

iy
@ AM=Fy

. + . . L] L] . . [ ]

1 d%x
w -Tl'ﬂ At = Fy.,

If as a criterion we take the criterion of the minimum mean-
square error, the coefficients ¢, in expression (147) can
be determined from system of equations (151).

By means of the proposed method, we can solve the
problem of predicting the M+l-th realization of a non-.
stationary process (for L > 1). However, the prediction
accuracy in realizing both the extended prediction operator
and the method of exponential smoothing drops as At is
increased, Hence there is a decrease in the accuracy of
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determination of the component vectors F, for the M+l-th
realization as the number 1 is increased.

In predicting by means of the combined method, the
accuracy can be increased by realizing an algorithm for
continuously computing the coefficients c . The algorithm
consists of the fuct that the coefficients Sy computed from
the n known values of the M+l-th realization are used for
determining the future values only until the n+l-th actual
value of the M+l-th realization becories known. After this,
the coefficients C, are recomputed taking into account the
n+l-th actual value.

As an example of the application of the combined
method for predicting nonstationary random processes, let us
consider the problem of predicting the variations in the
load of a power system. These changes are shown in 24-hour
graphs., For convenience in applying the method, the function
of the change in the load with time is given in the form
of a discrete sequence of values. ‘he time discreteness
step is taken to be the usual one for power systems, i.e.

1 hour. ,

Let it be required to predict the change in the
load on some definite day of the week, for example Saturday.
As prehistory let us use the 24-hour graphs of the change
in the load for the corresponding days of the week in the
past, i.e., for several preceding Saturdays. From the data
of the graphs making up the prehistory and using (149),
we find the values of c F . Further, using (150) and (151),
we obtain the predicted values of the 24-hour graph in which
we are interested.,

It should be noted that, in predicting the daily
variations of the load on complete working days (from
Tuesday to Friday), the prehistory need not be made up of
graphs from days with the same name. But as far as days
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Figure 43. Variation in the load of a power system.

Key: 1) Actual values; 2) prediction by existing
methods; 3) prediction by the combined method; 4) o'clock;
5) Megawatts,

preceding days off, days off and holidays are concerned,

the configurations of the 24~hour curves corresponding to
them differ greatly from those of the graphs of complete

working days.

For complete working days, the combined method makes
it possible to obtain a prediction with & mean-square
deviation at the peaks of O = \[ st - 6-8,

Figure 43 shows a graph for the load variation on
one of the "nonstandard" days, Saturday. l'he predicted
values obtained by means of the method described have been
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plotted on the graph together with the actual vadues. On
the same graph are plotted the values obtained by predicting
in accordance with the methods presently in use. The combined
method gives a much higher prediction quality: & = 12 as
against © w23, obtained in predicting by the existing
me thods.

Let us consider one more example of the method's
application,

Prediction of changes in intracranial pressure with a
brain hemorrhage

Experimental reproduction of a cerebral hemorrhage
(biological model)

The experimental neurosurgery lahoratory of the
Ukrainian Scientific-Research Institute for Neurosurgery
conducted research on the variation of intracranial (fluid
pressure in response to inhalation of carbon dioxide with
an experimentally reproduced cerebral hemorrhage.

This reaction reflects the functional state of the
brain vessels and makes it possible to make a judgement on
the phase of development of the pathological process.

Into the intracranial cavity of an experimental
animal there was introduced a needle, through which was
passed blood from a femoral artery. Ruptures of vessels of
different calibers were simulated by selection of needles
with different diameters.

buring the course of the experiments, inhalation
tests of carbon dioxide were carried out at definite inter-
vals, This test was choscn in view of the fact that carbon
dioxide, which has a dilating effect on the small arteries
and capillaries of the brain, has a different influence
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on the brain circulation, and hence on the nature of the
change in the liquor pressure under normal conditions, in
the presence of an intracranial seet of disturbance, when
the initial pressure level is not yet changing (compensation
stage) and on a background of incipient pressure change
(subcompensation stage). The results of the experiment
were recorded in the form of continuous curves on a poly-
graph and in numerical form by means of an electronic
digital recording device in a complex with suitable pickups.,
The change in the fluid pressurd during one CO2
test is a discrete sequence of the parameters of this test
in which we are interested (see Fig. 45). The parémeters
were denoted as shown in Table 4.

irediction quality criterion

Ordinarily in filtration and prediction problems
we use the criterion of the minimum mean-square error

Mix(O) — x* OF = ehn-

However, when this criterion is satisfied, there exists the
probability that there will be individual large deviations
of the predictced values from the actual ones. At the present
time a number of rigorous criteria have becn developed.
Thesc¢ include the criterion of leas risk, the criterion of
tlie minimum sum of the mean-square error and the dispersion,
both taken with suitable weights, and several others. In
solving the problem under consideration, we will require
chat the following additional condition be satisfied:

The absolute value of the deviation of the predicted
value from the actual one must not exceed some previously
chosen value A .
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Table 4.

Key: 1) Notation; 2) unit of measurement; 3) parameter;

4) mm water column; 5) the same; 6) sec; 7) initial value

of liquor pressure; 8) maximum value of Ppiu ©f first rise;

9) value of Pe1y 8t point of inflection; 10) highest value

of Pgy, of given test; 11) rate of increase of Peiui 12)

rate of decrease of Perud 13) time from beginning of test

to instant corresponding to xlmax; 14) time between xlmax

and x_. ; 15) time between xlmax and Xpin /8ic/; 16) time

of completion of CO, operation; 17) value of P at time
t,.
4

flu
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(1) TMapamerp
* »
obo3nave- XM-H X M+l Xﬁ"{'? '\‘1”'02 XA‘-{‘S X'A"fa XA"" X.M-‘4

HUH

Xo 115 113 | 75 72 95 88 90 85
Xmax 120 123 80 82 102 105 95 98
Xmin 120 118 78 77 100 102 92 92
Xinax 130 138 102 102 115 123 117 125

4+
P 10217 | 0,444 | 0778 | 0,889 | 0,556 | 1.007 | 0,556 | 0,666

PC2) | 0,044|—0,083|—0,222|—0,242|—0,111|—0,130/—0, 139 —0,333

h 10,0 | 9,0 6,0 | 5,0 { 80 | 9,0 | 7,0 6.0
ty 15,0 | 16,0 { 11,0 { 10,0 [ 13,0 | 13,0 | 12,0 | 12,0
{y 39,0 | 40,0 | 24,0 | 23,0 | 33,0 | 29,0 | 28,0 | 29,0
t 120 119 114 120 118 120 116 1156
IN 130 123 75 73 110 102 100 90

Table 5.
Key: 1) parameter notation.

Thus, the coefficients r{ik%K in expression (148)

are found from the condition

M (%) — X;)* = Einin
when
| % — x| < A

Solution and results

The problem of predicting COz-inhalation tests was
programmed and solved on an electronic computer. Determining

the parameters of the four predicted tests required about
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six minutes of machine time (including print-out of the
results) using a computer with a speed of the order of
3000 operations per second,

The results arce shown in Table 5. Figures 44-47
show graphs of the actual and predicted curves for the
variation of fluid pressure with inhalation of carbon
dioxide,

The predicted curves give a good reflection of the
qualitative aspect of the process. The accuracy fully
corresponded to the requirements imposed on similar bio-
logical investigations.

Predictions of the development of processes with
various acute and chronic illnesses can be used for diagnosis
and prognosis in solving the problem of whether surgical
intervention is timely and indicated.
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Chapter 4

Recognition systems as predicting filters and
regulators

During the past ycars, a number of scientists have
proposed automatic devices which after a certain period
of initial adjustment (learning) can quite accurately
predict the course of various processes, ‘

The material used to teach these devices is the
past record of the process, the prehistory. Thz prediction
quality of these devices can easily be evaluated if we
compare their outjut signals with the actual val ues of
the process being predicted. The circuit and parameters
of the predicting device can be chosen so that the pre-
diction accuracy increases in the course of time.

If this selection is made automatically by means of
feedback, we obtain a self-adjusting predicting filter.

In realizing this or that prediction algorithm,
the self-adjusting predicting filter automatically improves:
its structmure and makes the values of its parameters more
precise. This happens as a result of ohservation of the
course of the process.

The system constantly takes into account newly
arriving data on the course of the process and automilically
makes the prediction more accurate.

A universal predicting filter with self-adjustment
in the learning process was proposed by the English scientist
Prof. D.Gabor /547, This filter is based on a prediction
algorithin which consits of finding the optimal weighting
factors of the extended prediction operatour.

The filter was designed in the formof an analog
device using magnetic and piezoelectric multipliers. An
example of the use of this device is the solution of the
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problem of predicting the amplitude of ocean waves. ?he
prediction accuracy was of the order of several percént.

It was proposed to use the filter for predicting
the indices of economic conditions, but the volume of
filter input devices for this problem turned out to be
insufficient. At the present time, experiments on a speci-
alized analog device have ceased. The same algorithm is
being realized on the fast-acting universal digital com-
“puter "Atlas" at London University.

In our experiments, we did not renounce the use of
specialized self-learning filters, which is expedient only
when the algorithm for self-adjustment of the parameters
(coefficients) is greatly simplified. The basic proposal
consists of transfer to the use of binary self-organizing
recognition systems as self-learning predicting filters.

The most clear expression of the idea of self-organiz-
ation is found in the works of F.Rosenblatt /59,a,b7.

He proposed a statistical model of the brain which has the
properties of learning and self-learning. This model was
named the perceptron. This name then began to be applied
not only to the model proposed by the author, but also to
other analogous systems.

Perceptrons can independently, without the aid of
man,. recognize and classify input signals by attributes
which were not previously given. The process of teaching
a perceptron how to read letters was successfully demonstrat-
ed in June 1960.

Figure 48 shows a simplified block diagram of the
"pPerceptron". The letters or other images which the machine
is to learn to recognize and classify are projected on
a screen consisting of photocells. The photocells convert
the images into a large number of electrical signals.

Every photocell is randomly connected with a field of
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associating elements (cells). As a result of summation
of the signals arriving from the associating elements,
various slave elements are excited, and these indicate
to which pattern the given image belongs.

In Rosenblatt's first perceptron, the field of photo-
cells (about 400) was connected by random links to amplifi--
ers, and then in the same way to servomotors.
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Figure 48, Simplified block diagram of the "Perceptron",

Key: 1) Object beinyg considered; 2) reacting devices
(approximately 10 devices); 3) associating system; 4) con-
trol desk.

‘The amplifiers are fed biases which can be changed
either by the teacher, man, or a feedback pickup.

Let us consider the learning process of the percep-
tron. Let us assume that we want to teach it to distinguish
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the letters A and B; i.e. we want certain slave elements

to operate when the letter A is projected on the field of
the photocells, and others when B is projected. To do this
we must "encourage", in the form of supply of suitable
biases, those amplifiers which include the necessary outputs
and hamper ("punish") the others which bring unnecessary
outputs into operation. The encouragement and punishment
iaws may be different /59/.

The "self-learning' process nf the perceptron occurs
by a different method. With this method method, the biases
are not changed by man, but arrive through feedback circuits
from the outputs to the amplifiers.

| The perceptron is called a statistical system, since
it employs probabilistic inputs, and all its basic elements
(pickups, associating elements and output elements) are
connected by randomly selected links. If we use determinate
pickups adjusted for reception of definite attributes and
join the elements of the system by all possible connections,
we obtain a system of the perceptron type. Such a system
was designed by one of the authors. The circuit of the
system is shown in Kig.49.

The essential distinguishing feature of this system
is the presence in it of a separate positive-feedback
circuit and a maximum-voltage indicator which indicates
which of the groups of associating elements is giving the
greatest voltage.

One group of associating elements corresponds to
every pattern. The correct answer is given by the group
at whose output (as a result of the "voting" of a large
number of distributing elements) the greatest voltage is
obtained. For the sake of simplicity, Fig.49 shows only
three such groups. It shows the variant "with complete
input information" with equal participation of the associat-
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system with positive feedback

1. pattern being distinguished; 2, input device;
3.~ 5. pickups; 6, groups of assoclating elements;
7. direct amplifiers; 8, reversing amplifiers:

9. summators: 10, large-voltage indicator [sic);
11, control of order of self-learning; 12, pos-
itive self-learning feed; 13. open learning feed.

‘ Key: a. "I don't know"
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ing elements.,

F.Rosenblatt has formulated two theorems which ex-~
press the concept of self-organization. In accordance with
these theaems, only an "infinite perceptron" having an
infinite number of pickups can begin to act without initial
organization, The greater the degree of initial organiza-
$ion, the smaller is the number of elements we can make do
with, the cheaper is the perceptron.

Hence in designing practical circuits, it is de-
sirable to proceed from some initial organization, al-
though it is not necessary in principle.

_ In practice, the least initial information consists
of the simple listing of the attributes of the input signals
which can at any time be useful for distinguishing these
signals without indicating to which signal they relate.

The above system (see Fig.49) was later improved and
received the name of the "Alpha" system /217,

The basic advantages of binary systems in comparison
with continuous ones, for examplle in comparison with the
filter of Prof. A./sic/ Gabor, are the following:

1. Very little information about the process is
required for the system to operate. It is only necessary
to know whether the process index exceeds a definite level
or not, It is not essential to assume normal distribution
of attributes,

2. With a second positive feedback the system can
automatical ly select the most useful initial data or at-
tributes /217, The most efficient use of the sysiem capabi-
lities leads to a great decrease in ils volume. Furthermore,
a recognition system can in principle be constructed so
that signals will be emitted to the effect that the attri-
butes being used are insufficient and that new data on the
process are required, Below we will consider in detail
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the circuit and operation algorithm of D.Gabor's analog .
self-adjusting filter and will then dwell on the predictive
applications of the Alpha binary recognition system.

Universal predicting filter with self-adjustment in the
learning process

The problem of synthesizing an optimal linear pre-
dicting filter was first formulated by Kolmogorov in 1942.
As for the nonlinear filter, the opinion was expressed that
formal solution of the problem would not have any practical
importance. This is explained by the large number of com-
putations and the huge volume of work collecting data.

But from time to time scientists returned to the idea of
developing such a filter, since the prediction of complex
stochastic processes would have very great importance

in solving impertant problems of control in production, of
planning, economics and in other fields.

In 1954 the English scientist Prof. D.Gabor proposed
the definition of a group of mathematical problems needing
solution and investigation in developing an optimal filter.
The filter must be the realization of an extremely flexible
mathematical operator which takes into account the present
and past values of any time function with which it operates.
The parameters of the filter must constantly improve during
the learning process. The device registers the values of
the randcom sequences which must be filtered or predicted.
The sequences, also called selections, must be sufficiently
long to ensure complete representation of the function.
This means that the selections must be of such a length
that the statistical parameters computed from it can be .
assumed to be statistical parameters of the whole process.

lhe basic difficulty in the practical application
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of the Kolmogorov-Wiener theory of linear filtration and
prediction lies in the fact that this theory considers
signals in an unbounded frequency range.

In the solution of the problem of predicting by
renl devices with a bounded passband F, a continuously
varying signal can be represented in the form of a discrete
sequence of the values of this signal which follow at
intervals of (1/2F) sec.

Extended prediction operator

The most general functional expression of the pre-
history of a time function inabounded frequency range is
the following sequence of discrete values:

OII(I)I——‘.i,r,+2,anh.rm. e (158

{ =0 (.==0

The coefficients of this sequence are transfer
functions which are only defined for integral values of
the argument.

It is easy to see that the first sum is is fact
the generalized linear predicting filter. The coefficient
ry determines the influcnce of the discrete value of the
function fi, this value corresponding to a moment i inter-
vals eurlier than the present moment.

I'he second sum is made up of pairwiseproducts of
these discrete values, including squares. The coefficients
ry i determine the weights of the jairs of values at the
inétgnts il and 12 intervals earlier than the present
instant, etc¢, These sums must include the whole prehistory.

Ir the prehistory is divided into N intervals, the
operator contains N+l terms of the first order (of the
first sum), (1/2) (N+1) (N+2) terms of the second order,
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(1/6) (N+1) (N+2) (N+3) terms of the third order, ectc.
It is quite obvious that the number of terms of the operator
increases sharply as the order increases.

Circuit of the predicting filter
A block diagram of the predicting filter is shown

in Fig.50. The delay block 1 is a magnetic tape recording
device with stepwise located heads.

P!JH‘HI’}‘—]

2 i I 53—1 |
HH:---H : :__‘le

Figure 50. Block diagram of predicting filter with self-
adjustment in the learning process: 1) magnetic tape re-
cording device; 2) block of parameters being adjusted;

3) comparison block; 4) squaring devices; 5) integrators;
6) minimizing device; 7) block for adjusting variable
perameters.

The sought function 0*(t) is recorded on one of the
tracks of the magnetic tape. In the case of prediction,
this function is considered shifted forward by the head
from the input tape. '

The filter 2 itself consists of an arithmetical
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device and a set of parameters being adjusted. Potentio-
meters are used as the latter. The output signal of the
filter and the sought function are regist red in the com-
parison block, which detcrmines the prediction error. As

in the case of linear filter theory, we take as our criterion
that of the least mean-square error:

O O1-=0° ()] = . (159)

The left-hand side of this expression is a positive
definite quadratic form of the coefficients r. Hence a
solution always exists., [Furthermore, since the prediction is
linear with respect to r, this solution is unique.

In the function of the arguments r, the mean-square
error can be represented by a multidimensional elliptical
paraboloid. Hence the use of any algorithm for decreasing
Efz must inevitably lead to achieving a minimum. This is
shown in Fig. 51 for the case of one and two variables .
Both parameters must be alternately adjusted.

Here the optimal coefficients can be determined from
the expression

| y...l-."x|
oot =F AT

But if we use differences, then

1 A_,— A
"’”’=T""' +1

— T 8y,

and |

Ymin = Yo— 5 Fopt % (A, —A.).

In order to incrense the speed of action in the
present predicting filter, the comparison blocks 3, the
squaring devices r and the integrators 5 are thrice re-
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Figure 51. Optimization of adjustment of variable paramcters:

a) one variable parameter; b) two variable parameters.

peated; hence for every learning cycle the error is de-
termined for three values of the selected paramecter ry
for ri=0 and for the largest positive and negative values.
On the basis of these values, the minimizing device 6 auto-
matically determines the ogpimal value to which the para-
meter r; and the quantity iiamin must be adjusted. The
adjustmet block 7 establishes the necessary value of rye
Then the learning cycle is repeated. As a rule, in the
presence of M paranmeters to be adjusted, the number of
learning cycles necessary to achieve'ézmin is a quantity
of the arder of M2/2. After this it is said that the filter
has learned to predict the values of the given random
sequence{

In other words, a predicting filter which has learncd
the best method (in the sense of ©2 = min) of predicting

the values of the training sequcnces will operate analogously

with other selection of the same stochastic sequence.

This statement is based on the following assumptions:
1. The random processes under consideration are

ergodic, i.e. retain the constancy of the statistical

-158-



parameters over any arbitrarily long sequences.

2. During the learning process,the machine determines
all necessary statistical parametcers and reproduces them,
. The filter described above was used to carry out the
following experiments: )

l. Conversion of a sinusoidal signal into another
sinusoidal signal shifted in phase and different in ampli-
tude.

2, Filtering of a sinusoidal signal with a super-
imposed noise.

Prediction of the changes in the quality index of a product
of a petrochemical enterprise

Let us consider an example of applying the Kolmogorov-
Gabor predicting filter.

Figure 52 shows a diagram for automatic control of
the fractionating column of one of the technical installa-
tions of a petroleum processing plant (AVIT*installation).

The output product of this installation is direct-
distillation benzine. A quality analyzer which automatically
determines the temperature at end of boiling of the benzine
is conunected to the control circuit. In controlling the
techinical device in accordance with the quality index of
the output product, it is important to know not only the
current values of the index and its deviations from the
norm, but also the values of the index at some fr*ure times.
This makes it possible to regulute the process with antici-
pation, takihg into account possible future deviations.

Such a method is known by the name of "anticipatory com-
pensation", The predicting filter (sec Fig.52) determines
the future values of the quality index; these are used

S ———
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"igure 52, Circuit for automatic regulation of the fraction-
sting column of an AVT installation:

1) raw material flow; II) fractionating column of AVT in-
stallation; III) condenser; IV) irrigation receptacle;

V) irrigation flow; VI) output product (direct distillation
benzine; VII) debenzined product; 1) thermocouple; 2)potenti-
ometer; 3) summing device; 4) quality analyzer; 5) regulator;
6) predicting filter; 7) regulating valve; 8) sampling point
for product analysis.
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as initial information in an automatic control system for
the technical device. If there is a universal digital com-
puter in the production process control system, the functions

of the predicting filter can in many cases be conveniently
assigned to this computer.

Modelling the predicting filter on a computer

Let us write the operation algorithm of the pre-
dicting filter. The learning process of the operator is:

T I 2 35 34 4 5
JTat 4 JMPBL | I Myt ZEptS{Rot. (160)

In expression (160):
T is the operator of emission of the delayed values

£, (i=0,1,...,k), of the learning seguence;

< 18 & logical condition considered to be satisfied
when i=k;

Mf is the operator for computing the products eof the

delayed values;
is a logical condition considered to be satisfied

when all products of the delayed values have been obtained;

M" is the operator for multiplying the values fi
and the products fi fi ' fi fi fi , etc by the correspond-
ing weighting facto:ls;2 17273

Y is a logical condition considered to be satisfied
when all companents of the prediction operator O f(t)
have been obtaned;

Z is the computation operator of 0 f(t) ;

E is 6he operator for computing the mean-square error;

p is a logical condition considered te be satisfied

if

OF O —7* (O] = thins
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Figure 53. Flow chart of the program for modelling the
predicting filter on a computer.
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S is the end of the lemarning;

R is the operator for computing the new weigliting

factors r. ;
Ik
Wis an identically false condition.

The prediction process is: )
1 12 23 3
$ Tt JMB4 L Moepty t ZS. ' (161)

In expression (161), MrOPt is the operator for
multiplying the products f f , f fl f , etc by the
optimal coefficients r, opt o%tained As ﬁ rgsult of the
learning of the operator (160).

In the problem under consideration, the ualgorithm
was realized on a universal digital computer. rigure 53
shows the flow chart of the modellling program. lhe gctual
and predicted values of the index Tkkoc are shown in Table 6.
Figure B4 shows graphs of the actual and predicted values
of Tkk' The operator learned with different numbers of
values in the prehistory (k=2,3,4,5).

Influence of the prehistory length on the prediction
quality

If we analyze the example just considered, and also
the examples analyzed earlier in Chapter 2, it becomes
obvious that an essential influence on the prediction
quality is exerted by the number k of known values fi
(i=1,2,...,k) which participate in the camputation of the
operator o[e(t)].

For clarity let us consider some examples.Figure 55
shows the prediction quality criterion as a function of the
number of known values of the process heing predlcted taking
part in the computation of the operator O\I(t)] The cri-
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Figure 54. Prediction of the temperature at the end of boiling
of direct distillation benzine.
Key: 1) Number of analysis.
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O P Q§ flpeackasakime aHAYCININ
niie anasenmim s I e d I Ko l =5
196 196.,5 195.,5 196 197
’ 203 197 196,5 195,5 196
199 199,5 199 198 197
198 201 199,5 199 196
189 198,6 200 199 199
197 193,56 195,5 197 107
103 193 195 196 197
194 195 193 194 195
198 193 194,5 193 194
200 196 195 195,5 194
195 199 197,5 196 195,5
202 197,5 197,56 197 191
196 198,56 199 199 198
194 199 198 ) 198 198
193 194,5 197 196,5 198
192 193 194 190 196
196 192,56 193 193,5 194
192 194 194 193,5 194
202 194 193,5 193,£ 195
197 197 196,5 195,6 194

Table 6,
Key: 1) Actual values; 2) predicted values.

2
ro}®
09} !
08
a7t
a6 N
o e G N

2 3 4 5 6 7 8

F igire 55, Mean-square error as a function of the length
of the prehistory.
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terion, as before, is the minimum of the mean-square error,
It is evident from the graphs that, for the actual pro-
cesses heing considercd by us, the prediction quality is
notl a8 monotonic function of the length of the prehistory,
as could have been expected in the case of statioanary ran-
dom processes. Thus, it is obvious from the graph in Fig.
55 that when k=2,4,8 the mean square error is less than
when k=3,6. Similar processes relate to the class of per-
iodically correlated (or almost periodically correlated)
random processes. Ye.G.Gladishev /T0/ will acquaint the
regder with the theory of these processes,

Thus it is ebvious that the quality of prediction
of actual random processes essentially depends on the
length of the prehistory. The selection of «x is the pri=-
mary problem, on whose solution depends the accuracy and
reliability of prediction,

Simple first-derivativd predicting device

the basic shortcoming characteristic of the Kolmo-
gorov=Gabor predicting filter is the growth in complexity
of the computations as the accuracy is increased. ‘*he com-
plexity of circuit realization limits the sphere of applica-
tion of test devices. This is especially true of the use
of predicting filters in control systems.

In practice very often some low:ring of the predict-
ion accuracy is introduced for the sake of simplifying
tne construction of the system. In such cases, it is ex-
pedient Lo use simple anticipatory devices in which pre-
diction is busdd on determination of the first derivative:
at a current point.

1n order to raise the accuricy of prediction of such
devices, the second derivative can also be used, but in
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practice it is most oflen enough to stick to the first,
Raising the accuracy by using the second derivative leads to
great complication of the system,

The accuracy of prediction by such devices dro.s
in the region where the first derivative of the function
being predicted with respect to time changes sign. It is
obvious that, in order to raise the prediction accuricy,
the prediction interval should be decreased as the fre-
quency spectrum of the function being predicted is expanded.
It is known that the width of the frequency spectrum of
any process is sufficiently completely characterizedi by
its autocorellation function, Let us compute the normalized
autocorrelation function Q x(T ) at one point for some
definite value of T . If we now select the anticipation
time At according to the formula

Al = kp, (v), (162)

we can select a relation between the magnitude of the
prediction interval and the slope of the autocorreldion
function for which the prediction error will not exceed an
assigned value.

The predicted value is

x(¢ -I- At) = x () + Ax (1), (163)

where x(t) is the current value of the function.

The proportionality factor k in expression (162)
is equal to the maximum anticipation time,

fhe slower the process changes with time, the greater
is the anticipation time. lhe normali»ed autocorrelation
function of such processes approaches unity.

Rapidly varying processes, which are characterized
by a widd frequency spectrum, will have a very small antici-
pation time, since their normalized autocorpelation function
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approaches zero for the same .

By decreasing the anticipation time we can achieve
any arbitrarily high accuracy. However, practioal problems
make it necessary not only to strive to raise the accuracy
in all ways, bu% also to strive to increase the anticipa-
tion time where possible.

To evaluate the prediction quality, it was proposed
to take the crilerion of the maximum of the sum composed
of a value inverscly proportional to the prediction error
and the ratio of the actual anticipation time to the maximun

one /6/:

. l
==+ (164)

It is obvious that the function 4)=P‘(At) has an ex-
tremum, since as the anlicipation time increases, the
mean-square error continuously increases. Using this de-
pendency property (164), we can construct a self-adjusting
system which by changing the anticipation time continuously
would find the maximum of the prediction quality index.

For this purpose we can use either a search extremal system
or a non-search differential extremal system. lhe principle
of opz:ration of differentinl systems was described in
v.1.Vasil'yev's book Differential Regulating Systems /7/.

Prediction of the contour of a river bottom

The method described above can be illustrated by the
example of predicting the contour of a river hottom. The
solution of this problem is very important, for example,
for optimal control in seafaring.

'he contour of a section of river bottom and its
predicted values are shown in Fig.56. Computations have
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Figure 56. Prediction of the contour of a river bhottom:
1) Contour; 2) prediction with constant interval; 3) pre-
diction with variable interval.

shown that the introduction of a varibla prediction inter-
val sharply raises the prediction accuracy (Fig.56).

Alpha Recognition System as a Predicting Filter

Prediction of discrete results. If a numbor of
similar cyclic processes differ only in the initial condi-
tions, and they then proceed under approximately constant
conditions, the results of these ,rocesses can be distri-
buted according to the forms of the initial conditions
with the aim of predicting the results of similar processes

in the future. To carry out this gencralization of experi-
ence we can use any self-learning recognition system with
classification of patterns by output quantities /21, p 3027.
The property of a recognition system of dividing A set of
images into classes of patterns van bhe used to classify
initial conditions (attributes) according to results.

-169-



Thus, V.L.Brailovskiy and \.L.Lunts in experiments on the

prediction of the result of treatment of burns used twelve

initial attributes (wound areu, burn localization, degrece

of burn, age of patient, accompanying diseascs, complica-

tions, data of medical anulyses, etc.) Prediction wus

made of the outcome of the treatment, i.e. cure or death.
Prediction of continuous processes. As is known,

continuous quantities can be approximately replaced hy a
number of discrete quantities., Hence, recognition gystems
can also be usced to predict continous processes. An examplc
is prediction of the duration of service of transistors
from the form of the variation curves of currents observed
during 10 min. The tirme, a continous qguantity, is divided
into a number of segments, and hence it is required to
teach the system to predict the segment number,

According to Lyapunov's theonrem, when the number oy
components of random quantities is increased, the distri-
bution law of their sum tends to the normal probability
distribution. dence this explains the fact that very many
stationary processes in nature have a normal distribution.
The most general formula for predicting the future value of
a random time function is Kolomogorov's formula

g =ro+ Xr, fo+ g };.t Fay Friny +

0

+ 2 2 ﬂ"‘n frg Frg Pasngny = oo
0 0

where g[}(t)] is the future, predicted value of the function;

£.4 f are the values of this function in the past.
n b oy
he first sum is a lincar function with a constant
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Figure 57. Problem of predicting the amplitude of the fol-
lowing wave from the values of the amplitudes of the three
preceding waves. R is the number of levels of discretijza-
tion of the output quantity.

Key: 1) f(t)mean‘
transfer function; the second is a quadratic filter; the
thirdi is a cubic one; etc, the coefficients r, determine
the influence. (weight) of each term of the forhula on the
predicted value of the function., Let us clarify the formula
by an example (Fig.57). For predicting the future value
of the function from three data on the course of variation
of this function in the past (prehistory) we obtain a form-
ula in the form 6f a polynomial:

glf )= hry -+ fsrs + firs -+ ff’s -+ f%"l +- f§r. -+ Fifars -
+ hfsre -+ fafare +n o + ,‘3 It ,}; i -t f?/z’m -+ fff:l"u +
+ 2 frrys - fgiafu -+ l§ firi -1- f§ faris -+ hifsfarie s

where g is the value of the function f(t) at the future
time +T; f, is the value of the function £f(t) at time -2T;
f, is the value of the function f(t) at time =T; f is the
is the value of the functidgn f(t) at the given time O;
Fyalgyess I g are the influence (weighting) factors of
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each term,

the self-learning of the recognition system used as
a predicting filter consists of determining the values of
the influence factors on the basis of the data of some
learning sequence. This process of self-establishmat of the
coefficients for stationary random processes must be carried
out once; the longer the learning sequence: of data, the more
accurate the prediction. For almost stationary processes
it is better to lipit ourselves to a local selection, a
small learning sequence, and to have the self-learning of
the coefficients carried out continuously only according to
the latest data on the process. It is possible to determinc
the optimal duration of the memory of the system, The closer
the process is to a stationary one, the greater is this
duration., For extremely non-gtationary processes, the op-
timal duration is small, and sufficient prediction accuracy
is not ensvred. In these cases we must have recourse to
other prediction methods (for example, to the method of
separating the periodic components of the components 43§7
or the combined method /317).

Operation algorithm of the Alpha recognition system

Let us recall in brief the operation algorithm of the
Alpha recognition system /21/. A sample circuit of the sys-
tem is shown in Fig.58. In the given application the pickups
of attributes by observation of the instantaneous changes
in the function produce several functions of these quantitics

xlu xln-"n xnn

which in the theory of pattern recognition arc usually
called attributes. The aggregate of attibutes forms an
input "image" vector, or a "representation point",
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IFigure 58, Alpha recognition systdm as a Kolmogorov-Gabor
predicting filter.

Key: 1) Highest-voltage indicator,

Ui (X, Xay oony Xn).

The vector vi is fed to the inputs of groups of associating
cells (flip~flops or relays); these form the scalar pro-~
ducts of the input wector Vi by several internal vectors
(Xk(rl,rz,rs,...,rn) recorded in each of these groups; these
vectors are called prototypes or poles,

Z, = (), Sy==(0), ., 5, =(a v).

‘The number of groups is equal to the number of patterns
being distinguished, i.e, divisions of the quantity being
predicted,
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The scalar roducts are¢ fed to a comparator (a hipghest-
voltage indicator, HVI), as a result of which the system
selects the largest of them and thereby indicates the
pattern (division of quantity being predicted). In self-
learning the position of the poles is changed Ly feedbacks
(217. *he learning of the system consists of an expedient
selection of group poles.

The encouragement law of the Alpha system is expressed
by the equation |

= tmt MiUm—r + RaUm—3 + ... + Ry—10y
Um 1 oY 7Y e mpp oy o :

wvhere m is the number of operations of the given group;
k(m) is the "forgetting function" of the previous displays.
When k(m)=0 we obtain the "trustworthy" feedback

Cmit = Un,

for which the corresponding prototyje vector immediately
takes the value of the vector of the latest image display,

When k(m)=1 we obtain an "averaging" feedback, where
the prototype vector terminus is held at the "center of
gravity" of the region of the given pattern:

I Tl e T oL
Ol g == m .

It is possible to apply the exponential law of
decrease of the coefficients as the given output operates:

1 = G - (U — o) Biwhere 0 < 6 < 1.

When &§=l, we obtain the encouragement law of "trust-
worthy" feedback.

An exponential encouragement law is most easily
achieved in systems with continuous assnciating cells.
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1t is possible to have one more form ofthe "encourage-
ment" law which is convenient for rcalization in relay
systems. In this form Lhe pole of the group being learned
is displaced by one interval in the direction of the out-
put image after every operatior. of the output corresponding
to it. This interval may be constant or may decrease accord=
ing to an exponential law.

The Alpha system generalizes individual images into
regions-- patterns. Let us explain the gencralization pro-
perty by means of the example of an Alpha system having
three groups of relays in all whose state at (he n-th cycle

of operation of the system is churacterized by the three
poles~--

Uyn s Oy Ui,

Pickups fecd the vector Vo to the input of the system,

‘Then at the outputs of the group we obtain three voltages:

Zia= (G Un)y  Zp.== (RonUn), g == (Han Un).

The LVI operates according to the lollowing algo=-
rithm:
\ . e < <
a) if 2, >""'2n and £, >Z ., output 1 operates
and the first group is relearned; =
i -~ >2 & {é >.._ ! 3
b) if Zan 1p &nd on st Output 2 opera es
and the second group is relearned;

c) if Z an =z Ln And p 3n> 2 ops OMtput 3 operates
and the third group is relearned.

ALl states sactisfying the first condition will be
rela.ed by the system to the first situation, all those
satisfying the second cendition to the second situation,
and al)l those satisfying the third condition to the third
situation. Mis constitutds the generalization,

In all cases the action of positive feedback only
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strengthens Lhese inequalities and leads to still greater
"anchoring" of the outputs:

Sinen) = (@untn V) > Bins Zany 1y = (Rognsty V) > Zon
2J(n+l) = (aa(u-l)un) } 2;,,.

Let us recall that other recognition systems use
other pickups, prototypes, comparison algorithms and en-
couragement laws. The system selecting the minimum square
distance betweeﬂ the representing point and the poles uses
the comparison algorithm

K
2-=2 (Vi ~— Ol
m=l|
with a following procedure for minimizing Z 3 (as distinct
from the procedure for seeking the maximum value of the
scalar product in the Alpha system.

The Alpha system compares the distance between the
poles and the iwmage in Hemming space, and the system with
selection of the minimum square of the distance compares
them in ordinary euclidean space.

Prototypes need not be vectors; they can be replaced
by the boundary equations of the regions of individual
patterns in the multidimensional space of attributes,
correlated pretetypes, etc,

Self-learning of a prediction filter by the method of
regression analysis

ilhe mean-squure prediction error is defined by the

expression s
A= TZ(&""S)’.
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where g0 is the actual value of the function (in the future);
g is the predicted value of the function.

It is a positive definite quadratic form of the in-
fluence factors., An error minimum always exists, and since
the equation is linear with respect to r, it is an unique
minimum. Manifold-correlation (regression) analysis makes
it possible to select the influence factors in such a way
that we obtanh the minimum mean-square error of prediction,

For example, introducing for three values the notation

h=x, k=%, f=x, ff*‘—‘xu Ig=x.. f§=X.,
hts =%y hls =%, hfs=%y, F=1x,, = xu, B=xu,
’?fs=xlh fth=x, /3!.=xu. I;fsmxu, I§I,=x.,.
f;/: == X, filsfs=xy,

we ohtain the prediction equation in the linear rorm

§=ryt+rx -+ "tx; + r3Xy - rXy 1 Xy 4 reXe o+ 1%y +
T FeXe T+ FoXe + FioXye -+ FuXy + FiaXys - C1aXyg - Pk ol
+ FuXys = FieXag - Xy - FaXae -F FieXy

The expression for the mean-square error takes the
form

n
)
A Tz -—f.-—-f,Xl‘——f.x.——f,X, [ —r"\’")
I

Since we wish to determine the minimum mean-square error,
we find the values of the twenty partial derivatives and
equate them to zero

(L

3
7“’0'3“‘“0'0 == 0,

e =0

These equations are the basic culculational equations
("normal regression equations"). In expanded form we obtain
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(lines ahove the corrclation coefficients denote the opera-
tion of averaging over all data of the learning sequence):

re + iy + ryxy + s + oo + Fikis = Ze-
’Oxl+’l;;+’l;l_;;+’tx:;:+ +ru-¥._-\'7.-é.—n7
'Oxl+'lxlxl+ ’lxz+'0xlxi+ Fr;.x'.73~—z":fa'.

L] L] L] L) L] . 0+ 2 0 s e v et & s L] [ ]

"oxu+ ’v'axu + 'oxoxu + '+ "M”-—- &¥n .

For a single-valued solution the number of equations can
not be less than the number of unknowns. llence the minimum
duration of the learning sequence is equal to the number

of terms of Kolmogorov's formula, If the prehistory covers
N intervals, Kolmogorov's formula containg N+1 terms of the
first order, (1/2)(N+1)(N+2) second-order terms,
(1/6)(N+1)(N+2)(N+3) third-order ierms, etc. For example,
when N=3, there must bhe not less than 20 measurements.
Every measurement must include thrie values of the function
from the prehistory and a corresponding actual value of

the function following these values (see Fig.57). In prac-
tice, the length of the learning sequence must be increased
by a factor of five to ten in comparison with the minimum
length. This makes it possible to eliminate the influence
of function measurement inaccuracy. Here the number of
equations does not increase, but there is an increase in
the volume of computations of the correlation coefficients
in these equations,

Wa have shown the algorithm for applying regression
annlysis towards determining the coefficients of Kolmogorov's
formula chiefly in order to estimate the wolum: of the
necessary computational work and to indicate the length
of the learning sequence of the initial data.
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Self-learning of a predicting filter by Gabor's
iteration algorithm

Frofessor D.Gabor /54/ propused an iteration algorithm
based, like the method of regression analysis, on the
search for the minimum mean-square error, i.e., giving the
same result in a somewhat different way. The mean-squarec
error as a function of the influence factors is a multi-
dimensional elliptical paraboloid whose vertex is the aim
of the search. [he search for the minimum error can be
carried out by various methods: the Gauss-Seidcl method
(i.e. successive variation of coefficients), the gradient
method or method of steepest desc¢ent, etc, In his self-
adjusting filter, Professor Gahor used an extrapolation
method for the minimum search. The position of the minimum
is computed from three points of a parabola,:Deduction of
the extrapolation formula is simple (see Fig.51). From the
condition of the minimum mean-square error we find the
optimal value of some coefficient

A == a, - al"':" ag”?v

d\ I o
E“""o or ’lopl’-‘-‘-——.z--—a—;-.

fhe parabolic eguation for any three chosen points
gives three calculational equatious:

A' ==a, -{- al’; .i. a.rl.’.
A" = a. -*' a.f; +- a'r;’.
Amag+qq+m¢g
By determining from Lhese the values of the coefficionts
a, ana a,, we obtain the desirod extrapolation formula

b L N A =) A A )
oot T TN =) F A=) ok A7 1)
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In what follows, tne determination of the coeffici-
ents of. Kolmogorov's formula is reduced to a sequence of
iterations: a) having assigned arbitrary values to the
coefficients, we compule three values of the error /ﬁ',
A" and A™ for three values of one of the coefficionts
ri', ri", ri"% Applying the extranpolation formula, we use
these quantities to find the optimal value of the coeffici-
ent r,; b) taking this optimal value, we repeat the com-
putation for the following coefficient Fiel? etc, until
the mean-square orror stabilizes at some value. ihe error
should decrease monotonically in the course of the iteratioans.
The value of the error at the end of the iteration pro-~
cess hs a mcasure of the prediction accuracy.

In volume of computational work, the iteration
method is not much better thun the regrossion analysis
method, but it can be more easily programmed on computers.
Requirements as to the length of the learning sequence are
the same. 4he number of modes to be averaged in determining
the mean=square error must in proactice exceed the number
of Kolmogorov coefficients being determined by a factor
of from five to ten. An advantag? is the simplicity of
constructing the self-learning filter with analog elements.

'The Alpha recognition system as a predicting self-learning
filter

The circuit of the Alpha recognition system (see
Fig.58) completely reproduces. all possihilities of Gabor's
continuous self-learning filter, with the limitation that
the former uses a discrete representation of quantities in
the form of binary codes. For example, in a code"with
change of sign" let there be given
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fi=03= 414 1—1—1—1
h=0l=41—t—1—1—y
h=09=4 1+ 1414141

Then the input of the system is fed a general "image" or
'‘representation point" codeé:
, u =(03; 0,1; 09..) =
Flt+ = = =+l=l=l= 1= 14 11404
This code ir fed to a certain number of groups of
agsocliating cells; (.1is nuimher is equal to the numher of
divisions R of the quantity being predicted. Figure 57
shows five divisions, corresponding to which Fig.58 shows
five groups.
Every group is characterized by its pole (or proto-
type, standard)., At the output of each of the groups a
voltage is obtained which is proportional to the scalar
product of the input code by the pole code. For example,
if the pole of the first group is also

=03 0; 09) =+l +l—l—l—l4l=1—1—
e el R B o I o B

at its output we will tHen obtain the maximum possible
voltag.

El == (Cl; vl) a Umn .

1t is clear that the largest voliage will be from that
group for which the pole in the n-dimensional space of
attributes is neurest to Lhe representation point. VWhen

the pole eik and the representatioun point v, are equal,

we will obtain the maximum possible voltage, which is shown
in the given example. The large-voltage indicator LVI

finds the pole nearest to the given re;resentation point
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and thus predicts the future value of tﬁe function,

As a result of the learning process, the poles
establish themselves in a pjosition at which the prediction
error does not exceed the error obtainable in the Gabor
continuous filter, more than a half a discrete division.
The system can be constructed with relays or flip-flops or
can be programmed on & universal computer. The growth in
volume of computations as prediction accuracy demands in-
crease-~- the basic difficulty inherent in the Gabor filter-.
is also present here. The prediction accuracy increases
both with an increase in the number of observed intervals
N and wi th an increase in the number of digits of the
discretizators n, and decréases with an incrense in the
number of levels of discretization of the output R. We
will return to this question below.

Experiment on prediction of amplitude of ocean waves
on an Alpha recognition system simplified as
much as possible -

With the aim of achieving a sharp cut in the volume
of computations, it was proposed to decrease the volume of
input information on the process. Let the discretizators
of the Alpha system have one eutput; i.e, let them com-
nunicate to us only the sign of the deviation of the funution
from some mean value., The circuit of such a simplified
recognition system is shown in Fig.59. It is clear that,
in distinction from the complete system of Fig.58, the
simplified system no longer has the potentialities of
Gabor's continuous filter,

But how much does Lhe prediction accuracy decrease
nere? Will such A system bhe cnpahle of prediction at all?

To answer these questions, an experiment on predicting
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Figure 59, Simplified binary Alpha predicting system.
Key: 1) HVI,

Figure 60, Rerording of the variations in the amplitude
of ocean wav¢a,

the amplitude of ocean waves was conducted., The importance
of the radical simplification of .the prediction algorithm
for this problem is determined by the fact that wkh com-
plicated algorithms the determination time of the amplitude
of the succeeding wave on a computer may be larger than
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Table 8.

the time interval between the waves (4-12 sec).

The recording of ocean waves (Fig.60) given in [5137
was used as initial material. A current mean value was
determined for each three neighboring amplitudes. Only
the deviations of the amplitudes from this mean value were
recorded in the table of initial values: plus, if the wave
was higher, and minus, if the wave was lower than the
current mean value. lhe output scale of the system had
five divisions. We took the value of each division equal
to 3 (for trial purposes (gmax'gmin)/s's)'

Tables 7 and 8 show a sample recording of wave
deviations from the mean value and their products.

The feedback used was not exponential,but averaging.

-184-~



fhe system uscd five.grouus, characterized by five poles
> ﬁ2,5K3,0¥4, and <. The systeuls self-learning of
corrvect prediction consisted of sclf-establishment of the
poles according Lo the aver.iging law

OtV oty

QL =
m + | m ,

where m is the number of arrival of the represcntation
point giving the same result. For example, if it turned out
that all measurements given in Table 8 gave the third
division of the scale of the output of the wave amplitude,
the pole of the third group could he determined thus:

=14 l—l—l—141+141—1 etec,

In accordance with the cvaluation given above, for
self-learning of the poles a sequence was used made up of
140 measurements of not less than three neighboring values
of the wave amplitudes and the following wave, After learning,
the poles no longer moved, and the system was switched onto
prediction. It turned out that it predicted the amplitude
of the following wave with an accuracy of +10% correctly
in 80 cases out of 100; 10-20 cases represent an element of
"pure”" randomness in the given process; correct prediction
with an accuracy of +20% occurrcd with 96 waves cut of 100.
Thus, this highly simplified system, using a comparatively
small volume of compurations, is still capable of predicting
processes with the indicated accuracy.

Investigation of prediction accuracy and attribute
usefulness (terms of prediction formula)

An investigation was carried out on the influence
of the number of levels on the prediction accuracy. Figure 61
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Figure 61. Prediction quality as a function of the number
of points of the prehistory and the discretization levels:
§ is the number of correct predictions (in %); N is the

number of points of the prehistory; n is the number of
levels of discretization of the input quantities; R is the
number of levels of discretization of the quantity being
predicted.

shows the functions which were obtained. The first graph in

this figure shows that increasing the number of prehistory
intervals N taken into account raises the prediction accuracy
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Figure 62. Usefulness of attributes D2 selected on the
basis of tne Kolmogorov operator (prehistory 6 points) ;
m is the order of terms of the Kolmogorov operator.

The second graph serves as a fundamental justification

for the use of the simplified system of Fig.59 in place of

the complete system of Fig.58., It has turned out that in-
creasing the number of divisions n of the discretizators
leads to an insignificant increase in the prediction accuracy.,
Finally, the dependence of & on R (Fig.61) illustrates the
obvious fact that increasing the number of divisions of the
output scale lowers the number of correct answers of the
system.

Self-arbitrary selection of most useful attributes

G.L.Otmezuri /36/ has pointed out that the selection
of the most informative or useful attributes used for
recognition can also be carried out in a determinate way
by calculation of the value of some atiribute usefulness
criterion, It is possible to organize a self-arbitrary
process of selection of the most useful attributes by using
suo-called secondary positive feedback. Here we can use
any of the criteria proposed by various authors, for example
the criterion of the number of distincuished disputes D2
L§L7, the criterion of the resolving power of the system R,
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the criterion of divergence or the criterion of change of
entropy.

The example of predicting the amplitude of A wave
was also used to check the possibility of discarding some
terms of Kolmogorov's formula (Fig.62). Using the criterion
of the "number of distinguished disputes" Dz, we determine
the informative usefulness of the individual groups of
terms of the formula, It turned out unexpectedly that the
most informative attributes for prediction of wave amplitude
were the terms of the fourth order, i.e. the terms £0,0:F,,
f2f3{4f5, f3f4f5f1, f4f2flf5, etc. The investigation of
the usefulness of combinations of attiributes almost always
gives unexpect:d results which are difficult to foresee
from "common sense" considerations. Thus, in the experi-
ments of V.L.Brailovskiy and A.L.Lunts, it turned out that
the most useful attributes were not the initial attributes
of the burns, but their pairwise comhinations, i.e. the
second-order terms in Kolmogorov's formula. ihe latter,
together with the above methi:d of determining the useful-
ness of attributes by the 02 criterion is the most general
algorithm which explains the success of given experiments,

Howcver, we should not overemphasize the importance
of such a system. There do not yet exist any systems which
would "invent" or "think up" any unexpected attributes.,
Selection is carried out in a comparatively limited, pre-
assigned setv of attributes and their combinations. This is
the chief weak spot of all complax work on the sclection
of attributes for pattern recognition.

It is enough to find one actually invariable attri-
bute, and the whole picture of the division of the attri-
bute space changes completely, and the whole investigation
mus{ be started again. A "noncompact” attribute set may
become "compact", and the set itself sometimes decreases
decisively.

-188-



Recognition Systems using Threshold Logical Elements

At the present time, much attention is being devoted
to the creation and investigation of self-learning recog-
ntion systems on the basis of threshold logical elements.

Simple circuits based on threshold elements are
being successfully used for speech recognition, in solving
the problems of weather forecasting, in automatic control
systems, and in solving the problems of diagnostics (for
example, analysis of electrocardiograms).

The basic link in the self-learning machine is the
threshold element, which is sometimes called an "adaptive
neuron", Figure 63a shows the block diagram of such an
element. Binary input signals Xp1Xgpe ooy X take the values
+1 or ~1. A linear combination of the input signals is formed
within the neuron. The weighting factors are the amplifi-
cation factors wi, which may take both positive and nega-
tive values. The output signal of the element is equal
to +1 if the weighted sum of the input signals is greater
than a definite threshold, and -1 in all other cases:

The value of the threshold is determined by sclection of

the factor WN+1. The corresponding input XN+1? which is
called the threshold input, is constantly connected to a

+1 source. If,for example, a threshold equal to O has been
established, then the linear combination of the input signals

Nl

Y =‘>-;' Wi x;

produces a signal
[+ g>0
z —{—l, ¥<0.

ot the output of the thresuold clement. When the weighting
factor WN+1 is changed, the constant added to the linear
combination of the input signals changes.
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At given values of the weighting factors (amplifica-
tion factors) each of the 2" possible input combinations
corresponds to one of the two values of the output +1 or
-l. In the adaptive neuron, these factors are eslabliished
during the learning process.

One of the structural variants of the learning ma-
chine is shown in Fig.63b.

—{_ J}——n
gy ()
Adanmulnoe
¢ Heupownsl

Figure 63. Recognition system using threshold elements.
Key: 1) Adaptive neurons; 2) HVI.

The outputs of the threshold elements Z)s Zgy eeeyZy
can be considered to be components of some M-dimensional
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vector z. Let us assume that we need to recognize L pat-
terns. From the whole set of ol output vectors L vectors
can be selected which best represent the patterns to be
recognized., Let us denote thuse selected vectors by Viveeses
Vi Then the vector z would he related to the pattern i
whose representing vectqr A is nearer than all the rest to
z. This means that the scalar product

zoy=maxz-v;, (I, j=1,2 .., L)

The large voltage indicator shows which of the
vectors Vi is the closest to z.

Let us consider the learning process.

The weighting factors are originally established
equgl to zero. The inputs are fed a combination of attributes
X1 9Xg 9000y Xy corresponding to the first pattern, If the
answer given by the machine is correct, there are no changes.
But if the answer is not correct, some of the components of
the vector z differ from the corresponding components of
the vector Vie In this case, the output signals of some
threshold elements (of those which did not coincide) change
to the inverse ones in order to bring z near to Ve

The number of elements to be corrected is taken to
be some number d'= P»d, where d is the number of all neurons
which did not coincide, and P is some quantity varying
within the limits O § G-S 1. The value of f is determined
experimentally. If, for example, (0 = (1/4), this means that
a fourth of all neurons which did not coincide are corrected,

Brediction of changes in atmospheric pressure
If the machine just described is useé for prediction

purposes, in this case the prehistory serves as input sig-
nals, and the output represents the predicted values of the
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process in which we are interested. As an example of the
use of the learning machine for prediction, let us consider
the problem of the determining the future values of at-
mospheric praessure (Fig.64a). lThe part of the prehistory is
played by four pressure values: the pressure at the given
moment and the values of the pressure for the three pre-
ceding hours, which have changed on two different levek.

The prediction quality was determined from the
amount of lowering of the variation

g =11 — =2 ) y00%.
p=f

In the example described, a variation lowering of q=63.3%
was obtaned. Optiwal prediction (according to the minimum
mean~square erro}) for the same initial data gives a
variation lowering of q=76.2% and, when linear regression
analysis is used, of q=60.4%. Figure 64b shows the resultu
of optimal prediction,

Let us note that, both in the case of prediction by
means of a learning machine and in the case of optimal
prediction, the errors are characterized by some gencral
tendency. This bears witness to the fact that prediction
errors are rather more to be explained by the prebabilistic
nature of the process and the presence of unpredictable
"yure" randomness than by the use of this or that method
(for example, the use of a learning machine).

The Use of Recognition Systems as Learning Correctors of
Extremal Control

This section considers nonsearch extremal control
systems which do not use test intervals of variation of the
regulating influences on the object. ihe basic assumptions
in this problem are based on the use o the methods of
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Figure 64, Prediction of atmosj.heric pressure: a) by means
of a recognition system using threshold elements; b) optimal
prediction according to the criterion of the mean-square

error,

Key: 3) Potm (mm Hg); 4) days.
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"passive experiment" with further use of regression analysais
/21a,44,577,

* Among the number of difficulties which are encounterev
here, we may point out the very large volume of calculation:
in solving the equations on digital computers. Thus the
problem of algorithmization of the process in a fraction-
ating column leads to a system of 20 equations in 20 un-
knowns, The duration of the solution of the equations and
the necessity of using large periods for averaging the
input data /877 lead to low speed of action of the re-
gulator,

The demands on a correlation (regression) regulator
can be greatly decreased if the latter is used only as a
correetor for a fast-acting open part of the control systen
which is in the form of a switching matrix of keys {"ig,65,
left),

The thought arises of using the methods of "active"
or "passive" experiment only for the learning of the re-
cognition system, in which there is no need for solving
equations. Using certain attributes, the system must, after
learning, recognize "situations" and by this means give
correct indications for correction of the characteristic
of the open Lart. Below we give a definition of the con-
cepts "state" (or "image") and "situation" (or "pattern")
and synthesize a circuit and select the most useful (in-
formative) attributes for the recognition system, the
corrector,

The basic limitation which we assume is the assumption
that the distribution of the perturbations remains almost
eonstant, although it itself may be unknown to us. For
large changes in the distribution, the system must be
retaught anew, In what follows, this limitation will be
removed by means of a special method of constructing the
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attribute pickups.

Furthermore, it is assumed that the inertia of the
object is small or that we can connect to the output of
the system a link with an inverse operator (anticipator),
this link re-establishing the exact oscillogram of variation,
of the quality index. Experiment shows that analog models
carry out inverse transformation in measurement circuits
with sufficient accuracy. The "Smith anticipator" /437 is
used for objects with constant lag. Another possibility is
the introduction of a delay into the circuit for measuring
regulating and perturbing influences equal to the delay in
the quality index circuit. However, this way of compensating
for the inertia of an object, although it is simpler to
achieve, is undesirable, since it slows down the action of
the corrector.

The circuit for the open part in the form of a
switching matrix of keys is not the only possible one. In
another variant, the open part is made, in turn, in the
form of a recognition system whose poles ("polar gas") are
taught, for example, according to the algorithm in /25/.

In this variant, the regression formula corrector plays
the part of the teacher of the open part of the extremal
control systea.

It is desirable to supplement the algorithm used in
this article with the laws of interaction of the poles
among themselves as is done below.

Formulation of the correlation problem
Usually the extremal characteristic of the object
can be approximated by a generalized power series of the

second or third degree. For example, for an object which
is a hydroturbine (see Fig.65), we can write:
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igure 65. Example of combined system for extremal control
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with corrector, an Alpha recognition system: 1) object
(turbine); 2) matrix convergence circuit; 3) matrix of
keys of open part; 4) controlling reversible counters;
7) recognition system; 6) optimal characteristic model ;

7) "teacher",

Key: 3) HVI; q)/40pt°
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@ = ay -+ QP + aMy + aGhy - ap? -+ asxf + a.kﬁ + a;pd,; +
+ agthy + ayMAy + agolt® - anl? + @A} + apthy A ap'h
+ ayhlhy + a M + a M + audip + aupphdy,

where <? is the extremum index (efficiency of turbine);

/4 is the regulating influence (angle of rotation of the
vanes); }\1,:12 are the basic perturbing influences (water
pressure and turbine load).

If we use the convergence (rotation)of the matrices
of discrete values of the perturbations into a row of
generalized perturbation A( )1,;12), the same character~
istic can be represdnted by a simpler polynomial with
two arguments:

P =0+ ap + BA - Gt + M + ad + a0 + agd,

where (in the case of rotationin the usual order of row by.
row)

=M+ L (A — 1)1 A

1l is the number of levels of discretization; A1l is the
discretization interval,

In the majority of cases we can select an order for
rotation of the matrices for which the characteristic of
the object is obtained as smooth so that it can bhe approxi-
mated by a straight line or a parabola of the second degree.
tHere the optimal characteristic of the object, on which it
is desirable to operate all the time is defined by the
equation

. :
ﬁ%=0ﬂxa=ﬂmuifk=q+qp+mm
= 28 —— 30



The best results are given by transposition in the
order from the least mean value 4 to the following larger
one, If the characteristic becomes of too complicated form
here too, we should not use convergence and ruise the
degrec of the approximating polynomial. This only increases
the volume of the recognition system and the duration of
its learning., “

In the case of a second-degrec polynomial, the cor-
rection problem consists of keeping the mean line of the
characteristic of the open part

A u= dy 4 dip + dot!

as near as possible to the optimal characteristic of the
object; i.e, with amall displacements, rotations and de-
formations of this characteristic, it is possible to
establish -

XumCy—dy==0; y=¢—d =0, 2=c,—d, - 0,

more quickly. We are only concerned with the mean line,
because in a nonsearch extremal system the characteristic
of the open part should in essence not coincide in form
with the optimal characteristic of the object. It is a
straight line or a second~degree parabola with small
"teeth" superimposed on it which takce the place of the
search oscillations at the object /2la/. The essential
nature of this prohibition is connected with the well-known
rule in interpolation theory, according to which the inter-
polation points (nodes) cannot be selected arbitrarily,

in urticular on one straight line.

-198-~



Another definition of the concepts of "state" ("image")
and "situation" ("pattern")

Earlier /2la/, we characterized the state of an
extremal system by the coordinates of a paint of the space

QU‘ ('Pl' (Pl""v (pl ) u“':n “5,"‘,-..' 11 ).

In accordance with this, we defined a situation as a de-
finite regionof this space.

We will now change our approach and will character-
ize the state of the system by the coordinates of a point
of the space

Q"l(ceo ch c:' do‘ dh dt)'

In accordance with this, a situation should now be defined
as some region of this new coordinate space. The correction
problem consists of hringing the system into a region
where cO-do, cl'dl’ c2-d2.

Now by a state (or image) we will mean all possible
respective positions of the mean line of the characteristic
of the open part and the optimal characteristic of the
object. It is assumed that the coordinates °0’°1’°2’90’
dl,d2 can assume only a number of fixed discrete values.
Hence the total number of possible states which: it is ne-
cessary to distinguish is finite., Figure 66 shows the 16
states of the combined extremali system which are used
below in the example.

The total number of j.ossible states is equal to

| Sty 1 Uy— 1) + Ly (lh— 1) + Llals (G — 1) +

+ ll’!llld (15'—' I)-
where 10,11,12,13,14,15 is the number of discrete levels
of measurement of the coordinates CO’cl’cz'dO’dl’dz’ It
is easy to compute that with the actually used number of
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i"igure 66, The central states of 16 situations which it is
required to distinguish,

divisions, the total number of possible states is expressed
by astronomically huge figures. No actually realizable
system can have 80 many outputs.
A similar problem arises in the recognition of
visual patterns. If, for example, 100 attributes are used
in recognizing letters, the number of possible codes is 2100.
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Only to sort this number of variants on a fast-action
machine with a counting speed of 106 comparisons per second
would require more than a thousand years. A way out is
found in the classification of images which are close in
somne sense as one pattern (property of generalization).

We should proceed in the same way in the case con-
sidered of classifying the siLates of an extremal system
into situations. For example, using only two groups (two
poles) we divide in this way the space of the coordinates
°0’°1’°2’d0’d1’d2 into two regions, i.e. situations.

All states falling into the first situation will
be indicated by the system at the first output, and the
stactes falling into the second region will cause operation
of the second output. Thus, the number of situations is
determined by the number of poles, and their boundaries
coincide with the boundaries of the "attraction regions" of
these poles. Learning or self-learning of the system has
the aim of a rational selection of the position of the
poles and boundaries.

Usually in designing a system, it is possible to
point out a certain comparatively small number of character-
istic (central) states which are to be central situations
after the learning of the system., In learning, the poles
are located at points located as close as possible to
these central states. Then the name situation can be given
to the region of the space

Qu‘(C.. €1y Cys dﬂ' du di)n

where the whole set of states is found which the system
generalizes with a given central state (prototype).
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The use of the Alpha recognition system for distinguishing
situations

Figure 67 shows a sample system circuit. In this uze
of the recognition system, the attribute pickups, in accord-
ance with observation of the instantaneous changes in the
quantities <P,/4,:x produce certain integral functions
of these quantities Xy 9Xggeee9Xpy which in the theory of
pattern recognition are usually called attributes. The
basic advantage of a recognition system consists in the
fact that it is a very capable "student" and, after lesrnin;,
acts by an order faster than its "teacher". The necessity
for a "teacher" disappears after the recognition system
learns correctly to distinguish a suffiqiegt number of
situations.

Let us assume that, as a result of an analysis of
the usefulness of the attributes, we have selected three
useful attributes x;,x,,Xs (n=3).

fhe vector at the input of the system will be:
vi(xl,xz,xs). The poles of m groups of associating cells
will aso have three components each: “1(”11"12’13)'
°(2(r21’r22'r23)’ ceoy o<.(rm1,rn2,rm3). The voltages at
the outputs of the groups will be, respectively,

3, == (A00) = X 4 FiXs + NaXs,
Sy = () == ryy Xy -+ FuaXs + FaXs,
I, = (Gg0)) = ryXy + Feaks -+ Faaka.

If, for example, wish to teach the first group to
relate a given representation point to the first situation,

we must select rjj,rjg,rjz so that the scalar product 251
will be greater than the others: ZX,>% I,>Z%;.;Z5>Z.
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fFigure 67. Circuit of Alpha recognition system: 1) attribute
pickups; 2) groups of associating cells; 3) comparator, HVI

or LVI,
Key: 4) max; 5) minj 6) or; 7) "teucher"”" or feedback.
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It is well known that the scalar product of two
vectors is equal to the sum of the products of the projec~
tions of these vectors. The maximum of the first scalar
product is achieved when we have the equalities:

ra=X, ry= Xy, =X,

If we want the first central state to produce cperation of
the output of the first group, the pole of this group must
be estahlished at a point corresponding to this state.

Above we spoke about splitting the space of the
coorinates co,cl,cz,do,dl,dzinto regions, i.e, situations.
To every point of the coordinate space

QW(C., €1y Gy dﬂ d]v dt)

rhere corresponds a definite geometric locus of points of
the coordinate space of attributes X)9XoiXay osey X The
latter space can also be split into regions, i.e. situations,
In learning a pole should be established at the center of
a situation correspondhg to a given central state in both
coordinate systems. pBut in practice we cannot protractedly
and accurately maintain the system in a given central state,
since the perturbation distribution and the form of the
extremal hill are constant only to a first approximation.
In reality they vary with time around some mean value,
ience we should establish the pole at the "center of gravity"
of the paints, i.e. the states: relating to the given situa-
Lion. With a large number of measurements, the "center of
zravity" coincides simultaneously both in the space

Qu; (Cos €11 €20 Ay dyy ds)s
and in the attribute space

Qv;(xp X.. .\’3. ees v Xn ).

This consideration indicates to us the rule for
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learning of the poles: the pole of the group heing learned
must be located at the center of the gituation, this center
being defined as the arithmetical mean of all points of the
learning sequence relating to the given situation, By ob-
serving the operation of the object in all possible states
and knowing (from the "teacher") the number of the situation
to which they relate, we can prepare tables or graphs of
the learning secquences (Fig.68). Having selected the data
relating to one and the same situation, we find the posi-
tion of the pole of the group corresponding to it in the
learned state by means of averaging (where cozconst; C,=
const; czsconst):

: r T T
——— l ' — -
m=xﬁ=?ﬂxﬂhr"=n=jnqu=n=h%§&m.
0 0

This computationally second averaging is required only
during the period of learning the poles. The first averag-
ing is constantly required in working out the attributes

xl ’xz’xG’too ’xno

Decreasing the duration of learning of the poles
by means of interpolation

When the number of situations and groups is increased,
the learning time increases accordingly., The mean val ues of
the attributes X)9XgyeeeyX must be "displayed" for every
situation in order to establish the group poles at these
points. To shorten the learning, we can use self-arbitrary
establishment of the poles according to the formulas of
interpolation or regression analysis. Let us explain this.

It is easy to distinguish the "anchored" poles, which
have already been indicated by the "teacher", from the
"unanchored"ones, which have not yet been indicated by it,
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Unanchored poles do not remain const:nt, but displace as
some function of already indicated poles. For example,
with linear interpolation, the coordinates of unachored
poles can be determined from the formulas

ngenthe—y L fagen -y,
T frrd -—————-—-—-——-—-—-—-—2 ) 2 == -———-———-———-—2 I
T +1) + ’m(l-—-l)
fm[ —= 2 .

With such an algorithm, unanchored poles are "repelled"

from one another like particles of some "polar gas" /Zla/
and are located ati equal distancus from one another along
straight lines connecting already indicated, "anchored"
poles. As a result of this motion of the poles, the learning
process is shortened.

Elucidation of the makeup of the "attribute" set

In order to elucidate the makeup of the set of at-
tributes, a j.art of which we are going to feed to the
input of a recognition system, let us return to regression
analysis.,

According to the regression method, the coefficients
are detcrmined from the conditions for obtaining the min-

imum mean-square error
n

A= Z et = (P — §)* = {p — Qupt — aap* — A — a:p%)*.

A minimum must exist and is unique, siince the error is a
linear function of the coefficients o/i. laking derivatives

—

when ? 0'(f , we find four normal regression equations:

A _o 9

— T
=

- SO W S
da; ' day ' Oay 0 7

- (’l.h

whence
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QW + ap? + A - gt = gy ;
mﬁ+mw+aﬁx4mw=$%“

a W'k 4 apih 4 a RS - a,uih = phgy,
ap + gt + a.ﬂ + a,p.' p.'q>

Four terms have been omitted since they have no effect on
the coefficients €y €} and Coe This halves the number of

regression equations.
Solving the equations, we can find the coefficients

a, R . TP )
C.=—";;'- 6= a.ocl"" as

and, hence, determine the optimal characteristic of the

object.
Let us make the notations:

0
- 9
"*'“""F.(T‘Pd‘- to=F=-1 | M,
0
- . 0
Xy ==\ == ' ‘pd[’ Xy = QU == 1y
T 1= Gl = = | pud!,

1
xl""""’.x“'f' M{o X.=li;x= -;r-“’wl.

"‘ga T W’d’. | Xe -—.'Ixn -;- ‘ pk“

xgﬂ’ﬁ;=

wdy, Xyy= @ = '7lr S Pdt,
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‘ 0
Xyy mm 0 2= + | pid¢, Xyy = A == -1"— " Atdt,
r
0
\

Xyg = AS = —T—-l‘r Adt, Xyy = GIVI== -;.—;rfrﬁu’dt,
Xy=@p= -,,I-jrtp’pdf. Xyy =Gt = -.;,--;’r(;rpd(
Xyo=@ = %;q'}\dt. Xyy=pIAT = —;—jr uihidt
xu=#"P=-7l—--_:qrp'q‘dl. Koo = = T'.-j‘r $pd!,
X =A'¢ -—lfjr;;tpdl. Xp=@h = —Tl-jr Q3Adt,
PP -T'-:ru'wr. Xy =G = T‘i wied!,
(| 0
Xygm= AT = —%--Srh’pdt, Xpy=PA = %—\r wiAdl,
x..=&?ﬁ=-%jr¢pkdr. roe= NG = "'"‘jr Ngd,
Y= 4t = '71‘"5, ¢4dt, Xoy =M = -%— jr Muds.

0
y— i
Xy = P4 = T;s‘r nidt,

With these notations, the solutions of the normal
equations can be written in the following form (we put
(><. 7:0220) H
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P By ] - XaXaeXar -t Xaa XpaXi0—XisXaa Xy 1 —XoVakp—2sX) Xog
! XXk

™ R X10X0 1K1K | Xgp X 1 X1 1K gy =XsX) pXegX 31 X1\ Xy

These solutions show that, for recognition systems,
the attribute set must be sought among the quantities
xl,xz,xs,...,xj,.... It is clear that the set of attributes
Xg1Xm 31X} ] 1X) 59X 61X]g1Xg] 1X0x1Xg61X0g completely solves
the problem of recognition of the situations, but it is
too complicated and superfluous for solving the problem
of distinguishing a given number of central states.

Selection of useful (informative) attributes

All the attributes found possess an important pro-
‘perty: their value depends only on the situation add does not
depend on the order of variation of the instantaneous values
of the quantities f,/'( and:l if the distribution of the
probability of discrete values of perturbation is constant.
Figure 68 shows sample sequences of variation of perturb-
ation A having a uniform probability distribution p(] )=
const., It is clear that both learning and test or working
sequences of values of ? ,f{,) arriving at the recognition
system must be of sufficient duration to be able to trans-
mit the objectively existing perturbation probability dis-
tribution. It is precisely this which determines the speed
of action of the recognition system as a corrector. The
operation delay is equal to about half of the averaging
tiwe, i,e., half the duration of the represcnted sequence
(’tL-l.s min for sequences shown on the left-hand side
of Fig. 3 (/sic/, and T'L-S.O min for sequences on the right).
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This delay is less than the delay in determining the
characteristic of the object by the regression method /3577,
Regognition theory knows many methods of evaluating
the usefulness of attributes (by the number of disputes
to be resolved Dz, entropy criterion, divergence criterion,
etc /217). But ell of them have been worked out for binary
"vyes-no" aitributes. A special feature of che probhlem under
consideration is the fact that the attributes are not bina-
ry, but continuous quantities, Continuous attributes should
be evaluated directly from the value which they assume in
all situations to be recognized.
Let us consider an example of selection of the
most useful attributes. Let us assume that the object can
be described by the nonlinear equation

@ =l—(p—A—c)

Then for the values of co,cl,do,d1 indicated in [igure 66,
for any of the sequences shown in Fig.67, we obtain the
values of the numerically first 19 attributes; these values
are shown in Table 9. '
The attributes can be divided into four groups:
group a:  x, xg, X, X
group b: Xy X Xy Xiey Xy X1
group C: x| x, Xy, Xy, Xy X6l
group d: X, X X
The attributes of group a carry information on the
variations both of and of /4 and hence can be used for
the construction of recognitionssystems operating according
to one attribute in all, The attributes of group b contain
information on the variations of ?’ , and the attributes
of group ¢, on the variations of'/(. These attributes can
only be used pairwise (i.e. one attribute from group b and
one from group c¢), since if this is not done we can find
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Table 9

I‘Ipuw(lr)

2  {] X Xe 0] L] Xe L) Xe X
Cocronnun

s |0.9975 04833 0,5 | 0.995 | 0,2775/0,29167] 0,4823] 0,4987] 0.2833
s |09433] 0.7333] 05 | 0.0904] 0,5816]0.2017 | 0,6907] 0.4717] 0,408
s, |o0.9702] 0,6510] 0,5 |0,9416| 0,5003]0,2017 | 0,6286| 0,4818{ 0,181
s, |0.9832| 0,6003] 0,5 | 0.9668| 0,3066(0,2017 | 0,5997] 0,4932| 0,0887
s, | 0.9267] 04833 0,5 |0.8509] 0,2775[0,2017 | 0,4498! 0,463 0,2833]
Si |00978/ 07333 05 0995 | 0.81700.217 | 07315/ 0.4987) 0,408
s, 09832 0,6510{ 0,5 | 0,9617 0,5003}0,2917 0,6436] 0,4939 0,3811
s, |0.9754{0,6003] 0.5 | 0,9520] 0.3966/0,2017 | 0.5921] 0,4841| 03357
S, |0.9595] 04832 05 | 0,9218] 0,2775}0,2917 | 0,4586| 0,4737] 0,2833]
S |09887)0.7333] 05 | 09775 0581702017 | 0,7257) 04953 04083
S, |09974] 0.6510] 0,5 | 0,9947] 0.5003| 0.2017 | 0,6493| 0,4086| 0,381
S, |0.9802{0,6093] 0,5 | 0,9615 o.a«sto.zsn 0,6915] 0,4857| 0,3357
Sis |0.9752 04833 0,5 | 0,9515] 0,2775/0,2017 [ 0,4755] 0,4912| 0,2833)
Su 0983407333 0,8 | 0.9673 05017002917 | 0.7188] 04902 0,408
Sin |0,9877 0,6510{ 0,5 | 0, ,5003{0,2017 | 0,6403! o,«mf 0,3811

Ste o.ma‘ 0,6093! 0,5 | 0,9952 o.:ma‘o,mv o,oon1 0,4987 o,sasﬁ

Sample calculation of the first number of the table:
from Fig.68 we find: A,=0.25, \,20.05, A ;=0.75. Cor-
respondingly we will have from Fig.66: /11-0.25-0.05,

M 5=0:5+40,05, M =0,75-0.05. we then determine ¢ from the
formula: }01-0.9975, ¥ 5=0.9975, §ﬂ3.o.9975; whence

X = M;—J& = 0,9975,
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Yalue of attributes in sixteen states (with p(A )= const)

X LT Xy X1 X4 Xyp X1y Xy Xis L4]]

0,9925 | 0,1725| 0,1875| 0,4807| 0,4975{ 0,2769{ 0,1763( 0,2910! 0,1813] 0,2877
0,841 |0,4868| 0,1875| 0,651 |0,4452| 0,5477( 0,3491| 0,2758] 0,2542] 0,3855
09144 |0,4178 0,1875 0,6,33| 0,4645| 0,4798 0,3187 0,2801] 0,2440| 0,3657
0,9509 | 0,2703] 0,1875( 0,593 | 0,4866] 0 3925| 0,2341} 1,2887} 0,2074| 0,3216
0,7972 | 0,1725} 0,1875| 0,41 75| 0,4296] 0,2576/ 0,1763} 0,3075| 0,1813 0,2624
0,9925 |0,4868 0,1875| 0,7295( 0,4975| 0,5802] 0,3491} 0,3325/ 0,2542 0,4073
0,9437 |0,4178|0,1875| 9,6363] 0,4881 0,4967] 0,3187| 0,2894| 0,2440{ 0,3783
0,9295 {0,2703) 0,1875( 0,5761| 0,4689} 0,3843 0.2341 0,2804| 0,2074{ 0,3240
0,8869 | 0,1725| 0,1875| 0,4360) 0,4495| 0,2612| 0,1763} 0,2733} 0,1813] 0,266
0,9665 | 0,4868| 0,1875} 0,7195 o,4906 0,5761 0,3491{ 0,2894] 0,2542} 0,4048
0,992 |0,41780,1875| 0,6474{ 0,4973| 0,4989} 0,3187| 0,2009] 0,2440{ 0,3801
0,94380/ 0,2703] 0,1875| 0,5803 0,4722} 0,3856( 0,2341{ 0,2811] 0,2074 0,3249
0,9289 | 0,1725) 0,1875] 0,4682| 0,4827| 0,2725| 0,1763 0,2876| 0,1813) 0,2796
0,9516 | 0,4868| 0,1875] 0,7055 0.480('1 0,5693( 0,3491| 0,2856| 0,2542| 0,3995
0,9491 |0,4178{0,1875] 0,6306| 0,4837| 0,4925; 0,3187 0,8696| 0,2440] 0,3747

0,9927 | 0,2703( 0,1875( 0,6047{ 0,498 | 0,3957| 0,234 1| 0,2909| 0,2074} 0,339

Key: 1) Attributes; 2) states.
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indistinguishablq states which give equal values of X, or
X (see Table 9: states S; and Sg for x; etc). Finally,

the atrributes of group d are useless for our problenm, since
they are connected only with A,

The attributes of group a should be recognized as
more useful also because, even when the slope of the extremal
hill is increased, it is always possible to find among them
an attribute which increases monotonically on both sides
of the "crest" and hence uniquely determines its position.
In the given problem it is sufficient to use only the
attribute Xo to distinguish all 16 given states.

The boundaries of situations with ideal and real
attributes

If we provide the system with a device or program
which, after every change in the location and form of the
characteristic of the open part, perform a change in the
locus of reference and a transformation of the coordinates
/A and,ﬂ for which this characteristic is rectilinear, is
always located at an angle of 45° and passes through the
origin (do- 0; d,=1; dz-O), the investigation takes a finer
form. Instead of the six-dimensional sgpace

Qﬂ(CQ, c“ Cl..d., dp d')

we can consider the three-dimensional coordinate space

f)vi(x,y,z), where
xﬂc.'—d.ac.,- yﬂc‘—-—al=Cl-—:.|‘,'“2=c.—d.==c..

The correction problem consists of bringing the system
into the situation including the origin as center x=0, y=0,
z2=0,

The larger the radius vector
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Figure 69, Situation boundaries for the attribute Xo and
for the"ideal" attribute P (where dy=d,=c,=0 and dlal).

p=Vrt+y+2,

the more is correc.ion required. Hence a good division of
the space x,y,z into situations would bhe division by
concentric spheres wiith a common center at the origin
(Fig.69, dashed line), and an ideal attribute could be
the radius vector itself if it could be quickly and easily
measured and computed. But this is not the case, and hence
we should use the much simpler attributes indicated.

For each of the attrihutes, the situation boundaries
can be constructed experimentally or computed pointwise.
For the example considered above, the situation boundaries
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when only the one attribute Xo is used are shown in Fig.69
by solid lines, We can only come to the conclusion that,
although the form of the boundaries differs from the ideal,

it is nevertheless by nature near the ideal in the square
X>0,y>00

Method of producing attributes in the presence of
deviations of the perturbation distribution from
the most probable curve (distribution transforma-
tion) , )

The method consists of selecting only those points
which correspond to the mean perturbation distribution.
Measurements which violate the given mean distribution are
simply omitted.

Let us illustrate the method by an example. Let us
assume that the meamn or most probable distribution is the
uniform distribution as in Fig. 68. Then by means of special
selection filters, it is necessary to omit the points
which disturb uniformity. For example, let

A == 0,25, Ao = 0,5, As = 0,25, A = 05, & - 0,75.

Then the filter must omit each value by one, i.e. the _
points )1,/12,25. It is clear that this process of produc~
ing the attributes is delayeé, since it is necessary to
wait until all val uew of A arrive. In the given example,
the process will he delayed by two thirds of a period.

In practice, the attribute pickup can be constructed
according to a principle which recalls the principle of
construction of the eye of certain insects (for example,
of the bee).

At all vertices of the teeth of the characteristic
of the aopen part memory devices are placed which record
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Figure 70, Structure of attribute pickup with separation

of the effect of uniform perturbation distribution from any
other (different from zero): 3Y) memory device for the latest
value of tl 3 quality index §'; C) selector of group of

three memory devices with minimal delay 1?L.

the latest value of the extremum indicator (Fig.70).

The devices are connected in groups of three, but in such
a way that these groups do not include points lying on a
single straight line. Two extreme devices are placed at
equal distances from the mean (in the case of separation
of uniform distribution). All groups of three memory devices
feed their signals to a selector, The latter selects the
group in which the delay time (equal to half the period
during which all three devices have operated) is less than
in the other groups. With a parabolic characteristic, the
memery devices are connected in groups of four, in all
possible comhimations, excluding those which give zero
values of the determinants or violate the perturbation
distribution to be separated.
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gvaluaiion of atiributes according to the criterion
of resolving power

If the attributes are measured accurately,and the
perturbation is a displacement of the extremal hill along
the pi~;\ plane without changing its form, and, furthermore,
the perturbation probability distribution remains invariable,
the recognition system can distinguish any number of states
equal to the number of its groups. But in fact there always
exists deviation from these ideal conditions. This brings
it aboutlt that the system cannot distinguish states which
are very close to one another, Hence there arises the prob-
Llem of all-around raising of the resolving power of the
systc =~ a definition of which is given in /Z1/. Let us
recall that the resolving power is defined by the differ-
ence between the greatest scalar product and the one nearest
it in magnitude.

The algorithm of a recognition system is such that
the attributes can only be useful or useless in some respect
(Wiener: "There is no evil, but there is an absence of
good")., Hence the more attributes fed to the system, the
higher its resolving power, although the volume of the
system grows due to this. In striving to decrease the
volume, we should select combinations of attributes which
for an almost identical volume of the system give the
greatest resolving gower.

et us illustrate tae method of calculating the
resolving power by an example. Let us denote by Xy9Xgye ey Xy
the digits of the vector of the input image (attribute),
and by rl,rz,...rnthe corresponding digits of the poles,
‘hen with vi(xl,xz,...,xn) and o(k(vl,rz,...,rn)

3, = (@, v,) == ryX; + reXy + refs + ..o - 1, X, - MAX,
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It is obvious tiat the maximum of the scalar product co-
incides with the minimum differcnce of the individual
digits. llence in the algorithm 2f the Alpha system, we

can, instead of the selection of the greatest scalar product
(by means of the highest-voltage indicator HVI), use the
selection of the least difference (hy means of a lowest
voltage indicator LVI)

4

z§=(u"’" .) = (rx—xi) + (ra —x) + ... -+ (f,,'—"xn) - min.

The scalar variant is convenient with binary attributes
and for a unitary code, The difference variant of the al-
gorithm is converient for continuous (nonbhinary) attributes,
since it makes possible the simple use of a binary coile.
Let us dwell on the use of the difference variant of the
algorithm of the Alpha system. Let us compare the resolving
powers of three systems: 1) with one attribute X3 2) with
two attributes x; and x,; 3) with three attributes Xy
Xy amd X In the learning process, after all 16 states
have been displayed (see Fig.64), the poles of the groups
will assume the following values:
In the system according to attribute Xy §
ry = 0,4823, ry=0,4490, 7w 0,4586, 3 = 0,4755,
ry = 10,6907, re~0,7318, ryp =0,7257, ryy = 0,7188,

ry = 0,6266, ry=0,6436, r, = 0,6493, ry = 0,6403,
rg = 0,6997, rg o~ 0,5921, rs = 0,6945, ryq=0,6078,

In the system according to attributes X3 and X,

ry = 0,9975, ryy = 00,4833, ryy = 0,9267, rys = 0,4833
ST 0.9433. gy = 0.7333, Flg == 0.9975. T4 o= 0,7333.
ryy = 0,9702, ryy = 0,6510, ryy = 0,9832, ryy = 0.6510:
re =~ 0,9832, rey = 0,6093, 719 = 0,9754, ree = 0,6092
r1p = 0,9595, rep = 0,4833, Fy—ys =~ 0,9752, lyegs ™ 0.48:;3.
710 = 0,9887, Ty—yo ™ 0,7333, fimge = 0,9834, fom1s = 90,7333,
Fimyy = 0,9974, T4y = 0,6510, rirs ™ 0,9827, g—1s = 0,6510,
7imyg = 0,9802, o1y = 0,6093, fi—1e ™ 0,9976 7g—ye ™ 0,6003,
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In the system according to the attributes X1y Xp
and Xy the poles are the same as in the first two systems,
Others will only be subscripts of Py Summing up, according
to the above formula, the voltages across the outputs of
all 16 groups appearing in the display of each of the 16
central states,‘we can select the least difference and by
this means can determine the resolving power of each of
the systems being compared.

For brevity, we have cited as an exawple only one
table (fable 10), for the first system with one attribute Xrm o

An inspection of Table 10 shows that, in the first
system with one attribute Xy R=0025; in the spoond with
two attributes X, and X0y R=0,003; and in the third system
with three attributes X)1Xg and Xy y R=0,0073.

A8 the number of attributes being used increases,
the resolving power does in fact increase. Thus, in this
sense the best of the systems compared is the third system.
It allows the greatest oscillation of the perturbation
prohability distribution curve and the form of the hill
without making mistakes. \Yhen mistakes are present, the
number of attributes should be increased.

A sample circuit for using the recognittion system
as a corrector

As stiown in Fig.65, the recognition system is used
for establishing on a model tHe parameters C(1C} +Co of the
optimal characteristic of the object of control, The co~-
efficients dO'dl’da are always known.

Hence in order sharply to decrease the number of
groups of the recognition system, we can use switching of
the poles in dependence on the position of the character-
istic of the open part rk(do,dl,dz).
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Table 10

) A X, t, I, L, I L,
COCTOMHNN

S, 0 | 02084 | 0,443 | 0,1174 | 0,0333 | 0,2492 | 0,1613
S, [02084] 0 |00641|0,0910]0,1417 | 0,0408 | 0,0471
S; | 0144300641 ] o0 |00269]0,1776 | 0,1049 | 0,0170
Se {01174 0091 [0029| 0 01507 0,318 00439
Sy 0033302417 | 0776 |0.1507| o |0,2825] 0,1946
Se | 02492 | 0,0408 | 0,1049 | 0,1318 | 02825 | O | 0,0879
S; |01613|0471 | 0017 [ 00439 | 0,1946] 00879 | o

Se | 0,007 | 0,0986 | 0,0346 | 0,0770 | 0,1430 | 0,1395 | 0,0516
S, | 00237 | 0,2321 | 0,168 | 0,1411 | 0,009 | 0,2729 | 0,1850
Sie | 02434 | 0,035 | 0,0991 | 0,1260 | 0,2767 | 0,0058 | 0,0821
Su | 0167 | 00414 | 0,0227 | 0,0496 | 0,2003 | 0,082 | 0,057
S, | 01122 | 0,0962 | 0,0321 | 0,0052 | 0,1455 | 0,1370 | 0,049
S | 0068 | 02152 | 0,151 | 0,1242 | 0,0265 | 0,2560 | 01681
S. | 02365 | 0,0281 | 0,0922 | 0,191 | 0,2698 | 0,0127 | 0,0752
Siw | 0458 | 00505 | 00137 | 0,0406 | 0,1913 | 0,0912 | 0,0033
Sie | 0,1255 | 0,0820 | 0,0188 | 0,0081 | 0,1588 | 0,1237 | 0,0358

Key: 1) Output; 2) state,
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', o ,
oltdbes.dcross the outputs of groups in the system with
one attribute with loarning sequences (see I"ig.68)

Ly Ly Lie i ty i Lo Ly e

0,1007 | 0,0237 | 0,2434 | 01670 | 0,1122 | 0,0680 0,2365] 0,1580| 0,1255
0,0986 | 02321 | 0,0350 | 0.0414 | 0,0962 | 02152 0,2810 0,0504| 00829
0,0346 | 0,168 | 0,0091 | 0.0227 | 0,021 | 0,1511) 0.0922 0,0137/0,0188
0,0077 | 01411 | 0,1260 00496 | 0,0052 | 0,1242] 0,1194] 0,0406{ 0,0081
0,443 | 0,0096 | 0,2767 | 02003 | 0,143 o.ozasf 0,2698] 0,1913 0,1588
0.1395 | 0,2729 | 0,0058 | 0,082 | 0,1370 0,2560| 0,0127] 0,0912] 0,1237
0,051G | 0,185 | 0,0821 0,0057 | 0,0491 | 0,1681]0,0752| 0,0033) 0,0358

o | 01334 | 0117 | 00573 | 00025 |0.11 0,1268] 0,0483{ 0,015

oxsa | O | 02671 | 01907 | 0,139 | 00169 0,2602 0,1817]0,1492

01307 | 02671 | 0 | 00761 | 0,1312 0,2502 o.ooeoeo.ocsq 0.1187

00573 | 01907 | 00769 | 0} 0.0548 0,1733] 0,0696{ 0,0090] 0,0415

00025 | 01359 | 04312 [ 00s4s | 0 10,1190 0,123 0,0458{ 0,0133

0,1165 | 00169 02502 | 0,1738 | 0,119 0 0,2‘33t0.1648 0,1323

0,1268 | 02602 | 0,0069 | 00695 | 0,1243 } 024 0 |o,07850,1t10

0,0483 | 0.1817 0,0854 | 00090 | 0,0458 0,1648/ 0,0785 0 |0,0325

00158 | 0,1492 | 0,187 | 00415 | 00133 101 0,11100,0328 0

-22]1 -



In the above example, this gives a r:duction in the
grouns from 16 to 4 (Fig.65), in accordance with the number of
combinitions to be distinguished of the values of the
coeflicients cU,cl,cz(Fig;GG).

For a correcctor of the "velocity" type, where it it
only rauired. to indicate the direction of control, it is
sufficient to compare the actual object wi th the model

A/A = Mopt=H in orde(r; to work out the corresponding signal:
“when A/A < —0 -~ "regulate, riase the charac-

teristic of the open part into the region of the given th
when - ¢ < A/u(d-\ ~= "hold"

when A/M > f -~ "regulate, lower character-
istic",

In order to construct a corrector of the positional
tvpe, the optimal value of the regulating influence ;Atopt
is directly established at the open part of the system
by means of a servomechanism.

The possibility of corrector self-learning

By means of the above example of a corrector, we can
again demonstrate the differcate hetween two opposite ap-
proaches to the solution of the control problem,

The determinate approach consists of obtaining an
algorithm for the control object and the perturhations
acting on it and then solving the equations on computers.

In the problem considered, it is reducedg to the
computation of the coefficients €()1C}11Co from the formulas
of regression analysis, which, in the first place, requires
the presen:e of exact information on the object and the
perturbations and, in the second, a large machine memory
volume, while it it impermissible to spend large amounts
of time data averaging and equation solving.
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‘The cybernetic method consists of rglacing exact
calculations by learning of a recognition systemAfrom the
results of experiments on a real object with minimal ini-
tial information., The algorithm of the object may he too
complicated for control or unknown altogether, The per=-
turbation distribution is also unknown, The complicated
"teacher" algorithm is used only during the learning time.
The "teacher" may be a man or an interpolator based on the
methods of active or passive experiment. Learning is carried
out according to records of the operation of the object
in the past, as is done for recognition systems operating
as prediction filters. In the problem considered, after
completion of the learming, situation determination requires
only computation of one simple attribute or several. lhus,
the problem of determining the exact values of the coeffici-
ents CuL ¢y is replaced by the problem of dividing the
space €(,C),C5,d45,4;,d, (or the space of the attributes
xl,xz,xs,...,xn) into regions, i.e. situations.

If, instead of a"teacher", we use positive feedback,
then, as in the case of self-arbilrary distinction of
letters, the Alpha system teaches itself to distinguish
situations,

However, just as the recognition system cannot cor-
rectly name the letters without indications from outside,
in this application the "teacherless" system coén by nature
not assign values of the quantities €11 1Co for every
situation distinguished by it.

The namus or quantities can only be indicated by
the "teacher", or in the other case they can be worked
out in the process of concurrent "survival" from a larger
number of systens in wiirich these names are assigned by situ-
ations in a random manner. ‘
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lhe recognition system us a positional corrector
for systems for controlling cyclical processes

First of all let us convince ourselves that the
recognition system can distinguish inpul signals from any
of their parts, and in particular from their initial parts,
As an example we again use the algorithm of the Alpha
system. Lat there be two input signals:

R  El S [Ny Uy RSy PRy priy DOy R )
= — b b e L f e [ T — ] - 1,

In the learned state, the poles of the system have
the same codes:

Gl I T T I — h— L I O,

We can obtain such a unitary code with several
plusses if we do not use the convergence scheme at the
input. When the latter are used, there will be a plus only
&t one place of the code, but this does not essentially
change the rest of the outputs and is reflected only in
the volume (number of elements) of the system,

Let us determine the scalar products st every stage.
(It is assumed that the digits of the code are determined
by degrees: first, only a few initial digits are known,
then the following one is added, etc.).
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Sran | 2 3 ¢ 5 [} 7 [ ) 10

{2

Bomiomn)| 41| 43| 3] 4| +B| 46| 47| +0

ool Bt B e e i I Bl I &P
Tom{oaqoy)| —1 | —2 | =1 | =2 [ =1 0| —1|—2]—3(-2
Ze=(asty +l +2 +3 +4 bt +6 +7 +8 +9 +l0

Table 11, Scalar products
Key: 1) Stage.

We have convinced ourselves from the example that
the recognition system distinguishes the input signals
vy and v, even from the initial parts of their codes,
since we always have:

for Vi==v, (%)) >((atvn)'
for =y (oY) < (Gt

Precisely this serves as the basis for the roliability
of recognition systems when a large number of pickups goes
out of order. Just as the living organism continues to
function when one of its parts goes out of order, the
recognition sys tem also continues to funaction correctly
in similar circumstances. We can only show that this lowers
its resolving power /Z17 When the length of the code is
increased, the resolving power increases.

It two representation curves which Jead to different
results coincide at first, the recognition system gives
the sume voltages at two outputs, i.e, says "I don't know"
right up until the moment that the representation curves
diverge.



Let us use this property of recognition systemss of
predicting finite evaluations (at first unsurely, and then
more and more accurately) to construct a combined determinate-
self-learning system (Fig.7l). The open part of the system
is shown in Fig.72., ‘he corrector is an Alpha recugnition.
system with five groups of associating cells (neurons)
according to evaluations 1,2,3,4,5. ‘he input of the system
is fed sequences of the variation of the coordinates L,

T and K (in a code with a "signifying plus").

For example: '

pms—1—=14l—l—=1=141—=141-—1--1

The coordinate K represents the number of the closed
key of the open part and reflects the regulating influence

ﬁ( Using the evaluations obtained at the end of the
cycles, the system first of all learns to distinguish
codes from the resulting estimates,

The pole learning algorithm of the recognition sys-
tem, which is used as a postional corrector, was considered
avuvve, and hence we shall not go over it again,

Recognition predicting syst.:ms arc wused in a time
region. If the same representation curve obtains the con-
tinuouslyvarying estimates ‘Pl' 4)2, @ Zyeee @n, the process
of vuriation of the evaluations heing random and stationary,
then, using Kolmogorov's formula, it is possible to predict
the future code of variation of the evaluation during one
cycle. This cun be used for increasing the accuracy of
control if definite conditions are satisfied (random pro-
cess heing stationary, where Kolmogorov's formula holds),

1¢ during the variation of the evaluations ther: are
obhgserved periodic and some other repetitive variations,
then for predictive purposes the method of characteristic
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figure 71, Corrector: recognition system for control of a
cyclical process.

Key: 1) Ohject; 2) HVI; 3) or; 4) learning of
poles; 5) non-corespondence; 6) correspondence.
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Figure 72. Open part of system for controlling a cyclical

process.,
Key: 1) Object; 2) from corrector or setter.

components or the combined method (see above) is used).
In one 'way or another it is j:ossible approximately to
determine the future evaluation of the given cycle of
influences. ‘

We showed above that the recognition system can
distinguish representation curves from their inivial parts.
This is also one of the forms of using recognition systems
for prediction.

A quite differcnt example of possible use of the
Alpha predicting system is shown in Fig.73. Here the sys-
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Figure 73. Nonreversible corrcctor with additional prediction
of a given sequence of modes.

Key: 1) Object; 2) zinp; 3) HVI; 4) corrector;
5) divergence; 6) memory device; 7) Alpha,
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tem is ustd for acceleraving the obtaining of the evaluation
of the cycle. The curve of the gencralized perturbation
L'm as a-functiun of the slage number of the program T is
considered to be a random process. This means that we
can use the Alpha system (or any other recognition system)
to predict both future values of the perturbation L'm A
and the directly correlated with it cycle (uality index <§ R
analogously to what we did in predicting the amplitude of
sca waves, As soon as the system has learned and is es-
sentially predicting correctly, a button K is pressed.
When this is done, memory devices record the predicted
value of the quality index. The system can either continue
the motion (if the memory installation has remained the
Largest), or ch:ange the code and pass to the representation
curve following in evaluation magnitude (if the memory
installation has become lower than other memory installations).
Thus, the system automatically takes into account the
prediction of the result of its operation.

At the beginning of each given stage, we have at
our disposal complete information on the value of all co-
ordinates, except the coordinate k which is to he selecteil.

For this purpose, we can use a scarch on a taught
recognition system (and not on the object). Feeding all
possihble values of k to the injut of the recognition sys-
tem, we select those for which the predicted evaluation
is highest.

ierceptron for prediction of the result of cyclical

processes

prodiction alpordtim. [he fundamental difference
belween the "complete" perceptron and the simpler recogni-
tion systems (for example, the Alpha rccognition sysiem /217)
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consists of the fact that in the perceptron, images are
not recognized from one averaged prototype or standard,
but from many random prototypes. During the learning process
there is established a "weighting factor" or degree of
particijsation of each of the random prototypes in the forma-
tion of the given pattern, which is then used for classify-
ing images into patterns or classes. Typical operation of
this method is shown in the experiments of Bryan /517.

We shall use this principle of many random prototypes
for predicting the result of a cyclical process, Figure
74 shows a circuit for the perceptron as a predicting fil-
ter.

The process whose result we are required to predict
is known to us in some one of its initial parts during
the course of n cycles (time intervals). The duration of
the whole cycle is taken to be 100 units; hence 0 <n < 100.
During the course of the section of the process known to
us, the latter can be reuresented by the vector

w(n)—x,, Xys X3y oy Xn)

which is also an "image" subject to recognition. With each

new cycle, the numbher of meansurements of the vector increas-

es by one (Fig.75). The coordinates X;,Xs,..sX, are called

"atiributes" of the given image. '™e problem is this: from

nbsaervation of the changes of the vector Vi to predict

its coordinate nt the end of the process h100 or indicate

the maximum value hmax'
As random prototypes, we can of course use purely

random point or curvilinear masks, as was done in Uryan's

experiments. But then we would lose the information in the

known ralizations of the process, which would lead to

an incrcase of the volume of the system and of thoe duration

of its operation. To simplify the system, we can use as
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Figure 75. Observed process whose result requires to he
predicted.,

random prototypes previous realizations of the given pro-
cess whose results are known.

Prototypes Results
al(r;b ’;i vy f’:), hli
al(';v ’;' o0y ’,:)u hy,

o (F{, 7, 11y 74, .

The dimension of the prototlypes is equal to the
dimension of the image «ind hence incrcases by one with each
new cycle. Further, in accordance with the algorithms of
operation of the perceptron with many random prototypes,
these scalar products should determined:

L= (a!”‘)!
Z, = (@), o

S, =(c, v)

These scalar products are a measure of the nearness
of the imuge to tnhe prototype in the attribute sjace.
Since it is important to take into account only the pre-
sence of divergence of curves and not the sign of this
divergence, the ordinates are divided by the square of
the largest of them.

Cxample, Let us assume that we are given these
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initial data:

n | 1 2 3 4 5
U x‘=30 x’=40 x,=40 x‘-_=50 X.-—"‘=70’
ay r,=20 7s =40 r,-—-50 r.=50 ry = 60

then the scalar product is

]
Z‘.=(v‘a‘)=—"- (ary - Xy + Xars - X0y + xy1,) =

| (30.20 4040 , 40-50  50.50 70-60)_

5\ 300 T s T g+ ) =
454

= —5'2—5' ~ 0,862.

the terminus of the vector A is called the'"representa-
Lion point", and those of the vectors of the prototypes
o(k the "poles". If representation point and pole coincide,
iees vi= oy, the scalar product of the vectors is equal
to the greatest value, i.e. unity (éimaxnl).

Of course, we can also use other measures for the
closeness of the representation point to this or that pole.
For example, sometimes use- is made of the squire of the
distance between them (square error). Let us limit ourselves
to the use of the scalar products, which are also correla-
tion coefficients,

Summing up the scalar products (for every n-th
cycle of the observed process), in accordance with the
perceptron algorithm, must select only the greatest of
them, namely those values which exceed some threshold, when
0<£ © 1j é l. This produces selection of the prototypes
whichi are sufficicntly near to the observed process. If we
selected a very high threshold, so that there remained only
one prototype, this would bring us from the complete per-
ceptron to the simplificd one, i.e. the Alpha recognition
system,
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The scalar products or, in other words, the voltages
of the threshuld elements (associating cells) which exceed
tne threshold C>1. determine the weighting factors (de-
gree of participatioﬁ)wi with which the results of the
corresponding standard processes are summod:

W, == 2] — 33
T ETn T BTETRT oA

.w,,,:-z

b
-m
l+xl+"'+z~

where the scalar products 3 \<‘®lj should be put equal

J
to zero).
fhe predicted result of the observed process is

determined by a summator

lpredict =Wl + Wylly + ... + W lim.

rerceptron learning. For correct prediction it is

necessary to select the values of the thresholds lej of

the association cells. This is achieved by means of learning
from the known realizations of the process, which form a
lecarning sequence., he processes which nmake up the learning
sequence are not among the standard random processes.
Learning is first carrined out with sufficiently large and
constant n=const, and then with n=var,

I'or learning, the prediction result hpredict is
compared with the result of each of the standard jrocesses
which gave a voltage higher than the threshold value @ ij*
Determination is made of the square error
A= (hpaecx —h)", 0<i<m. npeAck = predet

If the square error is larger than some second thresh-
old value @2, the threshold. ®1 of the corresponding ag-
sociating cell increases by a small interval Aéal or ac-

cording to an exponential law ®n+l' 9n+(l-®n)8 y where
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0 & U & 1. This decreases "trust" in the given standard

process and its role in the prediction, During the following
cycle and in predicting other processes, the role of the
given standard will he weakened, Conversely, if it turns
out that the squarce error is sufficiently small, the threshold
of the corresponding associating cell is lowered by a small
constant interval or according to an exponential law,

The role of "correctly operating" standards is
accordingly increased, which is required for raising the
prediction accuracy. '

Elements of Stuability Theory and the Theory of Invariance
of Combined Systems Containing Predicting Filters

In an automatic control system, the l1inks containing
predicting filters are called probabhilistic links.

In dealing with the problems of stability theory
and the theory of invariuance of systems containing probabilis-
tic links, it is first of alli desirable to determine the
transfer operator functions of the predicting filters.

Let us consider the two simplest examples of linear filters.,

Discretc predicting filters

A functlion (P(t) is predicted from the first unary
terms of the prediction formula and from the observation
deta from time t=-T, to t=-T, (Fig.76).

In the given example we use a formulation of the
problem which is typical for self-learning pickups; the
precdding values of a quantity are known; it is required
to determine its value at a given time.

It is required to predict the value of the functiun

at time t=0. Vie divide. the interval Tl-'l‘2 into n equal
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Figure 76. Prediction of future value of function P (t) as
mean value during averaging time T'TI'TZ'

segments with duration At and we find

(Pnp (0) =

Bep = prob - 1P NPt 4 PPy ‘
Iy +f, +ry .. +f,.

where r, ,r';,+..,I'n are the coefficients of the "forgetting
law" (weight), which are determined during the learning
process of the predicting filter; <Pl is the value of
(p when t=T,; (Pn is the value of when taT,.

For simplicity, let us first put

.t=Tu ry=ry, rp =1,

Then

voep““}'l¢r‘+¢r'+"-+¢ﬁlt

where z=1 A t"l).

The desired transfer function is

BHX = output Pp)=Jwue __ 27042 40y g
8x = input Pux n

If the weighting factors are not equal to one, we
obtain

(T T I (U o1 £ e S 2 T i
P(p)— ‘P|g - 'l+"+"’+’ﬂ )
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Continuous predicting filter

Lat us consider the simplest contimuous proababilis-
tic link, which predicts the future mos v. probable value as
the mean value during a certain observation time (see
Fig.76):

{—T

@ (¢) dt.

1
Poce = 77 2

Thus we are predicting many events: if in the course
of a number of past days there has heen good weather,
it is highly probhable that there will be good weather
tomorrow, etc,

For more exact prediction, the time T2 should be
as small as possibhle (in some cases”T2=0), and the averaging
interval AT=T -T, is- selected deyending on the nature o*
the curve <)(t). It must bhe several times larger than the
period of the fundamental harmonic of the expansion of this
curve in a harmonic series.

I'ne operation of such a predicting device can be
described by the cquation

t—T, -T,
Pocp = T,_I.T. X (P(f)dt'--: T|-l-T1 ["5 Q(l)dt'I“

=T,

1~Ty 0 0
+ | ¢(1)d1]= r.l—r. [f @ (N dt — f cP(l)a't]-

— =71, =1,

In operator form we obtain the following transfar
function:

P(P (P) = Porix _— Puep — 1

o (T T
o 9 T P (e e Tw),

I¢ the "forgetting function" is given, for example
exp(~-(t)/ Msn the above expressions we should replace
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Invariance conditions: for systems with probabilistic learning
links '

Below we introduce and partially investigate the con-
ditions for absolute invariance and conditinns for the stabil-
ity of systems with probabilistic links, circuits for
which are shown in Fig.77. This figure shows all the systems
most important in prdctice:

@) one-circuit servo~system with links according
to the fundamental perturbation (input signal),

b) one-circuit stabilimation system with links ac-
cording to the fundamental perturb#tion (load of the object
of regulation),

¢) two-circuit (differential) servo-systew without
perturbation links,

d) two~circuit (differential) stabilization system
without perturbation links.

The cross-hatched squares are devices which compute
probabilistic values. It is not necessary that there bhe
twn probabilistic links in each of the systems considered.
Some of the links may be determinate, i.c. the usual ones.
In this case, the transfer function of the corresponding
square should be taken equal to one. Yhe square Pg (p)
represents the learning feedback, Py (p) an open learning
link, Py (p) /sic/ a probabilistic link in a "system with
learning prototype".

Let us proceed to the mathematical description and
investigation of the systems of Fig.77. Table 12 shows

Al
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Figure 77, Basic circuits of systems with probabilistic
links: a,b) with links according to basic perturbation;

c¢,d) without links according to perturbation (differcntial
systems ).
Key: 1) probab.

-240-~



the dynamical equations Qf the elements, and Table 13 those
of the systems as a whole.

Stability. *he. characteristic equations, the signs
of whose roots determine the stability of the systems, are

given in Table 1l2. Even at this stage in our consideration
we can make the following conclusions:

l. The stability of the stabilization systems and
the servo-systems is determined by characteristic equations
which are the same in structure.

2. Probabilistic (predicting) devices of the open
links have no influence on the stability of the systems,
since the operators Py (p) or PL(p) do not enter into the
stability conditions.

3. When probabilistic feedback is present in the
system, when g (p)#1l or PM(p)/l, the stability of the
systein depends on the transfer functions of these links
and in tne general case greatly worsens in comparison
with the determinate system (for which Pg (p)=1 and Pbl(p)'l)’
since the probabhilistic links have a transport delay which
is hard to compensate for. .

4, llaving the possibility of arbitrary selection of
the coefficients of the external-feedhack operator

m(p) = my - mp + mp* - tp® + ...,

we can obtain a stable system for any sign and magnitude of
the sign of the coefficients of the internal feedback:

n(p) ==y 4 np - nyp* - Mep® + ...

It is known that, when the absolute invariance con-
ditions are fulfilled in sysitems without perturbation links,
we should use positive internal feedback ny > O. Quite
recently many authors have affirmed that the system, as it
ware, must here arrive at the border of stability (loses

~2h1
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(1) N pue. 77, a 2) I puc. 77, 6

Z o )V o —m(p)V e, | S = —m(p30 0+ Hp)Lyep,

M = Y(p)Z, MaVYy(p)e,

O =Y y(p)M, ® = Yy(p)M — P(p)L,

(Dsep —P0(p)(Dt d’uep:Pﬂ'(p)a)o

‘Pnep -P¢ (p)\y Lsep-PL(p)L

(3) Jlna puc. 77, o ( l() Jlns pue. 77, ¢

e —m{p)® go, + MPIM oy, | Z= —m(p)D o, + n(PIM
M=Y\()5 + ¥, | M=Yy(p)E, -
Q=Y (p)M, D=Yy(p)M — B(p)L,

Mup -PM(p)Ml M"p —PM(p)Mo

D yep =Py (1) Dyep =Py (P)O

fable 12, Dynamical equations of system elements (Fig.77)

(1) Jlnn pue. 77, a Q) s pic. 77,6

(14 m(p)Y1(p) (PP (PNDP = | [} -+ m(p)Y «(p)Y 2(p)Pg, ()1 D =
= k(p)Y1(p)Y s(p)Py ()Y = [{(p)Y1(p)Y 2(P)P,, (P)—P(P)IL
(3) s pue, 77, (ﬂ-) Ins pue. 77, &

[} —n(p)Y 1(p)P p(P) -+ {1 — n(p)Y s(p)P m(P) 4 m{p)Y1
<+ m(p)YA(p)Y o(p)Pg, (p)I® = (0)Ys(p)Pg (P)ID = — P(p)[1—n
= Yy(p)¥ (P 1(p)P p(p)1D

Table 13. Dynamical equations of systems as & whole (Fig.?77)
Key (both tables): 1) For Iig.77a;2) " 77b; 3) " 77¢;

4) " 77d.
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(1) Has pic. 77, a (2) Jlan pue. 77, 6

L4 m(p)Y (2 2(p)Py (0} = 0, | 1+ m(p)Y (PIs(P)Py (P)=0,

§ = (1--my%asP,, ) $= (1 4 moxiaPy, )
(3) Hom pue. 77: 0 (4) s puc. 77, 2
1= n(p)Y,(p)P D) + 1= n(p)Y(p) Pyip) +
+- m(p)Y ((p)Y o(P)P . (p) = O, + m(p)Y (P 3(p)Po (p) = 0,
§= (l -— n(pﬂ[PA'- -} m.a.a,P..) §wm (‘ - ﬁ.ﬁlpm’ + M]G‘P.’.)l

Table 14, Characteristic of equation of systems and expres-
sions for rigidity S: (Fig.77)

(1) Aan pue. 77, (2) Mas pwe. 71, 6
Li-m(pl ((p)Yo(P)Py, () = | LIPYY PYY o(P)P, (P) — B(P}=0
=k(p)Y1(n)Y ()P ¢(P)

(3) R puc. 77, o (4) Ran puc. 77,

1 —n(p)Y1(P)P y(p) -+ 1 — (P 1(P)P(p) = O

+ mP)Y1(P)Y 4(P)Py, (P) = Y4(p)

Table 15. Conditions for absolute invariance of systems

(Fig.?77)
Key (both tables): 1) For Fig.77a; 2) " 77b;

3) " 77¢c; 4) " 77d.
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its "coarseness")., It is obvipus that this is not so.
Systems without perturbation links can be adjusted toth to
positive and to zero or even to negative estahlished and
dynamic error with retention «f their stability /207. The
systems (Fig.?7c and d) can remain stable and "coarse"
(i.eo, such that small changes in the parameters do not
essentially change their properties) in adjustment to ab-
solute invariance,

Absolute invariance. The conditions for ahsolute

invariance, for which for servo-systems Q‘QQ y and for
stebilization systems (b=0, arc shown ir Teble 15. These
conditions can be used for determining k(p), 1(p) and n(p)
which provide for ideal operation of the systems without
established and dynamic error. The operators m(p) and Yl(p)
will be used for selection of the necessary rigidity and
stahility according to the rules of compromise adjustment
or by statistical methods.

When the invariance conditions in Table 15 are
satisfied, the action is eliminated of all noise entering
the system, in the "fork" of differential links, i.e.
betwe:n points I and II (Fig.7?7c¢ and d), including the
action of statistically given perturbations, for example,
noise of the "white noise" type (N(t) arrows in Fig.77c and d).

Example. Let us consider the synthesis of measure-
ment links of the system in Fig.77b from the conditions of
compromise adjustment and inv.riance for the case of the
presence of only one probabilistic link-- according to
the basic perturbation (load). Let us assume that we are
given:

=24b
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Yo) = 2

= L
nw)(wwﬂww+ﬁ'

— Po
B () = (Tsp + 1 (v30 1) °

PL (P) = T, -l- Ty ° % et -—e—T.p).

1 )-a l?"f"ll'P’*'-..
(P ‘o+’|P+--- !

m(p) == my + mp + myp* 4 myp® + ...,

We select the operator of the closed link m(p) from
the conditions for compromise adjustment, which ensures
the optimal relationship between the rigidity and stability.
If, for example, we require a rigidity s=100 for °’l°<z-20,
then obviously

s—| 99 __

?he remaining coefficients of the operator-- m
m,,Mz== are sclectdd in order to ensure optimal demping
of the free oscillations of the system (for example, 8o
that in a gsystem of the second order, the relative damping
factor C1’2-0.25; in a third-order system, the dimension~
less parameters of Vyshnegradskiy x=1.2, y=3, etc). This
procedure is well known, and we shall not dwell on it,

More complicated and interesting is the synthesis
of the operator of the open link 1(p) on the basis of the
invariance conditions.

I'he conditions for absolute invariance (see Table
15) make it possiblc to determine (synthesize)
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_ Bip) _ Betupt+ 1)
D) = Frmvapi P 010 P (D)

when
1
P (P)=-7-I—l—f;-—5-(c-7'w__¢-rm).
We find |
l(p)gs[ . G:G, ‘ p+ ‘0101' : p‘] e“rnt_.e—fm .

‘e draw the conclusion that in the given system the
com;: OUnding perturbation link must Have the form

()= (5 p+ P) =

i.e. contain two parallel-connected differentiators with
the coefficients

: [ = &(T\ —Ts) W[ = ﬂo‘l (Ty “"'TIQ_
r 4104 3 ayay

and A series-connected anticipation section with the
transfer function:

1
"e-:f;,—:Ff;-, rae T.>T..

This anticipation is easy to obtain in program
control systems, where the future change in the perturba-
tion ig known and where it is possible to feed a signal’
to the input of the open propabilistic link with a definite
anticipation,

It is just as easy to obtain any required anticipa-
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tion in probabilistic links with cyclical repetition of the
processes. l'or example, it is possible compérativehy easily
to predict the mean temperature for any future month of
the year. The introduction of anticipation sharply improves
the dynamics of transfer processes in systems with proba-
bilistic links. '

In a stabilization system, where the future value
of the load is unknown, it is impossible to achieve such
an anticipation section in practice. Hence we must accept
approximate satisfaction of the invariance conditions. The
problem reduces to the maximum possible approximation of
the operator of tmhe actually achievable quadrupole

l(p = lo+lap+...
?_ AT L

to the ideal operator, which ensures absolute invariance
in the presence of a probabilistic link,

o) =GP =

It is necessary to select tne coefficients of the
actually achievable differentiator sothat both functions
differ as little as possible from one another. The problem
can be solved by many methods (Chebyshev et al). Let us
use one of the simplest methods: we use the expansipn of
the exponential functions in a series. We will limit our-
selves to three terms of the series
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Setting both terms equal to one another, we find

l(p) = ot o /’(Tl“‘Tg)[ Bo + Potap ] |
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whence we obtain
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The synthesis of the system is complete: the operators
m(p) and 1(p) which ensure optimal stability and invari-
ance with respect to the load L(t) have been found.

'Thus we have considered the invariance and stability
conditions of systems with probabilistic links. fhe applico-
tion of the general theory of combined systems to probabilis-
tic learning systems is completely obvious.,

Experimental method of finding the most effective
prediction formula. If a process subject to prediction is

so little studied that it is not certain that Kolmogorov's
formula is the most general and best one, then it is possible
almost mechanically to try various prediction formulas at
random. Having obtained estimates of the usefulness of
variaus terms of the formula, we can discard terms of little
use and by this method can gradually work out the most suit-
able formula, i.e. one giving the highest percentage of
correct predictions for a given volume of computstional
work.

L.I.Voronova, in particular, has shown that to
predict the amplitude of waves we can use Taylor series.
The prediction accuracy drops a little in this case, but
on the other hand there is a prcat decrease in the volume
of computations.

At the beginning of this section, we said that
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systems which achicve "pure" randomness do not exist.

Lven in tossing a coin, some kind of constantly acting
factors (bend in the coin, manner of throwing, etc)

make the coin fall more often on one side than the other;
and hence, busides the "pure" randomness, a jrobabilistic
law is active, waever, pure randomness is completely real.
However much we make the regression formulas more accurate,
however much we raise the numher of their terms und select
thie most useful of them, the success of prediction of a
probababilistic process cannot be 100%. Such a result can
only be ohtained for processes which are completcly deter-
minate, hence subject to calculation. As the methods of
predicting random processes are imprerd, the accuracy
increases, but there always remains an unpredictable part
which expresses the element of pure randomness. If we
increased the numher of terms in Kolmogorov's formula or
passed the continuous quantities, it would be entirely
possible that in the example with ocean waves we would
obtain a prediction accuracy of more than 80%. But some
some perdentage of possible error would remain, for in this
process, there is an element of pure randomness.

In conclusion let us note that Kolmogorov's formula
(in its application to the Alpha discrete filter) can
explain, and hence also direct, the success of many ex-
periments on prediction,

In their experiments on prediction of the treatment
burns, A.L.lunts and V.L.Brailovskiy used 12 input attri-
butes (area of wound, burn localization, age of patient,
accompanying diseases, complications, data of blood analysis,
etc), which were each used individually, and also in com-
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binations of two, thrce, etc, It was established that the
most useful information was contained in the logical pro-
ducts of several of tne input attributes.

Kolmogorov's formula and the above method of det rmin-
ing the usofulness of its individual terms is a mathematical
algorithm which explains the success of the indicated ex-
periments.,

In future the methodology of the organization of
prediction experiments based both on continuous and on
binary input attributes must take into account the mathema-
tical expectation and the structure of the extended pre-
diction operator,
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