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[Author's English Abstract ]

CYBERNETIC FORECASTING FILTERS

Forecasting programs designed for large general-purpose com-
puters constitute an important new tool in the control of production and
economics. An example of such «bigs forecasting programming is the
work of Professor Richard Stone of Cambridge, who computorized the
economics of the United Kingdomfor 1970.

Nevertheless, small forecasting filters have thelr own domain of
application. They can be realized not only as programs for general-
purpose computers, but also as simple analog devices with hi uick
response. The first of such devices was constructed on the basis of the
operator of Academician Kolmogoroff's formula by Professor Denris
abor at Impertal College (London) in 1955. Since then many other

forecasting filters have been designed for different purposes and In ac-
cordance with different formulae (algorithms) — for instance, at Kiev
Polytechnic Institute, where the authors ‘

These different forecasting algorithms are considered, and many
new recommendations are given in this book.

The authors discuss three principal methods of forecasting In addition
to some others.

1. Forecasting of determined processes, 1. e. extrapolation and in-
ferpolation.
4 2. Forecasting of stochastic processes, based on statistical forecas-
ng theory. |

nite Forecasting based on adaptation or learning of the forecasting
ers.
Professor Gabor's filter was a self-learning one. It is shown in the

book that the perceptron — the best known cognitive system —~ can
also be used as a simple forecasting filter. Thus, there is no dividing |
line between cognitive systems and forecasting filters, for forecasti.g
in the cognition of the future. The theory of cognitive systems can be
applied to the designing of forecasting filters and, vice versa, the well
developed theory of statistical forecasting can be used in cognitive sys-
em design,

The main problem is realization of optimum forecasting precision,
the comparison of the precision and simplicity of various algorithms
of forecasting. Sometimes, as in the case of control, quick response of
the forecasting filters is also important. Some recommendation are gi:
ven on the basis of a study of the precision of forecasting in the general -
form; some, on the basis of calculation of examples. All calculations
were performed on digital computers.

The examples are taken from chemical Industry, biology, ocean tur-
bulence rocesses, forecasting of the rellef of the Dnieper riverbottom,
and so forth.

The most important is the original proposal to combine the forecas-
ting method developed for non-stationary processes (presented by Pro-
fessor Farmer at the second IFAC Congress) with Kolmogoroff’s basic
method, developed for stationary processes only. The cambined met-
hod of forecasting ylelded good results in forecasting intracranial pres-
sure in neurosurgery.

A special part of the book is devoted to the use of forecasting filters
or cognitive systems in production control. Extremum control of the
plant should be effected by a combination of open loop control and a
corrector, smoothly correcting the characteristics of the open loop part.
Cognitive systems and forecasting filters can be used as correctors.

Forecasting filters furnish the only possibility of constructing a
control system for perlodical processes, since iction of the result
of the process is essential for its control. This problem Is also disctissed.



The book discusses some problems in the theory of

predicting determinate and random processes. Special atten-

tion is devoted to the realization of various operator

algorithms for prediction on digital computers. Space is

devoted to problems of using recognition systems, and in

particulur the Alpha system, as predicting filters.

The methods described are illustrated by examples

from power engineering,hydrology, petroleum chemistry,

medicine, and the control of industrial processes.

The book can be of use to specialists working in the

various branches of science and engineering who are inter-

ested in the methods of statistical prediction and the

concrete applications of these methods.



Introduction

The use of automatic systems has made it possible to

solve many complex problems of control without direct

participation by man. As the structure of the objects being

controlled becomes more complex and the amount of information

about the processesoccurring in them becomes larger, man

is often not able to perform the control function in the best

way. This can be explained by the lack of time in which to

choose the eptimal solution, the impossibility of mobilizing

a large memory volume in a short time, the property of

information fergetting, and a number of other factors.

Complex alitomatic contrel systems are very fast-acting

and have a large number of menory devices.

Furthermore, they must perform Many functions of

an "intellectual" nature, such as comparing different vari--

ants of the solution of a problem, choosing the best variant

in accordance with definite criteria, taking into account

change in external actions and the consequent change in the

nature of the solution and the criteria.

Since the nature of the thinking capahilities modeled

in automatic systems continuously grows more complex, in

creating analogous systems it is necessary to take into

account one of the important problems characteristic of

human thought-- the capability of learning to predict.

There is not one action performed by man in which

he does not foresee the results of this action in a sufficient~-

ly definite form.

When we formulate theproblem of prediction in engin-

eering, it is obvious that we must investigate how the

corresponding functions are performed in living organisms.

Soviet physivlogists "... have indicated not only forms of

prediction, but also some concrete physiolagical processes

~3—



which aid in this." points out Academician P.K.Anokhin.

"But this whole immense prohlem connected with the mechan-

isms of foreseeing in the brain's operation which give

power over the future is still far from worked out." This

problem is important both for neurophysiology and for

engineering.

Cybernetics has already made it possible to explain

many prediction mechanisms. Cybernetic self-teaching pre-

dicting filters in the form of actual electronic circuits

can serve as models for the predicting mechanisms of the

brain.

The Basis of Prediction is the Experience of the Fast

One of the basic hypotheses on the nature of pre-

diction of the future consists of the fact that conclusions

as to the possiblity or probability of a future event or

series of events are made on the basis of study, analysis

and generalization of preceding experience, the history

of the phenomenon being predicted. This idea, in particular,

forms the basis of the statistical theory of predictions

being developedat present.

However, we may encounter facts concerning prediction

of the future which do not seem at first glance to be at

all connected with the past. It is known that experience

consists of a very much larger number of pieces of inform-

ation than man can consciously elucidate. Hence statements

to the effect that certain cases of prediction cannot be

explained by preceding experience, since precisely such and

such an event or situation was not observed in the past,

cannot be considered to be well founded.

It has been proved that much of what is remembered

by man is independent of his consciousness and is contained

wha



in his latent memory.

A number of works on neurophysiology bear witness

to the fact that the information registered (consciously

or unconsciously) in the memory does not disappear. The

Canadian scientist W.Penfield has shown, in particular, that,

when definite conditions are created, for example when a

weak current is passed through electrodesattached to the

temples, sensations relating to the past: arise in the

patient. Events experienced long ago and often forgotten

are remembered. Well known is the phenomenon of hypertrophic

sharpening of the memory, or hypermnesia, which arises

as a result of some brain diseases. The person remembers

completely forgotten.facts which occurred in the past and

can cite from memory whole pages of books read earlier,

The volume of information on the past, the size

of experience on the past under different conditions cannot

be the Same. Froceeding from this fact, we may assume that

the predictions the most unexpected at first glance, and

especially the accuracy of their coincidence with reality,

rest on firm "historical" ground. These predictions are

based on the experience of the past, on the analysis of

past events subconsciously registered in our memories and

under the influence of a definite set of causes called into

the spherd of consciousness.

It is possible that a great part of the experence of

the past is made up of information genetically registered

in the living organism and representing the “concentrated

experience" of ancestors.

Before we try to explain the possible structure of

the mechanism of accumulation of experience and prediction,

let us acquaint ourselves with some basic concepts. Let us

define the problems of predicting determinate and probabilis-

tic, or stochastic, processes, and let us also explain the
 



concept of unpredictable "pure" randomness.

Prediction of Determinate Processes

Determinate processes are those caused by the action

of a number of Known causes. If we know the result of the

action of each of them, we can exactly compute thd final

result. Ordinarily (in linear systems) the principle of

superposition is operative; this principle can be formulated

thus: the total effect of the action of severl causes is

equal to the sum cf effects of the action of each cause

taken individually.

The study of determinate proces<es is based on the

inductive method, the method of studying cause and effect.

The majority of the laws of classical physics are determin-

ate, primarily those relating to the mechanics of solid

bodies. The orbits of the planets and stars can be computed

to any required degree of accuracy. Hence we can quite

accurately predict a lunar or solar eclipse or compute the

position of a satellite.

The time interval separating the moment of prediction

of some phenomenon from the moment when it begins is usually

called the anticipation time.

The scientific foreseeing of determinate processes

is characterized by the fact that the anticipation time

may be arbitrarily large. Increasing the anticipation tinie

does not lower the accuracyofprediction of determinate

processes.

This rule does not hold for probabilistic, or sto-

chastic, processes. The fact that processes are non-

stationary means that prediction is only possible for a

comparatively short period. Increasing the anticipation

time for a required quality of prediction is the basic



problem in working out methods for statistical prediction.

Prediction of Random Processes

If we repeat some observation or experiment many _

times, each time trying to reproduce the same conditions

exactly, then instead of obtaining identici:l results, in

each separate measurement we will obtain a result different

from the others. Influence is exerted each time not only

by the conditions we have reproduced, but also by those

which we are not able to reproduce. An event subject to

this kind of variance is called random. Sequences of such

randon events, considered as a function of time, are known

by the name of random processes. In a random process we can

follow the result of the action of a number of causes, but

we cannot calculate it.

The study of random processes is based on the deduct~

ive method-- the causal connection of phenomena cannot be

followed, although such a connection has an objective

existence,

In the real processes observed in life, three com-

ponents should be distinguished: |

1) a determinate part, subject to exact calculation

by the inductive method;

2) @ probabilistic part, which can be elucidated

by the deductive method by prolonged observation of the

process with the aim of determining the probabilistic laws

of the process;

3) a "purely" random part, which in principle cannot

be predicted in any way.

Let us first consider examples from the field of

prediction of "random" quantities. Thus, in tossing a die,

one of whose faces is colored red, and the other five blue,



it is required to predict what color the upper face will be

at the next toss. It is easy to establiah the absence of a

determinate part in the given example; a probabilistic pre-

diction gives the number 5/6, i.e. this is the probability

with which we can predict that blue will turn up,

In a coin-tossing game, it is required to predict

whether the coin will turn up head or tail. When the number

of tosses is large, heads will turn up approximately in

approximately half the nusiber of cases, and tails in the

remaining half. 4his is an example of "pure" randomness, or
an equally probable outcome which cannot imprinciple be

predicted in any way.

Another good example is any sufficiently complicated

game, for example soccer, Jn predicting the results of the

game there is no determinate component (nothing can be

calculated), but there is a sharply expressed probabilistic

component which can be determined by observing a number of

games of the teams in question. Furthermore, the game must

have an in principle unpredictable elemat of “pure” random-

ness. Without this element the game would cease to be a

game.

Let us consider an example of an actual random pro-

cess.

For a long time there was uncertainty over the

question of the causes and laws of the tides. Kepler and

Newton connected this phenomenon with the moon. Later

Laplace confirmed Kepler's and Newton's theory ina strictly

mathematical fashion; this made it possible to predict

each day's ebb and flow time with great accuracy.

Let us consider the tides problem from the point of

view of dividing the process into a determinate, probabilis-~

tic and "purely" random yart. All three parts are found in

this process. The determinate part of the process is

~Bm



determined by the moon and, to a smaller degree, by the

sun and can be exactly computed by Laplace's theory. Fur-

thermore, there is a random part caused by the wind, change

in the composition and density of the water, the temperature

and many other causes, part of which gre known to us. By

long-term observation of the result of the action of these

factors, we can determine the probability of deviations

‘from the exact calculation, somewhat in the manner of a

"wind rose" for a given locality on the ocean shore,

The aggregate of the determinate and probabilistic

parts is the hest (optimal) prediction. Comparison of this

Optimal prediction with the actual tide makes it possible to

determine the element of unpredictable, or "pure", random-

ness. Mistakes of measuring instruments ordinarily make up

a large part of this "pure" randomness. As measurement

technology develops, this "purely” random part decreases.

Everything which has been said relates to predicting the

time of the tide and, in even greater measure, to predicting

the increase in the water level. In the last problem, waves

are of essential importance. An example of predicting the

amplitude of waves is considered in detail in the fourth

chapter.

In tossing a die, the determinate part of the

process is equal to zero, since ordinarily nothing can be

calculated. In tossing a coin, the determinate and proba-

bilistic parts are equal to zero, i.e. the process is purely

random. In the processe reflecting the ocean's ebb and flow,

all three parts are present: the determinate, probalilistic

and"purely" random. As the exact sciences develop, the

determinate part, which is subject to exact calculation,

continuously increases. The development of the theory and

techniques of statistical predictions increases the relimhbili-

ty of probabilistic predictions. However, in actual processes

~J-



the"purely" random part cannot be reduced to zero. This part

determines the maximum level which we asymptotically ap-

proach as we raise the quality of prediction of the determin-

ate and probabilistic parts of the process.

The working out of methods for calculating determin-

ate processes and the elucidation of the probabilistic

part are the basic problems of the theay of prediction.

If a process has not been thoroughly studied, a

certain share of its determinate part should be assigned

to the probabilistic part. And further, a certain part of

the probabilistic part should be assigned to "pure" random-

ness. This sharply decreases the accuracy of prediction.

As material is accumulated, definite regularities

become clear which make it possible to make more certain

predictions on the basis of cavse-and-effect relationships

and later to theoretical constructs. Although in many pro-

cesses the element of "pure" randomness, which cannot be

predicted in any way, cannot in principle be reduced to

zero, yet the basic problem of the theory of prediction is

maximally to increase the causal, determinate part and

continuously to increase the accuracy of the prohabilistic

prediction. The part of the process which we refer to

"pure" randomness with the best, optimal prediction is

minimal and cannot be further decreased.

In some processes, which are called stationary, the

probability characteristics are constant. Here, as observa~

tion tine passes, the probabilistic part is predicted

with greater and greater accuracy.

In the ideal case, when the observation time is large

enough, the anticipation time may be consiiered to be arbi-

trary. Thus, we can very accurately predict the July mean

temperature for several years in advance. High and low

tides taking into account the prevailing winds can aj)so

-10-



be an example of a stationary process.

lt is much harder to reduce to the minimum possible

the unpredictable "pure" randomness in quasi-stationary

processes, and even harder in non-stationary ones, whose

probability characteristics change wkh the passage of tie.

An example could be prediction of the mean July temperature

—~~~for many decades or even hundreds of years taking into ac-
court change in the climate of the earth. In fact every

real process is non-stationary, but we may consider it to

be statiunary if its probability characteristics change

little during the anticipation time. Hence in real random

processes, in vie. of the Pact that they are non-stationary,

the prediction accuracy falls as the time -increases.

In connection with this, a basic problem of the

theory of statistical predictions is the working out of

methods (formulas or algorithms) of prediction for which

the anticipation time is greater than with other methods.

Let us consider some examples.

Prediction of processes from their parameters at a given

instant

“he simplest method of predicting the future con-

sists of the assumption that "tomornow will be the same as

today." Let us note that this primitive methodof weather

prediction turns out to be right in 70% of the cases. The

probability of correct prediction by the "without change"

ruje decreases extremely rapidly as the anticipation time

increases.

Prediction for a longer period requires taking into

account not only the present state of the process, but

also its speed of change. A somewhat better method of pre-~

diction is based on the assumption that the percentage
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Figure 1. Growth in the population of the earth.

Key: 1) Billions of people; 2) year.

increase or decrease will remain constant. For example,

this method is used in demography. Data on the population

of individual countries and continents is processed by

computers. The mean number of births and deaths per 1000

people is determined, and also the annual population increase

in percent. Here the absolute growth increases from year to

year. Figure | shows the curve for the growth of the world's

population. From this curve we can predict that in 1975

the waid's ;opulation will reach 4 billion. The assumption

that the pecentage incre.:se or decrease remains constant

is only valid for a comparatively short period of time, when

the conditions in which the predicted process takes place

are almost identical. Hence there would be no sense in

using this curve extrapolated to the 2lst century.

ivery real curve has its limitations. All physical

quantities cannot exceed some "saturation",

Prediction for a prolonged period requires further

complication of the formula by which the future values are

determined. We may, for example, take into account not only

the state of the process and the velocity of change, but
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also the acceleration, and possibly the third and higher

tine derivatives. In a number of cases this extended con-~

sideration gives good results, since the probability of

correct prediction for longdr periods increases. Even so,

here too the period of correct prediction is determined by
the properties of the process, the constancy of the coef-~

ficients of the prediction formula (state, velocity of

change, acceleration, etc.). In a number of processes, which

are called stationary, these coefficients are constant.

For these processes, the indicated methods of prediction

are very effective,

Prediction of processés from their parameters ata given

instant and from their prehistory

In order to increase the anticiption time in pre-

dicting many processes, at a given instant it is necessary

to take into account not only the parameters, but also their

variation during the time preceding-- their prehistory.

Weather prediction may serve as an example,

The first system of meteorological stations was

organized in France in 1856, and in 1858 other countries,

including Russia, joined this systen,

The first meteorological observations in Russia be-

long to the time of the founding of St.Petersburg. Observa-

tions of the clearing and freezing over of the Neva dating

from 1706, of the amount of precipitation from 1741, and

of the temperature from 1753 are extant, A regular network

of meteorological stations was organized ir 1830. However,

only wide use of the telegraph made it possible to progress

from predicting the weather from observations made at one

point to more exact prediction of the weather by means of

the preparation of synoptic maps.

1
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Synoptic maps make it possible to follow the path of

motion of cyclones and anticyclones. Thus, for the European

continent there is a rule to tiie effect that if a cyclone

moves to the east, there is a high pressure and high tempera-

ture region to the south of the center of the cyclone, and

if a cyclone moves to the west, such regions lie north of

the center, etc.

Phe use of s;ecial meteorological satellites has

led to a great increase in prediction accuracy.

Long-term weather predictions are possible only when

probabilistic methods are used. Determinate methods are

evidently insufficient here.

The use of computers for weather prediction

In predicting the weather, we should also tuke in

account the determinate part (influence of the sun, of the

internal heat of the earth, etc.), the probabilistic part,

and the element of "pure" randomness. For example we can

compute exactly that if the sun were to be extinguished,

a uniform temperature of 141°C (i.e. a temperature much

higher than absolute zero, 273°C) would be established on

the earth's surface.

Increasing the accuracy of weather prediction means to

reduce to a minimum the part which we assign to "pure"

randomness, although this part will never he equal to zero.

At the present time approximately 20% of all weather

predictions are wrong. There are reasons to assume that

this figure can be reduced to 2-3%, while the predictions

can simultaneously be made more concrete (can indicate the

exact amount of precipitation, the exact limits of the

region where it is precipitated, the exact temperature,

etc.). The unpredictable "pure" randomness can be reduced
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to this small limit value,

Yor qualitative weather prediction it is necessary |

to solve a large number of equations describing the processes

in the atmosphere with a large number of initial data which |

vary within a wide range. Thus, to predict the weather for

a 24-hour period, approximately 3000 pieces of initial

meteorological information must be taken into account.

For a 72-hour prediction, this figure has already

risen to about 20,000. To solve the problem of long-term

prediction, up to a season, about 100,900 pieces of informa-

tion must be taken into account.

Processing such a huge volume of information is

unthinkable without computers which are very fast acting and

which have a large storage volume. Hence the Moscow World

Meteorological Center has already completely switched over

to weather prediction by means of computers.

The use of statistical methods requires the taking

into account of various relationships and connections

between active factors which have been brought to light

by many years of investigation. At the »resent time a huge

volume of information has been accumulated, and only the use

of computers makes it possilble: to mobilize the "memory

of the archives".

4he computer nakes possible continuous memorization

of weather information arriving from numerous (counted in

the tens of thousands) meteorological stations, proces-

sing of this information, and prediction of the weather on

the baais of the direct solution of aerodynamical equations,

and by computing probabilities (determinate and probabilis-

tic methods). Hence weather prediction is a typical multi-~

variate problem, since it requires indication of the vari-

ations of temperature, pressure ond othor quantities not

only with tine, but also over the surface of the planet.
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Moscow State University is carrying on operative

weather prediction. “he use of fast-acting computers has

made it possible for meteorologists to predict the pressure,

wind velocity, temperature, etc. not by synoptic methods,

as has been done up till now, but by the method of dynamic

meteorology. The basic equations connecting pressure, wind

velocityand temperature are the equations of motion,

continuity, state and heat flow, in whichall meteorologically

unessential terms (so-called meteorological noise) are

discarded. The problem of short-term prediction of meteoro-

logical elements consists of three stages: 1) analysis and

processing of initial material; 2) prediction for time T

of these intial data (T2l12, 24, 36 or 48 h); and 3) pre-

diction of the weather from the data obtained.

Solution of the problem of weather prediction for a

24-hour period takes 7 min of machine time.

At the NANWER laboratory (USA) a computer has been

set up which prepares weather maps for the navy. The machine

processes weather data arriving from 5000 meteorological

stations and on the basis of chese data prepares predictions.

for 24 hours in advance over the whole northern hemisphere.

Weather information at the point of interest is found by

interpolating the data obtained from meteorological stations

jocated near this point. The computer processes individually

data on pressure and temperature. Weather maps are drawn on

the basis of the calculations. The weather prediction

program was prepared on the basis of the statistical theory

and laws of meteorology. Five minutes is required to pre-

dict one weather component (for example, pressure).

Important weather prediction data can be obtained

froin investigation of the upperlayers of the atmosphere,

which is carried out by using meteorological satellites.

Thus, satellites help to determine the places of origin

‘
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Figure: 2. Prediction of the annual runoff of the Volga.

Anticipation time 1 year.

Key: 1) m°/sec; 2) year.

of typhoons and give a clear picture of overall planetary

atmospheric processes. Color photos of the earth made by

our cosmonauts also help in weather prediction.The huge

quantity of rapidly arriving variegated information re-

quires automation of observations and data transmission.

Hence reliable weather prediction can he ensured only by

detailed taking into account of meteorological data obtained

on the earth and in space and by the development and use

of suitable data transmission systems and computers.

Other geophysical predictions

It is hard to overestinate the vahe of prediction

in determining the prospects and most expedient forms for

using natural energy sources in the national economy [22].

Energy from river runoff is converted into electrical

energy at numerous hydroelectric power stations.’ Solar

a
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Figure 3. Prediction of the annual runoff of the Dnepr.

Anticipation time 1 year.

Key: 1) m>/sec; 2) year.

batteries feed the instruments and apparatus of satellites

and space ships. The energy of the tides will be converted

into electrical energy at our first maritime hydropower

station, the Kislogub Tides Electric Power Station.

As for other forms of geophysical predictions,

connected, for example, with the mean annual water discharge

ab rivers, the annual precipitation totals over large areas,

the annual energy totals of earthquakes, etc., great suc-

cess has been obtained due precisely to the use of probahbilis-

tic methods of prediction. Thus, Yu.M.Alekhin /1/ has suc-

cessfully applied the method of Linear extrapolation of

random time sequences to predicting the annual runoff of

rivers.

Figures 2 and 3 show graphs which reflect the results

of predicting the annual runoff of the Volga and Dnepr.

The results were obtaned for an anticipation time of one

year.
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Prediction of earthnouakes

Large earthquakes liberate a huge amount of energy,

stored in vhe svcresses of the rock layers of the earth, which

is equivalent to the simultaneous explosion of several

atom bombs. Marthquakes arise unexpectedly, and it has not

been possible to find whether they depend on time in any

regular way. At the same time, as far as space is concerned,

the earthquake probability is clearly shown: 75% of all

earthquakes occur in the seismic belt surrounding the.

Pacific Ocean, 20% are observed in a second seismic belt

passing through Burma, the Himalayas, Iran, the Mediterranean

Sea and the Azores. Only 5% of all earthquakes occur outside

these two belts. Thus, prediction of the exact time of an

earthquake is the most difficult problem.

A network of observation joints is being organized

to predict earthquakes in seismic regions with sufficient

accuracy. Complex measuring devices are used to meamre the

contraction and inclination of the earth's surface. Indirect

quantities are measured: speed of passage of seismic waves,

changes in the electrical conductivity of the earth, and

magnetic declination.

Japanese scientists, in particular, have shown

that the change in the magnetic declination caused by

contraction of the upper layers of the earth's surface is

the most essential factor in making it possible to increase

the accuracy of prediction of the time of an earthquake.

Figure 4 shows a typical curve for the variation of the

magnetic declination /55/7.
The characteristic peak of the increase in the mag-

netic declination precedes a strong earthquake. It is

evident from the curve that the time can be: predicted for

several months with an accuracy of up to two or three
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Figure 4, Change in the magnetic declination.

Key: 1) Angle of declination (min. ).

weeks. Further increase in prediction accuracy is also

possible.

Prediction of the level of ground water

In connection with the design and construction of

hydrotechnical installations, for example reservoirs, the

problem often arises of predicting the level of ground

water in the surrounding mountains. .

Variation of the ground water level is a protracted

and aperiodic process. Prediction consists of calculating the

displacement of the boundary of the free surface (depression

surface), for which it is required to solve nonlinear

equations of the parabolic type. Here there are concrete

initial and boundary conditions which define the history of

the process and the geological structure of the mountains

and which take into account variation of the filtration

factors in the volume being, investigated.

The difficult part of the problem is the solution of
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these equations. By linearization, the function under

investigation can he reduced to an equation of the type of

‘the heat conduction equation.

Complex computing devices are used to solve such

problems: grid integrators, models using electrohydrodynamic

analogy, computers. | |

The determinateness of prediction in the given case

is determined by a clearly expressed and exactly defined

influence,

There are cases where the variation of the ground

water levels is determined hy a set of different causes.

In such cases, variation of the ground water level can be

interpreted as a stochastic process depending on irrigation,

drainage, amount of precipitation, and fluctuations of the

water level in rivers (the two latter influences are in

themselves stochastic). In these cases, the whole theory

of prediction of random processes is completely applicable,

Prediction of correlated processes

In the example of the problem of predicting earth-

quakes, it is important to note that, unlike the other

problems, the prediction here is made by observation of

processes connected (correlated) with the :process in which

we are interested (by magnetic declination). This method is

oa general one and has a wide range of application.

Often the prehistory of a process which we need to

predict cannot be traced, but we have data on another

process connected with the first by a functional or cor-

relational connection. For example, in regulating an in-_

dustrial process, we can predict the changes in some para-

meter or other without resorting to direct measurement of

it, but using data on another parameter connected with the
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first. This is especially important in cases where some of

the parameters are hard to measure, or where directly taking

information from the object is undesirable.

In the most general prediction formula, besides

terms which reflect the basic process at a given moment and
its prehistory, there are terms which determine the para-~

meters and prehistory of other quantities correlated with

the given process,

Attempts at setting up formulas (rules or algorithms)

for the most exact predictions, which take into account

all the above factors, show that the use of such formulas

is connected with a huge volume of computational work,

Also, programming on large computers is only possible with

companatively simple algorithms. Hence a feedback system

should be used. In the program for a computer or ina

specialized element~by-element device, a search is carried

out for the best prediction algorithm (with the given

volume of the device). The machine automatically leaves in

the program (prediction formula) only those terms whose

effect on the prediction accuracy is shown to he essential.

In ‘chapter 4 we shall consider the examples: of predicting

the amplitude of ocean waves, operational indices of an

enterprise, levels of a river bottom and prediction of

atmospheric pressure, and these examples will give more

concrete expression to this method of self-adjustment of

the prediction formula.

One-dimensional and multidimensional prediction problems

In the simplest case it is required to predict the

variation of a quantity or series of quantities with time.

This prediction problem may be called one-dimensional.

The prediction of the weather on the earth's surface is an
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example Of a more complicated multidimensional problem,

since it i8 required to consider the process not only with

respect to time, but also with respect to space. Sometimes |

cases arise in which the processes are purely random with

respect to time and at the same time are probabilistic

with respect to space. As examples, we may cite the problems

of predicting the load of power systems, the distribution

of agricultural plant pests, the prediction of earthquakes,

and many others.

The use of mathematical prediction in the planning

and regulation of power systems

During the past years, computation centers having

digital computers at their disposal have been set up in

every large power system. These centers solve the problems
of the optimal development of the system, expansion of

the existing electric power stations and the construction

of new high-power ones. Long-term predictions are made

to determine the possible demands for electric power and

heat. This prediction must determine the level of develop-

ment of the generators and transmission network, as well

as the yield of fuel and the development of other power

sources,

‘This problem is obviously multidimensional, since it

is necessary to determine the variation of the quantities

involved not only with respect to time, but also with respect

to space: it is required to point out the places of con-

centration of consumers and generating stations.
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Prediction for protection of plants from pests and

disease

Prediction for plant protection is also a multi-

dimensional problem. It i868 required to predict where, when

and in what quantity plant pests will appear in order to.

take the necessary protective measures. As of yet, mathemati-

cal methods have not been used to solve this problem,

Prediction is made by purely empirical rules. For example,

by counting the number of pupae in spring, we can predict

the number of caterpillars in summer, etc. Reference /387

cites examples of the successful prediction of the apyear-

ance of the Coloradian bectle, potato blight, etc. There is

every possibility of increasing the prediction period and

accuracy with the use of digital computers.

Prediction in bidogy and medicine

| The past decade has been marked hy the intensive

introduction of mathematical methods and the techniques

of computation and technical cybernetics into medical and

bilogical research and practical medicine. For a number of

years "inedical" mathematics has been in the main limited

to the use of the methods of mathematical statistics for

processing the results of observations and investigations

and for quantitative evaluation and confirmation of the

correctness of conclusions.

At ,resent there has been a great rise in the interest

shown by physicians and other bidogical scientists in

various mathematical methods right up to the latest achieve-

ments in the field of technical cybernetics (information

theory, game theory, queueing theory, theory of pattern

recognition, etc.).
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Tite use of the Latest techniques of computation and

technical cybernetics has made possible a qualitatively new

approach.to the solution of many problems connected with -

the investigation of living organisms...

The new sciences which have arisen as a result of

the fruitful cooperation of mathematicians, biologists,

and engineers~-- biological cybernetics, bionics, neuro-

cybernetics-- are developing rapidly and enriching biologists
with new datason the Living organism, at the same time

helping those working in the exact sciences to take into

account the experience accumulated by nature when they

develep their high-efficiency technical devices.

Another big step in this direction is the use in

bidogy and medicine of the theory of statistical prediction
and corresponding techniques.

The development of neurosurgery and heart and lung

surgery, with the ever increasing complexity of the methods

of surgical intervention in vitally important organs,

brings out the importance of the problem of developing

automatic regulators for a number of physiological para-

meters of the human organism.

In the process of developing these regulators, it

is necessary to take into account the special features of the

reaction of the living organism which determine its com-

pensatory possibilities. Sudden and sharp functional dis-

orders do not arise immediately after the onset of the

action of a noxious factor, but only after a definite time,

during which the compensatory mechaisms are disturbed and

then break down. Hence for timely connection of automatic

repulatorg and in the process of their operation, a definite

anticipation is necessary.

Predicting devices operating in sequence with instru-

ments which register changes in various indices make it
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possible to forestall possible disturbances in the course

of operation.

The use of predicting devices for processing the

data of investigation of patients with progressive illnesses

will make possible a more exact judgement as to whether a

given method of cure is timely and indicated.

Prediction in control of industrial processes

Modern industria enterprises are marked by a high
degree of automation.

The continuous increase in the number of measuring

and recording devices, modelling by means of cemputational

techniques, the study of statistical and dynamic character-

istics of units-- all these measures are intended te attain

a basic goal: the optimal regulation of industrial processes.

The technological installations of chemical enter-

prises, the units of the metallurgical industry, large
organizational and planning systems, and many other units

are characterized by great inertia. Fer example in the eil

industry, when automatic quality analyzers are used, the

results of the analysis become known 20 to 25 min after

selection of a preduct specimen.

Thus, regulation by quality index is performed with

a large lag. It is obvious that if the instruments were

capable of predicting the future changes in technological

parameters on the basis of an analysis ef their preceding

changes, the quality of regulation could be greatly increased.

Large volume and laboriousness of operation charac-

terize the enterprises: of the mining industry. All-round

automation of large coal and ore pits is an extremely pres-~

sing problem. The optimal regulation of mining machines

and transport units, dispatcher's service, and many other
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preblems:- are solved by using the latest mathematical methods,

the techniques of cemputation and technical cybernetics.

In developing.automatic centrol systems for mining-transpert
complexes aad individual machines, great effect may be
obtained by using the methods ef the theery of statistical

predictions and devices based en these methods,

Further success can be expected in connection with

the use of the theory and techniques of statistical pre-

diction in the sphere of organizing and planning the natienal

economy taking leng-term plans inte acceunt.

At different stages of preduction autemation and

for different centrol preblems, the methods and techniques

fer solving these preblems must be different. If, for example,

a contrel problem can be solved with sufficient effective-

ness by a single-circuit automatic control system, then in

order to raise the quality of regulation with prediction,

a specialized predicting device may be used which is based

on a definite prediction algorithm. With multicircuit

regulation we can alse develep a specialized device for

predicting preduction indices depending en many facters,.

However, taking into account the fact that centrel

problems are censtantly growing more complex and that

contrelling computers are consequently used, in a number

of cases it is net necessary te develep specialized pre-

dicting devices. Their functiens can be successfully ful-

filled by the controlling machines.

Aw cencerns specialized devices fer predicting the

future values ef various preduction indices, here great

success can be expected from the predictive use of pattern

and situation recegnition systems. Intensive werk is pre-

sently being done in the field both here and abroad.

In conclusion it sheuld be said that the use of the

achievements in the theory and techniques of predictien is
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a@ necessary condition for further improvement on the road

te optimal centrel.

‘The examples considered do not at all exhaust the

fields of application of the theory of statistical predictien,.

As the theory is further developed and perfected, its

methods will undoubtedly be ever more widely intreduced

into the practice of scientific investigation and inte

various sectors of the national ecenomy.

The succeeding chapters will consider metheds for

predicting determinate and random precesses.

Much attention has been given te the medelling of

predicting filters en universal digital cemputers and to

the use of various methods for predicting actual processes.

Especial space is devoted te expesitien of the

problema connected with the use of recognitien systens

as predicting filters.
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Chapter 1.

gr asting determinate precesses. Interpelation

and extrapelation

Preblems of interpoldion and extrapelation

In determinate precesses the random deviations are

se small that these processes can be calculated in advance

quite accurately. Examples ef such processes are the metion

of the heavenly bodies, and alse the motion of simple

mechanisms, for example a pendulum, every change or dis~

placement eccurring exactly according to a time table or

a graph, etc. The laws geverning such precésses are some-

times known and can be expressed in the form ef analytical

functiens, graphs or tables (for example, a train timetable).

Often these functions are unknown. But they exist,

and in accerdance with them this or that process er motion

occurs. These functiens are the selutions er, in other

words, the integrals ef the dynamic equations of the mech-

anisms or systems in which we are interested.

In studying determinate precesses, there arise

two types of problems cennected with the determination of

the values of some functien at the peints which interest

us from the known values of these functiens at other points.

Let us consider these preblems. !

The preblem ef interpolation consists of finding

vulues of a function within the segment ef ebservation,

Here, the function itself, as was peinted out, may not be

known. But in the majority of cases it is necessary te know

te which class of functions it belengs, i.e. whether it is

expressed by a straight line, a parabola ef the second —

degree, » cubical parabela, a harmenic function, etc.

Let there be known the values ef the function £(t,);

inl,2,.-+.,n at the peints t, <t, < ee < t,. It is required



te determine the values of this function at the points ty

whichie between the given peints t. < t. < toale

Fer.‘example, with linear interpolation the value

of the fuaction at some median peint to <tc< t) is

[0 =FE)1+Hee. (1)
The preblen of extrapolation consists of finding

values of a function at a point lying outside the region

of observation from its values within this segment. Phe

most commen types are linear and panabelic extrapolation,

with which the function is expressed by a parabela of the

second, third er higher order. Ordinarily, the less the

time fer which the precess is extrapolated, the more exact

is the determination of the future value of the functien.

This is due te the fact that the indicated functiens
only approximately represent (appreximafe) the actual laws

geverning the precess.

Selection ef an approximating pelynomial

As has already been said, the form of an appreximating

function is determined by the physics of the process and,

consequently, corresponds to the form of the solutions

(integrals) of the dynamical equation of the system. For

example, if it is known that some set of numbers expresses

the angle of deviatien of a pendulum, it is clear that they

must satisfy the law of harmonic oscillations. The preblem

is much more complex if the physics of the preblem is

not knewn and we do not know the form of the solution

function. Then we should choose the form of the apprexi-

mating function so that it will pass through the giver

peints in seme eptimal fashion.

In many cases the initial information is given in
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the form of a finite set ef points (selection), and the

problems of interpolation and extrapolation will be com-

pletely solved if we find an analytical expression which

all these points satisfy.

Let us assume that we are given the following

selection of data:

t= 1 2 3 4 5

f= 1,111 1,248 1,417 1,624 1,875

It is assumed that the selection is sufficiently

representative, i.e. reflects sufficiently well all the

basic preperties of the functien. Let us begin the selection

ef the appreximating polynemial with the simplest expression.

Let us assume that the precess is described by the straight-

line equation

fel = a + bt : (2)

Arbitrarily selecting twe points of the selection

(for example, the first and the last), let us write the.

straight-line equation twice

1,411 zsazdei]1

1,875 =a¢be §

We have obtained a system of two equations in two

unknowns, i.e. the coefficients ef the approximating pely-

pomial a and b. Selving these equations simultaneously,

we obtain

a = 0,920; b= 0,191

New we can see whether we cerrectiy guessed the

form ef the appreximating polynomial. Fer this purpose

let us find the values ef the appreximating function at

the same values of the argument
“Here and fellowing, an asterisk indicates a predicted value.
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te2 2 3 4 5

fe= 1,111 1,302 1,493 1,684

—

1,875
ook

‘The aveuracy of the approximation can be estimated

frem the variatien

ow ,)8 :

Ihe less the variatien, the more exactly we have chosen the

approximating pelynomial and the nearer will be the pre-

dicted values to the actual ones,

Let us repeat the same investigation for a parabela

of the secend degree: os

m= a+ bt + ot? (4)

Arbitrarily cheosing three points (for example, the be-

ginning, middle, and end of the selection), we obtain
a system ef three equatiens in three unknowns

lilieat+ob-14+e-l,

1417=—a+6:3+6¢-9,

1,875 =a + 6-5 + ¢-25,

Selving these equations, we find:

qm 1,015; ° 60,077; ¢= 0,019.

The quadratic. approximating pelynenial gives this sequence

ef values fer the functien:

{= | 2 3 4 §
| ft ew DEL 1,245 1,417 1,627 1,875.

Let us find the variatien:

bee100 = 0,79%.
eon



We see that the variation has decreased. Hence the pely~
nomial of the secend degree is a much better approximation

to the given function,

In erder te raise the accuracy of appreximation |

still further, let us pass te the polynomial of the thira:
degree:

[* =a+ ot + ct + dé (5)

Preceeding analegeusly, let us write the system ef four

equations in feur unknowns:

Lill=ato-l+el+d-l,

1417 =a+6:3+6¢-9 + 4-27,

1,624=a+.6-54+¢-16+ 4-64,

1,875 =a+ 6:5 + ¢-25 + d- 125,

Selving the equations simultaneously, we find

a= 1,0; b= 0,1; ¢=0,01; d=0,001.

Determining the variation, we see that it is zero:

o = 0, |

Hence the third-degree pelynemial exactly describes

the initial function. If such a result cannot be obtained

in other cases, we sheuld stop at the approximating poly-

nemial which gives a sufficiently small variation, of the

order of a few percent. If this cannot be achieved and the

variation remains large, this may be a sign that the

initial process is not determinate, that, besides the

regular cempenent in it, there is a large random component.

In this case the methods for selecting an approximating

polynomial discussed here are ne lenger valid. We must have

receurse te the methods for predicting randem processes,
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which will be discussed in chapter 2, which is devoted to

the prediction of randem processes,

| But if we obtain an expression which gives a gmall

or (better) a zere vaniation, the preblem of interpolatien

and extrapolation becomes trivial. Using the expression

obtained, we easly find the values ef the function in which

we are interested at any moment of time beth in the past and

in the future,

In the numerical example considered, we can "predict"

that when t=6, f= 2.187. We have deciphered the process; we

have found and equation which describes it.

Let us consider another example. Let us cite data

on the population of Eurepe for the period from 1850 to

1930 (in millions): 1850, 267; 1860, 284; 1870, 306; 1880,

9523; 1890, 364; 1900,399; 1910, 441; 1920, 449; 19350, 491.

Let us assume that we know only the values of the

populatien fer 1860, 1870 and 1880. On the basis of this.

infermatien let us determine the population in 1864; i.e.

let us solve the problem of interpeltion. Using the formula

for quadratic interpolation (4), we obtain:

Q— b+ C = 284,

a == 306,

a+ 6 +¢ == 332.

For values at different distances from one another

it is convenient te denote the argument as follows: we

take the first value, 1860, to be -l1, the second to be O,

and the third te be 1. Then the value of the argument at

the point to be predicted, 1864, is 0.6.

Selving these equations, we find the values of the

coefficients
a= 306; ba 24; c=2,

~34w



Taking into account the computed values of the

ceefficients, let us write the interpelation formula in the

form |

f= 806 1 24f 4. 204,

Subetituting t=-0.6 into it, we obtain

Jno = 306 4+ 24 (— 0,6)+ 2(-— 0,6)! == 292,32,

Rounding off to integral values, we obtain a popula-~

tien ef 292 million.

New, proceeding from the assumption that the law

which holds within the interval is valid outside of it,

let us determine the pepulation in 1900, 1910 and 1920.

This is a problem of extrapolation.

Te selve the problem, let us use the basic preperties

ef interpolation fermulas. Fer an interpolation formula ef

the n-th order, these properties consists ef the fellewing:

a) n-th order differences

An = At! — An! Anzs Ar-l— Agwl os ,,, ©: const.

b) differences of the n+l-th order

Ans! = AS — At 93 AS ~= AS = Q,

For quadratic extrapolation we obtain

hieee — Sfiev0 -t- Sfreve — rove = 0,

whence |

Fan = 3:364 —- 3-332 -|- 306= 402 (miiiions of people)

If we use cubic extrapolation, i.e. put the fourth

difference equal te zere, |
Fone — Airave + Gfo00 —_ Afier {> free = 0),

we obtain a similar result:

Pron = 4:364 — 6-332 -- 4-306 — 284 == 404 (millions of people)



In fact the population for 1900 was 399 million.

As we see, the deviations are not very large. By

computing the variation, we can see which formula gives the

best predicted value.

Let us use these formulas fer predictingthe 1920

population. |

Frog == 3441 — 3-399 + 364 == 490
Prgp =4-441 — 6-399 4. 4.364 — 339 = 494 (millions of people)

But in fact the 1920 census showed a European popula-

tien of 449 million. The values 490 and 494 calculated by

the formulas appreximately ceincide with the results of the

1930 census, 491. Thus the prediction was wrong. But it

was not witheut use, since it enabled us te estimate the

great damage done te the European pepulatien by the first

imperialist war.

Automatic interpelation

The solution of problems similar to those considered

in the preceding example is the task ef statistics. The

volume of information te be processed is constantly increas-

ing, and the preblems themselves are becoming more and mere

complex. Statisticians are being helped by universal com-

puters.

The problem of automation of industrial processes

and optimal control: ef various units has required the

development of speciulized devices which make it possible

to sulve interpolation and extrapolation problems. For

example, fer programmed control of metal-cutting lathes,

it has been required te develep devices which could repre-
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duce the whole path of the motion from the known coordin-

ates of several points.

These devices have received the name of automatic

interpolators. They are widely employed in laying out

metal plates and sheets, in servemechanisms for contrelling

units which require high path accuracy, etc. Let us consider

seme examples of the simplest interpolators.

Linear interpolators

Figure 5 shows a block diagram of a linear digital

interpolator whese imitial data are the values sinc and

cosc~ , where ~ is the angle of inclination of the path

to be interpolated te the x-axis.

A similar interpolater is used for controlling the.

feed of the cutting instrument in autematic par.3 working.

When a scgment of length 1 is being worked, the values of

the sine and cesine of the angle ef inclination ef the seg-

ment being worked te the x-axis are intreduced inte registers

4 and 6. The value of the segment with given angle ef inclin-

ation at a fixed generater frequency is determined by the

time it takes the pulses te arrive at the dividing circuit 2.

This time in turn is given by the pulse sum x+y (the number

ef pulses correspending to complete ceerdinate displacement).

As seon as a pulse sum x+y equal te the number registered

on ceunter 8 is established, the latter emits a cycle

termination pulse, and pulses from the generater cease

arriving at input 2. The insturment feed is centrolled by

signals at the busbars "x-axis" and "y-axis",

Let us cite some more examples of linear interpola-

tors. In the interpolater whose block diagram is shown in

Fig.6, the initial data are tanx and A x.
The linear interpelator in Fig.7 is censtructed
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Figure 5. Linear interpolator: 1) pulse generater; 2) fre-

quency divider; 3,5) rectifiers; 4,6) registers; 7) "or"

circuit; 8) counter; 9) cycle termination pulse.

on the basis of a digital integrator /427. Its. principle

ef operation consists of the following.

If a constant number is introduced into the register

of the interpolator, then m accordance with the expression
ty= 2% (6)

when t=#T we obtain

i oy

Here at the output during a time equal toe the period
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Figure 6. Interpolator with Figure 7. Interpolater en

‘initial data Ax and tan ~ : the basis of a digital in-

1) pulse generator; 2)counter; terpolater: 1) frequency

3) register; 4) rectifiers; divider; 2) register; 3) ce-

5) summing device; 6) cycle incidence circuit; 4) "er"

terminatien pulse. circuit; 5) averaging cells.

T ef operation of the frequency divider there appears a

nunber ef pulses equal to x.

The interpolater supplies discrete values of the

function y, which we shall denote by y*.

Errers in automatic interpolation and methods fer

raising accuracy

Of especial interest is the problem ef the magnitude

ef the error ef digital interpolators and the methods fer

raising their accuracy.

_In £427 B.A.Sigev gives an expreaton for positive
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Figure 8. Interpolation error as a function ef the number

of discharges of the initial number.

and negative maximum errer:

A (zt)max = +tt , (7)

Here m is the number of discharges of the initial

number x. It is obvious that as m increases the error

increases, and when m> 3 we can assume that the error
increases linearly. Figure 8 shews this function in the

fonm of a graph.

Te decrease the error A max it was prepesed te

introduce a certain number of trigger cells, h, inte the

eutput circuits. In what follews we shall call these averag~

ing cells. A dashed Line surrounds these cells in Fig.7.

In the absence ef averaging cells, the number of

pulses at the evtput of the interpolator would be equal to

the sum of the numbersef pulses along the epen channels:
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Figure 9. Interpolation error as a function ef the number

of averaging cells.

m-t|

yt = Skim. 8).
£20

in the form

m—t

[Ae] °= > ,

where h is the number of averaging cells.

Now the value of the output quantity can be written

 

Fer the maximum pesitive and negative errors, we will

have the expressions

—m+l

A(+)anx= Sapte?
and 1a.2" 09)

A (—)mex = —( dm — Wage + 1 ‘ (11)
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It follows from these formulas that, as the number

of averaging cells is increased, the maximum positive and.

negative erros decrease (Fig.9).

The:'errer can be further decreased by introducing

some initial number s (bias) inte the averaging cells.

The expressien for y* can now be written in the ferm

m—| |
\'
os ny +s (12)

Yn,.3 = sdQ'

Omitting the intermediate conversiens fer the above

expressions for A (+)nas and A (-)wax and taking into

acceunt the bias s, we obtain

. 1
lim A(+)nsx =9? (13)

§ <= Qr—!

and
lim A (Jen = —>

how

$:= Qa—i

Indeed, the number h is unconditionally finite, it

being in practice very small. Usually the properties ef

circuits with 4 to 5 averaging cells are very clese te

limiting. For example, for m=30 we obtain

A ( ++)inax == 5,4;

h= 0, s==0

A (—)inax = om 5,4,

h=0,s=0
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Figure 10. Decreasing the interpolation errer by the initial

bias method.

and
A (+)max = 0,66; A (—)mex= 0,64.

h=5, 5 = 94 h=5, ¢=: 98

Decreasing the errer by means ef bias is shown in Fig.10.

The cross-hatched errer zone is equal to the discreteness

step. By changing the bias, we can obtain enly positive

er only negative errors or locate the error zene syametrically

with respect to the horizontal axis.

The use ef averaging cells and initial bias has alse

given positive results in the circuits of quadratic inter-

polaters. These circuits alse showed a great increase in

accuracy.

Linear-circular interpolator

When the path to be interpolated is a circle, linear-

circular interpolaters are used /24/.
Figure 11 shows a circuit for such an interpelator.

The device consists of two integraters and an inverter and

is intended to solve the differential equatien of the ferm



 

 

 

 

    
      

 

    
 

Figure 11. Linear-circular interpolator: a) functional

diagram; b) block diagram; 1,2) reversible counters; 3) fre-

quency divider; 4,5) rectifiers; 6,7) displacement measurers;

K) keys; 9) inverter.



dy . . x

ax | v
 

The selution of this equation is the circular equa-

tien 2
y + x" = Ro

If the keys K are epen, interpolation is done ona

straight line with an angle of inclinatien to the x-axis of

Xoa = aro tg  

Vo
When one ef the keys K is open, a parabola is re-

preduced; and, when the inverter 1 is switched out of the

circuit, a hyperbola is reproduced.

At the beginning of operation ef the interpelators,

the tetal displacements are set in the displacement measurers

6 and 7 in an auxiliary cede. The operation of the circuit

continues until registers 6 and 7 are overfilled by the

eutput control pulses arriving at them. |

Quadratic interpelators

To interpolate second-order curves of the form

yYy=& + bX + ox”

quadratic, or parabolic, interpolators are used. Figure 12

shows the block diagram of a parametric quadratic interpela-

ter. Its eperation, as with mest parabelic interpolators

described in the literature, is based on a difference method.

The quantities x, and y; are accumulated in the summing

devices 2 and 8, integral parts of these quantities being

emitted in the form ef pulses along the x and y-axes. The
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Figure 12. Parametric quadratic interpolater: 1) pulse

generator; 2,4,8,10) summing devices; 3-9) rectifiers;

6,12) registers; 7) frequency divider.

current values of the first differences A x,(t) and

A y,<t) are recorded in the summing devices 4 and 10. The

values of the secend differences A ®x,(t) and Ay,(t)

are kept in registers 6 and 12.

The eperation of the circuit is described by the

difference equations:

Ax, (t) = Axsy (t) +f x(t)

Ay, (+) = Ay.) (+) Xx y(t)

Figure 13 shows the block diagram of an interpelator

in which the x-ccerdinate is given by the equation

x =alt+bl -be,
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Figure 13. Quadratic interpolator with the argument given

by the equation xeat“+bt+c: 1,2,3,4) summing devices;

6,7) squares; 5) control device; 8) counter; 9) end-inter-

pelation signal. |

and the y~coordinate varies in accordance with the equation

Y= a+ ox+o.

A difference method is used to solve these equations.

Differences with respect to the x-coordinate are summed in

summing devices 1 and 2, and those with respect to the

y-coordinate in devices 3 and 4. Before the beginning of

operatien, the difference between the finite Yy, and initial

values of the coordinate Yu is registered on counter 8 in

an auxiliary code, After the counter is overfilled, a signal

for transition to the fellowing path section is emitted.
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Figure 14. Cubic interpolator: 1) integrating amplifiers;

2) scaling amplifiers; 3) pulse elements; 4) pulse generator.
Key: 1) Inout; 2) output.

Interpelators of higher erders

Figure 14 shews the circuit of an electronic device

for cubic interpolation. A discrete sequence obtained by

means of pulse-amplitude modulation ig used as input signals.

Interpolation is performed according to the formula

fa +T +1) =F (a) + df (a) + {Af (a) + SO
A?f( a

S|+ ai (84 @1-+ abe 184

where £(2 +T+7T) is the value of the function te be inter-

polated at instant <+T+7 3 < is the initial instant;

T is the arrival period of the discrete values of the

function tf; A tr, AW, A 5%¢ are respectively the first,
second and third differences of the functien f; 0 StS TT,

A Lees ); A 26( a2) and A®r(a ) are computed

from the formulas:
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A'f(a) =/(a+ T)—/ (a),
A?f (a) == f (a + 2T) — 2f (a-+ T) +f (a),
A? (a) == — f (a) -+ 3f (a -+-T) — 3f (a + 27) + F(a -+ 37).

The circuit of the interpolator contains three

integrating amplifiers, 1, two inverting amplifiers, 2,

three pulse elements, PE, which are controlled from the

pulse generator, PG. PG is controlled by the input pulses.

The pulse elements synchroneusly and in phase with the

arrival of the input pulses takes and nemembers for one

period the voltage from the outputs of the integrating

amplifiers. The constant times of the integrating amplifiers

and the transfer constant of the inverters, and also the

weighting factors for the components in the twe summing

circuits at the inputs of the integrating amplifiers 9 and

12, are chosen se that the voltage at the eutput at instant

2 +3T+ T will be equal to the value of the function te be

interpolated at instant .:. +T+ 7 . This is accomplished by

suitable selection of resistances.

The interpolator operates with delay 2T. The PE

circuit consists of a memory cemmutator, a key tube

and two separation amplifiers. The key tube is a dual

triode, half of which is connected in antiparallel. It is

contrelled by pulses from the RPG.

The input and output amplifiers are cathode follewers,

with a tube instead of a cathode resistance, based on a

dual triode.

Figure 15 shows the block diagram of an interpolator

of the fourth degree. The external devices of the inter-

polator are: a counting device 1 and a magnetic tape re-

w~h9-



 
Figure 15. Interpolator ef the fourth degree: 1) counting

device; 2) memory bleck; 3) summing device; /4) deceder;/
5) converters; 6) magnetic tape recording device;

7) pedestal frequency cenverter; 8) rectangular pulse

generator; 9) generator; 10) circuit velecity bleck;

ll) end-interpolatien block; 12) contre) bleck.

cording device. A pulse generator 9, which is contrelled

by a circuit velocity bleck 10, serves as a timing element.

A rectangular pulse generater 8 emits clearing signals

fer the recording converters 5. The recording bleck is

contrelled from the pedestal frequency cenverter 7. The

initial data and intermediate results are recorded in
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memory device 2. With suitable initial setups in summing

device 3, the circuit repreduces the function

x =f (y)

where x is a solution of the equation

4
ax + bx? + cx° + ax - y = 0

The results of solution are fed through deceder 4

and converters 5 te the recording bleck onte magnetic tape.

Central controlling device 12 and end-interpolatien

bleck 11 contrel the operation of the circuit.

Autematic extrapolation

Automation of the solution of extrapelation preblems

is achieved by means of specialized computing devices,

extrapolators.

If the input of these devices is fed some function,

we obtain its anticipated values at the output. Herd beth

the input and output signals may be both continueus functions

and discrete sequences.

Discrete and continuous extrapolators

Let us consider some extrapolator circuits /18/.
Let us assume that we need to find the vahe of the functien

x(t) at the peint t, from the known values ef x(t) at the

peints t,, to, ty (see Fig.16).

Through the known points, we pass a second-erder

curve

xX (0) = alt 4- bt Fe.
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Figure 16. Extrapolation from three points: A) delay;

1,2,3) multiplication block; 4) summing device.

When t#0, ts» -A » t= -2A , we obtain Xtz = Cy

Xt, = x1, — bA + at,

1, =X, — 260A + 4aAi,

where A is the time quantization step.

From these equations we find an approximating poly-

nomial in the form

I
X= X;, + A (x2, — 4x,, -L 3X7.) ¢ rT

+ ar (Xt, — Xt, + X1,) 0

or

x; = SX, — 3X, + Xt,

ine anticipated value of the s:.,.ia. is v.ecl te the

sum of the preceding values, which are scparateu sfom one

another by the interval AV , multiplied by the corresponding

weighting factors. Figure 16 shows the block diagram of

the extrapalatior.

If we necéd to extrapolate a signal for an anticipa-

tion time T , the anticipated values are cemputed in the

form of a sun
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Figure 17. Continuous-signal extrapelator: A ) delay;

1) filter; 2) bleck for emitting delayed val ues; 3) sum-

wing device.

N~~

tesDT (14)

where Xi is the value of the signal at the i-th point;

r; is the weighting factor of the i-th term. But let us

point out at once that this formula is the first member

of Kelmogorev's extended prediction operator, which will

be considered in detail in the succeeding chapters. The

block diagram of an extrapolator based en formula (14)

is shown in Fig. i7.

A continuous signal is fed te a memory device, where

it is divided into: n=T/A equidistant values. “he signal

from each memory cell, multiplied dy its weighting factor

r, is fed) to a summing device. Since the input signal

ojgo



  
   

    

              

  

  

 
    
 

   

Figure 18. Discrete extrapelator: 1) control block; 2) cen-

verter; 3) shifting register; 4) weighting-facter block;

5) address formatien circuit; 6) memery device; 7) sum-

ming device.

varies continuously, we ebtain its centinuous anticipated

value at the eutput of the summing device. A similar extra- |

polator may either be in the ferm of an analogue computer

or may use digital elements €Fig.18). |

Converter 2 of the discrete extrapelator converts

the values of the continuous input signal inte digital

form. By means of shifting register 5 and weighting-factor

block 4, we can, in accordance with (14), sequentially

multiply the discrete values ef the function to be extra-

polated by the factors rye

Address ferming circuit 5 prevides for recording the

preducts Xir, on definite cells of memery device 6. The

products X,r, are then summed in summing device 7,
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Figure 19. Extrapelator for obtaining a centinuous antici-

pated signal from discrete input data: A) delay; 1) moter;

2) summing device.

Extrapolator for centinueus anticipation

Often the values of the quantity being measured can

only be: ebtained at discrete tines, and it is needed to

know the probable value ef the signal not enly at ame

future moment t+ At, but alse te have the continueus value

ef this signal in the interval [t,t+Atj. Using known

mathematical methods, we can seek the law of variation ef
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the weighting factors during one discreteness interval.

The circuit of a device which performs the task

of extrapolation in this form is shown in Fig.19 /187,
The discrete signal is fed to the memory cells with

the following signal shifted with respect to the preceding

by A. The remembered signals are continuously fed in the
form of a voltage constant in the interval A te scaling
potentiemeters. |

The resistance of these potentiometers varies ac-

cording to the law (t+k A ), where k is an integer.

The signal from the potentiometers, multiplied by r,, is

fed to the input ef the summing device. At the output we

ebtain a centinuous smoothed extrapolated signal.

Thus, with continueus extrapolatien frem known

discrete values it is necessary that the weighting factors

be functiens of time, ri(t).

Invariance cenditions and the synthesis ef interpolators and

extrapolators

The use of extrapolators and interpolators in con-

trol systems requires that their designers fulfill a whele

series of special requirements .

Depending on the concrete problems, these devices

must provide assigned accuracy, have a definite speed of

action, and be reliable and as simple as possible. Engineers

are aided by theoreticai methods. Great success in solving

these problems has been achieved thanks te the useef the

theory of invariance.

Invariance conditions

Figure 20 shows the circuit of an epem pulse serve-
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Figure 20. Open pulse servemechanism: 1) pulse mement;

2) continuous part.

mechanism. The absolute invariance condition for it is the

cendition that the input and output signals be equal at any

time.

Let us write the mathematical expression for the

transfer function of the open system

Z* (qe) =KG 0) X°(Q). (15)

Let x(t) denote the input signal, K(p) the transfer

function of the indicated continuous part of the systen,

and Z(t) the output signal.

Making the usual change of variables

fat, pop: ©, tant e(r=0, 1% i O<8<)),

let us write the components ef expression (15):

Z2* (q. &) = D (z(f)} =D [zJa, e]]} =D (Z(Q)),

K* (q, €) =D (k(t)| ==D (kfm, el} =D (Kg), (16)

X* (g) =D (x (O)}7=, = D |x [al] == D (X 9).

To the condition that the input signal be equal te

the eutput signal at any time

Z[n, e] =x {n, e] (17)

let us apply the D-transfermation.
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We obtain |

Z* (9, ©) = X*(q, @). (18)

| Taking (16) into account, we find the condition of

abselute invariance for the open pulse system:

K*(q, e) = Ae (19)

In a number of preblems with exact repreduction of

the form of the input signal, a lag in the output signal

is allowed.

In these cases, the invariance cendition is written |

in the form

2(f) == x (¢— a), (20)

where A is the delay time, er the shift between the

input signal x(t) and the output signal z(t).

Circuits based on invariance conditiens

Let the input signal be known in advance. Hewever,

the information arriving at the input of the system is

the values of the input signal at discrete instants. The

preblem ef censtructing interpolators and extrapolators

for such cases can be reduced te the construction of pulse

systems invariant in the sense of (17)-(20).

Methods for synthesizing such systems can be found

in more detail in Yu.V.Krementulo /37,28/.
Let us consider here only one discrete-continuous

system with an interpolator (Fig.21). The values ef the

signal at times t= nT arrive at the input of the inter-

polator. At the eutput we obtain a continueus function

x, (Q=x() + Ax(d),
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Figure 21. Discrete-cantinuous system with interpolator:

1) interpolator; 2) continous part; 3) comparison circuit;

4) input signal compounding connection; 5) compounding

connection signal.

where x(t) is a continous input signal, A x(t) the error

due to inaccurate eperation of the interpolator. By com-

paring signal x,(t) with x(t) at time Ean, we can decrease

the interpolation error. The correction obtained by com-

parison is summed with the output signal of the interpelat-

or.It is obvious that, when this method is used, correction

occurrs only at discrete instants.

Figure 22a shows an improved circuit. This circuit

uses an auxiliary memory device, also called an accumulating

filter /20/.
The correction obtained by comparing signals x(t)

and x, (t) at time t=n is stored in the memory device in the

interval n <t< n+l and is summed with the output signal
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Figure 22. Systems with interpolator: a) with accumulating

filter; b) rough-fine system; 1) rough interpolator; |
2) accumulating filter; 3) cemparison circuit; 4) fine

interpelator -

of the reugh interpolator. In the following interval

n+l1< T< n+2, to the output signal there is added the
correction obtahed in comparing x[n+l} with x, Laer|} ’

etc.

If, instead of a memory device, we use a second

interpolater, we obtain a more general cirouit (Fig.22b),

which is marked by the presence of rough and fine inter-

polaters. |

The principle of combining rough and fine systens
is widely used in technology. As examples we may peint out

discrete-continueus measuring and cemputing devices, and

servemechanisms with roughand fine reading of angles of
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rotation. The use of rough+fine interpolators and extra-

polators makes it possible in many cases to raise the ac-

curacy of operation of a system and to simplify the cir-

cuit.

The “rough interpolator" (RI) is synthesized accord-

ing to the invariance conditions. Small deviattions in the

output signal ef the RI, A x(t), are decreased by the

"fine interpolator" (FI). The FI converts the difference

between x[_n| and x,[nl into the correction o[n,<_| :

whose law ef change in the interval n<_t< n+l is deter-

mined by the interpolation law of the FI. In each concrete

case this law is chosen from the conditions: 1) accuracy

of operation of the RI; 2) accuracy of the whole system;

3) simplicity of design, etc.

In this chapter we have considered the problems of

interpolation and extrapolation and have acquainted ourselves

with the devices which make it possible to autemate the

solution of these problems. Here we have proceeded from the

assumption that the processes are determinate and can be

described by some analytical functions. The positive results

obtained taking this assumption into account confirm the

fact that the methods and devices used can be considered

acceptable.

But if we observe large deviations of the predicted

values from the actual ones,this indicates the presence in

the processes of randem components. In cases where the

random factors exert great influence on the course of the

processes, determinate predicttien is invalid.

Then we can use the theory of probability, the

theory of random processes, and mathematical statistics.

On the basis of these disciplines, the past two decades

have seen the creation of new methods united under the

general name of the statistical theory of prediction.



Chapter 2 ee

Prediction of stationary random processes

Topics in Brief from the Theory of Probability and the
Theory of Random Functions a

Random events. Random variables. Random processes

The results of experiments, multiple measurements,

the turning up of a number of pips en a die, and the falling

of a projectile at some distance from the target are all

characterized by an incenstant outcome.

In probability theory the various possible outcomes

of trials are called random events. Every trial is deter-

mined by one or several variable quantities. If, as the

result of a trial, these variable quantities can assume

various values, these variables are called random variables.

Let us assume that we choose at random some part frem a |

large batch of parts of one type. The dimensions of the

chosen part are random Variables. Since the results of

investigations and measurements are ordinarily expressed

in numbers, random variables can assume various numerical
values. If random variables assume values which are separ-

ate and iselated from ene another andiwhich can be enumerat-

ed, these randem variables are called discrete. Random

variables which continuously vary as a function of some

parameter ana whose values cannot be enumerated in advance

are called continuous.

The classical theory of probability deals with

"mass" random phenomena. A mass phenomenon is an aggregate

of multiple repetitiens of a phenowenen or actions “hap-

hazardly" considered as a whoie or without taking into

acceunt the chronelogical sequence.
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As distinct from the classicat theory of probability,
the theory of prebabilistic, or random processes, develeped

in the main by A.N.Kolmogorov and A.Ya.Khinchin, operates

with the processes and sequences (discrete processes) of

random phenomena. Random processes and sequences are ag-

gregates of random variables in the dynamics of their de-

velopment. They are the same mags phenomena, but they are

considered not in the form, for example, of a uniform

ensemble of random numbers, but in the ferm of a sequence

of numbers in the chronological order of appearance of the

quantities to which they correspond.

Examples of randem processes are changes in the

coordinate of a brownian particle, fluctuations in electric

circuits, vibrations of the units of a machine-teol during

its operation, change in the temperature of a patient

during the course of a disease, change in the bicelectric

activity of the brain, etc.

Frequency and probability

Let us assume tnat in a group of 1000 people, there

are people whose height is less than 165 cm. We carry eut

a series of trials. A trial consists of the measurement

of the height ef each person. As a result, it turns out

that there are 250 people in the group whose height is

less than 165 cm. We say that the frequency of appearance

of a persen less than 165 cm in height in the greup ef

1000 peeple is

wo = ~220. = 0,25
1000

sn the overwhelming majority of cases, when a trial

is repeated many time, the frequency of appearance of an

event A in a series of N trials acquires a stability. It
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very seldem essentially deviates from seme positive constant

number,

This positive number, less than ene, is the quantita-

tive expression of the possibility of random event A and

is called its probability.

The probability, usually expressed by the symbol

P(A), is, as it were, a physical constant connected with the

random event A. The frequencies of this event in various

concrete series of trials are random manifestations of this

constant characteristic, which expresses a completely

definite objective connection between a complex of con-

ditions and the random event. -The value ef the probability

changes as goon as the basic complex of conditions does.

The integral distribution function of a random

variable

Lat » (t) denote the probability that the random

variable x will assume a value less than t. > (t) is

called the integral distribution functions ef the variable

x. Since any probability must lie in the interval between

QO and 1, for all values of t we have

0--@() 21.

Let t, > t,. Then the probability that x< t, will

be greater than or equal to the probability .that x < tis

i.e. the function i) (t) cannot decrease with an increase

in t. Figure 23 shows a typical form for the integral

distribution function.

If the random variable x is a result -ef the measure-

ment of some characteristic of an object selected at random

from among N objects, d (t) in practice determines the

relative: portion of the objects for which x < t. The group
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Figure 23. Integral distribution function.

ef N objects is usually called the general aggregate.

Probability density function. Normal distribution law

Let 6 (t) be the integral distribution function

of the random variable x. Then the probability that

A A
t—-+- <*<it+sy

(when A> 0) is given by the difference

O(t 4-)—0(¢—

as A-> 0, the limit of the ratio

2+$)-el-4)
i * 2 = f(t) 

is called the probability density of the random variable x

at the point x=t. the prebability density f(t) is a function

ef t and is called the density function of the random

variable.

If the random variable x is discrete, the integral

distribution function is a step function,and the probability

-65~-



density function does not exist..

If we integrate the prebability density function

f(t) from t, te t, (t,< ta), the integral

te
11 (0 at

will give the probability that. x will assume a value between

2 and to. | |

One of the most important probability density

functions is the so-called normal probability density func-

tion (Fig.24). It is given by the expression

_ (tu)

N=! (21)

where /{ and Oare certain constants. We say that the

random variable x is subject te the normal probability

distributien if its prebability density function is given

by expression (21).

A ft)

 
\
'

. t
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Figure 24. Normal prebability density function.

Mathematical expectation and higher mements of a

random variable

The mathematical expectation, or the mean value of

a random variable, is the result ef the probabilistic
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density function does not exist..

If we integrate the prebability density function

f(t) from t, te t, (t,< ta), the integral
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11 (0 at

will give the probability that. x will assume a value between
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One of the most important probability density

functions is the so-called normal probability density func-

tion (Fig.24). It is given by the expression
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where /{ and Oare certain constants. We say that the

random variable x is subject te the normal probability
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Figure 24. Normal prebability density function.

Mathematical expectation and higher mements of a

random variable

The mathematical expectation, or the mean value of

a random variable, is the result ef the probabilistic
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averaging of the possible values of this random variable.

In this averaging, the probability of every possible value

serves as a weight for this value.

In particular, the mathematical expectation (mean
value) of a discrete random variable x whose pessible values
are N (finite) in number is equal to the sum of the products
of each of these values by its prebability

NV

MX := Dix, P(x), (22)
(1

where M is the sign of mathematical expectation.

A functien p (x) of a random variable is itself a

random variable. The mathematical expectation of the functien

(x-c )*, where k is any pesitive integer and c a constant, is

called the kth-order moment of x with respect to c. Of

especial interest is the case where c=MX. The mathematical

expectation of the function (x-MX)* is called the kth-erder
moment of x with respect to the mean. The second-order

moment with respect to the mean, i.e.

M(x— MX)! = DX, (23)

is called the dispersion.

The square root of the dispersion is called the

standard deviation, or the mean square deviatien.

For example, in the normal probability distribution

function cited above

(f—~w)e
oo “7l

lO= Ware §
the mathematical expectation of the random varible x is

equal to fh » and the dispersion to o,
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Conditional frequency. Conditional probability.

Dependent and independent events

Often from a whole series of trial it is necessary

to separate these as a result of which some event B has

appeared and then afterwards to determine the frequency of

the event in-which we are interested.

If the frequency of an event A is computed not for

all trials, but only for that sequence of trials as a

result of which event B appeared, this frequency is called

the conditional frequency of A with: respect to B.

Conditional frequencies possess alli the properties

of frequencies, including the property of stabilization

when the number of trials is increased without bound.

As an objective quantitative characteristic of event A

in its interrelations with event B, we can introduce the

concept of conditional probability in a manner analogous

to the way in which we introduced the concept ef the proba-

bility of event A.

The conditional probability of event A with respect

to B is the ratio of the probability that A and B will

occur together to the probability that B will occur

P (AIB) = ar (24)

If the conditional probability of A with respect

to B is not equal to the probability of A, event A is

called dependent on B. But if the conditional prehability

of A with respect to B is equal to the probability of A,

event A is called independent of B.

Example /14/. A mechanical shop has produced 100
cylinders. Of them, 15 are elliptical, 50 are conical,

25 are simultaneously elliptical and conical, and 10
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cylinders have no defects.

Event & consists of the fact that a cylinder taken

at random will be elliptical, and event K of the fact that

the cylinder will be conical:

P(E) 2 15 + 25 / 100 # 0.4

P(X) 50 + 25 / 100 = 0.75

P\ EK) 25/100 = 0.25:

Let us assume that @ randomly chosen cylinder is

conical. But it may alse be elliptical. Let us compute

the probability that our randomly chosen cylinder with

ene defect'also has the other.

From (24) we obtain:

P(EIK) = P(BK) / P(K) = 2.25 / 0.75 mw0.33

Analogously

P(KIE) = P(EX) / P(E) = 0.25 /0.4 = 0.625

It is obvious that in this case P(E/K)4é FCE) and

P(KIE)4 P(K). Hence E and K are dependent.

Basic concepts and definitions of the theory of random

functions

Random functions. Distribution laws. Markev processes

A random function is a function whose value for

every value of the argument (or several arguments) is a

random variable. A function obtained as a result of one

experiment is called a realization of a random function.

Random functions of time are usually called randon,
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or stochastic, processes.

For every given value of the argument t, the value

of a random function X(t) is an ordinary scalar random

variable. The distribution law of a random function is a

complete probabilistic characteristic of its value.

The one-dimensional distribution law of a random

function X(t) depends en ¢ as a parameter and can be given

by the one-dimensional probability density f, (x,t).

The twe-dimensional distributionlaw of a random

function is the name given to the jeint distributien law

of its values X(t, ) and X(t, ) for two arbitrarily chosen

values t) and \ of the argument t. In the general case,

the name n-dimensional distribution law of the random function

X(t) is given to the distribution law of the aggregate of

its values X(t,), eee, x(t.) for n arbitrarily chosen

values tis ceey t, of the argument t.

An example of random functions which are exhaustively

characterized by two-dimensional distribution laws are

Markov random processes.

A markovian random process, or random process withou

aftereffect, is the name given te a random function with

parameter t whose values when t,< to Loew t, for any n

form a simple Markov chain /18/7 In accordance with the
definition of a simple Markov chain, the conditional dis-

tribution Law of the value X(t,11) of the random function

at a future instant depends only on the value ef the ran-

variable X(t.) at the present moment and does not depend

en the values of the random variables X(t,), s+, X(t.)

at past instants.
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Figure 25. Random function.

Mathematical expectation and correlation function of

@ random function. Mutual correlation function

The mathematical expectation of the random function

X(t) is the name given to the function m(t) whose value

for every given value of the argument t is equal te the

mathematical expectation of of the value of the random

function at the same t:

 

m, () = MIX).

This is a certain mean function, around which greup

and with respect to which oscillate all possible realiza-

tions of the random function (Fig.25).

The dispersion is taken as a measure ef the scatter

ef a random function. This is a function whose value for |

every given value of the argument is equal to the dispersion

of the value of the random variable fer this value of the

argument.

In order to take into account the influence of the

values of the random function on each other for various

values of the argument, besides the dispersion, the cor-

relation moments of the values of the random function are



given corresponding to all possible pairs of arguments.

The correlation moment of the values x(t) and x(t')

of a random function X(t) is a function of the two inde-

pendent variables t¢ and t!:

Kx (ty UY) MIX () X(6+)), (26)

This function is usually called the correlation

(or autecorrelation) function of the random function X(t).

x(t) denotes the deviation of the random function X(t)

from its mathematical expectation (centered random function).

The mutual correlation function, or correlation

function of the connection of twe random functions X(t)

and Y(s) is the name given to the correlationmoment of the

values of these functions for arbitrarily chosen values

of their arguments t and s:

Kay (ty 8) = MX (4) ¥"(s)}. (27)

Random functions are called correlated if their

mutual correlation function is not identically zere. But if

the mutual correlation function of two random functions is

identically zero, these random functions are called un-

correlated.

Stationary randor functions. Ergodic property ef a

statienary random function /

The random function X(t) is called stationary in the

broad sense if its mathematical expectation is constant

and its correlation function depends only on the difference

between the arguments t and t':

mt, () == M [X (0)] == const,

Kx (t, U) = Re (%), (28)
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where ‘Y =t-t',

It follows from the definition that the correlation

function ef a stationary random function of one variable |

is a function of the one variable T,

The dispersion of the stationary random function

X(t) is

| D(X (Ol == Ka (0) =Re (0). (29)

The dispersion of a stationary random function is

constant and is equal to the value of the correlation func-

tion at the origin.

An important class of stationary random functions

is madeup hy the ergodic stationary random functions.

A stationary random function X(t) is ergodic if the

absolute value of its correlation function k(7) decreases

without bound as [t]-> © , i.e. if for any Z> 0, we can
find a quantity To such that

[Ae (i <e Whey It] >To. (30)

The random precesses described by stationary ergedic

random functions retain constant statistical parameters

in realizations of any length, no matter how large.

We have become acquainted with the basic concepts

and definitions of the theery. of probability and the theory

of random functions. In what follews, we shall operate

with these cencepts and definitions when we consider various

prediction preblems.

Prediction Quality Criterien. Optimality Criterien

Criterion of minimum mean-square error

The problem ef interpolation and extrapolation can
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also be formulated for random processes and sequences.

However, instead of speaking about finding the

values of a function within or outside of the segment of

observation, we should rather speak about finding some

function which can be determined from the initial values

of a random process from the point of view of satisfying

some general optimality criterion.

In most cases, such a criterion is the achievement

of a minimum mean-square error of deviation of the unknown

appreximating function from the initial random function

or from some point set (selection) whose points represent

the latter function.

In the general case, there is a minimum mean~square

error when

fe =| Foils: fay on En) df. (3!)

In (31), f* is the function being predicted; f,,

fo» county is a selection of the preceding values of the

function; P(£/£) fy5+- fy) is the conditional prebability

of obtaining f with Li rforesesfy

A remarkable property of the criterion of the minimum

mean-square error is the fact that this criterion gives a

unique solution to tie problem. Indeed, the equation

Mf—/*)' ma 2)
‘

describes a multidimensional paraboloid and, consequently,

with any way of varying the parameters of the predicting

model (of the mathematical operator or predicting device),

achievement of a minimum is unavoidable. At the beginning

of the fourth chapter we shall deal in more detail with

devices based on this criterion.

Let us consider some more prediction optimality cri-



teria.

Criterion of the minimum sum of the integral square error

and the dispersion of: the random error

If the function being predicted is the sum of a

regular component (useful signal) and a random stationary

component (noise)

(O=SH+ENO, (33)

we can formulate the optimality criterion as follows.

Letus write the integral square error in the form

e*di, (34)

where e == S(t + At) —S* (t + Af), (35)

In expression (35), S*(t+ A t) is the repular component of

the predicted function.

The predicted function can be written in the form

f* == S*(¢ + At) +- N* (¢ + Ad). (36)

Let us denote the dispersion of the random error by DN*.

The prediction will be called optimal if a minimum

is ensured for the sum with weight ga of the integral square

error (34) and with weight c of the dispersion of the

random error while this condition is fulfilled:

linve (¢) == 0, (37)
foy

Proceeding from this, we can formulate the problem

of analytical design of an anticipator /167. It is required
to find functions <(t), S*(t) and some weighting function

 (t) which satisfy (35), (37) and which minimize the
functional
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} = a | edt + cDN’°, (38)

The criterion just considered can be expediently

ugaed for designing an optimal system for filtering and

predicting processes described by expression (33).

Arbitrary optimality criteria

Let us consider a stationary random process which

is gaussian in the broad sense of the word. This means that

the signal is described by the expression
N .

S=mO+Bah, (39) 7
(as

fu

a linear combination of N known functions fi with coef-

ficients rii the coefficients r, are random functions which

also have a normal distribution.

A noise N(t) having a normal distribution is additive-

ly superimposed on the signal.

Thus, we are again dealing with prediction of a

process of the form

| N

where m(t) is a normal random signal; Zor: (t) - is

HO=SO+N(.

Optimal prediction is achieved with minimization of some

error criterion (value function) C(t ). In the case of the

mean-square error criterion C(T a €%, the optimal nonlinear

prediction is equivalent to the optimal linear prediction

in the Wiener sense /627 with the same error criterion.
A similar result is obtained in the case of even, C(- )=

C(E ), nondecreasing criteria. The conclusion is also valid

for asymmetrical nondecreasing error criteria.
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Let an arpitrary errorcriterion be given, fer example

in the form of a graph (Fig.26).

Pugachev's general theorem /39/7 states that in this
case an optimal nonlinear system (in particular, a system

which achieves optimal prediction) is an eptimal linear

system in the Wiener sense with weighting function w(t, %)

with the mean-square error criterion, to which is somevimes

added some constant "bias" MA :

f

OU MI= J wi, vide tp. (40)

If the orror criterion is an even function, the constant

bias is always equal to zero.

Let us cite an algerithm for synthesizing a nonlinear

eptimal system which minimises the mathematical expectation

of an arbitrary error criterion.

1. We seek a linear optimal (in the Wiener sense)

system with weighting function w(t,7 ). As a criterion we

here take the minimum mean-square error.

2.We will determine the mean-square errer by the usual

methods.

3. We will determine the mathemtical expectatien and

dispersion of this errer.



4. We will find the constant bias by minimizing

the integral

EiC(e= | Ceyfeedde, (41)

where f£(c ) is the probability density of the error of
the optimal linear system with unknown mathematical ex-

pectation m'.

Let us put

8 teSee(ce * de=0 (42)

and let us solve this equation for m'. Then

p=m—im, (43)

The eptimal nonlinear system is described by the

equation

OFO= J wt, vfde+p. (44)

The only limitation in Pugachev's theorem is the

condition that the random component ef the signal and the

random noise have normal distribution. However, in solving

actual problems by the method of modelling en analog conm-

puters, good results have also been obtained when this

condition is not fulfilled /60/.
The eptimal, most exact prediction is achieved when

the initial data (keys) have normal or gaussian distribution.

It is clear that even with the best, optimal predic- |

tion, we cannot count on the exact coincidence of these

functions: a random process always has some unpredictable

element of “pure" randomness. The prediction accuracy can
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be estimatad from the variation

== f°)b= £au 100%.

 

But even with optimal prediction of random processes, the

variation is not equal to zero. Only in predicting non-

random determinate processes, the motion of the heavenly

bodies for example, can the variation be zero, i.e. the

functtiion being predicted exactly correspands te the actual

process (with computational error)

N .

== b=0,

Besides the above criteria, attempts have been made

of late to use various game criteria, for example minimax

criteria, for synthesising optimal systems. Especially

effective is the use of such criteria in optimizing

"large systems" /37.

Below we consider a number of problems in the pre-

diction of stationary random process and sequences. In all

cases, our optimality criterion will be the minimum mean-

square error one,

Prediction of Stationary Random Sequences

The method and formula of A.N.Kolmogorov

For stationary random processes whose values are

known at discrete instants, the problem of extrapoktion has

been formulated as follows /26a/.
Let f(t) be @ real random variable corresponding

to every integral t in the interval - 00 <t < ©00o,

If the mathematical expectation



and the correlation function

Ka = MI(f (t+ Ad) —m) (FO—m)]

do not depend on t, f(t) is stationary. Without limiting

the generality we can put |

m= M[f ()]} = 0. (45)

Then

Ky = MIF (t+ Ad-f(O). (46)

The problem of linearly extrapolating a stationary
sequence which satisfies (48) consists of selecting for given

n 7? O and AtZo real coefficients ar for which the linear

combination

OO] = rE— 1) + ef E—2)+een FE—a) (47)

of random variables f(t-1), f(t-2),..., is an exact as

possible approximation to the random variable f(t+ At). |

As a measure of the accuracy of such an approximation  —__
we take the criterion

oFas M (f(t + A)—OF (1)*.

If we know several moments K at we-" speily

solve the problem of finding r, for which €2 =Tp min’

The problem of interpolation consists of estimating

f(t) from the values of f(t+l), £t+2), ooo, (ten), L(t-1),

coc, £( tan).

Here, as another measure of accuracy we can take

the criterion
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B= MEO-QUOIS
where

QUl= rll + YD bE + Db bellDe (48)

with constant real coefficients. The problem of interpola-

tion is reudced te the determination of <2.¢2 nin'-§

proof of the existence of Limits for cE and €7,;

as well as a solution of the problem of finding their

values is given in /36a/.
Let us consider an example of the solution of a

problem of linear extrapolation of a stationary random

process.

Prediction of the change in the quality index of a product

of the petroleum-chemistry industry

The prediction problem

Figure 27 shows a diagram for autematic regulation

of a thermocracking installation at a petroleum-processing

plant /31/.
The end product is thermecracking benzine, one of

whose quality indices is the temperature at the end of

boiling. An autematic analyzer determines this index every

half hour and records the value of Ty, Ctemperature at end

of boiling7 in °C by means of a recording instrument on
a cartogranm. |

Using the data on the values of TyC for a certain

interval of time preceding the instant t, we are required

to predict the values of T,,°C at seme future time t+ At.
In practice the interval Ot is equal to the time interval

between analyses. .
Let us rewrite the prediction operator (47) in the

form



 

 

 

    
     

 

  
 

Figure 27. Diagram for regulation of thermocracking instal-lation with quality analyser: 1) flow of raw material intocolumn; II) fractionating column of thermocracking instal-lation; III) condenser; IV) feed tank; V) feed flow;VI) end product (thermocracking benzine); vt} debenzinedproduct; 1) thermocouple; 2) potentiometer; 3) summingdevice; + quality analyzer; 5) regulator; 6) predictingfilter; 7 regulating valve; 8 sampling point for analysisof petroleum product.
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N

0 (f (0) => fr, ==? (0-1 Ad), (49)

where f, (i=l,2,...N) are the values of TexC at the pre-

ceding instants, and £°*(t+ A t) is the predicted value of
TyCe

The problem consists of findirig coefficients ry such

that |

eeME + AN—[t+ AN thin. (60)

The coefficients r, for which condition (50) is

satisfied are considered to be optimal, and we say of the

operator (49) that it has learned to predict the future

values of the given randam sequence,

Learning algorithm for predictien operator

Let us write the logical scheme for the learning

algorithm of the prediction operator

3 1 1. 2
$ECc tS) Rot. (51)

In expression (51):

E is the operator for computing the mean-square

error from the set of known values of the function (for

various values of the coefficients); |

C is the operator for comparing the_gomputed error

qa with the quantity chosen in advance £ which satis-

fies the required accuracy;

: c is a logical condition which is considered satis-~

fied when

min

vce, ’

is the operator for computing new coefficients;
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() is an identically false condition;

S is the operator for terminating the learning pro-

cess.

The algorithm works as follows. The elements of the

scheme operate one after another from left to right, begin-

ning with the extreme left.If the following element of the

scheme is a logical condition, two cases may arise. If the

logical condition in satisfied, the next element of the

scheme operates; but if it is not satisfied, there is a

transition along the arrow. The symbolfdenotes the begin-
ning of the arrow and | the end /337.

Firgt learning step. We determine the mean-square

error of the representation of the function f(t) by the

operator (49) on a known time interval with) arbitrary

values of the coefficients.

From the whole sequence we select the values theta

cons fyfiay and we compute -

eat ~~ hay

ha= Yih:

The sequence fh» Loyece of length k we call the

prehistory. Then we cake the sequence forlgrccerfyio and

compute (f°4-f,,o)* » where |

«+l

has2 nf,

etc.

The mean-square error over the set ef known values

of the function f(t) at the first learning step is given

by the expression N
y P Ss y-

my mk+] |

CfET
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Comparing the obtained error ee with ge we

evaluate the quality of representation of the function

f(t) by operator. (49) for selected values of the coeffici-

ents. If “ 74 min? We carry out the second learning step.

We change the values of ry in accordance with the

minimization algorithm for the function @ (rj).

We seek the value of the error at the second step

<2 and again comparc the obtained value with C ain

The learning process stops if, as a result of com-

parison of cy , obtained at the l-th step, with 2

we obtain

e

min’?

Ee 2wo

et Sein’

Now the operator is considered to have learned to

predicti the future values of the given function, and the

coefficients used for computing operator (49) are optimal.

The following value of the function is predicted

by means of realization of the algerithm fer computing

operator (49) when rien:

Solution and results

The prediction problem was programmed and solved

on a universal digital computer.

The function @ (r,) was minimized by the method of

steepest descent /4/. Table 1 shows the actual and pre-

dicted values of TxC Figure 28 shows graphs of the

variation in the actual and predicted values of TyC for

a different number of points ef the prehistory (k=2,3,4,5).

It is evident that the results of prediction depend on the

length of the prehistory. This question will be ceusidered

in chapter 4, where we will solve the problems of prediction

usivig an axtended prediction operator.
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Figure 28. Prediction of the temperature at the end of boil-
ing by the linear extrapelation method (k#2,3,4,5).

Key: 1) Number of ane‘ysis.
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Heferrarene: (2)  Mpeacksranmue snavenne

NWP onevenwe Kos | nai} Ke4 | nwh

182. 179 178 176,5 175
182 181 isi 179 177,4
161 182 - 18 181 i
183 181,5 181,6 181,5 181
183 182 82,3 1 182
185 183 182,6 182 182
185 184 183,6 183 183
186 185 184,6 184 183,4
181 185 185,3 185 184,4
178 1835 183,3 184 l
177 179,5 182 182,5 162
178 177,5 179 {80,5 181.4
178 177,8 177,6 178,5 }
178 178 177,6 178 178,4
178 178 178 177,75 177,8
177 178 176 177,76 177,8
177 177,56 177,6 177,78 177,8
177 177 177,3 177,58 177,6
178 177 177 177 28 177.4  
 

Table l.

Key: 1) Actual values; 2) predicted values.

Prediction by exponential smoothing formulas (Brown's

method )

The theory of exponential smoothing /50,50a/ has of
late been greatly developed.

Exponential smoothing (Brown) is based on the as-~-

sumption that the value to be predicted of some function

f(t) can be expressed by a Tayler series:

feoat = fr ++ TY, -}- x St (Ad) ef

tae Ge (Ad (52)
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The terms of the Taylor sevies are expressed by

exponential smoothing formulas.Here we give a formula for

an exponentially smoothed quantity of the first order:

S, (f) = af, + (1 @) Siu: (53)

Thus, the new averagedvalue §4!) is equal to the

last known value of the function f(t)  sultiplied by the

factor < (where o<1) plus the preceding averaged value

S,_) multiplied by (1-0). When o #1 we obtain a trust-

worthy transcription of the past values, i.e. a prediction

according to the "no change" rule.

Less sensitive systems, which can be used with large

noise, use values 1 >> 0.5, and more conservative ones

0.5 >*%>0.1.

S}() = aS, () + (1—a)S_,

STO = eS) + (1-9)Ss Os (54)

SF (f) = aSP—!(f) + (12) St,0.

Now there remains to express the terms of the ‘taylor

series in terms of the averaged quantities. Depending on

hew many terms of the series we use, the following formulas

are used.

One term of the series:

fawehi aS. (55)

Two terms of the series:

hawt + HE oe f, = 2S, (f) — S3(/); (56)

4=5 18,1) — SH.



Three terms of the series:

has=ht+ 4 At + + a (Ad);

I, = 8S, () —382 () + 8} (N); (57)
a}
at =Tar ISN28+SN

d} 3“= Tayi (6 — 5x) $2 ) —2 (5 ~ 4a) $2) +
+ (4— 3a) $3 (f)j.

Numerical modelling

A predicting filter based on operator (52) should

the following operations:

1. Compute the exponentially smoothed quantities and

required orders in accordance with (54).

2. Determine the terms of the operator

df(t) df(t)POs Grr apres in accordance with (55)-(57).

3. Sum the terms of series (52).

The algorithm for the operation of the predicting

filter can be written in the form

3 I j 2 2 4 4 3

YTtSatX {DB tstytOjfot,

where T is the operator for emission of the values of the

points of the prehistory (shifts along the sequence being

predicted);

‘ is the operator for computing the exponentially

smooth quantities;

A 3s a logical condition, fulfilled when Ss. is obtained;
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X is the operator for computing f(t) (first term of

the series);

Dis the operator for computing terms of the second,

third, etc. orders. |

f is a logical condition, fulfilled when an operator
term of higher order is obtained;

+ is the operator for summing the terms of series (52);

‘Y is a logical condition, fulfilled when the anticipa-

tion cycle is terminated;

O is a stop;

( is an identically false condition.

Figure 29 shows a fliow chart for the realization of

the algorithm on a digital computer. Besides itself real-

izing the prediction algorithm, the program provides for

operation under conditions with variable coefficient ™ .

The quality of prediction is estimated from the mean-square

error for various values of ~ . As will be proved later,

the coefficient ~ depends on the statistical character-

istics of the sequence being predicted and can take dif-

ferent values for different real processes.

‘he program allows during the process of operation

with the initial data of the process being investigated

the selection of an optimal value of & for which_the best

prediction quality is obtained (in the sense of & min ).

Yhus, the digital model of the predicting filter operates

in the learning mode and, after determination, is switched

into the general program for solving the control problem. |
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Fig. 29. Block diagram of modeling a predicting filter based

on the exponential smoothing algorithm

Key: 1. introduce numerical ensemble into memory; 2. convert;
3, send initial values of a and number of intervals r; 4. erase
cells; 5. send pseudo commands, form counter; 6. compute;
7. form commands S,-—» w.c.; 8. form commands t,-> w.c. (depend-

ing on n); 9. send numbers (prehistory) to working cells (w.c.);
10. send to cell; 11. add il to Ly 12. readdress pseudo commands

for next step; 13. compute z° and print Ly ; Ly; 14, changea ;

15. stop.
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Prediction of the change in quality indices of

petroleum products and investigation of a

predicting filter

As an example let us consider the prediction of the

temperature at the end of boiling of direct-distillation

benzine. In solving this problem, we shall use the data

with which we operated in solving the prediction problem

by the method of linear extrapolation.

Let us set the value ~#0.1. Let us take the predic~

tion interval equal to 50 min as a unit. As in the linear

extrapolation problem, prediction will be performed from

2,5,4 and 5 points of the prehistory..

For k=2:

when f==—2 S(f) == 182; $2, (f) == 182;

when f=x—1 §_,(f) ==0,1- 182 + 0,9- 182 = 182:
S?, (f) = 0,1- 182 + 0,9- 182 == 182.

Let us use two terms of the Taylor series

fs = 2S_, () — S?,(f) = 2- 182 — 182 = 182;

df=Tox$1 N—S2, (= 0;

fo =f + a Al == 182.

For Kad:

when f2:—3 S_g(f) = 182; S2,(f) = 182;

f==—2 So (f)=0,1+ 182 + 0,9- 182 =: 182:
when S?, (f) == 0,1+ 182 + 0,9. 182 == 182;



 

 

 

       

( 5 Aeferan- Le) Npeackasanime snavenun
TeAbHINe
Saven ee | K:-3 | Ke-4 | Ke

178 18} 185 183 ,2 181,8
177 178 18%,| 183 ,4 183,4
178 177 185,4 185, 1 183,7
178 178 180,7 184,7 184,7
178 178 177,9 184 ,6 183 ,9
178 178 177,1 180,3 183,8
177 178 178 178 180
177 177 178 177 ,2 177,9
177 177 178 178 177 ,3.
178 177 177,9 178 178
178 178 177 177,9 177,9
180 178 177 177,8 177,8
180 180 177,1 177 177,7
179 180 177.9 177,1 177,1
177 179 178 ,2 177,2 177,2
173 177 178 178,2 177,5
174 173 179,9 178,4 178,4
171 174 178 ,8 179,9 178,5
173 171 176,6 179 ,6 179,6
171 173 173,1 178,1 178 8

Table 2.

Key: 1) Actual values; 2) predicted values. .

when f=—I1

 —

S_,(f)=0,1-181 + 0,9. 182 = 181,9;

S?, (f) =0,1-181,9 + 0,9- 182 ==181,99.

Using two terms of the Taylor series, we obtain:

fs = 25-1 (f) — S?, (f) = 182,

4525154) —S4,0)=001
fo =< faa + GE At = 181,99,

etc.



Table 2 shows the results of solving the problem on a

universal digital computer. Figure 30 shows graphs of the

change in the actual and predicted values of Tyx© for a

different number of points of the prehistory (k=2,3,4,5).

Let us formulate the basic problems in investigating

the predicting filter. |

1. Investigation of the influence of the prehistory

length k on the prediction quality.

2. Investigation of the prediction quality as a

function of the parameter << .

3. Investigation of the prediction quality as a

function of the anticipation time.

4. Investigation of the time parameters of the pre-

dicting filter.

Figure 30e shows a graph which reflects the change

in the mean-square error of prediction due to the number of

points k participating in the computation of the exponential-

ly smoothed values and derivatives. The function c = f(k)

has a minimum when kz3 (for & 7oA ). For kD Kopt? the

error rises as k increases.

Similar investigation conducted in the prediction

of quality indices of other petroleum products have confirmed

the conclusion that we should choose kopt™ for predicting

such processes. This conclusion is valid only for the

accepted speed of action of the automatic quality analyzer.

It can be seen from Fig.SQf that for the processes

under investigation there exists some definite value

of =< ont for which the prediction error is minimal. In

every concrete case, the value opt is characterized by

the statistics of the process. For processes which reflect

changes in the Tux© of petroleum products, the vahe of

lies in the range 0.2-0.4.

If we compare Fig.30e and 30f, it becomes obvious

opt

~ opt
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Figure 30 (a-d). Prediction of the temperature at the end of

boiling by the exponential smoothing method (k=#2,3,4,5).

Key: 1) Number of analysis.
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that when arty: the prediction quality in practice

depends little on the length of the prehistory.

In Fig.3Og are graphs which show the prediction

quality as a function of the anticipation time 72, f(At).

Preceding investigation were conducted with A tel, ice.

predicting the k+l-th value from the k preceding ones.

The error was determined as the mean error over the set

ef values thus predicted.

In investigating 32e(At) according to the k known

values, the k+l=-th value was determined, and the k+2-th

value was computed taking into acccunt the k+l-th predicted

value, and not the actual one.

| It can be seen from Fig.30g that the mean-square

error of ‘prediction rises sharply as A t increases. However,

when X aHones this error is minimal and depends Little

on the anticipation time.

The volume of computation, and hence the realiza~

tion time of the algorithm described depend only on the

number of points of the prehistory which participate in

the computation of the exponentially smoothed values and

derivatives. Since the cycle time for computing the

exponentially smoothed quantities is constant, the function

toredict. =» £(k) is linear.

Thus, the results of these investigations make it

possible to choose the parameters of the predicting filter

in the best manner.

In connection with the change in the external con-

ditions and the parameters of the processes being regulated,

it is necessary periodically to switch over the predicting

filter from the prediction mode to the learning mode. Here

the greatest effect can be obtained if we use a computer

operating on the multiprogram principle as a controlling

machine. Such a machine allows the simultaneous realization



of several independent programs and, in our case, makes. it

possible to achieve control with a predicting filter as

a parallel corrector.

An extrapolating filter based on the exponential

smoothing algorithm

Devices for predicting the future value of a function

for linear and quadratic extrapolation can be assembled

in accordance with the block diagram in Fig.3la /347.

As can be seen from Fig.dla, the circuit contains no sections

with constant lag.

The circuit is made up of amplifiers, summing de-

vices, and linear aperiodic section of the first order.

Figure 3lb shows an experimental oscillogram of the

operation of the extrapolatirg filter for the input function

f(t). The extrapolator circuit was modelled on a type MPT-9

analog computer.

Prediction of Stationary Random Processes

Wiener's method

Let the total input signal of some system be given

by the expression

FO=SO+N (0,

where is the signal carrying the useful information, and

N(t) is the noise.

In the ideal case it is required to determine such

a system so that the signal at its output will be equal

to S(t+ At).
When A t=0, the system is called a filter. When
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Figure 31. a) Extrapolating filter based on the exponential
smoothing algorithm; b) automatic function extrapolation,

A t>0 and N(t) = 0, the system is callled an anticipator,
In the general case, the system must perform both

operations, filtration and anticipation, simultaneously.
In what follows, we shall call this kind of system a pre-
dicting filter,
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N.Wiener /627 developed a theory of these systems

based on the following assumptions:

1. The functions S(t) and N(t) are stationary and

stationarily connected random processes.

2. The criterion for selecting the. "best" possible

system is the mean-square value of the difference between

the actual signal and the desired signal at the output of

the system
e? <= M (S (¢ + At) —S* (¢ + Ad}.

3. The operation performed for filtration and pre-

diction is assumed to be a linear operation on the informa~

tion at hand.

In other words, the system must be a linear physically

realizable filter. Physical realizability should not be

identified with the possibility of embodying the system in

an actual design. The requirement of physical realizability

consists of the fact that the reaction of the system to a

unit pulse function becomes zero for t < 0.

Since the properties of a linear system are completely

characterized by the pulse transfer function W(t), the

output signal of the system can be written in the form of

a convolution integral:

St¢t+ AN =\ISV—D4+NG—DW()dt (58)
0

Then for the mean-square error we have the expression

 e* (1) = S4(t + At) —2 | (SUANS—) +
0

 

+

SCFANN(=WWde + (W(x) de;
0

[w (rISU—E)FNCIS)FNdey. (59)
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Noting that the correlation between x(t) and y(t) is

Ky) =x Oy(t+, (60)
and making the notation

Kss (1) 4+ Kus (3)wp (1), (G1)
K'ss (*) +- Kus (t) 4+- Ksw (*) + Kun (1) = 9 (1),

let us rewrite formula (59):

a Kss(0)—2[ (Ad + 1) (x) dt +

+f W (x,) dr, \ W (1) 9 (% — 1) dry. (62)

Now the problem can be formulated as follows. We

know the correlation functions Kags Kyg> Kon Kye We

must. find a pulse transfer function W(t) such that

e? = min.

Ratting W(t), ¢ g70 here, we automatically satisfy the

condition of physical realizabilaty.

From the general problem, there follow important

special cases, such as the problem of filtering (A t=0)

and the problem of "pure" prediction (N(t) =0).

The method of Zadeh and Ragazzini

A generalization of Wiener's theory for the case of

a. finite time interval was considered by Zadeh and Ragazzini

/617. Their method is based on the following assumptions:
1. The signals being considered consist of: a) a non-

random time function which is representabie by polynomials

of a degree not exceeding some definite number n, and about
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ih Systh Ouetunaeman sennsina ¥(p) wt)

To (3)
(t)=S(t) Hacrostutee snayenne S(/) I &(f)

2 S*(t)=S'(1) > » Sd p 6112)

3 S*(1I)=S"(h) > » S(t) p* 2X)

(4)
Byazyiuee HAH nporuzce

4 S*(f)= S(i+-At)lsnayenne S(1) (At e+> wan]  ed/p &(t-+- Al)
<—?      

Table 3.

Key: 1) Relationship of S*(t) and S(t); 2) quantity

being evaluated; 3) present value; 4) future or past value

of S(t) (A t "4" or ""),

which we know knothing except n; b) a stationary random

time function whose correlation function is known. tK< 0

2. The pulse transfer function W(t)= 0 wen}t<T.

Let us consider the time function f(t), consisting

of S(t) and N(t).

The output of the predicting filter S*(t) is connect-~

ed with S(t) by the linear operator Y(p):

S*() =Y (p) S(t). (63)

Let us write S* in the form of a convolution integral:

St) = J wist—rads, (64)

where w(T ) is the pulse tranfer function of an ideal

anticipator.

In the most general case, the quantity S*(t) being

evaluated in prediction or filtration may be a functional
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Figure 52. Zadeh~Ragazzini predicting filter.

of S(t).

Table 3 gives some possible values of Y(p) and w(t)

for various S*(t). |

It is assumed that

— S=m() +p. 65)

where p(t) is a nonrandom time function which can be

represented by a polynomial in t of order not higher than n;

m(t) is a stationary random component;

m(t) and n(t) are described by the correlation

functions Kame) and Kant

It is further assumed that m(t) and n(t) are centered

and uncorrelated. :

Figure 32 shows a block diagram of a predicting filter

for this problem. :

In the absence of noise and with the physical realiz-

ability condition satisfied, there is no error

e = f* (t)-- S*(t) (68)

Here the operator of the actuab anticipator H(p) is

identical with Y(p). This case is trivial.
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If H(p) and ¥(p) do not coincide, it is necessary to

determine W(t) such that

et = [f* () — S* (A) = min. (67)
ma

The optimal predicting filter must satisfy the

following conditions:

a) the mean error over the set is zero for all

values of t;

b) vhe variation of Y over the set is minimal.

Let us write the output signal in the form

f* (0) = } W(t—) de (68)

In practice it is necessary to bound the interval

of the input function by some finite T. Then

T

Ph O=\wmre—dat. (69)
0

Taking into account that

HO=pO+mO +n), (70)
and expressing

p(t—1) = pO— tp!) +e PNHoe + (—1)

we obtain
I=wepwae’+ FP"Ot we +

r

+(—IPSEO +JW) mt— de +
T

+ J W (x) a(t —1) dt, (72)

where MorMysers are the moments of W(t), equal to
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T

by = [v W (x) dt, v=0, 1, 2, sey (73)
0

Since m(t) and n(t) are centered stationary functions,

£*(t) and S*(t) depend only on the nonrandom components of
the signal:

 

T

ro=sW (0) p((— ddr, (74)

or

Fey= pat (0) — bat (t) Foe (=AM7)

and

SO=VYSO, (76)

or SD=Y (p) pit). (77)

Comparing (75) and (77), we can write condition a)

as follows:

Y (p) (0) = wp () — mp’) +. + (— 1Spr, (78)

Identity (78) determines the value of MM.

In other words, the ideal prediction operator Y(p)

is determined from (78) by the first (n+l) moments of the

pulse transfer function of the optimal anticipator. As an

example, let us consider the case

Y(p) S(t) = S(t-+ Al) (wher. + Ad).

Formula (78) can be rewritten in the form

P(l + Af) ws yp (f) — wip!’ () + p(t) +. +

+ (— 1" Et. pr(0), (79)
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Comparing a

p(t + At) = p(t) — Alp’+aPO ++

4+(—1)a pi) (0) (80)

with (79), we obtain the system

T

b= [Wo)dt=I,
0

r

by = | XW (1) dv me Ay,
0

.
Hem|Wdem Ae, (8!)

When condition a) is satisfied, it follows from an

examination of (66), (72) and (78) that

T

em| W(t) Im—1) + n(¢—a)] dt—Y (p) m0, (82)
or

T

e= |W (im ¢—1) +a— a] de—

— ( w (t) m (t — %) dt. (83)

‘Then _ t L

ctslim a | ete (64)

After a number of intermediate transformations, the final

expression for the mean-square error has the form
TT

e4 == 5 \ W (41) W (45) [Kann (T: — Ts) + Kan (Ts — %)} d5,dT, —

o fT

—2) 5 W (%,) w(t) Km (t) —%) dt,+

to

+ ( j W (51) W (Ts) Km (4, — %) Att. (85)
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The last term of (85) does not depend on w(t). Since w(t)

is the kernel of the (n+l) equations (83), the problem of

minimizing ¢." with respect to the class of w(t) which

satisfy (73) is reduced to minimization of the expression

Tr T

[= Sw (t,) dt, Sw (Ts) (Krum (Tr — te) + Kan (t1 — %)] d% —

(= 2) w(t) Kam (ty — %) dy — 2p—2h— ae —

—2h,| (86)

where Kor Ayreceed p are lagrangian multipliers.

Letting I tend to zero, we obtain the minimum error

Z2 for the value of W(t) satisfying the integral equation

. |
{ W (=) [Ki t= 8) + Kn (f=1d= By al Hoe

+A, i+ ( w(t)Kmn(t—)dt, O<t<T. (87)

The optimal predicting filter is found from equations

(73) and (87). It should be noted that solution of the

integral equations in synthesizing optimal predicting

filters presents great difficulties. Reference /61/ gives

methods of solution for individual special cases.

The method of Bode and Shannon

This method of filtering and predicting random pro-~

cesses is based on expressing the mean-square error in

terms of the spectral densities of the noise and signal

powers.

The basic problem consists of determining Y())

(Fig.33). What will be the prediction error for this Y(4))?
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(t)=S()+N(t)

aS  Viw)e:) > S%t+At)

  

Figure 33. Bode and Shannon predicting filter.

The mean power of the error

@ == S(t + At) — S* (¢ + Ad)

for incoherent frequencies can be computed by summing the

components of various frequencies

e* = (UY (@) PN @) + LY () ~el»P (a)}do, (88)

where P(cy) is the signal power, and N((,)) is the noise

power.

It is required to minimize ¢2 by suitable selection

of ¥(G® ), taking into account the condition of physical

realizability.

If f(t )=S(t )+N(t) is passes through a filter with

amplification [PC)4N( Co)J TO2) we obtain a flat

spectrum. Let the minimal-phasefilter with characteristic

YX, (Cc) ) have amplification [P(S )4N(@ )J ~(1/2), Then both

Y, (%~) and Y)Lewy) are physically realisable filters.

If £(t) were known in the interval - 0° <t<oo,
the best operation, applied to the input, would be the

operation satisfying the equality

P (@) “YO)=payee

If the phase characteristic is B(Q ), (89) is equi-

valent to the operation
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 Y, (w) = P (w) —— efldto—B(w)} (90)

[P (0) +n(o]?

on ¥, (a), which has the character of white noise.

The corresponding weighting function 18

WiO= ae J Ya (wpetet (91)

This is the function of a physically realizable

filter. Let us put

W(t + An) t>0,
Ws (0 = | 0 120. (92)

Was (t) is the weighting function of the physically realiz-~

abpe filter with transfer function Y,(cy). “hen the transfer

function of the optimal predicting filter for f(t)=S(t)+N(t)

can be expressed in the form

Y, (0) = V7! (0) ¥; (0). (93)

As in the case of the Wiener formulation, we can

separate the special cases of pure prediction and pure

filtration from the above general problem,

Nonlinear signal filtering

The problem of optimal nonlinear filtering

All the problems considered above were based on the

general assumption that the operation performed on the

initial information was linear. In comparison with linear
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systems, nonlinear ones under definite conditions can give

a smaller mean-square error than the best (in the sense of

mean-square error) linear systems. Oe

Below we consider a class of systems described by

the general relationship

N ve

S* (=&fwre— aide. (94)

where S*(t) is the output signal of the system;

f(t) is the input signal of the system;

w,(T) is the weighting function of the linear part

of the system;

v Lx] is a set of linearly independent

functions. /297.
The problem consists of determining a set of optimal.

weighting functions wT), if there is sufficient statis-

tical information on the input and desired output signals.

Such a system can be considered as a system of several

parallel channels, each of which consists of a nonlinear

element without memory and a linear element with memory

connected in series (Fig.34). The weighting function of

each circuit is equal to w(T)- If wiCT )= a, d(T), the

system turns into a multichannel system without memory.

The optinal system is defined as a system ensuring

a minimum of the expression

e? = [5 (1) — S*(t)]*.

Let us introduce the equality

SQ=elfOl,

where g is an operator of a définite class. This operator

acts on all values of f(t) in the interval [-o>,t| or

on a part of these values and has a finite mean square.
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The variation of the mean-square error c* caused

by the variation Gh(f] of the operator g[f] is given by
the equality

Aet <2 — 2oh [fl (g Wf] —- S*) + 0° A Uhl. (95)

Here © is a small constant, and h[{f] is an operator
of the same class as elt).

In order that els) should be an optimal operator, we

must have the equality

Ae =— She eX] — 5") = 0, (96)
 

since © =0; nie 35 elf - s+ 4 = 0.

Expression (96) is a necessary and sufficient con-

dition that elf] should be optimal.

 

 
 

   
Q Ko

0x) ) K,ft) 77
 
 

  

aft)

   

On(x} K,(t)}

 

 E
}

     

Figure 34. Nonlinear filter with memory.

Let us define the class of nonlinear systems (known
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by the name of multichannel systems without memory of

degree N):

N

S®=gli= a,enoT (97)

where the Kom are constant; the functions vl] are ortho-

normal polynomials of f of degree mn.

Every polynomial 0 Cf) is characterized by some

weight, p(f) being the probability density of the input sig-

nal.

The most general formula for nit] has the form

N

hifi= ahi 0, fl. (98)

Substituting (98) into (96), we have

 

N N

Ani> Rem 9,1f 18, (F]— 9 lf] S* } =o
Since i-20 m=0

0 whea m =f,01/1q Ue lal = 0,118,t=} a

N N
we obtain D kn hea = SD) by 0 1S? (99)

i= 0 m=0

Since the Ki take arbitrary values, then, in order

that (99) should be satisfied, there must exist a unique

svlution for constant ki?

 

ku = OS". (100)
 

In virtue of Vo/f] = 1  ko=@h=SH=SU. (101)
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Thus, the multichannel system without memory of

order N is given by the equality
‘ |

Fi) = a vse Dis 8 = If (0) + S* (0), (102)

where
D, cx CLM(S* — 8)
i Vee '

From (102) we obtain

N

vi = (FF OI—S*O)* = DB v5. D3. (103)
j=l

 

Since 4|2] = O when nf 0,

|] when i=m
6, nf =} O "tam

In (102) and (103), Vg and V ge are respectively the

mean-square deviations of the given output signal and the

output signal of the optimal system.

Let us define the class of multichannel systems

with memory of order N.

N «

S()=gl/|=,S Rem (8) Om Uf (¢ — 2). (104)

The mot general expression for hit| is

N

hii= > \ (x) IF (¢— a] de,
imO

Substitution in (97) gives
N « N <

> \ Rrn (%1) bs ( Ram (Ts) Cim (%, — Ta) ATs —
{=O m=00

— 0; (f (¢ — 1.) S* (A) dt, = 0, (105)
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where Cin (0) = 8: AF (OL 8m [fF 6 — OI:

Using the fundamental theorem of the calculus of

variations and noting that all the ky6TD are arbitrary

weighting functions of the physically realizable linear

part of the system (i.e. kh )=0 for T< 0), we obtain

N _ .

D J bem (4) Cin (ts — Te) d=OFE—%) SO), (106)
0 .

m=0

when T 70, i80,1,2,3, 000.

Since

0 whenm + 0,

Com (1) =| [a neo
8 aEand lf (O) l,

then

hog (t) dt = hy = S*(t)and | co ( e (t) (107)

No»y

> j Rem (Ts) Cin (™, — T) dt, = VoD, (t,), wher: t, > 0 (108)

where

 

D. ow Clit DIS?) — SOI
i! Ve

It follows from (107) and (108) that

N N « +

yi WV v' j ( R, (t,) Rn (%) Cam (T, — Ts) dt,dt,=

0
N ~

= SD, (1) veh, (1) dt. (109)
0i=s]
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System (109) can be solved by the method of undeter-

mined coefficients /627.

The coefficients C,CT ) and Vged,(TD) can be

determined by modelling. Here sufficiently long realizations

of the input signal of the system and of the desired output

signal should be known,

This optimization method can be used for designing

nonlinear filters. As an example, let us consider the

synthesis of a nonlinear filter for separating radio signals

from their mixture with noise /29/7.

Calculation of optimal nonlinear filter

Ky using a nonlinear filter of the class under con-

sideration, we can obtain a great decrease in the mean-square

error. Let us assume that a useful signal which is a random

pulse sequence S(t) arrives at the input of the receiver.

A noise N(t) is additively superimposed on this

Signal, i.e.

x (t) = aS (t) + ON (2).

When the signal is stationary, fifo is a function

only of the time interval T .

If S(t) and N(t) are statistically independent,
a

I= > ("ar omeNA
runQ

and
A m

he B=ZB)G)eameSHI
Furthermore,

n

RSs 2B (aorSSN,
fun
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In our example, the expression for SiS5 has the form

FSF+(HW) (1 + (— I) +
+p (1—(—1)")(1—(— I)

The noise is characterized by a gaussian distribution;

it has the same autocorrelation function as the useful

signal.

N,N, = 5,5; = p = ef(*),

Thus, the remaining functions NING can easily be

found.

Let us put

a* = 0,8; 6° = 0,2; = 2+ 6 =1,

In this case the orthnormal polynomials have the form:

8, [x] = 1;

8, [x] = x;

6, [x] = 1,1785xt — 1,1785;

Q, [x] = 0,9836x* — 1,691 8x;

6, [x] = 8510x4 — 2,6852x? +. 1,2216:

6, [x) == 6194x5 — 2,7823x* + 2,3127x.

The coefficients aD, are:

aD, = 0,8;

aD,, =0;

aD,, = — 0,2518;

aD,, = 0;

aD,, = 0,1414,

The equation of the fifth degree for the multichannel
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filter without memory has the form

§ = 1,5530x — 0,641 1x? 4- 0,0876x (110)

for the required input signal aS*(t).

  

   

    

  

 
     
      

at) Xx
OSes

Sy

10,98369 ~ 16918x ar63SiKeOTBess|

=l4iay:
—la.61942-2782342512 7% aossatfe:Boe “en

    

Figure 355. Nonlinear optimal filter.

The exact expression for the optimal nonlinear filter

can be written in the form

S= ath. (111)

Figure 36 shows graphs of the equations for filters

with different a and b for the two forms of equations,

(110) and (111).

 

0 0510 45 2025. %

Figure 36. Graph of equations for filters with different a

and b.
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A multichannel filter for the case a“=0.8 and

b“=0.2 is shown in Fig.35.

The relation of the mean-square errors of this

nonlinear filter and the optimal linear filter has been

computed and plotted as a graph (Fig.37).
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Figure 37. Mean-square error of nonlinear filter and optimal

linear filter.

Key: 1) Normed mean-square error; 2) without memory;

3) with memory; 4) number of channels.

It should be note:l that obtaining an exact filter

equation requires the use of numerical methods cf solution

and the performance of a large volume of computations.

In the theory of prediction S(é =x(¢+ Ad.

Hence,

Du () = Cy (¢—1), (112)

‘hus, if C,,(T) when if4l, the optimal anticipator
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is linear, since system (lll) takes the form

\ Ry (44) Cy (4, — %) dy = Ve Cy (T + %), (113)
0

In the general case of filtering and predicting,

gust as with linear systems, we consider

x() =f(IS(: al
S*(t) = S(t + Ad).

‘he methods described in this chapter are widely

used for solving various proactical problems. These problems

are: filtration and prediction of radio, telephone and

telegraph signals; problems in transmitting and receiving

television signals by the deflection method; problems of

path determination and tracking of aircraft; and many others.

The statistical theory of prediction can be widely used in

biology ind medicine. Thus, the hypothesis of the mechanism

of visual pattern perception by deviations looks promising.

According to this hypothesis, at every instant not all

the information about the image being perceived arrives

at the visual centers of the brain, but only information

on deviations from the preceding image. This principle is

used in work on the development of new systems for trans-

mitting television pictures, this work at present being

greatly expanded. The cooperagion of engineers and hiologists

can be very fruitful from the point of view of elucidating

many still unclear problems concerning the mechanism of

pattern recognition. In turn, a correct answer to these

questions will make it possible to develop more effective

systems for recognizing not only visual, but also auditory

and tactile patterns, for example in controlling various

manipulators by means of muscle currents (miocontrol).
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Chapter 3

frediction of nonstationary random processes

Formulation of the problem

In the preceding chapter we became acquainted with

the fundamentals of the Kolmogorov-Wiener theory and its

use in predicting and filtering stationary random processes

and sequences. Let us now considvr the more general problem

of predicting nonstationary random processes.

Let the values of x(t) be known in some i,terval

Oct € Tp. From these data we wish to determine the Values

of x(t) in the interval To < t< T.

The values of x(t)can be written in the form of the

following mean-convergent series /13/:

x()=Yanae (114)

In (114), the a, are random variables such that

the mathematical expectations

May = 0, civic) Mae aye = Sane? (115)

dD .(t) are eigenfunctions of the integral equation

T

re (= (rit, DECAr, (116)
0

and the hy are the corresponding eigenvalues.

 

l when kzk',

q
kk” O when kKAk'.
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Let Ly (X) denote the Hilbert space generated by the

x(t) when 0 <t ST, and let P(x) denote the projection |
operator on this space. In this“case, L.(X) coincides with

the space A extended to the orthonormal system of vectors

a (kel,2,..+), so that in order to find the predicted

value at instant t+ At, we must form the series

x* (t+ Al) = Piy(xy) = >, dy May x(t + AD). (117)
But. k=l

May x(t + At) = VyMx (t ++ At) | #0 % (t) dt =

= Vir+ Atfee Oat, (118)
r

and since when

0<t<T Fru, deatden 19)

it is natual to put

5 (t+ Ad)1+ At) =AE 120Ma, x (¢ + Af) Yu (120)

Here the g(t AT) are the eigenfunctions, extended to the

point t+ At, of the integral equation with kernel r(t, 7).

Thus, the best predicted value can be computed from the

formula

4A) = Sia, See)x* (E+ ) at Ee (121)

This representation was proposed by Karhunen /56/.
It is based on the definition of the best predicted value

as the point of space L,(X) closest to x(t+ At).
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The method of characteristic components

The processes under investigation may often contain

natural components whose values greatly facilitate the

solution of the prediction problem.

For a wide class of processes, the realizations

(or selection functions) can be represented by small numbers

of "characteristic components". These components are deter-=

‘ained by the physical nature of the object which gene cates

the process.

Under such conditions, the use of a large number of

selection functions is neither necessary nor desirable.

Furthermore, it is the components, and not the correlation

function, which characterize the process.

In these cases, Wiener prediction is no longer

acceptable,

Let us consider a method for predicting nonstationary

random processes proposed by E.D.Farmer /457,

Determination of the characteristic components

Let us assume that x(t) (m=ul,2,3,...M) are M selec~

tion functions af a nonstationary random process. It is

required to determine the characteristic (in some sense)

components of the process.

One of the simple methods of detormining the first

component consists of finding a function P(t), @ scalar

multiplier (A, and a sequence of coefficients a.) such

that the functions A ami? (e)s (m=l,2,...,M) are approxi-
mately, in the sense of the aminimum mean-squares, equal

to the selection functions Xu(t)? The error for the m-th

realization has the form
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Om (t) = Xm (t) — VyOmi Ps (2): (122)

The mean-square error, averaged over time and the set,

is M fF |
er oe >) S ttm — VIGm Pi (dt.

=

(123)
mei

The constants \A, and a,j and the function q(t) can be

selected so that this error is minimal. A minimum is achieved

when the variation ¢2 with respect to the variation of the

first order of the quantities NA 1801 and the function
1 6t) is equsl to zero, i.e. when

r

1 (t) Xm (f) dt = VKam J 9 (() dt, m= 1, 2, «, M,
M

Qin Xm j=™ Vian (0), OSE <T. (124)

Without harming generality, the function P(t) and the

vector 4, can be norned so that we have tho relationships:

1
4
=

r
\ 72 (0) dt = 1,
0

M

N 2 —
im a7, == M.
ms

The conditions for a minimum then take the form

7

Any = VI, \ 1 (0) Xm (t) de
\ (125)

VRep SN ami Xm (t)
mw

Elimination of a, from these two relations gives1

MA fT

> \ 1 (T) Xm (4) ATX (Ft) me Aq, (0)I7
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or

r

) R(t, 1M (1) dT =A,(2), (126)

where R(t,T ) is the correlation function formed by averaging

the M selection functions

M

Rit, ) = Dam (0) tn (2). (127)
mel

It can be seen from (126) that ? (t) is an eigenfunction

of the modified Wiener-Hopf equation.

Combining equations (123) and (126), we obtain an

expression for the minimum mean-square error

Gum|[Re vdr—a, (128)

The error is minimal if A, is the greatestor dom-

inant eigenvalue and, consequently, @),(t) is the dominant

eigenfunction,

the second component can be determined if we require

that Ayam2 g(t) be the greatest mean-square approxima~

tion. It follows from this that As must be the second

eigenvalue in magnitude, and that y(t) must be the cor-

responding eigenfunction. By continuing this reasoning,

we obtain an expansion of the function in the form of

(114).
fhe autocorrelation function R(T ,7') can also be

expanded in terms of the characteristic components of the

process

R(t, 0’) = a Ae Pr (1) Ge (2). (129)

We can also show that all eigenval'ues are either
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positive or ¢«qual to zero.

An important property of the expansion of x(t)

consists of the fact that if the series is limited to

K terms, the mean-square error integrated with respect to

tine is

T K

aT — | Rs v)dv— Say. (130)
. k=!

The expression r
p 5 R(x, v’) dt!

is equal to the mean energy of the process in the interval

(0,T). Taking (129) into account, this energy can be ex-

pressed in the form

T to

(R(x, v) dv = DA. (131)
b hal

Combining (130) and (131), we obtain

eT= Ya, (132)
henk +!

Thus, the integral of the nean-square crror is equal

to the sum of the omitted eigenvalues; the number of terms

necessary for achieving the given accuracy can be easily

found from (130) and (132). The eigenvalue Aye which is

essentially nonnegative, can be interpreted as the energy

connected with the k-th component of the process.

The weighting function of a Wiener anticipator can

be described by the comp nents P |(t) Let us assume that it

igs required that the anticipator evaluate the input selection

function at the instant T=t+ /\t from the input selection

function known in the interval (0,T)), where I, <T. The
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weighting function satisfies the relationship

T, |

} Ro, V)g(Te, V)dV =R(T, ), OS T<T,. (129)

If R(T ,') is expanded in series (129), the integ-

ral equation will take the form To :

Tr

Lavfem, ) Pe (1) d=da (T) x(t). (133)

Multiplication hy  .'(t) and integration with re-

spect to T in the interval (0,T)) gives

aAw My ga3Aww Qe’ (T) he's (134)

where r

Au

=

{9 (8) ou) de. (135)

Since the function defined by the series

pBa Pa (x),

must be equal to zero in the interval T, < TT7,

> Bow Ba = 0, (136)

where

r

By = { Pe (t)'Pe (1) dt, (137)
0

The matrices A and B with elements Avy andByry

respectively, are idempotent, i.e. satisfy the equations
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Since the functions of the components are orthonormal in

the whole interval (0,T),

A+B=!
AB= BA = 0)’ (139) ':

where I is a unit matrix. The mean-square prediction error

in equation (123) expressed by the characteristic com-

ponents is:

e(T,) =a de (Ge — Oe (T)|* (140)

This error is minimal if g, satisfies (134) and (136),

i.e. when

aa An’ An’ Ba = S Aw’ Aer Pa: (T)
" , (141)

Dy Baw’ Gk’ = 0

k

It follows from (138) and (139) that the sum of the

ranks of A and B is equal to the rank of the unit matrix,

Hence, in (141) there are as many independent equations

as there unknown Sys and the solution is unique. As

a whole, these equation are completely equivalent to the

Wiener-Hopf equation.

é

Prediction of a process from its characteristic

components

The problem of prediction is the problem of estimating

the values of a selection function x(t) of a nonstationary

process in the interval To < t ST from the known values

of x(t) in the interval O <t <& Tye
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It was estnblished in (131) that. if a process is

represented in the form of a combination of its character-

istic components, the integral of the mean-square error is

. r ;

et] a {Rox vd—> Aes
0 hel

Corresponding to this accuracy, the selection function x(t)

can be written in the form

*O= Zor (i), O<¢<T, (142)

where the ¢, are constant coefficients.

This expansion is valid in the whole interval (0,T),

including that part of it in which x(t) needs to be predic-

ted. Hence the prediction problem is reduced to the prob-

lem of determining the sequence of coefficients Che This

method of prediction automatically describes the selection

function as a combination of its characteristic components.

One of the methods of finding the coefficients cy

consists of satisfying the following condition: expansion

(142) must be the best mean-square approximation to the

function x(t) in the interval 0 < t< Ty in which this
function is known. Here the coefficients are determined

from the system of linear equations

K T. T,

~ cu | 4 (9) Ga(8) de =Jx@m(ode (149)
aw

Let us consider an example.
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Use of the method of characteristic components for

predicting changes in the load on electric power

stations

Prediction of electric power consumption is required

in order to organize the future operation of electric

power stations and to ensure future breakdown-free operation

of electric-power supply networks. |

For prediction purposes, the curves of the daily

change in the load must. be divided into section corresponding

to periods of several hours. These periods include the

interval fo < t <T and the immediately preceding segment

OX t ST).

The load depends on the weather conditions, the

consumption of power by industrial enterprises, radio,

television, etc. The most important influence here is the

weather. The load Xan in the m-th section for the n-th

instant can be written in the form

Xmn = Om + fy (Tm) Bu + fa (Lin) Yn + fs (Win) On + os + (144)

In (144), £,(T,)> f,(L,.) and f.(W.,) respectively

denote functions of the temperature Ty? the light intensity

L,» and the wind velocity W_. The quantity“A is the basic

load. The factors bataOyen take into account the

effect of weather parameters changing with tim. In accord-

ance with (144), every load vector is linearly dependent

on the vectors ~ , ( »% , » eeoe If the load is represented

by K terms in the form of a combination of its character-

istic ca vonents, X.. can be written in the form

K .

Xma = Dems Pan: (145)
k=l
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Figure 38. Curves of the actual and predicted load for
27 November.

Key: 1) Load (thousands of megawatts); 2) preceding
day; 3) time of day, o'clock.
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Key: see Figure 338.
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Figure 40. Curves of the actual and predicted load for

4 December.
Key: see Figure 38.
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5 December.
Key: see Figure 38.
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The expansion error will not change if the vector of

the components is replaced by linearly independent com-

binations, |

Since the vector minimizes the expansion error, the

k-dimensional manifold formed by the vectors of the com-

ponents and their linear combinations will, in comparison

with other k-dimensional manifolds, give a minimal error.

ap SY > 4» eos in equation (144) can be consdered as

vectors belonging to the manifold of the vectors of the

components. Thus, the components describe the basic tenden-

cies of the load under mean weather condtions for the

registration period. The weighting factors ci, are functions

of the weather parameters relating to the m-th part of the

day.

Figures 38-41 show curves of the actual and pre-

dicted loads for two days in November and two days in

December of 1961. The load was predicted for an interval

of 8 hours over a large region with maximum consumption

of 5000 Mwatt. The characteristic components were computed

from data for the 20 preceding days. Lach of the predicted

curves was computed during the half-hour before it began.

The results obtained for the morning peak are in

good agreement with the prediction made by the control

center using weather data.

The prediction of the evening peak was less exact.

on the average (4157 :

The combined method of predicting nonstationary random

processes

There is a wide class of real nonstationary random

processes which can be represented in the form of some non-

random function of time and a stationary random function z(t)
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Figure 42. Nonstationary random process.

additively superimposed on it /397:

x(t)—= 9(t) +20). (146)

Annual. precipitation in a given region, consumption

of materials and spare parts at an enterprise during an

accounting period with a fixed plan, daily consumption of

electric power, the variations in the temperature of patients

identically suffering the same disease-- all these are

examples of nonstationary processes which can, with greater

or lesser accuracy, be described by expression (146).

Helow we propose a method which makes it possible

to solve the problems of predicting such processes.

Let M realizations of a nonstationary’ random process

be known. For ease in solving the prediction problem on a

digital computer, let us represent every realization in the

form of a discrete sequence of values 1x,) » Jul, 2yeee,N

(Fig.42). From realization to realization, the values x

undergo changes which are described by a stationary random

function.

If we denote the j-th value of the i-th realization
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by Mig? all the elements xij can be written in the form

of a rectangular random matrix

(= |, 2, oney M,

X wm (X11) joi, 2.4 M

Livery column vector of this matrix is a stationary sequence

of values } x, , and every row vector is one realization of
the nonstationary random process.

In addition, from a set of N values of a realization

with number M+l, let some number of values n be known. Let

us denote these values by elf

fhe prediction problem consists of evaluating the

values x, (j & Nen) from the known values Xiy (i=1,2,...N3

j=1,2,+++,M) and x, (j En).

Let us write the predicted realization (row vector)

in the form

K .

Wo2 c, Fy (147)

In expression (147), let us call the FY component vectors.

It is required to find valnes for the FY and coef=-

ficients Cy such that the vector xe) with components

x "Mel, J will approximate to x, for j€ n in the beat way

in the sense of some criterion.

Taking the stationary nature of the changes in x;

from realization to realization into account, we can de~

termine the Mel by using the extended prediction

operator (158):

M MM
e v

ual igus!

The terms of the extended prediction operator are
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the corresponding components F

Rei

kj of the component vectors

“
ZeuimFy:

MM

2 » Heh Ci, = Pays (149)
byonl dgunt

eo @# @ @ @© @© #@# ® @© # @© @ ®

M M K

 
As the criterion for the best approximation of the

predicted values to the actual ones, let us take the cri-

terion of the minimum mean-square error:

ratSlo-$ on
Then the coefficients Cy can be determined from the

equations

én). (150)

K a a

> Ch (> Fry res) = afer xj, (151)

hal j=l os

which are analogous to those given by Farmer for computing

the coefficients with characteristic components /457.
The value of K determines the number of components FY

necessary for achieving the given accuracy in accordance

with the given criterion,

~ rinding the coefficients cy. and substituting them

into (147), we obtain the predicted values of xl,

Thus, the values of Fy obtained earlier by means

of the extended prediction operator are in essence the

predicted values of the M+l-th realization of the process
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computed from the known realizations (prehistory). The

values Xoel J are more accurate valuesof the predicted:

M+l-th realization, this increase in accuracy being achieved

due to a certain number of known values of the realization,

second modification of the combined method

The values of the x*,, j can be determined by using
9

the method of exponential smoothing:

SOAra+.xyAlt +...
Kea) = XO) +Ge a

where the xt) are the exponentially smoothed values of

the function,

Then the components ae of the component vectors

Fi can be written in the form:

Xuj = Fi; ,

any
a=F,

¢ ¢ e e e e ® 8 8

1 déx
Wo on ft = Fy.

If as a criterion we take the criterion of the minimum mean~

square error, the coefficients c, in expression (147) can

be determined from system of equations (151).

By means of the proposed method, we can solve the

problem of predicting the M+l-th realization of a non-.

stationary process (for l> 1). However, the prediction

accuracy in realizing both the extended prediction operator

and the method of exponential smoothing drops as At is

increased. Hence there is a decrease in the accuracy of
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determination of the component vectors FY for the M+l-th

realization as the number 1 is increased.

In predicting by means of the comhined method, the

accuracy can be increased by realizing an algorithm for

continuously computing the coefficients Che dhe algorithm

consists of the fact that the coefficients Cy computed from

the n known values of the M+l-th realization are used for

determining the future values only until the n+l-th actual

value of the M+l-th realization becones known. After this,

the coefficients c, are recomputed taking into account the

n+l-th actual value.

As an example of the application of the combined

method for predicting nonstationary random processes, let us

consider the problem of predicting the variations in the

load of a power system. These changes are shown in 24-hour

graphs. For convenience in applying the method, the function

of the change in the load with time is given in the form

of a discrete sequence of values. “he time discreteness

step is taken to be the usual one for power systems, i.e.

1 hour. .

Let it be required to predict the change in the

load on some definite day of the week, for example Saturday.

As prehistory let us use the 24-hour graphs of the change

in the load for the corresponding days of the week in the

past, i.e. for several preceding Saturdays. From the data

of the graphs making up the prehistory and using (149),

we find the values of c,F,. Further, using (150) and (151),

we obtain the predicted values of the 24-hour graph in which

we are interested.

It should be noted that, in predicting the daily

variations of the load on complete working days (from

Tuesday to Friday), the prehistory need not be made up of

graphs from days with the same name. But as far as days

olL37—=
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Figure 43. Variation in the load of a power system,

Key: 1) Actual values; 2) prediction by existing

methods; 3) prediction by the combined method; 4) o'clock;

5) Megawatts.

preceding days off, days off and holidays are concerned,

the configurations of the 24~hour curves corresponding to

them differ greatly from those of the graphs of complete

working days.

For complete working days, the combined method makes

it possible to obtain a prediction with a mean-square

deviation at the peaks of 0= \ st = 6-8.

Figure 43 shows a graph for the load variation on

one of the "nonstandard" days, Saturday. ‘he predicted

values obtained by means of the method described have been
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plotted on the graph together with the actual: values. On

the same graph are plotted the values obtained by predicting

in accordance with the methods presently in use. The combined

method gives a much higher prediction quality: 9%= 12 as
against ©G#23, obtained in predicting by the existing
methods.

Let us consider one more example of the method's

application.

Prediction of changes in intracranial pressure with a

brain hemorrhage

Experimental reproduction of a cerebral hemorrhage

(biological model)

The experimental neurosurgery laboratory of the

Ukrainian Scientific-Research Institute for Neurosurgery

conducted research on the variation of intracranial (fluid

pressure in response to inhalation of carbon dinxide with

an experimentally reproduced cerebral hemorrhage.

This reaction reflects the functional state of the

brain vessels and makes it possible to make a judgement on

the phase of development of the pathological process.

Into the intracranial cavity of an experimental

animal there was introduced a needle, through which was

passed blood from a femoral artery. Ruptures of vessels of

different calibers were simulated by selection of needles

with different diameters.

During the course of the experiments, inhalation

tests of carbon dioxide were carried out at definite inter-

vals. This test was chosen in view of the fact that carbon

dioxide, which has a dilating effect on the small arteries

and capillaries of the brain, has a different influence
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on the brain circulation, and hence on the nature of the

change in the liquor pressure under normal conditions, in

the presence of an intracranial seat of disturbance, when

the initial pressure level is not yet changing (compensation

stage) and on a background of incipient pressure change

(subcompensation stage). The results of the experiment
were recorded in the form of continuous curves on a poly-

graph and in numerical form by means of an electronic

digital recording device in a complex with suitable pickups.

The change in the fluid pressuré during one CO,

test is a discrete sequence of the parameters of this test

in which we are interested (see Fig. 45). The parameters

were denoted as shown in Table 4.

Prediction quality criterion

Ordinarily in filtration and prediction problems

we use the criterion of the minimum mean-square error

M[x() —x* (OP =Cin

However, when this criterion is satisfied, there exists the

probability that there will be individual large deviations

of the predicted values from the actual ones. At the present

fime a number of rigorous criteria have becn developed.

These include the criterion of leas risk, the criterion of

“ne minimum sum of the mean-square error and the dispersion,

voth taken with suitable weights, and several others. In

solving the problem under consideration, we will require

cnat the following additional condition be satisfied:

The absolute value of the deviation of the predicted

value from the actual one must not exceed some previously

chosen value A °
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Table 4,

Key: 1) Notation; 2) unit of measurement; 3) parameter;

4) mm water column; 5) the same; 6) sec; 7) initial value

of liquor pressure; 8) maximum value of Prey, of first rise;

9) value of Py), at point of inflection; 10) highest value

of Pr), of given test; 11) rate of increase of Peiys 12)

rate of decrease of P,),,; 15) time from beginning of test

to instant corresponding to xtmax ; 14) time between xmax

and xX,413 15) time between xwax and Xmin {sic7; 16) time

of completion of CO, operation; 17) value of Priu at time

tye
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(2) Tlapamerp ¢ , *

odosuaue- |Xagg (Xo agri] Xap |Xats | Marea [X ateal Sapa 4 (Xs
HUH

 

Xo 115 113 75 72 95 88 90 85
Xmax 120 123 80 82 102 105 95 98
Xmin 120 118 78 77 100 102 92 92
Xindy 130 138 102 102 115 123 117 125:
+Ht)

|

0,277

|

0,444

|

0,778

|

0,889

|

0,556

|

1,007

|

0,556

|

0,666dl

a)) |_6.044|—0,083|—-0,222] -0,242|—0,111|—0,139| 0, 139|—-0,333
ty 10,0

|

9,0

|

6,0

|

5,0

|

8,0

|

9.0

|

7,0

|

6.0
ty 15,0 16,0 11,0 10,0 13,0 13,0 12,0 12,0
fy 39,0 40,0 24,0 23,0 33,0 29,0 28,0 29,0
te 120 119 114 120 118 120 116 115
{N 130 123 75 73 110 102 100 90           
 

Table 5.

Key: 1) parameter notation.

Thus, the coefficients roi) in expression (148)

are found from the condition

we

M(x; — Xj)? == @min
when

| x —|<A.

Solution and results

The problem of predicting CO,-inhalation tests was

programmed and solved on an electronic computer. Determining

the parameters of the four predicted tests required about
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six minutes of machine time (including print-out of the

results) using a computer with a speed of the order of

38000 operations per second.

The results are shown in Table 5S. Figures 44-47

show graphs of the actual and predicted curves for the

variation of fluid pressure with inhalation of carbon

dioxide.

The predicted curves give a good reflection of the

qualitative aspect of the process. The accuracy fully

corresponded to the requirements imposed on similar bio-

logical investigations.

Predictions of the development of processes with

various acute and chronic illnesses can be used for diagnosis

and prognosis in solving the problem of whether surgical

intervention is timely and indicated.



Chapter 4 |
Recognition systems as predicting filters and

regulators

During the past years, a number of scientists have

proposed automatic devices which after a certain period

of initial adjustment (learning) can quite accurately

predict the course of various processes. |

The material used to teach these devices is the

past record of the process, the prehistory. Tha prediction

quality of these devices can easily be evaluated if we

compare their outjiut signals with the actual val ues of

the process being predicted. The circuit and parameters

of the predicting device can be chosen so that the pre-

diction accuracy increases in the course of time.

If this selectionis made automatically by means of

feedback, we obtain a self-adjusting predicting filter.

In realizing this or that prediction algorithn,

the self-adjusting predicting filter automatically improves:

its structure and makes the values of its parameters more

precise. This hapyens as a result of observation of the

course of the process.

The system constantly takes into account newly

arriving data on the course of the process and automal ically

makes the prediction more accurate.

A universal predicting filter with self-adjustment

in the learning process was proposed by the English scientist

Prof, D.Gabor /547. This filter is based on a prediction

algorithm which consits of finding the optimal weighting

factors of the extended prediction operatur.

fhe filter was designed in the formof an analog

device using magnetic and piezoelectric multipliers. An

example of the use of this device is the solution of the
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problem of predicting the amplitude of ocean waves. The

prediction accuracy was of the order of several percent.

It was proposed to use the filter for predicting

the indices of economic conditions, but the volume of

filter input devicesfor this problem turned out to be

insufficient. At the present time, experiments on a speci-

alized analog device have ceased. The same algorithm is

being realized on the fast-acting universal digital com-

“puter "Atlas" at London University.

In our experiments, we did not renounce the use of

specialized self-learning filters, which is expedient only

when the algorithm for self-adjustment of the parameters

(coefficients) is greatly simplified. The basic proposal

consists of transfer to the use of binary self-organizing

recognition systems as self-learning predicting filters.

The most clear expression of the idea of self-organiz-

ation is found in the works of F.Rosenblatt /59,a,b/.
He proposed a statistical model of the brain which has the

properties of learning and self-learning. This model was

named the perceptron. This name then began to be applied

not only to the model proposed by the author, but also to

other analogoussystems.

Perceptrons can independently, without the aid of

man,. recognize and classify input signals by attributes

which were not previously given. The process of teaching

a perceptron how to read letters was successfully demonstrat-

ed in June 1960.

Figure 48 shows a simplified block diagram of the

"perceptron". The letters or other images which the machine

is to learn to recognize and classify are projected on

a screen consisting of photocells. The photocells convert

the images into a large number of electrical signals.

Every photocell is randomly connected with a field of
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associating clements (cells). As a result of summation

of the signals arriving from the associating elements,

various slave elements are excited, and these indicate

te which pattern the given image belongs.

In Rosenblatt's first perceptron, the field of photo-

cells (about 400) was connected by random links to amplifi-

ers, and then in the same way to servomotors,.

cmampubcemmn _Pedcubyouue yomboucma

¢ x6 odbexm (npubau3zumensno lO yempoucmd) 42)

Ai) -<
WN \nceeRe

 

  

  

   

(3) Accouuupyowor |S
cucmema

Figure 48. Simplified block diagram of the "Perceptron".

Key: 1) Object being considered; 2) reacting devices

(approximately. 10 devices); 3) associating system; 4) con-

trol desk.

The umplifiers are fed biases which can be changed

either by the teacher, man, or a feedback pickup.

Let us consider the learning process of the percep-

tron. Let us assume that we want to teach it to distinguish
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the letters A and B; i.e. we want certain slave elements

to operate when the letter A is projected on the field of

the photocells, and others when B is projected. To do this

we must "encourage", in the form of supply of suitable

biases, those amplifiers which include the necessary outputs

and hamper ("punish") the others which bring unnecessary

outputs intooperation. The encouragement and punishment

iaws may be different /59/.

The "self-learning' process of the perceptron occurs

by a different method. With this method method, the biases

are not changed by man, but arrive through feedback circuits

from the outputs to the amplifiers.

The perceptron is called a statistical system, since

it employs probabilistic inputs, and all its basic elements

(pickups, associating elements and output elements) are

connected by randomly selected links. If we use determinate

pickups adjusted for reception of definite attributes and

join the elements of the system by all possible connections,

we obtain a system of the perceptron type. Such a system

was designed by one of the authors. The circuit of the

system is shown in Fig.49.

The essential distinguishing feature of this system

is the presence in it of a separate positive-feedback

circuit and a maximum-voltage indicator which indicates

which of the groups of associating elements is giving the

greatest voltage,

One group of associating elements corresponds to

every pattern. The correct answer is given by the group

at whose output (as a result of the "voting" of a large

number of distributing elements) the greatest voltage is

obtained. For the sake of simplicity, Fig.49 shows only

three such groups. It shows the variant "with complete

input information" with equal participation of the associat-
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. Fig. 49. Structural diagram of recognition

system with positive feedback
1. pattern being distinguished; 2, input device;
-~ 5. pickups; 6, groups of associating elements;

7. direct amplifiers; 8, reversing amplifiers:9. Summators: 10, large-voltage indicator [sic];
11. control of order of self-learning; 12. pos-
itive self-learning feed; 13. open learning feed.

Keys a. "I don't know"
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ing elements.

F.Rosenblatt has formulated two theorems which ex-~

press the concept of self-organization. In accordance with

these theaems, only an "infinite perceptron" having; an

infinite number of pickups can begin to act without initial

organization. The greater the degree of initial organiza-

gion, the smaller is the number of elements we can take do

with, the cheaper is the perceptron.

Hence in designing practical circuits, it is de-

sirable to proceed from some initial organization, al-

though it is not necessary in principle.

| In practice, the least initial information consists

of the simple listing of the attributes of the input signals

which can at any time be useful for distinguishing these
signals without indicating to which signal they relate.

The above system (see Fig.49) was iater improved and

received the name of the "Alpha" system /217.

The basic advantages of binary systems in comparison

with continuous ones, for example in comparison with the

filter of Prof. A./sic/ Gabor, are the following:
1. Very little information about the process is

required for the system to operate. It is only necessary

to know whether the process index exceeds a definite level

or not. It is not essential to assume normal distribution

of attributes.

2. With a second positive feedback the system can

automatical ly select the most useful initial data or at-

tributes /217. The most efficient use of the system capabi-
lities leads to a great decrease in its volume. Furthermore,

a recognition system can in principle be constru:ted so

that signals will be emitted to the effect that the attri-

butes being used are insufficient and that new data on the

process are required. Below we will consider in detail
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the circuit and operation algorithm of D.Gabor's analog .

self-adjusting filter and will then dwell on the predictive

applications of the Alpha binary recognition system.

Universal predicting filter with self-adjustment in the

learning process

The problem of synthesizing an optimal linear pre-

dicting filter was first formulated by Kolmogorov in 1942,

As for the nonlinear filter, the opinion was expressed that

formal solution of the problem would not have any practical

importance. This is explained by the large number of com-

putations and the huge volume of work collecting data.

But from time to time scientists returned to the idea of

developing such a filter, since the prediction of complex

stochastic processes wouid have very great importance

in solving important problems of control in production, of

planning, economics and in other fields.

In 1954 the English scientist Prof. D.Gabor proposed

the definition of a group of mathematical problems needing

solution and investigation in developing an optimal filter.

The filter must be the realization of an extremely flexible

mathematical operator which takes into account the present

and past values of any time function with which it operates.

The parameters of the filter must constantly improve during

the learning process. The device registers the values of

the random sequences which must be filtered or predicted.

The sequences, also called selections, must be sufficiently

long to ensure complete representation of the function.

This means that the selections must be of such a length

that the statistical parameters computed from it can be e

assumed to be statistical parameters of the whole process,

‘he basic difficulty in the practical application
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of the Kolmogorov-Wiener theory of linear filtration and

prediction lies in the fact that this theory considers

Signals in an unbounded frequency range.

In the solution of the problem of predicting by

renl devices with a bounded passband F, a continuously

varying signal can be represented in the form of a discrete

sequence of the values of this signal which follow at

intervals of (1/2F) sec.

Extended prediction operator

The most general functional expression of the pre-

history of a time function inaboundecd frequency range is

the following sequence of discrete val.ues:

ono1= Bhat ¥ y hi, fi, Pits “+ . (158)
ty «0 (,=0

The coefficients of this sequence are transfer

functions which are only defined for integral values of

the argument.

It is easy to see that the first sum is is fact

the generalized linear predicting filter. The coefficient

rj determines the influence of the discrete value of the

function fis this value oorresponding to a moment i inter-

vals eurlier than the present moment.

he second sum is made up of pairwiseproducts of

these discrete values, including squares. The coefficients

rea determine the weights of the pairs of values at the

indtants 1, and ly intervals earlier than the present

instant, etc. These sums must include the whole prehistory.

If the prehistory is divided into N intervals, the

operator contains N+l terms of the first order (of the

first sum), (1/2) (N+l1) (N+2) terms of the second order,
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(1/6) (N+1) (N+2) (N+3) terms of the third order, etc.

It ig quite obvious that the number of terms of the operator

increases sharply as the order increases.

Circuit of the predicting filter

A block diagram of the predicting filter is shown

in Fig.50. The delay block 1] is @ magnetic tape recording

device with stepwise located heads.

 

Figure 50. Block diagram of predicting filter with self-

adjustment in the learning process: 1) magnetic tape re-

cording device; 2) block of parameters being adjusted;

3) comparison block; 4) squaring devices; 5) integrators;

G) minimizing device; 7) block for adjusting variable

perameters.

The sought function O*(t) is recorded on one of the

tracks of the magnetic tape. In the case of prediction,

this function is considereu shifted forward by the head

from the input tape.

The filter 2 itself consists of an arithmetical
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device and a set of parameters being adjusted. Potentio-~-

meters are used as the latter. The output signal of the

filter and the sought function are regist.red in the com-

parison block, which determines the prediction error. As

in the case of linear filter theory, we take as our criterion

that of the least mean-square error;

—

(O1F1 -— OFM] = emin. (159)
 

The left-hand side of this expression is a positive

Cefinite quadratic form of the coefficients r. Hence a

solution always exists. Furthermore, since: the prediction is

linear with respect to r, this solution is unique.

In the function of the arguments r, the mean-square

error can be represented by a multidimensional elliptical

paraboloid. Hence the use of any algorithm for decreasing

=e must inevitably lead to achieving a minimum. This is

shown in Fig. 5l for the case of one and two variables .

Both parameters must be alternately adjusted.

Here the optimal coefficients can be determined from

the expression

| Wyma tay

opt ~ 2 Y_, + Yay — 2Yo .

But if we use differences, then

 

and '

Yin = Yo — 7 Fopt 2 (A_, _ A.,).

In order to incrense the speed of action in the

present predicting filter, the comparison blocks 3, the

squaring devices r and the integrators 5 are thrice re-
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Figure 51. Optimization of adjustment of variable parameters:

a) one variable parameter; b) two variable parameters.

neated; hence for every learning cycle the error is de-

termined for three values of the selected parameter rj

for r; =0 and for the largest positive and negative values.

On the basis of these values, the minimizing device 6 auto-~

matically determines the optimal vaiue to which the para-

meter r; and the quantity t*in must be adjusted. The

adjustmet block 7 establishes the necessary value of rie

Then the learning cycle is repeated. As a rule, in the

presence of M parameters to be adjusted, the number of

learning cycles necessary to achieve €*| is a quantity

of the order of M“/2. After this it is said that the filter
has learned to predict the values of the given random

sequence.

In other words, a predicting filter which has learned

the best method (in the sense of c? - min) of predicting

the values of the training sequcnces will operate analogously

with other selection of the same stochastic sequence.

This statement is based on the following assumptions:

1. The random processes under consideration are

ergodic, i.e. retain the constancy of the statistical
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parameters over any arbitrarily long sequences.

2. During the learning process,the machine determines

all necessary statistical parameters and reproduces them,

| The filter described above was used to carry out the

following experiments: :

1. Conversion of a sinusoidal signal into another

Sinusoidal signal shifted in phase and different in ampli-

tude.

2. Filtering of a sinusoidal signal with a super-

imposed noise.

Prediction of the changes in the quality index of a product

of a petrochemical enterprise

Let us consider an example of applying the Kolmogorov-

Gabor predicting filter.

Figure 52 shows a diagram for automatic control of

the fractionating column of one of the technical installa-

tions of a petroleum ;rocessing plant (AVT" installation).

The output product of this installation is direct-

distillation benzine. A quality analyzer which automatically

determines the temperature at end of boiling of the benzine

is connected to the control circuit. In controlling the

techinical device in accordance with the quality index of

the output product, it is important to know not only the

current values of the index and its deviations from the

norm, but also the values of the index at some fvture times.

This makes it ,ossible to regulute the process with antici-

pation, takihg into account possible future deviations.

Such a method is known by the name of "anticipatory com-

pensation", The predicting filter (sec Fig.52) determines

the future values of the quality index; these are used
ng

*/atmospheric-vacuum pipe still/7
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“igure S2. Circuit for automatic regulation of the fraction-

sting column of an AVT installation:

1) raw material flow; II) fractionating column of AVT in-

stallation; III) condenser; IV) irrigation receptacle;

V) irrigation flow; VI) output product (direct distillation

benzine; VII) debenzined product; 1) thermocouple; 2)potenti~

ometer; 3) summing device; 4) quality analyzer; 5) regulator;

6) predicting filter; 7) regulating valve; 8) sampling point

for product analysis.
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as initial information in an automatic control system for

the technical device. If there is a universal digital com-

puter in the production process control system, the functions

of the predicting filter can in many cases be conveniently

assigned to this computer.

Modelling the predicting filter on a computer

Let us write the operation algorithm of the pre-

dicting filter. The learning process of the operator is:

1 1 1 2 2 3 5 3 4 4 5

{Tat t EMRE L EMytZEptSy Rot. (160)

In expression (160):

T. is the operator of emission of the delayed values

f,, (i=0,1,...,k), of the learning sequence;

X is a logical condition considered toa be satisfied

when isk;

mi is the operator for computing the products of the

delayed values;

is a logical condition considered to be satisfied

when all products of the delayed values have been obtained;

mM is the operator for multiplying the values f.

and the products f fi ’ f. f; f; », etc by the correspond-

ing weighting factors; 1a 7S

Y is a logical condition considered to be satisfied

when all companents of the prediction operator O f(t)

have been obtaned;

& is the computation operator of O f(t) ;

E is éhe operator for computing the mean-square error;

p is a logical condition considered tea be satisfied

if
 

(O1F (Ol — Fit = edn:
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Figure 53. Flow chart of the program for modelling the

predicting filter on a computer.
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S is the end of the lewrning;

R is the operator for computing the new weighting

factors r. ;
*K

Wis an identically false condition.
The prediction process is: ‘

] ! 2 2 3 3

1 Tat | MIB+ | Morr y f 3S. (161)

In expression (161), Mopt is the operator for

multiplying the products f. fis fi f; f. , etc hy the

optimal coefficients ropt obtatned As R result of the

learning of the operator (160).

In the problem under consideration, the algorithm

was realized on @ universal digital computer. figure 52

shows the flow chart of the modellling program. ‘he gctual

and predicted values of the index Ty,© are shown in Table 6.

Figure B4 shows graphs of the actual and predicted values

of Tek’ The operator learned witt different numbers of

values in the prehistory (k=2,3,4,5).

Influence of the prehigstory Length on the prediction

quality

If we analyze the example just considered, and also

the examples analyzed earlier in Chapter 2, it becomes

obvious that an essential influence on the prediction

quality is exerted by the number k of known values f.

(i=l,2,...,k) which participate in the camputation of the

operator o[r(t)] ‘

For clarity let us consider some examples.Figure 55

shows the prediction quality criterion as a function of the

number of known values of the process being predicted taking

part in the computation of the operator o \p(t)]. The cri-
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Figure 54. Prediction of the temperature at the end of boiling

of direct distillation benzine.

Key: 1) Number of analysis.
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196 196,5 195,5 196 197
® 203 197 196,5 195,5 196

}99 199,5 {99 198 j97
198 201 199,5 199 196
189 198,6 2n0 199 199
197 193,6 105,5 197 197
193 193 195 196 197
194 195 193 194 195
198 193 194,5 193 194
200 196 195 195,5 i94
195 199 197,5 196 195,56
202 197,5 {97,5 197 194
196 198,5 199 199 198
19+ 199 198 198 198
193 194,5 197 196,5 198
192 193 194 199 196
196 192,5 193 193,5 194
192 194 194 193,56 194
202 194 193 ,5 193 ,& 195
197 197 196,5 195 ,£ 194    

Table 6,

Key: 1) Actual values; 2) predicted values.
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Figire 55, Mean-square error as a function of the length

of the prehistory.
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terion, as before, is the minimum of the mean-square error.

It is evident from the graphs that, for the actual pro-

cesses heing considered by us, the prediction quality is

nota monotonic function of the length of the prehistory,

as could have been expected in the case of stationary ran-

dom processes. Thus, it is obvious from the graph in Fig.

55 that when k=z2,4,8 the mean square error is less than

when k=#3,6. Similar processes relate to the class of per-~

iodically correlated (or almostperiodically correlated)

random processes. Ye.G.Gladishev /107 will acquaint the
reader with the theory of these processes.

Thus it is ebvious that the quality of prediction

of actual random processes essentially depends on the

length of the prehistory. The selection of « is the pri-

nary problem, on whose solution depends the accuracy and

reliability of prediction.

Simple first-derivativd predicting device

The basic shortcoming characteristic of the Kolmo-

gorov-Gabor predicting filter is the growth in complexity

of the computations as the accuracy is increased. “he com-

plexity of circuit realization Limits the sphere of applica-

tion of test devices. This is especially true of the use

vf predicting filters in control systems.

In practice very often some low :ring of the predict-

ion accuracy is introduced for the sake of simplifying

tne construction of the system. In such cases, it is ex-

pedient Lo use simple anticipatory devices in which pre~

diction is busdd on determination of the first derivative:

“bt a current point.

ln order to raise the accuricy of prediction of such

devices, the second derivative can also be used, but in
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practice it is most often enough to stick to the first.

Raising the acCuracy by using the second derivative Leads to

great complication of the system,

Tne accuracy of »rediction by such devices dro,:s

in the region where the first derivative of the function

being predicted with respect to time changes sign. It is

obvious that, in order to raise the prediction accuricy,

the prediction interval should be decreased as the fre-

quency spectrum of the function being predicted is expanded,

It is known that the width of the frequency spectrum of

any process is sufficiently completely characterizedi by

its autocorellation function, Let us compute the normalized

autocorrelation function 0 bt ) at one point for some

definite value of T. If we now select the anticipation

time At according to the formula

At = kp, (1), (162)

we can select a relation between the magnitude of the

prediction interval and the slope of the autocorreldion

function for which the prediction error will not exceed an

assigned value.

The predicted value is

x (¢ -{- At) = x (4) + Ax (0), (163)

where x(t) is the current value of the function.

The proportionality factor k in expression (162)

is equal to the maximum anticipation time.

‘ne slower the process changes wth time, the greater

is the anticipation time. “he normalized autocorrelation

function of such processes approaches unity.

Rapidly varying processes, which are characterized

by a widd frequency spectrum, will have a very small antici-

pation time, since their normalized autocorgpelation function
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approaches zero for the same ‘

By decreasing the anticipation time we can achieve

any arbitrarily high accuracy. However, practioaal problems

make it necessary not only to strive to raise the accuracy

in all ways, but also to strive to increase the anticipa-

tion time where possible.

To evaluate the prediction quality, it was proposed

to take the criterion of the maximum of the sum composed

of a value inverscly proportional to the prediction error

and the ratio of the actual anticipation time to the maximum |

one /67:

| !
PEt. (164)

It is obvious that the function d =-F( At) has an ex-

tremum, since as the anlicipation time increases, the

mean-square error continuously increases. Using this de-

pendency property (164), we can construct a self-adjusting

system which by changing the anticipation time continuously

would find the maximum of the prediction quality index.

For this purpose we can use cither a search extremal system

or a non-search differential extremal system. “he principle

of operation of differential systems was described in

V.1.Vasil'yev's book Differential Regulating Systems /7/.

Prediction of the contour of a river bottom

The method described above can be illustrated by the

example of predicting the contour of a river bottom. The

solution of this problem is very important, for example,

for optimal control in seafaring.

The contour of a section of river bottom and its

predicted values are shown in Fig.56. Computations have
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Figure 56. Prediction of the contour of a river bottom:

1) Contour; 2) prediction with constant interval; 3) pre-

diction with variable interval.

shown that the introduction of a variblea prediction inter-

val sharply raises the prediction accuracy (Fig.56).

Alpha Recognition System as a Predicting Filter

Prediction of discrete results. If a number of

similar cyclic processes differ only in the initial condi-

tions, and they then proceed under approximately constant

conditions, the results of these ,rocesses can be distri-

buted according to the forms of the initial conditions

with the aim of predicting the results of similar processes

in the future. To carry out this gencralization of experi-

ence we can use any self-learning recognition system with

classification of patterns by output quantities /21, p 3027.

The property of a recognition system of dividing a set of

images into classes of patterns ean be used to classify

initial conditions (attributes) according to results.
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Thus, V.L.Brailovskiy and j.L.Lunts in experiments on the

prediction of the result of treatment of burns used twelve

initial attributes (wound area, burn localization, degree

of burn, age of patient, accompanying diseases, complica

tions, data of medical analyses, etc.) Prediction wus

made of the outcome of the treatment, i.e. cure or death.

Prediction of continuous processes. As is known,

continuous quantities can be approximately replaced by a

number of discrete quantities. Hence, recognition systems

cun also be used to predict continous processes. An example

is prediction of the duration of service of transistors

from the form of the variation curves of currents observed

during lO min. The time, a continous quantity, is divided

into a number of segments, and hence it is required to

teach the system to predict the segment number,

According to Lyapunov's theprem, when the number oi

components of random quantities is increased, the distri-

bution law of their sum tends to the normal probability

distribution. dence this explains the fact that very many

stationary processes in nature have a normal distribution.

The most general formula for predicting the future value of

a random time function is Kolomogorov's formula

0
gh == to + Dyta fa + > ln fay funy +

A

+ p > fn Ins fn, Faynyny +,

0

i
=

where elect)) is the future, predicted value of the function;

f,,f are the values of this function in the past,
ny’ Mo
Mme first sum is a linear function with a constant
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Figure 57. Problem of predicting the amplitude of the fol-

lowing wave from the values of the amplitudes of the three

preceding waves. Ris the number of levels of discretiza~

tion of the output quantity.

Key: 1) £(t)ean’

transfer function; the secohd is a quadratic filter; the

thirdiis a cubic one; etc. “he coefficients r, determine

the influence. (weight) of each term of the forhula on the

predicted value of the function. Let us clarify the formula

by an example (Fig.57). For predicting the future value

of the function from three data on the course of variation

of this function in the past (prehistory) we obtain a form-

ula in the form of a polynomial:

BAF CO) = fats + fata + fats + Pr, “+ rs +- Pr. ++ fifary -+

4 fibsre -+ fafars +f} lio + i Pig ct Kh Tia -b Pfaras “} Fe Faris +

-+- fB fits + Pisrie + R Airis + R Fotis -+ fifefarie,

where g is the value of the function f(t) at the future

time +T; f, is the value of the function f(t) at time -2T;

f, is the value of the function f(t) at time -T; f, is the

is the value of the function f(t) at the given time 0;

Tysoveeeelyg are the influence (weighting) factors of
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each term,

the self-learning of the recognition system used as

@ predicting filter consists of determining the values of

the influence factors on the basis of the data of some

learning sequence. This process of self-establishmat of the

coefficients for stationary rindom processes must be carried

out once; the longer the learning sequence: of data, the more

accurate the prediction. For almost stutionary processes

it is better to ligit ourselves to a local selection, a

small learning sequence, and to have the self-learning of

the coefficients carried out continuously only according te

the latest data on the process. It is possible to determine

the optimal duration of the memory of the system. The closer

the process is to a stationary one, the greater is this

duration. For extremely non-stationary processes, the op-

tinal duration is small, and sufficient prediction accurac,;

is not ensured. In these cases we must have recourse to

other prediction methods (for example, to the method of

separating the periodic components of the components £457

or the combined method /31/).

Operation algorithm of the Alpha recognition system

Let us recall in brief the operation algorithm of the

Alpha recognition system /217. A sample circuit of the sys-

tem is shown in Fig.58. In the given application the pickups

of attributes by observation of the instantaneous changes

in the function produce several functions of these quantitics

x, Xyyrery Xny

which in the theory of pattern recognition are usually

called attributes. The aggregate of attibutes forms an

input "image" vector, or a "representation point",
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figure 58. Alpha recognition systdm as a Kolmogorov-Gabor

predicting filter.

Key: 1) Highest-voltage indicator,

OU; (Xp) Xey vee Mn).

The vector V5 is fed to the inputs of groups of associating

cells (flip-flops or relays); these form the scalar pro-

ducts of the input vector V5 by several internal vectors

O Cry sPoPgreeesly) recorded in each of these groups; these

vectors are called prototypes or poles,

2, = (au), Sy == (4, Ur oy B= (A, U,).

The nunber of groups is equal to the number of patterns

being distinguished, i.e. divisions of the quantity being

predicted,

=~] 7Ro



The scalar ,»roducts are fed to a comparator (a hiyshest-

voltage indicator, HVI), as a result of which the system

selects the largest of them and thereby indicates the

pattern (division of quantity being predicted). In self-

learning the position of the poles is changed hy feedbacks

217. *he learning of the sy.stem consists of an expedient

selection of group poles. |
The encouragement law of the Alpha system is expressed

by the equation |

a tat hiUm—a + hates to + Remmi

Aen Dp hyp Rab nF hmm

where m is the number of operations of the given group;

k(m) is the "forgetting function" of the previous dliisplays.

When k(m)=#0 we obtain the "trustworthy" feedback

Om +i = Un,

for which the corresponding prototyje vector immediately

takes the value of the vector of the latest image display.

When k(m)=1 we obtain an "averaging" feedback, where

the prototype vector terminus is held at the “center of

gravity" of the region of the given pattern:

Ung tt Umamt bn tO
Annet "A

It is possible to apply the exponential law of

decrease of the coefficients as the given output operates:

Ans | = hey (Un — Om) Swhered ch < l.

When dsl, we obtain the encouragement law of "trust-

worthy" feedback.

An exponential encouragement law is most easily

achieved in systems with continuous associating cells.
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It is possible to have one more form ofthe "encourage-

ment" law which is convenient for realization in relay

systems. In this form the pole of the group being learned

is displaced by one interval in the direction of the out-

put image after every operation of the output corresponding

to it. This interval may be constant or may decrease accord~

ing to an exponential law.

the Alpha system generalizes individual images into

regions-=- patterns. Let us explain the peneralization pro-

perty by means of the example of an Alpha systen having

three groups of relays in all whose state at the n-th cycle

of operution of the system is churucterized by the three

poles--

Ging hin, Gig.

Pickups feed the vector vn to the input of the system.

Then at the outputs of the group we obtain three voltages:

Sin =(Qin Un) Lay. == (Gon On), Zan = (Ban Un).

The LVI operates according to the following algo-

rithm:
. ; rae <S Ss

a) if Zin Pi, and eos $n) output 1 operates

and the first group is relearned; s

16. 22 and 2, >? :b) if 2,4, in wna on 3,7 output 2 opera. es

and the second group 18s re learned; .

fe 2 > > 2 :c) if 3n > in 2924 = 3, ony Output 3 operates

and the third group is releurned.

ALL states sacisfying the first condition will be

reluied by the system to the first situation, all those

satisfying the second condition to the second situation,

and all those satisfying the third condition to the third

situation. [his constitutds the generalization.

In all cases the action of positive feedback only
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strengthens these inequalities and leads to stall greater

"anchoring" of the outputs:

Zrgnt ty = (Liens ty Ua) S Vins Lona ty = (yn41) Un) > Lan}

L304!) = (Gg¢n 4-1) Un) > Z4

Let us recall that other recognition systems use

other pickups, prototypes, comparison algorithms and en-

couragement laws. The system selecting the minimum square

distance be tween the representing point and the poles uses

the comparison algorithm

K

y= >) (Um —~ Oan)*
Mas!

with a following procedure for minimizing Z 5 (as distinct

from the procedure for seeking the maximum value of the

scalar product in the Alpha systen.

The Alpha system compares the distance between the

poles and the image in Hemming space, and the system with

selection of the minimum square of the distance compares

them in ordinary euclidean space,

Prototypes need not be vectors; they can be replaced

by the boundary @quations of the regions of individual

patterns in the multidimensional space of attributes,

correlated pretetypes, etc.

Self-learning of a prediction filter by the method of

regression analysis

ihe mean-squure prediction error is defined by the

expression ty

Ac —>) (Gs — 2g)"
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where g, is the actual value of the function (in the future);

g is the predicted value of the function.

It is a positive definite quadratic form of the in-

fluence factors. An error minimum always exists, and since

the equation isa Linear with respect to r, it is an unique

minimum. Manifold-correlation (regression) analysis makes

it possible to select the influence factors in such a way

that we obtah the minimum mean-square error of prediction.

For example, introducing for three values the notation

h=u h=%, =r, Pax, R=n, R=x,

hits = X00 ffs = Xe, fpfs=%, P=ke, R=Xu, R= Xi,

Ph=ts, Rh=xn, Bh=Xw, Bhs Xu, Rh=4*,

B= Xe. Ahls =X,

we obtain the prediction equation in the linear form

B= let rX -+ rah, bXyt Paha tt Xs + rede b ryXy +

TFeXe bt eX— + PreXte Xin ieXis bt te%ta te PiaXie “+
HPipXiy te yeXie te PyrXir ct PyeXye -+ Piet»

The expression for the mean-square error takes the

form

M
Y}

— ghNgFghyo — eX)®

Since we wish to determine the minimum mean-square error,

we find the values of the twenty partial derivatives and

equate them to zero

5 = 0, st =0, Se 0, vney 24. 0,OF ss

These equations are the basic calculational equations

("normal regression equations"). In expanded form we obtain
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(lines ahove the correlation coefficients denote the opera-

tion of averaging over all data of the learning sequence):

fot rjXy + raXq + re, +e + hike = Bes

TX + nxi + fyXqX, + reXiXq+ wet Heke = £6X,,

Pade bride + rekl+ ratte + ob riekatis = Bola,

E+ 7,XsX0 + rXeXi9 ow + rieXi9 = Bodie.

For a single-valued solution the number of equations can

not be less than the number of unknowns, Ilence the minimun

duration of the learning sequence is equal to the number

of terms of Kolmogorov's formula. If the prehistory covers

N intervals, Kolmogorov's formula contains N+l terms of the

first order, (1/2)(N+1)(N+2) second-order terms,

(1/6 )(N+1)(N+2)(N+3) third-order terms, etc. For example,

when Nwd, there must be not less than 20 measurements.

Every measurement must include three values of the function

from the prehistory and a corresponding actual value of

the function following these values (see Fig.57). In prac-

tice, the length of the learning sequence must be increased

by a factor of five to ten in comparison with the minimum

length. This makes it possible to eliminate the influence

of function measurement inaccuracy. Here the number of

equations does not increase, but there is an increase in

the volume of computations of the correlation coefficients

in these equations.

We have shown the algorithm for applying regression

analysis tewards determining the cuefficients of Kolmogorov's

furmula chiefly in order to estimate the volume of the

necessary computational work and to indicate the length

of the learning sequence of the initial data.
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Self-learning of a predicting filter by Gabor's

iteration algorithm

Frofessor D.Gabor /547 proposed an iteration algorithm

based, like the method of regression analysis, on the

search for the minimum mean-square error, i.e. giving the

same result in a somewhat different way. The mean-square

error as a function of the influence factors is a multi-

dimensional elliptical paraboloid whose vertex is the éim

of the search. fhe search for the minimum error can be

carried out by various methods: the Gauss-Seidel method

(i.e. successive variation of coefficients), the gradient

method or method of steepest descent, etc. In his self-

adjusting filter, Professor Gahor used an extrapolation

method for the minimum search. The position of the minimum

is computed from three points of a parabola. -Deduction of

the extrapolation formula is simple (see Fig.51). From the

condition of the minimum mean-square error we find the

optimal value of some coefficient

Asay)ary ar’?

0 OF Hog HH ae aL
2 a3

fhe parabolic equation for any three chosen points

gives three calculational equations:

A’ == a, -{- ar’ +f. ayn’,

A” w= a, +- ary t+ Ogre},

A” = Q, -. ar, + @,r,?,

By determining from these the values of the coefficionts

a, ana a), we obtain the desirad extrapolation formula

; _ A (r;? _ 172) ot A” (r;? —_ 1,7) 4. A” (r? —_ r,)

opt 2 A’ (r, _ ri) -+ A” (14.— r,) -+ A” (r, -- ri)
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In what follows, tne determination of the cueffici-

ents of Kolmogorov's formula is reduced to a sequence of

iterations: a) having assigned arbitrary values to the

cuefficients, we compute three values of the error As,

A" and A™ for three values of one of the coefficients

ri'y rons rye Applying the extrapolation formula, we use

these quantities to find the optimal value of the coeffici-

ent ry; b) taking this optimal value, we repeat the com-

putation for the following coefficient Pig? etc, until

the mean-square crror stabilizes at some value. ‘he error

should decrease monotonically in the course of the iterations,

The value of the error at the end of the iteration pro-

cess hs a measure of the prediction accuracy,

In volume of computational work, the iteration

method is not much better thun the regression analysis

method, but it can be more easily programmed on computers.

Requirements as to the length of the learning sequence are

the same. ‘he number of modes to be averaged in determining

the mean-square error must in proactice exceed the number

of Kolmogorov coefficients being detcrmined by 4 factor

of from five to ten. An advantag2 is the simplicity of

constructing the self-learning filter with analog elenents.

The Alpha recognition system as a predicting self-learning

filter

The circuit of the Alpha recognition system (see

Fig.58) completely reproduces. all possibilities of Gabor's

continuous self-learning filter, with the limitation that

the former uses a discrete representation of quantities in

the form of binary codes. For example, in a code"with

change of sign" let there be given
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fy =0,3 = +. L-}-b—-t—J]—J],

A=Ol=+4+1—1—1—1~—},
A=O9= +4494 0-F 1-1,

Then the input of the system is fed a general "image" or

‘representation point" codé:

. vy, = (0,3; 0,1; 0,9...) =
+1 + )—) — 1 — $4+1—l—l— 1— 14- P+I+ 1...

This code ic fed to a certain number of groups of

associating cells; ciis nuinber is equal to the number of

divisions R of the quantity being predicted. Figure 57

shows five divisions, corresponding to which Fig.58 shows

five groups.

Every group is characterized by its pole (or proto-

type, standard). At the output of each of the groups a

voltage is obtained which is proportional to the scalar

product of the input code by the pole code. For example,

if the pole of the first group is also

a,(0,3; 0,1; 0,9) = +4+1+1—l1L—l—1l4+1—1—1—
—l—14ePei tleie daa,

at its output we will then obtain the maximum possible

voltage

2, = (Oy Hj) 2 Uma.

lt is clear that the largest voltage will be from that

group for which the pole in the n-dimensional space of

attributes is neurest to the representation point. When

the pole xy and the representation point Vv, are equal,

we will obtain the maximum possible voltage, which is shown

in the given example. ‘The large-voltage indicator LVI

finds the pole nearest to the givon re;resentation point
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and thus predicts the future value of the function.

As a result of the learning process, the poles

establish themselves in a ;;osition at which the prediction

error does not exceed the error obtainable in the Gabor

continuous filter, more than a half a discrete division.

The system can be constructed with relays or flip-flops or

can be programmed on @ universal computer. The growth in

volume of computations as prediction accuracy demands in-

crease~-- the basic difficulty inherent in the Gabor filter--

is also present here. The prediction accuracy increases
both with an increase in the number of observed intervals

N and with an increase in the number of digits of the

discretizators n, and decréases with an incrense in the

number of levels of discretization of the output R. We

will return to this question below.

Experiment on prediction of amplitude of ocean waves

on an Alpha recognition system simplified as

much as possible

With the aim of achieving a sharp cut in the volume

of computations, it was proposed to decrease the volume of

input information on the process. Let the discretizators

of the Alpha system have one output; i.e. let them com-

municate to us only the sign of the deviation of tie function

from some mean value. The circuit of such a simplified

recognition system is shown in Fig.59. It is clear that,

in distinction from the complete system of Fig.58, the

simplified system no longer has the potentialities of

Gabor's continuous filter.

But how much does the prediction accuracy decrease

nere? Will such a system be capable of prediction at all?

o answer these questions, an experiment on predicting
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Figure 59. Simplified binary Alpha predicting system.
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Figure 60. Recording of the variations in the amplitude

of ocean wavc's.

the amplitude of ocean waves was conducted. The importance

of the radical simplification of .the prediction algorithm

for this problem is determined by the fact that with conm-~

plicated algorithms the determination time of the amplitude

of the succeeding wave on a computer may be larger than
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Table 8.

the time interval between the waves (4-12 sec).
The recording of ocean waves (Fig.60) given in /Sla7

was used as initial material. A current mean value was

determined for each three neighboring amplitudes. Only

the deviations of the amplitudes: from this mean value were

recorded in the table of initial values: plus, if the wave

was higher, and minus, if the wave was lower than the

current mean value. ‘he output scale of the system had

five divisions. We took the value of each division equal

to 3 (for trial purposes (SnaxEmin/2"5)°

fables 7 and 8 show a sample recording of wave

deviations from the mean value and their products.

The feedback used was not exponential,but averaging.
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fhe system used five groups, characterized by five poles

D191 Xoo Meas and <,., The systeuts self-learning of

correct prediction consisted of self-establishment of the

poles according to the averiging law

Uy + Ua +... + Oma =m+! m ,

where m is the number of arrival of the representation

point giving the same result. ror example, if it turned out

that all measurements given in Table 8 gave the third

division of the scale of the output of the wave amplitude,

the pole of the third group could be determined thus:

G=tIiti—i—1I1—l+1i+1+i—1. ete.

In accordance with the evaluation given above, for

self-learning of the poles a sequence was used made up of

140 measurements of not less than three neighboring values

of the wave amplitudes and the following wave, After learning,

the poles no longer moved, and the system was switched onto

prediction. It turned out that it predicted the amplitude

of the following wave with an accuracy of +10% correctly

in 80 cases out of 100; 10-20 cases represent an element of

"pure" randomness in the given process; correct prediction

with an accuracy of +20% occurred with 96 waves out of 100.

Thus, this highly simplified system, using a comparatively

snall volume of computations, is still capable of predicting

processes with the indicated accuracy.

Investigation of prediction accuracy and attribute

usefulness (terms of prediction formula)

An investigation was carried out on the influence

of the number of levels on the prediction accuracy. Figure 61
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Figure 61. Prediction quality as a function of the number

of points of the prehistory and the discretization levels:

§ is the number of correct predictions (in %); N is the

number of points of the prehistory; n is the number of

levels of discretization of the input quantities; R is the

number of levels of discretization of the quantity being

predicted.

shows the functions which were obtained. The first graph in

this figure shows that increasing the number of prehistory

intervals N taken into account raises the prediction accuracy
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Figure 62. Usefulness of attributes Do selected on the

basis of tne Kolmogorov operator (prehistory 6 points) ;

mis the order of terms of the kolmogorov operator,

The second graph serves as a fundamental justification

for tne use of the simplified system of Fig.59 in place of

the complete system of Fig.58. It has turned out that in-

creasing the number of divisions n of the discretizators

leads to an insignificant increase in the prediction accuracy.

Finally, the dependence of S on R (Fig.61) illustrates the

obvious fact that increasing the number of divisions of the

output scale lowers the number of correct answers of the

system.

Self-arbitrary selection of most useful attributes

G.L.Otmezuri /367 has pointed out that the selection
of the most informative or useful attributes used for

recognition can also be carried out in a determinate way

by calculationof the value of some attribute usefulness

criterion. It is possible to organize a self-arbitrary

process of selection of the most useful attributes by using

so-called secondary positive feedback. Here we can use

any of the criteria proposed by various authors, for example

the criterion of the number of distincuished disputes Do

{217, the criterion of the resolving power of the system R,
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the criterion of divergence or the criterion of change of

entropy.

The example of predicting the amplitude of a wave

was also used to check the possibility of discarding some

terms of Kolmogorov's formula (Fig.62). Using the criterion

of the "number of distinguished disputes" Do» we determine

the informative usefulness of the individual groups of

terms of the formula. It turned out unexpectedly that the

most informative attributes for prediction of wave amplitude

were the terms of the fourth order, i.e. the terms ffofaf,;

fofstyts, f.f,fef), f,f,ffs, etc. The investigation of

the usefulness of combinations of attributes almost always

gives unexpected results which are difficult to foresee

from “common sense" considerations. Thus, in the experi-

ments of V.L.Brailovskiy and A.L.Lunts, it turned out that

the most useful attributes were not the initial attributes

of the burns, but their pairwise combinations, i.e. the

second-order terms in Kolmogorov's formula. “he latter,

together with the above methid of determining the useful-

ness of attributes by the D, criterion is the most general

algorithm which explains the success of given exjeriments.

However, we should not overemphasize the importance

of such a system. There do not yet exist any systems which

would “invent" or “think up" any unexpected attributes.

Selection is carried out in a comparatively limited, pre-

assigned sev of attributes and their combinations. This is

the chief weak spot of all complex work on the selection

of attributes for pattern recognition.

It is enough to find one actually invariable attri-

bute, and the whole picture of the division of the attri-

bute space changes completely, and the whole investigation

must be started again. A "noncompact" attribute set may

become "compact", and the set itself sometimes decreases

decisively.
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Recognition Systems using Threshold Logical Elements

At the present time, much attention is being devoted

to the creation and investigation of self-learning recog-

nition systems on the basis of threshold logical elements.

Simple circuits based on threshold elements are

being successfully used for speech recognition, in solving

the problems of weather forecasting, in automatic control

systems, and in solving the problems of diagnostics (for

example, analysis of electrocardivgrams).

The basic link in the self-learning machine is the

threshold element, which is sometimes called an "adaptive

neuron", Figure 63a shows the block diagram of such an

element. Binary input signals Xp Xoveee eX, take the values

+l or -l1. A linear combination of the input signals is formed

within the neuron. The weighting factors are the amplifi-

cation factors Way which may take both positive and nega-

tive values. The output signal of the element is equal

to +1 if the weighted sum of the input signals is greater

than a definite threshold, and <1 in all other cases.

The value of the threshold is determined by selection of

the factor Wye’ The corresponding input Xn? which is

called the threshold input, is constantly connected to a

+1 source. If,for example, a threshold equal to O has been

established, then the linear combination of the input signals

Nv1

yawn

produces a signal

+I, y>0
z ={tr y<0,

ut the output of the thresnold clement. When the weighting

factor Wned is changed, the constant added to the linear

combination of the input signals changes.
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Ay given values of the weighting factors (amplifica~

tion factors) each of the 2" possible input combinations

corresponds to one of the two values of the output +l or

-l. In the adaptive nenron, these factors are aslabiished

during the learning process.

One of the structural variants of the learning ma~

chine is shown in Fig.63éb.
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Figure 63. Recognition system using threshold elements.

Key: 1) Adaptive neurons; 2) liVI.

fhe outputs of the threshold elements Zix Zor ereyhy

can be considered to be components of some M-dimensional
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vector z. Let us assume that we need to recognize L pat-

terns. From the whole set of 2” output vectors L vectors

can be selected which best represent the patterns to be

recognized. Let us denote these selected vectors by Viveeey

v,* Then the vector z would be related to the pattern i

whose representing vector V; is nearer than all the rest to

z. This means that the scalar product

Zus=maxz-y, (/, j=l, 2, .., L).

The large voltage indicator shows which of the

vectors V; is the closest to z.

Let us consider the learning process.

The weighting factors are originally established

equal to zero. The inputs are fed a combination of attributes

Ky Xqeeee Xp corresponding to the first pattern. If the

answer given by the machine is correct, there are no changes.

But if the answer is not correct, some of the components of

the vector z differ from the corresponding components of

the vector Vie In this case, the output signals of some

threshold elements (of those which did not coincide) change

to the inverse ones in order to bring z near to Vie

The number of elements. to be corrected is taken to

be some number d'= P-d, where d is the number of all neurons

which did not coincide, and C is some quantity varying

within the limits O § -~ 1. the value of C is determined

experimentally. If, for example, P = (1/4), this means that

a fourth of all neurons which did not coincide are corrected.

Prediction of changes in atmospheric pressure

If the machine just described is used for prediction

purposes, in this case the prehistory serves as input sig-

nals, and the output represents the predicted values of the
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process in which we are interested. AS an example of the

use of the learning machine for prediction, let us consider

the problem of the determining the future values of at~

mospheric pressure (Fig.64a). The part of the prehistory is

played by four pressure values: the pressure at the given

moment and the values of the pressure for the three pre-

ceding hours, which have changed on two different leveb.

The prediction quality was determined from the

amount of lowering of the variation

g = 1 — HEE |. 100%.
p—?

In the example described, a variation lowering of q=63.3%

was obtaned. Optiwal prediction (according to the minimum

mean-square error) for the same initial data gives a

variation lowering of q=76.2% and, when linear regression

analysis is used, of q=60.4%. Figure 64b shows the result

of optimal prediction.

Let us note that, both in the case of prediction by

means of a learning machine and in the case of optimal

prediction, the errors are characterized by some general

tendency. ‘his bears witness to the fact that prediction

errors are rather more to be explained by the probabilistic

nature of the process and the presence of unpredictable

"yure" randomness than by the use of this or that method

(for example, the use of a learning machine).

The Use of Recognition Systems as Learning Correctors of

Extremal Control

This section considers nonsearch extremal control

systems which do not use test intervals of variation of the

reculating influences on the object. «he basic assumptions

in this problem are based on the use of the methods of
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Figure 64. Prediction of atmos;heric pressure: a) by means
of a recognition system using threshold elements; b) optimal
prediction according to the criterion of the mean-square
error.
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"passive experiment" with further use of regression analysis

[21a ,44,577.
' Among the number of difficulties which are encountere:

here, we may point out the very large volume of caiculations

in solving the equations on digital computers. Thus the

problem of algorithmization of the process in a fraction-

ating column leads to a system of 20 equations in 20 un-~

knowns. The duration of the solution of the equations and

the necessity of using large periods for averaging the

input data /577 lead to low speed ofaction of the re-
gulator.

The demands on a correlation (regression) regulator

can be greatly decreased if the latter is used only as a

correetor for a fast-acting open part of the control system

which is in the form of a switching matrix of keys (ig¢.65.

left).

The thought arises of using the methods of "active"

or "passive" experiment only for the learning of the re-

cognition system, in which there is no need for solving

equations. Using certain attributes, the system must, after

learning, recognize "situations" and by this means give

correct indications for correction of the characteristic

of the open part. Below we give a definition of the con-

cepts "state" (or "“image") and "situation" (or "pattern")

and synthesize a circuit and select the most useful (in-

formative) attributes for the recognition system, the

corrector.

The basic limitation which we assume is the assumption

that the distribution of the perturbations remains almost

constant, although it itself may be unknown to us. For

large changes in the distribution, the system must be

retuught anew. In what follows, this limitation will be

removed by means of a special method of constructing the
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attribute pickups.

Furthermore, it is assumed that the inertia of the

object is small or that we can connect to the output of

the system a link with an inverse operator (anticipator),

this link re-establishing the exact oscillogram of variation,

of the quality index. Experiment shows that analog models

carry out inverse transformation in measurement circuits

with sufficient accuracy. The "Smith anticipator" /437 is

used for objects with constant lag. Another possibility is

the introduction of a delay into the circuit for measuring

regulating and perturbing influences equal to the delay in

the quality index circuit. However, this way of compensating

for the inertia of an object, although it is simpler to

achieve, is undesirable, since it slows down the action of

the corrector.

The circuit for the open part in the form of a

switching matrix of keys is not the only possible one. In

another variant, the open part is made, in turn, in the

form of a recognition system whose poles ("polar gas") are

taught,for example, according to the algorithm in /25/.

In this variant, the regression formula corrector plays

the part of the teacher of the open part of the extremal

control system.

kt is desirable to supplement the algorithm used in

this article with the laws of interaction of the poles

among themselves as is done below.

Formulation of the correlation problem

Usually the extremal characteristic of the object

can be approximated by a generalized power series of the

second or third degree. For example, for an object which

is a hydroturbine (see Fig.65), we can write:
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“igure 65. Example of combined system for extremal control
with corrector, an Alpha recognition system: 1) object
(turbine); 2) matrix convergence circuit; 3) matrix of
keys of open part; 4) controlling reversible counters;
7) recognition system; 6) optimal characteristic model;
7) “teacher",

Key: 3) HVI; 4) Mopt'
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(P == Oy +AYP + Oghy + Aghy + Ay? + aA? + add + apa,+

~{- AghtAy + GyAyhy + Ayoft® + Ay? + 0,43 + AygptA, -t- AyghtAy +

+ Ay,ARA, + AygAty ++ A,Azh, + A,AZ $+ ArgtAyAs »

where p is the extremun index (efficiency of turbine);

iK is the regulating influence (angle of rotation of the

vanes); Ayr4o are the basic perturbing influences (water

pressure and turbine load).

If we use the convergence (rotation)of the matrices

of discrete values of the perturbations into a row of

generalized perturbation A( Aira) the same character~

istic can be represdnted by a simpler polynomial with

two arguments:

P = Ay + ah + 4,0 + aut + a,A* + aud + a,d? + ap,

where (in the case of rotationin the usual order of rowby.

row)

A= fA, + by (Aq — 1)AG;

1 is the number of levels of discretization; 41 is the
discretization interval.

In the majority of cases we can select an order for

rotation of the matrices for which the characteristic of

the object is obtained as smooth so that it can be approxi-

mated by a straight line or a parabola of the second degree.

Here the optimal characteristic of the object, on which it

is desirable to operate all the time is defined by the

equation

 

 

d «
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The best results are given by transposition in the

order from the least mean value ( to the following larger

one. If the characteristic becomes of too compiicated form

here too, we should not use convergence and reise the

degree of the approximating polynomial. This only increases

the volume of the recognition system and the duration of

its learning. |

In the case of a second-degrec polynomial, the cor-~

rection problem consists of keeping the mean line of the

characteristic of the open part

Aas dy + dip + dap"

as near as possible to the optimal characteristic of the

object; i.e. with small displacements, rotations and de-

formations of this characteristic, it is possible to

establish |

Xue Cy—dye==0; y=u—dm0; z=c,—d, = 0,

more quickly. We are only concerned with the mean line,

because in a nonsearch extremal system the characteristic

of the open part should in essence not coincide in form

with the optima] characteristic of the object. It is a

straight line or a second-degree parabola with small

"teeth" superimposed on it which takv the place of the

search oscillations at the object /2la/7. The essential
nature of this prohibition is connected with the well-known

rule in interpolation theory, according to which the inter-

polation points (nodes) cannot be selected arbitrarily,

in prticular on one straight Line.
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Another definition of the concepts of "state" ("image")

and "situation" ("pattern")

Earlier /2la/7, we characterized the state of an
extremal system by the coordinates of a paint of the space

Qu, (Pr) DParever Day Hy seen Hh, Ag yeony A, ).

In accordance with this, we defined a situation as a de-

finite regionof this space.

We will now change our approach and will character-

ize the state of the system by the coordinates of a point

of the space

Qe(Co, Cis Cy, do, dy, d;).

In accordance with this, a situation should now be defined

as some region of this new coordinate space. The correction

problem consists of hringing the system into a region

where Co=dos c,=d), Corday.

Now by a state (or image) we will mean all possible

respective positions of the mean line of the characteristic

of the open part and the optimal characteristic of the

object. It is assumed that the coordinates CEyrl) Cardy

dj.dy can assume only a number of fixed discrete values.

Hence the total number of possible states which: it is ne-

cessary to distinguish is finite. Figure 66 shows the 16

states of the combined extremali system which are used

below in the example.

The total number of possible states is equal to

SHhthlhy—l) +hG(b— D+ hb— 1) +
+ Abba (ts— VD,

where Lordy storderlarts is the number of discrete levels

of measurement of the coordinates Corl) Co rAnydy do. It

is easy to compute that with the actually used number of
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figure 66. The central states of 16 situations which it is

required to distinguish.

divisions, the total number of possible states is expressed

by astronomically huge figures. No actually realizable

system can have so many outputs.

A similar problem arises in the recognition of

Visual patterns. If, for example, 100 attributes are used

in recognizing letters, the number of possible codes is 2100
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Only to sort this number of variants on a fast-action

machine with a counting speed of 10° comparisons per second

would require more than a thousand years. A way out is

found in the classifiaation of images which are close in

some sense as one pattern (property of generalization).

we should proceed in the same way in the case con-

sidered of classifying the states of an extremal system

into situations. For example, using only two groups (two

poles) we divide in this way the space of the coordinates

Cory 2g rdgrd) dy into two regions, i.e. situations.

All states falling into the first situation will

be indicated by the system at the first output, and the

states falling into the second region will cause operation

of the second output. Thus, the number of situations is

determined by the number of poles, and their boundaries

coincide with the boundaries of the "attraction regions" of

these poles. Learning or self-learning of the system has

the aim of a rational selection of the position of the

poles and boundaries.

Usually in designing a system, it is possible to

point out a certain comparatively small number of character-

istic (central) states which are to be central situations

after the learning of the system. In learning, the poles

are located at points located as close as possible to

these central states. Then the name situation can be given

to the region of the space

Qui(Ce, Ci, Ca, dy, d,, d,),

where the whole set of states is found which the system

generalizes with a given central state (prototype).
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The use of the Alpha recognition system for distinguishing

situations

Figure 67 shows a sample system circuit. In this ase

of the recognition system, the attribute yvickups, in accord~

ance with observation of the instantaneous changes in the

quantities DiMA produce certain integral functions

of these quantities Xp »XoreeesXyy which in the theory of

pattern recognition are usually called attributes. The

basic advantage of a recognition system consists in the

fact that it is a very capable "student" and, after lesrnirz,

acts by an order faster than its “teacher”. The necessity

for a “teacher” disappears after the recognition system

learns correctly to distinguish a sufficient number of

situations.

Let us assume that, as a result of 4n analysis of

the usefulness of the attributes, we have selected three

useful attributes x),,X5sXx, (n= ).

fhe vector at the input of the system will be:

V,(X) Xa 9Xq)- The poles of m groups of associating cells

will also have three components each: (ry Pyoh3)»

 y(Po) Pog9Kax)s cob, HK CrPoh) * The voltages at

the outputs of the groups will be, respectively,

Dy (O07) = FyXy be ieXe HPiaXes

Dy = (q0)) == 741% + Faas + SeaXs,

Dy = (gs) = FyiXy + aaXe bt MaeXa.

If, for example, wish to teach the first groupto

relate a given representation point to the first situation,

we must select r}),Pj2,r,3 89 that the scaler product =,

will be greater than the others: 2,>2,; 3,>2,)..;2,>2n.
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Figure 67. Circuit of Alpha recognition system: 1) attribute

pickups; 2) wroups of associating cells; 3) comparator, HVI

or LVI.

Key: 4) max; 5) min; 6) or; 7) "teacher" or feedback.
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It is well known that the scalar product of two

vectors is equal to the sum of the products of the projec~

tions of these vectors. The maximum of the first scalar

product is achieved when we have the equalities:

Fy P= Xs Fig = Xqs yy me Xs.

If we want the first central state to produce operation of

the output of the first group, the pole of this group must

be established at a point corresponding to this state.

Above we spoke about splitting the space of the

caorinates CQ rl) Co rdy,d) ,dginto regions, i.e. situations.

To every point of the coordinate space

2vi(Ce, Cir Cy, de, Gs, d,)

there corresponds a definite geometric locus of points ar

the coordinate space of attributes Xp eXosXay ore yXe The

latter space can also be split into regions, i.e. situations.

In learning a pole should be established at the center of

a situation corresponding to a given central state in both

coordinate systems. but in practice we cannot protractedly

and accurately maintain the system in a given central state,

since the perturbation distribution and the form of the

extremal hill are constant only to a first approximation,

In reality they vary with time around some mean value.

ience we should establish the pole at the “center of gravity"

of the paints, i.e. the states: relating to the given situa-

.ion. With a large number of measurements, the "center of

sravity" coincides simultaneously both in the space

Qu; (Cor Cus Ca» do Qi, As),

ind in the attribute space

Qo(X1. Xq Xgy oe Xn ds

This consideration indicates to us the rule for
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learning of the poles: the pole of the group heing learned

must be located at the center of the situation, this center

being defined as the arithmetical mean of all points of the

learning sequence relating to the given situation. By ob-

serving the operation of the object in all possible states

and knowing (from the "teacher") the number of the situation

to which they relate, we can prepare tables or graphs of

the learning sequences (Fig.68). Having selected the data

relating to one and the same situation, we find the posi-~

tion of the pole of the group corresponding to it in the

learned state by means of averaging (where Co=Cconst; c)*

const; Cy=const):

; T T r

ris ky oge | ade; re = Mi | ade: rahia|me

0 0

This computationally second averaging is required only

during the period of learning the poles. The first averag-

ing is constantly required in working out the attributes

Xp aXoeXgaeeeyXye

Decreasing the duration of learning of the poles

by means of interpolation

When the number of situations and groups is increased,

the learning time increases accordingly. The mean values of

the attributes Xp Xone eeyX, must be "displayed" for every

situation in order to establish the group poles at these

points. To shorten the learning, we can use self-arbitrary

establishment of the poles according to the formulas of

interpolation or regression analysis. Let us explain this.

It is easy to distinguish the "anchored" poles, which

have already been indicated by the "teacher", from the

"unanchored"ones, which have not yet been indicated by it.
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Figure 68. Examples of sequences with uniform distribution

of perturbation probabilities.

Key: 1) tin
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Unanchored poles do not remain const:int, but displace as

some function of already indicated poles. For example,

with linear interpolation, the coordinates of unachored

poles can be determined from the formulas

_ Naebs ,
9 9

= aieFl-1), |Wom 5 a|
2

— lms) Fini)
mi = 9 e
 

With such an algorithm, unanchored poles are "repelled"

from one another like particles of some "polar gas" /2la/
and are located ati equal distancves from one another along

straight lines connecting already indicated, "anchored"

poles. As a result of this motion of the poles, the learning

process is shortened.

Elucidation of the makeup of the "attribute" set

In order to elucidate the makeup of the set of at~

tributes, a ;art of which we are going to feed to the

input of a recognition system, let us return to regression

analysis.

According to the regression method, the coefficients

are detcrmined from the conditions for obtaining the min-

imum mean-square error

 

n

A=»a= (Py — $F)? = (P— ah — ag? — apd — ap).

A minimum must exist and is unique, s&nce the error is a

linear function of the coefficients OC oe laking derivatives
—_

when ? on f , we find four normal regression equations:

0A : 0A == 0 oA 9:
——_ coSomme tee ’

Oa, § Ody § as , dy

whence
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Q,H? + asp? + ay -{- at’ = Uy;

ayy?+ asp! + ayy +- au =pq,,

awh+ asyrA + auth +ap= phgy,
ayn! + ays + ah+ a= pq,.

Four terms have been omitted since they have no effect on

the coefficients Cor Cy and Coe This halves the number of

regression equations.

Solving the equations, we can find the coefficients

ay _ 243, _ 341
O=— TG," ¢°"= aot as

and, hence, determine the optimal characteristic of the

object.

Let us make the notations:

in b=t |ont aAtdé,
_

—T

X==+nat y= Gp = + i mudi,
—T

tyhe+|iat xy 9h= a) ead,

mint|ont f=ihm}|net

Xj == pl=+hpide, Xe=Pc- f pdt,
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_T “y

0 0

Xs3 = A3 = as \ Aldi, Xo ==FV as | qed,

~T r —T

0 n

X3=P= \ P*pdt, Xy=Qtht= — | qtatde
aT ~f

0 0

xyu=Gh => | qthde, Xu=wi=+ | pied,
~T -—T

0 0

—— —— |
ty=hp=— | wigd?, su=PLL = a | gpd,

<7 _
pene 0

i

Xyr=MG == - |avede, W=PA= 7SpeAde,

0
— Iyrs Bil om |thd r=) =7 |wtedl,

c 0
typ= ae | Mud Ky=Ph= ae | pdt,

—T wT

x =qtheae Adt x =)39 = Lf Aqdt
19

=

4 Tme ’ 3 T y ’

0 0
— , 1

ty = Yi = * \ edt, X39; =Ap == - \ Mudi.
7 =.

0
— |

Xa = pt 3 +4wid,

With these notations, the solutions of the normal

equations can be written in the following form (we put

oX 7220) :
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a XpXquXay- bX44%p0%a04X47%9%9219%1949185%9X09—X11 X14X5 ,
__ ’
ay HX0X0p7X1%pyXnrG01%XeqnX9X1X04moeXet20-211510%30

 

These solutions show that, for recognition systems,

the attribute set must be sought among the quantities

Xp XQeXgreeepKgyeses It is clear that the set of atiributes

Xe Xo 9X11 9X5 9X1G 1X19 9X0) 1X04 X09 1Xg completely solves

the problem of recognition of the situations, but it is

too complacated and superfluous for solving the problem

of distinguishing a given number of central states.

Selection of useful (informative) attributes

All the attributes found possess an important pro-

perty: their value depends only on the situation and does not

depend on the order of variation of the instantaneous values

of the quantities J, and A if the distribution of the
probability of discrete values of perturbation is constant.

Figure 68 shows sample sequences of variation of perturb-

ation 2 having a uniform probability distribution p(j )«=

const. It is clear that both learning and test or working

sequences of values of MyA arriving at the recognition

system must be of sufficient duration to be able to trans~

mit the objectively existing perturbation probability dis-

tribution. It is precisely this which determines the speed

of action of the recognition system as a corrector. The

operation delay is equal to about half of the averaging

title, i.e. half the duration of the represented sequence

(%,=1.5 min for sequences shown on the left-hand side

of Fig. 3 (sic/7, and T 23.0 min for sequences on the right).
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This delay is less than the delay in determining the

characteristic of the object by the regression method /577.
Recognition theory knows many methods of evaluating

the usefulness of attributes (by the number of disputes

to be resolved Dy s entropy criterion, divergence criterion,

etc /21/7). But all of them have been worked out for binary

"yes-no" actributes. A special feature of che problem under

consideration is the fact that the attributes are not bina-

ry, but continuous quantities. Continuous attributes should

be evaluated directly from the value which they assume in

all situations to be recognized.

Let us consider an example of selection of the

most useful attributes. Let us assume that the object can

be described by the nonlinear equation

p= 1~w—ed— &)*.

Then for the values of CoC) dord) indicated in Figure 66,

for any of the sequences shown in Fig.67, we obtain the

values of the numerically first 19 attributes; these values

are shown in Table 9. |

The attributes can be divided into four groups:

Broup Bs x, xis, Xs X05

Group bs %15 %er Xer Nios Mes Hiri

BrOuUp Ce xs, xe, Xe, Mis Xier Mes
group Gd: %s» Xe, %is:

The attributes of group a carry information on the

variations both of and of p and hence can be used for

the construction of recognitionssystems operating according

to one attribute in all. The attributes of group b contain

information on the variations of p , and the attributes

of group c, on the variations of M. These attributes can

only be used pairwise (i.e. one attribute from group b and

one from group c), since if this is not done we can find
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Table 9

 

Tinwouyuy )

2
Cocroanus

( x

 
Xo

 
Xe

 
Rs

  
Ne * Xe Xe

 

5
.

Ss

S,

Ss

Se

S;

Ss

S;

Si

Si

Sis

Ste

0,9975

0.9433

0,9702

0,9832

0,9267

0,9975

0,9832

0,9754

0,9595

0,9887

0,9974

0,9802

0,9752

0,9834

0,9877

0,4833

0,7333

0,6510

0,6093

0,4833

0,7333

0,65!

son
0,4833

0,7333

0,6510)

0,6093

0,4833 6,8

0,

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,6510) 0,5 
0,997 

Sample calculation of “che first number of the table:

0,6093 0,5

0,995

0,8904

0,94 16

0,9668)

0,8592

0,995

0,9617

0,9520

0,92 18

0,9775

0,9947

0,9615

0,2775

0,5816

0,5003

0,3966

0,2775)

0,581 7

05003

0,3966

0,2775

0,5817

0,5003

0,29167

0,2917

0,2917

0,2917

0,2917

0,2917

0,2917

0,2917

0,2917

0,2917

0,2917 0,3 0,9515

0, 
from Fig.68 we find: «0.25, A
respondingly we will have from Fig.66: MH,20.25-0.05,

Pt 920.5+0.05, Mz20.75-0.05. we then determine @ from the

5

0,905 0,3

2

0,2917

0,277510,2917

0,9673; 0,5617/0,2917

0,2917

2017

0,4823

0,6907

0,6266

0,5997

0,4498

0,7315

0,6436

0,592 |

0,4586

0,7257

0,6493

0,59:15

0,4755

0,6403;

ons 0,4902

0,4987

0,4717

0,4818

0,4932

0,4633

0,41987

0,49

0,484!

0,4737

0,4952

0,4986

0,1857

0,4912

0,491  “an 0,4987

0,2833

0,4083

0,181

0,0657

0,2833)

0,4083

0,381!

0,3357

0,2833)

0,4083

0,3811

0,3357

0,283

0,4083

0,381 1 ose! 
20.05, ) .=0.75. Cor-

formula: P ,=0.9975, P 920.9975, P420.9975; whence

x 2
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Value of attributes in sixteen states (with pt A J= const)

 

Xe Xa ki) T13 Xa Xie Xte

 
Xi Vis

 

 

0,9925

0,841

0,9144

0,9509

0,7972

0,9925

0,9437

0,9295

0,8869

0,9665

0,992

0,1725

0,4868

0,2703

0,1725

0,4868

0,4178

0,2703

0,1725

0,4868

0,41 78

0,94380} 0,2703

0,9289

0,9516

0,9491

0,9927

0,1725;

0,4868

0,41 78

0,2703  

0,1875

0,1875

0,4178| 0,1875

0,1875

0,1875

0,1875

0,4807

0,651

0,4975

0,4452

0,652] 0,4645

0,593

0,4175

0,7298

9,6363

0,1875) 0,576

0,1875

0,1875

0,4360

0,7195

0,1875| 0,6474

0,1875

0,1875

0,1876

0,1875

0,1875 
0,5803

0,4682

,7055

0,6306

0,6047 

0,4866

0,4296

0,4975

0,488 1

0,4689

0,4495

0,4906
0,4973

0,4722

0,4827

0,276

0,5477

0,4798

0 3925

0,2576

0,5802

0,4967

0,3843

0,2612

0,576]

0,4989

0,3856

0,2725

0.4806 0,5693

0,4837

0,498  0,49250,3957
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0,1763

0,349)

0,3187

0,2341

0,1763

0,3491

0,3187

0,234

0,1763

0,3491

0,3187

0,2341

0,1763

0,349)

0,3187

0,234! 
Key: 1) Attributes; 2) states.

0,2910

0,2758

0,2801

0,2887

0,3075

0,3325

0,2894

0,2804

0,2733

0,2894

0,2909

0,281 1

0,2876

0,2856

0,8696

0,2909 

0,1813

0,2542

0,2440

0,2074

0,1813

0,2440

0,2074

0,813

0,2542

0,2074

0,1813

0,2542

0,2440

0,2074  

Q,2877

0,3855

0,3657

,3216

0,2624

0,4073

0,3783

0,3240

0,266

0,4048

0.24401 0,380]

0,3249

0,2796

0,3995

0,3747

0,3349



indistinguishahle states which give equal values of x, or

Xo (see Table 9: states S, and S, for x, etc). Finally,

the attributes of group d are useless for our problem, since

they are connected only with A,

The attributes of group a should be recognized as

more useful alsm@mbecause, even when the slope of the extremal

hill is increased, it is always possible to find among them

an attribute which increases monotonically on both sides

of the "crest" and hence uniquely determines its position.

In the given problem it is sufficient to use only the

attribute Xa to distinguish all 16 given states.

The boundaries of situations with ideal and real

attributes

If we provide the system with a device or program

which, after every change in the location and form of the

characteristic of the open part, perform a change in the

locus of reference and a transformation of the coordinates

pf and /| for which this characteristic is rectilinear, is

always located at an angle of 45° and passes through the

origin (d= 0; d)=1; d,,=0), the investigation takes a finer

form. Instead of the six-dimensional space

Qo (Co, Cis cs, de, d,, ds)

we can consider the three-dimensional coordinate space

OL yg OZ), where

Xm Oy—dy =o, y=t,—d,=0,—1, 2=—dy cy.

The correction problem consists of bringing the system

into the situation including the origin as center x0, y=0,

z=Q.

The larger the radius vector

~2lds-



ral

 
  

Figure 69. Situation boundaries for the attribute Xr and

for the"ideal" attribute ? (where dy=d,=c,=0 and d,=1).

p=Y+Pta2,

the more is correction required. Hence a good division of

the space x,y,z into situations would he division by

concentric spheres wiith a common center at the origin

(Fig.69, dashed line), and an ideal attribute could be

the radius vector itself if it could be quickly and easily

measured and computed. But this is not the case, and hence

we should use the much simpler attributes indicated.

For each of the attributes, the situation boundaries

can be constnucted experimentally or computed pointwise.

For the example considered above, the situation boundaries
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when only the one attribute x, is used are shown in Fig.69

by solid lines, We can only come to the conclusion that,

although the form of the boundaries differs from the ideal,

it is nevertheless by nature near the ideal in the square

x ?0, y?0,

Method of producing attributes in the presence’ of

deviations of the perturbation distribution from

the most probable curve (distribution transforma-

tion ) |

The method consists of selecting only those points

which correspond to the mean perturbation distribution.

Measurements which violate the given mean distribution are

simply omitted.

Let us illustrate the method by an example. Let us

assume that the mean or most probable distribution is the

uniform distribution as in Fig. 68. Then by means of special

selection filters, it is necessary to omit the points

which disturb uniformity. For example, let

A, = 0,25, As = 0,5, Ae wm 0,25, ¥, = 0,5, Ay = 0,75.

Then the filter must omit each value by one, i.e. the |

points AysAgrAs- It is clear that this process of produc-

ing the attributes is delayed, since it is necessary to

wait until all val ues of A arrive. In the given example,

the process will he delayed by two thirds of a period.

In practice, the attribute pickup can be constructed

according to a principle which recalls the principle of

construction of the cye of certain insects (for example,

of the bee).

At all vertices of the teeth of the characteristic

of the apen part memory devices are placed which record
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Figure 70. Structure of attribute pickup with separation

of the effect of uniform perturbation distribution from any

other (different from zero): 3Y) memory device for the latest
value of tl! 3 quality index ¢ ; C) selector of group of

three memory devices with minimal delay Ty

the latest value of the extremum indicator (Fig.70).
The devices are connected in groups of three, but in such

a way that these groups do not include points lying on a

single straight line. Two extreme devices are placed at

equal distances from the mean (in the case of separation

of uniform distribution). All groups of three memory devices
feed their signals to a selector. The latter selects the

group in which the delay time (equal to half the period

during which all three devices have operated) is less than

in the other groups. With a parabolic characteristic, the

memery devices are connected in groups of four, in all

possible comhinations, excluding those which give zero

values of the determinants or violate the perturbation

distribution to be separated.
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uvaluatiion of atlributes according to the criterion

of resolving power

If the attributes are measured accurately,and the.

perturbation is a displacement of the extremal hill along

the Mad plane without changing its form, and, furthermore,

the perturbation probability distribution remains invariable,

the recognition system can distinguish any number of states

equal to the number of its groups. But in fact there always

exists deviation from these ideal conditions. This brings

it about’ that the system cannot distinguish states which

are very close two one another. Hence there arises the prob-

lem of all-around raising of the resolving power of the

syste | a definition of which is given in /317. Let us

recall that the resolving power is defined by the differ-

ence between the greatest scalar product and the one nearest

it in magnitude,

The algorithm of a recognition system is such that

the attributes can only be useful or useless in some respect

(Wiener: “There is no evil, but there is an absence of

good"). Hence the more attributes fed to the system, the

higher its resolving power, although the volume of the

system grows due to this. In striving to decrease the

volume, we should select combinations of attributes which

for an almost identical volume of the system give the

greatest resolving power.

Let us illustrate tie method of calculating the

resolving power by an example. Let us denote by X1 Xqyeee gX

the digits of the vector of the input image (attribute),

and by Py oloves oe)the corresponding digits of the poles.

shen with V1 (x) XQ 0000 XQ) and KG) sPoreee ely)

n

Ly = (Oy Y,) me shyt Poke + Poke to + 7, x, > MAX.
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It is obvious that the maximum of the scalar product co-

incides with the minimum difference of the individual

digits. Hence in the algorithm of the Alpha system, we

can, instead of the selection of the greatest scalar product

(by means of the highest-voltage indicator HVI), use the

selection of the least difference (by means of a lowest

voltage indicator LVI)
c

Ey = (0, — %) = (ra — H1) + (ty 1) Hw. + (, — 4) > min,

The scalar variant is convenient with binary attributes

and for a unitary code. The difference variant of the ail-

gorithm is converient for continuous (nonbinary) attributes,

since it makes possible the simple use of a binary code.

Let us dwell on the use of the difference variant of the

algorithm of the Alpha system. Let us compare the resolving

powers of three systems: 1) wth one attribute Xn} 2) with

two attributes x, and x,; 3) with three attributes X19

Xo ang Xa In the learning process, after all 16 states

have been displayed (see Fig.64), the poles of the groups

will assume the following values:

In the system according to attribute Xo!

ry = 0,4823, 7 == 0,4490, 79= 0,4586, 743 = 0,4755,
rs =0,6907, re = 0,7315, ry = 0,7257, ryy = 0,7188,
ry = 0,6266, 7, = 00,6436, ry, = 0,6493, ryy = 0,6403,

re 0,5997, rem 0,5921, rye 0,5945, rye = 0,6078,

In the system according to attributes X) and Xo!

rr, = 0,9975, fs, = 0,4833, iy = 0,9267, fxs = 0, 4833,
ig » 0,9433, rey = 0,7333, rig = 0,9975, foo = 0, 7333
fyg = 0,9702, ‘oa = 0,6510, fir = 0,9832, f= 0,6510,
ig = 0,9832, —rgg =m 00,6093, Tia 0,9754, rep = 0,6092
ie = 0,9595, Pe = 0, 4833, Fi—1y = 90,9752, fy--13 ™ 0, 4833,
P19 = 90,9887, ly—19 = 9.7333, Fim3q = 90,9834, Fog ™ 9,7933,
Fim, = 90,9974, fy, = 96510, Fy—1y ™ 90,9827, rymm 0,6510,
Fina, = 09,9802, ly—iy = 09,6093, fim1¢ ™ 90,9976 Ty—19 ™ 0,6003,
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In the system according to the attributes X19 Xo

and Xa the poles are the same as in the first two systems.

Others will only be subscripts of ree Summing up, according

to the above formula, the voltages across the outputs of

all 16 groups appearing in the display of each of the 16

central states, ve can select the least difference and by

this means can determine the resolving power of each of

the systems being compared.

For brevity, we have cited as an exanrple only one

table (Table 10), fur the first system wth one attribute Xvg

An inspection of Table 0 shows that, in the first

system with one attribute Xo R=0025; in the seoond with

two attributes x) and Koy R=0,.003; and in the third system

with three attributes X1»Xo and Xe 9 R=0.0073.

Ag the number of attributes being used increases,

the resolving power does in fact increase. Thus, in this

sense the best of the systems compared is the third system.

It allows the greatest oscillation of the perturbation

probability distribution curve and the form of the hill

without making mistakes. When mistakes are present, the

number of attributes should be increased.

A sample circuit for using the recognition system

as a corrector

As stiown in Fig.65, the recognition system is used

for establishing on a model tKe parameters Corl) Cy of the

optimal characteristic of the object of control. The co-

efficients dod) dy are always known.

Hence in order sharply to decrease the number of

groups of the recognition system, we can use switching of

the poles in dependence on the position of the character-

istic of the open part ry (dord) sda)
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Table 10

 

 

) ty ‘, ty I, te t, a)

Cocronuna

S; 0 0,2084 0,!443 0,1174 0,0333 0,2492 0,1613

S; 0,2084 0 0,064) 0,0910 0,1417 0,0408 0,047]

Ss 0,1443 0,064) 0 0,0269 0,1776 0,1049 0,0170

Sy 0,1174 0,091 0,0269 0 0,1507 0,1318 0,0439

Ss 0,0333 0,2417 0,776 0,1507 0 0,2825 0,1946

Se 0,2492 0,0408 0,1049 0,1318 0,2825 0 0,0879

S; 0,1613 0,471 0,017 0,0439 0,1946| 0,0879 0

Ss 0,1097 0,0986 0,0346 0,0770 0,1430 0,1395 0,0516

Sy 0,0237 0,2321 0,168 0,1411 0,0096 0.2729 0,1850

Sie 0,2434 0,035 0,0991 0,1260 0,2767 0,0058 0.0821

Si 0,167 0,0414 0,0227 0,0496 0,2003 0,0822 90,0057

Sis 0,1122 0,0962 0,0321 0,0052 0,1485 0,1370 0,049)

Sis 0,068 0,2152 0,151) 0,1242 0,0265 0,2560 0168)

Sis 0,2365 0,028! 0,0922 0,119! 0,2608 0,0127 9.0752

Sis 0,158 0,0505 0,0137 0,0406 0,1913 0,0912 9.0033

Sie 0,1255 0,0629 0,0188 0,008) 0,1588 0,1237 o,0358    
Key: 1) Output; 2) state.
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Voltages across the outputs of groups in the system with

one attribute with learning sequences (see lig.68)

 

 
Ye Yi0 tis

 
Yes

 
Mie tu

 

 

 

0,1097

(01,0986

0,0346

0,0077

0,143

0,1995

0,0516

0,1334

0,1337

0,0573

0,0025

0,1165

0,1268

0,0483

0,0158 

0,0237

0,2321

0,168

O,1441

0,0096

0,2729

0,185

0,1334

0,2671

0,1907

0,1359

0,0160

0,2602

0,1817

0,1492 

0,2434

0,0350

0,0991

0,1269

0,2767

0,0058

0,0821

0,117

0,267)

0

0,0769

0,1312

0,2502

0,0069

0,0854

0,1187 

0, 1670

0,0414

0,0227

0,0496

0,2003

0,0822

0,0057

0,0573

0,1907

0,0761

0,0548

0,1738

0,0695

0,0090

0,0415
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0,1122

0,0962

0,0321

0,0052

0,1455

0,1370

0,0491

0,0025

0,1359

0,1312

0,0548

0,149

0,1243

0,0458

0,0133 

0,0680

0,2152

0,15t1

0,1242

0,2560

0,168!

0,1 65 0,1268] 0,0483

0.0169} 0.2602

0,2502} 0,

0,1733) 0,

eno

0,2365

0,2810

0,0922

0,1194

0.026 0,2698) 0,1913

0,0127] 0,092

0,0752 
0,0654

0,1580

0,0504

0,0137

0,0406

0,0033

0,1817

0,0090

0,1255

0,0829

0,0188

0,0081

0,1588

0,1237

0,0358

0,0158

0,1492

0.1187

0,0415

0 0,2433) 0, 1648) 0, 1323 0,24 0  
0,1648 0,0785) 9

0,0785 Q,Utt0

 

0,0325 
0,1323) 0,111 “| 0



In the above example, this gives a r-duction in the

groups from 16 to 4 (Fig.65), in accordance wth the nunber of

combinations to be distinguished of the values of the

coefficients CyrC) Co(Pig. 66).

For a corrector of the "velocity" type, where it it

only rqpired. to indicate the direction of control, it is

sufficient to compare the actual object with the model

BK = Mont-H in order to work out the corresjonding signal:

‘when AM <—-d -~ "regulate, riase the charac-

teristic of the open part into the region of the given A".

when -o0 < Ans d -- "hold"

when A fA >S -- "regulate, lower character-

istic".

In order to construct a corrector of the positional

tvpe, the optimal value of the regulating influence opt

is directly established at the open part of the system

by means of a servomechanism.

The possibility of corrector self-learning

By means of the above example of a corrector, we can

again demonstrate the differeace hetween two opposite ap-

proaches to the solution of the control problem,

The determinate approach consists of obtaining an

algorithm for the control object and the perturbations

acting on it and then solving the equations on computers.

In the problem considered, it is reduced to the

computation of the coefficients Cyl y lo from the formulas

of regression analysis, which, in the first place, requires

the presente of exact information on the object and the

perturbations and, in the second, a large machine memory

volume, while it it impermissible to spend large amounts

of time data averaging and equation solving.
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The cybernetic method consists of rqlacing exnct

culculations by learning of a recognition syatem from the

results of experiments on a real object with minimal ini-

tial information. The algorithm of the object may he too

complicated for control or unknown altogether, The per-=

turbatiuon distribution is also unknown, The complicated

"teacher" algorithm is used only during the learning time.

the "teacher" may be a man or an interpolator based on the

methods of active or passive experiment. Learning is carried

out according to records of the operation of the object

in the past, as is done for recognition systems operating

as prediction filters. In the problem considered, after

completion of the learning, situation determination requires

only computation of one simple attribute or several. ‘hus,

the problem of determining the exact values of the coeffici-

ents COoF)1Co is replaced by the problem of dividing the

SPACE Co4C) CydG4) od, (or the space of the attributes

X1 Xq eXgyeeeyX, ) into regions, i.e. situations.

If, instead of a"teacher", we use positive feedback,

then, as in the case of self-arbifrary distinction of

letters, the Alpha system teaches itself to distinguish

situations.

However, just as the recognition system cannot cor-

rectly name the letters without indications from outside,

in this application the "teacherless" system can by nature

not assign values of the quantities Corl) Cn for every

situation distinguished by it.

The namos or quantities can only be indicated by

the "teacher", or in the other case they can be worked

out in the process of concurrent “survival” from a larger

number of systeng in wiich these names ure assigned by situ~

ations in a random manner. :
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Yhe recognition system as a positional corrector

for systems for controlling cyclical processes

First of all let us convince ourselves that the

recognition system can distinguish inpul signals from any

of their parts, and in particular from their initial parts,

As an example we again use the algorithm of the Alpha

system. Let there be two input signals:

y= +1—l—l+i—l—l— ise led,
y= —I+ 1-1-1 t$—- J1-4I,

In the learned state, the poles of the system have

the same codes:

Oar ft t—l—Ifi—1—t—14 14441,
Geel fol l—itt

We can obtain such a unitary code with several

plusses if we do not use the convergence scheme at the

input. When the latter are used, there will be a plus only

et one place of the code, but this does not essentially

change the rest of the outputs and is reflected only in

the volume (number of elements) of the system,

Let us determine the scalar products et every stage.

(It is assumed that the digits of the code are determined

by degrees: first, only a few initial digits are known,

then the following one is added, etc.).
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Sran 1 2° 3 4 § é T 8 9 10

—t2)
Zimmer) +l 423) +91 +41 +8 $6] 4-7 +8] +0 +/0

 

Zewr(Gyy) —1 ~2 —1 —2) —! 0] -1l —2/] —3
La==(Hgt,)| —l —2j}—1 —2| —! 0] —I —2] —3 —2
Lela)! +1] 421431 441 — 46] +7 +8] +9] 410            
 

Table 11. Scalar products

Key: 1) Stage.

We have convinced ourselves from the example that

the recognition system distinguishes the input signals

vy) and Vo even from the initial parts of their codes,

since we always have:

for =O, (04%) >(O40),
Lor U; == Uy (0,04) < (HU).

Precisely this serves as the basis for the roliability

of recognition systems when a large number of pickups goes

out of order. Jyst as the living organism continues to

function when one of its parts goes out of order, the

recognition system also continues to funotion correctly

in similar circumstances. We can only show that this lowers

its resolving power /217 When the length of the code is

increased, the resolving power increases.

If two representation curves which pead to different

results coincide at first, the recognition system gives

the sume voltages at'two outputs, i.e, says "I don't know"

right up until the moment that the representation curves

diverge.



Let us use this property of recognition systems: of

predicting finite evaluations (at first unsurely, and then

more and more accurately) to construct a combined determinate-

self-learning system (Fig.71). The open part of the system

ia shown in Fig.72. ‘he corrector is an Alpha recvugnition.

system with five groups of associating cells (neurons)

according to evaluations 1,2,3,4,5. “he input of the system

is fed sequences of the variation of the coordinates L,

T and K (in a code with a "signifying plus").

For example: |

jos —}—)+l—l—il—14)1—14 1--1--1.

the coordinate K represents the number of the closed

key of the open part and reflects the regulating influence

. Using the evaluations obtained at the end of the

cycles, the system first of all learns to distinguish

codes from the resulting estimates.

The pole learning algorithm of the recognition sys-

tem, which is used as a postional corrector, was considered

aucve, and hence we shall not go over it again.

Recognition predicting syst.:ms are used in a time

region. If the same representation curve obtains the con-

tinuouslyvarying estimates D,, DorP grees P ns the process

of vuriation of the evaluations heing random and stationary,

then, using Kolmogorov's formula, it is possible to predict

the future code of variation of the evaluation during one

cycle. This can be used for increasing the accuracy of

control if definite conditions are satisfied (random pro-

cess being stationary, where Kolmogorov's formula holds).

If during the variation of the evaluations ther: are

observed periodic and some other repetitive variations,

then for predictive purposes the method of characteristic
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igure 71. Corrector: recognition system for control of a

cyclical process.

Key: 1) Object; 2) HVI; 3) or; 4) learning of

poles; 5) non-corespondence; 6) correspondence.
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Figure 72. Qpen part of system for controlling a cyclical

process.

Key: 1) Object; 2) from corrector or setter.

components or the combined method (see above) is used).

In one 'way or another it is ;:ossible approximately to

determine the future evaluation of the given cycle of

influences. |

We showed above that the recognition system can

distinguish representation curves from their initial parts.

This is also one of the forms of using recognition systems

for prediction.

A quite diftferont example of possible use of the

Alpha predicting system is shown in Fig.73. Here the sys-
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Figure 73. Nonreversible corrector with additional prediction

of a given sequence of modes.

Key: 1) Object; 2) Zinp! 3) HVI; 4) corrector;

5) divergence; 6) memory device; 7) Alpha.
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tem is used for acceleraving the obtaining of the evaluation

of the cycle. The curve of the gencralized perturbation

L's as a function of the slage number of the program T is

considered to be a random process. This means that we

can use the Alpha system (or any other recognition system)

to predict both future values of the perturbation L' |

and the directly correlated with it cycle quality index d )

analogously to what we did in predicting the amplitude of

Sea waves. As soon as the system has learned and is es-

sentially predicting correctly, a button K is pressed.

When this is done, memory devices record the predicted

value of the quality index. The system can either continue

the motion (if the memory installation has remained the

Largest), or chiunge the code and pass to the representation

curve following in evaluation magnitude (if the memory

installation has become lower than other memory installations).

Thus, the system automatically takes into account the

prediction of the result of its operation.

At the beginning of each given stage, we have iit

our disposal complete information on the value of all co-

ordinates, except the coordinate k which is to be selectei.

For this purpose, we can use a search on a taught

recognition system (and not on the object). Feeding all

possible values of k to the input of the recognition svs-

tem, we select those for which the predicted evaluation

is highest.

Perceptron for prediction of the result of cyclical

processes

Prediction alporathm. [fhe fundamental difference
 

between the "complete" perce»tron and the simpler recogni-

Lion systems (for example, the Alpha recognition system /21/)
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consists of the fact that in the perceptron, images ire

not recognized from one averaged prototyve or standard,

but from many random prototypes. During the learning process

there is established a "weighting factor" or degree of

participation of each of the random prototypes in the forma-

tion of the given pattern, which is then used for classify-

ing images into patterns or classes. Typical operation of

this method is shown in the experiments of Bryan /517,

We shall use this principle of many random prototypes

for predicting the result of a cyclical process. Figure

74 shows a circuit for the perceptron as a predicting fil-

ter.

The process whose result we are required to predict

is known to us in some one of its initial parts during

the course of n cycles (time intervals). The duration of

the whole cycle is taken to be 100 units; hence 0 <n <€ 100.

During the course of the section of the process known to

us, the latter can be reuresented by the vector

(A) my, Xe, Kay vey Kay

which is also an "image" subject to recognition. With each

new cycle, the numher of meansurements of the vector increas-=-

es by one (Fig.75). The coordinates X),Xp,eee,X, are called

"attributes" of the given image. ‘The problem is this: from

observation of the changes of the vector Vio to predict

its coordinate ont the end of the process hi09 or indicate

the maximum value Dax?

As random prototypes, we can of course use purely

random point or curvilinear masks, as was done in Bryan's

experiments. But then we would lose the information in the

known r@lizations of the process, which would lead to

an increase of the volume of the svstem and of tho duration

of its operation. To simplify the system, we can use as
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figure 74. rerceptron circurt: 1) observed process; 2) stan-
dard processes; 3) threshold elements 9, (associating cells);
4) weight regulation; 5) summator; 6) feddhacks; 7) threshold

elements SO. Key: 8) horedict'
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Figure 75. Observed process whose result requires to be
predicted,

random prototypes previous realizations of the given pro-

cess whose results are known. |

Prototypes Results

a, (Fr), ros eoey rs Ay,

Or hy an F) hy
ag(HH aay ha:

Tne dimension of the prototypes is equal to the

dimension of the image and hence increases by one with each

new cycle. Further, in accordance with the algorithms of

operation of the perce;tron with many random prototypes,

these scalar products should determined:

z, = (a,v,),

2, = (2,9,), corp

am = (,, u,).

These scalar products are a measure of the nearness

of the image to tne prototype in the attribute space.

Since it is important to take into account only the pre-

sence of divergence of curves and not the sign of this

divergence, the ordinates are divided by the square of

the largest of them,

Uxample. Let us assume that we are given these
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initial data:

 

an | i 2 3 4 9
U; %,=30 x,=40 r=40 x, =50 x -=70°
a, r, == 20 7, = 40 r, = 50 r, == 50 r, = 60

 

4hen the scalar product is

|
% = (u,a,) = — (Xi04 Xara tt Xars + Xyry + X57) =

__ | (30-20

|

40-40 , 40-50

,

50-50

,

70-60
= ( “30 + Gg + ag + “gg + a9) =

454
= “595 ~— 0,862,

the terminus of the vector v, is called the"representa-

(ion point", and those of the vectors of the prototypes

Ay the "poles". If representation point and pole coincide,

1eC. Vie Ay the scalar product of the vectors is equal

to the greatest value, i.e. unity (2 nayth)

Of course, we can also use other measures for the

closeness of the representation point to this or that pole.

For example, sometimes use'is made of the square of the

distance between them (square error). Let us limit ourselves

to the use of the scalar products, which are also correla-~

tion coefficients,

Summing up the scalar products (for every n-th

cycle of the observed process), in accordance with the

perceptron algorithm, must select only the greatest of

them, namely those valves which exceed some threshold, when

0o< @ lj < 1. This produces selection of the prototypes

whicn are sufficiently near to the observed jrocess. If we

selected a very high threshold, so that there remained only

one prototype, this would bring us from the complete per-

ceplron to the simplificd one, i.e. the Alpha recognition

system.
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Tne scalar products or, in other words, the voltages

of the threshold elements (associating cells) which exceed

tne threshold O71; determine the weighting factors (de-

gree of var ticipation) w, with which the results of the

corresponding standard processes are summed:

@, am 2; = <3

Tht+.in’ OMTESPE
v

== coerceOn SF he tt Em

where the scalur products = $0); should be put equal
J

to zero).

fhe predicted result of the observed process is

determined by a summator

Upredict = wh, + w,/I, +. see + K's Nun .

Perceptron Learning. For correct prediction it is

necessary to select the values of the thresholds 91; of

the association cells. This is achieved by means of learning

from the known realizations of the process, which form a

learning sequence. fhe processes which nake up the learning

sequence are not among the standard random processes.

Learning is first carried out with sufficiently large and

constant n=const, and then with nevar,

For learning, the prediction result horedict is

compared with the result of each of the standard ,rocesses

which gave a voltage higher than the threshold value © ij’

Determination is made of the square error

A, = (Anperce —h)*, O<k < mm. mpe ACK = preaet

If the square error is larger than some second thresh-

old value O., the threshold. ©, of the corresponding as-

sociating cell increases by a small interval 40, or ac=

cording to an exponential law © nel" © .+(1-6 98 » where
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OS US 1. This decreases "trust" in the given standard

process and its role in the prediction. During the following

cycle and in predicting other processes, the role of the

given standard will he weakened. Conversely, if it turns

out that the square error is sufficiently small, the threshold

of the corresponding associating cell is lowered by a small

constant interval or according to an exponential law.

The role of "correctly operating" standards is

accordingly increased, which is required for raising the

prediction accuracy. .

Elements of Stubility Theory and the Theory of Invariance

of Combined Systems Containing Predicting Filters

In an automatic control system, the iinks containing

predicting filters are called probabilistic links.

In dealing with the problems of stability theory

and the theory of invariance of systems containing probabilis~

tic links, it is first of alli desirable to determine the

transfer operator functions of the predicting filters,

Let us consider the two simplest examples of linear filters.

Niscretc predicting filters

A function P(t) is predicted from the first tnary

terms of the prediction formula and from the observation

data from time t=-T, to t=-T., (Fig.76).

In the given example we use a formulation of the

problem which is typical for self-learning pickups; the

precdding values of a quantity are known; it is required

to determine its value at a given tine.

It is required to predict the value of the function

at time t=O. We divide. the interval T7To into n equal
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Figure 76. Prediction of future value of function P(t) as

mean value during averaging time Tet, =To-

segments with duration At and we find

Prep (0) =

Bep = prob 1Eeoe eae |
Attthyte +t,

where Ir, ,%35,+++,%, are the coefficients of the "forgetting

law" (weight), which are determined during the Learning

process of the predicting filter; ?, is the value of

p when tal, 3 ¢ i is the value of when t=xT,.
1

For simplicity, let us first put

t=T, ly = fs, fn = 1,

Then

Peep me GE GEE ae + GE,

where Zzl a tp.

The desired transfer function is

BEX = output P(p) = See aZO
ax = input Pax n

If the weighting factors are not equal to one, we

obtain
_ Pomx __ nebargebwra"

P (p) — Pax — ry + fs be +n e
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Continuous predicting filter

Let us consider the simplest contimuous proababilis-~-

tic link, which predicts the future mos v. probable value as

the mean value during a certain abservation time (see

Fig.76):
{—T,

Pop = FoF, J g (¢) dt.

Thus we are predicting many events: if in the course

of a number of past days there has heen good weather,

it is highly prohable that there will be good weather

tomorrow, etc.

Formore exact prediction, the time Ty should be

as small as possible (in some cases T,=0), and the averaging

interval AT=T,-T, is- selected de,ending on the nature 0°

the curve q(t). It must be several times larger than the

period of the fundamental harmonic of the expansion of this

curve in a harmonic series.

The operation of such a predicting device can be

described by the equation

 

 

1 (—T, ' (—T,

Pop = T,—Ts; | 9 (dt = Ti —~ Ts; - g(t) dt +
Mr, {—T, ; ce ;

+ J vidia | { e@d— f o odt|
- t—T, b—T

 

In operator form we obtain the following transf2r

function:

Pour _
PQ)==Ro 

‘ — (e~T —o_ eT),

Ip the "forgetting function” is given, for example

exp(-(t)/jin the above expressions we should replace
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Pp (t) by

4,
%

p(tye

Invariance conditions for systems with probabilistic learning

links |

Below we introduce and partially investigate the con-

ditions for absolute invariance and conditions for the stabil-

ity of systems with probabilistic links, circuits for

which are shown in Fig.77. This figure shows all the systems

most important in prdctice: |

fa) one-circuit servo~system with links according

to the fundamental perturbation (input signal),

b) one-circuit stabiligation system with links ac-

cording to the fundamental perturbation (load of the object

of regulation),

c) two-circuit (differential) servo-system without

perturbation links,

d) two-circuit (differential) stabilization system

without perturbation links.

Nhe cross-hatched squares are devices which compute

probabilistic values. It is not necessary that there he

two probabilistic links in each of the systems considered.

Some of the links may be determinate, i.e. the usual ones.

In this case, the transfer function of the corresponding

square should be taken equal to one. “he square P¢ (p)

represents the learning feedback, Py (p) an open learning

link, Py (p) /Sic7 @ probabilistic link in a "system with
learning, prototype".

Let us proceed to the mathematical description and

investigation of the systems of Fig.77. Table 12 shows
‘
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Figure 77. Basic circuits of systems with probabilistic

links: a,b) with links according to basic perturbation;

c,d) without links according to perturbation (differential

systems).

Key: L) probab.
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the dynamical equations of the elements, and Table 18 those

of the systems as a whole.

Stability. *he characteristic equations, the signs

of whose roots determine the stability of the systens, are

Biven in Table 12. Even at thia stage in our consideration

we can make the following conclusions:

l. The stability of the stabilization systems and

the servo-systems is determined by characteristic equations

which are the same in structure.

2. Probabilistic (predicting) devices of the open

links have no influence on the stability of the systems,

since the operators Py (p) or Pp) do not enter into the

stability conditions.

3d. When probabilistic feedback is present in the

system, when 1% (p)Al or PBCp)Al, the stability of the

system depends on the transfer functions of these Links

and in the general case greatly worsens in comparison

with the determinate system (for which Po (p)=1 and Py (p=),

Since the probabilistic links have a transport delay which

is hard to compensate for.

4, Having the possibility of arbitrary selection of

the coefficients of the external-feedback operator

m (p) = tm, -+- tp + map* +- tgp + ...,

we can obtain a stable system for any sign and magnitude of

the sign of the coefficients of the internal feedback:

fh (p) = My + yp + yp + Map? +...

It is knuwn that, when the absolute invariance ccn-

ditions are fulfilled in sysitems without perturbation links,

we should use positive internal feedback Ng 7 O. Quite

recently many authors have affirmed that the system, as it

were, must here arrive at the border of stability (loses

w~ 24.
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Lo — m(p iD nep + KP)L yep,

Mm VA(pyy,
Dm ¥3(p)M — A(p)L,

pep — pyn,

L sep ™ Py (p)L

X= KP)F nen—(pyye,
M = Y4(p)z,

@ a Y3(p)M,

Diep ~~ Py (p)®,

Vrep = Py (p)¥

 

(3) qlaa puc. 77, 6 C4) Maa pic. 77, 2

 

i= —1(P)9 sep + A(P)M seo,d= —m(p)®op + n(p)M xe,

Mam¥,(p)d,M=¥, (p)Zy + ¥,    D=Y,(p)M, D=Y3(p)M —- B(p)L,Myep =PyioM, Mey PyDIM,
Diep =Py (p)D Drep =P, (p)®

lable 12. Dynamical equations of system elements (Fig.77)
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[1 m(p)Vs(p)V2(P)P(PO =
me k(DY1(P)¥'(p)Py (p)¥

(3) daa pic. 77, @

[) ++ m(p)¥1(P)V2(p)P,, (p)|D =
= (t(0)Y (Pp)2(p)P, (e)—Pp)IL

CH) han pue. 77, ¢

 

 
[} —n(p)¥1(p)Py(P) +
t m(pyVi(p)Ve(p)Pg (p)JO =
«2 Y,(p)¥  [1 — n(p)V3(p)P(Pp) + m(p)V1

(p)V's(0)Pe (p)1D = — B(p)[l—a
(P)¥1(p)Py(P)1b  

Table 13. Dynamical equations of systems as a whole (Fig.77)

Key (both tables): 1) For Fig.77a;2) " 77b; 3) " 77c;

4) " 77d.
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Lf np) (a)2(P)Py (p) = 0, 1 4- (pys(P)¥2()P, (P)=9,

 

 

_= (1 -}0y%,a9P,,) Sm (| + Mo%APa.)

(3) fea puc. 77, 4 (4) Tian puc. 77, e

1 — a(p)¥s(p)Plp) 4+- L — n(pyV s(p) Pal) +

4- m(p)Y(2)s(p)Py (P) = 9, + m(p)Y1(P)Y3(P)P» (p) = 0,
Si» (| - yyPry, “+ MeO,%2P4) s (I ~_ etPay + MehOsP)    
 

Table 14. Characteristic of equation of systems and expres-

sions for rigidity S: (Fig.77)

 

 

 

(2) laa pyc. 77, ¢ (2) Jlan prc. 77, 6

1 j- mps(p)YaP)Py (Pr) = LKP)Ys(P)V'o(P)P, (0) — B(p)==0
=h(p)Y(MYs(0)P y(0)

(3) Aan pue. 77, 6 (4) Han pue. 77, 2

1 —a(p)¥1(P)Pa(p) -+ 1 —n(p)V1(p)Padp) = 0
+ mp)Vs(P)¥s(P)P4. (2) » Yelp)      

Table 15. Conditions for absolute invariance of systems

(Pig.?7)
Key (both tables): 1) For Fig.77a; 2) " 77b;

3) " 7703; 4) " 77d.
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its "coarseness")., It is obvious that this is not so.

Systems without perturbation Links can be adjusted toth to

positive and to zero or even to negative estahlished and

dynamic error with retention cf their stability /207. The

systems (Fige77c and d) can remain stable and "coarse"

(i-eo. such that small changes in the parameters do not

essentially change their properties) in adjustment to ab-

solute invariance.

Absolute invariance. The conditions for ahsolute

invariance, for which for servo-systems ® -V » and for

stabilization systeins d =0, are shown ir Yeble 15. These

conditions can be used for determining k(p), 1(p) and n(p)

which provide for ideal operation of the systems without

established and dynamic error. The operators m(p) and ¥, (p)

will be used for selection of the necessary rigidity and

stability according to the rules of compromise adjustment

or by statistical methods.

When the invariance conditions in Table 15 are

satisfied, the action is eliminated of all noise entering

the system, in the "fork" of differential links, i.e.

between points I and II (Fig.77c and dad), including the

action of statistically given perturbations, for example,

noise of the “white noise" type (N(t) arrows in Fig.77c and d).

Example. Let us consider the synthesis of measure-

ment Links of the system in Fig.77b from the conditions of

compromise adjustment and invuriance for the case of the

presence of only one probabilistic link-- according to

the basic perturbation (load). Let us assume that we are

Given:

m2kk



Vp)sr
== (tl

Ys (a) (tap + I)(vap + Tp?
 

wm Bo
B (p) = (tsp + 1) (rap + 1) '
 

 

P. (p) == WoT Sere eT),
l ewe foap

() lo+ bi pw '

im (p) == my + mp + map? +- map? +...

We select the operator of the closed link m(p) from

the conditions for compromise adjustment, which ensures

the optimal relationship between the rigidity and stability.

If, for example, we require a rigidity s«#100 for o )%o=20,

then obviously

s~—| 99

me = cay BS?

The remaining coefficients of the operator-- ms»

M,»Mz—- are selected in order to ensure optimal damping

of the free oscillations of the system (for example, so

that in a system of the second order, the relative damping

factor ©) 270-2 ; in a third-order system, the dimension-

less parameters of Vyshnegradskiy x=1.2, y#3, etc). This

procedure is well known, and we shall not dwell on it.

More complicated and interesting is the synthesis

of the operator of the open link 1(p) on the basis of the

invariance conditions.

lhe conditions for absolute invariance (see Table

15) make it possiblc to determine (synthesize)
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_ Bip) _, Poltsp +!)
VP) = Prip¥a(pyP, wy Gade P,P)

when

1 1 p= \Poe = aay peee

We find

tip) =|BO p+ Ryo (Ty — Ts) M1 13

(1% Gy Yl oate

‘e draw the conclusion that in the given system the

com; °Unding perturbation Link must have the form

Up) =(P+ GP)yr

ise. contain two parallel-connected differentiators with

the coefficients

ft ae BMT) yp Bots (TT)
a G30, 2 GG,

and a series-connected anticipation section with the

transfer function:

1
STeie: Me T>T,.

This anticipation is easy to obtain in program

control systems, where the future change in the perturhba-

tion ig known and where it is possible to feed a signal

to the input of the open propabilistic link with a definite

anticipation,

It is just as easy to obtain any required anticipa-
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tion in probabilistic links with cyclical repetition of the

processes. lor example, it is possible comparatively easily

to predict the mean temperature for any future month of

the year. The introduction of anticipation sharply improves

the dynamics of transfer processes in systems with proba-

bilistic links. |

In a stabilization system, where the future value

of the load is unknown, it is impossible to achieve such

an anticipation section in practice. Hence we must accept

approximate satisfaction of the invariance conditions. The

problem reduces to the maximum possible approximation of

the operator of tne actually achievable quadrupole

b(p) =m bobhpt+...

) - bel pt.°

to the ideal operator, which ensures absolute invariance

in the presence of a probabilistic link,

1)=+pagars

It is necessary to select tne coefficients of the

actually achievable differentiator sothat both functions

differ as little as possible from one another. The problem

can be solved by many methods (Chebyshev et al). Let us

use one of the simplest methods: we use the expansion of

the exponential functions ina series. We will limit our-

selves to three terms of the series

1 l

evip Troy \ b anos —(1 —Trp+ 5 Tip! —..)—(1—-Tip + Tipt —..
1

(Ty Ta) p+ (TEE TDP+

l
1 t)

p(T: Ts)[1 — + (T+ Tae]

 

 

 =

~ kT,



setting both terms equal to one another, we find

a ot he Bo + for |[(p) = Ew eS __ 0 tip _.(p) 4d p AT, T)| O10, | Faa

= ee fo +- Botsp

Gay “810s (T1—T,) p

whence we obtain

64=B,, (= Byt,, {== HOt, , [j= — 5 Oa, (T, —T)).

The synthesis of the system is complete: the operators

m(p) and 1(p) which ensure optimal stability and invari-

ance with respect to the load L(t) have been found.

Thus we have considered the invariance and stability

conditions of systems with probabilistic links. ‘he applica-

tion of tne general theory of combined systems to probabilis-

tic Learning systems is completely obvious.

Experimental method of finding the most effective

prediction formula. If a process subject to prediction is

so little studied that it is not certain that Kolmogorov's

formula is the most general and best one, then it is possible

almost mechanically to try various prediction formulas at

random. Having obtained estimates of the usefulness of

variaus terms of the formula, we can discard terms of little

use and by this method can gradually work out the most suit-

able formula, i.e. one giving the highest percentage of

correct predictions for a given volume of computational

work.

L.[.Voronova, in particular, has shown that to

predict the amplitude of waves we can use Taylor series.

The prediction accuracy drops a little in thig' case, but

on the other hand there is a vrcat decrease in the volume

of computations.

At the beginning of this section, we said that
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systems which achieve "pure" randomness do not exist.

Even in tossing a coin, some kind of constantly acting

factors (bend in the coin, manner of throwing, etc)

make the coin fall more often on one side than the other;

and hence, besides the "pure" randomness, a ;rohahbilistic

law is active. However, pure randomness is completely real.

llowever much we make the regression formulas more accurate,

however much we raise the number of their terms und select

the most useful of them, the success of prediction of a

probababilistic process cannot be 100%, Such a result can

only be obtained for processes which are completely deter-

minate, hence subject to calculation. As the methods of

predicting random processes are improved, the accuracy

increases, but there always remains an unpredictable part

which expresses the element of pure randomness. If we

increased the number of terms in Kolmogorov's formula or

passed the continuous quantities, it would be entirely

possible that in the example with ocean waves we would

obtain a prediction accuracy of more than 80%, But some

some perdentage of possible error would remain, for in this

process, there is an element of pure randomness,

In conclusion let us note that Kolmogorov's formula

(in its application to the Alpha discrete filter) can

explain, and hence also direct, the success of many ex~

periments on prediction.

In their experiments on prediction of the treatment

burns, A.L.Junts and V.L.Brailovskiy used 12 input attri-

butes (area of wound, burn localization, age of patient,

accompanying diseases, complications, data ef blood analysis,

etc), which were each used individually, and also in com-
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binations of two, three, etc, It was established that the

most useful information was contained in the logical pro-

ducts of several of tne input attributes.

Kolmogorov's formula and the above method of det?rmin=

ing the usofulness of its individual terms is a mathematical

algorithm which explains the success of the indicated ex-

periments.

In future the methodology of the organization of

prediction experiments based both on continuous and on

binary input attributes must take into account the mathema-

tical expectation and the structure of the extended pre-~

diction operator.
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