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Problem specification 

The work described in this paper is part of a larger 
effort aimed at the recognition of hand-printed text. In a 
companion paper, Munson1 describes the scanning of 
the text, and the preprocessing and tentative classifi-
cation of individual characters. In this paper, we 
describe techniques for using context to detect and cor-
rect errors in classification. 

The source text used in this experimental study con-
sisted of hand-printed FORTRAN programs. The 
choice of this common programming language gave us a 
problem in which contextual relations were both fairly 
elaborate and well defined. This is to be contrasted with 
simpler problems, such as might be encountered with 
business forms, where contextual relations are rudimen-
tary, and with the much more difficult problem of han-
dling natural language, where complex semantic con-
siderations play a large role. 

The techniques we developed are embodied in a 
LISP program called the context-directed analyzer. The 
input to this program, which is obtained from the pat-
tern classifier, consists of a list of possible alternative 
classifications for each character in the source program. 
Associated with each alternative is a number that mea-
sures the confidence that the alternative is in fact cor-
rect. Thus, if presented with a hand-printed A, the 
classifier might produce the output 

Choice Character Confidence 

1 R - 2 2 
2 A - 2 8 
3 H - 4 3 

indicating an erroneous first choice, but a correct second 
choicerankingnear the first in confidence.* 

*The way in which these confidences are actually obtained is 
described in a later section. Ideally, each confidence is propor-
tional to the logarithm of the probability that the corresponding 
alternative is correct. 

The input to the context-directed analyzer is a list of 
such lists of alternatives and confidences for all of the 
characters in a FORTRAN program which we assume 
to be syntactically legal. The task of the analyzer is to 
achieve as low an overall error rate as possible by mak-
ing appropriate choices from among the alternatives. 

Past approaches 

The utilization of contextual constraints to improve 
the performance of pattern classifiers has been the sub-
ject of a number of investigations.2-11 One of two basic 
approaches has generally been followed, the table look-
up method or the Markov approach. The table look-up 
method is based on the assumption that every word in 
the text is selected from a known finite table. A word of 
text is classified by comparing it with every table word 
having the same length and finding the best match. 
Gold2 used such a table of legal Morse-code symbols in 
his system for recognizing hand-sent Morse code, and 
Bledsoe and Browning3 used a table of English words in 
their pioneering experiments in recognizing hand-
printed characters. 

The Markov approach is rooted in the assumption 
that the true category of a character is related in a 
probabilistic manner to the true categories of a small 
number of surrounding characters. Its use leads to the 
estimation, from sample text, of the probabilities of all 
possible pairs, triples, or in general n-tuples of charac-
ters. The Markov method can be expected to correct 
locally improbable character strings, but it ignores glo-
bal considerations. Harmon4 used this method to detect 
errors in the recognition of cursive script. Edwards and 
Chambers5 and Carlson6 also employed this technique 
to correct errors encountered in conventional optical 
character recognition. An interesting mixture of the 
two approaches was used by McElwain and Evens7 to 
correct garbled Morse code, and both methods were 
compared experimentally in a lucid paper by Vossler 
and Branston.8 

Both of these approaches rest on the theoretical 
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foundations of compound decision theory (see Abend9 

for a clear tutorial presentation and for references to the 
appropriate statistical literature). Both Abend10 and 
Raviv11 point out the importance of considering the 
alternatives that can be supplied by a classifier. They 
derive the formal decision-theoretic solution for the op-
timum use of context and show how it can be simplified 
by the Markov dependence assumption. However, this 
assumption, which seems necessary to make the op-
timum procedure computationally feasible, again limits 
the ability to exploit global relations. 

A formal solution 

In this section we outline the general formal solution 
to the compound decision problem and then point 
out its drawbacks. 

The solution 

Suppose for a moment that we have on hand the out-
put of the classifier for a single FORTRAN statement. 
The basic problem is to select, from among all the 
alternatives, the correct string of characters. A formal 
solution to this problem is provided by compound de-
cision theory and requires two ingredients. We must be 
able to specify, for an arbitrary string of characters (1) 
the confidence of the string, and (2) the prior prob-
ability of the string. The former is provided by the 
classifier, while the latter must be assumed or estimated 
ahead of time. A formal solution, derived and made pre-
cise in the Appendix, is given by the following in-
tuitively appealing rule: 

Compute the confidence of every string of charac-
ters of the given length. Bias each string confidence 
by adding the logarithm of the prior probability of 
that string. Set the answer equal to the string hav-
ing the highest biased confidence. 

If we assume that the confidences of the individual 
characters are the logarithms of their probabilities, then 
the confidence of a string is just the sum of the confi-
dences of each of the characters in the string. We shall 
adopt the convention that any character not explicitly 
listed by the classifier as an alternative is correct with 
some uniformly low probability, and hence has an ac-
companying confidence of some low number. 

Let us illustrate this rule with the following example. 
Suppose the classifier returns, for a single FORTRAN 
statement, the following alternatives, where for read-
ability we list all first choices on the first row, second 
choice on the second row, and so on. 

6 O T D S 
G 0 5 

We display the associated confidence of each alternative 
in a similar array: 

- 6 0 - 2 0 - 3 0 - 5 0 - 3 0 
- 7 0 - 6 0 - 4 0 

- 7 0 

In order to use the formal compound decision theory 
solution, we must know the prior probabilities. Let us 
assume initially that all legal strings of characters are 
equally likely, and also that all illegal strings have zero 
probability. The highest confidence string is 60TD S, 
with confidence -190, but has prior probability zero. In 
fact, of the twelve possible strings of characters that can 
be formed from the alternatives presented, all but four 
are illegal FORTRAN statements. The four legal ones 
are 

String Confidence 

GOTO S -210 
GOTO 5 - 2 2 0 
GOT = S -220 
GOT = 5 -230 

Therefore the final selection is the assigned GO TO 
statement GOTO S. 

In this example we have been casual about the exis-
tence of spaces in the text, and throughout the paper we 
shall ignore questions of spaces and other pragmatics 
(continuation marks, separating the label field from the 
rest of the statement and the like) since character posi-
tion information is assumed to be provided by the orig-
inal data scanning and input routine. 

The disadvantages of the formal solution 

The formal solution illustrated above suffers from at 
least two serious problems: A combinatorial explosion, 
and an inability to exploit semantic information in a 
natural way. 

Problem 1: Combinatorial explosion 

The first objection to the formal solution is that it 
rapidly gets out of hand combinatorially. Notice that 
the solution requires explicit enumeration of all pos-
sible strings of characters of the given length. We can, 
of course, adopt the reasonable heuristic that strings of 
characters will be formed only from among alternatives 
specifically listed by the classifier. Even so, a statement 
only ten characters long with, say, four alternatives for 
each character gives rise to over a million possibilities. 

Of course, if we could order strings by confidence then 
we need not enumerate all possible strings since the de-
cision procedure outlined above selects the highest con-
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fidence legal string as the final answer. Thus we could 
examine the highest confidence string, and if it were 
legal we would have the answer. If not, we could ex-
amine the second most confident string, and so on. In 
general, this approach requires a method for selecting 
the kth most confident string of characters given the 
(k—1st) most confident. The problem of ordering 
strings by confidence is far from trivial. A solution, 
based on a modification of dynamic programming as 
suggested to us by R.E. Larson of Stanford Research 
Institute, is described in Reference 12. While the dynam-
ic programming approach is considerably more effi-
cient than the brute force approach and is used fre-
quently in the analyzer implemented, it also suffers 
from severe combinatorial problems and can be used 
only on combinatorially simple data structures. For our 
computing facilities, the limit of combinatorial com-
plexity for dynamic programming seems to be some-
thing on the order of a few thousand combinations; i.e., 
a string of five or six characters, with about four alter-
natives for each one. 

Problem 2 : Semantics 

The decision rule discussed above involves only the 
syntax of the FORTRAN language. It by passes all the 
richness of semantics. For example, it ignores the simple 
but important fact that identifiers, and especially vari-
able names, rarely appear only once in a given program. 
In principal, compound decision theory does not ignore 
this; it is taken into account by the prior probability of 
an entire program. Thus, for example, a program con-
taining the variable name HELLO only once is less 
probable, a priori, than a very similar program contain-
ing HELLO several times. In practice, certainly, it is a 
hopeless task to reflect the multiple appearance of an 
identifier by directly enumerating prior probabilities. 

Structure of the contex-directed analyzer 

The previous section outlines the decision-theoretic 
approach to the utilization of context and points out 
two severe drawbacks. This section describes the struc-
ture of a context-directed analyzer that retains the 
flavor of the decision-theoretic solution while minimiz-
ing combinatorial problems. The analyzer capitalizes on 
the multiple appearance of variable names, which is a 
first step toward employing semantic, in addition to 
syntactic, information to correct classifier errors. We 
briefly describe the overall operation of the analyzer 
and then describe its major operations in more detail. 

Let us first delineate the current status of our work. 
The analyzer described is implemented as a LISP pro-
gram running on an SDS-940 computer. The data for the 
classifier is an SDS FORTRAN I I program which is 

restricted only in that the I/O lists in input-output 
statements are simple fists of identifiers. Every state-
ment in the FORTRAN program, except for the 
COMMENT and FORMAT statements, is subjected to 
a detailed analysis. For these particular statements the 
analyzer as yet returns the first choice for each charac-
ter as the answer. 

The analyzer is organized as a two-pass program. 
During the first pass each statement is identified by 
type and a table of identifier names is assembled and 
clustered. During the second pass each statement is 
resolved and the final classification of the FORTRAN 
text is made. 

In the subsequent discussion we will need to refer to 
the data structure, illustrated in the GOTO example, 
that the classifier produces when presented with a seg-
ment of FORTRAN text. We will, for no special reason, 
refer to this data structure as a P-list. The i th element of 
a P-list is a collection of alternatives and confidences for 
for the ith character in the original text. Thus a P-list 
contains all the information passed from classifier to 
analyzer, and the elements in the P-list are in one-to-
one correspondence with the characters in the original 
segment of text. 

Statement identification 

The identification of statement type is enormously 
facilitated by the appearance of a "control word" 
(DIMENSION, IF, etc.) at the beginning of all state-
ments except the arithmetic assignment statement. This 
property of FORTRAN gives us good reason to suppose 
that our early assumption that all legal strings are 
equally likely grossly oversimplifies the matter, at least 
when the string is at the beginning of a statement. A 
more realistic assumption would be that each of the 
30-odd FORTRAN control words is equally likely at 
the beginning of a statement, but this would overlook 
both the relative frequencies of statement types and the 
arithmetic assignment statement. A simple and not too 
unrealistic course of action would be to treat all control 
words as being equally likely, but to reject them all in 
favor of the arithmetic assignment statement if a 
sufficiently good match with a control word is not 
found. This leads directly to the following procedure 
for identifying statement type. 

Compute the confidence of each FORTRAN con-
trol word from the leading segment of the P-list for 
the statement. If the highest confidence computed 
exceeds a threshold, then decide the statement is of 
the corresponding type. Otherwise, decide the 
statement is an arithmetic assignment. 

At this point we must make a remark about the com-
putation of the confidence of a string of characters. If 



1142 Fall Joint Computer Conference, 1968 

each confidence were in fact the log of a probability, 
then the confidence of a string would be (under a con-
ditional independence assumption described in the 
Appendix) the sum of the confidences of each com-
ponent in the string. This is, unfortunately, not the 
case in practice. A reasonable measure of the confidence 
of a string that has proven quite satisfactory in practice 
is the normalized, or average, confidence, i.e., the sum 
of the confidences divided by the length of the string be-
ing considered. As anillustration,theconfidenceof GOTO 
for the example in the first section is -170/4 = -42.5. 
The confidence of DO is -220/2 = -110, under the con-
vention that an alternative not explicitly listed by the 
classifier has a confidence of—200. The confidence of 
DIMENSION can be taken as minus infinity, simply 
because length considerations make it an impossible 
candidate. The actual implementation of the analyzer 
differs from the above description only in that confi-
dences of the various control words are compared 
against a threshold sequentially, and a decision is made 
if the threshold is exceeded. 

Statement analysis 

After a P-list representing a statement to be resolved 
has been identified by type, it is analyzed in order to 
isolate its natural subparts. The details of these analy-
ses depend upon the statement type, but the following 
two principles are common to all: 

(1) Since the combinatorial explosion is the root of all 
evil, find delimiters that break the P-list into 
smaller segments that can be handled by other 
programs. 

(2) Since no single character is reliable, spread the 
risk in finding a delimiter over a segment of the 
P-list as long as possible. 

A single example will suffice to convey the flavor of 
the approach. Consider the IF statement. I t is syntac-
tically demanded that every IF statement have the 
form IF[expression] integer^ integer2, integer3. I t is easy 
to strip off the IF from the front of the statement, but 
we would also like to partition the remainder into a 
bracketed expression and a list of three integers. The 
inreliability of single characters make it unwise to seek 
merely the last right bracket (our character set uses 
brackets instead of parentheses), so we resort to a more 
elaborate technique. We start at the tail of the P-list 
representing the statement, and step along toward the 
front looking among the alternatives for, successively, a 
digit, a comma, and a digit. Having found this 
triple once, we continue to step toward the front looking 
among alternatives for a second digit-comma-digit 
triple. When we find it a second time we tentatively de-
clare that the second comma has been passed (reading 

from right to left) and step along again, now looking for 
a digit-right bracket pair. When we find this pair, we 
tentatively declare thatthedelimiter "right-bracket" has 
been found and analyze the expression and integer-triple 
separately. If either of these analyses fails, we assume 
we have not yet found the delimiter and continue to 
step along toward the front. If we reach the front of the 
list without finding the delimiter, then the analysis 
fails, and the first choice decisions are accepted by de-
fault. 

Similar analyses are used for other statement types in 
order to isolate such typical FORTRAN constructions 
as identifiers, lists of expressions, index controls and the 
like. These constructions are themselves the subject of 
further analysis. A subsequent section describes the 
analysis of what is perhaps the most interesting con-
struction, the arithmetic expression. 

The identifier table 

Our semantic analysis is concerned only with the 
multiple appearance of the same identifier in a typical 
FORTRAN program. While rudimentary, this analysis 
has proven very successful and is used extensively. The 
analysis consists of three phases: constructing a table of 
identifiers (more precisly, the P-lists representing pre-
sumed identifiers), clustering the table, and finally 
using it to resolve FORTRAN statements. Each 
of these phases will be described in turn. 

As currently implemented, assembly of the identifier 
table begins by restricting attention to statements rich 
in identifiers. For our purposes, we consider DIMEN-
SION, COMMON, and the various input-output state-
ments as our potential sources of identifier names. As a 
typical example, let us consider the extraction of 
identifiers from a COMMON statement. This state-
ment consists of the word COMMON followed by a list 
of identifiers. One method of finding these identifiers is 
to search for possible commas in the P-list representing 
the statement and to assume that everything between 
commas is an identifier. This approach has proven unre-
liable because it places too much reliance on single 
characters. A more satisfactory algorithm searches the 
P-list exhaustively for all possible occurrences of a 
string of the form "alphanumeric-comma-alphabetic-
alphanumeric . . . alphanumeric-comma-alphabetic." If 
such a string has a sufficiently high confidence, the seg-
ment of the P-list between the two commas is declared 
to represent an identifier and is added to the table. This 
algorithm is quite reliable because the confidences of at 
least five successive characters are computed even if the 
identifier has length one. 

The second phase of semantic analysis involves 
"clustering" all identifiers of the same length. Clus-
tering accomplishes two things: it prevents the same 
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identifier from appearing in several slightly different 
forms in the final result, and it allows us to correct 
identifier errors even in statements that contributed to 
the table. The clustering algorithm groups together all 
P-lists in the identifier table having at least one common 
alternative for each character. If, for each character, 
the common alternatives have a sufficiently high 
average confidence, then all the P-lists in the group are 
replaced by a single P-list having only the common al-
ternatives. As an example, suppose the identifier table 
contained the following entries (we suppress the associ-
ated confidences for readability): 

Entry
1
 Entry

2 

N A H E W R M E 
W M S N A F 

L M 
X 

The clustering algorithm would produce the single result 

N A M E 
W 

if the average confidence of the two N's is higher than 
that of the two W's. 

The final phase of identifier analysis is concerned 
with using the identifier table to resolve ambiguities in 
the text, and it is divided into two steps: finding a can-
didate segment of a P-list and matching the segment 
against the identifier table. Candidate segments of a 
P-list are found by essentially the same algorithm that 
assembled the table in the first place; an exhaustive 
search is made to find segments of the P-list that con-
fidently might represent some identifier. When such a 
segment is found, it is compared against the table to 
find the best match. If the match is sufficiently good, 
the segment of the orginal P-list is replaced by a new 
segment having only a single alternative for each 
character. 

The match of P-list against table of identifiers fulfills 
two needs. The obvious advantage is that it (pre-
sumably) results in a lower error rate in the final answer. 
Less obvious, perhaps, is the important reduction in the 
combinatorial complexity that is achieved by having 
only a single alternative for each element in a string of 
characters. We might mention here that one could cer-
tainly construct a table of labels as well as a table of 
identifiers, but this has not yet been implemented. 

Resolution of arithmetic expressions 

Each FORTRAN construction, such as identifiers, 
lists of integers, expressions, etc., is the subject of 
separate analysis. Of these, the analysis of expressions 

is probably the most interesting because of their com-
plexity and variety. Further, many of the techniques 
used have been applied in the analysis of simpler con-
structions. 

The expression analyzer has at its disposal a number 
of techniques which it applies in a fixed sequence. These 
techniques, in order of application, are (1) an identifier 
match with the table of identifiers, (2) a compression 
operation to reduce the combinatorial complexity, (3) a 
procedure to increase local consistency, (4) a partition of 
the P-list representing the expression into segments that 
might represent subexpressions, (5) an exhaustive reso-
lution of the subexpressions, and (6) a reconstruction 
operation to "uncompress" the final answer. Suppose, 
then, that a P-list alleged to represent an expression has 
been obtained. Let us trace the action of the expression 
analyzer. 

The first step is a matching operation against the 
table of identifiers. As previously described, this opera-
tion replaces appropriate segments of the P-list by new 
segments having only a single alternative for each orig-
inal character. Once this is done the semantic ability of 
the analyzer is exhausted, so we take the second step of 
compressing the P-list. This is done to reduce combina-
torial complexity by eliminating syntactically equiva-
lent alternatives. Thus, if there are several letters as 
alternative to a single character, they may all be re-
placed by a single generic "X," with some associated 
confidence. Specification of the associated confidence is 
a little ticklish, but some heuristic arguments suggest 
that a good choice is the maximum confidence of the 
alternative letters. The same procedure is used for 
digits. Special characters, such as + and $, are left un-
changed. As an example, the compression operation 
would convert the following P-list (suppressing confi-
dences) 

A B C + F U N 
U V W Q 1 2 3 
R S 1 4 5 

6 
Z 

to a compressed version: 

X X X + X X X 
X 1 1 1 
1 

The third operation of the expression analyzer is an 
investigation of local legality. I t is interesting to note 
that, loosely speaking, an arbitrary string of alpha-
numeric characters can fail to be a legal expression be-
cause of either purely local or purely global illegalities. 
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Global illegalities cannot be detected by inspecting 
fixed-length segments of the string; typically they re-
sult from such things as bracket mismatches. Local 
illegalities can be detected by inspecting fixed-length 
segments, the simplest types arising from the juxta-
position of only two characters in an illegal manner, 
e.g., "* r or " + ] ." The local legality check simply 
verifies that the highest confidence alternatives for 
pairs of consecutive characters are in fact legal pairs. If 
an illegal pair is found, then we consider not just that 
pair of characters, but the 4-tuple of characters cen-
tered on the illegal pair. Dynamic programming is then 
used to select alternatives that produce the legal 4-
tUple of highest confidence. The confidences of these 
alternatives are increased enough to make them first 
choices. The choice of considering four consecutive 
characters is a compromise between the desire to make 
decisions on a global basis and the constraints of com-
binatorics. The basic advantages of the local check are 
its speed of operation and conservative nature. I t often 
corrects some errors and never introduces fatal new ones. 

The fourth step in the analysis of expressions is the 
breakdown of long P-lists into shorter ones. We select 
the operators + , - , / , and* as potential delimiters for 
partitioning the list. In other words, any character 
position having one of the above operators among its 
alternatives is a potential delimiter. A tenatative selec-
tion of delimiters is made on the basis of the relative 
confidences of the potential delimiters and their alter-
natives, and the segments of the P-list between these 
delimiters are examined. If each segment can be made 
into a legal subexpression (by means of dynamic pro-
gramming) then the segments are strung together 
and the original expression is resolved. Otherwise, 
a different selection of tentative delimiters is made. 
There are a number of pitfalls in this operation. 
First, consider the expression A + FUN[X + Y]. This 
is certainly a legal expression, but the segment 
"FUN[X" delimited by the two plus signs is not a legal 
subexpression. This is annoying, but not fatal, since a 
subsequent iteration will presumably partition the ex-
pression as A and FUN[X + Y]. A second pitfall is ex-
hibited by the following P-list (as usual, suppressing the 
associated confidences): 

XX+ +X 
X 

If the first plus sign were chosen as the delimiter we 
would have the two simple legal subexpressions 
X X and + X as first choices of each segment of the 
P-list, but the concatenation of the two with another 
plus sign is illegal. This pitfall can be avoided by making 
a final legality check which, if not satisfied, forces a new 
selection of potential delimiters. Thus although the 

method of partitioning expressions is far from perfect, 
it works well in many cases and does serve to reduce the 
combinatorial explosion. The partitioning method 
described has proven useful in many other situations, 
e.g., partitioning a list of integers by means of commas, 
etc. 

An alternative method of resolving arithmetic expres-
sions is to do a left-to-right parse of the first choices of 
the P-list until an error is detected. The utility of this 
method depends largely on the proximity of error com-
mision and error detection. If the two are nearly 
adjacent a parse could be very useful. Consider, 
however, a P-list in which the first choice for the first 
character is an erroneous left bracket. Detection of the 
error might well occur at the end of the expression, 
yielding very little useful information. In any event, a 
parse can tell only that an error has been committed; 
the localization and correction of the error must be ac-
complished by other means. 

The last step in the resolution of expressions is to "un-
compress" the answer. (Recall that all letters appear 
generic ally as "X" and all numbers as "1.") The 
reconstruction is accomplished in a straightforward 
manner by comparing the compressed answer with the 
original P-list and replacing each "X" by the highest 
confidence letter (and similarly for digits). 

Summary of analyzer structure 

We conclude this section with a summary description 
of the operation of the context-directed analyzer. The 
analyzer has a two-pass structure. The first pass deter-
mines the type of each statement (more precisely, of the 
statement represented by the P-list) and produces a 
clustered table of identifiers. The second pass accom-
plishes the resolution of each statement—the detection 
and correction of erroneous first choice alternatives. In 
this pass each statement is partitioned into subparts 
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1, , 

FIGURE 1—A hand-printed FORTRAN program 
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1 

100 

5 
101 

10 
1/ 

20 
21 
70 

50 

102 

60 

C0MM0N AGC*WESGHT*AGEMEAN*WTMCAN*C0V 
DIMENSI0N~AGEFlOO3*UEIGHTClOoT 
READ 1OO1IFLAG*M0K£~ 
F0RM/TC2I83 

IF£MER=360*5*5 
RKAD*101*AGE*WEIGHT 
FQRMATCF10.2 3 
G& T0 TlN,=01303*IFLAG 
D7 11 1=7*100 
WE"IGHi£I3=AGECS3 
G2 T0 JO 
D0 21 1=1*100 
AGECI3=WEIGHTCI3 
CALL AVECAGE*100*AGEMEAN3 
[ALL AVECWEIGHT*100*WTMEAN3 
C0V=O. 
GD 5Q 1=1*100 

C0V = C0V*CAGECI3-AGCKCAN3*tWEIGHTCI3-UTMEAN] 
C0V=C0V/1OO. 
TYPE 1O2*IFLDG*C0V 
F0RMATCI8*F1O.53 
G0 TO 1 
=T0F~ 
END" 

TABLE I—First choice of classifier 

based on the syntactic requirements of the respective 
statement types. Each subpart consists of one of a 
small number of constructs, e.g., an expression or a list 
of integers. The analysis of each construct often begins 
with a match against the table of identifiers. If the 
resulting P-list is combinatorially simple it is analyzed 
exhaustively by dynamic programming. Otherwise, the 
P-list is further partitioned into segments by means of 
delimiters and the segments are examined. Before any 
exhaustive analysis is made the P-list is compressed to 
reduce the number of alternatives. The final answer is 
reconstructed from the compressed answer by compari-
son with the uncompressed P-list. 

Example 

Source data 

This section describes an experiment illustrating the 
operation of the context-directed analyzer. The source 
data for this example came from the hand-printed 
FORTRAN program shown in Figure 1. The characters on 
the coding sheet shown were scanned, preprocessed, and 
classified by the methods described by Munson.1 Be-
cause we purposely wanted data with a moderate error 
rate, we chose to use only topologically-derived 
features. Using these features, Munson had previously 
obtained a nine percent error rate on other data by the 
same writer. The results on this data were very similar, 
with 38 out of the 410 characters misclassified for an 
error rate of 9.3 percent. The particular errors made are 
shown underlined in Table 1. I t is interesting to note 
that about one-third of these classification errors would 
not have been detected by purely syntactic methods. 

These error rates correspond to the first choice re-
sponses of the character classifier, a linear machine. The 
linear machine classifies a character by computing dot 

products between a feature vector and 46 stored weight 
vectors, one for each of the 46 categories. The first 
choice response is the category corresponding to the larg-
est dot product. The context-directed analyzer uses 
these dot products to determine alternative choices for 
each character, together with a measure of confidence for 
each alternative. The confidences C* are obtained by 
normalizing the dot products according to 

t — i = 1, - - - , 46 , 

where S* is the ith dot product, and Smax is the largest 
dot product observed for all of the characters in the 
source program. 

Since the correct category for the character is usually 
included among the choices having high confidence, it is 
not necessary to consider every alternative for every 
character. An empirical study showed that almost in-
variably the correct category was among those alter-
natives whose dot products were at least half of the 
maximum dot product for that character. Thus, only 
those characters whose confidences met this condition 
were included in the list of alternatives. This typically 
reduced the number of alternatives from 46 to 4 or 5, 
with occasionally only 1, and never more than 10. The 
price for this simplification was an occasional failure 
to include the correct category, which was the case for 
the five doubly-underlined characters in Table 1. Al-
though this introduces extra problems, the reduction in 
combinatorial complexity is worth the price. 

Statement identification 

As mentioned previously, the analyzer is organized as 
a two-pass program. During the first pass, the type of 
each statement is determined and variable names are 
collected for the construction of the identifier table. 
Statement identification was done by comparing the be-
ginning of each statement with the "control" words, 
IF , DO, READ, etc. For example, the alternatives and 
the corresponding confidences for the first part of the 
sixth statement were as follows: 

R K A D 
A [ R 0 
Z E V 

U 
R 
L 
Z 

- 2 5 - 6 5 
- 4 9 - 6 5 
- 6 2 - 6 8 

- 6 9 
- 7 7 
- 8 1 
- 8 1 

- 2 8 
- 6 2 

- 4 2 
- 5 2 
- 6 1 

The average confidence for the first choice selection 
READ was -40. The average confidence for READ was 
-41 , which was sufficiently high to identify the state-
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ment as a READ-statement. This matching procedure 
correctly identified all but one of the 24 statements, in-
cluding two cases in which the correct category of a con-
trol word character was not included in the fist of alter-
natives. However, absence of the correct category 
caused tne ninth statement, a DO-statement, to be 
erroneously identified as the arithmetic-assignment 
statement D711I = 1,100. Subsequent analysis failed 
to resolve this as a legal arithmetic-assignment-state-
ment, however, and the result of this failure condition 
was that first choice decisions from the classifier were 
accepted as the final output. 

The identifier table 

During the first pass, all COMMON, DIMENSION, 
and input/output statements were inspected to collect 
potential variable names. This operation was allowed to 
be somewhat liberal, since the inclusion of spurious 
identifiers is less harmful than the exclusion of actual 
identifiers. For example, in the last TYPE-statement 
the input/output list had the following alternatives: 

I F L D G , C O V 
[ [ A 6 [ D W 
S 6 M + Q U 
K 2 N U B + 

G O 
1 P 

Because the fifth-choice comma had a fairly high con-
fidence, the program found IFL and G as well as 
IFLDG and COV as possible variable names. While 
there is a danger that these fragments might have ac-
cidentally matched similar names elsewhere in the pro-
gram, no such matches occurred. One reason is that long 
names are tried before short names when the identifier 
table is used, and this prevents the premature discovery 
of erroneous matches with short fragments. Another is 
that completely accidental matches involving names of 
length greater than three or four are highly unlikely. 

The search for possible variable names yielded the 
following (first choice) possibilities: 

G AGC MOK[ IFLAG WEIGHT AGEMEAN 
COV IFLDG WTMCAN 
AGE UEIGHT 
AGE WEIGHT 
IFL 
COV 

Even in this simple example the need to cluster the 
identifier table is clear, since (a) four names were found 
more than once, and (b) three of these appeared with 
different first choice spellings. Clustering reduced the 

identifier table to the following first choice possibilities: 

G AGE MOKE IFLAG WEIGHT AGEMEAN 
COV WTMCAN 
IFL 

Of these names, two were spurious (G and IFL), but 
caused no trouble. Two were wrong (MOKE and 
WTMCAN), but since only one representative of each 
was found, they could not be fixed. The remainder 
(AGE, COV, IFLAG, WEIGHT, and AGEMEAN) 
were correctly clustered. 

Statement analysis 

During the second pass, each statement was resolved 
in turn. Since each different type of statement had to be 
treated differently, a complete description of how this 
was accomplished.would be tedious. However, the spirit 
of our procedures can be conveyed by considering the 
resolution of the long arithmetic-assignment statement. 
For this statement, the first choices of the classifier were 

50 COV = COV + [AGE[I] - AGfHCAN] * 
[WEIGHT[I] - UTMEAN] . 

As with all statements, the label field (columns 1 
to 5) was inspected first. Its resolution was trivial, since 
the first choices were legal. Attention then shifted to 
the statement field. Starting in column 7, a search was 
begun for a possible equals sign to be used to break the 
statement into a tentative variable and a tentative ex-
pression. (Had later procedures failed to resolve either 
of these parts, the search would have been resumed for 
a possible equals sign further to the right.) 

The first character found having an equals sign for an 
alternative was, in fact, the correct equals sign. At this 
point, the first step was to resolve the left-hand side of 
the statement. Since the tentative variable, COV, could 
have been either a simple identifier (scalar variable) or 
'an identifier followed by a bracketed list of expressions 
(array variable), a search was begun for a string Of the 
form "alphanumeric, left-bracket." No such string was 
found, of course, and the tentative variable was de-
clared to be just an identifier of length three. A search 
through the corresponding part of the identifier table 
produced a match, and COV was accepted for the name. 

The next step was to resolve the expression. Here an 
exhaustive search of the expression for candidate identi-
fiers was begun at once. Each candidate found was 
matched against appropriate length entries in the 
identifier table. This procedure produced five matches, 
and changed the first choices for the expression from 

t!OV + [AGE[I] - AG[HCAN] * [WEIGHT[I] 
- UTMEAN] 
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to 

COV + [AGE[I] - AGEMEAN] * [WEIGHT[I] 
- WTMCAN] , 

which, even though it contains the error in WTMEAN, 
is a syntactically valid expression. Thus, in this case 
the expression was resolved by the first operation, the 
use of the identifier table. The remaining operations, 
which have been very useful in other instances, were not 
needed, and hence were not performed. Since both the 
variable and the expression were now resolved, these 
parts were joined by an equals sign and appended to the 
results of the label-field analysis to yield the final resolu-
tion of the statement. 

When similar procedures were applied to the other 23 
statements, 28 of the 38 errors were corrected, reducing 
the error rate from 9.3 percent to 2.4 percent. The final 
output of the analyzer is shown in Table 2, where the 
10 remaining errors are underlined. Three of these errors 
were due to the appearance of WTMCAN rather than 
WTMEAN in the identifier table, and three more were 
due to other problems with identifiers: MOKE, MERE, 
and S. A better method of using the identifier table, in 
which a final determination of variable names is post-
poned until all matches are made, would no doubt yield 
improved results. 

Of the remaining four errors, one was in a FORMAT-
statement, one in the DO-statement control word, and 
two involved labels. The FORMAT error was due to the 
fact that we have yet to implement that part of the pro-
gram that resolves FORMAT statements. The DO 
error was caused by the missing alternative, and its cor-
rection would require the use of much more sophis-
ticated methods for identifying statement types.Both 
label errors, however, could easily be cured by using a 
table of labels similar to the table of identifiers. Thus, 
roughly half of the 10 uncorrected errors could be re-
solved by relatively straightforward additions to our 
present program; the remainder would be difficult 
indeed to fix. 

DISCUSSION 

This paper has been concerned with techniques for us-
ing context to detect and correct character recognition 
errors. A few concluding remarks and observations 
about these techniques and their implementation are in 
order. 

Our first observation is that the addition of new tech-
niques to the context-analyzer program can continue 
virtually without limit. Many of these additions are 
straightforward. For example, tables of library sub-
routine names or statement labels could be incor-
porated and used in an obvious fashion. Other strate-
gies, which humans employ with remarkably little effort, 

are much more difficult to implement. For example, the 
determination of statement type is currently made by 
matching the leading portion of the P-list against the 
various control words. A short control word results in a 
greater risk that the statement type will be misidenti-
fied, yet a human easily identifies statement types by 
their general appearance or gross structure, as well as by 
the (possibly misclassified) control word. This apprecia-
tion of global structure has been one of the more difficult 
abilities to give the analyzer. 

Another observation is that the basic strategy em-
ployed by the analyzer should change with variations in 
the error rate of the input data. The support for this ob-
servation rests on intuitive, rather than experimental 
grounds, but it seems clear that elaborate procedures 
that may be required for very poor data are unneces-
sarily inefficient on very good data. While the present 
analyzer can cope with a certain amount of error-rate 
variability by automatic ^adjustment of thresholds, 
there is no provision to change the basic nature of the 
operations as a function of the quality of the input data. 

A third observation is that there will always exist 
FORTRAN programs that are unlikely to be resolved 
successfully. One need only consider the contrary pro-
grammer who defines three separate variables as 
SS5S5, S5S5S, and S5SS5 to appreciate this. Whenever 
there can be errors in the input, there is a chance of 
errors in the output. In a practical system, one would 
want to provide the user with more than the final de-
cision of the recognition system. For example, diagnos-
tic messages could be given to aid the user in finding and 
correcting errors, whether they were committed by the 
classifier, the analyzer, or the user himself. 

I t is difficult to assess the usefulness of our tech-
niques on the basis of an exploratory investigation. A 

C0MM0N AGE*WEIGHT*AGEMEAN*WTMCAN,COV 
DIMENSION AGEC100D*WEIGHTC1003 

I READ 1OO*IFLAG*M0KE 
100 F0RMATC2I83 

IFCMEREJ60*5*5 

5 READ~101*AGE*WEIGHT 
101 F0RMATCF1O.23 

G0 T0 riO*20^30]*IFLAG 
10 D7 11 1=1,100 
II WEIGHTCI3=AGECS3 

G0 T0 30 
20 D0 21 1=1*100 
2 1 AGECI]=WEIGHTCI3 
70 CALL AVECAGE*100*AGEMEANJ 

CALL AVECWEIGHT*100*WTMCAN] 
C0V=O 
D0 50 1=1*100 

50 C0V=C0V+CAGECI3-AGEMEAN3*CWEIGHTCI]-WTMCAN3 
C0V=C0V/1OO. 

TYPE 1O2*IFLAG*C0V 
102 F0RMATCIB*F1O.53 

G0 T0 1 
60 ST0P 

END 

TABLE II—Final output of analyzer 
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thorough evaluation of the performance of the analyzer 
can be made only by testing it on a large number of 
FORTRAN programs produced by a variety of authors. 
Unfortunately, we were unable to undertake a data-
processing project of this magnitude. 

An equally difficult question concerns the extend-
ability of the reported techniques to other problem do-
mains. These techniques can be characterized by three 
qualities: risk-spreading in decision making, partition-
ing of a large decision problem into a hierarchy of sub-
problems, and continual checking of internal con-
sistency. I t seems clear that our basic approach applies 
more or less directly to other programming languages, 
and perhaps could be used with natural language in 
tightly constrained situations. The conjecture that the 
general approach, at least, can be applied in more 
general problems has a certain piquancy, but it re-
mains only a conjecture. 

We have, however, been able to achieve a substantial 
reduction in error rate for a particular application. In 
our opinion, it would have been difficult to obtain a 
comparable improvement by applying more con-
ventional context analysis methods which do not take 
advantage of the special nature of the problem. 
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APPENDIX 

In this Appendix we derive the decision rule that 
classifies strings of alphanumeric characters in an opti-
mal (minimum probability of error) fashion. By appro-
priately interpreting our result, we arrive at the deci-
sion rule described in the text. 

Suppose that we are given some string of n characters 
to classify. Our problem is to determine a string of n 
categories that minimizes the probability of mis-
classification. If we let the vector X< denote the set of 
measurements made on the ith character and 0* denote 
the category selected for the ith character, then it is well 
known from Bayesian decision theory that the minimum 
probability of error is achieved by the following rule: 

Select the categories 0X, • • •, 6n which maximize the 

posterior probability p(0i, • • -, 0n|Xi, • • -, X n ) . 

In other words, the posterior probability is computed 

for every possible assignment of 6\ through 0„, and the 
most probable assignment is taken as the decision. 

By Bayes' law of inverse probabilities we can write 
the posterior probability as 

p(0i, • • -, 0»|Xi, • • •, Xn) 

p(Xi, • • -, Xw|0i, • • -,6n) p(0i, • • •, 0») 

•pCXi, - , x . ) • ( 1 ) 

This shows that the computation of the posterior prob-
ability depends upon both the prior probability 
p(0i, . . .,6n) and the conditional probability p(Xi, . . ., • 
X„|0i, . . .,0„). To simplify the computation of the con-
ditional density, we make the reasonable assump-
tion that the manner in which a character is formed 
depends only upon the category of the character 
and not on the categories or the measurements of any 
surrounding character. This assumption is equivalent to 
an assumption of conditional independence, namely 
that 

pfXi, • • •, Xn|0!, • • -, 0„) = I I p(X,-|0;) . (2) 

At this point we must make some assumptions about 
the performance of the character classifier that pro-
vides the input to the context-directed analyzer. If this 
classifier were designed for the optimal classification of 
characters without regard to context it would compute, 
for every 0;, the posterior probability 

p(0,-1JLi) —— • 
p(X<) 

During the design of the classifier it was tacitly as-
sumed that all classes are equally likely a priori, so that 
p(0i) — 1/46. We therefore make the bold assumption 
that the classifier computes, for all 46 values of 0*, 

p.(9,.|x,.) = R^iMVL6 . (3) 
p(Xi) 

Substituting (3) and (2) into (1), we obtain 

p(0i, • • •, 0n|Xi, • • •, Xn) 

•= p
Z

h
'"'

9
"\ n 4 6

 P(X*)P*(MX<) . 
p(Xi , • • •, X.n) t=i 

Now for given measurements X1}...,XW we are interested 
in maximizing this quantity over 0i,...,0» so we can 
ignore constants and factors depending solely on X* and 
obtain the following optimal compound decision rule: 

Select the categories 0i, • • •, 0„ for which 
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p(0i, • • -, On) TL P*(0«|X<) is maximum. 
t=i 

We can, of course, take any monotonic function of this 
quantity and maximize it instead. Taking logarithms 
we can select the 6%,... ,0 n which maximize 

n 

log p(fc, • • -, 0n) + E lOg P* (Oi\Xi) . 

If we define log p* (0»|X<) as being the confidence that 
the measurements Xt- indicate class 0*, then we may 
reasonably define the confidence of the string to be 

*I>gp*(»<|x,).. 
t = l 

The optimal decision rule, then, computes the confi-
dence of each string of length n, biases each string confi-
dence by adding the logarithm of the prior probability 
of the string, and selects as the answer that string 
having the highest biased confidence. 
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