
Experiments in the recognition of hand-printed

text: Part II—Context analysis

by RICHARD 0 . DUDA and PETER E. HART

Stanford Research Institute
Menlo Park, California

I J N T K O J D U C T I U J N AJND JSAUKttKUUJND

Problem specification

The work described in this paper is part of a larger
effort aimed at the recognition of hand-printed text. In a
companion paper, Munson1 describes the scanning of
the text, and the preprocessing and tentative classifi-
cation of individual characters. In this paper, we
describe techniques for using context to detect and cor-
rect errors in classification.

The source text used in this experimental study con-
sisted of hand-printed FORTRAN programs. The
choice of this common programming language gave us a
problem in which contextual relations were both fairly
elaborate and well defined. This is to be contrasted with
simpler problems, such as might be encountered with
business forms, where contextual relations are rudimen-
tary, and with the much more difficult problem of han-
dling natural language, where complex semantic con-
siderations play a large role.

The techniques we developed are embodied in a
LISP program called the context-directed analyzer. The
input to this program, which is obtained from the pat-
tern classifier, consists of a list of possible alternative
classifications for each character in the source program.
Associated with each alternative is a number that mea-
sures the confidence that the alternative is in fact cor-
rect. Thus, if presented with a hand-printed A, the
classifier might produce the output

Choice Character Confidence

1 R - 2 2
2 A - 2 8
3 H - 4 3

indicating an erroneous first choice, but a correct second
choicerankingnear the first in confidence.*

*The way in which these confidences are actually obtained is
described in a later section. Ideally, each confidence is propor-
tional to the logarithm of the probability that the corresponding
alternative is correct.

The input to the context-directed analyzer is a list of
such lists of alternatives and confidences for all of the
characters in a FORTRAN program which we assume
to be syntactically legal. The task of the analyzer is to
achieve as low an overall error rate as possible by mak-
ing appropriate choices from among the alternatives.

Past approaches

The utilization of contextual constraints to improve
the performance of pattern classifiers has been the sub-
ject of a number of investigations.2-11 One of two basic
approaches has generally been followed, the table look-
up method or the Markov approach. The table look-up
method is based on the assumption that every word in
the text is selected from a known finite table. A word of
text is classified by comparing it with every table word
having the same length and finding the best match.
Gold2 used such a table of legal Morse-code symbols in
his system for recognizing hand-sent Morse code, and
Bledsoe and Browning3 used a table of English words in
their pioneering experiments in recognizing hand-
printed characters.

The Markov approach is rooted in the assumption
that the true category of a character is related in a
probabilistic manner to the true categories of a small
number of surrounding characters. Its use leads to the
estimation, from sample text, of the probabilities of all
possible pairs, triples, or in general n-tuples of charac-
ters. The Markov method can be expected to correct
locally improbable character strings, but it ignores glo-
bal considerations. Harmon4 used this method to detect
errors in the recognition of cursive script. Edwards and
Chambers5 and Carlson6 also employed this technique
to correct errors encountered in conventional optical
character recognition. An interesting mixture of the
two approaches was used by McElwain and Evens7 to
correct garbled Morse code, and both methods were
compared experimentally in a lucid paper by Vossler
and Branston.8

Both of these approaches rest on the theoretical

1139

1140 Fall J ° i n t Computer Conference, 1968

foundations of compound decision theory (see Abend9

for a clear tutorial presentation and for references to the
appropriate statistical literature). Both Abend10 and
Raviv11 point out the importance of considering the
alternatives that can be supplied by a classifier. They
derive the formal decision-theoretic solution for the op-
timum use of context and show how it can be simplified
by the Markov dependence assumption. However, this
assumption, which seems necessary to make the op-
timum procedure computationally feasible, again limits
the ability to exploit global relations.

A formal solution

In this section we outline the general formal solution
to the compound decision problem and then point
out its drawbacks.

The solution

Suppose for a moment that we have on hand the out-
put of the classifier for a single FORTRAN statement.
The basic problem is to select, from among all the
alternatives, the correct string of characters. A formal
solution to this problem is provided by compound de-
cision theory and requires two ingredients. We must be
able to specify, for an arbitrary string of characters (1)
the confidence of the string, and (2) the prior prob-
ability of the string. The former is provided by the
classifier, while the latter must be assumed or estimated
ahead of time. A formal solution, derived and made pre-
cise in the Appendix, is given by the following in-
tuitively appealing rule:

Compute the confidence of every string of charac-
ters of the given length. Bias each string confidence
by adding the logarithm of the prior probability of
that string. Set the answer equal to the string hav-
ing the highest biased confidence.

If we assume that the confidences of the individual
characters are the logarithms of their probabilities, then
the confidence of a string is just the sum of the confi-
dences of each of the characters in the string. We shall
adopt the convention that any character not explicitly
listed by the classifier as an alternative is correct with
some uniformly low probability, and hence has an ac-
companying confidence of some low number.

Let us illustrate this rule with the following example.
Suppose the classifier returns, for a single FORTRAN
statement, the following alternatives, where for read-
ability we list all first choices on the first row, second
choice on the second row, and so on.

6 O T D S
G 0 5

We display the associated confidence of each alternative
in a similar array:

- 6 0 - 2 0 - 3 0 - 5 0 - 3 0
- 7 0 - 6 0 - 4 0

- 7 0

In order to use the formal compound decision theory
solution, we must know the prior probabilities. Let us
assume initially that all legal strings of characters are
equally likely, and also that all illegal strings have zero
probability. The highest confidence string is 60TD S,
with confidence -190, but has prior probability zero. In
fact, of the twelve possible strings of characters that can
be formed from the alternatives presented, all but four
are illegal FORTRAN statements. The four legal ones
are

String Confidence

GOTO S -210
GOTO 5 - 2 2 0
GOT = S -220
GOT = 5 -230

Therefore the final selection is the assigned GO TO
statement GOTO S.

In this example we have been casual about the exis-
tence of spaces in the text, and throughout the paper we
shall ignore questions of spaces and other pragmatics
(continuation marks, separating the label field from the
rest of the statement and the like) since character posi-
tion information is assumed to be provided by the orig-
inal data scanning and input routine.

The disadvantages of the formal solution

The formal solution illustrated above suffers from at
least two serious problems: A combinatorial explosion,
and an inability to exploit semantic information in a
natural way.

Problem 1: Combinatorial explosion

The first objection to the formal solution is that it
rapidly gets out of hand combinatorially. Notice that
the solution requires explicit enumeration of all pos-
sible strings of characters of the given length. We can,
of course, adopt the reasonable heuristic that strings of
characters will be formed only from among alternatives
specifically listed by the classifier. Even so, a statement
only ten characters long with, say, four alternatives for
each character gives rise to over a million possibilities.

Of course, if we could order strings by confidence then
we need not enumerate all possible strings since the de-
cision procedure outlined above selects the highest con-

Experiments in Recognition of Hand-Printed Text 1141

fidence legal string as the final answer. Thus we could
examine the highest confidence string, and if it were
legal we would have the answer. If not, we could ex-
amine the second most confident string, and so on. In
general, this approach requires a method for selecting
the kth most confident string of characters given the
(k—1st) most confident. The problem of ordering
strings by confidence is far from trivial. A solution,
based on a modification of dynamic programming as
suggested to us by R.E. Larson of Stanford Research
Institute, is described in Reference 12. While the dynam-
ic programming approach is considerably more effi-
cient than the brute force approach and is used fre-
quently in the analyzer implemented, it also suffers
from severe combinatorial problems and can be used
only on combinatorially simple data structures. For our
computing facilities, the limit of combinatorial com-
plexity for dynamic programming seems to be some-
thing on the order of a few thousand combinations; i.e.,
a string of five or six characters, with about four alter-
natives for each one.

Problem 2 : Semantics

The decision rule discussed above involves only the
syntax of the FORTRAN language. It by passes all the
richness of semantics. For example, it ignores the simple
but important fact that identifiers, and especially vari-
able names, rarely appear only once in a given program.
In principal, compound decision theory does not ignore
this; it is taken into account by the prior probability of
an entire program. Thus, for example, a program con-
taining the variable name HELLO only once is less
probable, a priori, than a very similar program contain-
ing HELLO several times. In practice, certainly, it is a
hopeless task to reflect the multiple appearance of an
identifier by directly enumerating prior probabilities.

Structure of the contex-directed analyzer

The previous section outlines the decision-theoretic
approach to the utilization of context and points out
two severe drawbacks. This section describes the struc-
ture of a context-directed analyzer that retains the
flavor of the decision-theoretic solution while minimiz-
ing combinatorial problems. The analyzer capitalizes on
the multiple appearance of variable names, which is a
first step toward employing semantic, in addition to
syntactic, information to correct classifier errors. We
briefly describe the overall operation of the analyzer
and then describe its major operations in more detail.

Let us first delineate the current status of our work.
The analyzer described is implemented as a LISP pro-
gram running on an SDS-940 computer. The data for the
classifier is an SDS FORTRAN I I program which is

restricted only in that the I/O lists in input-output
statements are simple fists of identifiers. Every state-
ment in the FORTRAN program, except for the
COMMENT and FORMAT statements, is subjected to
a detailed analysis. For these particular statements the
analyzer as yet returns the first choice for each charac-
ter as the answer.

The analyzer is organized as a two-pass program.
During the first pass each statement is identified by
type and a table of identifier names is assembled and
clustered. During the second pass each statement is
resolved and the final classification of the FORTRAN
text is made.

In the subsequent discussion we will need to refer to
the data structure, illustrated in the GOTO example,
that the classifier produces when presented with a seg-
ment of FORTRAN text. We will, for no special reason,
refer to this data structure as a P-list. The i th element of
a P-list is a collection of alternatives and confidences for
for the ith character in the original text. Thus a P-list
contains all the information passed from classifier to
analyzer, and the elements in the P-list are in one-to-
one correspondence with the characters in the original
segment of text.

Statement identification

The identification of statement type is enormously
facilitated by the appearance of a "control word"
(DIMENSION, IF, etc.) at the beginning of all state-
ments except the arithmetic assignment statement. This
property of FORTRAN gives us good reason to suppose
that our early assumption that all legal strings are
equally likely grossly oversimplifies the matter, at least
when the string is at the beginning of a statement. A
more realistic assumption would be that each of the
30-odd FORTRAN control words is equally likely at
the beginning of a statement, but this would overlook
both the relative frequencies of statement types and the
arithmetic assignment statement. A simple and not too
unrealistic course of action would be to treat all control
words as being equally likely, but to reject them all in
favor of the arithmetic assignment statement if a
sufficiently good match with a control word is not
found. This leads directly to the following procedure
for identifying statement type.

Compute the confidence of each FORTRAN con-
trol word from the leading segment of the P-list for
the statement. If the highest confidence computed
exceeds a threshold, then decide the statement is of
the corresponding type. Otherwise, decide the
statement is an arithmetic assignment.

At this point we must make a remark about the com-
putation of the confidence of a string of characters. If

1142 Fall Joint Computer Conference, 1968

each confidence were in fact the log of a probability,
then the confidence of a string would be (under a con-
ditional independence assumption described in the
Appendix) the sum of the confidences of each com-
ponent in the string. This is, unfortunately, not the
case in practice. A reasonable measure of the confidence
of a string that has proven quite satisfactory in practice
is the normalized, or average, confidence, i.e., the sum
of the confidences divided by the length of the string be-
ing considered. As anillustration,theconfidenceof GOTO
for the example in the first section is -170/4 = -42.5.
The confidence of DO is -220/2 = -110, under the con-
vention that an alternative not explicitly listed by the
classifier has a confidence of—200. The confidence of
DIMENSION can be taken as minus infinity, simply
because length considerations make it an impossible
candidate. The actual implementation of the analyzer
differs from the above description only in that confi-
dences of the various control words are compared
against a threshold sequentially, and a decision is made
if the threshold is exceeded.

Statement analysis

After a P-list representing a statement to be resolved
has been identified by type, it is analyzed in order to
isolate its natural subparts. The details of these analy-
ses depend upon the statement type, but the following
two principles are common to all:

(1) Since the combinatorial explosion is the root of all
evil, find delimiters that break the P-list into
smaller segments that can be handled by other
programs.

(2) Since no single character is reliable, spread the
risk in finding a delimiter over a segment of the
P-list as long as possible.

A single example will suffice to convey the flavor of
the approach. Consider the IF statement. I t is syntac-
tically demanded that every IF statement have the
form IF[expression] integer^ integer2, integer3. I t is easy
to strip off the IF from the front of the statement, but
we would also like to partition the remainder into a
bracketed expression and a list of three integers. The
inreliability of single characters make it unwise to seek
merely the last right bracket (our character set uses
brackets instead of parentheses), so we resort to a more
elaborate technique. We start at the tail of the P-list
representing the statement, and step along toward the
front looking among the alternatives for, successively, a
digit, a comma, and a digit. Having found this
triple once, we continue to step toward the front looking
among alternatives for a second digit-comma-digit
triple. When we find it a second time we tentatively de-
clare that the second comma has been passed (reading

from right to left) and step along again, now looking for
a digit-right bracket pair. When we find this pair, we
tentatively declare thatthedelimiter "right-bracket" has
been found and analyze the expression and integer-triple
separately. If either of these analyses fails, we assume
we have not yet found the delimiter and continue to
step along toward the front. If we reach the front of the
list without finding the delimiter, then the analysis
fails, and the first choice decisions are accepted by de-
fault.

Similar analyses are used for other statement types in
order to isolate such typical FORTRAN constructions
as identifiers, lists of expressions, index controls and the
like. These constructions are themselves the subject of
further analysis. A subsequent section describes the
analysis of what is perhaps the most interesting con-
struction, the arithmetic expression.

The identifier table

Our semantic analysis is concerned only with the
multiple appearance of the same identifier in a typical
FORTRAN program. While rudimentary, this analysis
has proven very successful and is used extensively. The
analysis consists of three phases: constructing a table of
identifiers (more precisly, the P-lists representing pre-
sumed identifiers), clustering the table, and finally
using it to resolve FORTRAN statements. Each
of these phases will be described in turn.

As currently implemented, assembly of the identifier
table begins by restricting attention to statements rich
in identifiers. For our purposes, we consider DIMEN-
SION, COMMON, and the various input-output state-
ments as our potential sources of identifier names. As a
typical example, let us consider the extraction of
identifiers from a COMMON statement. This state-
ment consists of the word COMMON followed by a list
of identifiers. One method of finding these identifiers is
to search for possible commas in the P-list representing
the statement and to assume that everything between
commas is an identifier. This approach has proven unre-
liable because it places too much reliance on single
characters. A more satisfactory algorithm searches the
P-list exhaustively for all possible occurrences of a
string of the form "alphanumeric-comma-alphabetic-
alphanumeric . . . alphanumeric-comma-alphabetic." If
such a string has a sufficiently high confidence, the seg-
ment of the P-list between the two commas is declared
to represent an identifier and is added to the table. This
algorithm is quite reliable because the confidences of at
least five successive characters are computed even if the
identifier has length one.

The second phase of semantic analysis involves
"clustering" all identifiers of the same length. Clus-
tering accomplishes two things: it prevents the same

Experiments in Recognition of Hand-Printed Text 1143

identifier from appearing in several slightly different
forms in the final result, and it allows us to correct
identifier errors even in statements that contributed to
the table. The clustering algorithm groups together all
P-lists in the identifier table having at least one common
alternative for each character. If, for each character,
the common alternatives have a sufficiently high
average confidence, then all the P-lists in the group are
replaced by a single P-list having only the common al-
ternatives. As an example, suppose the identifier table
contained the following entries (we suppress the associ-
ated confidences for readability):

Entry
1
 Entry

2

N A H E W R M E
W M S N A F

L M
X

The clustering algorithm would produce the single result

N A M E
W

if the average confidence of the two N's is higher than
that of the two W's.

The final phase of identifier analysis is concerned
with using the identifier table to resolve ambiguities in
the text, and it is divided into two steps: finding a can-
didate segment of a P-list and matching the segment
against the identifier table. Candidate segments of a
P-list are found by essentially the same algorithm that
assembled the table in the first place; an exhaustive
search is made to find segments of the P-list that con-
fidently might represent some identifier. When such a
segment is found, it is compared against the table to
find the best match. If the match is sufficiently good,
the segment of the orginal P-list is replaced by a new
segment having only a single alternative for each
character.

The match of P-list against table of identifiers fulfills
two needs. The obvious advantage is that it (pre-
sumably) results in a lower error rate in the final answer.
Less obvious, perhaps, is the important reduction in the
combinatorial complexity that is achieved by having
only a single alternative for each element in a string of
characters. We might mention here that one could cer-
tainly construct a table of labels as well as a table of
identifiers, but this has not yet been implemented.

Resolution of arithmetic expressions

Each FORTRAN construction, such as identifiers,
lists of integers, expressions, etc., is the subject of
separate analysis. Of these, the analysis of expressions

is probably the most interesting because of their com-
plexity and variety. Further, many of the techniques
used have been applied in the analysis of simpler con-
structions.

The expression analyzer has at its disposal a number
of techniques which it applies in a fixed sequence. These
techniques, in order of application, are (1) an identifier
match with the table of identifiers, (2) a compression
operation to reduce the combinatorial complexity, (3) a
procedure to increase local consistency, (4) a partition of
the P-list representing the expression into segments that
might represent subexpressions, (5) an exhaustive reso-
lution of the subexpressions, and (6) a reconstruction
operation to "uncompress" the final answer. Suppose,
then, that a P-list alleged to represent an expression has
been obtained. Let us trace the action of the expression
analyzer.

The first step is a matching operation against the
table of identifiers. As previously described, this opera-
tion replaces appropriate segments of the P-list by new
segments having only a single alternative for each orig-
inal character. Once this is done the semantic ability of
the analyzer is exhausted, so we take the second step of
compressing the P-list. This is done to reduce combina-
torial complexity by eliminating syntactically equiva-
lent alternatives. Thus, if there are several letters as
alternative to a single character, they may all be re-
placed by a single generic "X," with some associated
confidence. Specification of the associated confidence is
a little ticklish, but some heuristic arguments suggest
that a good choice is the maximum confidence of the
alternative letters. The same procedure is used for
digits. Special characters, such as + and $, are left un-
changed. As an example, the compression operation
would convert the following P-list (suppressing confi-
dences)

A B C + F U N
U V W Q 1 2 3
R S 1 4 5

6
Z

to a compressed version:

X X X + X X X
X 1 1 1
1

The third operation of the expression analyzer is an
investigation of local legality. I t is interesting to note
that, loosely speaking, an arbitrary string of alpha-
numeric characters can fail to be a legal expression be-
cause of either purely local or purely global illegalities.

1144 Fall Joint Computer Conference, 1968

Global illegalities cannot be detected by inspecting
fixed-length segments of the string; typically they re-
sult from such things as bracket mismatches. Local
illegalities can be detected by inspecting fixed-length
segments, the simplest types arising from the juxta-
position of only two characters in an illegal manner,
e.g., "* r or " +] ." The local legality check simply
verifies that the highest confidence alternatives for
pairs of consecutive characters are in fact legal pairs. If
an illegal pair is found, then we consider not just that
pair of characters, but the 4-tuple of characters cen-
tered on the illegal pair. Dynamic programming is then
used to select alternatives that produce the legal 4-
tUple of highest confidence. The confidences of these
alternatives are increased enough to make them first
choices. The choice of considering four consecutive
characters is a compromise between the desire to make
decisions on a global basis and the constraints of com-
binatorics. The basic advantages of the local check are
its speed of operation and conservative nature. I t often
corrects some errors and never introduces fatal new ones.

The fourth step in the analysis of expressions is the
breakdown of long P-lists into shorter ones. We select
the operators + , - , / , and* as potential delimiters for
partitioning the list. In other words, any character
position having one of the above operators among its
alternatives is a potential delimiter. A tenatative selec-
tion of delimiters is made on the basis of the relative
confidences of the potential delimiters and their alter-
natives, and the segments of the P-list between these
delimiters are examined. If each segment can be made
into a legal subexpression (by means of dynamic pro-
gramming) then the segments are strung together
and the original expression is resolved. Otherwise,
a different selection of tentative delimiters is made.
There are a number of pitfalls in this operation.
First, consider the expression A + FUN[X + Y]. This
is certainly a legal expression, but the segment
"FUN[X" delimited by the two plus signs is not a legal
subexpression. This is annoying, but not fatal, since a
subsequent iteration will presumably partition the ex-
pression as A and FUN[X + Y]. A second pitfall is ex-
hibited by the following P-list (as usual, suppressing the
associated confidences):

XX+ +X
X

If the first plus sign were chosen as the delimiter we
would have the two simple legal subexpressions
X X and + X as first choices of each segment of the
P-list, but the concatenation of the two with another
plus sign is illegal. This pitfall can be avoided by making
a final legality check which, if not satisfied, forces a new
selection of potential delimiters. Thus although the

method of partitioning expressions is far from perfect,
it works well in many cases and does serve to reduce the
combinatorial explosion. The partitioning method
described has proven useful in many other situations,
e.g., partitioning a list of integers by means of commas,
etc.

An alternative method of resolving arithmetic expres-
sions is to do a left-to-right parse of the first choices of
the P-list until an error is detected. The utility of this
method depends largely on the proximity of error com-
mision and error detection. If the two are nearly
adjacent a parse could be very useful. Consider,
however, a P-list in which the first choice for the first
character is an erroneous left bracket. Detection of the
error might well occur at the end of the expression,
yielding very little useful information. In any event, a
parse can tell only that an error has been committed;
the localization and correction of the error must be ac-
complished by other means.

The last step in the resolution of expressions is to "un-
compress" the answer. (Recall that all letters appear
generic ally as "X" and all numbers as "1.") The
reconstruction is accomplished in a straightforward
manner by comparing the compressed answer with the
original P-list and replacing each "X" by the highest
confidence letter (and similarly for digits).

Summary of analyzer structure

We conclude this section with a summary description
of the operation of the context-directed analyzer. The
analyzer has a two-pass structure. The first pass deter-
mines the type of each statement (more precisely, of the
statement represented by the P-list) and produces a
clustered table of identifiers. The second pass accom-
plishes the resolution of each statement—the detection
and correction of erroneous first choice alternatives. In
this pass each statement is partitioned into subparts

COLS. MO

(, , , 1. .

I . A A

C .

1.4.1

\A.

> • ! •

2UA_,
l i d

1.6.

,
5 . A

,
I d f c i

fc,4t-j

. .

. 1 C . 6 K H

. 1 .RE.A.O

. 1 .X.F.T.M

. I .RE.A.b

. 1 . F A R *

. i ,a .o . . T

. I .h.O. .1

. i . v t e u

. 1 . & & 7T

. 1 .b.0. .2.

. i A . & E . C

. 1 . C A . C L

. 1 . C A L L

. 1 .C.6.V.

. 1 .b.O. .S

. 1 C.t>.1.

. 1 .T .V .PE

. 1 .F.e.R.C

. 1 .&.<* ,T

. 1 .S.T.O.P

' . 1 .E.N.U.

. 1

COLS. 11-20

A U . i A .A.* .E.C

. l . *d . , lX .F .L J A.S

O . R r . ' U . l A . , . ? . , . «

,\.d. l . j lA.&.E. A.

A . T , C R H « . . . i * l

B. .C. l . 4) . -2 .4 t) , ' 3

1 . ,T.*.\l't.\A.'&.

u.T.r.i.-ir=.A.G,c-.r
6. .-*.£ 1

1 . . X « l l , . l . « . A

l_"S.=.UEl i .« .H.T.r

A . \ » . e . D f l . & £ . , . l

•A.M.E.IJW.EX.&.*

= . A... i

O. . ! . = . l l , . I . A f

. l .<4.5J . I I .F.t.A.lS

• . T . r . L t l ^ P . I A .

O. . 1

. . • ; . i

COLS. 21-30

S-«.T. r .A.G.E.M.E

l . * . 6 3 v nuE.1.5-

, .KO.RiCl , . .

. . . . 1 . . .

, . . . 1 . . .

« . 1 , . X . F 1 L A « .

X T

. . . . I . . .

. . . . I . . .

A

H

A 4 | . A . a E . M E A . H

T v i . d . A , . i A T . M , e

. . . . 1

r .T .1 . - . f l i a l c l M l E r ^

• • • • ' t t • •

. , co . \ J . i

«.n.

. 1

...... .\.s

.

COLS. 31-40

N., .\ilT.MIG.A.Kl.

-r.t.\.A*a. .

.

.

.

.

/, '
1 . . .

7.
A.ti.1.

M . l 1 4 . t . « . E . r * . H

COLS. 41-50

£ ° a V i •

i C i i - .UT.M.E.A.N

.

.

.

.

1, ,

FIGURE 1—A hand-printed FORTRAN program

Experiments in Recognition of Hand-Printed Text 1145

1

100

5
101

10
1/

20
21
70

50

102

60

C0MM0N AGC*WESGHT*AGEMEAN*WTMCAN*C0V
DIMENSI0N~AGEFlOO3*UEIGHTClOoT
READ 1OO1IFLAG*M0K£~
F0RM/TC2I83

IF£MER=360*5*5
RKAD*101*AGE*WEIGHT
FQRMATCF10.2 3
G& T0 TlN,=01303*IFLAG
D7 11 1=7*100
WE"IGHi£I3=AGECS3
G2 T0 JO
D0 21 1=1*100
AGECI3=WEIGHTCI3
CALL AVECAGE*100*AGEMEAN3
[ALL AVECWEIGHT*100*WTMEAN3
C0V=O.
GD 5Q 1=1*100

C0V = C0V*CAGECI3-AGCKCAN3*tWEIGHTCI3-UTMEAN]
C0V=C0V/1OO.
TYPE 1O2*IFLDG*C0V
F0RMATCI8*F1O.53
G0 TO 1
=T0F~
END"

TABLE I—First choice of classifier

based on the syntactic requirements of the respective
statement types. Each subpart consists of one of a
small number of constructs, e.g., an expression or a list
of integers. The analysis of each construct often begins
with a match against the table of identifiers. If the
resulting P-list is combinatorially simple it is analyzed
exhaustively by dynamic programming. Otherwise, the
P-list is further partitioned into segments by means of
delimiters and the segments are examined. Before any
exhaustive analysis is made the P-list is compressed to
reduce the number of alternatives. The final answer is
reconstructed from the compressed answer by compari-
son with the uncompressed P-list.

Example

Source data

This section describes an experiment illustrating the
operation of the context-directed analyzer. The source
data for this example came from the hand-printed
FORTRAN program shown in Figure 1. The characters on
the coding sheet shown were scanned, preprocessed, and
classified by the methods described by Munson.1 Be-
cause we purposely wanted data with a moderate error
rate, we chose to use only topologically-derived
features. Using these features, Munson had previously
obtained a nine percent error rate on other data by the
same writer. The results on this data were very similar,
with 38 out of the 410 characters misclassified for an
error rate of 9.3 percent. The particular errors made are
shown underlined in Table 1. I t is interesting to note
that about one-third of these classification errors would
not have been detected by purely syntactic methods.

These error rates correspond to the first choice re-
sponses of the character classifier, a linear machine. The
linear machine classifies a character by computing dot

products between a feature vector and 46 stored weight
vectors, one for each of the 46 categories. The first
choice response is the category corresponding to the larg-
est dot product. The context-directed analyzer uses
these dot products to determine alternative choices for
each character, together with a measure of confidence for
each alternative. The confidences C* are obtained by
normalizing the dot products according to

t — i = 1, - - - , 46 ,

where S* is the ith dot product, and Smax is the largest
dot product observed for all of the characters in the
source program.

Since the correct category for the character is usually
included among the choices having high confidence, it is
not necessary to consider every alternative for every
character. An empirical study showed that almost in-
variably the correct category was among those alter-
natives whose dot products were at least half of the
maximum dot product for that character. Thus, only
those characters whose confidences met this condition
were included in the list of alternatives. This typically
reduced the number of alternatives from 46 to 4 or 5,
with occasionally only 1, and never more than 10. The
price for this simplification was an occasional failure
to include the correct category, which was the case for
the five doubly-underlined characters in Table 1. Al-
though this introduces extra problems, the reduction in
combinatorial complexity is worth the price.

Statement identification

As mentioned previously, the analyzer is organized as
a two-pass program. During the first pass, the type of
each statement is determined and variable names are
collected for the construction of the identifier table.
Statement identification was done by comparing the be-
ginning of each statement with the "control" words,
IF , DO, READ, etc. For example, the alternatives and
the corresponding confidences for the first part of the
sixth statement were as follows:

R K A D
A [R 0
Z E V

U
R
L
Z

- 2 5 - 6 5
- 4 9 - 6 5
- 6 2 - 6 8

- 6 9
- 7 7
- 8 1
- 8 1

- 2 8
- 6 2

- 4 2
- 5 2
- 6 1

The average confidence for the first choice selection
READ was -40. The average confidence for READ was
-41 , which was sufficiently high to identify the state-

1146 Fall Joint Computer Conference, 1968

ment as a READ-statement. This matching procedure
correctly identified all but one of the 24 statements, in-
cluding two cases in which the correct category of a con-
trol word character was not included in the fist of alter-
natives. However, absence of the correct category
caused tne ninth statement, a DO-statement, to be
erroneously identified as the arithmetic-assignment
statement D711I = 1,100. Subsequent analysis failed
to resolve this as a legal arithmetic-assignment-state-
ment, however, and the result of this failure condition
was that first choice decisions from the classifier were
accepted as the final output.

The identifier table

During the first pass, all COMMON, DIMENSION,
and input/output statements were inspected to collect
potential variable names. This operation was allowed to
be somewhat liberal, since the inclusion of spurious
identifiers is less harmful than the exclusion of actual
identifiers. For example, in the last TYPE-statement
the input/output list had the following alternatives:

I F L D G , C O V
[[A 6 [D W
S 6 M + Q U
K 2 N U B +

G O
1 P

Because the fifth-choice comma had a fairly high con-
fidence, the program found IFL and G as well as
IFLDG and COV as possible variable names. While
there is a danger that these fragments might have ac-
cidentally matched similar names elsewhere in the pro-
gram, no such matches occurred. One reason is that long
names are tried before short names when the identifier
table is used, and this prevents the premature discovery
of erroneous matches with short fragments. Another is
that completely accidental matches involving names of
length greater than three or four are highly unlikely.

The search for possible variable names yielded the
following (first choice) possibilities:

G AGC MOK[IFLAG WEIGHT AGEMEAN
COV IFLDG WTMCAN
AGE UEIGHT
AGE WEIGHT
IFL
COV

Even in this simple example the need to cluster the
identifier table is clear, since (a) four names were found
more than once, and (b) three of these appeared with
different first choice spellings. Clustering reduced the

identifier table to the following first choice possibilities:

G AGE MOKE IFLAG WEIGHT AGEMEAN
COV WTMCAN
IFL

Of these names, two were spurious (G and IFL), but
caused no trouble. Two were wrong (MOKE and
WTMCAN), but since only one representative of each
was found, they could not be fixed. The remainder
(AGE, COV, IFLAG, WEIGHT, and AGEMEAN)
were correctly clustered.

Statement analysis

During the second pass, each statement was resolved
in turn. Since each different type of statement had to be
treated differently, a complete description of how this
was accomplished.would be tedious. However, the spirit
of our procedures can be conveyed by considering the
resolution of the long arithmetic-assignment statement.
For this statement, the first choices of the classifier were

50 COV = COV + [AGE[I] - AGfHCAN] *
[WEIGHT[I] - UTMEAN] .

As with all statements, the label field (columns 1
to 5) was inspected first. Its resolution was trivial, since
the first choices were legal. Attention then shifted to
the statement field. Starting in column 7, a search was
begun for a possible equals sign to be used to break the
statement into a tentative variable and a tentative ex-
pression. (Had later procedures failed to resolve either
of these parts, the search would have been resumed for
a possible equals sign further to the right.)

The first character found having an equals sign for an
alternative was, in fact, the correct equals sign. At this
point, the first step was to resolve the left-hand side of
the statement. Since the tentative variable, COV, could
have been either a simple identifier (scalar variable) or
'an identifier followed by a bracketed list of expressions
(array variable), a search was begun for a string Of the
form "alphanumeric, left-bracket." No such string was
found, of course, and the tentative variable was de-
clared to be just an identifier of length three. A search
through the corresponding part of the identifier table
produced a match, and COV was accepted for the name.

The next step was to resolve the expression. Here an
exhaustive search of the expression for candidate identi-
fiers was begun at once. Each candidate found was
matched against appropriate length entries in the
identifier table. This procedure produced five matches,
and changed the first choices for the expression from

t!OV + [AGE[I] - AG[HCAN] * [WEIGHT[I]
- UTMEAN]

Experiments in Recognition of Hand-Printed Text 1147

to

COV + [AGE[I] - AGEMEAN] * [WEIGHT[I]
- WTMCAN] ,

which, even though it contains the error in WTMEAN,
is a syntactically valid expression. Thus, in this case
the expression was resolved by the first operation, the
use of the identifier table. The remaining operations,
which have been very useful in other instances, were not
needed, and hence were not performed. Since both the
variable and the expression were now resolved, these
parts were joined by an equals sign and appended to the
results of the label-field analysis to yield the final resolu-
tion of the statement.

When similar procedures were applied to the other 23
statements, 28 of the 38 errors were corrected, reducing
the error rate from 9.3 percent to 2.4 percent. The final
output of the analyzer is shown in Table 2, where the
10 remaining errors are underlined. Three of these errors
were due to the appearance of WTMCAN rather than
WTMEAN in the identifier table, and three more were
due to other problems with identifiers: MOKE, MERE,
and S. A better method of using the identifier table, in
which a final determination of variable names is post-
poned until all matches are made, would no doubt yield
improved results.

Of the remaining four errors, one was in a FORMAT-
statement, one in the DO-statement control word, and
two involved labels. The FORMAT error was due to the
fact that we have yet to implement that part of the pro-
gram that resolves FORMAT statements. The DO
error was caused by the missing alternative, and its cor-
rection would require the use of much more sophis-
ticated methods for identifying statement types.Both
label errors, however, could easily be cured by using a
table of labels similar to the table of identifiers. Thus,
roughly half of the 10 uncorrected errors could be re-
solved by relatively straightforward additions to our
present program; the remainder would be difficult
indeed to fix.

DISCUSSION

This paper has been concerned with techniques for us-
ing context to detect and correct character recognition
errors. A few concluding remarks and observations
about these techniques and their implementation are in
order.

Our first observation is that the addition of new tech-
niques to the context-analyzer program can continue
virtually without limit. Many of these additions are
straightforward. For example, tables of library sub-
routine names or statement labels could be incor-
porated and used in an obvious fashion. Other strate-
gies, which humans employ with remarkably little effort,

are much more difficult to implement. For example, the
determination of statement type is currently made by
matching the leading portion of the P-list against the
various control words. A short control word results in a
greater risk that the statement type will be misidenti-
fied, yet a human easily identifies statement types by
their general appearance or gross structure, as well as by
the (possibly misclassified) control word. This apprecia-
tion of global structure has been one of the more difficult
abilities to give the analyzer.

Another observation is that the basic strategy em-
ployed by the analyzer should change with variations in
the error rate of the input data. The support for this ob-
servation rests on intuitive, rather than experimental
grounds, but it seems clear that elaborate procedures
that may be required for very poor data are unneces-
sarily inefficient on very good data. While the present
analyzer can cope with a certain amount of error-rate
variability by automatic ^adjustment of thresholds,
there is no provision to change the basic nature of the
operations as a function of the quality of the input data.

A third observation is that there will always exist
FORTRAN programs that are unlikely to be resolved
successfully. One need only consider the contrary pro-
grammer who defines three separate variables as
SS5S5, S5S5S, and S5SS5 to appreciate this. Whenever
there can be errors in the input, there is a chance of
errors in the output. In a practical system, one would
want to provide the user with more than the final de-
cision of the recognition system. For example, diagnos-
tic messages could be given to aid the user in finding and
correcting errors, whether they were committed by the
classifier, the analyzer, or the user himself.

I t is difficult to assess the usefulness of our tech-
niques on the basis of an exploratory investigation. A

C0MM0N AGE*WEIGHT*AGEMEAN*WTMCAN,COV
DIMENSION AGEC100D*WEIGHTC1003

I READ 1OO*IFLAG*M0KE
100 F0RMATC2I83

IFCMEREJ60*5*5

5 READ~101*AGE*WEIGHT
101 F0RMATCF1O.23

G0 T0 riO*20^30]*IFLAG
10 D7 11 1=1,100
II WEIGHTCI3=AGECS3

G0 T0 30
20 D0 21 1=1*100
2 1 AGECI]=WEIGHTCI3
70 CALL AVECAGE*100*AGEMEANJ

CALL AVECWEIGHT*100*WTMCAN]
C0V=O
D0 50 1=1*100

50 C0V=C0V+CAGECI3-AGEMEAN3*CWEIGHTCI]-WTMCAN3
C0V=C0V/1OO.

TYPE 1O2*IFLAG*C0V
102 F0RMATCIB*F1O.53

G0 T0 1
60 ST0P

END

TABLE II—Final output of analyzer

1148 Fall Joint Computer Conference, 1968

thorough evaluation of the performance of the analyzer
can be made only by testing it on a large number of
FORTRAN programs produced by a variety of authors.
Unfortunately, we were unable to undertake a data-
processing project of this magnitude.

An equally difficult question concerns the extend-
ability of the reported techniques to other problem do-
mains. These techniques can be characterized by three
qualities: risk-spreading in decision making, partition-
ing of a large decision problem into a hierarchy of sub-
problems, and continual checking of internal con-
sistency. I t seems clear that our basic approach applies
more or less directly to other programming languages,
and perhaps could be used with natural language in
tightly constrained situations. The conjecture that the
general approach, at least, can be applied in more
general problems has a certain piquancy, but it re-
mains only a conjecture.

We have, however, been able to achieve a substantial
reduction in error rate for a particular application. In
our opinion, it would have been difficult to obtain a
comparable improvement by applying more con-
ventional context analysis methods which do not take
advantage of the special nature of the problem.

AKNOWLEDGMENTS

The authors wish to thank their colleagues at Stanford
Reasearch Institute, and most particularly to thank
Dr. John H. Munson for many stimulating and fruit-
ful discussions.

This work has been supported by the United States
Army Electronics Command, Fort Monmouth, New
Jersey under Contract DA 28-043 AMC-01901(E).

APPENDIX

In this Appendix we derive the decision rule that
classifies strings of alphanumeric characters in an opti-
mal (minimum probability of error) fashion. By appro-
priately interpreting our result, we arrive at the deci-
sion rule described in the text.

Suppose that we are given some string of n characters
to classify. Our problem is to determine a string of n
categories that minimizes the probability of mis-
classification. If we let the vector X< denote the set of
measurements made on the ith character and 0* denote
the category selected for the ith character, then it is well
known from Bayesian decision theory that the minimum
probability of error is achieved by the following rule:

Select the categories 0X, • • •, 6n which maximize the

posterior probability p(0i, • • -, 0n|Xi, • • -, X n) .

In other words, the posterior probability is computed

for every possible assignment of 6\ through 0„, and the
most probable assignment is taken as the decision.

By Bayes' law of inverse probabilities we can write
the posterior probability as

p(0i, • • -, 0»|Xi, • • •, Xn)

p(Xi, • • -, Xw|0i, • • -,6n) p(0i, • • •, 0»)

•pCXi, - , x .) • (1)

This shows that the computation of the posterior prob-
ability depends upon both the prior probability
p(0i, . . .,6n) and the conditional probability p(Xi, . . ., •
X„|0i, . . .,0„). To simplify the computation of the con-
ditional density, we make the reasonable assump-
tion that the manner in which a character is formed
depends only upon the category of the character
and not on the categories or the measurements of any
surrounding character. This assumption is equivalent to
an assumption of conditional independence, namely
that

pfXi, • • •, Xn|0!, • • -, 0„) = I I p(X,-|0;) . (2)

At this point we must make some assumptions about
the performance of the character classifier that pro-
vides the input to the context-directed analyzer. If this
classifier were designed for the optimal classification of
characters without regard to context it would compute,
for every 0;, the posterior probability

p(0,-1JLi) —— •
p(X<)

During the design of the classifier it was tacitly as-
sumed that all classes are equally likely a priori, so that
p(0i) — 1/46. We therefore make the bold assumption
that the classifier computes, for all 46 values of 0*,

p.(9,.|x,.) = R^iMVL6 . (3)
p(Xi)

Substituting (3) and (2) into (1), we obtain

p(0i, • • •, 0n|Xi, • • •, Xn)

•= p
Z

h
'"'

9
"\ n 4 6

 P(X*)P*(MX<) .
p(Xi , • • •, X.n) t=i

Now for given measurements X1}...,XW we are interested
in maximizing this quantity over 0i,...,0» so we can
ignore constants and factors depending solely on X* and
obtain the following optimal compound decision rule:

Select the categories 0i, • • •, 0„ for which

Experiments in Recognition of Hand-Printed Text 1149

p(0i, • • -, On) TL P*(0«|X<) is maximum.
t=i

We can, of course, take any monotonic function of this
quantity and maximize it instead. Taking logarithms
we can select the 6%,... ,0 n which maximize

n

log p(fc, • • -, 0n) + E lOg P* (Oi\Xi) .

If we define log p* (0»|X<) as being the confidence that
the measurements Xt- indicate class 0*, then we may
reasonably define the confidence of the string to be

I>gp(»<|x,)..
t = l

The optimal decision rule, then, computes the confi-
dence of each string of length n, biases each string confi-
dence by adding the logarithm of the prior probability
of the string, and selects as the answer that string
having the highest biased confidence.

REFERENCES

1 J M U N S O N
Experiments in the recognition of hand-printed text: Part I—
Character recognition

In this volume

2 B GOLD
Machine recognition of hand-sent Morse code

I R E Trans on Information Theory Vol I T - 5 pp 17-24 March

1959
3 W W BLEDSOE J BROWNING

Pattern recognition and reading by machine

Proc EJCC pp 225-232 Dec 1959 Also in Pattern Recognition

L Uhr Ed pp 301-316 Wiley New York 1966

4 L D HARMON
Automatic reading of cursive script

In Optical Character Recognition Fischer et al Eds pp 151-152
Spartan Washington DC 1962

5 A W EDWARDS R L CHAMBERS

Can a priori probabilities help in character recognition,

J ACM Vol 11 pp 465-470 October 1964
6 G CARLSON

Techniques for replacing characters that are garbled on input

AFIPS Conf Proc Vol 28 pp 189-192 Spring Joint Computer
Conference 1966

7 C K McELWAIN M B EVENS

The degarbhr—A program for correcting machine-read morse

code

Information and Control Vol 5 pp 368-384 1962
8 C M VOSSLER N M BRANSTON

The use of context for correcting garbled English text

Proc ACM 19th National Conference paper D2 4-1 D2 4-13
1964

9 K ABEND

Compound decision procedures for pattern recognition

Proc NEC Vol 22 pp 777-780 1966

10 K ABEND

Compound decision procedures for unknown distributions and.

for dependent states of nature

In Pattern Recognition L Kanal Ed Thompson Book Co
Washington DC 1968

11 J R A V I V

Decision making in Markov chains applied to the problem of

pattern recognition

I E E E Trans on Info Thy Vol IT-13 pp 536-551 October 1967

12 R O DUDA P E HART J H MUNSON
Graphical-data-processing research study and experimental

investigation

Fourth Quarterly Report Contract DA 28-043 AMC-01901
(E) SRI Project ESU 5864 Stanford Research Insti tute Menlo
Park Calif March 1967

