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INTRODUCTION AND BACKGROUND 

Among the many subject areas in the field of pattern 
recognition, the recognition of machine-printed and 
hand-printed alphanumeric characters has perhaps been 
the classic example to which people have referred in 
exemplifying the field. Interest in character recognition 
has long run high; an extensive literature in hand-
printed character recognition alone dates back to at 
least 1955.1-36 

In recent years, the recognition of machine printing 
has become a commercial reality. Following the intro-
duction of the highly controlled E13B magnetic font 
by the banking industry, several advances in optical 
character recognition (OCR) capability have been 
brought to the marketplace. The trend of these advances 
is toward the acceptance of broader and less con-
trolled classes of input: from single, stylized fonts to 
multi-font capability; from high-quality copy to 
ordinary inked-ribbon impressions, and even to multi-
part carbons of surprisingly poor quality. Still, in 
contrast to hand printing, the approaches to OCR have 
been able to rely on the lack of gross spatial distortions 
in the character images, and to make considerable use 
of templates. 

Progress in the off-line recognition of hand printing 
has been slower. The problem is intrinsically harder 
than that of OCR, as reflected in the fact that the 
human recognition error rate for isloated, hand-printed 
characters is many times higher than for machine 
printing. The great spatial variability of hand-printed 
characters has led many researchers to explore non-
template methods for recognition. 

Thus, the major effort of many researchers has been 
the exploration of unique methods of preprocessing, or 
feature extraction, applied to the hand-printed char-
acter images. Dinneen,1 in one of the earliest papers, 
investigated local averaging and smoothing operations 
to improve the quality of the character image. Similar 

operations have appeared as a part of many other 
approaches.4,7 Lewis,15 Uyehara,21 Stern and Shen,23 

and Rabinow Electronics31 have used schemes in which 
the sequence of intersections of a slit scan with the 
character image, or the equivalent, gave rise to features 
for classification. Lewis15 was one of the relatively few 
to emphasize the use of multiple-valued rather than 
binary-valued features, an ingredient we have found 
important in our own work. 

Singer12 and Minneman30 employed a circular raster, 
which can facilitate size normalization and rotation 
invariance. Unger,7 Doyle,9 and Glucksman27 have 
emphasized features derived from shape attributes 
such as lakes, bays, and profiles. The building up of a 
character representation from component elements 
matched to the image, such as short line segments or 
portions of the boundary, has been attempted by 
Bomba,4 Grimsdale et al.,6 Kuhl,19 and Spinrad.26 Cor-
relation techniques have been tried by Highleyman13 

and Minneman.30 Contour-following with a captive 
flying-spot scan or its simulated equivalent has appeared 
in the work of Greanias et al.,20 Bradshaw,22 and 
Clemens.28 The work of Greanias et al.,20 is especially 
significant because it led to the method used in the IBM 
1287 character reader. 

Other workers have placed greater relative emphasis 
on classification techniques and on the selection of fea-
tures from a feature set or pool. Chow16,29 has long 
worked with statistical classification methods. Bledsoe 
and Browning3 and Roberts8 applied adaptive pro-
cedures to features obtained from more or less random 
connections with the image raster. Uhr and Vossler11 

performed an important pioneering study of a program 
that "generates, evaluates, and adjusts" its own 
parameters. Not surprisingly, however, the auto-
matically generated features were confined to simple, 
local templates. 

The recognition of characters printed subject to 
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specific constraints (such as guide markers appearing 
in the printing area) has been studied by Dimond,2 

Kamentsky,14 and Masterson.18 

It may be said of most of these investigations that 
they were in the academic, rather than the practical, 
realm. In general, the methods were never tested 
against a body of real-world data large enough to give 
some estimate of their performance in a practical 
situation. This probably reflects a common emphasis 
on checking out a preprocessing scheme rather than 
attacking a particular application problem; it cer-
tainly also reflects the labor and equpiment require-
ments involved in collecting and controlling a signif-
icant body of data. An exception to this general state-
ment is the work of Highleyman and Kamentsky in 
the early 1960's, in which they used data files numbering 
in the thousands of characters.13*14 Also, several files 
each containing many thousands of characters of 
graded quality were gathered in conjunction with the 
development of the IBM 1287 character reader and are 
currently in use at IBM and in our group. Bakis et al.35 

describe these data, on which they and others at IBM 
have performed extensive experiments. 

The use of context to improve recognition perfor-
mance, which figures prominently in our own work, 
was discussed briefly by Bledsoe and Browning,3 but 
otherwise has received scant attention in the past. 
Some studies have been carried out Under simplifying 
assumptions such as Markov dependence in digrams 
and trigrams. 

Chodrow et al.31 surveyed hand-printed character-
recognition techniques in 1965 and discussed at some 
length the procedures of Clemens,28 Greanias et al.,20 

and Rabinow Electronics. The book Pattern Recognition 

by Uhr32 reprints a number of the important source 
papers3,6,8,11 and contains a well written survey. An early 
progress report on the work described herein was given 
by Munson.38 

Recently, commercial organizations have announced 
the capability to read off-line hand printing. At the 
date of this writing (early 1968), one system (the IBM 
1287 optical reader) has achieved pilot production 
operation. The 1287 reader can read the ten numerals 
and five letters. Another system is announced to have 
full alphanumeric capability. 

A common characteristic of the announced systems 
is that they are intended to work with hand printing of 
very high quality, produced by coders who have under-
gone training in the skill of printing for machine 
recognition. If individual characters must be recognized 
with, say, better than 99.9% accuracy in order to 
yield usable document acceptance rates, this type of 
training is clearly required. Some experiments that will 
be described in the next section show that humans 

cannot recognize isolated characters printed by an 
untutored population with any rate approaching the 
required accuracy. 

In our work, we have taken the alternative approach: 
Given text from an untutored coder, in which the 
individual characters cannot be recognized (by man or 
machine) with high accuracy, contextual analysis is 
used to reduce the error rate. Every form of text has 
its own contextual structure, which is utilized by 
humans in a complex, largely unconscious process. We 
have therefore emphasized the following points in our 
research; the establishment of large hand-printed data 
files of known quality; the choice of a well defined 
character alphabet and textual situation (FORTRAN 
program texts) as a vehicle for study and the reporting 
of results; the use of multiple approaches to prepro-
cessing; context analysis to improve recognition; and 
the preservation of non-binary confidence information 
between the preprocessor and classifier and between 
the classifier and the context analyzer. 

In a companion paper,37 Duda and Hart describe the 
use of programmed contextual analysis in the recog-
nition of FORTRAN program texts. The present paper 
will therefore concern itself only with the problem of 
recognizing individual characters. 

Problem definition 

In a recent paper, the author has argued that there is 
an infinity of character-recognition problems, and that 
recognition results are meaningless as they are often 
reported in the literature, without an adequate de-
scription of the problem being treated.38 Accordingly, 
we shall try to describe the two recognition problems 
dealt with in this paper thoroughly enough that the 
reader can form an intuitive opinion of the difficulty of 
the problems. 

We must first distinguish between off-line character 
recognition from a printed page, and on-line recognition, 
in which the characters are generated by a light pen, 
RAND tablet, or similar device.24,33,34 On-line recog-
nition is much simpler because the data provide a nearly 
exact trace of the path of the writing instrument and 
give accurate stroke-position and time-sequence infor-
mation. Furthermore, an error rate of as much as 5% 
may be considered acceptable, because each character 
can be classified, displayed, and corrected immediately 
by the writer if it is wrong. 

The recognition of hand-printed characters should 
also be distinguished from that of cursive (connected) 
script.26 The separation of the printed characters and 
the fact that each belongs in $, welkspecified category 
obviate the "segmentation problem" that makes cur-
sive-script recognition much more difficult. 
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Within the framework of off-line block hand printing, 
the difficulty of a particular problem is still affected by 
many variables: the size of the alphabet; the "stan-
dard" forms of the individual characters and the degree 
of constraint placed on their formation; the size, spac-
ing, and arrangement of text on the page; the writing 
instrument(s); the number of writers; their training 
and motivation; and the (fixed and time-varying) 
characteristics of each individual writer. To illustrate 
the variability of hand printing, we may cite several 
instances of human recognition /rates on Samples of 
hand printing. Neisser and Weene reported a 4 .1% 
average error rate on characters printed by visitors at 
the front gate at Lincoln Laboratory.10 With all subjects 
voting together, the error rate was 3.2%. We have 
reported an error rate of 11% on the well-known 
quantized character set collected by Highleyman, 
which suffers fromcrudequantizationof the characters.39 

On the multiple-coder data file used in our experi-
ments and described below, the error rate was 4.5%; 
on the single-coder file, 0.7%. Finally, present com-
mercial systems are intended to operate with character 
error and reject rates on the order of 0 .1% to 0.01%. 

The most significant determinants of hand-printing 
quality are the training and the motivation of the 
printing population. Our choice in the work described 
in this paper was to treat data from an essentially untu-
tored, moderately motivated population, represented 
by computer users who hand-code program texts for 
keypunching. Such a coder has typically received no 
instruction in printing, beyond a few rules about 
slashing or crossing characters to avoid such confusions 
as 1-1, 0-zero, and 2-Z. He does receive feedback of the 
results from prior keypunching jobs, which motivates 
him to maintain (perhaps grudgingly) a certain level of 
legibility. Thus, while this printing is far sloppier than 
that allowed by presently announced recognition sys-
tems, it is more legible than that produced by the 
general public while, for example, addressing mail. 

Two files of data were used in the experiments re-
ported in this paper, a multiple-coder file and a single-
coder file. The characters in both files were hand-
printed on standard general-purpose coding sheets 
obtained from the Stanford Research Institute com-
puter center. The cells on these sheets measured 1/4 
inch high by 3/16 inch wide, with no extra spacing 
between cells. A thin-lead mechanical pencil with an 
HB (soft) lead was used, after brief experimentation 
indicated that no other conventional writing instru-
ment gave crisper images when viewed through our 
input system. (A pencil is the preferred instrument 
because it facilitates erasure.) The coder was free to 
use whatever character size he found natural. 

The 10 numerals, the 26 uppercase letters, and the 
symbols [ = * / -\ . , $ ] comprised the alphabet of 46 
characters. This is the basic FORTRAN alphabet, with 
brackets substituted for parentheses in accordance with 
the convention associated with our computer system at 
the time. The blank was not treated as a character 
category, the recognition of blanks being more a func-
tion of a document-scanning subsystem than a pattern-
recognition problem. We instructed the coders to print 
zero with a diagonal slash and Z with a midline slash, 
and to put crossbars on the letter I. Numeral 1 was to 
be without serifs; several coders, however, added serifs. 
Other choices were left to the individual, such as open 
versus closed 4, the crossbar on J, and the number of 
verticals in $. 

Multiple-coder file 

Printed data from 49 individuals were included in 
the multiple-coder file. Each person was asked to print 
several 46-character alphabets on a coding sheet (at 
one sitting), and the first 3 alphabets from each sheet 
were taken for the file. The data from the first 32 per-
sons (96 alphabets, 4416 characters) were used as 
training or design data during the experiments, and the 
data from the remaining 17 persons (51 alphabets, 
2346 characters) for test. The coders of the training data 
were all personnel of the author's laboratory and the 
computer center at SRI. The coders of the test data 
were 8 from SRI and 9 from the US Army Electronics 
Command, Fort Monmouth, N.J. Any cross-country 
bias in printing styles is probably small compared with 
individual differences. 

Portions of several of the test alphabets are shown in 
Figure 1. The coders were asked to print naturally, 
being neither especially casual nor especially meticu-
lous. However, it is obvious that data gathered this 
way are not candid; they are probably better than data 
from actual coding sheets prepared for keypunching. 
Unfortunately, it was not feasible for us to process 
candid data from a number of people using a variety of 
coding forms and languages. 

Five human subjects were asked to classify the 
characters in 17 of the test alphabets—one from each 
coder—viewing the quantized images (see the section 
on scanning) in isolation and in random order on a 
cathode-ray tube display. The error rates ranged from 
3.0% to 6.4%, with an average of 4.5%. Taking a 
plurality vote among the five responses, the error rate 
was 3.2%. 

Single-coder file 

Experiments were also performed with a single-
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FIGURE 1—Portions of several multiple-coder test alphabets 

coder file, in order to investigate the improvement in 
performance resulting from allowing the recognition 
system to specialize in the printing of a single individual. 
This file contained 1727 training characters and 1042 
test characters. The training set included 15 alphabets 
(690 characters) of the type collected for the multiple-
coder file. The remaining 1037 training characters were 
taken from FORTRAN text on coding sheets, as were 
the 1042 test characters. The 15 alphabets were included 
in the training set to ensure adequate representation of 
all the character categories, since their appearance in 
actual text was haphazard. 

The text characters were taken from FORTRAN 
coding sheets prepared by the author in the course of 
actual program development, some months before the 
recognition experiments were performed. The coder 
corrected major malformations of characters as he 
noticed them, but avoided printing with unnatural 
care. Thus, while these data are not candid, it is felt that 
they closely model a realistic situation that would be 
obtained if one tried to serve a coder who was making 
a minimal effort to assist the system. . 

A sample of the test data is shown in Figure 2. We 
may describe these characters as being quite legible to 
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FIGURE 2—A sample of the single-coder test data 

humans but not highly regular. Ten human subjects 
were asked to classify the test characters. The average 
error rate was 0.7%. Taking a plurality vote among the 
10 responses, the error rate was 0.2% (2 errors in 1042 
characters). 

t.l/iViMXiY\*iCi*i7lci//ti-ni% \f\J Scanniw 
The hand-printed characters were scanned from the 

source documents (the coding sheets) by a vidicon tele-
vision camera fitted with a close-up lens and operated 
under the control of an SDS 910 computer. Each docu-
ment was mounted in a concave cylindrical holder so 
that, as the camera panned across the document, the 
viewing distance and hence the image scale remained 
constant. The field of view was approximately one inch 
square. The camera generated a standard closed-circuit 
television waveform, which was quantized to two 
levels (black/white) by a Schmidt trigger and sampled 
in a raster of 120 X 120 points. 

The document was illuminated by four floodlights 
mounted around the TV camera. A colored filter was 
placed over the camera lens, to suppress the colored 
coding-sheet guidelines aopearing on the document. 
The guidelines could have been used for locating the 
characters, but we preferred to strive for a free-field 
character-locating procedure that could ultimately han-
dle between-the-lines corrections or coding on a blank 
sheet of paper. Also, without a color-sensitive input 
system, separating the guidelines from the characters 
where they crossed or coincided could be a major 
problem. 

The field of view was chosen so that a single char-
acter image was usually a little less than 24 points high 
and about 15 points wide. The computer began the 
scanning by reading in a 120 X 120 picture containing, 
in general, several character images. A scanning routine 
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then proceeded approximately horizontally through the 
picture, finding and isolating character images. Pro-
visions were included for tracking a line of text, and for 
accepting multi-part character images such as equals 
signs and characters with unconnected crossbars. 
When the scanning routine got to the right of the 
120 X 120 picture, it requested the camera to move to 
the right and input another picture. 

As each character was isolated, it was placed in a 
standard 24 X 24 raster format (Figure 3). No cor-
rections for magnification or rotation were applied. 
The BCD code of the character was entered manually 

* * * * * * * * * * * * * * * * * * * * * * * * * * 

* 0 * 
* 0 000000000 * 
* 0000000000000 * 

* 0000000 000 * 

* 00000000 000 * 

* 00 000 000 * 

* 000 00 * 

* 000 000 * 

* 000 000 * 

* 000 000 * 

* 000 0000 * 

* 0000000 * 

* 0000000 * 

* 000000000 * 

* 000 0000 * 

* 000 0000 * 

* 000 00 * 

* 000 00 * 

* 0000 000 * 

* 000 0000 * 

* 000 000 * 

* 00000 000 "* 

* 0000 00000 * 

* 00000060000 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * 

FIGURE 3—A hand-printed character in the standard 
24 X 24 format 

at the console typewriter and attached to the character 
record, for subsequent use in the training and testing 
procedures. The two files (single-coder and multiple-
coder) of quantized 24 X 24 black/white character 
images served as the starting point for all subsequent 
processing. We hope to make these files available to 
other researchers through the efforts of the Subcommit-
tee on Reference Data Sets of the Committee on Pat-
tern Recognition of the IEEE Computer Group. 

Our scanning setup was "strictly experimental." I t 
was an inexpensive substitute for the sophisticated 
optical scanner and mechanical transport required for 
a high-volume production system. Although the scan-
ning routine enabled us to gather the thousands of 
quantized characters in our data files, it was never 
capable of running without an attendant to rescue it 
from its errors. These were due to badly non-uniform 
sensitivity across the field of view (common in vidicon 
tubes), which made it impossible to set a single quanti-
zation threshold valid throughout the field, and to the 
lack of precise knowledge of the position of the TV 
camera. (Incidentally, by solving these problems, it 
should be possible to create a low-speed, inexpensive 
automatic scanning system along the lines of the one 
described above.) 

Other files of digitized hand-printed data, supplied 
through the courtesy of W. Highleyman and researchers 
at IBM Corporation and Recognition Equipment, 
Inc., have been processed merely by converting them 
to our standard 24 X 24 format. In some cases, this 
has required changing the size of the character raster 
by copying or deleting rows and columns. 

Preprocessing 

The term "preprocessing" has acquired a variety of 
meanings. We use it here to refer to the specific activity 
of feature extraction: The calculation, from the 
(quantized) character image, of a set of numerical fea-
ture values that form the basis of subsequent pattern 
classification. 

Two preprocessing methods were used in these 
experiments. The first, embodied in a computer pro-
gram called PREP, was a simulation of a previously 
constructed optical preprocessor capable of extracting, 
in parallel, 1024 optical correlations between a char-
acter image and a set of photographic templates, or 
masks.40 The second, a program called TOPO, ex-
tracted a large number of topological and geometric 
features of the character image. 

The PREP preprocessor 

The PREP program performed edge detection on 
the 24 X 24 quantized images through the use of 
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FIGURE 4—Edge-detecting masks in PREP 
(a) Quantized character image 
(b) An edge mask 
(c) Character and mask together 

edge-detecting mask pairs, or templates. Each mask 
pair consisted of two 2 X 8 rectangles of points, adja-
cent to each other along their long edges. One of the 
masks was given positive weight, the other, negative, 
and a threshold was set such that if the positive mask 
encountered six more figure points than the negative 
one, the binary response of the mask pair was ON 
(Figure 4). 

To provide a limited degree of translation invariance, 
the responses of five such mask pairs were OR-ed to-
gether to give a single binary component of the output 
feature vector. The five mask pairs in a group had the 
same orientation and were in the same region of the 
24 X 24 field. Nine regions were allotted to each of the 
four major compass directions, and six regions were 
allotted to each of the eight secondary directions (at 
30° intervals). Thus, the complete feature vector con-
sisted of 84 binary components, and the significance of 
a typical component was, "An edge oriented north-of-
west has been detected in the left central region of the 
field." Figure 5 shows a computer display in which the 
lines are normal to edges detected in a sample of the 
numeral 2. The lines emanate from 15 loci representing 
the allotted regions. 

Each quantized image was presented to the PREP 
preprocessor nine different times, first in the center of 
the 24 X 24 field, then in the eight positions formed 
by translating it vertically and/or horizontally by two 
units. Thus, for each pattern, a set of nine 84-bit feature 

I 

* t 4 

FIGURE 5—Responses of the PREP edge-detecting mask groups 
to a numeral "2" 

vectors was formed. The use of these multiple-view 
feature vectors to improve classification performance 
is described below. 

The TOPO preprocessor 

The TOPO preprocessor was a sizable collection of 
computer routines assembled to extract topological 
and geometric features from the character image. In 
general, these features described the presence, size, 
location, and orientation of such entities as enclosures 
and concavities (lakes and bays) and stroke tips in 
the character. 

TOPO began with a single connected character image 
in the 24 X 24 field. (The equals sign was sought out 
in advance, and treated as a special case. Other un-
connected figures were forcibly joined by growing a 
bridge between the individual connected regions. If 
this failed, the lesser region(s) were discarded.) The 
perimeter of the figure was first found (Figure 6). The 
perimeter was defined as a list of figure points, beginning 
with the bottommost of the leftmost points of the 
character figure, found by stepping along the edge of 
the figure and keeping the figure always at the right 
hand and the ground (non figure) at the left. The 
perimeter has the property of including all figure points 
hand and the ground (non-figure) at the left. The peri-
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* * * * * * * * * * * * * * * * * * * * * * * * * * 

* X * 

* X XXXXXXOXX * 

* XOXOOOOOOOOOX * 

* xxooooo oox * 
* xooxoooo oox *. 
* XX XOO OOX * 

* XOO OX * 

* XOO OOX * 

* XOO OOX * 

* XOO OOX * 

* XOO OOXX * 

* xooooox * 
* xooooox * 
* xooooooxx * 

XOO 

XOO 

XOO 

XOO 

xooo 
XOO 

OOXX 

OOOX 

OX 

ox 
oox 

ooox 
* XOO OOX * 

* XXOOO OOX * 

* XOOO OOXXX * 

* xxxxxxxxxxx * 
^> ^> ̂ ^ ̂ ^ <*& <̂ U ̂ ^ ̂ ^ *&r ^> %fa ^+ ^^ ̂ ^ ̂ ^^^ ̂ ^^^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ 

^% *^ +^ ^+ *f% ^% *^ ^ ^ ̂ S ̂ ^ ̂ ^ ^ % ̂ % ̂ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ^ ^^ ̂ ^ ^ ^ J^ ̂ ^ ̂ ^ ̂ K ^K 

FIGURE 6—Hand-printed character with perimeter points 
marked X 

meter has the property of including all figure points 
that are 8-adjacent (adjacent horizontally, vertically, 
or diagonally) to ground points outside. 

Next, the convex hull boundary (CHB) of the figure 
was found (Figure 7). The CHB of a two-dimensional 
figure may be thought of as the outline of a rubber band 
stretched around the figure. In the case of a quantized 
figure, some arbitrariness is required in the specification 
of the CHB, because a straight line between two points 
on the image grid does not generally fall on exact grid 
locations. We defined the CHB to include all the extre-
mal points of the character image, represented by letters 
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FIGURE 7—Character with convex hull boundary (CHB) 

ot herthan "X" or "O'? in Figure 7. In between these 
extremal points, the C£[B was to follow as straight a 
path as possible, bul* never falling outside of the 
theoretical straight line connecting the extremal 
points. Keeping the CHB to the inside reduced the num-
ber of small, insignificant concavities found subse-
quently. To find the extremal points in the CHB, it 
was only necessary to search among those perimeter 
points at which the perimeter turned to the right. 

After the CHB was obtained, the concavities and 
enclosures of the character image could be found quite 
readily using computer routines that simulated Boolean 
and connectivity operations performed in parallel over 
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the entire 24 X 24 field. Let the border consist of those 
ground points in the outermost rows and columns of 
the 24 X 24 field. Let an image be formed consisting 
of the ground, minus the CHB. The portion of this im-
age that is not connected to the border lies within the 
CHB and consists of the concavities and enclosures 
of the character. Those regions that are connected to 
the border by a path of ground points (including ground 
points in the CHB) are concavities; those regions that 
are not are enclosures within the figure. The character 
in Figure 7 contains two concavities and two enclo-
sures. 

Multiple concavities and/or enclosures were extract-
ed all at once in a single 24 X 24 array by the parallel 
operations. They were then separated (again using the 
connectivity operations) and sorted by size for subse-
quent use. 

The spurs of a character are those strokes that end in 
an isolated tip. Ideally, the letter X has four spurs, the 
letter O, none, and the letter S, one spur with the spe-
cial property of having a tip at each end. The list of 
perimeter points was used to find the spurs. Consider 
two pointers moving down the list of perimeter points, 
with one pointer ahead of the other by, say, 15 places. 
As the pointers moved, we calculated the Euclidean 
distance between the two perimeter points indicated by 
the pointers. Some of these distances are represented by 
arrows in Figure 8(a). Most of the time this distance 
would be approximately 15 units. A sudden decrease of 
the distance between the two points to a minimum that 
was less than half its usual value indicated that the 
perimeter had gone around a sharp bend—i.e., had 
gone around the tip of a spur. The position of the spur 
tip, indicated by the perimeter point halfway on the 
list between the two minimum-separation points, was 
the primary attribute of the spur used for forming fea-
tures. 

Once a spur was found, it could be traced by the 
"caliper method" [Figure 8(b)]. Imagine that the legs 
of a pair of calipers are placed at the two minimum-
separation points. The calipers are then "slid"' along 
the spur by stepping the legs of the calipers along the 
perimeter, away from the tip. The calipers are moved as 
far as they can go without having to be spread by more 
than, say, seven units. In some cases, such as the nu-
meral " 6 / ' the calipers will be obstructed by the body of 
the figure and must stop. In other cases, such as the 
letter " S , " the legs of the calipers will travel all the way 
along the figure and meet at the far end, indicating a 
"single-stroke" figure. The midpoint of the moving 
calipers traces out the backbone of the spur, and a list 
of the midpoint positions can be stored to represent the 
spur (the heavy line in Figure 8b). 

Another set of character attributes found in TOPO 
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FIGURE 8—Spur-finding 
(a) Finding the spur tip 
(b) Tracing the spur 

and used for feature generation were the profiles of the 
character image. The profiles were four lists, of 24 
entries each, specifying the first row (or column) in 
which a figure point was encountered in each successive 
column (or row) as seen from the top, bottom, left, and 
right. The profiles were the basis of a number of spe-
cialized feature calculations, designed to discriminate 
among particular categories, that evaluated such prop-
erties as the width of the character at various levels, 
the number of reversals of direction in a profile, and 
discontinuities in the profiles. 

Numerical feature calculation in TOPO 

After the topological and geometric components of 
the character image—concavities, enclosures, spurs, 
profiles, etc.—were extracted, it remained to convert 
them to numerical components of a feature vector 
suitable for subsequent classification by an adaptive 
machine. This task was beset with several conceptual 
and practical difficulties that may not be obvious at 
first. 

In TOPO, the task was carried out in two steps. 
First, descriptors (individual numerical quantities) were 
derived from the information at hand. Second, features 

in a standard form were calculated from the descrip-
tors. 

Each descriptor had to be chosen so that it always 
represented a unique characteristic of the character 
image. For example, suppose that one descriptor were to 
represent the vertical position of the rightmost spur 
tip. Such a descriptor would help to discriminate, for 
example, between T and L. But this descriptor would 
give unpredictable results for characters such as C,E, 
and [, depending on which spur extended farther to the 
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right, and would probably be detrimental to the classi-
fication of characters in these categories. In addition, 
there is the problem of vacuous descriptors: What value 
do we assign to the above descriptor in the case of a 
letter 0? 

In TOPO, these problems were countered by a careful 
choice of the definition of the descriptors. In many 
cases, it was possible to devise a descriptor that was 
always well defined. For example, if a spur-descriptor 
is put in the form, "To what extent is there a spur in the 
upper right-hand corner," it is defined for any number 
of spurs and can properly be given its minimum value 
for a figure with no spurs at all. In addition, this form 
of definition (unlike the preceding one) has the impor-
tant property of continuity: Deformations of the char-
acter image that move the spurs by small amounts 
always cause small changes in the value of the de-
scriptor. In another paper, the author has argued that 
the preservation of continuity is important throughout 
the various stages of the pattern-recognition process.38 

As the final step in TOPO, the actual features (the 
numerical components of the feature vector for classi-
fication) were calculated from the descriptors. A first 
requirement on the features was that they be of com-
parable magnitudes, so that none would dominate the 
sums formed in the pattern classifier. Thus, the fea-
tures were all given a standard range of zero to 100. 
(Note that these features were multiple-valued, whereas 
those from the PREP preprocessor were binary.) 

A second, heuristic requirement on the features was 
that they emphasize the significant differences among 
character classes. In a two-category classification prob-
lem, it is feasible to analyze the discriminating power 
of a feature statistically (or even by inspection), and to 
adjust the transformation from descriptor to feature so 
as to maximize this power. In our 46-category problem, 
we could only guess at reasonable transformations. In 
any case, one should not expect the feature to be a 
simple linear function of a descriptor. 

The derivation of features in TOPO may be indicated 
by an example. Consider a descriptor, MCONC(up), 
which is a measure of the presence of an upward-facing 
concavity in the character. For a flat-topped or round-
topped character, such as T or O, MCONC(up) should 
have the value zero. For a character such as U or V, 
MCONC(up) should have a value of eight or greater. 
For a Y or an open-topped 4, however, we should only 
expect values of five or greater. Owing to the linear 
nature of the dot-product units used in the pattern 
classifier, it is impossible for a single feature propor-
tional to MCONC(up) to discriminate between Y and 
T, for example, without treating U as a "super-Y." 
We actually require two features—one that "switches" 
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FIGURE 9—Two transformations that derive features from a 
concavity descriptor 

in the range 0 to 5 and one that does so at a higher 
range. 

The two transformations that derived features from 
MCONC(up) in TOPO are shown in Figure 9. There 
were two such features corresponding to each spur 
descriptor and concavity descriptor in TOPO. In all, 
TOPO produced 68 features: 16 for the spurs, 16 for 
the concavities, 8 for the enclosures, 6 for overall 
character size and shape, and 22 resulting from special 
calculations about the width of the character at various 
levels, discontinuities in the profiles, etc. Each feature 
was calculated from a numerical descriptor by a trans-
formation arrived at by inspection. 

It should be evident from the foregoing description 
that the development of TOPO was a cut-and-try 
affair. The extraction of topological entities and the 
generation of descriptors and features were continued 
only as far as patience permitted. For example, a fea-
ture to look for structure within an enclosure and help 
discriminate between O and Q was never implemented. 
It is the author's opinion that the generation and selec-
tion of features for pattern classification, especially in 
the multi-category case, is the greatest problem area 
in pattern recognition at the present.88 

Classification 

An adaptive pattern classifier, or learning machine, 
was used to classify the characters on the basis of the 
feature vectors generated by a preprocessor, either 
PREP or TOPO. The learning machine was of the 
piecewise linear (PWL) type, described by Nilsson.41 
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The learning machine for these experiments was imple-
mented by a computer program called CALM (Collec-
ted Algorithms for Learning Machines),42 running on 
the SDS 910 computer, which simulated the action of 
the MINOS I I hardware learning machine constructed 
earlier during this project.40,43'44 

Briefly, a learning machine embodies a set of Dot 
Product Units (DPU's) that form the dot product (also 
called the inner product or vector product) between 
the incoming pattern, or feature vector, and a set of 
stored weights. The j t h DPU of the machine forms 
the dot product 

Sy = X • Wj = 2 x**w*/ 

between the pattern vector X and the weight vector W}-

associated with the j t h DPU. In a PWL learning ma-
chine, a small number of DPU's are assigned to each of 
the 46 character categories. The largest dot product 
formed among the DPU's assigned to a category is 
taken as the response for that category. 

The category responses may be utilized in two ways. 
If it is desired to explicitly categorize a character, the 
character is assigned to the category with the largest 
response. A testing margin or dead zone may be em-
ployed, so that any character for which the largest re-
sponse does not exceed the second largest by the margin 
is classed as a reject. In the performance results listed 
below, the reject margin is not used. The performance 
scores are thus of the simplest possible type: percentage 
of successful classifications with no rejects allowed 
(response ties are broken arbitrarily). 

Alternatively, if the goal is not to achieve a suc-
cinct performance measure but rather to use the char-
acter-classification information for contextual analysis, 
the responses may be used to obtain confidence infor­

mation. The simplest confidence measure is the set of 
46 responses from the learning machine, with a higher 
response indicating a higher confidence that the char-
acter belonged to the category in question. 

To adapt a learning machine, a training pattern is 
presented, and the responses to that pattern are ob-
tained. If the response in the true category of the 
training pattern does not exceed the largest response 
among the other categories by a value called the 
training margin, the DPU yielding the response in the 
true category is marked to be incremented, and that 
yielding the competing response is marked to be 
decremented. This is done by setting 

&true == *• > ^competing = 1 

in the adapt vector A, and setting all the other com-
ponents of A to zero. Adaptation of the weights is then 

performed according to the fixed-increment error 

correction rule: 

Wj <- Wj + a y D • X, for all j . 

In other words, the pattern vector is added to or 
subtracted from the j t h weight vector, depending 
on a/. D is an overall multiplying factor called the 
adapt step size, usually set to a small integer throughout 
a block of training. (Other methods of determining the 
responses and A and D lead to learning machines other 
than the PWL machine.)41-42 

The adaptation causes the subsequent dot product 
between the pattern vector and the weight vector to 
be changed by an amount 

AS,- = X • (a,- • D • X) = a,D | z | 2 . 

Since X2 and D are always positive, the sign of ay 
automatically determines whether the response (i.e., 
the dot product) of the j t h DPU with the pattern X is 
enhanced or reduced. Through this means, appropriate 
DPU's can be made to respond to certain patterns and 
ultimately to classes of patterns. 

To perform a learning-machine experiment, the 
adaptive weights w»y are initialized, usually to zero. 
The training patterns are then presented sequentially. 
The responses to each training pattern are formed, and 
if the classification is incorrect the machine is trained. 
One pass through the training patterns is called an 
iteration. Typically, repeated iterations through the 
training set are performed until the classification per-
formance on the training patterns ceases to improve. At 
that time, the test patterns may be presented, and the 
classification performance on them recorded. This per-
formance is generally taken as the measure of success of 
the learning machine on the task represented by the 
training and test patterns. 

In dealing with the nine-view sets of feature vectors 
produced by the PREP preprocessor, the running pro-
cedure was modified slightly (Figure 10). During train-
ing, one of the nine feature vectors representing a 
training pattern was selected quasi-randomly at each 
iteration. Thus, it took nine iterations for the machine 
to encounter each view of each pattern. The use of 
multiple views had the effect of "broadening" the 
training experience of the learning machine. During 
"nine-view testing," all nine views of each test pattern 
were presented and the nins responses in each category 
were added together to form cumulative responses that 
were used as the basis for classification. I t will be seen 
that the redundancy achieved by accumulating the nine 
responses led to, a significant improvement in perform-
ance. This technique has also been used successfully 
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FIGURE 10—Multiple-view testing procedure 

by Darling and Joseph in the processing of satellite 
photographs.45 

Experimental results 

A series of experiments were performed on the single-
coder and multiple-coder data files, using the prepro-
cessors and learning machine described above. Experi-
ments were run under four conditions. 

In Condition 1, the characters were preprocessed by 
PREP, but only the one feature vector representing 
the central view of each pattern was used for training 
and testing the learning machine. Only the single-coder 
file was run under Condition 1. 

In Condition 2, the characters were preprocessed by 
PREP in all nine views, and nine-view training and 
testing were performed as described above. A PWL 
learning machine with two DPU's per category was 
used in Conditions 1 and 2. 

In Condition 3, the characters were preprocessed by 
TOPO, and the single feature vectors produced by 
TOPO were used for training and testing. Owing to 
computer restrictions, a learning machine with only 
one DPU per category was used. This is generally called 
a linear rather than a PWL learning machine, after the 
form of the discriminant functions in feature space.41 

In Condition 4, the responses of the learning ma-
chines in Conditions 2 and 3 for each test pattern were 
added together and taken as a new basis for classifi-
cation. This procedure was a way of harnessing the 
preprocessor-classifier systems of Conditions 2 and 3 
"in tandem" in order to improve classification perfor-
mance, in a manner analogous to the nine-view testing 
of the PREP feature vectors. 

The results of the experiments are presented in 
Table I. The results show a significant improvement in 
performance for the case of nine-view training and 
testing over single-view training and testing, and fur-

ther improvement with the combined system of Con-
dition 4. The most important results can be summa-
rized as follows: 

Using the combined system, a correct character-
classification rate of 97% (with no rejects) was 
obtained on independent test of relatively uncon-
strained hand printing in the 46-character FOR-
TRAN alphabet, when the learning machine was 
allowed to specialize on data from a single coder. 
When the learning machine was trained on the 
printing of 32 coders and tested on the printing of 17 
others, the correct classification rate was only 85%. 
These rates are for the isolated characters, without 
context. 

Condition Preprocessor 
Number of 

Iterations 

Single-Coder File 

1 

2 

3 

4 

2 

3 

4 

PREP, 1 view 

PREP, 9 views 

TOPO 

Combined 

10 

27 

10 

Final Classification Scores 

Training 

Patterns 

Test 

Patterns 

99% 

89%* 

94% 

88% 

96% 

91% 

97% 

Multiple-Coder File m 

PREP, 9 views 

TOPO 

Combined 

18 

4 

65%* 

84% 

78% 

77% 

85% 

Single-view classification scores 

TABLE I—Experimental results on two files of hand-printed 
alphanumeric characters 

A well known set of quantized hand-printed char-
acter images (letters and numerals only) collected by 
Highleyman were also processed under Condition 2, 
yielding a test classification score of 68%. Previously 
reported classification methods, not employing pre-
processing, had achieved scores of 58% or less. These 
characters are of very poor quality, being only 86% to 
89% classifiable by humans. These results are de-
scribed in Ref. 39. 

A large number of preliminary and auxiliary experi-
ments, not described in this paper, were performed. 
In particular, during the development of the TOPO 
preprocessor, an attempt was made to use the features 
produced by TOPO in a binary decision-tree classifier. 
The results of this effort were very poor, because it was 
impossible to find features reliable enough to serve for 
dichotomization of the character classes. For example, 
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the presence of an enclosure was a useless feature, 
because quantization noise introduced some spurious 
enclosures, and other expected ones were lost because 
they were filled in or not completely formed. It thus 
appears to us that, for patterns with the variability of 
hand printing, an approach that considers all the 
features in parallel is a necessity. 

The development of the TOPO preprocessor, the 
exploration of variations of the PREP preprocessor, 
and the running of classification experiments with 
different learning-machine configurations and different 
data files were all severely restricted by system limita-
tions of two types. First, it was awkward to handle the 
necessary large data files on our computer, which had 
paper tape input/output and one magnetic tape unit. 
Second, all of the operations of scanning, preprocessing, 
and classification were performed in serial or at most 
in 24-bit parallel by simulations in the computer (an 
SDS 910, with 12K words of 24-bit memory and an 8-
/isec cycle time). I t sometimes took days to accomplish 
the experimental runs. However, the flexibility, guar-
anteed reproducibility, and operational advantages 
of computer simulation compensated for the drawbacks. 
With a view toward practical systems, it may be noted 
that the operations of PREP and the learning machine, 
and even much of TOPO, are extremely well suited for 
implementation in parallel hardware. 

CONCLUSION 

This paper has been concerned solely with the classifi-
cation of individual hand-printed characters, in isola-
tion. To this end, performance scores based on the 
positive classification of each character have been pre-
sented, as the simplest and most understandable mea-
sure of performance. The end goal, however, is text 
recognition, not character recognition per se. The results 
presented here, including the scores for classification 
by humans, indicate that context analysis will be a 
necessary adjunct to character classification for the 
recognition of fairly unconstrained, untutored hand-
printed text. The companion paper by Duda and 
Hart37 describes our effort in context analysis. To assist 
context analysis, the classifier puts out not explicit 
classifications but lists of alternate categories and their 
confidences for each character. This may be viewed as 
a way of retaining additional valuable information 
generated by the classifier, under a continuous trans-
formation (from feature space, through the learning 
machine, to the space of category confidence values). 
This preservation of alternative information is a vital 
aspect of context-aided text recognition, not to our 
knowledge previously discussed in the character-
recognition literature. 

In experimenting with a large body of actual data 
from an untutored hand-coding population, we are 
attempting to set a benchmark in an area not covered 
by the experiments in the former literature, nor by the 
present commercial developments. At the current levels 
of available computing power and cost, contextual 
analysis appears economically infeasible, at least for 
syntactically rich texts such as FORTRAN. However, 
if the progress of OCR is a guide, we may expect a 
pressure for the extension of recognition systems for 
hand printing to accept input from broader and less 
highly trained classes of coders. The character-rec-
ognition methods described in this paper and the con-
text-analysis procedures described by Duda and Hart 
may then point toward systems of future importance.* 
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