The Creative Computer

MACHINE INTELLIGENCE AND HUMAN KNOWLEDGE

Donald Michie and Rory Johnston

VIKING



VIKING

Penguin Books Ltd, Har d th, Middl England

Viking Penguin Inc., 40 West 23rd Street, New York, New York 10010, U.S.A.
Penguin Books Australia Ltd, Ringwood, Victoria, Australia

Penguin Books Canada Ltd, 2801 John Street, Markham, Ontario, Canada L3R 1B4
Penguin Books (N.Z.) Ltd, 182-190 Wairau Road, Auckland 10, New Zealand

First published 1984 by Viking
Copyright © Donald Michie and Rory Johnston, 1984

All rights reserved. Without limiting the rights under copyright reserved above, no part
of this publication may be reproduced, stored in or introduced into a retrieval

system, or transmitted, in any form or by any means (electronic, mechanical, photocopying,
recording or otherwise), without the prior written permission of both the copyright
owner and the above publisher of this book.

Filmset in 10/12pt Monophoto Times by
Northumberland Press Ltd, Gateshead

Printed in Great Britain by

Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

Michie, Donald
The creative computer.
1. Computers and civilization
1. Title 11. Johnston, Rory
303.4'834 CB478

ISBN 0-670-80060-0




Contents

Preface 7

Acknowledgements 9

Introduction 11
1 Brute Force and Ignorance 15
2 Computers Join the Experts 34
3 Human Window on the World 56
4 Thinking About Thinking 76
S Experience and Discovery 94
6 The Creation of New Knowledge 115
7 A Metaphor Upside Down 137
8 Coming to Model Heaven 166
9 The Cat That Isn’t There 188
10 Inventing For All Mankind 197

Postscript 214

Appendix by Rory Johnston:
Basic Principles of Computing 215

Further Reading and References 237
Glossary 249
Index 257



Preface

The message of this book has implications not just for technology
but for every sector of our society. We want to reach as wide a
readership as possible, both inside and outside the technical com-
munity. In considering who our readers are, we are conscious that
the explosive growth of computing in recent years has enormously
widened the number of people who are acquainted with the concepts
involved, many using computers in their work, in education or at
home. At the same time there are many people to whom this tech-
nology is still strange. We need to address both groups, because
they are equally concerned with the future of society. Not only that:
the ‘two-cultures’ divide between technology and the arts shows little
sign of narrowing, and we are convinced there is a need to open a new
dialogue between the two sides.

Our requirement therefore has been to make the book understand-
able to the intelligent layman. At the same time we have tried to
avoid bogging down the argument by continually returning to first
principles, and to provide enough detail to satisfy the technical
reader’s need to be convinced. To do this the book is structured in
an unusual way. Detailed knowledge of computer technology is not
necessary for understanding it but familiarity with the concepts is,
so an Appendix is provided to introduce these concepts. Readers
with no experience of computing should start there and then proceed
to Chapter 1. This chapter is largely background, much of which
will be familiar to technical readers, but they may find it a useful
summary. The central theme of the book starts with Chapter 2.

Our subject matter is specialized, and it would be counter-
productive to avoid using the language of the specialism, which has
been evolved to express precisely the ideas at hand. Technical ideas
are explained as they arise in the text. However, non-scientist readers
may occasionally encounter unexplained terms that are new to them,
included to provide extra detail for the initiated. In all cases we
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have been careful to ensure that these are not central to the argument,
so readers need feel no concern about skipping over them, getting
the general sense from the context. Anyone curious to know more
will find these terms explained in full in the Glossary.

On the other side of the coin, scientific readers will find that for
the sake of comprehensibility, arguments are not gone into with the
rigour that would be expected in a report of research. For those
wishing to investigate more deeply, references to the scientific
literature are given. By this approach we aim to capture the imagina-
tions of both groups of readers.

As would be expected with any novel subject matter, the ideas in
this book are not easy. But we are certain that the educated layman
will be able to follow and appreciate them alongside readers with
technical backgrounds, and will be especially well placed to assess
their social significance and to take steps to see that the opportunities
here offered are not missed. The book will also, we hope, give a
glimpse inside the fascinating world where these developments are
taking place. :
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Introduction

The world is sliding precariously close to disaster. This conclusion
follows from any sober analysis of the state of the planet. Economic
stagnation, poverty, rampant inflation, massive unemployment,
over-population, political strife, terrorism, wars and rumours of
wars, and the threat of Armageddon permeate every corner of the
globe. Of course, mankind has always faced problems, and present
ones naturally seem more formidable than those in the past, but we
do appear now to have reached a point where something very sub-
stantial will have to give. The height of irony is that much of the
blame is now being laid specifically on mankind’s systematic efforts
to find solutions to its problems — that is, on technology.

Technology has been around for millennia and is nothing more
than man’s cumulative search for means to improve his lot. Now,
however, some claim that technology is making his life worse, not
better. The problems laid at its door range from the social upheavals
caused by technical change, unemployment, pollution and the threat
of nuclear extinction, to alienation and the loss of job satisfaction
and fulfilment. To these can be added the very real possibility that the
complexity induced by technology is to blame for the intractability
of our economic malaise, and the substantial danger that technical
systems are getting so complicated that soon their human operators
will lack the knowledge and understanding to control them.

In the face of this array of problems, we ask from where might
answers come? Could inanimate creatures of technology possibly
produce solutions to the problems it has spawned, and to myriad
others that afflict humanity? Could machines themselves conceive
solutions that have eluded human minds? The message of this book
is that in principle they can, and that in the world of tomorrow they
will.

This assertion is not simply dreaming by technological optimists.
It is based on fact — in the shape of discoveries that are beginning
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to emerge from some of the world’s advanced computer laboratories.
It has long been wrongly assumed that you can only get out of a
computer what you put in. This notion is certainly justified in the
case of most of the workaday data processing of the last three
decades. Now, however, it has been demonstrated incontrovertibly
that something new can come out of computers, and that new
something is knowledge. That knowledge, in turn, can be original
ideas, strategies and solutions to real problems.

As yet the knowledge that has been generated by machine is of little
practical use to the deeper afflictions of the world. This is to be
expected — the biologist who first synthesizes life will come up with
possibly a virus, not a full-grown horse. But the implications are
clear and important. Eventually it will be possible to set computers
going on the search for solutions not to the winning of games but
to the harsher problems that confront society, and solutions will be
found.

Certainly this will take a long time, but equally certainly given
human resolve it will happen. We can foresee the day when poverty,
hunger, disease and political strife have been tamed through the use
of new knowledge, the product of computers acting as our servants,
not our slaves. In addition, the mental and artistic potential of man
will be expanded in ways as yet undreamt of, and the doors of the
human imagination will be opened as never before.

Taking the opportunities will not be easy. It will require a complete
reversal of the approach traditionally followed by technology, from
one intended to get the most economical use out of machinery, to
one aimed at making the processes of the system clearly compre-
hensible to humans. For this, computers will need to think like
people. Unless the computer systems of the next decade fit the
‘human window’ they will become so complex and opaque that they
will be impossible to control. Loss of control leads merely to frustra-
tion as far as many applications now are concerned, but when society
becomes more dependent on computers, and where such things as
military warning systems, nuclear power stations and geopolitical
and financial communications networks are operated by them, loss
of control can lead to major crisis.

The prospect of machines becoming as capable and powerful as
we describe can be daunting, even frightening. The notion of some-
thing non-human applying thought and judgement appears to
encroach on what the human holds most dear: his consciousness.
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The creative computer has artistic, religious, political and emotional
associations of all kinds. But it is important that these philosophical
considerations, interesting as they are, do not confuse our commit-
ment urgently to seek to exploit the beneficial potential of the new
technology. With it, our future looks brighter than we can imagine.
Without it, we may have no future at all.



CHAPTER 1

Brute Force and Ignorance

Amid the euphoria that followed man’s first landing on the moon
in July 1969, there appeared in the London Evening Standard the
following letter:

Watching the Apollo 11 Moon Shot with enthralled and uncritical
admiration, I am particularly amazed (as we all must be) with the sheer
technological brilliance of the whole thing, and wonder why computers
cannot be used to solve our economic problems. Is it because the men who
programme them would tend to ‘build in’ their own prejudice and short-
sightedness? Our human experts seem to be full of both and have been most
unsuccessful to date.

A few days later came another letter in reply:

A computer is nothing more than a very elaborate adding machine, and
it cannot solve any problem that the programmer does not know exactly
how to solve already. Every one of the calculations involved in navigating
Apollo 11 could have been solved by hand, but, of course, it would have
taken far too long. A computer is a slave that does exactly what we tell it
— it will do all our tedious arithmetic and correlation of data, but how to
solve our economic and social problems — that, unfortunately, will have to
be worked out by people.

Some would disagree with the word ‘unfortunately’ in that last
sentence, but the second letter reflects a view that is widely held,
especially among those who have spent many long hours pro-
gramming computers, making a machine perform to their will. It is
satisfying to see a complicated mechanism obey one’s instructions
faultlessly and uncomplainingly for hours, months or years on end.
The natural conclusion to reach is that since no less can come out
than you expected, no more can either — a point often expressed as,
‘You only get out what you put in.” This seems so obvious, in the light
of personal experience of programming.

It is already apparent, however, that what seemed obvious is not
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obvious at all. Computers can create, and what they create could
constitute solutions to major problems. To be sure, the creative
computer is still far from being able to tackle the sort of problem
raised by the Standard’s correspondent. The level of difficulty of a
problem is often deceptive. Getting a robot to guide a spacecraft to
the moon is today straightforward. A difficult problem would be
to get it to go down to the corner of the road and buy a packet of
cigarettes. Compared to that, even sorting out the economy may
prove to be simple.

The need for creativity

The fundamental difference between the task of controlling a space-
craft and that of walking to the street corner is the need to deal with
unforeseen occurrences. If the number of things that can possibly
happen is relatively small, the computer program can be told what
to do in the event of each of them. In real-life situations, however,
the range of possibilities is so enormous that they could never all be
thought of beforehand. Consequently, the machine has to be able to
store an internal model of its world from which to derive its own
solutions to problems. Beyond that, it must be able to adjust or
extend the model as experience accumulates, and thus, on occasion,
to be creative.

It also has to be intelligent in another but related sense. If a
robot tries to pick something up and burns its hand because the
object is hot, it must realize that the next thing to try is not to pick
it up with the other hand. Simple ‘chronological backtracking’ will
not do.

As yet, the ability of machines to solve problems is very limited.
A prime example is the near disaster of Apollo 13, which was success-
fully piloted to earth after an explosion had crippled the main engine
and power systems. Only the ingenuity of men, overriding the com-
puter, saved the day, although all credit should be given to the
system design which supported this overriding. On top of this, there
are much more basic tasks that are so commonplace that human
beings are seldom conscious that they are showing remarkable
capability in carrying them out, but which computer technology in
its current state can barely tackle at all. These include using natural
language (English, French, etc.), deciphering speech, and making
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sense of the physical world through sight. Since these are funda-
mental to most human activities, the abilities to cope with them are
of high priority in computer research and development. But there are
other less obvious faculties which computers ought to have, such as
common sense — an essential human attribute. Take the two sen-
tences: ‘Clyde is an elephant’ and ‘Clyde is sitting in the back row of
the cinema.” A useful computer ought to be able to say, ‘Now, wait
aminute!’ In the late 1950s, John McCarthy, one of the great pioneers
of the scientific quest for the intelligent computer, posed as the
central problem the construction of a mechanizable logic of common-
sense reasoning. Through a quarter of a century of fitful but accelera-
ting progress, this has remained the central technical challenge.

Intelligence by machine

It is the finding of solutions to such problems that is the raison d’étre
of the branch of computer science that is known by the rather strange
title of ‘artificial intelligence’. Quite apart from the subject matter, the
name itself is controversial. Some people hold the view that intelli-
gence is an essentially human attribute, and that therefore ‘artificial
intelligence’ is a contradiction in terms. Others are convinced that
however clever computers become, they will never produce anything
that is genuinely intelligent. This leads to problems of definition.
How would you tell if a computer had produced something in-
telligent? An answer put forward in the early days by Marvin Minsky
of Massachusetts Institute of Technology is that the machine is being
intelligent if the task it is carrying out would require intelligence if
performed by humans. To test this notion we ask, does a human use
intelligence when doing arithmetic? Of course! Then according to the
definition, machines became intelligent with the first floating-point
arithmetic package, a nonsensical conclusion.

Another phenomenon in the controversy concerns understanding.
‘Would it be intelligent if a machine could read a newspaper and
give you a summary of its contents?” asks the AI scientist.

‘Certainly!’ concedes his critic.

‘My student’, replies the AI man, ‘has just written a program to
do that (and it does not cheat simply by printing out the headlines).’

‘But how does his program work?" asks the critic with an air of
suspicion. After a spell with blackboard and terminal he decides
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that his suspicion was justified. ‘So that’s all! I don’t call that
intelligent.’

There appears to be a feeling that if one understands how some-
thing works, it is not intelligent. This leads to the idea coined by
Larry Tesler that ‘artificial intelligence is whatever hasn’t been done
yet’, placing A1 workers in a ‘no-win situation’.

It is not altogether surprising that there is a problem with names
here, since we have no sound definition of natural intelligence either.
Some psychologists define it thus: ‘Intelligence is what intelligence
tests measure.” So what then are intelligence tests? In the absence
of anything more rigorous, for the time being we are going to have
to define intelligence in machines in the same way that Justice Potter
Stewart described pornography: ‘I can’t define it but I know it when
Iseeit.’

Roving on Mars

Quite apart from the general problems described above, there are
specific areas in which the need for machines with built-in intelligence
is strikingly clear. One example is the Mars Rover project under
development at the US National Aeronautics and Space Adminis-
tration. Since landing a man on Mars is out of the question for the
foreseeable future, the idea is to have an unmanned robot vehicle
which can be landed on the planet. The robot then drives around,
taking pictures and soil samples and sending the data back to earth.
The conventional way of operating this would be by remote control,
with a technician at base watching the television pictures sent back
by the Rover, and returning radio signals to the steering mechanism
on board. When the vehicle is on Mars, however, it takes
between four and twenty minutes for the TV signals to reach earth,
depending on the relative positions of the two planets in their orbits,
and the same time again for the control signals to get back. Clearly,
if a chasm appears in front of the Rover, by the time the ‘Stop!’
command arrives from earth, the machine will long since have
crashed. Inescapably, a great deal of real intelligence will have to
be built into the Rover in order for it to look after itself, getting
only its broad strategic instructions from earth. As a result, the space
roboticists at the Jet Propulsion Laboratory in Pasadena see their
problem as primarily one of artificial intelligence.
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Closer to home, the enormous growth in air travel has placed so
much strain on air traffic control systems that in some parts of the
world these systems look ready to break down altogether. The
operators can only be relieved of the requirement for unblinking
vigilance and its accompanying tension by computer systems having
the kind of dependability and resourcefulness associated with
intelligence. The scale of the catastrophe that might ensue from a
computer mistake brings home to us how reliable both the hardware
and the software must be.

The hostile environment of the North Sea provides an application
for automatic unmanned submersibles capable of carrying out the
hazardous tasks of inspecting and repairing oil platforms, currently
done by human divers with all-too-frequent loss of life, or injury.
On land there are jobs for which intelligent ‘gofers’ would be useful.
(The name comes from American political parties — someone detailed
to ‘go for coffee, go for the mail ...”) These would be ‘find and
fetch’ mobile robots capable of laying pipelines in the Libyan desert,
working in mines, and fault-finding inside nuclear reactors oblivious
of deadly radiation.

In the developing countries of the Third World, the need for
expert medical care is acute, and the fundamental shortage is of
trained staff. Sometimes money is not the problem at all. British
medical visitors to Saudi Arabia and neighbouring territories report
widespread purchase of the latest and shiniest American equipment
which the local level of medical and technical education is not
adequate to put to use. Computer systems are needed that incorporate
the expert knowledge of specialists in the developed countries, not
only so that correct diagnoses can be made by less skilled people in
remote areas, but also so that those people can acquire more of this
knowledge through machine-aided training.

The computer industry world-wide, and consequently business as
a whole, face a continuing ‘software crisis’ in the shortage of skilled
programmers and the ever-increasing cost of designing and writing
systems. This will become worse as the new microchip technology
of very large-scale integration floods the market with faster and
cheaper computers. On present showing, the software industry even
at the highest imaginable rate of recruiting will be unable to provide
programs for all these machines. The story is told in Figure 1.
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Indicator 1955 1965 1975 1985
Industry growth 1 20 80 320
Hardware performance/cost 1 100 10,000 1,000,000
Programmer productivity 1 20 27 36

Figure 1. Data processing industry trends!

If the markets of the booming microelectronics industries are not
to collapse from program starvation, radical innovation, not just
improvement, is needed in automatic programming. This means the
development of systems capable of producing software from only
a general statement of the user’s requirements, perhaps using a stored
sample of expert decisions — in effect very high-level languages with
built-in intelligence.

Tua culpa

Another crying need in the field of computers is for ‘error tolerance’.
Most computer systems still require their users to provide commands
with every jot and tittle in exactly the right place. A comma missing
or a single character wrong in a command word will cause a whole
instruction or request for data to fail completely, a source of much
irritation for fallible humans. ‘It was obvious what I meant!” we
cry, but to the machine it was not obvious. Add to this the difficulty
of errors in data that have already been stored. Suppose a word
in an information retrieval system has been misspelled: ‘guage’
instead of ‘gauge’ for instance. When a user puts in a search for
that word, unless he happens to make the same mistake himself in
keying in his request, the answer to his retrieval query may never
be found. Improved forms of ‘fuzzy’ matching are needed, together
with a more flexible understanding of language on the part of the
machine.

‘Fault tolerance’ is an even bigger problem. In any machine with
millions of components it is inevitable that some of the components
will be faulty. A complex system of redundant parts is often needed
to avoid catastrophe. A failure can easily be far more serious than
the fate of the cetologist in Catch-22 who was posted to the army
medical corps by a defective anode in an IBM machine. Even more
alarming is the fact that in a large computer program — say, a
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Fortran compiler of 150,000 instructions — some of the instructions
will inescapably be wrong. There will always be some that are wrong,
because changes to fix errors can have unforeseen adverse effects on
other parts of the program. Work is being done in the area of fault-
tolerant software, notably by Brian Randell’s team at Newcastle Uni-
versity, who have so far taken the rather long-haul route of providing
duplicate software routines which do the same job in different ways,
on the principle that it is unlikely they will both be wrong.

Domains not reducible by brute force

Transcending all these examples, the fundamental need for a new
form of intelligent computing is in the subject areas that simply
cannot be handled by the traditional approach of data processing,
best characterized as ‘brute force’. These include such complex,
open-ended tasks as route-finding, scheduling and allocation of
resources, network design and most of the ‘real world’ problems we
have been discussing, where it is simply not practicable to foresee
all possible eventualities. The idea is best illustrated by comparing
two games: noughts and crosses, and chess. To make a computer
play noughts and crosses, all a programmer has to do is work out
every possible game situation and tell the machine what to do in
each case. There are only a few hundred of these, and the number
is further reduced by symmetry. This is why noughts and crosses is
basically a boring game. Chess on the other hand has 10'2° different
possible games, and although a complete strategy for play is a trivial
matter for a mathematician to formulate, the drawback, as Claude
Shannon pointed out in 1950, is that it would take 10°° years of
processing on a super-fast machine to select one move.? The age of
the solar system is but a flash by comparison, a mere 10!5 years or
so. Perhaps we could harness all the atoms in the universe into a
giant multiprocessor and bring the time for one move down to 104°
years! However one does it, the attempt to construct a ‘tree’ of all
possible moves, by saying, ‘If I move here, he might move here, or
here, or I could move there . ..’ rapidly leads to what has been called
the ‘combinatorial explosion’ (Figure 2). One can of course limit
the number of moves ahead that are examined, and there are chess-
playing programs that work entirely by ‘look-ahead’ in this way,
but in order to match a human player who uses his intelligence
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Figure 2. A look-ahead tree

(combined with experience), the computer still has to calculate
millions of possible moves. Either the storage capacity of even the
largest machines is exceeded, or the program takes an impossibly
long time to run. Consequently progress requires a more selective
approach. In chess playing, as in most other problem solving by
computer, brute force and ignorance are the wave of the past.

A gift of tongues

Looking at the limitations of current computing technology in more
detail, an obvious area to choose is speech. Talking and listening
are such basic human activities that it would clearly be useful for
computers to be able to take part in them. As it turns out, talking
is not difficult. Cheap speech synthesizers are available now that
produce a Dalek-like, but none the less recognizable, voice. Pronun-
ciation is carried out according to general rules about the sounds of
letters and letter sequences in English, with an ‘exception dictionary’
for words that are pronounced irregularly. This dictionary is never
100 per cent complete, of course, and it is not unknown for instance
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to hear a synthesizer pronounce ‘guide’ as ‘gwee-duh’. That may not
present a problem, but distortion of meaning can. Take a sentence
from an advertising poster seen in London: ‘Live at the Barbican.’
Whether the ‘i’ in ‘live’ is long or short depends on the meaning of
the sentence, and that depends on knowledge of the world, namely,
what the Barbican is. But even that is not sufficient, because the
Barbican is both an arts centre and a housing complex, and the sign
could belong to a show promoter or to an estate agent. The clue
comes from the preceding part of the poster. Complete it reads:
‘India. Live at the Barbican,” and it is only this that tells us the ‘i’ is
long. Knowledge — a very considerable amount of knowledge — is the
key to successful handling of this task by machine.

Ears for hearing

Listening by computer, or speech recognition as it is called, is a
very different matter. Human speech patterns are very complicated,
and not only are there many different words that sound the same,
but the same word can be pronounced in different tones and accents.
The biggest problem though is detecting the breaks between the
words. We imagine when we hear speech that there are clear gaps
between the words, but in fact there are not — our brains supply
them as we listen, through our knowledge of the language. A
computer has to have that knowledge to make sense of the sound
too. There is only an infinitesimal difference between the sounds of
‘She was a tanker’ and ‘She was at anchor’, and it usually has to
be worked out from the context, including prediction of what is
expected next. Prediction can run into problems too. Imagine that
-the machine hears the syllable ‘six’. That’s fine. Then it hears ‘teen’.
Quick backtracking is needed to change the number from six to
sixteen. Then the machine hears ‘agers’. Ah, six teenagers! The six
was right after all. Confusion is never far away.

If the number of words that has to be deciphered is relatively
small, the problem can be manageable. If all you are talking about
is chemicals you can be confident that what you heard was ‘nitrate’
and not ‘night rate’, and common sense could tell you that
‘abominable’ is seldom ‘a bomb in a bull’. But as the world gets
larger and we try to make our machines more versatile, the problem
compounds.
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Current commercial speech recognition devices are limited to a
vocabulary of a few hundred words, and usually the words have to
be spoken with deliberate gaps in between. Also the machine has
to be ‘trained’ for every person whose voice is to be deciphered.
The user has to say every word several times over into the machine.

Some experimental systems can accept continuous speech of,, say,
three or four words without gaps, but with a commensurate reduction
in the size of the workable vocabulary. Others take many times
longer to process the speech than it took the human to say it and
these are obviously of limited practical use, since they continually
get further and further behind. The day of the typewriter that can
be talked at to produce good English text is certainly a long way
off, although in countries where there is a phonetic alphabet, such
as Japan, the idea is a more practical proposition.

Chatting with a computer

Most communication with computers at present is by means of
typewriter or video terminals with keyboards, and this avoids the
problem of handling sound. It still would be very useful to be able
to converse in ordinary English rather than in the extremely stilted
and strict syntaxes of existing programming and data-base query
languages. Again, a general solution to this problem is thwarted by
how little we know of how humans understand language. A few
years ago it was thought that a comprehensive theory of parsing
sentences was just around the corner, but it has turned out to be
much more difficult to find a unique parsing of a sentence than was
realized.

Take the two sentences: ‘Helmets must be worn’ and ‘Dogs must
be carried’. They are identical in form, yet they mean totally different
things. The would-be traveller on the London Underground needs to
know several unspoken things about the way the world works to be
confident that he does not have to acquire a dog before boarding the
escalator. Again, extensive knowledge of the world is essential to
making sense of language.

Despite this, it is surprisingly easy to make a computer carry on a
plausible conversation (by screen and keyboard) so long as the
domain of discourse is strictly limited. One of the earliest and best-
known programs to do this is called Eliza, written by Joseph Weizen-
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baum at MIT.3 This simulates a Rogerian psychotherapist, en-
couraging the human ‘patient’ to type in his troubles, in ordinary
sentences, while the machine makes supposedly helpful comments in
reply. A dialogue could look like this:

Patient: MY FATHER HATED ME

Computer: TELL ME MORE ABOUT YOUR FAMILY

Patient: I REMEMBER MY CHILDHOOD IN BOSTON

Computer: DO YOU OFTEN THINK OF YOUR CHILDHOOD IN
BOSTON?

and so on. The program is actually very simple. It looks for certain
key phrases in the ‘patient’s’ statements, and for each key it has a
preset reply. In the last two examples the key phrases are ‘my father’
and ‘I remember’. Sometimes the part of the patient’s sentence
following the key phrase is included in the machine’s reply, with the
pronouns and verb forms swapped round: ‘I’ for ‘youw’, ‘are’ for ‘am’
and so on. It does this without having the slightest understanding of
the content of what it is repeating. Given this very crude procedure
" it is uncanny how plausible the ‘doctor’s’ conversation is. Only
occasionally does the grammar come out wrong, and sometimes the
machine will say something silly. For example, in reply to: ‘1 CAN’T
SLEEP AT NIGHT, it will say: ‘HOW DO YOU KNOW YOU CAN’T
SLEEP AT NIGHT?

Eliza is nothing but a very carefully worked-out parlour trick.
Weizenbaum intended it as a joke — a parody — and was appalled
when established psychiatrists took it seriously and started talking
about the possibility of automated psychotherapy. Perhaps this tells
us more about psychiatry than it does about computing.

In contrast, there is a great deal of practical value in the program
Intellect produced by the Artificial Intelligence Corporation of
Massachusetts. This is a system for interrogating a commercial data-
base, using ordinary English so that executives do not have to learn
tiresome sets of special instructions. The user can type: ‘WHICH
SALESMEN HAVE PASSED THEIR TARGETS THIS YEAR? and the
program will produce a paraphrase of the question in its own ter-
minology to confirm it has understood and then display the requested
information in tabular form. If the program misunderstands this can
be seen from the paraphrase, and since, unlike Eliza, Intellect has no
game to give away, if it cannot make sense of the query at all it says
so.4
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In the absence of any general theory of grammar the method used
is distinctly ‘hammer and tongs’. The system includes a dictionary of
several thousand words, with instructions to the program about what
to do with each word should it appear in the query. Another well-
known natural-language interface system was Ladder, developed at
Stanford Research Institute as an experiment in helping US Naval
officers get information on operational resources from a com-
puter without having to know about the technology.® This program
does not even attempt to classify words as nouns or verbs. Rather, it
tries to match the query against a large range of expected sentence
patterns such as:

WHATIS THE (ATTRIBUTE) OF (SHIP)
rather than the more general:
{NOUN-PHRASE) {VERB-PHRASE)

One notable power Ladder has is to remember earlier queries and
assume that pronouns or elliptical queries refer to them. However,
the essential feature of all these systems is that they only work within
a very limited domain of discourse (such as sales reports or disposi-
tion of ships). Were their worlds to become substantially larger, the
crude methods they use would require their programs and dictionaries
to be expanded beyond the bounds of present-day practicality.

Similar problems arise with computer translation of natural langu-
age (English into German, Russian into English and so on). Funny
stories abound of the howlers that attempts at computer translation
have produced, such as ‘water sheep’ for ‘hydraulic ram’. The diffi-
culty comes back to knowledge. The translator (human or machine)
needs a detailed mental model of the world being described in the
text, and providing computers with such knowledge in the form of
such models is one of the key tasks of artificial intelligence.

Despite the serious limitations of present-day natural-language
processing, the fact that a machine appears to be able to converse
impresses lay people more than practically anything else in computer
technology. One assumes that if something can talk, it is human, or
humanoid. A detailed examination of the workings of Eliza is an
excellent antidote to this delusion.® Most importantly, people must
not be distracted by the natural-language frills a program has from
grasping the significance of its substantive core.
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Eyes for seeing

The general-purpose home robot after which we hanker, and the
imminent arrival of which is regularly announced in the less informed
press, will have a fundamental requirement aside from the ability to
receive instructions, namely, vision. Ifit is to vacuum the sitting room
it will have to be able not to run over the cat. If it is to weed the garden
(non-chemically) it must be able to tell the difference between flowers
and weeds. Obviously this is difficult (it is difficult enough for human
beings). Much research has been done into the problem of ‘pattern
recognition’, some of it with computers trying to make sense of
television images of scenes consisting of simple geometrical objects:
blocks, pyramids, boxes, etc. Sometimes the computer manipulates
the objects with a robot arm. Among the things the machine has to
understand are: the view of an object can be obscured by another
in front of it; everything must be supported by something
or it will fall; some things the machine can be told to do are possible
(such as ‘Put the ball in the box’) while others are not (‘Put the box
in the ball’). As soon as the objects become real, that is, not regular,
things start to get out of hand.

Central to the problem is the fact that a picture contains an enor-
mous amount of information. One television frame contains over
two million bits, and this is repeated twenty-five times a second. A
computer has even more difficulty in keeping up with this torrent of
information than it does in speech recognition. In fact, it is out of the
question to do this processing with a conventional computer, because
essential to the principle of such a machine is that it processes every-
thing in a strict sequence, one item of data after another, and present
circuits just cannot move fast enough. Owing to this ‘von Neumann
bottleneck’, for image processing in particular, information must
unavoidably be processed many bits at a time, that is, in parallel.

Research into the workings of animal eyes seems to indicate that
this is how nature processes pictures too. A celebrated paper by
Lettvin, Maturana, McCullough and Pitts was called, ‘What the
Frog’s Eye Tells the Frog’s Brain’.” Their general conclusion was that
most of the practical chore of vision, including virtually all the
calculation involved in recognizing simple objects such as bugs, was
carried out in parallel processors in the frog’s retina, rather than by
sequential operations in its brain. For machines to do this, a com-
pletely new type of hardware is needed.
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Thinking in parallel

Nor is it practicable simply to take a bank of processors and some-
how divide the task up between them. As Michael Duff of University
College, London, explains, multiple processors introduce overheads
in the amount of time needed to do the housekeeping and sort out
which processor is doing what. As few as twelve processors working
together can spend all their time talking to each other and get no real
work done at all. Duff’s solution is to build a special-purpose
machine with processors laid out in a rectangular array, onto which
the picture to be processed, from a television camera, is super-
imposed. This is called the Cellular Logic Image Processor, and the
falling cost of integrated circuits allows the latest operational model,
CLIP4, toincorporate no less than 9,216 separate microprocessors.8

A picture broken up into 9,216 dots is still fairly coarse, but all the
processors can work simultaneously, giving a speed-up of four orders
of magnitude. Each processor is connected to its eight immediate
neighbours (Figure 3). The significance of this arrangement is for

T

Figure 3. (After Michael Duff)

example that it is easy to detect where the picture changes, by seeing
where adjacent processors have different levels of light rather than
the same. Thus the machine can directly find edges of objects, a
fundamental task of image processing (Figure 4).

Figure 4. (After Michael Duff)
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Finding edges and other local features is still a long way from
recognizing actual objects, especially if the objects are as complex as,
say, human faces. It is to tackle this problem of recognition that a
quite different device called Wisard has been built at Brunel
University. This is entirely purpose-built electronics that can match
an image it receives against a set of perhaps three or four that it has
previously been ‘taught’ about, and decide which is the closest. The
machine can cope with slight variations in the images, such as in the
angle of presentation of the object, or in the expression on a face,
because in the learning process it is shown a series of images of each
object, not just one (Figure 5). What it stores is not the images
themselves but an ingenious internal representation of what they
have in common. Connected to a voice storage device, the machine
can be made to say, as a person sits down in front of it, ‘Hello, John’
or ‘Hello, Mary’ as appropriate — an unnerving experience for the
person. Still, it is important to remember that Wisard can only
recognize images, it cannot process them further as CLIP4 can.

Parallel processing turns out to be useful for other purposes as well
as vision. Some computing tasks are so enormous that, to make any
real advance in the technique, things will have to be done in parallel.
For example, in weather forecasting, data from thousands of moni-
toring stations have to be merged using complex equations of physics
to predict how the weather is going to change.

In the field of information retrieval, the quantity of data similarly
threatens to swamp those handling it. Keeping track of scientific
research, changes in the law and many other human endeavours is
the object of the giant bibliographic data-bases that are now pro-
liferating, and to get information out of them it is necessary to match
up records with index terms fed in by an inquirer. For instance, one
may wish to find out about discoveries to do with copper-doped
germanium. It is not sufficient, however, simply to search the data-
bank for that string of characters because it would fail to match
against for example ‘germanium doped with copper’. Thus the sub-
stantive words need to be searched for separately, disregarding their
order. But then a search for ‘general powers of attorney’ will mishit
against ‘powers of the attorney general’.

Where computing overall is falling behind the amount of work that
needs to be done, parallel processing can give a much-needed boost.
For instance, much computing involves operations in logic. Suppose
we need to work out whether A is true, and we know that in order
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Figure 5. To recognize a face, Brunel University’s Wisard is ‘taught’ with
a series of television pictures of the face, all slightly different (top and middle
row). In ‘recognizing mode’ (bottom row), the machine displays above the
head a bar chart showing how close a match it senses between the image it
is seeing and that which it ‘knows’. At the bottom left, the length of the lower
bar shows matching of over 90 per cent. With the different face in the middle,
matching has gone down to 40 per cent. On the right, when the subject covers
his beard with his hand, recognition goes up slightly, but it is still clearly
distinguished from the ‘learned’ face. Likewise, removing his glasses makes
hardly any difference. The upper bar of the histogram shows how closely the
image matches an empty picture (photographs: Tony Firshman)
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for A to be true, B and C must both be true. Thus we need to find
out whether or not B and C are true, but we can do these both at the
same time, rather than one after the other, speeding up the process
considerably. In the same way if A is true when either B or C is true,
again working out B and C simultaneously will save time.

Connections

An interesting new use of parallel processing is the subject of a project
being carried out by some researchers from MIT, in an attempt to
deal with the problem mentioned earlier of how to give a computer
common sense. As we said, fundamentally this involves knowledge,
and knowledge held not in a random fashion but in a complex inter-
connected structure. This can be represented by what is known as
a ‘semantic network’, by which objects and attributes are linked.
Figure 6is anexample of part of a semantic network dealing with fruit.

seeds )e has fruit comes from

Capple ) % k

colour taste colour colour taste

@ <>

taste

sugar

Figure 6. A semantic network (after Danny Hillis)

The network consists of nodes (junction points) and /inks. Danny
Hillis’s team at Thinking Machines Inc. believes that to automate this
properly, every node and every link in a network should have its own
processor. Naturally, for a semantic network of a useful size this will
be an enormous task. Undaunted, they are proceeding to build a
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machine with one million processors, each admittedly much cruder
than a normal microprocessor, containing only about 100 bits of
memory. These units are being built into custom-designed chips,
sixty-four per chip, so there will be 16,000 chips in the complete
machine. Predicting how the ‘Connection Machine’ is going to work
is difficult, explains Hillis. Simulating it on a conventional computer,
it takes all night to get through one clock cycle!

What is creativity?

The notion of connections brings us back to that of creativity. It is
not at all clear exactly what creativity is, and that contributes to the
reverence in which it is held. We stand in awe of the works of Bach,
or El Greco, or Faraday, and the awareness that we would have no
idea how to do what they did increases our awe. But it may be that
creativity is not as amazing as it seems. To a great extent it appears
to consist of noticing connections between things where no connec-
tion had been seen before. When Shakespeare says:

How sweet the moonlight sleeps upon this bank!
Here will we sit, and let the sounds of music
Creep in our ears: soft stillness and the night
Become the touches of sweet harmony

on the face of it he is talking nonsense. Moonlight does not sleep;
sound does not creep; stillness and night cannot become touches. But
Shakespeare sees connections between these things that never
occurred to us before, and so produces poetry that moves us in a way
that a less original assertion never can.

Newton based his laws of motion on the conjecture that both
heavenly bodies and objects on earth were subject to exactly the same
physical laws. This notion seems to the untutored observer absurd —
the planets behave totally differently from the things close around us.
Yet, as Newton realized, this is only because the environments are
different.

Even the box of transistors that implements some state-of-the-art
image-recognizer finds connections, in that it assembles all the
features and attributes that are the same in the images it is learning
from and then makes connections with the image it is meant to
recognize.
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There is also a form of creativity that consists of building up new
structures that are more complex than the preceding ones. Aaron
Sloman, in considering creativity mainly from the viewpoint of the
formation of new ideas, describes three layers on which creativity can
take place: semantics, syntax and notation. On the semantic level,
new meanings can be attributed to existing words, or whatever
material is being dealt with. Lower down, the syntactic rules by which
these are connected can be changed; an example of this could be
discoveries of new techniques of harmony in music. At the most basic
level, and possibly the most creative, new notation can be invented,
for instance the tempered scale in music, or tensor calculus, which
opened up a whole new way of dealing with physical phenomena. In
any case, he says, there is no single metric of degrees of creativity.

Not all creativity is momentous. Indeed, Sloman points out, there
is plenty of creativity in ordinary life, as for instance in recognizing
a face we have not seen for a long time — we have to imagine what the
ravages of time would have done, and fill in the gaps for those things
only half remembered. What we must beware of is the view that if we
understand it, it cannot be creative. (The reverse is also clearly
fallacious: it often happens that nobody understands exactly what is
going on inside large computer systems, yet the output is for the most
part not creative.) It should be possible to recognize creativity
entirely by output, not by origin, nor by whether the mechanism that
produced the output was organic or electronic.

Creativity will be a vital attribute of the computers of the future.
Without it they will be unable to generalize to solve problems, to act
on their own new descriptions and concepts rather than the ones
provided by the programmer. They will be unable to make the
connections that are an essential part of even the most mundane
tasks. Most serious of all, they will be unable to learn from examples,
the only practical way of supplying them with the vast amount of
knowledge that we have seen is essential if they are to be really useful.
In this way, computers can become valuable assistants and not slaves.

Knowledge is indeed the key. Just how computer systems can be
based on knowledge is the subject of the next chapter.



CHAPTER 2

Computers Join the Experts

The machines built by the pioneers of computing in the 1940s were
popularly known for a long time as ‘electronic brains’. The name
‘computer’, when it took over, was more appropriate, because the
machines were very far from being able to do any of the things we
consider important as far as the brain is concerned; all they could
do was numerical calculation. Computers now are routinely pro-
grammed for handling non-numerical information, but they are still
for the most part stuck with dealing with explicit facts: hard-and-fast
objective data about which there is little, if any, uncertainty, and
which can be filed and retrieved directly. This is a major drawback,
because much of the information used by humans in their daily lives
is far from clear-cut and certain. We do not just want to ask com-
puters questions like, ‘What is the square root of 35,7697 We want
to ask: “What is wrong with this patient?” ‘Would this be a good spot
to drill a well?” ‘Are there precedents for this application of patent
law? ‘What is the likely molecular structure of this compound?’
‘What would be a good way to synthesize insulin? ‘Who killed the
sheriff?” The information involved in these questions is the stock-in-
trade of those knowledgeable and respected people we know as
‘experts’.

Computers up to now have been largely confined to doing tasks
that can be specified in exact detail — mindless and predictable work
that would otherwise be done by clerks. To overcome this limitation
and tackle the sort of problem that hitherto could only be dealt with
by highly skilled experts such as doctors, engineers, lawyers and
accountants, artificial intelligence researchers have developed the
programming technology known as ‘expert systems’.
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The experts’ lore

Edward Feigenbaum of Stanford University explains the idea thus:
while conventional programs deal with facts, expert systems handle
‘lore’. By this he means the rules of thumb, the hunches, the intuition
and facility for judgement that are seldom explicitly laid down but
which form the basis of an expert’s skills, acquired over a lifetime’s
experience. Often the lore does not appear in the textbooks; it is
seldom even discussed or brought to view. Commonly the expert
himself is not even conscious of it and has little understanding of how
it works. For instance, much of the time a doctor does not know why
his treatment is effective; he just knows that it usually is. Yet despite
the intangibility of expert knowledge, it has been found possible to
encapsulate it in computer programs that can then rival the com-
petence of highly skilled human practitioners.

Expert systems that have been constructed so far advise on such
diverse areas as the diagnosis of infectious diseases, mineral
exploration, analysis of organic compounds, income tax and the
operation of an area defence system. Each of these subjects not only
involves imprecise information but is also highly complex, making it
difficult to deal with using a conventional computer program but
ideally suited to an expert system. In each case, the knowledge has
been acquired from a human expert in the form of rules, typically
many hundreds of them, which together make up the computer’s
‘*knowledge-base’. The expert system consists of this knowledge-base
together with an ‘inference engine’, a program which works out the
logical consequences of all the rules taken together. Some rules are
unequivocal, in the form for example: ‘IF this AND that THEN some
result’. Others are vaguer and involve probabilities: ‘IF (to some
degree) this AND (to some degree) that THEN (to some degree) result’.
It is here that the ability to deal with lore rather than facts comes in
most strongly. The machine works through the rules, asks for appro-
priate information, and then announces its conclusions.

Oil at sea
A good example of an expert system is one developed at the Machine

Intelligence Research Unit at Edinburgh University to help diagnose
faults on North Sea oil platforms, commissioned as a feasibility study
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by British Petroleum. Each oil platform is a maze of pipes, pumps
and storage vessels, and to ensure the highest possible level of safety,
there are a large number of sensors and emergency trips which shut
down production automatically should anything go wrong. When
this happens, the engineers on the spot have to get production going
again as quickly as possible, but the system is so complicated that
they can often have great difficulty in working out what exactly has
failed. Lost production time is lost revenue, so BP was interested to
see whether an expert system might help the engineers trace the fault
quickly.

The Edinburgh pilot system carries on a dialogue with the
engineers via a screen and a keyboard. It asks such questions as:

HOW CERTAIN ARE YOU THAT THE V-0l PRESSURE CHART IN
THE CENTRAL CONTROL ROOM INDICATES THAT THE RELIEF
VALVEPRESSURE WAS REACHED?

The engineer replies with a number in the range + S (meaning ‘I am
completely sureit is true’) to — 5 (‘I am completely sure it is not true’)
with 0 meaning ‘I have no idea’. For example, he might type ‘4-5°.
The machine then goes on:

Computer: HOW CERTAIN ARE YOU THAT GAS FLOW NOISE OR
COOLING IS NOTICEABLE NEAR THE V-0l RELIEF
VALVE?

User: 0

And so on, until the computer reaches a conclusion, such as:

AFTER CONSIDERING ALL RELEVANT QUESTIONS, THE
PROBABILITY THAT AN UNSOLICITED CLOSURE OF ONE OR
MORE OF THE SCRUBBER INLET VALVES CAUSED HIGH
SEPARATOR PRESSURE INITIALLY WAS 0-002. 1T 1s NOow 0-909.
CERTAINTY FACTORIS 4-55.

Note that already we are dealing with information that is inexact
and uncertain, as is so much in normal life.
Languages for advice

Constructing the expert system is a long involved process. An expert
human practitioner in whatever field sits down with a person called
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a ‘knowledge engineer’, who corresponds to the programmer in
conventional computing. Together they work out in laborious detail
what all the rules should be, and how they interrelate. These are
drawn up as an ‘inference network’, similar in some ways to the
semantic network described in Chapter 1. An example from the oil
platform system is shown in Figure 7. Formidable as this appears, it
only covers a small part of the whole system. Each box represents a
belief, the truth of which implies other beliefs in a pattern that can be
seen from the diagram. The figures above and below each arrow are
the ‘sufficiency factor’ and the ‘necessity factor’, that is, they show to
what degree the second box must be true if the first is true, and to
what degree the second cannot be true if the first is not. When the
network is finished, the knowledge engineer rewrites the rules in a
special-purpose ‘advice language’ which the computer can accept. In
the Edinburgh project this language is called AL/X, as shown in
Figure 8. He includes with each rule a piece of English text which the
computer inserts into the question it asks the user when that rule is
encountered, such as the words ‘THE RELIEF VALVE HAS LIFTED’. A
fixed routine in the expert system outputs the words ‘HOW CERTAIN
ARE YOU THAT, the text for the individual rule follows, and a

space relvlift
text description
/* the relief valve on V-01 has lifted*/
inference
prior .005
rules antecedents ( rvliftind 1ls 800 1n .001
liftpress 1s 400 ln .005
rvnoisecool 1s 200 1ln .5 )
control
goal

space rvliftind
text description
/* the V-01 relief valve lift indicator is on (on the CCR, MOL
room, or separator panel)*/
inference
prior .01
control
askable

Figure 8. A sample of the ‘advice language’ by which the human knowledge
is fed to the computer. Drawing up rules in this form is the job of a skilled
‘knowledge engineer’ (John Reiter)
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question mark is tagged on at the end: ‘HOW CERTAIN ARE YOU
THAT THE RELIEF VALVE HAS LIFTED? Thus a fairly natural con-
versational mode of working is provided for the user.

In operation the rules are dealt with in order according to priorities
specified by the knowledge engineer. However, the user can volunteer
information that he knows is relevant by interrupting the machine’s
sequence and directing it to ask a particular question for which he
has the answer. He needs of course to be quite familiar with the
particular expert system to be able to do this.

After being put together an expert system needs ‘tuning’, in inter-
action with the human expert, until he is happy with it. It is unlikely
ever to be ‘finished’, because the expert’s own knowledge of the
subject may grow, so the system needs to be continually adaptable.
The process of putting the rules together has to be exhaustive (and
so, exhausting). For example, as can be seen from the network,
the fact that the relief valve lift indicator is on does not mean for
certain that the relief valve has lifted, but only that it probably has,
because there might be something wrong with the indicator.

One surprising aspect of this process is that the knowledge engineer
typically has great difficulty in getting the expert to articulate his
knowledge. Experts tend to underestimate the amount of knowledge
they possess and to overestimate their own ability to describe it. At
the same time, all kinds of curious facts and practices come out that
never appear in the official operating manuals. At one point the
expert will say, ‘Oh, we never trust those gauges!’ so the network has
to be adjusted to allow for that. Normally rules are given ‘certainty
factors’ reflecting how confident the expert is that the given rule itself
is valid. Sometimes the expert is more surprised than anyone by what
emerges in the knowledge-engineering process. He had knowledge
and was following practices that he was not aware of.

Explaining on demand

To help the expert and the knowledge engineer find their way through
all the confusion that can easily result from this complex process, an
essential feature of expert systems is the ability of the computer to
explain on demand what is going on. Examples of this can be seen in
Figure 9, which is a sample dialogue with one of the best-known
expert systems, Mycin. This was developed at Stanford for diag-
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Computer:

User:
Computer:

User:
Computer:

User:
Computer:

User:

Computer:

User:
Computer:

User:
Computer:

22. WAS ANY CHEMOTHERAPY RECENTLY BEGUN
SPECIFICALLY TO COMBAT ORGANISM-1?
NO
23. ISJEREMIAH SAMPLE (PATIENT-1) A BURN
PATIENT?
RULE
RULEO047
IF: 1. THE SITE OF THE CULTURE IS BLOOD, AND
2. THEIDENTITY OF THE ORGANISM IS NOT
KNOWN WITH CERTAINTY, AND
3. THE STAIN OF THE ORGANISM IS
GRAMNEG, AND
4. THE MORPHOLOGY OF THE ORGANISM IS
ROD, AND
5. THE PATIENT HAS BEEN SERIOUSLY
BURNED
THEN: THERE IS WEAKLY SUGGESTIVE EVIDENCE
(‘4) THATTHEIDENTITY OF THEORGANISM IS
PSEUDOMONAS
NO
24. ISTHE PATIENT'SILLNESS WITH ORGANISM-1 A
HOSPITAL-ACQUIRED INFECTION?
YES
25. DO YOU CONSIDERJEREMIAH SAMPLE (PATIENT-
1) TO BE ACOMPROMISED HOST? (ALCOHOLIC,
IMMUNOSUPPRESSED, ETC.)
NO
26. HAS JEREMIAH SAMPLE (PATIENT-1)HAD ANY
GENITO-URINARY SURGERY OR MANIPULATION
OF THE URINARY TRACT? (E.G. INDWELLING
CATHETER,CYSTOSCOPY, ETC)
WHY?
IAM TRYING TO FIND OUT ABOUT THE IDENTITY
OF THE ORGANISM. I ALREADY KNOW THAT:
THE PORTAL OF ENTRY OF THE ORGANISM IS
UPPER-GU
THE MORPHOLOGY OF THE ORGANISM IS ROD
THE STAIN OF THE ORGANISM IS GRAMNEG
THE SITE OF THE CULTURE IS BLOOD
THEREFORE, IF:
I. THE PATIENT HAS NOT HAD A GENITO-URINARY
MANIPULATIVE PROCEDURE, AND
2. URINARY-TRACT-INFECTION IS NOT A PROBLEM
FOR WHICH THE PATIENT HAS BEEN TREATED
THEN:
THERE ISSUGGESTIVE EVIDENCE (-6) THAT THE
IDENTITY OF THE ORGANISM IS E. COLI
(RULE156)

Figure 9. Excerpt from a consultation with Mycin
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nosing infectious diseases such as meningitis.! Information about
the patient is fed in by a doctor or medical assistant in answer to
questions from the computer. Most of these answers are simply ‘YES’
or ‘NO’, but instead of answering, the user can type ‘RULE’, and this
will cause the machine to display the rule that it is currently evalu-
ating. This gives the user an idea of what is happening. For a more
detailed explanation the user asks ‘WHY’ and receives a summary of
the logical process that is being worked through. The ‘explain’ facility
is one of the most important aspects of expert systems, and one with
profound implications for the rest of computer technology. This issue
we discuss in greater depth in the next chapter.

The explanations are composed from the English text that is held
in the machine in conjunction with each rule; the rules that the
machine actually operates are held internally in advice language.
Some expert systems allow the user to volunteer information in
simple English sentences. Again, this is not too difficult for the system
to cope with, because the subject area in question is always narrow,
so the possible interpretations of words are few. Experts tend to use
jargon and stereotyped ways of expressing things, with the result that
text templates and simple parsing routines will usually work. When
they do not, the program will simply say, ‘I don’t understand.’

Mycin does its logical reasoning by a simple process called ‘back-
ward chaining’. This enables a large number of interrelated rules to
be dealt with together. To see how this works, consider the rule

If A is true and B is true, then F is true
where A, B and F are all beliefs. This can be represented in the form
A&B->F

where the ampersand stands for the logic ‘and’ operation and the
arrow is read as ‘implies’. Suppose we have a whole set of rules, such
as:

.A&B - F
.C&D-G
E - H
.B&G -]
.F&H->X
.G&E - K
.J &K ->X
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In a particular case, we are told that beliefs B, C, D and E are all true,
and we need to work out whether X is true. By backward chaining,
we look to see which beliefs imply X by finding where X is on the
right-hand side of a rule. Then we look at the left-hand side of those
rules, and work out how to tell whether they are true, and so on until
we arrive at facts that we know to be true or false.* The advantage
of this over forward chaining is that we do not waste time working
out lots of unwanted conclusions, or asking questions irrelevant to
the goal. For dealing with probabilities rather than clear-cut ‘true/
false’ facts, a more complex inference process of the same general
kind is needed, using the laws of statistics to work out combined
probabilities of events.

Mycin can also contain ‘metarules’, that is, rules about rules, that
help in working out the conflicts of rules and uncertainties of priority
that inevitably arise with a large knowledge base. For example:

METARULE 2

IF:

1) THE PATIENT IS A COMPROMISED HOST, AND

2) THERE ARE RULES WHICH MENTION IN THEIR PREMISE
PSEUDOMONAS, AND

3) THERE ARE RULES WHICH MENTION IN THEIR PREMISE
KLEBSIELLAS

THEN:

THERE IS SUGGESTIVE EVIDENCE (‘4) THAT THE FORMER

SHOULD BE DONE BEFORE THE LATTER.

The output of Mycin is suggested diagnoses, but it can also re-
commend antibiotic treatment. In one trial, ten difficult cases were
selected and detailed clinical summaries of these were presented to a
group of nine doctors of varying levels of experience, and to Mycin.
The prescriptions they came up with were given to a panel of menin-
gitis experts to assess, with no clues as to the identities of the pre-
scribers. The highest score was achieved by Mycin.2

To help construct expert systems in other spheres the disease rules
were taken out of Mycin, leaving a general-purpose system called
Essential Mycin or Emycin. Using this, a quite separate expert system
was constructed to diagnose lung disease. This is called Puff and is
now in routine use at the Pacific Medical Center in San Francisco. It

* In the example, X works out to be true.
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takes data from a spirometer, a machine which measures air flow
rates and volumes as the patient breathes in and out through a tube. It
also asks questions about the patient’s history — how many cigarettes
a day and so on - and then using a knowledge-base of about 100 rules
produces a detailed description of the patient’s apparent condition
and a diagnosis of disease. The doctors who check all of Puff’s
reports sign 85 per cent of them unchanged.® With medical expert
systems, as with those in other fields, the story is the same: the systems
consistently perform as well as human clinicians.

Prospecting for buried treasures

In a completely different area, an expert system has been exciting
interest among mining corporations as well as in US government
agencies concerned with the energy problem and with exploitation of
natural resources. SRI’s Prospector takes in geological data about
the rocks and ores observed in a given area of land, levels of erosion
and so forth, and produces forecasts of what valuable minerals might
be found there.* It can display its forecasts as a coloured map on a
computer screen, as shown in Plate 1. With its 1,600 rules, Prospector
uses an inference network of hypotheses, which it tests according to
the evidence. One hypothesis might be: ‘The alteration of hornblende
suggests the potassic zone of a porphyry copper deposit.” The hypo-
theses are tested by asking appropriate questions, and with much
juggling of probability factors they are confirmed or refuted. They
can also be linked by ‘context constraints’. These say in effect, ‘Don’t
even consider hypothesis A unless the probability of hypothesis B
falls within such and such a range.’

Prospector can also reason intelligently about the information it
holds. For instance, using a separate ‘taxonomy network’ it can know
that pyrites are a type of sulphide, so if it already has some informa-
tion about pyrites it can avoid asking redundant questions about
sulphides. Similarly, if the user tells it, ‘There are pyrites present’, and
then, ‘There are no sulphides’, the machine can say, ‘Hold on! There’s
a mistake there.’

An important issue which the designers of Prospector had to tackle
was that of sensitivity. The user does not want slight variations in the
certainty of his input to cause wild fluctuations in the conclusions the
system reaches. As evidence of the effectiveness of the SRI team’s
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design, Prospector has succeeded in finding a major deposit of
molybdenum, previously unknown, in the Mount Tolman area of
Washington state. Drilling at the site has uncovered ore in remark-
ably close correspondence with Prospector’s forecast.

Other fields in which expert systems are now being applied include:

Defence

At the US Naval Oceans Systems Center a 400-rule expert system
called TECA (Threat Evaluation Countermeasures Agent) has been
developed. This is to help officers work out whether blips on a radar
screen are hostile ships or planes, what the supposed enemy might be
trying to do, and which of a large number of possible defensive
actions has the highest chance of success.

Organic chemistry

Stanford University’s earliest excursion into expert systems was
Dendral, used to work out the molecular structures of complex
organic compounds. The user gives the program the chemical
formula of the compound and data from mass spectrometer analyses,
and it then suggests the most likely arrangements of the atoms in each
molecule from the vast number possible.

Discovering a structure is quite a different task from diagnosis,
which has been the purpose of most of the expert systems discussed
so far. Thus Dendral works rather differently, and is one of a class of
expert systems based on searching, using rules to narrow down the

Figure 10. ‘Pruning’ a search tree. The shears indicate a place where the
system could have grown a whole extra sub-tree in its search, but was saved
the labour by the intervention of a pruning criterion which indicated lack of
promise in that direction (after Mark Stefik)
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searches to manageable numbers. Eliminating whole sections of a
search tree in some way is aptly called ‘pruning’, as in Figure 10.
Producing a plan is yet another possible task for expert systems; an
example of this is Molgen.

Genetics

Molgen is an expert system for helping molecular geneticists plan
experiments that involve the manipulation of DN A, the basic carrier
of heredity. This entails cutting up the very long molecules of DN A,
joining pieces together, inserting new materials in a myriad dif-
ferent possible places, and keeping track of the biological con-
sequences and the chemical tools and instrumentation required.
Molgen produces a plan, often thousands of steps long, to organize
all these. It has been used effectively in a number of experiments
including a notable one involving gene cloning in rat insulin, and will
doubtless become an important part of the promising and contro-
versial field of genetic engineering.

Computer fault finding

IBM is cooperating with Stanford to produce an expert system for
diagnosing component failures in computers and networks, a job
which is often very difficult, requiring highly skilled engineers who
are always in short supply. The expert system requires an internal
‘model’ of the computer system, and much of the research work
involves defining an adequate ‘machine-definition language’ in which
the computer can be described.

Computer system planning

Related to this, Digital Equipment Corporation, following on from
work at Carnegie—Mellon University, has devised expert systems to
help work out the configuration of a computer system best suited to
the customer’s requirements and, having done that, to fit the hundred
or so components into the various cabinets so that all the necessary
electrical connections can be made.

Structural engineering

Some expert systems are even experts about computer programs. For
example, civil engineers use in designing structures a very complex
set of programs called the Finite Element Analysis Package. The
instruction manual alone for this is four inches thick. The expert
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system Sacon has been put together to guide engineers and provide
them with plans for their use of the analysis programs.

Political-risk assessment

SPL International in Abingdon has produced for Shell an expert
system to assess the advisability of investing in a foreign country,
according to the likelihood of war, riot, nationalization and so on. It
asks questions along the lines of: ‘Has there been civil commotion?’
‘Is the government left-wing?’ ‘How big is its majority?” The program
then makes hypotheses and produces recommendations. The major
problem the system has is assessing how much reliance to place on
the judgements made by the humans in answering its questions.

Benefits and tax

An offshoot of work at the Rand Corporation in the USA is an
expert system called Demsoc, designed to help people work out their
eligibility for Social Security benefits. Several similar projects are
afoot to build expert systems which advise on how to arrange one’s
business affairs in order to minimize tax. Working at the University
of Illinois as a graduate student, Robert Michaelsen, who is also a
professional accountant, put together an expert tax adviser using
Emycin as an inference engine. ‘Taxadvisor’ generates shrewd pro-
posals for each given case. The next step will be to feed these into a
separate simulator program which faithfully encodes the intricacies
of the tax system so that the financial consequences of alternative
proposals can be precisely computed, so as to select the best scheme
put forward by the ‘adviser’.

Ms Friday to the rescue

Some such pool of electronic sanity in the proliferating jungle of tax
regulations is certainly overdue. A senior partner in one of the
longest-established accountancy firms in the City of London has
confided that the suicide rate among accountants is exceptionally
high. The reason, he explained, is that accountants by character tend
to be lovers of orderly precision, cautious, exact, upset by sudden
change or the tendency of things to fall apart. Imagine such neat
and rigid personalities under the full blast of successive waves of
revisionist hysteria propagated by new Treasury pronouncements —
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unintelligible, voluminous, ambiguously drawn, and tested in a
welter of mutually inconsistent court decisions!

Certainly business as a whole is a field ripe for the introduction of
intelligent systems. So far computers in offices have been used mainly
to get marginal increases in the efficiency of typing and the
planning of appointments. An expert system in the office should
enable the Girl Friday to make a more substantial contribution than
simply protecting her boss from unwanted telephone calls. That
accountant who is just about to jump off the window ledge is no less
important to the small business than the medicine man is to the small
village ... The chief executive and the company secretary bicker
dejectedly among the ruins. After consultation with her desk-top
computer, Friday sweetly intones: ‘If I might suggest ... we could
form a subsidiary, which in turn could act as a holding company for
certain of our assets. The new company goes into temporary liquida-
tion, is bought by an educational charity consisting of the original
directors, and meanwhile transfers its trading address to the
Bahamas. The old company sacks its board and re-engages its
directors as consultants, who promptly sue for emotional damage.
The costs of the company’s out-of-court settlements are written off
as expenses, and the directors donate their compensation payments
to the charity.’

‘Say no more Ms Friday! Write me a very short memo. Oh, and if
it works take an increase in your expense allowance!’

Where the old way is best

There are still of course very many fields of human endeavour for
which no expert systems exist as yet. Indeed, there are plenty for
which these techniques are just not suitable. Richard Duda and John
Gaschnig give an example:

Although a mathematician possesses specialized knowledge, the addi-
tional knowledge needed to function in that role is far more extensive than
current knowledge-based expert systems can handle. On the other hand,
where there are well-defined mathematical procedures for solving a problem,
knowledge-based expert systems are unnecessary.’

Douglas Lenat of Stanford relates how the expert-systems com-
pany set up by him and his colleagues was visited in its early days by
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a gambler from Las Vegas who wanted to build a system for shooting
dice. He rattled off 50 to 100 rules along the lines of, ‘If there has been
a six, hold the dice this way.” They were just the sort of rule that
knowledge engineers need. The Stanford people listened in fascina-
tion. Eventually, as Lenat comments, ‘It was only our fundamental
beliefs in the workings of the universe that got us to push him out the
door.’

It is important to remember that not all problems involving know-
ledge need an expert system, or even a computer, to solve them. For
instance, what to do if your car won’t start (check the battery leads,
check the plugs ...) is better illustrated by a printed flowchart than
by a computer. To be suitable material for an expert system, a subject
area needs to be large and to include uncertainty and incomplete
knowledge.

The uncertainty leads to another feature of expert systems which
John McDermott of Carnegie—Mellon brings out in referring to R1,
the computer-layout system he designed:

It is not clear that all (or even most) of R1’s supporters realize that R1 will
always make mistakes. The problem is that at least some of R1’s supporters
think of it as a program rather than as an expert. There is, of course, a big
difference between programs and experts. Finished programs, by definition,
have no bugs. When experts are finished, on the other hand, they’re dead.
During the last two years, I have hammered on the theme that a knowledge-
based program must pass through a relatively lengthy apprenticeship stage
and that even after it has become an expert, it will, like all experts, occasion-
ally make mistakes. The first part of this message got through, but I suspect
that the second has not. My concern, then, is whether, as this characteristic
of expert programs is recognized, Digital (or any large corporation) will be
emotionally prepared to give a significant amount of responsibility to pro-
grams that are known to be fallible.S

The tendency to confuse expert systems with programs using very
large data-bases of useful scientific facts is widespread. The difference
is that a question can only be answered by reference to a data-base if
the answer is already stored. An expert system, which may itself have
access to one or more data-bases, answers questions by reasoning and
intelligent conjecture. What is stored consists not only of individual
facts but also of more general patterns, rules and ‘theories’ from
which it infers its answers.
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Intelligent data-base at the zoo

Having said all that, we have no doubt that the techniques of
knowledge-based systems will come to be applied in areas where they
are not strictly necessary. Pat Winston of MIT gives a light-hearted
example of a rule-based system for identifying animals.” This could
actually be incorporated in a data-base kept by a zoo of details of all
its stock: their pet names, keepers, cages, diets, ages, dates of acquisi-
tion, health records and so on, as well as descriptive features (‘lays
eggs’, ‘swims’, ‘has dark spots’) and genus names (‘penguin’, ‘tiger’).
An extra feature of the system would be that it could infer facts from
fragmentary observations.

The zoo manager rings up from home. ‘This animal which seems
to have got into my back garden — I don’t know what it is, or whether
it belongs to our collection. Connect me to the new system and I’ll
try to find out.’” Using his home terminal, he has the following
conversation with the computer:

Manager: CALL TAXONOMY

Computer: TAXONOMY HERE. TELL ME SOME FEATURES.

Manager: DARK SPOTS

Computer: IS IT A CARNIVORE?

Manager: [ HOPE NOT

Computer: DOES IT HAVE POINTED TEETH?

Manager: 1DON’T KNOW

Computer: DOES IT HAVE CLAWS?

Manager: WHY?

Computer: 1 AM TRYING TO ESTABLISH WHETHER IT IS A
CARNIVORE. DOES IT HAVE CLAWS?

Manager: NO

Computer: DOES IT HAVE HOOFS?

Manager: YES

Computer: DOES IT HAVE VERY LONG LEGS AND NECK?

Manager: YES

Computer: THEN IT IS A GIRAFFE. WANT TO KNOW WHICH
RULES GOT THAT?

Manager: YES

Computer: RULE 7. IF ANIMAL IS A MAMMAL AND ANIMAL HAS
HOOFS THEN ANIMAL IS AN UNGULATE.
RULE 11. IF ANIMAL IS AN UNGULATE AND
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Figure 11. A possible inference network for an animal classification expert system (after Winston, Duda and Gaschnig®)
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ANIMAL HAS LONG NECK AND ANIMAL HAS LONG
LEGS AND ANIMAL HAS DARK SPOTS THEN IT IS A
GIRAFFE.

The inference network for Pat Winston’s toy system is shown in
Figure 11.

We have been aiming to make clear the distinction between rule-
based systems and conventional programming; this is summed up

Most
conventional Rule-based
programs systems
rule
interpreter
code or
‘inference
engine’
'y r'y
input data input data

rule base

Figure 12. The difference between conventional programs and rule-based
systems (after Duda and Gaschnig®)

schematically in Figure 12. For expert systems, using rules instead of
programs provides four basic advantages:

1. It is easy to add rules and change existing ones to expand and
improve the system.

2. The system can easily be made to explain itself by printing out the
rules it is acting on. This is useful both for those building the
system and the eventual ‘real’ user.

3. The system can be made introspective, that is, it can check rules
for consistency, and it can modify rules and learn new ones.

4. The same knowledge-base can be used for different purposes by
changing the software.

Admittedly, as yet, rule-based systems exhibiting these useful charac-
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teristics are not all that large. How they will behave, and whether they
will continue to be manageable, when they get 20,000 or 100,000 rules
remains to be seen.

Tools for building

The big problem holding up the development of new expert systems
is the work involved in discovering and encoding the rules. This can
take anywhere from a couple of man-months to several man-years.
First of all it requires the attention of a highly skilled knowledge
engineer, and there are not nearly enough of these around. Training
more runs up against the shortage of people to teach them. In the
US A especially, the growth of the whole computer industry is being
held up because the universities find it hard to hang on to skilled
technologists to do the teaching, in the face of the leap-frogging
salaries being paid by industry. This is like nothing so much as
ripping apart the carriages of the train in order to stoke the engine,
but it shows no signs of changing. Second, the time of a valuable
domain specialist has to be taken up for most of the knowledge-
acquisition process, and often for much longer than he expects.

It is not just the content of the rules that varies from one expert
system to another. It would be nice to be able to lift the rules out of a
system and just slot in those for another subject domain, but differ-
ences in the types of output of systems, according to their purposes,
mean that there often has to be wide variation in the syntax of rules.
This forces knowledge engineers despite themselves to make changes
throughout their software. In an effort to get around this and produce
an all-purpose framework for future expert systems, Stanford has
been working on a package called A GE, or Attempt to Generalize.
This provides a selection of modules that can be incorporated in the
new expert system, including facilities for forward or backward
chainingand a knowledge representation packageknownas UNITS.
A GE coaches the user on how rules should be laid out: what should
be on the left-hand side, the right-hand side and so on. Other tools
that have been developed for those constructing expert systems are
the advice language A L/X with its associated rule generator ACLS
(Analog Concept Learning System), and the interface builder RITA
and model builder ROSIE from the Rand Corporation.

However, it is essential in the long run that expert systems be able
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to acquire their own rules automatically, from data or key examples
they are given. In other words the problem is one of language: instead
of telling the machine things, we want to show it things, and have it
understand their significance itself. A picture, as we know, is worth a
thousand words because what the picture can be used to convey is a
key example. Just how it is possible for a computer program to learn
by example is something we go into in Chapter 5.

An additional and very promising use for expert systems is in
teaching humans about the subject domain. Guidon is a variation of
Mycin with extra rules added to direct a dialogue with a student so
he can learn about the infections in question and the techniques of
diagnosis. With Puff’s rules instead of Mycin’s the system has also
been teaching about lung disease. The | BM computer-fault diagnosis
system is similarly expected to be used for training human field
engineers.

While new subject areas for expert systems are being worked on,
changes in technology are promising to make the systems not only
more powerful but more accessible. Expert system packages are now
available for use on microcomputers, putting them within reach of
private individuals and small businesses and organizations. At the
other end of the technological scale, research into what is known as
Dataflow architecture will open up new vistas for expert systems. The
Dataflow work, notably at Manchester University and MIT, is an
attempt to get around the ‘von Neumann bottleneck’ in general
computing with a machine in which instructions do not simply wait
until they are activated in sequence, one at a time. Instead, each ‘fires’
independently as soon as the data it requires are available. This
speeds things up since much work can get done in parallel, but
naturally it requires a far more complex structure of machine to keep
track of everything that is going on. The advantage for expert systems
is that a rule can be made to trigger whenever its preconditions are
satisfied, rather than waiting to be called specifically by a central
controller. The process of extracting patterns also becomes easier.1°

Expert systems and society
It looks as if it will not be long before people will be able to buy

knowledge-bases in their local W. H. Smith’s as easily as they pick up
a magazine. Interactive as these will be, many people will find them
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more attractive and easy to use than passive books and papers. Other
knowledge-bases will be held on large central computers, easily
accessible to anyone with a telephone and a television-set-cum-
terminal. But would this necessarily be a good thing? There are
doubts. Researchers envisage terminals in public libraries which in
return for a few coins would provide diagnoses of all and sundry
health problems. Doctors may be uneasy about some aspects of this.
Despite the obvious attractions of getting scarce medical skills to the
Third World, the prospect of ‘Mycin for the Eskimos’, with para-
medics taking over the work and responsibilities, is a possible cause
for concern among qualified practitioners. There is a fundamental
problem of responsibility. At the moment, all output from medical
systems is checked by doctors, but presumably there will come a time
when it is not. What then if (or rather when) the system makes a
mistake?

Alternatively, if a doctor is relying on an expert system for
specialist advice, what happens if a malpractice suit arises? Assuming
that he did not use the ‘explain’ facility, or he cannot remember what
it said, or he trusted the system’s facts to be correct, he is in difficulties
if all he can say to the court is, ‘I took this action because the box
told me to.” Thus, doctors might well be reluctant to use computer-
based diagnosis. Nevertheless many are not, and have cooperated
enthusiastically in providing knowledge for their development.
Royal Sussex County and Brighton General Hospitals on their own
initiative asked Sussex University, in collaboration with Tim de
Dombeal of Leeds University, to construct a system for diagnosing
acute abdominal pain. Its principal use so far is in helping to train
junior surgeons.

Certainly there is a rational element in the fear of expert systems
putting highly paid professional people out of work. Hitherto the
threat from new technology has always hung over the low-skilled and
the low-paid — those in factory or clerical jobs. Whether professionals
will really be seriously affected is in some doubt, but there are those
who are sure that lawyers, for instance, specifically solicitors, could
be replaced by computers and that an expert system, albeit a very big
one, could actually do the job better. It is true that finding chains of
consequences in laws, and finding where laws contradict each other,
are ideal tasks for computers and are often done poorly by humans
at the moment. An improved legal service to the public would be an
undoubted boon. Still, plenty of legal barriers as well as technical
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ones stand in the way of these developments, such as changes in the
law that have to be made for computer output to be admissible as
evidence in criminal trials. The day is yet to come when the opinion
of a computer, and perhaps its reasoning, are admitted. Then, if it is
an expert system with an explanation facility, it will at least be
possible to cross-examine it!

Not all expert systems are doing work that humans are happy
to be doing. The computer layout task at Digital for instance is
extremely boring as well as being difficult, and resistance there to the
R1 system was based not on self-interest but on scepticism about
whether it would work. R1 has now been accepted as a useful assistant
and one that provides interest for humans who have the task of
improving it.

Overall, there is little doubt that the world’s demand for experts will
continue far to outreach the supply. Ronald Clark of the Inter-Bank
Research Organization points out that each individual branch bank
manager is supposed to be able to provide his customers with know-
ledgeable advice on any of the 300 to 400 services he can offer. So
fears of de-skilling can be balanced against the fact that it is normally
not humanly possible to have all the skills that ideally one needs. The
human race needs all the knowledge-sources it can get.



CHAPTER 3

Human Window on the World

A few seconds after 4.00 a.m. on 28 March 1979, an alarm echoed
through the No. 2 control room at the nuclear power station at Three
Mile Island, Pennsylvania. The operators were unperturbed at first
as minor breakdowns were not uncommon, but it was only a few
minutes before they realized that this one was far from minor. A tiny
valve in the pneumatic system had stuck, causing the plant’s supply of
secondary cooling water to be shut off. Within seconds the uranium
core of the reactor started to overheat, and despite everything the
operators tried in order to contain the problem, it became steadily
worse. A relief valve stuck open, spewing radioactive water and steam
into the reactor building and thence into the atmosphere outside. A
bubble of hydrogen collected at the top of the reactor vessel, threaten-
ing to explode at any minute. The possibility arose of the uranium
core itself melting. Either of these occurrences would cover the
Pennsylvania countryside with radioactivity.

Over the next few days, the operators together with experts from
the Nuclear Regulatory Commission struggled to get the reactor
under control, while a horrified world looked on. State Governor
Richard Thornburgh ordered the evacuation of children and preg-
nant women from the area, and large numbers of other people started
to leave of their own accord. It was a week before the owners, the
Metropolitan Edison Company, announced that a cold shutdown of
the reactor was finally in sight and life in Pennsylvania started
gradually to return to normal. Cleaning up the Augean stables of the
reactor buildings has taken several years.

Dispute still simmers over how much radiation was released into
the atmosphere during the incident, how dangerous was the 50,000
gallons of radioactive waste water that was dumped into the Susque-
hanna River, and how near was the ultimate catastrophe of a melt-
down. The repercussions have been enormous, with ‘Three Mile
Island’ a rallying cry for the anti-nuclear movement the world over,
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together with the slogan ‘We all live in Pennsylvania’. But one point
over which there is no dispute is why a problem that should have been
containable almost became a disaster. President Carter’s Commis-
sion, reporting on the causes of the accident, said: “The major factor
that turned this incident into a serious accident was inappropriate
operator action.’ In turn that was caused, as the Commission put it,
by one thing: ‘confusion’.!

This is hardly surprising, considering the circumstances. Within
the first few minutes between 100 and 200 alarms went off. As Bill
Zewe, the shift supervisor, described it afterwards:

I noticed that we had every alarm, just about every alarm, on panel 15,
which monitors most of the ICS parameters for feed water limited by
reactor, reactor limited by feed water, BT U limits, and so on. Most of these
were lit.2

The experts from the Nuclear Regulatory Commission were in the
same plight. Reactor inspector James Higgins told a Congressional
committee:

Figure 13. President Jimmy Carter visiting the Three Mile Island control
room at the height of the crisis on April Fool’s Day, 1979 (AP)
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There was a tremendous amount of activity going on in the control room.
A lot of people were involved with a lot of different problems, and that [an
indication that some hydrogen had exploded] was one of many things.
Operators were — alarms were going off; pumps were being started and
stopped; valves were being cycled, and this was just one of a myriad of those
things that was occurring throughout the entire day. And I was thoroughly
not able to follow what was going on. And I did not pick it up at all.3

A committee chaired by Dr Thomas Malone investigated the
human factors of the incident, and reported:

... the operator was bombarded with displays, warning lights, print-outs and
so on to the point where the detection of any error condition and the
assessment of the right action to correct the condition was impossible.*

The President’s Commission agreed, stating that ‘lack of attention to
the human factor in nuclear safety’ was to blame. The lesson is clear:
that unless a technical system is designed in every detail so as to be
comprehensible to the humans operating it, unless the way informa-
tion is presented fits in with the way human eyes and minds work
rather than the way the machinery works, then once the system starts
to malfunction it will tend to become unmanageable.

Trouble at steel mill

In 1975 the Dutch steel company Estel Hoogovens installed a highly
automated new hot-strip mill at its plant in Ijmuiden, on the coast
near Amsterdam. Expecting productivity to be given a boost by this
advanced equipment, the management was shocked to see the output
of the mill actually fall. Consultants from the British Steel Corpora-
tion were called in, and their report laid the blame squarely on the
design of the interface between machine and operator. New Scientist
summed it up thus:

The operators became so unsure of themselves that, on some occasions,
they actually left the pulpits used for control unmanned ... The operators
also failed fully to understand the control theory of the programs used in the
controlling computer, and this reinforced their attitude of ‘standing well
back’ from the operation — except when things were very clearly going awry.
By intervening late, the operators let the productivity drop below that of
plants using traditional control methods. So automation had led to lower
productivity and operator alienation simultaneously.*
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Matters were made worse by the fact that, in the new design, the
path of the steel strip being rolled had been enclosed, so the operators
could not even see the material they were supposed to be working
on. The consultants’ report firmly asserted that, among other things,
the operators had to be put in closer touch with the process, and
that information displays should help them understand the decisions
taken by the automation, instead of just indicating the state of a
process.

Air traffic control is causing worries to planners and travellers
alike in North America and Europe. Near misses in the air have
become alarmingly commonplace, along with breakdowns in the
complex radar and computer equipment that can leave controllers
helpless for vital seconds or even minutes. According to the Co-
ordinated Science Laboratory at the University of Illinois, American
computerized air traffic control is getting so complicated that opera-
tors have serious difficulty in telling what is going on. As for the
future, there is controversy about how replacement systems should
be designed. Some experts call for even more automation to eliminate
the uncertainty of the human element, and others argue for schemes
in which humans and machines share the load in a kind of partner-
ship. Whatever way it is done, there will always arise the case where
something goes wrong and a human has to intervene. If the system
is not designed so that he can understand it, his intervention is likely
to be too little and too late.

The end of the world, almost

Within an eight-month period over 1979-80 three false alerts were
sent out to United States forces that the country was under attack
from Soviet missiles. These alerts came from the North American Air
Defense Command’s control centre deep inside Cheyenne Mountain,
Colorado. The first was an operator error, when a data tape intended
only for exercise was inadvertently fed into the system. The second
was a component failure of a single integrated circuit. The third was,
apparently, deliberate — an attempt to reproduce the conditions of
the second as a test.®

Happily, the false alarms were all cancelled within a few minutes,
but the nerve-jangling they caused has hardly subsided yet. Clearly,
a system that can literally bring about the end of our world has to be
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very carefully designed to avoid the possibility of misunderstanding
between man and machine.

The moral in these stories is the same: that as technical systems get
more complicated, they become more and more difficult to under-
stand and therefore to control. This applies especially to computing
systems, which have to be complex even to do the simplest things. As
we strive to give them power to handle substantial tasks from the real
world, we increase their complexity to a level outside the ability of a
human or even teams of humans fully to grasp. This is happening
already: as we have described, large computer programs and opera-
ting systems are growing increasingly unmanageable both for their
designers and for their users.

If technologists carry on designing computer systems as they do
now, adding more and more power to an already shaky architecture,
there is little doubt that the machines of the 1990s will become
unusable - uncontrollable and demoralizing — the Sorcerer’s
Apprentice on a global scale. Our society, which is becoming depen-
dent on these machines, will be faced with a crisis of monstrous
proportions. Computers in their present form have in a sense gone as
far as they can go. No longer can they be built with the central aim
of maximizing performance and making the best of machine re-
sources. Instead, they will have to work on a totally different basis —
one designed to be anthropocentric. To make computers compre-
hensible, we must build them in the image of the human mind.

The inscrutable planet

One can take the baleful scenario very much further by recalling the
view of the future which has appeared and reappeared in science
fiction ever since Samuel Butler: a world being taken over by
machines. This tends to be dismissed by technologists as nonsense.
But is it nonsense? Consider the computers that are already being
used to run our cities. Include not just the town hall but the public
utilities, sanitation, medical and education services, the banks, the
airline system, the traffic control system, the building and planning
authority and so on. There comes a point when their computing
networks begin to talk to each other, initially for quite simple prag-
matic reasons. If the road is being dug up, refuse collection must be
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re-routed. When someone is booking a flight, the airline needs to
check the validity of his credit card.

Extend these ideas to the year 2010 when the city administration
network and the medical network and the news media network and
the bank network and the traffic control network have considerable
intelligence built into them so that they are smarter than people for
most tasks. They also have their own radio-linked, free-moving
effectors. The networks are all communicating quite richly and
densely with each other. Imagine then an eventual situation in which
computer control networks for entire cities set their own goals, in
which nobody can be found any more who understands even the
documentation, let alone the systems themselves. Each person sees
only one little pathway in the electronic jungle. We will then have to
be certain that all evaluation functions and heuristic rules are tuned
just right, because an electronic city will have to carry out all the
normal administrative trading and bargaining with other electronic
cities. Each city controls certain resources and can make certain
concessions. One city wants something done about the water supply,
but another’s control system can make that cheap or expensive for
them. In exchange, if the traffic system could be altered so that the
football crowds on Saturday go by another route ... and so forth.
By the year 2500 or 3000, Homo sapiens could end up as a race of
uncomprehending parasites, living, like fleas on the backs of dogs,
in the nooks and crannies of automated cities run by giant electronic
nerve networks with their own inscrutable strategies and laws of
action. Worse than that, we might become a superseded species, when
the dogs ask of the fleas, ‘What have you done for us lately?” To
prevent this happening it is not a matter just of taste but of dire
necessity that technology acquire a human face and style.

The chaos scenario

Turning to a less cataclysmic but more immediate set of problems,
let us ponder the widespread economic stagnation, soaring un-
employment and crises of confidence that have been gripping the
globe ever more tightly over recent years. The phenomena are real
enough, but superficially they are distinctly odd. Consider first
economic growth, or non-growth. The productive capital of indus-
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trial nations is not actually shrinking. It is, however, being steadily
transformed by the continuing advance of technology. What is the
nature of this steady transformation? Fixed capital is getting more
productive. Workers in factories can produce far more in a day than
they could thirty years ago. A man can mow more meadows than are
needed to offset the rental of his mowing machine. Next comes the
self-piloted mower.

Moreover, technology is not merely advancing at a constant rate.
All reasonable scales of measurement show it to be accelerating. So
why are we not much better off? Even allowing for the inevitable
disturbance that is caused in sectors immediately affected while
change is taking place, the human race as a whole should be receiving
substantial benefit. Something must be in the works, clogging up the
cornucopia which by now we would expect to be delivering abundance
to us all.

Everyone is, it seems, united in a common sense of grievance about
the matter. But people differ as to which component in the whole
process should be in the pillory. To some it is evident that the union
shop-stewards of our land, possibly in league with tightly knit,
politically motivated subversives and wreckers world-wide, have
worked the whole baleful trick. To others the master culprits are to
be found in the boardrooms of the giant corporations and finance
houses, possibly in league with tightly knit, politically motivated
multinationals and cartels, topped up with a gnome or two of Zurich.
There is a third school of thought, not inflammatory like the fore-
going two, but twice as loony. This school puts the blame on tech-
nology itself. It is not unknown for a frustrated user to set out
systematically to punish a non-vending vending machine, not being
satisfied until all future capability has been removed from it.

Perhaps, though, the anti-technology school is not entirely loony.
At least we should consider the idea, since the analysis given here
makes technology look uncommonly like a non-vending vending
machine.

We have to take a long look back over the sweep of our history,
and ask whether there has been any settled evolving pattern running
through it. Such a pattern does stand out — the discovery of agricul-
ture set it going. But through the dozen millennia since then our
ancestors seem to have been unaware that a unidirectional process
was in train until the last phase of acceleration during the nineteenth
and twentieth centuries. The consistent pattern, step by painful step,
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with many falterings and setbacks, has been the augmentation of
man’s comprehension and control of his world.

How has this come about? Without doubt through technology,
leavened in recent centuries by a pinch or two of science. ‘Tech-
nology’ is here used in its broadest sense to include all the useful arts.
So if science and technology give us comprehension and control, and
if their power and extent are growing faster and faster, does it not
follow that so too must man’s mastery of his environment, including
the production of wealth?

If the environment did not change, then well and good, but compre-
hension and control must be measured as a ratio. Specifically, we
must relate the power of our instruments for comprehending and
controlling to the complexity of the environment to which they are to
be applied. A prime consequence of the rise of technology has been
that man’s environment is increasingly man-made, becoming, in the
nature of the whole process, more and more complex.

So let us consider the comprehension/complexity ratio. So long as
the numeratoris growing faster than the denominator, we are winning.
Ifitis the other way around, sooner or later complexity begins to over-
take our ability to understand and subdue it. The change-over point
was reached by industrial man at some point during the past decade.
Fewer and fewer people are employed to produce. More and more
are employed in the effort to keep track of what is going on.

Complexity the culprit

Unfortunately, their efforts are not doing much good. It is becoming
increasingly clear that it is this very administrative complexity that
isin large part to blame for our economic stagnation. Production and
trade entail action, and this is blocked by complexity and confusion.
If we do not understand how to operate the system, we cannot expect
to get much out of it. Complexity slows things down — surely that is
the spanner lodged in the works.

Again the solution becomes clear: for us to escape from complexity
pollution, we must reshape technology into a form designed specifi-
cally for comprehension. We may thus be able to turn the compre-
hension/complexity ratio on its head.

To get an idea of how it is possible to do this, let us consider again
the commodity which we have already shown to be crucial to any
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cognitive activity, namely, knowledge. The question is, how is know-
ledge represented in a machine? Traditionally, in a way totally differ-
ent from the way humans represent it. This has occurred for reasons
of economy, or simply because technology has not accepted compre-
hensibility as a primary goal. Either way, the result is that while the
machine may do its job satisfactorily under normal conditions, if
something untoward happens the humans around the machine will
be hard put to know what to do, or even to be sure whether something
has gone wrong at all. A striking example can be drawn from the field
of computer chess.

Why chess? Readers acquainted with research into genetics and
heredity will be aware of the significance of the fruit fly Drosophila
melanogaster. This insect’s small size, fecundity and generation cycle
of only eleven days allow scientists to observe the effects of their
manipulative breeding on subsequent generations without having to
wait long periods and commit large floor spaces and funds for feed-
ing. Chess is a problem-solving task compact enough to be embodied
to a workable extent in a computer but large enough to make indus-
trial problems of scheduling seem almost trivial. Chess has been
described as the Drosophila of machine intelligence.

The strange case of Thompson'’s table

At the meeting in Toronto in 1977 of the International Federation
for Information Processing, Kenneth Thompson of Bell Telephone
Laboratories presented a computer program for playing the chess
end-game of King and Queen against King and Rook. He had done
this by the ultimate in ‘hammer and tongs’ methods: in the absence
of a complete set of rules for playing the end-game, he had previously
programmed the machine to work out what to do in every single
possible position —and there were four million of them. This was done
backwards, by taking every position and working out what the
best-move predecessor would have been. All these moves were then
loaded into a gigantic ‘look-up’ table in the machine’s memory, each
entry in the table simply saying, ‘If the pieces are in these positions,
move this piece there.’

It is known from the theory of chess that given best play, this
end-game is an inevitable win for the Queen’s side, except for a few
special starting positions. Chess masters can ordinarily guarantee to
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win against any opponent. So when playing with the Rook, Thomp-
son’s program merely made whatever move would stave off defeat
for longest. Present at the conference were two International
Masters, Hans Berliner, former World Correspondence Chess
Champion, and Canadian Champion Lawrence Day. Thompson
invited them to demonstrate winning play for the Queen’s side
against the machine. To their embarrassment they found they could
not win, even after many attempts. Yet every position they were
confronted with in the entire course of play was a winning one for
their side.

The machine repeatedly conducted the defence in ways which to
them were so bizarre and counter-intuitive that they were left grasp-
ing air, time and again missing the best continuation. For example,
the cardinal rule which chess players learn about this end-game is,
‘Never separate King and Rook’. The assumption is that the Rook
needs the King to help protect it from the Queen. Yet the super-table
separated the King and the Rook again and again, having found
some path, however narrow and convoluted, through the problem
space that maximally postponed its supposedly inevitable doom.

Naturally Berliner and Day found the experience upsetting. They
wanted to ask the program to explain its strategy, but this of course
neither it nor its author could do. The answer in every case was, ‘It’s
in the table.” Its knowledge was comprehensive but there was no
representation of the knowledge in terms of goals, opportunities,
risks, themes, tactical ideas and the rest of the rich conceptual struc-
ture in terms of which chess masters frame questions and receive
answers. The machine was in no position to give answers like: ‘At this
stage White must drive the enemy King onto the edge of the board.’
What it was lacking was a conceptual interface whereby the machine
and the human could share knowledge in forms which humans could
grasp, namely, concepts. It is the task of knowledge engineering to
design and construct such conceptual interfaces to allow people (who
are still much more intelligent than machines) and machines (which
are already much cleverer than people) to understand each other.

Hazards of the super-table

It may be said that chess is just a game. But let the reader generalize
a little. Thompson’s super-table is not an unrealistic example. While
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the search for solutions to difficult problems struggles slowly ahead,
electronic technology is galloping. This has been bringing the price
and physical size of computer memory down at an unheard-of pace.
Trillion-bit memories are already in existence, and Lawrence Liver-
more Radiation Laboratories have issued specifications which call
for this capacity to be pushed up by a factor of several thousand.
Optical storage promises to exceed even these scales of capacity. Such
changes will inevitably tempt people to set up in such memories huge
data-bases of questions and answers in a very wide range of subject
areas, wherever problems need to be solved. While these might
appear a boon to man, they actually pose a major social hazard.

At first sight the ability to hold in a crude fashion trillions of
questions paired with their answers might seem not very useful, but
in fact most practical knowledge can be expressed in this form:

‘What is the square of 317" ‘961.’

‘What is the right thing to do when lost?’ ‘Ask a policeman.’

‘What is the freezing point of the seas?” ‘-2°C.’

‘What is the truth-value of Fermat’s Last Theorem?” ‘Unknown.’

Computer technology seeks today to move into tackling difficult
problems of the sort computers now cannot solve, problems for
which there is no straightforward procedure which in a feasible
number of steps can find the answer directly from the question by
calculation. But it often happens that although a problem is difficult,
its inverse is not. For instance, calculating a square root is quite
involved, but finding a square is easy. So a schoolchild might consider
it more economical to work out the squares of every number he or
she could conceivably be asked for and fill a huge table with the
answers (listing the answers, not the questions, in numerical order,
perhaps with some interpolation to fill in gaps). Then, whenever a
square root is needed, it is looked up in the table. This is the ‘inverse-
function method’, by which Ken Thompson’s chess-playing program
was built. But as we saw, this technique has one major drawback —
the result is inscrutable to human users.

Socrates agrees
One might say that a race of blind question-answerers such as this

which so debases - by dispensing with — human understanding and
judgement would be better uninvented. Interestingly enough, this
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argument was first raised over 2,300 years ago by Plato. In the
Phaedrus he has Socrates tell a story about the Egyptian god Thoth,
who goes to the god-king Thamus and says: ‘My Lord, I have
invented this ingenious thing called writing, and it will i 1mprove both
the wisdom and the memory of the Egyptians.’

Thamus replies that, on the contrary, writing is an inferior substi-
tute for memory and understanding. ‘Those who acquire it will cease
to exercise their memory and become forgetful; they will rely on
writing to bring things to their remembrance by external signs instead
of on their own internal resources.’

Socrates cites Ammon against the fallacious view that ‘one can
transmit or acquire clear and certain knowledge of an art through the
medium of writing, or that written words can do more than remind
the reader of what he already knows on any given subject’. In other
words, men will be led to think that wisdom resides in writings,
whereas wisdom must be in the mind. “You might suppose’, Socrates
adds, ‘that written words understand what they are saying; but if you
ask them what they mean by anything they simply return the same
answer over and over again.’

In short, Socrates’ complaint is that writing fails to pass Alan
Turing’s famous test (by which a machine can prove it is really
intelligent if it can fool a questioner, over a teleprinter link, into
thinking he is conversing with a human being”). And so it does fail.
If it could explain what it contained, we could say in a sense it
‘understood’ and so was showing intelligence. As writing fails the
Turing Test, so too will the trillion-bit question answerers of the
future. But like writing, they will assuredly survive and help to change
our world. Will this be good or bad? Unless the substance of Socrates’
complaint is seriously investigated in the new context, these giant
question—answer systems will be a mixed blessing and could on
occasion get their users into trouble. Such data-bases, remember,
store only the basic elemental unvarnished facts of the given case, and
contain nothing corresponding to understanding, inference, judge-
ment, classificatory concepts and the like. Truly, ‘... if you ask them
what they mean by anything they simply return the same answer over
and over again’.

So long as the contents of the electronic super-table remain purely
factual in the ordinary sense, then nothing worse is likely to result
than exasperation. Infallible answers obtainable on tap, over un-
imaginably vast domains of discourse, will be readily accepted. But
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the absence of any explanations to accompany the answers will be
taken by the users in bad part. ‘Why’, a chemist user will say, ‘does
this pattern from the mass spectrometer indicate that the unknown
compound is some particular poly-keto-androstane?’

Answer: ‘Because the trillion-bit dictionary says so!’

The chemist then asks, ‘How does it know? How did that answer
get there in the first place?” If the super-table has been constructed by
the inverse-function method, even telling him exactly how it got there
will not make him much the wiser. He and his colleagues may be
goaded into building new explanatory theories of what they find in
their super-tables. If so, then this is to the good, and presages new
pathways of scientific advance.

The lunatic black box

On the other hand, a table of question—answer pairs is not restricted
to encoding factual information of this kind. The format lends itself
equally well to expressing strategies, with the table consisting of
situation—action pairs. This is exactly what Ken Thompson’s chess
program consisted of, and we have seen the problems that led to. But
what if the system were doing something of social importance, such
as managing a complex control function in factory automation,
transport or defence? Two supervisors, let us imagine, are responsible.
for intervening manually in the event of malfunction. The system now
does the equivalent in industrial or military terms of ‘separating its
King and Rook’. ‘Is this a system malfunction?’ the supervisors ask
each other. They turn to the system for enlightenment. But it simply
‘returns the same answer over and over again’.

The problem becomes of global importance when the system being
operated is in air traffic control, air defence or nuclear power. It is
not too difficult to decide that a human decision-taker, say, a
policeman directing the traffic at a crossroads, is drunk or mad. But
US plans for air traffic control envisage ultra-powerful data-base
and scheduling computations encapsulated in giant ‘black boxes’.
What will the human supervisors do on the presumably rare occa-
sions when East Coast flights are mysteriously re-routed to Dallas, or
inexplicable groundings of harmless carriers raise doubts as to the
system’s sanity? As control devices and their programs proliferate,
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their computations may more and more resemble magical mystery
tours. Most critical of all, if an air defence warning system suddenly
says, ‘There are twenty Russian missiles heading this way,” before the
officer in charge pushes the Doomsday button he must be able to ask,
‘What makes you think that?’

Any socially responsible design for a system must make sure that
its decisions are not only scrutable but refutable. That way the
tyranny of machines can be avoided.

There is of course a method of solving difficult problems that is
totally different to the use of super-tables, namely, exhaustive search-
ing through branching trees of possibilities: ‘look-ahead’, as when
working out the outcomes of possible chess moves and choosing the
best. Tables — we could call them ‘look-up systems’ — require vast
amounts of data storage but little processing. In contrast, in order
for a look-ahead search to be completed in a tolerable length of time,
a great deal of processing power is needed but little memory. These
two extremes are shown in Figure 14.
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Figure 14. The spectrum of processing versus memory

What happens when you get a pronouncement from a look-ahead
system and you ask it ‘Why?’ Canit tell you anything? Most certainly!
It can detail all the calculations it did in sequence. It can even disgorge
the entire analysis tree. Could anyone wish for a more profound
response?

On the contrary, no mortal mind could possibly digest so much
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information. The tree could contain a million nodes, or a hundred
million! The Three Mile Island fiasco is to the point — the operators
made more mistakes, not fewer, because they were deluged with
alarm signals, meter readings and computer print-outs. While a
look-up system is too shallow in that it gives too little information, a
look-ahead system tends to be too deep by giving too much. This is
a separate issue from the power of the system — how much it is capable
of doing. This distinction is shown in Figure 15.
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Figure 15. Two dimensions of a computer embodying an intellectual skill

‘ The human window

On the scale shown in Figure 14, ‘deep’ systems are at the processor-
intensive end while ‘shallow’ ones are at the memory-intensive end.
Somewhere in between is a narrow band where both the processing
capability and the scales of memory are equivalent to those possessed
by humans. We call this the ‘human window’, and it is here that
computers must operate in order to be comprehensible to us whom
they are intended to serve. Both the reasoning power required and
the way in which information is held must be on a human scale —
elsewhere lies inscrutability.




Human Window on the World 71

A view which we shall call ‘technomorphic’ goes as follows: ‘The
machine’s way of going about chess, or weather prediction, or plant
control, or route scheduling, is bound to be different and ought to
be different. The relative costs and constraints associated with the
various aspects of the problem-solving process are quite disparate for
machines and brains. Strategies which optimize performance with
respect to two such contrasted profiles are doomed to diverge. What-
ever way is most efficient for the machine to do the problem is the
way we want to go. If Karpov has not got the calculating speed and
working memory to grow a mental look-ahead tree of a million board
states, or if our top meteorologists are not smart enough to be able
to do partial differential equations in their heads, that is just too bad.
Why should the programmer seek to copy their defects?’

From the point of view of optimizing the use of the machine the
technomorph is right. But in the light of the brain’s woeful disabilities
as regards storage and processing speeds, efficient machine programs
are not workable as representations for people. Where the techno-
morph goes wrong is in supposing that there is no criterion involved
but machine efficiency.

Futurologists, in particular I. J. Good and Ed Fredkin, director of
MIT’s celebrated Project M A C, have speculated about the develop-
ment of an ‘ultra-intelligent machine’ which would be able to
‘reprogram itself within hours, constantly improve itself and rapidly
become hundreds of times smarter than human intelligence’. Some
people are worried about this. But the real social danger, certainly
the first we shall see becoming manifest, is not the ultra-intelligent
machine but the ultra-clever machine. The dangerous system is the
one tuned by economic pressures to perform its task with machine-
efficient inscrutability. These machine-oriented criteria can be shown
to be irreconcilable with easy communication of concepts between
man and machine. So performance must be sacrificed for the sake of
transparency. Is that an economically acceptable sacrifice? Surely it
is. Machines continue to become cheaper; human beings on the other
hand do not. Adding artificial intelligence to the machine can offer
the needed humanizing bridge. But if machine-optimality rather than
human-optimality remains the design criterion, we are ultimately
headed towards a technological black hole.
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Syntactic sugar is not enough

So how should we design our machines to fit the ‘human window’?
The answer is not as straightforward as it may seem. Interactive
diagnostics and trace routines, even when sprinkled with the very best
syntactic sugar, do not necessarily suffice. Such things resemble
orthopaedic shoes built to correct a patient’s rolling gait: they may
help, but if his trouble stems from a congenital abnormality at the
hip joints, then the patient also needs reconstructive surgery. Just as
there are walkable and non-walkable skeletal structures in human
anatomy, so there are explainable and non-explainable computa-
tions, and the differences can be traced to the respective program
structures.

Putting it another way, the addition of a simple ‘user-friendly front
end’ when the subject area is very complex is like distributing power-
ful telescopes to inhabitants of Dover anxious to gaze upon the Eiffel
Tower. To people ignorant of the curvature of the earth it could seem
like a good idea.

In order for any beings, human or machine, to talk to each other,
they must share the same mental structures. People’s mental struc-
tures cannot be changed, so we must change the machines’. We need
to restructure the entire way problem-solving programs do their jobs,
not just how they interact with the user. The way the program holds
information — its problem representation — must be recognizable to a
human as a concept with which he is familiar. Both Ken Thompson’s
table and the weather-forecasting differential equations are non-
starters in this respect. Rule-based expert systems on the other hand
are specifically designed to operate with human concepts, both
accepting them from the domain specialist and displaying them to the
user as explanations. These provide a start, but much research still
needs to be done on the technology of the conceptual interface.

Softly, softly automation

We call the application of these ideas to factory equipment and other
control systems ‘soft automation’. This is increasingly needed for
cleaning up the complexity pollution which hard automation tends
to generate. The greatest social urgency attaches not to extending
automatic processes but to humanizing them. Of course, for tasks of
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low-to-middling complexity, opacity is not really a problem. We have
lived with it for a long time without any ill effects. Suppose that a
resource allocation program schedules a job better than a human
project director. How much desire does he feel to pry into its detailed
workings or to argue with it, so long as it is doing what he wants? It
can be as much of a ‘black box’ as it chooses.

However, there are other applications for which an ‘open box’
mode is essential. As yet, there are few of these, since information
processing has yet to penetrate far into the more complex and respon-
sible levels of human affairs. ‘Complex’ and ‘responsible’ are separate
reasons for insisting that a program operate within the human
window. Some problems are so difficult that a man—-machine intellec-
tual partnership is needed. Others involve life and death, or the
manageability of the economy.

One computer program for diagnosing acute abdominal pain, en-
tirely lacking in ‘explain’ facilities, continues to be used by the doctors
involved only through pressure from higher authority. Despite its
potentially life-saving power, clinicians cannot feel confident using a
black box. True expert systems such as Mycin, however, are capable
of giving answers to the question, ‘How did you work that out?’

With soft automation, systems are forced at the design stage into
the human mental mould. Looking to the future when teams of
cooperating robots are at work in our factories, we should ask, ‘How
should signals be passed between robots? Along wires, by infra-red
beams, radio or some other humanly inaccessible channel?’ Synthe-
ized voice would be better, so that human supervisors can keep an
ear open for what is going on, as has been shown to be feasible by
work at Edinburgh.

Enter the might of Japan

Whether or not these ideas are widely accepted in Europe and North
America, they certainly are in Japan. The Japanese government has
unveiled plans for a highly ambitious programme to design and build
a completely new range of computers for the 1990s — the Fifth
Generation, as it is called.® These machines as projected will be able
to understand natural language and speech, interpret the visual
world, tap large knowledge-bases, and solve problems by deductive
and inductive inference. How exactly are they going to do these
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things? They have a few details to work out yet! However, it is clear
from what the Japanese are saying that the notion of the conceptual
interface is central to their ideas. Despite their lack of experience in
intelligent knowledge-based systems up to now, they are determined
to move substantially in this direction. They are even talking about
the main programming of their machines being done in a ‘logic
programming language’, a technique originating from artificial in-
telligence work and differing radically from conventional computer
languages, as we discuss in Chapter 8.

Edward Feigenbaum points out the interesting fact that the
Japanese are not uncomfortable at all with the idea of intelligent
machines. There are few debates in Japan agonizing over the social
impact of this new technology. He suggests this is because a central
part of Shintoism is reverence for objects, in which sentient beings
are seen.

Be that as it may, the Japan Information Processing Development
Centre as part of its exposition of the Fifth Generation programme
has produced a widely circulated picture which we reprint as Figure
16. While the diagram may seem confusing, it clearly shows the
central position of the conceptual interface. Certainly the Japanese
plans are ambitious, even grandiose, but in the light of that country’s
industrial success in other fields so far, it may be prudent for Europe
and North America now to think hard about where they are going.

All over the world certificates of humanoid mentality may one
day be demanded before certain responsible tasks are entrusted
to machines. Motorists have their vehicles certificated for road-
worthiness. More recently society has extended its interest beyond
the question of whether the vehicle functions reliably, to the question,
‘Does it also make an intolerable noise, or emit clouds of poisonous
fumes? In future time any computing system on whose functioning
large numbers of people depend may be refused certification if its
strategies are hidden in clouds of impenetrable complexity.



CHAPTER 4

Thinking About Thinking

The use of computers to implement processes of thought has given
rise to more nonsense than ever came from Bishop Wilberforce. In
1860 in Oxford this worthy debated publicly with Thomas Henry
Huxley the newly published evolutionary theories of Charles Darwin.
The level of the debate can be judged from his question to Huxley as
to whether he claimed descent from the monkeys through his father
or his mother. Even today, children of the American Bible belt are
taught to sing:

I ain’t no kin to the monkey, no, no, no,
And the monkey ain’t no kin to me.

I don’t know much about his ancestors
But mine didn’t swing from a tree!

Regrettably, the artificial intelligentsia are to blame for contri-
buting their share of nonsense. As an example, one can even find in
textbooks the definition of A1 referred to earlier which equates it with
solution by computer of problems that would require intelligence if
performed by humans. That is nonsense even now, when unintelli-
gent computers are taking on tasks that require high orders of intelli-
gence from human solvers. Ken Thompson’s program Belle em-
bodies little chess knowledge, and no capacity at all for general
reasoning, but by dint of growing a tree of several million possible
future board-states in its analysis of each move, it can without
difficulty defeat 499 out of every 500 chess players in the world. Any
one of these would surely have our sympathy were he to exclaim:

I ain’t no kin to the chess program, no, no, no,
And the program ain’t no kin to me.

I don’t know much about its thought processes
But mine don’t grow on a tree!
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The van Dusen delusion

It is clear that the machines we build must think the way humans
think. So how do humans think? That is a large question, but we can
shed light on it by looking at some results of research into vision,
speech, the way people with prodigious skills in memory and calcu-
lating seem to work, and the techniques all of us use to make sense
of the world around us. Prodigies at mental arithmetic provide an
interesting example. Some make a living as stage or fairground
performers (or nowadays as television performers), while to others it
is just a pastime. In the age of computers human calculators are
not of great economic value. The comparison with computers is
apt, because most people imagine that these human prodigies have
brains with the raw bit-handling capacity of at least an eighty-million-
instructions-per-second Cray 1 machine. This is the ‘van Dusen
delusion’, brought out by Julian Symons in reviewing the short
stories of Jacques Futrelle, an American thriller writer of around the
turn of the century. Futrelle’s hero-detective is Professor Augustus
S.F.X. van Dusen.

He is introduced to us when he refers contemptuously to chess, saying that
a thorough knowledge of the rules of logic is all that is necessary to become
a master at the game, and that he could ‘take a few hours of competent
instruction and defeat a man who has devoted his life to it’. A game is
arranged between the Professor and the world champion, Tschaikowsky.
After a morning spent with an American chess master in learning the moves,
the Professor plays the game. At the fifth move Tschaikowsky stops smiling,
and after the fourteenth, when van Dusen says ‘Mate in fifteen moves,’ the
world champion exclaims: ‘Mon Dieu!’ (he is not one of those Russians who
know no language but their own), and adds: “You are not a man; you are a
brain — a machine - a thinking machine.’!

To calculate a mate in fifteen moves knowing nothing but the moves
would occupy the Cray 1 for something like 103° years of continuous
running, so it is hard not to feel sympathy with Tschaikowsky. Had
he known more physics Tschaikowsky would have realized that the
great detective’s performance was not just superhuman but actually
supernatural. Limitations of the speed of light and the atomic dimen-
sions of matter decree that no machine could ever perform by brute-
force, look-ahead calculation the feat which he had witnessed, not
even a ‘thinking machine’!
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The puny human brain

In fact, real calculating prodigies are not particularly good at calcu-
lating. Their skill lies in the ability to assemble rapidly in their heads
a calculating plan which trivializes the arithmetic needed. Their
strategies are totally different from those of computers, which is
hardly surprising, considering that the human’s calculating device is
made of jelly rather than silicon. Let us take a look at some perform-
ance parameters of the brain, viewed as an information-processing
device. The calculating and memory capacities shown in Figure 17
are so low by present-day electronic standards as to be embarrassing.

1. Rate of information transmission along any input or 30 bits per second
output channel

2. Maximum amount of information explicitly storable by  10'° bits
the age of 50

3. Number of mental discriminations per second during 18
intellectual work

4. Number of addresses which can be held in short-term 7
memory

5. Time to access an addressable ‘chunk’ in long-term 2 seconds
memory

6. Rate of transfer from long-term to short-term memory 3 elements per second
of successive elements of one ‘chunk’

Figure 17. Some information-processing parameters of the human brain.?
Estimation errors can be taken to be around 50 per cent. ‘Bits’ refers to units
of information measurement. Thus, thirty Yes—No decisions are sufficient to
discriminate in a second one photographic portrait from an ensemble of
a billion alternatives. The number of black-and-white dots scanned in
the process is typically very much higher

Bearing this in mind, it must be that the virtuoso performance,
whether of calculating prodigies, or chess masters, or any other giants
of intellectual life, is built in another way, very different from the
electronic — a way which compensates for man’s tiny working
memory and lumbering processor.

Consider, in particular, the upper limit to the quantity of infor-
mation that can be acquired and stored in a lifetime. It could be
argued that holding in memory a few economically coded facts and
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principles might suffice to generate much larger quantities of explicit
information, by high-speed deduction from the initial compact form.
But the fact that the brain’s calculating speed amounts to a mere
twenty binary discriminations per second eliminates that possibility.
The rate at which we can mobilize information by calculation is of
the same order as the rate at which we can take it into store directly
from the outside world. It follows that our perceptions of the objects
and events around us must be heavily eked out by reference to
information previously taken in and stored. The meagre flow of
sensory data is in itself insufficient for perceptual interpretation.

Squares in memory

The form in which people store visual information is far from being
simply a copy of the image from the retina. A great deal of analysis
and coding is done. This has been shown by some interesting studies
made of children’s drawings by Jean Piaget’s school. In the course of
a systematic follow-up,® Jean Hayes showed one 3}-year-old girl a
square and asked her to copy it. What she produced is shown in
Figure 18. First she drew the picture on the left, which is unsurprising.

(Child’s own commentary) “For going up

and down’
[verticals]

/V

‘There for
stiff things'
[corners]

X\

‘These are the
side bits’
[horizontals])

Figure 18. Copies of a square, drawn by a 34-year-old girl

But then she drew the beetle-like object on the right, which is totally
unlike anything that an adult would expect to represent a square.
When asked to explain it, she pointed out three elements of the
drawing: ‘Stiff things’, things ‘going up and down’ and ‘side bits’. On
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further prompting she pointed these out on the original square, and
it became clear that ‘stiff things’ were the corners, things ‘going up
and down’ were the vertical sides, and ‘side bits’ were the horizontal
sides.

Why did she draw it like this? She had already shown she could
make a ‘proper’ adult-type copy, as on the left. The Piagetian ex-
planation which Hayes’s work has confirmed is intriguing. Presume
for a moment that when we store squares in our memory, we retain
not a two-dimensional image but a structural description. A seman-
tic network of a square might be such a structure, as in Figure 19. The
resemblance of this to the child’s second drawing is distant but
uncanny. It seems as though, as it were without noticing, she has for
some reason on this occasion omitted the final reconstruction phase
of the remembering process and is symbolizing in a graphical langu-
age the descriptive structure with which she represents squares in
memory. What seems to emerge from this and other studies by
psychologists is that the brain stores information according to
pattern-based rules in a manner strikingly similar to the way expert
systems hold their knowledge.

square

corners
('stiff things’)
verticals
(‘up and down')
horizontals
(‘side bits’)

incorporated i

incorporategq in

Figure 19. Semantic network of a square
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Boxes of the speaking brain

Certainly the brain has special ‘boxes’ for doing the different jobs
required of it. These appear to be individually tailored for whatever
function is involved, and even the most clementary forms of storage
and retrieval are handled in this way. Investigators some years ago
were confused by the clinical effects of brain injury on the ability to
speak. This ability is lost as a result of damage anywhere in quite
extensive regions of the cortex (outer layer) of the left half of the
brain. It seemed that the function somehow had to be diffusely
represented. More detailed analysis has refuted that conclusion. The
clue is that there are many different sub-functions of speech pro-
duction, from vocabulary management and sentence construction to
articulatory movements of tongue, lips and palate, control of vocal
cords and voice box, breathing control and so forth. It is now
established that injuries in different brain locations undermine speech
production differently. So the design principle of ‘special boxes’ is
saved.

A form of Broca’s Aphasia results from highly localized injury. The
patient talks like an Aberdonian’s telegram, omitting all the gram-
matical signposts like ‘the’, ‘a’, ‘up’, ‘down’, ‘by’, ‘to’, ‘in’, ‘this’, ‘of”’,
‘when’, ‘is’, ‘are’, ‘will’ and so forth, and also the grammatical in-
flections which distinguish, say, ‘bite’, ‘bites’, ‘bit’ and ‘bitten’. Since
these people seem to understand the speech of others, the condition
was at first thought to be a disorder of speech production, leaving
comprehension unaffected. This has now been disproved. These
aphasics have their ‘grammar box’ as totally inactivated or absent
when listening as when speaking. But by inferring likely meaning
from their knowledge of nouns, verbs, etc., they manage to perform
plausibly on comprehension tests.

Normal brains employ different retrieval mechanisms according to
whether they are handling words of the ‘signpost’ or the substantive
type. This provides us with an instance of ‘special boxes for special
tricks’. Patients with this aphasia, as expected, have only one word-
retrieval mechanism and do not handle words of the first type at all
— except to recognize that the words exist and belong to the language.

Colour vision is another example of ‘special boxes for special
tricks’. While the colour spectrum is physically no more than a
continuous range of different wavelengths, it is convenient to break
it down into segments for summarizing and classifying, and this is
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what the biological system does. We give colours names: red, yellow,
green, blue and so forth. From the point of view of a technologist
building a robot with colour vision this is arbitrary, especially con-
sidering the fact that different cultures draw different boundaries
between colours, and that some languages have numerous colour
names and others have hardly any. The technologist might go ahead
and design a system using colour filters to break the spectrum down
in a way which optimizes some parameter of engineering cost or
convenience. Belatedly he would hear of the neurophysiological dis-
covery that the human retina has three types of colour receptor, each
tuned to respond to a different segment of the spectrum, correspond-
ing broadly to ‘red’, ‘green’ and ‘purplish-blue’. Ignorance of such
‘special boxes’ may add to the technologist’s difficulties when he
wishes to provide for communication of colour concepts between
user and robot.

The memory men

Although the van Dusen delusion is at its most conspicuous in the
matter of processing power, the onlooker tends to endow the expert’s
brain with equally impossible properties of storage. Just as calcula-
ting prodigies do not calculate any faster, and chess masters do not
analyse larger numbers of moves in the forward tree of possibilities,
so the professional memory men impress large audiences without in
fact having any better or worse memory than the next man. Some-
how the audience convinces itself that the performer is actually
storing and addressing each atomic item, just as though he had some
vast trillion-bit, random-access store inside his skull.

Harry Lorayne, in his How to Develop a Super-Power Memory,
claims that anyone can acquire the same gift just by learning his
mnemonic rules.* These centre round the systematic formation of
associations for pairwise linking of concepts, coupled with the use of
imagined sequences of events, that is, stories. The latter was regularly
exploited by ancient Greek orators for learning speeches. The text-
books on rhetoric advised reading through the speech while per-
ambulating accustomed terrain, for example one’s house and
courtyard. Each time the speech was conned, the same journey would
be made, until each sentence was tagged by association with a
familiar spot. When finally launched on the speech, the orator needed
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only to imagine himself sauntering over the route. As in his mind’s
eye he passed each familiar sight, the corresponding passage of text
would be triggered from his memory.

Ridiculous, weird, obscene, violent and generally far-out images
make the best associations. Suppose that your private mnemonic
code for the first ten numbers is: ‘Nought is for sport; one is a bun; two
is a shoe; three is a tree; four is a door; five is a hive; six is Weetabix;
seven is heaven; eight is a date; nine is for wine.” Someone speaks fairly
slowly the following number to you with the idea that you should
recall it later: ‘803,735,204,381,692.” The memory man’s approach
is to put together a rapid mental scenario as the digits are spoken,
something like this: ‘I have a date with an all-in wrestler but she gets
up a free thinking to make it to heaven, but falls out of the tree onto
a bee-hive getting bees into her shoe which sting so that she breaks
the high-jump record through the door of a passing plane which
crashes on the tree so I have my date again and start with a bun for
the two of us with Weetabix and wine which she pours into her shoe
to drown the becs.’

The fact that the extemporized story is violent, childish, grotesque,
in bad taste and otherwise embarrassing will prove to be its strength
if some weeks from now a colleague should suddenly say, ‘What was
that fifteen-digit number?’

‘Would it have been 803,735,204,381,692? you reply innocently, as
your inner eye follows the muscle-bound lady through her appalling
antics.

Ed Seaman, the chief engineer of Newall Research Corporation in
Saratoga, California, is inclined to ask guests on the spur of the
moment to invite him to cube any number between 0 and 100. ‘O.K.!"
one will reply, ‘try 73.

After a little knotting of his brows and silent mouthing Seaman
comes back with ‘389,017.’

‘Well,” says the guest guardedly, ‘I suppose that might be 73 cubed
...> A calculator is eventually fetched and up comes 389,017. ‘How
about 37 cubed?”

More screwing of the eyes and then ‘50,653. I'm out of practice, so
I’m pretty slow, and probably have a few gaps,’ Ed explains. ‘But you
know the secret? It’s really quite simple. I learnt it from some book of
magic tricks when I was in junior high school. It told about how you
could memorize actually anything at all with the right mnemonics.
This cube table was just one of the examples. Now I have one of
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God’s most lousy memories, just lousy. Really. What you do, though,
you have a code of sounds for each of the digits 1, 2, 3 and so on.
Here, like this — and he writes on a scrap of paper:

1...TorD 6...ChorJorSh
2...N 7...KorG
3..M 8...ForV
4...R 9...PorB
5...L 0...S

“You make up words using any old vowels between these consonant
sounds. Then forget the vowels. They don’t matter: 37, see, can be
written SMOKE, and that’s how it was done in that old table. Never
mind the leading zero, 037, right? Then we have “Lose a chilly home”
like this:’

03 7 -5 0 6 5 3

SMOKE-LOSEA CHILLY HOME

The guest remarks, ‘But you still have to remember a hundred
items, except that instead of numbers you have all this garbage.’

‘Yes, but you remember the garbage. You just do ... Here, Ill
show you the whole thing.” Ed produces two yellow sheets from an
old exercise book, written in pencil in a careful hand. Here is an
excerpt:

21 hand = punched 9261
22 nun = does share a vow 10648
23 name = adandy joke 12167
24 New Year = with my fine rye 13824
25 Nile = a dull channel 15625
26 wench = took all cash 17576
27 nag = to buy each wife a home 19683
28 knave = naughty plan 21952
29 knob = no army fop 24389

Entries like 30 and 40 are down simply as numbers, presumably
because they give less trouble than finding phonetic equivalents,

To mention a few tricks of the trade is only to graze superficially
the deeply worked territory of the memory men. But the principle is
not in doubt. Their achievements, like those of a grandmaster in
remembering chess games of his own or of others, are not attributable
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to the Creator’s having allotted them some special hardware. Grand-
masters have an extraordinary power to recall briefly glimpsed chess
positions, and this can seem to indicate the possession of special
mental equipment. But try randomly shuffling the pieces on the
board before the brief glimpse. As experiments on this have shown,
when the grandmaster is robbed of the meaningful associations with
which, for him, a chess position overflows, the gift deserts him. This
is what overthrew Berliner and Day in their unsuccessful battle with
Thompson’s table. Their opponent’s bizarre style bore no trace of the
simplifying concepts which give shape to human play.

Studies by Binet and de Groot have revealed that the skills of chess
masters lie in their powers of conceptualization, together with a vast
accumulation of knowledge of past games and positions.® Nor do
they look ahead more than ordinary players: according to de Groot,
six or seven half-moves tends to be the limit, with a total of perhaps
thirty positions considered on the look-ahead tree. According to
legend, the great Richard Reti dramatized the true pattern-based
nature of grandmasterly skill when he was asked how many moves
ahead he looked in tournament play. ‘One - he replied, ‘the right
one!’

Grandmaster of arithmetic

So too with mental-arithmetic prodigies, the most celebrated of
whom was Alexander Aitken, the Professor of Mathematics at Edin-
burgh University, who died in 1967. His extraordinary powers were
investigated by the psychologist Ian Hunter, who recalls Aitken’s
account of how he carried out a problem given to him by his children:
multiply 987,654,321 by 123,456,789.

‘I saw in a flash that 987,654,321 times 81 equals 80,000,000,001; and so
I multiplied 123,456,789 by this, a simple matter, and divided the answer by
81. Answer: 121,932,631,112,635,269. The whole thing can hardly have taken
more than half a minute.’¢

How on earth could he have seen these things ‘in a flash’? Hunter
explains that Aitken’s knowledge of and familiarity with the number
system was simply very much larger than most people’s. While the
average person if shown the number 22 would be conscious of it being
2 times 11, Aitken on the other hand, when coming across 1,961,
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immediately thought of it as 37 times 53, and 44 squared plus 5
squared, and 40 squared plus 19 squared. This power to apprehend
attributes in a flash, reminiscent of a grandmaster’s glimpse of a chess
position, was the basis of what Hunter called the ‘first phase’.
Aitken’s response to a problem was divided into two phases. During
the first he was occupied with rummaging around in his huge internal
library of facts and useful tricks concerning the number system so as
to put together a ‘calculative plan’. During the second phase he
executed the plan, by doing the specified calculations in sequence.
But this he did no faster than anybody else would have done, as was
apparent from how fast he spoke the digits of the solution. So
calculation itself is not where the calculating prodigy’s genius lies.
Rather, itis knowledge. Program synthesis, not the program, is at the
heart of the matter.

Believing the unlikely

The White Queen admonished Alice to believe six impossible things
every day before breakfast. It sounds difficult but actually is not. You
just have to be careful to choose things which many other people
already believe, such as that brand X washes whiter than white. The
hard thing to believe is not the impossible but the unfamiliar. This
is the meaning of the story about the old lady at the zoo seeing a
giraffe for the first time.

When she said, ‘I don’t believe it!” she was obviously not complain-
ing that the animal in front of her was impossible. Her difficulty lay
in finding a way of fitting the apparition into her existing knowledge
about the world. Even the addition of new information to memory is
conditioned by what is already there. We all know of cases where
someone is presented with an irrefutable fact, but he fails to grasp or
even to remember it because it contradicts something he already
presumes to be true. People say of such a case, ‘There are none so
blind as those who will not see!” but they miss the point. Unless a
compatible body of pre-existing belief is already present to provide
‘hooks’, so to speak, to which the new item can be attached, chances
of assimilation are slim. Even with ‘seeing’, unless large bodies of
visual knowledge have already been amassed, a man in possession of
healthy eyes will not ‘see’ what is in front of him.

Partly, these problems of perception and belief are no more than
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the difficulty of filing things before you have established file cate-
gories for them. Partly, they may be related to the fact that our species
evolved in slow-changing environments which put a low premium on
the ability to assimilate drastically new experience. It is not only belief
and memory which are disabled if mental models are not appropriate.
Comprehension itself, which should be the tap-root of remembering
and believing, can utterly fail, however simple the basic facts seem to
be.

Lies for simplicity

If the facts are not simple, however, a whole new game is joined. To
make sense of a complex world, the mind needs to simplify. This is
not an example of the perversity of human beings — the simplifica-
tions are essential for the mortal mind to handle complexity. The
simplifying slogans produced are inevitably distortions of reality:
they can range from minor distortions to downright lies, depending
on the case. ‘When defending with King and Rook against King and
Queen,’ says the chess master, ‘always keep King and Rook together,’
and he does not err. Although not always necessary, this rule cannot
do harm. But the assertion ‘With King and Knight against King and
Rook, keep King and Knight together’, although widely believed, is
sometimes wrong.

At no time are the mind’s simplifications more active than when
under stress or emotion. Some years ago at a crowded departmental
seminar at Oxford the audience sat thunderstruck as the Reader in
Cytology, John Baker, attacked the seminar speaker, Dr J. B. Rhine.
The latter was founder and director of the Institute of Para-
psychology at Duke University, North Carolina, later to be tarnished
by the departure of its deputy director caught in a flagrant scientific
fraud. But even at that early date Baker, a passionate scientific
rationalist, felt that there was a rat to be smelt somewhere.

Grey-suited and manicured, Rhine suavely parried each thrust,
scattering a largesse of cute remarks. So might one seek with parasol
and peanuts to deflect the rhinoceros. John Baker, his voice a clarion,
returned to the charge: ‘When Galileo dropped his balls from the
Leaning Tower of Pisa — It was enough. The audience had been
stretched on the rack too long. With a shout of laughter the hall
exploded. No one, least of all the normally meticulous Baker, noticed
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that he had it wrong anyway. Galileo did not drop his or anyone else’s
balls. He rolled cannon-balls down an inclined plane. Baker had
momentarily simplified by confusing this with a weight-dropping
demonstration made earlier by the Dutch engineer Stevinus.

When simplifications reside in the phenomena themselves and can
without cheating be conjured forth — there lies the gifted experi-
menter’s greatness. Foucault’s coup de thédtre in 1851 with a pen-
dulum strung from the ceiling of the Paris Panthéon was of this kind.
The demonstration can now be seen in most of the world’s science
museums. A brass ball, set swinging in a straight traverse, pro-
gressively knocks down a circle of sand on the floor. As the earth
rotates beneath it, the pendulum’s swing by insensible shifts changes
direction relative to the ground, and in the course of a day or more,
depending on latitude, moves through the complete 360°. ‘Aha!’ we
say. ‘Of course!” and then ‘Beautiful!’ Such is the lure of simplicity.

Epistemic illusions

But in pursuit of this lure our minds are prepared to tell us the
most extraordinary lies. Some of the best known of these are the
optical illusions, among which Richard Gregory has characterized a
wealth of self-deception.” These are, however, merely a special case
of a broader class of ‘epistemic illusions’. These occur whenever we
unconsciously falsify in order to understand. Faced with complex
material, the history of science for example, we tend, whatever the
cost to accuracy, to file facts by stereotype. There is no better illustra-
tion of this than certain aspects of the Galileo story.

Galileo is remembered as a rational and honest mind standing
courageously against church bigotry and the dark forces of the
Inquisition. This scenario acts as a summarizing anecdote, a soothing
mnemonic for overloaded minds. It is, after all, historical fact that
the new astronomical physics encountered theological opposition.
Rather than memorize such a dry abstraction, can we peg it to a good
story?

In his marvellous book The Sleepwalkers, Arthur Koestler mar-
shals the documents in the case. They tell quite a different tale, of an
abrasive prima donna bent on provoking a mild and sophisticated
Vatican intelligentsia into confrontations in which he could shine.
How little these mature and cultivated men were ¢oncerned to muzzle
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the voice of reason may be judged from an excerpt from the cor-
respondence of the Pope’s leading theologian of the day. In a letter
written in 1615 Cardinal Bellarmine, who was to issue against Galileo
the admonition of 1616, stated:

... for to say that the assumption that the Earth moves and the Sun stands
still saves all the celestial appearances better than do eccentrics and epicycles
[of the Ptolemaic system] is to speak with excellent good sense and to run no
risk whatever. Such a manner of speaking suffices for a mathematician.®

And again:

... if there were a real proof that . .. the Sun does not go round the Earth but
the Earth round the Sun, then we should have to proceed with great circum-
spection in explaining passages of Scripture which appear to teach the
contrary, and we should rather have to say that we did not understand them
than declare an opinion to be false which is proved to be true. But I do not
think there is any such proof since none has been shown to me . ..

As the Vatican astronomers were aware, Galileo had no proof.

In the short term he temporized by pretending that his critics would
be too stupid anyway to understand his proofs. In the longer term his
campaign culminated in the publication in 1632 of his Dialogue on
the Two Principal World Systems which finally precipitated his trial.
In this work he pressed into the service of proof a wholly fallacious -
theory of the tides, pouring scorn at the same time on Kepler’s view
that they were to do with the moon. It is hard not to reverse the labels
‘reason’ and ‘bigotry’ which tradition has assigned to the two sides.
Yet false tradition prevails because the truth so often has awkward
corners. Why not make the jigsaw easier with a little sandpapering?

At least now there is no doubt about the scientific content of the
Galileo story. Turning to a more recent and much more complicated
issue, namely, the Theory of Relativity, we find that distortion is
universal. Virtually every author who has tried to tackle the subject
has got it wrong — and not just the history but the substance as well.
They write that in 1887 Michelson and Morley in an attempt to
detect the ‘ether drift’ obtained a null result, and this led Einstein to
devise the Special Theory of Relativity. Michael Polanyi points out
that in fact Michelson and Morley did not get a null result, and in
any case Einstein had never heard of them when he first formulated
his ideas.® Despite this, the legend continues.

It is ‘well known’ that Abraham Lincoln was a dedicated crusader
against slavery, whose Emancipation Proclamation in 1863 freed the
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slaves. In fact, he was not, and it did not.!° Returning to our time, it
is widely thought that advances in the technology of computers and
data-banks provide opportunities for the wholesale violation of the
privacy of individuals which our existing structure of laws is power-
less to combat, but which will succumb to a wholly new type of ‘data
protection’ legislation. They don’t, it isn’t, and it won’t.1! But still,
this is a field that is so complicated as to present rather special
obstacles to the task of dealing with it rationally.

Machines will have to lie, too

While it is easy to scoff at the efforts of mortals to come to grips with
complexity, one must realize that many simplifications are an essen-
tial part of dealing with life, and that therefore cognitive science needs
to understand them. When machines start to deal with very complex
issues, they will have to lie for the same reason that humans do,
namely, to make problems manageable and explainable. This is
inevitable, but it also raises dangers, in that lies can be harmful.
Mechanisms will be needed to keep such ‘approximations’ within a
reasonable distance of reality and generally watch over their conse-
quences. We will need a mathematical theory of lying.

Suppose that we have a network of intelligent machines which
have to cooperate with each other. Imagine a group of automation
robots in a factory which are to some degree specialized — one does
the paint spraying, another welds, one rivets, and so forth. For each
knowledge-base that each robot has, there will be a part which for
reasons of economy is common to all the robots. The common part
might include facts about the workbench. Not all the robots will need
exactly the same facts or the same emphasis. Obviously, if one robot
works on top of the bench it may be easier for it if, like the ancients
who believed that there was nothing the other side of the world,
it does not believe that there is any world beyond the bench-top. That
isa kind of myth, and there is no point whatsoever in the robot having
in its knowledge-base the information that it is a myth. The super-
visory robot might as well let it believe the myth and save memory.
The attempt to imagine control systems for cooperating intelligent
devices, even at the mundane level of the assembly line, is brought up
against something which we knew already but have not hitherto
thought important, namely, the fact that if we want to influence
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inanimate matter in a highly predictable way, we have physics to tell
us how to do it. But suppose that the object we want to influence is
itself an information-processing system, a human being. Then either
we may seek to influence the system’s actions like a military general
by issuing imperatives, or we may make assertional statements,
having a good enough model of the target system to know that these
will have the same effect as the imperatives, but in some circum-
stances will act more quickly and cheaply.

Consider as an example the economy practised by the British
road-sign authorities. A typical sign at a roundabout is shown in
Figure 20. Everybody instantly interprets the sign as saying: ‘When
you get onto the roundabout, go clockwise.” But that is not actually
what the picture says. It presents its viewer with an assertion, namely
that there is a defect, a gap in the road, and this is a lie. Strictly
speaking it is a joke lie, since there is no intent to deceive. But those
who invented the sign have a good enough model of the motorist to
know: first, that if he believes it, he will go round to the left; second,
that if he does not believe it and knows it to be false, he will be subtle
enough to perform an additional inference and realize that the inten-
tion is to give him an imperative.

Berwick upon

Prestonpans

Figure 20. Scheme used in road signs to indicate required direction round
aroundabout. Strictly, the depicted defect in the road is a lie, but the motorist
understands what is required of him (photograph: John Wilkie)
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The same phenomenon is exemplified when parents tell children
absurd untruths, as politicians also do voters, on the hypothesis that
this is the easiest way to get them to do something, or not to do
something: ‘It will make you sick!” meaning ‘Don’t eat it!” in the
private knowledge that it will not make the child sick. Like the
motorist, the child usually knows this too. But because time is too
short either to have a clash of wills or alternatively to explain the real
reasons, this short cut is tried — and it is in assertional language.

Hence we will be obliged to devise an economics of lying. Pre-
sumably lying has arisen following regular economic laws of costs
and benefits. Presumably we shall be bound by the same laws to
construct analogues in intelligent machines.

Myths fill the gaps

Myths perform a function in society related to lies. Wherever there
are complex systems, there will always be incomplete information.
Computer programmers know this well, and their systems include
default values for those items where information is essential but has
not been specified by the user. So with society: religions offer mental
‘slot fillers’ but there are also gaps in the religions’ explanatory or
predictive powers. Myths are made to plug these gaps. Cognition
always confronts a dilemma. We feel that explanations and pre-
dictions should be rationally grounded. Yet (presumably for good
evolutionary reasons) we cannot leave the matter alone. When we
lack rational grounds to explain or predict we fill in if necessary with
irrational grounds. For example, in an agricultural community we
ask: ‘When will it rain?” We feel better if we plug vacant slots with
made-up explanations. It will rain if the god becomes well disposed.
At least we can then try to do something about it (by performing a
rain dance perhaps). For some temperaments this is the important
consideration.

Much depends on the habitual mood of the given community —
whether for example its tradition is of an effortful, goal-seeking type.
At one end of a spectrum is the American work-oriented paradigm,
anxious for achievement, anxious for explanation. At the opposite
end lies a society like the Tikopia, a community living in the Pacific
in idyllic circumstances.!? When anthropological study began there
was no sign that this little community of 2,000 people had changed
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in recorded time. Most of their interests centred around gossip,
making love, dancing, preparing their midday meal — on which they
spent hours — and sometimes a little exploration. Their life was
healthy, and by our standards we would say happy. It approximated
more closely than one would think possible to Rousseau’s idea of the
‘noble savage’.

But when members of such idyllic communities are asked why
things happen — things which to us, who weave our mental lives very
tightly out of causality, seem to require explanation — they tend to
give fanciful reasons which can be caricatured as follows:

‘Why does the sun go down in the sea every day?

‘It’s a big red bird and it wants to go back to its nest.’

‘Ah! But if it is a big red bird seeking its nest, why doesn’t it stay
there? It comes out of the sea the next morning from the other side!’

Having thus revealed an entirely wrong mental approach, the
questioner may now be requited with something like, “The bird goes
where he goes and knows what he knows!” or (uitra-sophisticated),
‘Well, maybe the sun isn’t a big red bird, then!” These are reasonable
attitudes for happy men.

Robots will need myths for the same information-processing needs
that humans need them. We take a myth to be a belief which is
treated as certain knowledge, and felt desirable that it should be,
by some group of interacting information systems. It can sometimes
be better to run along with a set of false hypotheses as though they
were true, if they are quick and computationally cheap. The myth
designer will say, ‘Kindly specify what tasks this machine must do,
and how far out of its depth, in terms of computational complexity,
it has to operate.” Empty belief-slots, in both robots and humans,
must be plugged with default values.

Certainly the need for machines to operate with myths and lies
will present problems to technologists and society alike. But at the
same time, it may be that computer extensions of human powers of
thought and memory will lessen our own dependence on stereotypes
for the sake of comprehensibility. Being able to handle more complex
systems of information, we may learn to resist the lure of simplicity,
the sandpapering of awkward corners. Fewer epistemic illusions,
more command of detail: we may yet come to cherish the multifold
corners of things as they are.




CHAPTER 5

Experience and Discovery

One of the strange sounds of the semiconductor age is the elder’s
lament for the death of arithmetic. Schoolchildren no longer know
of the existence of certain sacred motions by which we, and our
fathers’ fathers, were taught to extract the square root. Instead we
see the touch of a button on a hand-held calculator. Just as passive
gazing on pornography is believed by cautious souls to deprave and
corrupt the senses, so, it is feared, may access to instant sums pervert
the intelligence.

There is something that the elder may overlook. In his own world,
whether he works on the shop-floor, on the Queen’s Bench, in the
executive suite, in the computer room or down on the farm, the
delegation of detail invariably goes hand in hand with the expansion
of powers. What prize-winning architect bothers to learn how to
cast a concrete beam, so long as he can recognize a badly cast one?
When dealing with complexity, the lazy way is the best way. In
trying to automate some complicated mechanical or intellectual task,
the smartest thing of all is to make the outside world do the calcu-
lations for you.

An example comes from the Charles Stark Draper Laboratories
in Massachusetts, a leading centre for research into computer-
controlled assembly. Like everyone who has looked at the problem,
the engineers there are much exercised by close-fitting parts. The
human worker slaps these into place with speed and abandon. An
industrial robot attempting this runs into every kind of wedging
and jamming. We can, of course, compute lots of little feedback
loops. Instead, the project director Jim Nevins asked, ‘Is there any
mechanism which can substitute for these and which can be sited
in the external world, not in the computer?

The answer seems with hindsight obvious. The human assembly
worker, in addition to feedback adjustments computed in his nervous
system, is also aided by mechanical compliance provided by the
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‘bunginess’ of fingertips and the ‘give’ of joints. Accordingly, Nevins
wondered whether such compliance could be so extended as to substi-
tute entirely for the need for feedback computations. He now has all
parts mounted so as to ‘give’ a little along two of the three spatial
axes. Behold, in fractions of a second square pegs slide smoothly into
square holes, round into round, just as if millions of tiny feedback
adjustments to a rigid system were being continuously computed.

Top-down versus bottom-up

There have always been two ways of solving problems. One, which
we shall call ‘top-down’, is based on theory. It requires that we
understand the fundamental principles by which something operates,
so that we can work out logically the consequences of any actions and
so predict the future. The other method, ‘bottom-up’, works without
any grand explanatory schemes, possibly without any understanding
at all, but rather with various compilations and catalogues of know-
how. The bottom-up practitioner may well say, ‘I don’t know why it
works — I just know that it will work.’

Both these approaches have their uses. When launching a rocket
to the moon, it is no good hoping that the astronauts will be able to
navigate by trial and error. They only get oné try. It is vital to know
beforehand the orbital mechanics of the celestial bodies involved, and
plan accordingly. On the other hand, a child learns to bicycle without
first studying Newtonian dynamics or modern control theory. How
does he do this? He uses empirical rules, albeit in this case un-
conscious ones but rules nevertheless, working in conjunction with
the outside world. The basic rule, held in his brain’s sense-of-balance
mechanism, is: ‘If the bicycle is tipping to one side or the other, turn
the handlebars in that direction.” There is no mention of Newton —
no explanation of why it works, but it does.

In contrast, if a computer using Newtonian theory were to ride a
bicycle, then in a sense two bicycles would be in play, the real-world
bicycle and a ghostly bicycle implicit in the detailed mathematical
model used by the control algorithm. The human cyclist’s philosophy
is that one bicycle is enough, and that sensory data can be used to
extract from moment to moment the few relevant state-features
needed for a simple and sufficient set of decision rules. Between
successive rule invocations the real bicycle computes the dynamics,
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and the rules, laid down in the form of reflex stimulus-response
bonds, do the rest. Pity the computer, doing it the hard way. Indeed,
a project was started at the Aeronautics and Astrophysics Labora-
tory at Stanford University to program a computer to control a
bicycle by physical theory, and it was abandoned as too difficult.

As technology comes to deal with more and more complex prob-
lems, problems which are less and less understood from first prin-
ciples, it is essential to be able to operate as the child does, without
an explanatory theory. Even when one does have a theory, using it
can run foul of the combinatorial explosion in trying to work out
every possibility, as we have seen. Rule-based systems, on the other
hand, offer an alternative of great potential. Indeed, these have
already become established as fundamental to expert systems, as has
been shown.

Building a robot cricketer

An illustrative fancy: we wish to design a robot cricketer. The device
must stand in the deep field until the batsman skies a ball in its general
direction. The robot’s task is then to plot and follow an appropriate
interception course.

Solution I: Take successive sightings of the ball on the fixed retina.
Use geometry, trigonometry and statistical curve-fitting to extract a
trajectory, eked out by optical range-finding. Extrapolate to the
expected point of descent. Move at top speed the calculated distance
to this point. Halt. Await impact. Verdict: Much computation, little
certainty of outcome owing to incomplete information and errors of
measurement.

Solution 2: As above, but move to the expected impact point in a
succession of springs, repeating the above computation from scratch
at each halt. Verdict: Improved outcome but even more work.

Solution 3: Take time off to watch a human outfielder.

According to the late Seville Chapman of Cornell Aeronautical
Laboratory, the human uses a simple rule. He moves towards the
ball, continuously adjusting speed and direction and moving the head
at the same time, so that his line of sight to the ball is uniformly rising.
For approximately parabolic trajectories this rule suffices. The
details of the trajectory, which in windy weather may be quite compli-
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cated, are left to the external physical system to work out, assisted,
according to Peter Brancazio of Brooklyn College, by the brain’s
monitoring of the changing tilt of the head through signals from the
organs of the inner ear. Solution 3 achieves exquisite accuracy for
almost no computational work. The lucky robot is left with spare
thinking capacity for the higher theory of cricket.

In the same vein, children who sensibly push the labours of school
arithmetic into the electronic box have their energies freed for better
things, like saving up for a hand-held programmable with which to
do more interesting work. This is not to say that children should not
learn their ‘times’ tables. They should, and will continue to learn them
regardless of the pocket calculator, if only to be able to judge whether
an answer is in the right ballpark as a guard against keying errors.
Although long multiplication and division will probably not drop
from the syllabus, it must be conceded that skill in these procedures
will decline. Children will spend more time on the new skill of
programming. So the education process has to lose a little to gain a
lot.

Learning by experience

There is another notable aspect to the child’s bicycle-riding apart
from the absence of theory, namely, the way he learnt the skill.
No one told him the rule ‘If the bike is tipping ..." His learning
was entirely by experience. We have seen how the major problem
obstructing the growth of expert systems is the cumbersome work of
acquiring the expertise — encoding the rules. What we need is for
computers to be able to learn from experience too.

An example of how this is possible is a program developed at
Edinburgh in the early days of machine intelligence which taught
itself how to balance a pole. This is a classic problem in the design
of control systems. A small electric cart running on rails carries a pole
hinged at the bottom (Figure 21). The cart has to move back and
forth to keep the pole balanced, like a Highlander in the first stage of
tossing the caber. In addition, the cart must not run off the end of the
track. First-year students of mechanical engineering build systems to
do this with complex analogue circuitry. Computer programs using
control theory can do it, but not very economically. In contrast, the
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Figure 21. The pole-and-cart apparatus
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Figure 22. The state space of the pole-and-cart program (for clarity omitting
the fourth dimension) divided up into boxes with a separate rule (‘demon’)
in each box and a chairman supervising
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Figure 23. Progress of the pole-and-cart system in trial-and-error learning.
‘Merit’ is the time-until-crash, plotted against total accumulated learning
time, for example 27 minutes of balancing after 70 hours of learning

Edinburgh program, called Boxes, worked entirely bottom-up, using
225 rules which were adjusted by the program in the light of experi-
ence. Data on four parameters were collected from the mechanism:
position of cart, velocity of cart, angle of pole and rate of change of
angle. The ranges of these were divided up and laid out in a four-
dimensional ‘state space’, with each local region watched over by a
separate rule (or ‘demon’, to use the now-fashionable term coined by
Oliver Selfridge in 1959) which accumulated its own private store of
knowledge of what to do in those particular circumstances. The
whole system worked on the ‘committee of experts’ principle, with a
chairman (central control routine) inspecting each input state and
calling on the appropriate rule (Figure 22).!

A situation might take a form such as, ‘Cart near left-hand end of
track, cart moving to the right, pole moderately inclined to the right,
pole swinging to the left’. Once invoked, the rule would prescribe a
burst of power from the motor either to the left or to the right, and
a new input state would be generated. The collective expertise of all
the rules put together determined the quality of the system’s per-
formance. At the start of a learning series the ‘left’ and ‘right’
decisions were set at random over the total of 225. As the program
went along, it modified the rules according to their success rates, and
with accumulating experience learned to perform as an expert pole
balancer (Figure 23).
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In problems of this general category some regions of the space
exhibit markedly counter-intuitive features, as when the cart wanders
dangerously near the ‘precipice’ at the end of the track. In a pro-
portion of cases, according to the values of pole angle and angular
velocity, the solution is to drive initially towards the precipice, so as
to impart a swing of the pole away from it. Only then can it be safe
to direct the motor away from the danger area, ‘chasing the pole’ with
proper control over its angle.

The rules could have been derived symbolically from a detailed
mathematical model, although that would have required an exact
and exhaustive specification of the system’s physical parameters. In
real life these might or might not be available. Instead they were
assembled piecemeal from the system’s own operational experience.
Similarly, the deep-field cricketer has extracted from experience
the simple rule that maintaining a constant upward change of the
direction in three-dimensional space linking him to the ball will cause
them both to arrive at the same place at the same time.

Learning by example

Boxes acquired its rules in a slow and crude way. What is needed is
a much more powerful, universally applicable system. We want to be
able to show a computer examples of things, be they statements of
fact, pictures, sample actions or what have you, and have it by a
process of logic discover rules that connect them — finding patterns
amongst apparent chaos. Only in this way can the bottleneck of
encoding rules for expert systems be overcome. Apart from facili-
tating the construction of expert systems, other benefits would
accrue.

Working out rules from examples is the classical process in logic
of induction, inferring from the particular to the general, as opposed
to deduction, which is reasoning from the general to the particular.
Traditionally computing has been based around deduction, working
through a process exactly specified beforehand, and it is a large step
to turn to the messier, less theoretically complete process of induc-
tion. Is it possible for computers to induce? Experiments over the last
few years have shown that indeed it is — we will describe some
examples.

The rule-devising game is nicely conveyed by the following test,
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from a tutorial devised by Ryszard Michalski and James Larson.2
Looking at Figure 24, find the best rule you can which accurately
distinguishes the trains going east from the trains going west. (Pre-
sumably they have not yet left the depot, so we cannot just use a
compass!) There is not necessarily a unique best solution, but highest
marks go to the rules which are in some sense simplest.

1. TRAINS GOING EAST
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Figure 24. Find the simplest rule to distinguish ‘trains going east’ from ‘trains
going west’ (Copyright © 1980 IEEE)
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Michalski and Larson’s Pascal program succeeded very well in
finding rules to solve this puzzle. To start with, the program had to
be given descriptions of all the trains in a language that it could
handle. This was a simplified version of first-order predicate calculus,
a symbolic representation of logic. It works rather like algebra. The
calculus consists of variables, which stand for propositions which
may be true, false or sometimes unknown; connectives which link
these, such as ‘and’, ‘or’, ‘not’, ‘implies’, etc.; a bracketing conven-
tion; and the quantifiers ‘for all’ and ‘there exists’. Together these
comprise a tool of great power and generality: virtually any interpre-
tation can be substituted for the variables.

The trains were described to the program in terms of eleven
descriptors for the cars and their freights, such as:

infront (this car is in front of what other car)
length (car is long or short)
car-shape (open rectangle, U-shaped, ellipse, jagged top, etc.)
cont-load (car contains what load)
load-shape (either: circle
triangie
rectangle >polygon)
hexagon
nrpts-load (number of parts in car’s load)
nrwheels  (number of wheels on car)

From these the program was able to work out more selectors, such
as the number of cars in a train and the position of each car. It then
proceeded to make up generalizations about the trains, using ‘meta-
selectors’ built from the information given, some more promising
than others. It would form the generalizations into a sequence of
‘partial stars’ and work through these, weeding out inconsistencies
until it came up with a complete rule. It could judge the simplicity of
a rule by counting the number of elements in it. (The preference for
simplicity is known in experimental science as ‘Occam’s razor’: the
principle that, given two theories of apparently equal merit, the
simpler is to be preferred.) Before seeing what rules the program
induced, the reader could try developing one or two for himself.
The first rule the program produced looked like this:

3 car, [length(car,) = short] [car-shape(car,) = closed top]
::> [class = Eastbound]
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Translated out of the logical language this means:

(1) If a train contains a car which is short and has a closed top, then
it is eastbound, else it is westbound.*

Two more rules produced by the program:

(2) If a train contains a car whose load is a triangle, and the load of
the car behind is a polygon, then it is eastbound, else it is westbound,
(3) If there are two cars, or if there is a jagged-top car, then westbound,
else eastbound.

It is interesting to note that Michalski constructed the test with
rules (2) and (3) in mind. The machine’s rule (1), simpler than either
of the others, came as a surprise to him.

A trial of this puzzle was run with human subjects, and out of a
total of seventy-two attempts, forty-four hit on rule (3), and six others
offered a version of this rule based on counting axles rather than cars.
Surprisingly, only three entries corresponded to rule (1), the simplest
of all. A fourth entry could be scored as (1), except that the various
kinds of short closed cars were separately listed instead of being
given as a single description! No entries coincided with (2), but some
were at least as terse, such as: If there are more than two kinds of
Sreight, then eastbound, else westbound, produced by two subjects.

Machine versus man

How do we compare the efficiency of the Pascal program running on
a CDC Cyber 175 with the ponderings of human subjects? Computa-
tion time was around ten seconds. The Cyber can be credited with
about ten million instructions per second, making a total outlay of
one hundred million instruction executions. According to J. M.
Stroud, the number of binary discriminations per second which the
humanbraincanmanageatasprintisabout twenty.3 Although Edsger
Dijkstra was once clocked at fifty per second for a three-minute burst
of program writing, for lesser mortals an average of ten per second
can probably be assumed. Let us hazard that one instruction-execu-

* A more literal translation would be: The truth of the statement, ‘There exists a car,
such that the length of car, equals short and the shape of car, equals closed top,’ implies
the truth of the statement, ‘The class of train is eastbound.’
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tion of the Cyber 175 is worth at least ten binary discriminations. If
this is so, the Michalski-Larson program required a total of 10°
binary discriminations, the equivalent of thinking continuously for a
hundred million seconds — that is, three years of uninterrupted mental
effort. So readers who polished off the problem in seconds or minutes
are well ahead of the computer in their algorithms (whatever they
may be) for inductive logic, although not in their ability to represent
the processes explicitly.

Children have more difficulty in inventing rules. Even at the age of
ten the transition from judging everything by its concrete circum-
stances to an ability to cope with abstracts and hypotheticals has only
Jjust begun. Readers might like to try their children on their ability to
understand the train problem.

An interesting feature of the first two rules is that a program
knowing nothing about counting could still have got them. At the
other extreme one subject who was bitten by the counting bug found
that the number of sides in the cargo (circle counts 1, triangle 3, etc.)
is a divisor of 60 if and only if the train is going west!

We sometimes forget what an elaborate trick counting is. ‘At first
thought,” writes Levi Conant, ‘it seems quite inconceivable that any
human being should be destitute of the power of counting beyond
two. But such is the case; and in a few instances languages have been
found to be absolutely destitute of pure numeral words.’* Counting
is entirely an invention of relatively advanced civilizations — it is not
intrinsic in man or beast. Interestingly enough though, man and some
birds and insects have a ‘number sense’ that enables them to appreci-
ate the size of a collection of up to four or five without counting.
Lichtenberg gave his nightingale three meal-worms a day, one at a
time, and remarked that after the third it knew the meal was over.
Crows have exhibited the ability to distinguish between three and
four, but not between four and five, while wasps have an uncanny
way of sensing the number of the grubs they are doling out to their

_young.® But Clever Hans, the counting horse, had no such ability,
despite his owner’s faith. The horse’s art consisted in reading his
master’s involuntary signs when the preset number was reached.
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Eleusis and the search for truth

The Australian aborigine system of ‘one, two, many’ works well for
a variety of purposes. It certainly suffices for all normal situations in
Robert Abbott’s rule-guessing game of Eleusis. As a psychology
student at the University of Colorado, Abbott became interested in
the ‘Ahal’ reaction — that flash of insight in which we grasp the
underlying principle behind some messy-looking phenomenon.
Eleusis is a card game for four or more players, one of whom is
designated as God. The other players lay down cards on the table in
turn. God has thought up a secret rule to govern the sequence in
which cards should be laid, and as each card is played he announces
whetheritis ‘right’ or ‘wrong’. The other players try to work out what
the rule is by trial-and-error guesswork through the cards they put
down.¢

Correct cards are laid in a straight line across the table, and
incorrect ones on sidelines. When a player thinks he knows the rule
he can declare himself to be a ‘prophet’ and take over God’s func-
tions, judging the subsequent moves of other players. But woe betide
false prophets! Examples of reasonable rules could be:

(1) The number of a card must differ from the previous one by 1, 2
or3;

(2) If the last legally played card was black, play a card of equal or
higher value. If the last card was red, play a card of equal or lower
value.

Rules must deal only with the sequence of cards, not with anything
external to them such as the sex of the last player or whether God
scratches his ear. The opening of a typical round is shown in Figure
25.*

What the players are doing of course is induction. In 1977 Abbott
himself described attempts to get a computer to play Eleusis as
‘doomed to failure’. How wrong he was has been shown by James
Larson, who developed a program for his Master’s thesis at the
University of Illinois, and by Michael Berry of I. P. Sharp Associates,
who did the same as an exercise in the mathematical programming
language APL. Berry’s program plays alongside humans, so their

* Rule for the depicted sample round: If the last legally played card was odd, play a
black card. Otherwise play a red one.
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moves need to be conveyed to it by typing them in on the keyboard,
together with God’s judgements on them and on the machine’s
moves.” The program looks for sequences and alternations in the
attributes of the cards (suit, colour and number) and in sub-attributes
(parity, primeness, divisibility by three, etc.). The standard patterns
that all these fit make it relatively easy for the program to construct
an English-language version of the rule when it has been found, a
paraphrase, but a readily recognizable one, of the way God would
put it. For instance, in the case of example (1) given above it would
say,

THERE IS ALWAYS A CHANGE OF NUMERIC VALUE. NO CARD
DIFFERS FROM ITS PREDECESSOR BY MORE THAN 3.

Martin Gardner has pointed out that Eleusis is an excellent model
of ‘a search for truth’, and of induction, ‘the process at the very heart
of the scientific method’. So success by computers at playing it has
implications far broader than the world of games. To take an example
from a serious academic discipline, we look at discovery in pure

mathematics.
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Figure 25. A typical round of Eleusis at an early stage
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Euclid rediscovered

At the Stanford Heuristic Programming Project, Douglas Lenat was
looking for a subject domain in which a computer could discover
things in a very broad sense, not just looking for one rule as in Eleusis
and most other problem solving, but working in an entirely open-
ended way. He chose the theory of numbers, as a well-contained and
well-understood mathematical field, and developed the program AM
(originally Automated Mathematician). This started with an
extremely basic set of mathematical concepts and ‘wandered around’
the problem space looking for more. It constructed on its own a
number of well-known mathematical ideas and even rediscovered
important theorems, such as Euclid’s Unique Factorization
Theorem, which states that a composite number can be factorized
into primes in only one way. It formulated a curious geometric
interpretation of Goldbach’s Conjecture, to do with the sums of
primes, and made one discovery concerning ‘maximally divisible
numbers’ that was entirely original.®

The program started with 100 elementary concepts of finite set
theory: objects like sets, lists, bags (sets allowing replication of
elements) and truth-values; relations like membership and equality;
operations like inversion, composition and intersection. It also had a
number of heuristics, i.e. rules of thumb, providing advice on what to
do. One of these was: ‘Coincidences are interesting.” Thus when AM
discovered multiplication in four different ways,* it decided that if
that many different procedures led to the same thing, it was interest-
ing and probably important. Another heuristic was: ‘If an operation
is interesting, look at its inverse.” Thus from multiplication, division
came to be explored. This led to the process of dividing up large
collections of numbers into their factors. Yet another heuristic was:
‘Look at extreme cases of things.” So AM examined the sets of
numbers that had only one or two divisors, and behold, it had
discovered the concept of prime numbers. It then explored the oppo-
site extreme to that, namely, numbers with many divisors, a topic
which Lenat thought had never been studied before. He then found

* Namely: as repeated addition; as an analogue to the Cartesian product of sets; as
the cardinality of the union of the powersets of two sets; and as the total number of
symbols one gets by replacing (in parallel) each element of bag X by a complete copy
of bag Y.
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out that Srinivasa Ramanujan, G. H. Hardy’s self-taught collabora-
tor, had worked on maximally divisible numbers, but even he had not
found one particular regularity discovered by AM.

If number theory seems obscure and inconsequential, remember
that the Unique Factorization Theorem is the basis of the latest en-
cryption procedures being developed by the US government as a
universally applied standard for the protection of privacy of com-
puter data. AM was also the starting point for Lenat’s current work,
which is concerned with applications to practical problems, as we
shall shortly describe.

New ways and means

Despite its successes AM had one fundamental deficiency — it could
develop new concepts but not new heuristics. As the concepts grew
further and further away from the primitives AM started with, the
heuristics turned out to be too general and too weak to guide effec-
tively. To overcome this problem Lenat has devised a new program,
Eurisko.? This modifies its heuristics in small ways from time to time,
sometimes randomly, sometimes in an effort to ‘specialize’, as in
replacing ‘Or’ by ‘Most of°. There are heuristics about heuristics, such
as: ‘Avoid replacing “And” with “Or’ because that can lead to
explosions.’ New heuristics are judged for usefulness and retained or
put aside as the case may be. There were initial problems caused by
the heuristics being held in chunks of Lisp code that were too large
to be manipulated meaningfully; these were broken up into smaller
pieces. Lenat also relates how a heuristic that had made a discovery
would put its own name down in the list of heuristics of high worth,
and then take that realization that it had made a discovery as a
discovery in itself. So the heuristic would award itself more points,
and then take that as yet another discovery worth still more points,
and so on in an infinite loop! Lenat had to stop the program changing
its own goals in an uncontrolled fashion. After that, useful new
heuristics were devised, mainly ones specific to particular subject
domains.

It turned out that the heuristics from mathematics were often
relevant to dealing with the real world. For example, if we take an
issue such as ‘employment’, we see that it consists of a large number
of relationships, of people being employed by other people. Looking
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at the extremes of this set of relationships as recommended by our
third heuristic leads us to examine at one end people who are not
employed at all (unemployment) and at the other end people who
have several jobs (moonlighting), both important issues. Eurisko has
already made contributions to real-world problems, most notably in
the design of three-dimensional electronic integrated circuits. As
originally conceived by humans, these were just ordinary flat
integrated circuits folded over in order to reduce the straight-line
distance the electricity had to travel between elements — paring a few
picoseconds off the circuit’s response time. Instead of just accepting
that, Eurisko asked, ‘How could the elements interact?’ It would take
a typical junction as shown schematically in Figure 26(a) and apply to
ittheheuristic: ‘If youhave avaluable structure, try to make it more sym-
metric.’ The result was as shown in Figure 26(b). The extra bits added
on allowed the structure to perform more than one function at a time,
so that one unit could act as both a ‘Not-And’ circuit and an ‘Or’
circuit. It had not occurred to the human designers that this could
be done, partly because the complexities of VLSI had compelled
them to simplify the design space in their minds and rule out the pos-
sibility of an element acting as a gate and a channel simultaneously.
Designers Jim Gibbons and Lynn Conway are now using Eurisko,
and the potential of VL SI could be greatly expanded as a result.

(a) (b)

Figure 26. (a) junction in an integrated circuit; (b) the same, with bits added
in all directions as suggested by Eurisko



110 The Creative Computer
1 see no ships

Eurisko has also been notably successful, some say too successful, in
taking part in an annual naval war game in the USA called the
Trillion Credit Squadron Competition. Participants have to design
a battle-fleet within given cost constraints and see how the fleet
performs in a simulated action against all the others. Eurisko came
up with some extraordinary designs, all perfectly feasible, including
one consisting of a vast number of virtually impregnable ships, each
one hardly bigger than a lifeboat. On being presented at the game,
Eurisko’s bizarre fleets caused much laughter amongst the other
players, followed by consternation when they were seen to be win-
ning. Lenat is not surprised that for two years running the rules have
been changed with the effect of outlawing Eurisko’s successive con-
coctions.

Turning to pure science, Lenat is devising ways of getting Eurisko
to model biological mutations. The idea is that if somehow there were
a way that information about previous states of a species could be
retained after mutations, it might be that evolution proceeds not in
an entirely random fashion as has been thought, but somehow by
heuristics, just as Eurisko evolves its own concepts. Buried in the
tortuous mechanisms of DNA there may be things that act as
heuristics, in effect telling nature, ‘Try mutation this way’ or, ‘That
sort of mutation has not turned out very well in the past.” The
possibility here is that an explanation may be found for the extra-
ordinary effectiveness of evolution.

AM and Eurisko are fundamentally further along the road of
creativity than Michalski’s trains program, because instead of just
finding links between existing concepts, they explore and find new
ones. The trains program for instance could not invent the concept
of ‘jagged-topness’ by which some cars were described — it could not
add to its vocabulary. AM and Eurisko can, and this is in many ways
the most important part of creativity — the top ‘notation’ layer of
Aaron Sloman’s model described in Chapter 1.

Down on the soybean farm

An example of computer induction that is literally more down-to-
earth comes from the agricultural state of Illinois, where the soybean
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crops can be smitten with any one of twenty or so common diseases,
and correct diagnosis can make the difference between a ruinous
harvest and riches. The state operates a network of Agricultural
Extension Offices which farmers can phone for advice. Queries which
cannot be dealt with on the spot are sent to university plant patholo-
gists, who are greatly overburdened with requests. Large delays and
backlogs develop, so an expert system would be useful. Michalski and
his colleague Richard Chilausky proceeded to construct such a
system, and obtained a set of rules by the usual laborious process over
forty-five hours of consultation with the plant pathologist Barry
Jacobsen. These rules covered nineteen diseases such as brown stem
rot, downy mildew, bacterial blight and diaporthe stem canker, and
the diagnoses were based on thirty-five descriptors of the condition
of the plants including leaf spots, holing, seed shrivelling and in-
formation on the time of year, rainfall and the like. These descriptors
were deliberately chosen to be easily visible so that observations
could be accepted from non-experts in the field.

It was then decided to try an experiment with computer induction
of rules. Data on 307 diseased plants were collected on forms, speci-
fying a value for each of the thirty-five descriptors. Every example
was then given a diagnosis by a human expert (Figure 27). The data
were fed to Michalski and Larson’s inductive inference program,
essentially the same as that used for the earlier trains example, which
produced a completely different set of rules from those obtained from
Jacobsen. Comparing the performance of the machine-generated
rules with the human-generated ones on a new test set of 376 cases,
the machine’s rules got 374 right, while the rules obtained from
Jacobsen scored only 83 per cent right. The machine’s rules are now
the ones that are in use.'?

Another expert system that has been extended to generate its own
rules is Dendral at Stanford. A new program, Meta-dendral, was
written to take mass-spectrometry data from molecules of known
structure and infer rules connecting them. It has created rules for
sub-families of molecules for which none existed before.!!

Many computing tasks come down to classification. This is what
pattern recognition in computer vision and hearing is about, and
rule-based inductive inference systems have shown their worth in
tackling these problems. Michalski has been working on a program
for automatically discovering the categories themselves into which
objects are to be classified, going beyond the construction of rules for
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Environmental descriptors
Time of occurrence = July
Plant stand = normal
Precipitation = above normal
Temperature = normal
Occurrence of hail = no
Number years crop repeated = 4
Damaged area = whole fields

Plant global descriptors
Severity = potentially severe
Seed treatment = none
Seed germination = less than 80%
Plant height = normal

Plant local descriptors
Condition of leaves = abnormal
Leafspots—-halos = without yellow halos
Leafspots—margin = without watersoaked margin
Leafspot size = greater than §”
Leaf shredding or shot holding = present
Leaf malformation = absent
Leaf mildew growth = absent
Condition of stem = abnormal
Presence of lodging = no
Stem cankers = above the second node
Canker lesion color = brown
Fruiting bodies on stem = present
External decay = absent
Mycelium on stem = absent
Internal discoloration of stem = none
Sclerotia—internal or external = absent
Conditions of fruits-pods = normal
Fruit spots = absent
Condition of seed = normal
Mould growth = absent
Seed discoloration = absent
Seed size = normal
Seed shrivelling = absent
Condition of roots = normal

Diagnosis:

spot( ) Frog eye leaf spot( )

Diaporthe stem canker( ) Charcoal rot( ) Rhizoctonia
root rot( ) Phytophthora root rot( ) Brown stem root rot( )
Powdery mildew( ) Downy mildew( ) Brown spot(x)
Bacterial blight( ) Bacterial pustule( ) Purpose seed stain( )
Anthracnose( ) Phyllosticta leaf spot( ) Alternaria leaf
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sorting objects into pre-established categories. This new technique,
called conjunctive conceptual clustering, has been used at Illinois in
a project to classify 100 Spanish songs.!? At Carnegie-Mellon
University, Hearsay-II is a speech recognition system that uses a
knowledge-base rather as an expert system does. Repositories of
knowledge are held for different levels of analysis — syllables, words,
phrases and so on — and these communicate with each other through
a common work space called a ‘blackboard’. Hypotheses are set up
about the probable meaning of the sounds being deciphered, and
these are tested as the analysis proceeds.!3

Bacon’s impropriety

Despite its obvious successes, induction is still looked on with
suspicion. It lacks the one great attribute of deductive systems based
on theory, namely the ability to explain things, to give us that ‘Ahal’
flash of insight when we understand a principle. Induction is by its
very nature bottom-up, with all that that implies in terms of lack of
elegance and completeness. Top-down reasoning has the air of a
formal science. Speaking at a conference in London, Manny Leh-
man, Professor of Computing Science at Imperial College,
commented disapprovingly on the lack of scientific theory in artificial
intelligence at the present moment. ‘We don’t want to rely on a bridge
built only on experiment, not on science,” he said. Of course, for
centuries bridges were built in just that way, of necessity.

Occasionally an empirically minded thinker like Francis Bacon
offers an explanatory annotation on the bottom-up world, arguing
that it too has its unifying principles. Bacon conceived in bold outline.
the entire possibility and structure of technological R & D as a world-
transforming enterprise. But Baconian logic models too faithfully for
public exhibition the actual cognitive style of Homo sapiens, just as
certain physical functions of man, however life-giving in their effects,
are thought best not publicly performed.

Figure 27 (opposite). Completed questionnaire describing a diseased soy-
bean plant, used as input to the inductive learning program AQ11. Below
the line, ‘Brown spot’ has been singled out from the range of possible
diagnoses (International Journal of Policy Analysis and Information Systems)
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Top-down theories will continue to be centrally important, prin-
cipally for the sake of understanding. But for mechanizing complex
tasks they are often not usable at all. In these cases, for every
computing device whether electronic or protoplasmic, skill must be
built as a bottom-up creation in which, as the philosopher Herbert
Spencer put it, “The vital actions are severally decomposed into their
component parts, and each of these parts has an agent to itself.’14



CHAPTER 6

The Creation
of New Knowledge

Computer people engaged in barking up the tree of knowledge were
more than a little dumbfounded by the view taken of computer-
stored information by three Appeal Court judges in January 1980 in
the case of the Crown versus Pettigrew, accused of stealing bank-
notes. Three fivers in his possession had serial numbers matching a
list printed by the Bank of England computer. To be admissible,
according to the Criminal Evidence Act 1965, a document must have
been prepared by someone with knowledge of its contents. A com-
puter cannot be regarded, so the Appeal Court ruled, as having
‘knowledge’ in this sense.

Something is clearly wrong here, either in the state of the law or in
received notions of what constitutes knowledge. Yet examining
boards down the ages have made no bones about knowledge. If the
candidate can mentally retrieve the requested information, he is
credited with knowledge of it, and hence with knowledge of the
contents of any document he prepared in his attempt to satisfy the
examiners. Why the Bank of England computer’s final print-out
should be flunked in the analogous case seems mysterious.

Knowledge is the capacity to give correct answers to questions. Of
course, there is sometimes disagreement over what constitutes a
correct answer. The outraged husband, finding a nude man in his
wife’s bedroom wardrobe, barks at the intruder: ‘What the hell are
you doing in there?

‘Everyone’, comes the reply, ‘has got to be somewhere.” Does this
answer rate ten out of ten, or nought out of ten? Any intermediate
mark would seem to be wrong.

Still, there is no disputing that computers can answer questions,
and therefore can have knowledge. With all respect to their Lordships
of the Court of Appeal, this is well known. What is not well known
is that computers can not only possess knowledge, they can create it.
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Information is not knowledge

At this point, readers with memories of long-past physics lessons may
ask, ‘Surely the Second Law of Thermodynamics tells us that
information cannot be created?’ Indeed it does, but information and
knowledge are not the same. Information on its own does not take
you very far. Consider the number 4-38. It is useless unless you know
it is the time of the train to Birmingham. Not only that — you need to
know where Birmingham is in relation to where you are now and
where you want to go.

Knowledge is a special form in which information can be packaged
so thatit can be stored, retrieved and understood by the human brain.
In a similar way, drinking-water can be said to be a special form of
H;O. Creation of a chunk of knowledge from a mountain of informa-
tion is thus like the creation of a cupful of water from a mountain of
ice. In both cases hard work is required for a small but possibly
precious return.

We shall have more to say on this distinction between information
and knowledge. But first let us look at the physicist’s quantified
definition of ‘information’, formalized by Claude Shannon while
working at the Bell Telephone Laboratories in the 1940s.! In some
ways the definition may seem foreign to our intuitive idea of informa-
tion. In its simplest form, information content is just a measure of the
number of bits needed to encode a message:

1001011010100011

is a message containing sixteen bits. There are 21¢ or 65,536 different
messages that can be encoded in sixteen bits, and this is just one of
them. But as a measure of true information content the bit count is
misleading, because in reality there is another factor to be considered.
Take a different sixteen-bit message:

0101010101010101

There is a clear pattern here which obviously allows the message to
be rephrased as

‘01’ eight times over.

A long, regular message of this sort can naturally be condensed into
far fewer bits than it contains in its full form. Messages on the other
hand which are effectively random cannot be condensed.
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Lack of randomness is a very common phenomenon, for example
in natural language. In computers the crudest and commonest way
of encoding English text is to assign eight bits of memory to each
letter, but this entails a great deal of waste because there is so much
extra information, or ‘redundancy’, in the language. Try leaving all
the vowels out of a sentence:

W'R SRGNT PPPR’S LNLY HRTS CLB BND
W HP Y WLL NJY TH SHW.

This makes so little difference that ancient Hebrew in its early days
was actually written all the time without vowels. There is another
factor, which is that some letters in English (E,T) are much more
common than others (X, Z). So it makes sense to give the common
letters shorter codes than the rare ones — this is exactly what Samuel
Morse did with his original telegraph code. All this results in the true
information content of English being closer to one bit per letter than
eight bits.

Essentially, the information value of a message is its capacity to
surprise the recipient. If you know what message or part of a message
is coming, its arrival conveys no information to you. For example, in
normal English the letter Q is always followed by U, so the U has no
information content at all. It might as well not be there; in a technical
sense it is redundant. Shannon constructed his measure of informa-
tion by considering the probabilities of each symbol occurring so
that the more likely symbols are credited with less information
content. Summing and averaging the ‘surprise-values’ of the indivi-
dual symbols constituting a given message gives a measure of the
‘surprise-value’ of the whole message and hence of its total informa-
tion content.

Of course, this has nothing to do with the meaning of a message,
or of how interesting it is. A message consisting of an entirely random
jumble of characters contains plenty of information but is very
boring. At the other extreme a completely non-random message such
as

NNNNNNNNNNNNN...

is also boring. ‘Interestingness’ at the superficial level comes from
messages that are somewhere in between. At a deeper level, interest-
ingness is a property of what the message denotes, that is, its meaning.
This aspect is not covered in the classical treatment.
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Laying down the Second Law

We now return to thermodynamics, and the law referred to by C. P.
Snow in his assertion that non-scientists should feel guilty about not
understanding it. The Second Law of Thermodynamics tells us that
as the energy of the stars is radiated out into the vastness of space,
the hot areas and cold areas of the universe gradually even out their
energy until eventually there will be a uniform, lifeless distribution of
bitter cold everywhere — the ‘Heat-Death of the Universe’. So the
whole contrivance is slowly running down, and everything is getting
more and more disorganized. The physicist describes this as a con-
tinual increase of entropy (his measure of disorganization), while at
the same time information, the opposite of entropy, decreases. The
organization of the cosmos is lost in the universal jumble.

A consequence of this is that information cannot possibly increase,
except on a local scale, and then only when information is lost
somewhere else. So information cannot be created — not by man, nor
by machine, nor by anything.

A qualification must be added to this account to take care of
possible interpretations at the cosmological and sub-atomic levels of
analysis. Paul Davies of Newcastle University explains that physicists
are beginning to wonder whether across the breadth of the entire
universe, continually expanding as it is, gravity might actually be
creating information at the expense of its own entropy. At quite the
opposite extreme of scale, considering sub-atomic particles, it is true
that Heisenberg’s Uncertainty Principle tells us that, by the very
nature of atoms, it is impossible to predict how and when they will
split apart in radioactive decay. Therefore when an atom does split,
it comes in a certain sense as a ‘surprise’, so that information might
be said to have been created. Nevertheless, the laws of statistics
ensure that this can have no effect on the quantity of information
affecting us on a human scale. Further, we can detect the decay of an
atom and the information contained therein only by amplifying the
effects with a particle counter, and this device, requiring power to
drive it, uses up more information than it supplies to us.

So while information can in some theories be created on a cosmic
and on a sub-atomic scale, it cannot be created on the scale of humans
and their machines.

Still, intuitively it may seem strange to think that information
cannot be created. Take the sentence: ‘The height of the new sky-
scraper is 1,150 feet.” This is definitely a piece of information, which
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seems to have been recently created. It exists now —how could it exist
before the building was there? Ah, but it did, from the point of view
of the information theoretician. It existed in the mind of the architect,
not consciously to start with, even before he decided to design the
building, and before that in the myriad things which influenced him.
Saying this is nothing more than affirming the principle of cause and
effect: the information describing every effect is wholly contained in
the circumstances of the cause. It is there, but in a different form —
assuredly very difficult to obtain, but there. The issue of obtainability
is central to the notion of knowledge; the knowledge that the height
of the new skyscraper is 1,150 feet is created at the instant that
the corresponding information comes to be structured in brain-
accessible form.

New knowledge for old information

So computers cannot create information. This has long been clear.
What has only recently become clear is that there is no such barrier
to computers creating knowledge. It is this discovery, with the conse-
quences that it entails, that forms the central impetus of this book.

What is knowledge created from? Information. Through purely
internal operations a computer can add to its knowledge (and thence
to the knowledge of the world at large) using a fixed amount of
information. To explain this, we will start with a trivial example.
Suppose we write a prime-factorization program that will tell us
whether any number we give it up to ten million is prime or compo-
site. Moreover we endow the program with the habit of keeping in
memory the results of its own past computations. This is a slow home
computer, so when we try it with 1,005,973 it takes such a long time
that we get bored and interrupt it before it has found the answer.
Every exam has a time limit, so no marks in this case. Then we try
997 and after a while the program says, ‘Prime’, and stores this result
in memory. So its ‘knowledge’ extends at least to 997. What else does
it know?

We input 999,997 and go out, leaving the program running. So far,
no marks. But by the time we return, the program has finished and
stored its result as always in a table, so we are not surprised when we
again ask it 999,997 that it knows the answer straight away, replying
‘Composite’ instantly by look-up. Moreover it can now answer
the question it failed with utterly before — giving 1,005,973 as
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‘Composite’ in a few seconds. The seeming miracle can be traced to
its use, for speeding up the computation, of the new-found primeness
of 997. Knowledge here is clearly being created and used. Yet infor-
mation remains constant, being fully contained in the original pro-
gram. What changes, then? Simply the size of that fraction of the total
information which can be mobilized fast enough to satisfy the
examiners.

Structures make concepts

This example is in no way realistic, because the knowledge generated
is hardly significant in human terms, but from this we can begin to
see what is needed to make information become knowledge. The
information must be in appropriate structures. When these infor-

NAME(s): Set, Non-proper Class, Collection, Finite set
DEFINITIONS:
RECURSIVE: 1(S)[S = { } or Set . Definition
(Remove(Any-member(S),S))]
RECURSIVE QUICK: A(S)[S = { } or Set . Definition (CDR(S))]
QUICK: 4 (S) [Match S with {...}]
SPECIALIZATIONS: Nonempty-set, Set-of-sets, Set-of-numbers
BOUNDARY: Empty-set, Singleton, Doubleton, Tripleton
GENERALIZATIONS: Unordered-Structure, Collection,
Structure-with-no-multiple-elements-allowed
IS-A: Kind-of-structure
EXAMPLES:
TYPICAL: {{}}, {A}, {A,B}, {3}
BARELY: {},{A,B, {C, {{{A,C,(3,39), <4,{B},A>}}}}}
NOT-QUITE: {A,A}, (), {B,A}
FOIBLE: <4,1,A,1>
CONIJECS: All unordered-structures are sets.
INTUITIONS: Geometric: Venn diagram.
ANALOGIES: {set, set operations} = {list, list operations}
WORTH: 600 [on a scale of 0-1000)
VIEW:
PREDICATE: i (P) {xeDomain(P) |P(x)}
STRUCTURE: 4 (S) Enclose-in-braces
(Sort(Remove-multiple-elements(S)))
IN-DOM AIN-OF: Union, Intersection, Set-difference, Subset,
Member, Cartesian-prod, Set-equality
IN-RANGE-OF: Union, Intersect, Set-difference, Satisfying

Figure 28. Aninformation structure: how A M represents the concept of a ‘set’?
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mation structures are recognizable to human beings we call them
concepts. Useful knowledge is information in conceptualized form.

Harking back to the example of the train times, a very basic
information structure might be a timetable incorporating a map,
identifying where the stations are and how they are interconnected.
For an example of something more substantial, recall Doug Lenat’s
program AM in the previous chapter. The whole idea of this is that
it handles concepts, each of which is stored internally in the computer
in a special structure. Figure 28 shows one of these, namely the
concept of a set. Without worrying too much about the details, one
can see from this how a computer program can take the elements of
the structure and manipulate them, finding relationships with other
concepts and filling in the empty slots in the structure.

The concept of a set was one of those given to AM to start with.
But look now at Figure 29. This is the concept, ‘prime number’. You
will recall that A M was not given this concept —it constructed it itself.
In the process, it created knowledge.

Discoveries from Edinburgh

Of course, the knowledge in this case was not original, as the idea of

N A M E(s): Prime Numbers, Primes, Numbers-with-2-Divisors
DEFINITIONS:
ORIGIN: Divisors-of(x) is-a Doubleton
PRED.-CALCULUS: Prime(x) = (Vz)(zlx >z = 1 XOR z = x)
ITERATIVE: (for x> 1): Forifrom2tox— 1, 71(i|x)
EXAMPLES: 2,3,5,7,11,13,17
BOUNDARY:2,3
BOUNDARY-FAILURES: 0,1
FAILURES: 12
GENERALIZATIONS: Numbers, Numbers with an even no.
of divisors, Numbers with a prime no. of divisors
SPECIALIZATIONS: Prime pairs, Prime uniquely-addables
CONIJECS: Unique factorization, Goldbach’s conjecture
ANALOGIES: Maximally-divisible numbers are converse
extremes of Divisors-of
INTEREST: Conjec’s tying Primes to Times, to Divisors-of, and
to other closely related operations
WORTH: 800

Figure 29. AM’s concept of a ‘prime number’
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a prime number has been around for a long time. (Note also that the
name ‘Prime Number’ that appears in the structure was not generated
by the program — it was filled in later by Lenat.) A different story
though comes from Edinburgh, where several researchers have been
constructing expert systems for playing chess end-games. Early on in
this work Ivan Bratko, himself a master-level player, developed
a set of rules for King and Rook against King and embedded them
in a structure called an ‘advice table’. The rules were fed into the
machine to be correlated, cross-checked, revised, refined and proved.
When the expert system was working, Bratko translated the rules
back into English, expecting to find something like the original text-
book formulation. Instead, something startlingly different appeared.
Bratko discovered that the six rules obtained were more complete,
concise and understandable by far than the chess-master formula-
tions to be found in the books. In place of pages of diffuse text and
diagrams was a set of rules so simple and clear-cut that anyone could
grasp and even memorize them (Figure 30). A child could learn the
rules and use them to play this end-game as skilfully as a master.
Bratko had made the important discovery that a computer could
enable a human to formulate new knowledge that he could not other-
wise have formulated. The formulation was completely original,
never having been seen before by any chess master or writer of text-
books. But still the knowledge was basically created by a man, not

1. In obeying the rules which follow, make sure that stalemate is not created
or the Rook left en prise.

2. Look for a way to mate opponent’s King in two moves.

3. If the above is not possible, then look for a way to constrain further the area
on the chess board to which the opponent’s King is confined by our Rook.

4. If the above is not possible, then look for a way to move our King closer to
opponent’s King.

S. If none of the above pieces of advice 2, 3 or 4 works, then look for a way of
maintaining the present achievements in the sense of 3 and 4 (that is, make a
waiting move).

6. If none of 2, 3, 4 or 5 is attainable, then look for a way of obtaining a position
in which our Rook divides the two Kings either vertically or horizontally.

Figure 30. Ivan Bratko’s strategy for winning with King and Rook against
King — knowledge created with the assistance of a computer
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by a machine. This was the case until two other researchers at
Edinburgh, Tim Niblett and Alen Shapiro, tackled the end-game
King-Pawn-King. They took as their starting point a giant table for
this end-game which had been mechanically compiled by Michael
Clarke for use in the same sort of ‘blind look-up’ we described in
Chapter 3. The table indicated for every position whether it was
‘drawn’ or ‘lost’ but provided no explanation of why, nor any struc-
ture or comprehensible pattern that could make sense to a human.
Niblett and Shapiro ran selected parts of the table through an induc-
tion program called ID 3, and following a semi-automatic iterative
process they developed a set of decision trees which a human could
use to evaluate any position.? The master tree is shown in Figure 31.

Broad meaning of attribute
canrn
true canrm is a specific pattern which entails
false LOST that however Black moves, White can promote
the pawn without moving his King

mainp
true mainp entails that the pattern mainpatt
faise LosT either holds or is achievable
rookp
true the pawn is a rook-pawn and canrn
false LOST is achievable
rank56
Wp the pawn is on rank 5 or 6 and the pattern
false LOST rank6patt holds or is achievable
v
rank7

& the pawn is on rank 7 and the White King
faise LOST can force its way next to it

v
inter

&’ mutual interference operates between
false LOST blockability of canrn and mainp

v
DRAWN

Figure 31. Knowledge created by computer in ID 3’s master tree for classi-
fying King-Pawn-King positions with Black to move into ‘LOST’ or
‘DRAWN’. For each of the six attributes a similar tree was separately
synthesized from a set of more primitive attributes
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This together with its sub-trees makes excellent sense to a chess
expert. From totally indigestible information ID3 had actually
created new knowledge.

Niblett and Shapiro had not only succeeded in getting a machine
to create original knowledge. They had also engineered the exact
opposite of the bafflement over Ken Thompson’s table (Chapter 3).
The information drawn from a computer was easily comprehensible
and phrased entirely in human, not machine, concepts, so that it
could be interpreted by machines and brains alike.

As it happens, the chess content of the last two examples is
relatively simple in master terms. This was not the case, however,
with Shapiro’s next undertaking, which was the end-game King and
Pawn against King and Rook. This is of a level of complexity far
beyond the power of the unaided chess master to codify adequately.
Shapiro looked specifically at the situation where the Pawn is on the
next-to-last row, square a7. With the help of chess master Danny
Kopec he chose thirty-five primitive attributes describing the situa-
tion on the board, such as, “The White King is on an edge’ or ‘The
Black King can attack the White Pawn’. He then asked Kopec to give
examples of all these, showing their consequences. These were fed
into the program Interactive ID 3 and used to generate a set of nine
rules, arranged in a tree structure. The first of these (with a human-
added description at the beginning) read:

PA7, Top-level rule. This rule is used to decide if a KPa7KR position with
White-to-move is won-for-White or not.

KPa7KR is won for White (PA7,1) IFAND ONLY IF
the BR can be captured safely (rimmx)

OR none of the following is true:

there is a simple delay to White’s queening the pawn (DQ,2.1)
OR one or more Black pieces control the queening square (bxqsq)
OR there is a good delayed skewer threat (DS,2.2).

Each of the codes refers to the outcome of one of the lower rules.
Again, useful knowledge had been created, expressed in terms com-
prehensible to humans, and this time from a highly complex domain.

What is also significant about these examples is that computers
have created knowledge not just for their own use, but for the use of
human beings, in solving actual human problems. Of course, prob-
lems of how to classify chess end-game positions are only of practical
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significance to end-game experts, but a further achievement by Ivan
Bratko has shown that knowledge synthesized by computer can make
a contribution to the solution of important human problems, in this
case, the diagnosis of heart disease.

Looking into the heart

The principal means doctors use to diagnose heart disease is examin-
ing electrocardiograms, which are graphs of the electrical signals
produced in the heart, drawn by an automatic pen recorder. The
ECG of a normal heart looks something like Figure 32. Doctors

R

Qs

normal sinus rhythm

rhythm: regular,

frequency: between 60-100,
frequency P: between 60-100,
regular P: normal,

relation P-QRS: after P-QRS,
regular PR:normal,

regular QRS: normal

Figure 32. ECG diagram of a normal heart, with its qualitative description
(Ivan Bratko)

describe the trace by how the main features P, Q, R, S and T are
grouped. Defects in the heart cause the timing and strengths of the
pulses to be disrupted, producing ECG traces such as in Figure 33.
Conditions such as this are known as ‘arrhythmia’. There are twenty-
six different arrhythmias, each with its distinctive ECG pattern, and
heart specialists learn to recognize these. The difficulty is that there
is often more than one defect present at a time, leading on the face of
it to over 100,000 conceivable multiple arrhythmias. The patterns for
the separate arrhythmias combine in one ECG trace in ways which
make it extremely difficult to decipher. It has not so far been found



126 The Creative Computer

Qrs

ventricular tachycardia

rhythm: regular,

frequency: between 100-250,
regular P: absent,

regular QRS: wide

Figure33. ECG ofadiseased heart, withqualitative description (Ivan Bratko)

feasible even with the aid of a computer to identify multiple arrhyth-
mias in a complex trace; by hand it is out of the question.

To deal with this problem Bratko and his colleagues at the Jozef
Stefan Institute in Ljubljana decided to employ the inverse-function
method, as we described in Chapter 3, relying on the fact that while
it may be very difficult to work out a function in one direction, it may
be relatively easy in the other. Accordingly the Yugoslavs used a
computer to work out all the possible combinations of heart defects
and what their resultant ECG traces would be. This was produced
as a table in which a doctor could look up a particular trace to find
the appropriate corresponding diagnosis.

Bratko’s team did this by constructing, with the aid of cardio-
logists, a computer model of the workings of the heart’s electrical
system, involving four generators of impulses, two paths along which
these propagate and the rates of flow in the heart’s chambers. The
model consisted of sixty-two rules obtained with the help of the
cardiologists, for example:

IF there are ectopic impulses at the His bundie and in the supraventricles
originating at the AV focus

THEN this results in the following ECG features: either a short PR interval,
or no P wave, or P wave after the QRS complex.

The rules described not only the origins of the ECG signals but also
the fact that many combinations of arrhythmias are not physiologi-
cally possible, if for instance one depends on a particular factor in the
heart being too high, and another on it being too low. Other arrhyth-
mias cannot occur alone. The ECGs were described in qualitative
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terms, as to how the features P, Q and so on were grouped, rather
than in numerical terms using frequencies. The rules were imple-
mented in the computer language Prolog, and the system was then
run to produce a list of all possible combinations of arrhythmias and
their corresponding ECG traces. It turned out that there were 588 of
these. A doctor could easily look up an ECG pattern in this table and
find the corresponding diagnosis. Because the system in effect con-
tains a complete qualitative description of the working of the heart’s
electrical system, an explanation of how a particular conclusion was
reached could readily be obtained and also understood.

The table that the Bratko system produced is most definitely new
knowledge, and knowledge that is of real human importance. The
doctors at Ljubljana University Medical Centre are already using the
system for teaching purposes. For practical diagnosis, specialists are
often able to get sufficient clues from other signs apart from the
ECG. However, if a patient has been taking drugs, for example heart
drugs prescribed as part of his medical regime, the situation becomes
much more complicated, and even the most experienced consultants
have great difficulty in diagnosing correctly. The expectation is that
an expanded version of Bratko’s system taking the action of drugs
into account could bring about a major step forward in the treatment
of heart disease.

There is an interesting difference between the heart disease system
and earlier examples we gave of the creation of new knowledge by
machine. While in the chess examples the new knowledge was con-
densed and compiled out of an expert’s skill, here it was generated
from the machine’s own causal understanding of the mechanism of
the heart. Thus in a way the machine’s contribution to new know-
ledge was greater in the second case.

Examples of the creation of new knowledge by computer have
already been brought out in this book, namely, the discoveries of
Doug Lenat’s Eurisko (Chapter 5). This works on a different prin-
ciple from the knowledge-based systems we have been discussing
here, but its creations have been as original, and the technology of
heuristics promises to be a growing source of new knowledge for the
future.
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Solutions from machines

The discovery that it is possible for computers to generate strategies
for use by human beings is of incalculable significance. Let us look
back to the question raised at the start of Chapter 2: can computers
provide answers to such problems as ‘What is wrong with this
patient? ‘Would this be a good spot to drill a well? ... The tech-
nology of expert systems enables machines to deal with these prob-
lems using knowledge supplied by humans. The day is now in sight,
however, when the knowledge required will originate not just from
humans but also from the machines themselves. The potential impact
of this is immense. The world is faced with a host of problems, great
and small; among the great ones are overpopulation, poverty,
disease, pollution, shortage of energy, international conflict and
economic stagnation. Can we see computers generating solutions to
these? Most certainly. It is true that most of the problems that
creative computers can tackle at the moment fall far short of these
global issues, but it is early days. One would not expect a full-grown
horse to be the first product of a laboratory seeking to synthesize life.
Science always has to start small: in life, perhaps a virus; in problem
solving, a plan for an imaginary fleet, an analysis of a chess position,
a design for an integrated circuit or a scheme for diagnosing heart
disease. It is true that someone could just conceivably have produced
Bratko’s arrhythmia table without using his techniques of knowledge
engineering, but it is noteworthy that no one has done so. Certainly
no chess master could have produced Shapiro’s rule-base. The
borderline of what is just not feasible by hand has now been reached.
These achievements point clearly to where the technology is headed.
Hardware is getting cheaper and cheaper, and it will not be long
before it is worthwhile to set up computer-based ‘knowledge
factories’ dedicated to the accumulation and refinement by machine
of bodies of knowledge geared to really significant solutions. People
will have to decide whether the solutions are significant, but to a large
extent so will the machines, in order not to bury their human con-
trollers in the task of sifting wheat from chaff.

We envisage machine-based craft shops set up for the sole purpose
of generating new knowledge, using as their raw material both the
expertise of humans and the ruminations of huge computer models
and look-ahead systems. Some of these operations would be tackling
fairly narrow, self-contained problems, such as the diagnosis and




The Creation of New Knowledge 129

treatment of particular diseases, while others would work on issues
such as the world economy. A wide range of problems, large and
small, will surely be susceptible to solving in this way.

Measures of creativity

How much can we expect from computers in the way of creativity?
This question brings us back to the point that a great deal of creativity
in small ways goes on all the time — in people in their daily lives, for
instance, puzzling out what is happening around them. Really sub-
stantial creativity on the other hand is rare. Bearing this in mind, we
may expect to have to put a great deal of computing resources into a
task in order to obtain a relatively small amount of new knowledge,
but computing resources are becoming cheap, and the potential of
the new machine-induction methods remains largely untried.

In assessing how much new knowledge is being created, we need to
be able to measure it. Clearly, quantity and quality are inextricably
linked here. To get an idea of how this measuring might be done, we
look back at expert systems. Complex problems abound which are
beyond solution by knowledge-poor programs in feasible time. But
when humans add advice to the programs in the form of heuristic
rules, suddenly the machines can reach solutions after all. In a chess
game, say, the machine with knowledge can make an immediate
intelligent move instead of slogging through a look-ahead tree of
millions of nodes. By measuring how much a program speeds up on
receiving the advice, we can begin to quantify the knowledge con-
tained in it.*

Refining knowledge

When expert systems were first devised, they were intended to act
simply as substitute human experts. There was no thought that the
knowledge fed in would ever be read out again. Instead, they have
shown an unexpected bonus: they can actually help to codify and
improve expert human knowledge, taking what was fragmentary,
inconsistent and error-infested and turning it into knowledge that is
more precise, reliable and comprehensive. This new process, with its
enormous potential for the future, we call ‘knowledge refining’.



130 The Creative Computer

Domain

Previous
codification

Chess: spotting mates ‘at a
glance’

Chess: how to mate with King
and Rook against King

Chess: how to classify King—
Pawn-King positions

Diagnosis of acute abdominal
pain

Internal medicine diagnosis
and treatment

Chemical synthesis planning

Planning robotic assembly
sequences

Plant pathology

Mass spectral information on
mono- and poly-
keto-androstanes

No non-trivial classifications
published

Chess primers by Capablanca,
Fine, etc.

Chess primers by Averbakh and
others

Signs-and-symptoms checklist
cards for general practitioners
prepared by consulting
surgeon

Medical texts

Textbooks on synthesis

Toy-car assembly scheme for
Edinburgh versatile assembly
program :

Pathologist’s diagnostic
classification of soybean
diseases

No satisfactory pre-existing
explanation of spectroscopic
behaviour

Figure 34. Representative cases where knowledge-based programs have
been used to improve previous codifications of human knowledge, a
phenomenon termed ‘knowledge refining’
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Refining
instrument

Desired
end-product

PL1 tournament program
Master

ALI ‘Advice Taker’ program

Prolog and AL1 *Advice Taker’
basis for I D 3-mediated
inductive learning

Bayes’s decision-rule program
for relating symptom pattern to
one of a dozen common
conditions

‘Internist’
knowledge-based program

SECS program with data-base
of chemical ‘transforms’

‘Warplan’ predicate-calculus-
based program

‘Aqval’ program for inductive
inference

Meta-Dendral module of
Dendral program

Reference text of mating patterns

Six sufficient rules, formally
proved correct

Micro-manual of pattern-based
rules

Improved checklists including
numerical measures of
relevance and reliability

Improved medical texts

Improved source of synthesis-
relevant knowledge for
chemists

Improved assembly sequence

Improved set of classificatory
rules

Sub-structures defining main
cleavages, yielding predictive
theory for new keto-
androstanes
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One of the earliest examples of this was noted by Ed Feigenbaum,
following the work at Stanford on chemical-structure analysis by the
expert system Dendral. Chemists started writing to Stanford asking
for copies not of the program, but of the rules it had assimilated. They
found these rules useful because they were a much clearer codifica-
tion of the subject than had existed before. Following that, the
program’s rule generator Meta-Dendral induced new rules for mono-
and poly-keto-androstanes. The phenomenon of knowledge refining
has been observed in several other areas of expert-systems work, as
we list in Figure 34.

Hitherto expert systems have operated in two modes:

(1) Feeding in the knowledge: user as teacher.
(2) Getting answers to problems: user as client.

To these we now add a third mode:
(3) Harvesting the knowledge-base for use by humans: user as pupil.

Typically, the users in each of these modes are different people. For
example, in the case of SRI’s Prospector the teacher would be an
economic geologist hired or employed by a mining company to build,
validate and tune the system’s base of useful knowledge. The user
seeking solutions is likely to be a technical executive of the company.
The pupil could be the original specialist, or another geologist
interested in picking up some of the first geologist’s special know-
ledge in machine-refined form. For both the first and the last cases
the dialogue between machine and human must of necessity be con-
ducted at the conceptual level to which the human specialist is accus-
tomed. This means that for knowledge refining and all creation of
new knowledge by computer, it is essential that the structures used to
represent knowledge in the machine fit the ‘human window’, de-
scribing the subject domain in the same way the person does. Other-
wise both teacher and learner mode become impossible.

There are a great number of specialist fields, each with its lore and
texts and an ample degree of confusion and gappiness, which would
make excellent raw material for knowledge refining. We can foresee
a whole industry arising to tackle the job, based around a novel type
of industrial plant, the ‘knowledge refinery’, which would take in
specialist knowledge in its existing form and debug it, pull it together,
carry out creative gap-filling wherever the need becomes evident, and
turn out knowledge that is precise, tested and certified correct.
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Looking further afield, there are large quantities of knowledge
about at many different intellectual levels, most of it notably un-
refined. Many man-centuries of mental work gather dust on library
shelves — contradictory, disparate and indigestible. Eventually it
should be possible to set to work on reformulating and refining all
this. The boon to mankind would be significant if even a fraction of
the world’s accumulated practical wisdom could be sifted, brought
together and turned into accurate usable knowledge in this way.

Turing’s vision

Making all this happen will not be easy. There is much scepticism
about the assertion that computers can actually create something
new. People do not readily credit machines with creativity, partly
because creativity has always been a thing of mystery, of essentially
human quality, and they are offended to see it apparently brought
down to the level of nuts and bolts. The cry is still heard that ‘You
only get out what you put in.” Many serious academics as well are
bothered by the central role played by induction in computer crea-
tivity. The distinguished philosopher of science Sir Karl Popper
denies that induction can be the source of new knowledge. Now, the
evidence of concrete results is turning against the doubters. But we
can also cite the vision of the man who in effect devised the whole
theory of modern computing, years before electronic computers were
technically feasible: the English mathematician Alan Turing, who
died in 1954.

Turing’s great achievement was to show, by a thought experiment
in 1937, that a general-purpose computing machine was logically
possible and would be capable of solving an unlimited variety of
problems. He did this by conceiving a hypothetical device, since
dubbed the ‘Universal Turing Machine’, that would wander up and
down a tape on which was inscribed the data and a program, peering
here, overwriting there, until an answer had been output onto the
tape. As befits a person of such originality, Turing had an extra-
ordinary turn of mind, and a carefree disregard of how the rest of the
world behaved or thought. He used to cycle to work wearing a
gas-mask as a protection against pollen. While working at the top-
secret code-breaking centre at Bletchley Park during the Second
World War, he buried some silver in the woods nearby as a pre-
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caution against the liquidation of bank accounts in the event of a
successful German invasion, and later forgot where the hiding place
was. He recruited a youthful Donald Michie after the war to help
find it, with the aid of a gimcrack metal detector he put together
himself, but to no avail.

Turing’s own attempts at building machinery were inept, but his
foresight about how others might do so was unsurpassed. He de-
scribed before any real computers were operational a great deal about
how these machines would be used, including many concepts which
are now commonplace in data processing: loops, subroutines, boot-
strapping, remote access. In a lecture to the London Mathematical
Society in February 1947 he uttered some prophecies that strike a
modern-day computer technologist (or user) as uncanny:

Roughly speaking those who work in connection with the Automatic
Computing Engine will be divided into its masters and its servants. Its
masters will plan out instruction tables for it, thinking up deeper and deeper
ways of using it. Its servants will feed it with cards as it calls for them. They
will put right any parts that go wrong. They will assemble data that it
requires. In fact the servants will take the place of limbs. As time goes on the
calculator itself will take over the functions both of masters and of servants.
Fhe servants will be replaced by mechanical and electrical limbs and sense
organs. One might for instance provide curve followers to enable data to be
taken direct from curves instead of having girls read off values and punch
them on cards. The masters are liable to get replaced because as soon as any
technique becomes at all stereotyped it becomes possible to devise a system
of instruction tables which will enable the electronic computer to do it for
itself. It may happen however that the masters will refuse to do this. They
may be unwilling to let their jobs be stolen from them in this way. In that
case they would surround the whole of their work with mystery and make
excuses, couched in well chosen gibberish, whenever any dangerous sug-
gestions were made. I think that a reaction of this kind is a very real danger.
This topic naturally leads to the question as to how far it is possible in
principle for a computing machine to simulate human activities.

Evolving the tables

Turing describes in detail how the machine holds in its memory both
data and ‘instruction tables’ (the program). These tables would be
worked out in detail in advance by mathematicians, but this mode of
working would leave much to be desired. ‘What we want’, Turing
asserts, ‘is a machine that can learn from experience.” He explains:
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It has been said that computing machines can only carry out the processes
that they are instructed to do. This is certainly true in the sense that if they
do something other than what they were instructed then they have just made
some mistake. It is also true that the intention in constructing these machines
in the first instance is to treat them as slaves, giving them only jobs which
have been thought out in detail, jobs such that the user of the machine fully
understands in principle what is going on all the time. Up till the present,
machines have only been used in this way. But is it necessary that they should
always be used in such a manner? Let us suppose we have set up a machine
with certain initial instruction tables, so constructed that these tables might
on occasion, if good reason arose, modify those tables. One can imagine that
after the machine had been operating for some time, the instructions would
have been altered out of all recognition, but nevertheless still be such that
one would have to admit that the machine was still doing very worthwhile
calculations. Possibly it might still be getting results of the type desired when
the machine was first set up, but in a much more efficient manner. In such a
case one would have to admit that the progress of the machine had not been
foreseen when its original instructions were put in. It would be like a pupil
who had learnt much from his master, but had added much more by his own
work. When this happens I feel that one is obliged to regard the machine as
showing intelligence.

The technique of having a program change part of itself is already"v

used to a certain extent with low-level languages. It is, however,
frowned upon as untidy. Only one or two experimental A I languages
have facilities for operating on code as data, or executing data as
code. Turing himself though knew where he stood, and characteristic-
ally it was not on the side of convention or tidiness. The closing
passage of the 1947 lecture brings this home with eloquence and
force, and with a clear affirmation of the principle that machines
should learn by inductive modification of their instructions in re-
sponse to the behaviour of humans:

It might be argued that there is a fundamental contradiction in the idea of
a machine with intelligence. It is certainly true that ‘acting like a machine’
has become synonymous with lack of adaptability. But the reason for this is
obvious. Machines in the past have had very little storage, and there has been
no question of the machine having any discretion. The argument might
however be put into a more aggressive form. It has for instance been shown
that with certain logical systems there can be no machine which will distin-
guish provable formulae of the system from unprovable, i.e., that there is no
test that the machine can apply which will divide propositions with certainty
into these two classes. Thus if a machine is made for this purpose it must in
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some cases fail to give an answer. On the other hand if a mathematician is
confronted with such a problem he would search around [and] find new
methods of proof, so that he ought eventually to be able to reach a decision
about any given formula. This would be the argument. Against it I would say
that fair play must be given to the machine. Instead of it sometimes giving
no answer we could arrange that it gives occasional wrong answers. But the
human mathematician would likewise make blunders when trying out new
techniques. It is easy for us to regard these blunders as not counting and give
him another chance, but the machine would probably be allowed no mercy.
In other words then, if a machine is expected to be infallible, it cannot also
be intelligent. There are several mathematical theorems which say almost
exactly that. But these theorems say nothing about how much intelligence
may be displayed if a machine makes no pretence at infallibility.

To continue my plea for ‘fair play for the machines’ when testing their .Q.:
a human mathematician has always undergone an extensive training. This
training may be regarded as not unlike putting instruction tables into a
machine. One must therefore not expect a machine to do a very great deal of
building up of instruction tables on its own. No man adds very much to the
body of knowledge; why should we expect more of a machine? Putting the
same point differently, the machine must be allowed to have contact with
human beings in order that it may adapt itself to their standards. The game
of chess may perhaps be rather suitable for this purpose, as the moves of the
machine’s opponent will automatically provide this contact.

Now, three decades later, it is clear that the amount machines will
eventually be able to add to the body of human knowledge may
outreach even Turing’s imagination.



CHAPTER 7

A Metaphor Upside Down

In the public mind the notion of creativity is associated first and
foremost with the arts. So, when considering computer creativity it is
natural to ask, ‘Is it possible for computers to produce new works of
art? Of course in some ways art seems antithetical to modern tech-
nology. We still tend to think of the artist in his garret, too pre-
occupied with matters of the spirit to concern himself with nuts and
bolts. But in fact artists throughout history have embraced new
technology whenever it has offered them tangible benefits: new
colours, new alloys, new methods of print-making, new musical
instruments. On top of that, art is in its essence information, so
we would expect the new information-handling technology to be
relevant to it. Indeed since quite early in the history of computers,
scattered individuals have braved the mutual suspicion of artists and
technologists to explore how these machines could be used in such
fields of aesthetic creativity as painting, sculpture, music and poetry.
The results have been uneven, and surrounded by controversy. In
what can only be a cursory review, we aim by citing some representa-
tive examples to give readers an idea of what is going on and of the
issues involved.

Painting

Probably the field in which most work has been done, and in which
the issues are most clear-cut, is painting and drawing. Here there are
two distinct, indeed antagonistic, approaches to the use of com-
puters. In one, the computer is being used simply as a tool — a very
elaborate palette and canvas on which the artist ‘paints’ by a variety
of methods. In the other way of working, the artist supplies a
program for the machine to follow, without himself necessarily
having any idea what the end-result will be. It is in this latter tech-
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nique that we can begin to see the possibility of a computer actually
creating art.

One follower of the ‘computer as tool’ approach is the American
David Em, who has the improbable job of Artist-in-Residence at the
Jet Propulsion Laboratory in Pasadena, California. This is the
control centre for the US unmanned space probes to Jupiter, Saturn
and beyond, and in the course of planning these probes the staff at
JPL developed a very powerful computer graphics system for simu-
lating what would be seen as the Voyager spacecraft flew past the
giant planets in the outer reaches of the solar system. It was essential
to make sure Voyager would get its pictures right the first time — there
would be no chance of turning around and trying again.

Not only does the graphics system provide much higher colour
definition than is normally available on computers, but James Blinn’s
software can generate solid figures and surfaces in perspective and
manipulate the image in sundry ways: enlarging, shrinking, moving
it around, copying, reflecting and so on. When he can find time on
the machine in between scientific projects, David Em uses it to
produce abstract ‘paintings’ of startling originality and vividness, of
a dreamlike, almost nightmarish quality (Plate 4).

He starts by drawing lines with a stylus on an electronic tablet,
directing the computer to convert these into a range of thick or thin
lines or ‘sprays’ in a choice of 256 colours, in the same way that a
traditional artist chooses his paints and brushes. The results are
shown on a very high-resolution colour screen. He can then mani-
pulate the pictures by various geometrical operations — transforming
images, shifting them about, combining them with others, adding
surface patterns and ‘textures’ and experimenting with different types
of ‘space’. The whole process is one of trial and error. If the colour
or texture of one feature seems not quite right, it can be changed at
the touch of a few buttons. A painting can be stored away and
recalled later for further work.

The finished pictures are best viewed on the actual colour screen,
which gives brilliant, almost scintillating, images. Em describes him-
self as ‘fascinated by the nature of electronic light’. For exhibitions
where the computer equipment is not available, Em photographs the
images from the screen and makes thirty-inch by forty-inch colour
prints. He has also made some into lithographs, and is aiming to
produce prints ten feet long.

Em’s visions are literally fantastic. Some have a flavour of science
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fiction, no doubt stimulated by his environment. As he says himself,
‘They are imagery that could not exist in reality.” People often tell
him that the pictures remind them of things they have seen in their
dreams, and this seems to stem from the curious mixture of purely
abstract and vaguely natural forms they contain. Architectural
features, valleys and rudimentary landscapes seem to be visible in
many of the paintings, as Em himself points out. In some surprise he
tells us, ‘It is forms found in nature that the computer likes to deal
with on its own most of all.” Although the picture is entirely under
Em’s control, heis certain that the end-results are quite different from
what he would be producing in a conventional medium. ‘The com-
puter leads me into trains of thought that would never have occurred
to me without it,” he asserts. In a way, the medium does tell him what
to do, and it is possible for him not to know at the beginning of a
painting where it will end up. But that was true of classical painters
too, he reminds us. The trial-and-error process has turned painting
into a kind of exploration: Em can move about in the structures he
has created and find out what is there, something painters have never
been able to do before. ‘It’s a different mental process,’ he says.

One thing of which he is certain is that he could never exhaust the
possibilities of his new medium. ‘I feel I have an infinite machine
here,” he says. He is carrying on working with it to find new visions,
new relationships between colours, new spaces. ‘The medium is only
at the Neanderthal stage,” he declares. It need not be confined to use
with abstract art, he points out — others have used it to produce highly
naturalistic, almost photo-realistic, pictures.

It was at a California plastics factory that Em was first lured away
from conventional art by the aesthetic potential of technology. The
firm’s owner was interested in art and had the idea that his moulding
machines could be used for creative ends. Em was hired as artist-in-
residence and spent some time producing room-sized plastic sculp-
tures. This led him into an environment completely foreign to him as
a solitary artist — he had to learn to organize helpers to operate the
machines with him, and he had to learn to deal with management.
These continue to be sizeable preoccupations at JPL.

Outside the studio, or rather computer room, Em has a passionate
interest in theatre. Scattered around Hollywood are a host of ambi-
tious small playhouses which provide a creative outlet for talented
people in the film industry who have to spend their working days
producing pap. For these Em writes and directs extraordinary multi-
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media performances, using projections of his own paintings as
scenery, as well as lasers, synthetic music and bizarre insect-like
costumes likewise designed by him. As yet the computer cannot
control the projections directly, but this is the next logical step. An
on-line video projector would open up the fascinating possibility of
varying the visual effects in accordance with the action on the stage,
as it happens.

For other events Em has generated huge moving displays, ten feet
high and eighty feet long, using more conventional analogue elec-
tronics and projectors. ‘Scale makes a lot of difference psycho-
logically,” he says. ‘The effect of that display was overwhelming.’

How do people react to his work? “The public for this sort of thing
is still very small,” Em says, ‘and people tend to spend a lot of time
wondering how it is done rather than looking at the pictures.’ He also
has few peers to share his ideas with. Other artists he meets tend to
be suspicious of technology, finding it cold and hostile, and he often
finds more sympathy among scientists. Paul Brown, late of the Slade
School, has had similar experiences. He once showed some drawings
to a supposedly learned critic, who was very excited by them and
praised them profusely. He asked Brown how they were drawn and,
on hearing that a computer was involved, immediately changed his
mind about the pictures. ‘I thought there was something cold and
calculated about them,’ he commented. Brown adds that while tech-
nologists may not be prejudiced in that way, they are often disinclined
to regard art as a serious activity.

Drawing by expert system

Quite the opposite approach to Em’s is taken by Harold Cohen, an
English artist based at the University of California, San Diego. While
working as a conventional painter in the late 1960s, Cohen became
interested in seeing whether computers could be used to shed some
light on the nature of visual experience — why it was that he could
make some marks on paper and someone else would say, ‘That’s a
face.” Friends, notably Ed Feigenbaum, taught him programming,
and the outcome of this was a system called Aaron, which produced
drawings under the control of a PDP-11/34 minicomputer. The
actual drawing was done by a little electric cart, about four inches
long and carrying a pen, which trundled around a large sheet of paper



Plate 1 Prospector’s gra-
phical display showing a
map of where it predicts
deposits of molybdenum
around Mount Tolman in
Washington state. The fa-
vourability scale on the right
shows the likelihood of
deposits by colour. The
triangle marks the summit
of the mountain (Richard
Duda)

Plate 2 Sally Rosenthal:
‘Maria’. The head is a digit-
ized television picture,
manipulated using the
Zgrass software package,
and the square pattern is a
serendipitous effect of the
interaction of different
images
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Plate 3 Melvin Prueitt: ‘Conflict’. The artist uses a Cray 1 supercomputer at Los Alamos

National Laboratory




Plate 4 David Em: ‘Persepol’. Software by James Blinn at Jet Propulsion Laboratory

Plate 5 Hervé Huitric and Monique Nahas: ‘Dans les bois’. The artists work at the
Universities of Paris 7 and 8, using software developed at Rochester University, New
York




Plate 6 Ed Tannenbaum:
‘Digital Dancer’. A frame
from an animated video
recording, made using an
Apple microcomputer and
special  image-processing
electronics (Raster Masters)

Plate 7 There is no use plan-
ning a holiday at Benoit
Mandelbrot’s  picturesque
mountain retreat — it does
not exist. The hills are en-
tirely the creation of a
computer — a mathematical
construct by the technique
of fractals, in this case using
a Gaussian distribution of
random numbers (IBM)

Plate 8 Jenniffer Julich: ‘Breezy Point’. The artist uses a ‘2%2-dimensional’ paintbox
system at Sheridan College, Ontario




Plate 9 Roy Hall: ‘Gallery’. A highly realistic space that exists only in the memory of the
computer at Cornell University

Plate 10 This still from The Works, the New York Institute of Technology’s animated
science fiction film in preparation, looks like a photograph of a model, but in fact the
pictures are ‘drawn’ entirely by computer, resulting in realism unknown in conventional
hand animation (Dick Lundin, NYIT)
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stretched out on the floor. The computer kept track of where the cart
was by means of sonar.?

The machine drew entirely on its own and Cohen took no part in
the process. The program consisted of about 300 rules worked out in
advance by Cohen, which gave the system an understanding of such
concepts as lines, closures and shading. As the drawing proceeded,
the program would make choices about what to do at various points
by in effect ‘rolling a die’ — that is, it would activate a special routine
that generated random (or almost random) numbers in a given range.
As the picture filled up, the program would be more and more
constrained in what it could do, by what was already on the paper
interacting with the rules.

Rules would specify what kinds of features would be desirable,
such as, ‘If there is such-and-such a feature here, don’t put another
feature close to it’ or ‘If you are drawing a form and you run up
against another form, lift the pen to let the earlier form overlap the
new one.’ Objects the program handled fell into a strict hierarchy:

pictures
groups
figures
‘systems’ (parts of figures)
lines (curved)
straight-line segments

Particularly important concepts that the program was given included
the difference between open and closed forms, and occlusion.

The results were pictures containing plenty of zigzag lines and
arbitrary shapes, but also what often appeared to be rocks, clouds,
birds, fish and sometimes lines of hills. Each picture was different,
and Cohen had no way of knowing what was going to come out each
time. In building his program out of rules Cohen had in fact produced
an expert system, albeit an unusual one. The human expert and the
knowledge engineer in this case were the same person — himself.
Cohen had also made a deliberate attempt to model the process by
which a human artist draws, not as one smooth movement but by a
series of short strokes with continuous feedback. Hence the cart did
not move directly to point (x,y) like a computer plotter. Instead, the
computer would say to the cart in effect, ‘Turn the wheels by so much
and tell me by the sonar where it has taken you,’ and this was repeated
over and over. There was slippage of the wheels on the paper, and
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Figure 35. Harold Cohen: drawing by Aaron

Figure 36. Aaron in action (photograph: Becky Cohen)
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adjusting the length of the axle and the rate and sensitivity of the
feedback system would give considerable variation in the ‘style’ of
the drawings.

Out of Aaron, Cohen has now developed Aaron2, which apart
from having greater knowledge is intended to be much further down
the road to genuine intelligence by being able to learn from experi-
ence.2 Cohen sees it as dealing with representations, rather than
images, which were what Aaron worked with. An image, Cohen
explains, is ‘a collection of marks implying ordering’, while a repre-
sentation is ‘a collection of marks implying intention with respect to
the outside world’. Again, the program’s concepts are held in hier-
archies: for example, the set ‘representations of solid objects’ is
included in the set ‘closed forms’. Aaron2 is designed to give much
more of an illusion of three dimensions than its predecessor. Cohen
has also dispensed with the drawing cart, because it was too difficult
to keep the sonar working properly, and because the drawings were
unmanageably large and slow to produce. He now uses a con-
ventional computer plotter in which a pen is moved around on paper
by a mechanical arm.

Even in its infancy Aaron2’s drawings show a distinct ‘maturity’

Figure 37. Harold Cohen: drawing by Aaron2
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compared to those of its progenitor. It remembers previous drawings
so it can relate its current work to them, and eventually it is intended
to be self-modifying so that, like a human artist, it can learn from its
experience. That will require, as Cohen says, some means of giving it
criteria by which to judge its own performance. We will then have the
first expert-system art critic.

Looking further into the nature of representations, Cohen at one

e

=

Figure 38. Harold Cohen: drawings by Anims
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point devised another program called Anims, which produced figures
with random variations around the basic structure of body, head and
four legs. This was prompted by the work of David Marr into the
question of how humans ‘package’ information in their brains, much
the same concern as that behind the Piagetian work we described in
Chapter 4. It transpired that remarkably little information has to be
stored away in order for it to be possible to reconstruct images with
a very real appearance. The figures from the program turned out to
be surprisingly similar to prehistoric cave drawings of animals. How-
ever, Cohen felt this work was too limited to be viewed as art-making
and so has not taken it any further.3

Throwing away the dice

Other computer artists tend to follow one or the other of the two
approaches we have described, usually producing their work on an
ordinary computer pen-plotter. Sometimes they take the pen out and
substitute a paint brush. In contrast to the ‘dice-throwing’ technique
of Cohen, it is possible to construct a drawing program in which there
is no random element but in which the rules and the process they lead

Figure 39. Chris Briscoe: untitled
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Figure 40. The creatures in Chris Crabtree’s ‘Story Pieces’ move about, eat,
grow, fight and reproduce in a manner reminiscent of John Conway’s cele-
brated simulation of biological growth and competition, the Life Game
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to are so complicated that the artist still has no way of knowing what
the finished picture will look like. Chris Briscoe while working at the
Slade did this by letting a series of points in arbitrary starting posi-
tions move as if they were objects attracted to each other by gravity.
The computer worked out the tracks and plotted them to make the
picture. The Canadian Chris Crabtree in his ‘story pieces’ allows the
computer to produce a linear sequence of images that look very much
like people, flowers and the like, giving the impression of a narrative.*

Another Canadian, Theo Goldberg, is interested in the connection
between painting and music, and has devised a graphics system and
a music synthesizer which both work from initial sets of numeric
data. He feeds the same data into both systems and from one gets
pictures with large areas of soft colours overlaid with geometrical
patterns of lines, and from the other gets electronic music in a modern
cacophonous style. The music is played from tape while slides of the
pictures are projected, and the viewer is invited by the artist to see
how the picture represents the music and vice versa, as different
manifestations of the same thing.

Sharpening the palette knives

The two approaches to computer art have led to a schism in the field
every bit as vehement as the rivalry between painters and sculptors
in Titian’s day. The ‘tool’ approach as exemplified by David Em
tends to be dismissed by those in the other camp as trivial — as
‘painting by numbers’ — its products scorned as banal. Harold Cohen
was presented some years ago with the idea for an ‘electronic paint-
box’ and responded thus:

[The] image of the artist of the future painting with a paintless brushon a
television tube with one hand — because it is after all an artist’s touch that
counts — while twiddling knobs with the other: dressed, presumably, in smock
and beret, and cracking walnuts with his left foot: this image is as silly as
misguided.*

Cohen’s work in its turn is described by some of his opponents as
‘chicken scratchings’. Analysing the principles at issue, the English
artist Dominic Boreham maintains that the way a computer enables
him to paint by an iterative process, trying out something, judging,
changing what is not quite right, is entirely valid as art and produces
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pieces that could not possibly be made without a computer. The
judgements he makes in accepting or adjusting aspects of a picture
could not be embodied in rules, yet rules are what Cohen’s system
consists of in its entirety. ‘You can’t produce art with an algorithm,’
Boreham declares.

The schism in David Em’s case is accentuated by his determination
not to learn the engineering skills involved in his art, but rather to
rely on the experts around him. Otherwise, he feels, it is all too easy
to dissipate all one’s energy in just getting the equipment to work.
Too many artists he knows have learnt programming and now spend
all their time writing software and never producing any art. Cohen
in contrast is heavily involved in the technology down to the smallest
detail. He even builds all his circuit boards and plotting mechanisms
himself. Artists are ‘enabled’, he insists, by the technology they use:

Devices are what we seem to use: but the truth is that, unless we have a
clear view of what they are, unless we are sensitive to their functions within
the economic hierarchy which generated them, they will almost certainly end
up using us. Technologies constrain their users. The more powerfully a
technology serves its designed-in purpose, the more the individual is con-
strained by its use: not simply in the sense that an etching will always look
like an etching and not like a watercolour: but that the individual is con-
strained intellectually from conceiving of any possibility other than what is
given him by the technology ...

Just as the artist finds himself offered a whole toyshop full of new toys, he
finds that a century of preparation has gone into ensuring that he asks no
questions about what they are and how they work. They do what they do,
and they are designed to require no participation of him more intellectually
challenging than button-pushing.

It must surely be the case that technological resources which do not
challenge the artist’s intelligence will not enable his intelligence, and through
it the production of powerful and original work ...

We know already that no one makes art by finding some tame programmer
to write a few graphic subroutines. In the years that that game has been going
on, not one single art-work of major importance has resulted from it. When
you consider that the parallel case in printmaking would be that of a printer
who has no idea what art is, working for an artist who knows nothing about
printing technology and doesn’t want to have to find out, there is absolutely
no reason to assume that one will.®

Brian Reffin Smith of the Royal College of Art suggests there is a
third category of use of computers in art, in which the machine helps
the artist to develop his concepts and perceptions:
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It arises out of the observation that (certainly at the Computer Studio of
the Royal College of Art) one of the most frequent modes of interaction
between artists and computers is as follows. A person comes in, with a
problem that they might normally try to solve using pen and paper, paint,
film or any other medium. They then use the computer to ‘worry at’ their
problem, using graphics on the computer screen, or other, more conceptual
representations of the problem. The person then, as often as not, goes away
and carries on using the old materials — but their perception of the problem
has changed. It has been externalized between the person and the computer
screen a few inches away.”

Artists are constantly being influenced by the work of other artists,
by the plays and films they see and so on, and experience with a
computer can be just as valid, in Smith’s view. This could be taken
even further, with highly elaborate computer techniques of exploring
art and perception. For example, one of the most important things
computers can do for makers of animated films is ‘in-betweening’ —
taking two drawings of a figure in different positions provided by the
artist and working out all the intermediate frames to give the illusion
of smooth motion in the finished film. ‘What would happen’, Smith
asks, ‘if you tried to “in-between” a Rembrandt and a Jackson
Pollock? Many other fascinating insights into art are waiting to be
found through the use of computers, Smith is convinced.

Animation

In addition to taking over ‘in-betweening’ and many of the other
tedious processes of hand animation, computers open up substantial
new possibilities in this medium. They can generate surface textures,
shadows, reflections and shines all automatically, giving a realism
and an illusion of three dimensions that are quite impractical in hand
animation. Plate 10 looks like a photograph of a model, but in fact
it is a still from The Works, a forthcoming animated science fiction
film being made at New York Institute of Technology. The principal
problem involved is the computing power needed: each frame of a
high-definition film can take up to one or two hours of processor time
to produce because it contains so much detail.

As is the way with techniques of this sort, the first people in the
outside world to take up computer animation enthusiastically have
been television advertisers. Disney’s feature film Tron combines a
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plot of extreme banality with uninspired computer graphics. The
Works, with its articulated 3-D figures, promises to be much more
stimulating, although there is a worry that the project was really
too ambitious for NY I'T’s resources.

Most of the objects depicted in films of this genre are artificial
— spaceships and the like — and so can be generated as an assemblage
of regular geometric shapes such as spheres and cylinders, as in Plate
10. The computer can handle these quite easily. On the other hand
if the film maker wants to include natural elements such as land-
scapes, he has a problem in that to seem realistic the scene has to
be irregular and contain large amounts of detail. A picture of a lawn,

Figure 41. ... And the straight shall be made crooked ...’ Irregular
curve obtained from four straight-line segments through the technique of
fractals

for instance, must comprise many thousands of blades of grass, but
they cannot all be the same. If one image of a blade were repeated
over and over in the usual computer technique, the lawn would look
utterly unreal. Each blade needs to be slightly different, but for an
artist to specify every one separately would be a colossal task. On
top of that, the vast amount of information thus compiled would
have to be held in a large data-base, unmanageable and costly. To
overcome this problem, Benoit Mandelbrot of IBM and others
following on from his work have devised the technique of ‘fractals’,
whereby the irregularity of natural objects is simulated by the com-
puter adding random variations to features supplied by the artist,
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Figure 42. “... and the plain places rough.’ Sculpture of a mountain range
produced by Benoit Mandelbrot using fractals and a computer-driven
machine-tool (photograph: IBM)

making smooth lines crooked and so on (Figure 41). Using this
method, surprisingly realistic mountains, rock-strewn valleys, coast-
lines and star clusters can be generated, with the artist only having
to specify a few points.® Indeed, fractals are now being used to
produce still paintings and sculptures as well as animation (Figure 42
and Plate 7). This raises the interesting question of whether fractal
landscapes should be judged on the same criteria as the works of
conventional landscape painters. Paul Brown thinks that up to a
point they should, but other artists disagree strongly.

Sculpture

Some work has been done in producing sculpture by computer, with
the processor connected to a machine-tool which carves a block of
metal or other material. However, the principal interest computers
have aroused in this field is to do with kinetic sculpture. An early
example of this was Seek, put together in 1970 by Nicholas Negro-
ponte and his colleagues at MIT. This consisted of a model overhead
crane driven by a minicomputer, which would stack up 500 two-inch
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cubes in a random arrangement with plenty of nooks and crannies,
remembering where all the cubes were. Into this ‘environment’ would
be released a colony of gerbils, who would run around knocking
the cubes every which way, and the computer would try to put them
back into some semblance of order.® What started as a demonstra-
tion of a computer observably dealing with unpredictable events
turned into a metaphor of interaction between an animate and an
inanimate world. Opportunities for misinterpretation by the public
(at the Jewish Museum in New York where Seek was on show) were
rife. Negroponte comments:

Reviews of the show failed to keep Seek intact, to see its animate and
inanimate aspects as equally purposeful. The New York Times (September
18, 1970) reported that ‘... a mechanical grappler rearranges them [the
blocks] to wall the furry creatures in’; Art News (December 1970, in a snide
editorial entitled ‘Gerbil ex Machina’) wrote, ‘The gerbils could use their
blocks to achieve positive, socially meaningful ends, but not just mess around
with them’; and the Wall Street Journal simply found it and computer art
in general ideologically ‘kinky’.1¢

Figure 43. Edward Ihnatowicz: ‘The Senster’, on show at the Evoluon
exhibition in the Netherlands. The computer is at the right rear
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Many of the gerbils died; legend has it that this was from frustration.
Edward Thnatowicz is a Polish-born sculptor living in England
whose interest in the kinetic stems from his conviction that the
behaviour of something tells us far more about it than its appearance.
This led him to build the Senster (Figure 43), one of the most
influential kinetic sculptures ever made. It consisted of a fifteen-foot-
long steel frame articulated in six different places, with the joints all
powered by hydraulics, the whole vaguely reminiscent of a giraffe
made of tubular lattice. On the Senster’s ‘head’ were carried an array
of microphones and a Doppler radar system. The Honeywell mini-
computer controlling the mechanism was programmed to make it
react to three things: moderate and low sounds, loud sounds, and fast
motion, Moderate sounds the head would move towards, loud
sounds it would pull back from, and fast motion it would track. The
result was an uncanny resemblance to a living thing, and the crowds
at the Evoluon in Eindhoven, Holland, where it was on show reacted
with enormous excitement. Children would shout and wave at it,
call it names, and even throw things. Ihnatowicz explains that its
movements seemed to stem from situations that people recognized.

In the quiet of the early morning the machine would be found
with its head down, listening to the faint noise of its own hydraulic
pumps. Then if a girl walked by the head would follow her, looking
at her legs. Ihnatowicz describes his own first stomach-turning
experience of the machine when he had just got it working: he
unconsciously cleared his throat, and the head came right up to him
as if to ask, ‘Are you all right? He also noticed a curious aspect
of the effect the Senster had on people. When he was testing it he
gave it various random patterns of motion to go through. Children
who saw it operating in this mode found it very frightening, but
no one was ever frightened when it was working in the museum with
its proper software, responding to sounds and movement.

Although the Senster was dismantled some years ago, many people
who saw it still remember vividly what a strong impression it made
on them. Thnatowicz has various ideas for further developments,
including an investigation of how motion and perception are inter-
dependent, an important topic for artificial intelligence. Un-
fortunately, the mechanisms are necessarily expensive, and the
resources to build them are not easy to come by.!!
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Music

There are some instances of computers being used as tools in the
composing of music. Peter Zinovieff has spent much of his working
life building electronic synthesizers, but he is also interested in seeing
how quite different sounds, some for instance from the real world,
could be incorporated in music. An example could be the noise made
by rapping with the knuckles on a door. He uses a computer to
analyse these sounds and see how they could be captured and
included in music.

At the same time computers have been widely used actually to
compose music, typically employing conventional notes produced
by a synthesizer under program control. It is quite easy to connect
a loudspeaker to the output of a computer, and unlimited sounds
can be made according to a pattern specified by the programmer,
which may or may not include a random element.

Chance has of course long been used in what is known as aleatory
music, in which the performers are given occasional choices as to
what to play. In the eighteenth century quite a number of pieces
of ‘dice music’ were published, some attributed to Mozart and
Haydn. A sixteen-bar piece might, for instance, give eleven different
choices for each bar, written out in a rectangular array of sixteen
columns of eleven bars each, and the player would make a choice
at each bar by rolling dice. (Presumably he rolled the dice sixteen
times beforehand so that he did not have to stop playing between
each bar.) This was described on one score as ‘an easy method for
composing an infinite number of minuet-and-trios’. ‘Infinite’ of
course is a bit of an exaggeration — the actual number is 11'6 or
forty-six quadrillion but in any case it enlarges the musicologists’
corpus of Mozart’s music more than somewhat.!?

Each bar was carefully worked out to fit in musically with every
other bar in adjoining columns so that the effect would be reasonably
acceptable to eighteenth-century ears. Randomness in modern music
tends to be much more obviously random. One of the best-known
figures in British computer music is Alan Sutcliffe, whose early pieces
he describes as ‘based on randomness but in a controlled way’.
Choices were made according to pseudo-random numbers generated
by the program. Peter Zinovieff, working with Sutcliffe, had earlier
used a real-random number generator in the form of a tiny radio-
active source with a Geiger counter attached. Sutcliffe relates: ‘The
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unrepeatability of this device could be a nuisance. If you hadn’t made
a recording of the output, there was no question of *“‘Play it again,
Sam” asit was a genuine case of the lost chord.’!3 The central routine
of the program would generate pseudo-random patterns, which were
fed back into the same routine to generate more patterns, and so
on several times round the loop until a final set of patterns was
punched out on paper tape and fed into a sound synthesizer.

Each movement of a work would have a number of control values,
specifying whether notes were to be mainly long, mainly short
or of mixed duration; mainly high or low or with few in the middle,
and so on. The result of this was that each movement had a notice-
ably different character: some were melodic, some were mainly
chords, others had the flavour of counterpoint. There were plenty
of boring passages but also some memorable parts, Sutcliffe attests.

His work more recently has been aimed at getting rid of the random
element altogether, so that the music is produced entirely by
algorithm. The process is the key. There are two distinct approaches
to art, as Sutcliffe sees it — one in which the artist conceives of an
effect he wishes to achieve and then tries to devise a means of
achieving it, and the other in which he conceives of a process and
then stands back to see what comes out of it. It is the latter that
interests Sutcliffe: the artist having to keep his distance and resist
the temptation to interfere and say, ‘I think it’s going to be like
this.” The result is that the artist can be as pleasantly surprised as
anyone by what comes out.

Very simple programs can generate an amazingly rich diversity
of patterns, Sutcliffe asserts. In reply to the claim that you cannot
make art by an algorithm, he remarks, ‘My hope is to produce things
as interesting as trees, or pebbles, or old bits of wood. Those were
produced by algorithms, together with some effects from the environ-
ment.” Certainly the DNA in the seed of a tree can be seen as a
program - why, Sutcliffe reasons, could not a human-devised
program likewise yield something fascinating? On the lack of the
human element in the process he declares, ‘I abhor the view that
art is to do with self-expression — with expressing emotions. Com-
posers don’t only write fast movements when they are happy and
slow movements when they are sad.” What is important, he says,
is not the emotion of the producer of the art but the emotion evoked
in the receiver.
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Poetry

Getting a computer to write poetry requires no elaborate output
devices other than the printer, with the result that this has long been
a popular form of machine art. The computer is normally given two
things: a vocabulary of words or phrases to choose from, and a
framework in which to put these by some process, random or other-
wise. The framework can be a ‘closed form’ or an ‘open form’. Robin
Shirley explains:

A closed form is one in which the elements (variable words or phrases)
are slotted into predetermined holes in a fixed framework, whereas in an
open form there is no fixed part and the poem is composed by assembling
the elements together in a chain of indeterminate length.

As Chomsky has pointed out, it is open forms which characterize natural
languages, and despite their greater difficulty I think that the future develop-
ment of computer poetry lies mainly in this field. Closed forms are very
easy to devise and program, but seem to bear very little repetition before
their artificial and limited character shows through.*

It is quite easy, as Shirley points out, to provide forms with slots,
each labelled with the part of speech it is to contain. It is very much
harder to give a program a sense of the enormous variety of sentence
structures that human writers can employ. Various constraints are
imposed on the poem-writing as it goes along, such as a control
over repetition of words or expressions. Repetition would not be
prevented altogether — it would simply be made more or less likely
according to the whim of the programmer.

Robin Shirley is an English crystallographer who has been writing
poetry both with and without computers for over twenty years. He
is especially interested in the effect that the medium has on an artist’s
work. ‘All art is shaped in part by the response of the artist to the
character of his tools,” he says. Computers have great potential for
exploring this issue, he feels; for example, a human sculptor produces
something quite different according to whether he is carving marble,
or wood, or ice cream, but a computer-controlled machine-tool
would come up with exactly the same shape in all those cases.

Shirley brings up the concept of the indirect medium, in which
something outside the control of the originator is interposed between
him and the audience. In music it is the performers; in cinema, the
whole production crew. It is a totally new experience for poetry to
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find itself in the position of an indirect medium, but that is what
computers make possible. The poet can supply the computer with
various ideas, and then stand back and feel either pleased or dis-
appointed with the results. ‘If you don’t have control over the way
things are arranged, you place yourself in the hands of fortune,” he
explains. ‘Skill is the art of being lucky.’

Shirley is also interested in getting away from the traditional
Western view of poetry as an entirely individual activity. He wants
to make the medium open to collaboration, so he performs his work
with a group of others, accompanied by (human-composed) music.
An early work was The Sunflower Suite, a collection of computer-
assisted poems on the theme of transience. They were written using
his program Bard, which he describes as ‘an element selector and
arranger, to which a limited critical faculty has been added’. Here
is the opening poem, preceded by Shirley’s introduction:

* [ want you to imagine a time in the distant future
perhaps millennia from now, when (if it survives)
the human race will be scattered over the vast wastes of the galaxy,
where distances are measured in lifetimes.

* I want you to imagine our descendants,
travelling from generation to generation,
seeking worlds that will give a foothold for existence.

*  This poem is dedicated to children born on such a journey,
in the great voids between the stars,
to whom the cities and forests of Earth are only a legend.

PAVAN FOR THE CHILDREN OF DEEP SPACE

Ice worlds,

Haunted by the legend of planets. Ice worlds —
Arcturus Andromeda Vega — orbiting,

Lost among stardust through aeons of crystal.

Your seed has dispersed, lit by the jewels of infinity,

Lost in the empty ocean;

In time with the measured dance of the universe
orbiting .. . orbiting . ..
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I am a child of eternity:

down is a lifetime in every direction.
Through aeons of crystal your seed has dispersed
on a journey to no destination.

sunburst starburst

Mars Venus Jupiter Saturn ...
Down is a lifetime in every direction

Born out of darkness:

Lost in the palaces of eternity;

Lit by the jewels of infinity
of the land of nowhere,

Your seed has dispersed in the dark light-years.
(Sunburst starburst)

I am a child of eternity;
I travel with comets . . .

born of some other, lost among stardust.
Lit by the jewels of infinity

down is a lifetime in every direction.

Mars Venus Jupiter Saturn: lost
in the empty ocean.

Orbiting: on a journey to no destination.
... Procyon Eridanus Rigel ...

Lit by the jewels of infinity,
I travel with comets

I TRAVEL WITH COMETS, I TRAVEL WITH COMETS

... through aeons of crystal . ..
... of this island universe.

I am a child of eternity (Mars Venus Jupiter Saturn)
I am a child of eternity
on a journey to no destination.
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Lost in the palaces of eternity (Procyon Eridanus Rigel)
I weep no tears.
I prophesy the beginning.

Born out of darkness on a journey to no destination.

Born of some other, your seed has dispersed . ..
between the galaxies (born out of darkness)
between the galaxies — of the land of nowhere.

Down is a lifetime in every direction; .
Orbiting . . . dreaming of havens . ..

(sunburst starburst, lost among stardust)
Lost, in the empty ocean between the galaxies.
I prophesy the beginning, dreaming of havens

(Mercury Earth Uranus Pluto), lost

among stardust.

I travel with comets; I weep no tears.
sunburst starburst . ..
... spindrift stardrift . ..

I prophesy:
the beginning.

The punctuation and underlining are added by Shirley afterwards
but otherwise if the computer produces a good poem he is reluctant
to change it. ‘That would be spitting in the eye of the gods,’ he says.
The poems employ an open form on which ‘an overall shape and
design has been imposed’. Indeed, Shirley specifies rather more and
leaves rather less to chance than do many other computer poets.
None the less, he is convinced that his poems would be entirely
different without the collaboration of the machine. He is not really
interested in the usual questions of: “What is the place of the com-
puter in the process?” ‘Is the program intelligent?” He wants his poems
to be judged on the same terms as any others.
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Poetry writing by computer is considerably easier than prose, not
least because readers are used to the idea of poetry seeming to some
extent incoherent and disjointed. A story-writing program needs a
mechanism for constructing sentences that make sense and are
elaborate enough to seem adult, and also a means of devising a plot
by manipulating themes such as conflict, revenge, atonement and
so on. G. E. Hughes and some colleagues at the Jagicllonian
University of Cracow produced by computer a complete short novel
called Bagabone, Hem I Die Now (the title is pidgin English, from
the story’s Polynesian setting). It reads like an ordinary book, but
was constructed, as Hughes describes it, like a giant game of
Consequences. There was also some attempt to devise a literary style
through analysis of Joyce, D. H. Lawrence and various twentieth-
century women writers.!s

I know what I like

All this can seem puzzling to the outsider. We think of the art that im-
presses us most and recall the enormous mental effort and anguish that
went into its creation. What can be the value of art that is produced
without a clear idea of a desired end-result on the part of the artist?
Intuitively we think of art as negative entropy, and as a general rule
the better the art, the more negative the entropy, with every single
detail contributing to the overall effect. The process of laboriously
selecting the attributes of each detail so that they will contribute to
the overall effect is the very reverse of entropy. Surely anything that
is random or unpredictable will almost never turn out to contribute
in this way, to have any value? After all, Stravinsky, no reactionary
himself, said: ‘I hold that music is given to us to create order.’'®

In reply some computer artists put forward the view that what
goes on in the human creative process is no different in kind from
what happens in their machines. An artist has an algorithm in his
head just as much as a computer does. They go on to dismiss free will
as anillusion, no different from random choice, so the chance element
in their programs should complete the equivalence of human and
computer artistic creation.!’

The central question then is, what are the algorithms that humans
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use? It is the search for an answer to this question that is the main
preoccupation of many computer artists. Harold Cohen sets out
deliberately to model human creative behaviour, to externalize the
process which would otherwise be going on inside him. Lawrence
Mazlack, at the University of Cincinnati, is trying ‘to develop an
aesthetic perception in a computer’ in order ‘to investigate the
codification and specification of aesthetic judgement’.!® This leads
inevitably to the question, what is art? Some artists insist that art is
nothing more than the process of asking, ‘What is art? This has
prompted Marshall McLuhan to comment, ‘Art is anything you can
get away with.”1® Other artists are more positive. Edward Ihnatowicz
asserts that art is the process of ‘modifying the environment so that
some aspect of nature, otherwise not discernible, can be revealed —
to attract people’s attention to an aspect of reality’. Robin Shirley
suggests that basically ‘art involves the human faculty of discerning
order’, and that the essential interaction is with the perceiver, not the
creator. In its most general sense art is the process of making meta-
phors, Negroponte maintains in a passage wryly headed ‘A metaphor
cannot be hung upside down’.2°

Throughout all this we see continuing the argument between
classicism and romanticism that has been going on in art for
hundreds of years, with classicists trying to find order in nature while
romanticists prefer to take nature as it is. Earlier in this century
the dispute took the form of Determinism versus Indeterminism, with
obvious pertinence to the use of randomness in computer art.
Perhaps this art is not as revolutionary as it seems.

This is just like art

So how successful have these artists been in their metaphor-making
with machines? It is widely agreed that, taken as a whole, art with
computers has not lived up to its potential. Negroponte is blunt about
this: ‘Rarely have two disciplines joined forces seemingly to bring
out the worst in each other as have computers and art.’?! Those
who entered the field early have been disappointed at the low level
of interest that has developed. Certainly this is due in part to the
bad reputation computer art has acquired, deterring people with
talent who might have contributed to raising the standard. Brian
Reffin Smith puts forward his explanation of this:
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Traditionally the computer has been used to produce what you might
call ‘pretty pictures’. In a sense it’s a kind of chocolate box art of informa-
tion technology, which in some ways has given computing in art a
bad name, because people have produced random number squiggles and
spirals and so on — maybe they have been mathematicians or computer
scientists. They’ve said, ‘Hey! This is just like art!” and put it on their
walls and so on. This drives artists and designers mad because if you
had done it with a pencil or with string on nails or whatever, people wouldn’t
look at it twice. Certainly they wouldn’t consider it worthy of having an
exhibition.22

Harold Cohen sees the failure of computer art thus:

For an artist proposing to make images with a computer, the body of
knowledge we should be considering is that which binds the nature of a
program to the nature of an image, not simply programming skills, even
though he can’t do without them. ‘Computer art’ has never accomplished
that binding, because it has always accepted the characteristic 20th-century
definition of the computer as a transformation device. To get an image out
you have to put an image in. The binding of program to image is impossible,
since a transformation process is indifferent to what is being transformed.

To use the computer as a transformation device is to use it on a trivial
level. It is a completely general symbol-manipulating device, and allows the
writer of a program essentially to define what the machine is any way he or
she chooses. That generality gives the computer a very special significance
as the first modern device which allows itself to be used as a sort of do-it-
yourself design kit, rather than as a single fixed-function tool.23

The problem as far as the layman is concerned is that most com-
puter art is highly abstract, and abstract art is hard enough for him
to appreciate and judge, superficially or deeply, even when there is
no computer involved. Then the aspect of computer creativity is
introduced to complicate matters yet further. It is often pointed out
that the pictures produced by Harold Cohen’s program look very
much like the ones he used to paint himself. What then is the point
of going to all that trouble with the computer? Cohen remarks that
‘The art-sceptic’s three-year-old daughter really can not do as well
as Picasso,’2* and we agree, but can she do as well as Aaron? The
exercise may be interesting intellectually but artistically ...? Many
people watch with fascination as Aaron draws its pictures in the
museum, and happily buy the finished pieces, but it is hard to know
how much of this is aesthetic appreciation and how much is novelty
value.
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Then there is the issue of randomness. Presumably, the bemused
onlooker concludes, if Jackson Pollock could throw paint at his
canvases, the computer might as well too, but the rhyme or reason
can seem elusive. Then Cohen puts forward his view of randomness:
‘Primarily, I believe its function is to produce proliferation of the
decision space without requiring the artist to “invent” constantly.’?$
But surely the whole business of an artist is to invent! He should
hardly regard this as a chore to be evaded! It is easy to reach the
conclusion, as Negroponte puts it, that the technology is the whole
point: like a burlesque of Marshall McLuhan’s ideas, the medium is
the message.

Alan Sutcliffe enters the fray at this juncture and insists that
computer art has not yet been given a fair chance to prove itself.
All art involves the production of a great deal of mediocre work
before anything exceptional comes along, and computer art simply
needs a longer trial. The public also has a lot of learning to do before
it can really appreciate these new media, because the ideas involved
are strange and new.

The Sunday painter

Negroponte sees computer art developing in two particular ways.
One is an extension of kinetic art of which the Senster was a notable
example:

Imagine more moody pieces. Simple extrapolations of interactive art can
embellish the behavioural model to include inputs from the weather, time
of day, Dow-Jones Average, and the results of sports events, elections, or
film ratings. In some sense, this could be the art form of off-track betting.
Or, with more fantasy, we can imagine a future of the visual arts populated
with patronizing pieces of sculpture and caustic canvases that recognize the
viewer to be male or female, rich or poor, bewildered or blasé, you or me.
In this fiction, the artist runs a kennel for cuddly art forms that get to know
their future owners, who in turn get to know and love them.2¢

Even before Negroponte had written that, Edward Ihnatowicz had
built a sculpture with an arm that the viewer pulled as on a one-
armed bandit, while the machine tried to make inferences about the
puller’s sex and temperament.2” He must beware who prophesies
in jest.

The other development Negroponte foresees is in the direction
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of personal, as opposed to public, art. He points to all the metaphors
we treasure as individuals, but which are of no interest to anyone
else: a drawing by one of our children, a stone brought back from
an idyllic holiday years ago. Computers provide a whole new set
of opportunities for self-expression:

Think of our Sunday painter reincarnated with an easel of electronics
and a palette of computer graphics. His work is as invigorating as a game
of tennis, his challenge is that of chess, his product is as ephemeral as a
child’s drawing. In this fantasy lies the potential for the major impact of
computers on the visual arts of the future.28

Not everyone is happy with this vision. Harold Cohen relates a visit
to Xerox’s Palo Alto Research Center:

There was also a music program at Xerox, which, I was told, would enable
people to compose music even if they didn’t know anything about music.
Didn’t I think that was marvellous, I was asked? No, I said, I thought it
was appalling. Why would anyone want to compose music without knowing
anything about music? And why — as if I didn’t have my suspicions already
— would Xerox’s well-meaning technologists want to encourage that
particular form of lunacy? Well, they said, it was a beginning: I would surely
have to admit it was a step in the right direction. No, I said, I was quite
sure it was a step in the wrong direction.??

In the last analysis, if computers produce works of art that are
original and interesting, by whatever process, then we have every
reason to rejoice and accept the exercise as worthwhile. The problem
must be fundamentally that art that says much to us is nearly always
based on a great deal of knowledge about the world. The significant
artist needs, above all, experience, both of his trade and of life. Up
to now computer art programs have incorporated little knowledge,
except perhaps for Harold Cohen’s Aarons. Cohen even refers to
the work of his Anims program as ‘Drawings of a know-nothing,
almost’, although it is surprising how much knowledge of animals
these pictures appear to contain. There is, as Robin Shirley puts
it, ‘an immense problem of putting a useful model of the world into
a computer, and the task has only just started’. As we have said,
Harold Cohen has embarked on the process of using the techniques
of knowledge-based systems to make pictures, and other artists are
certain to follow suit.

A really serious contribution by computers to the arts is still a
long way off. Whether computers will ever create great works of
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art autonomously is hard to say. Negroponte declares that, for that
to happen, the machine would have to want to create the work of
art — and that raises any number of philosophical questions. But
even if computers only provide a useful augmentation of the human
artist’s mind they will have added in an important way to creativity.
There is no doubt that machines will play an increasingly prominent
role in the arts.



CHAPTER 8

Coming to Model Heaven

Hereafter, when they come to model Heaven
And calculate the stars, how they will wield
The mighty frame, how build, unbuild, contrive
To save appearances, how gird the sphere

With centric and eccentric scribbled o’er,

Cycle and epicycle, orb in orb.

Paradise Lost, VIII, 79

The house of those who work with their brains has always had two
levels. Upstairs live the patricians of theory whose role is to conserve,
propagate and improve society’s treasures of descriptive truth and
descriptive style. Here are tended the great explanatory theories that
proceed top-down from the highest level of abstraction and show
with great conciseness how particular consequences can be derived.

Downstairs live the practitioners: lawyers, doctors, architects,
engineers, economic geologists. Not quite so far down we encounter
applied mathematicians of various kinds — statisticians, operations
analysts, software technologists, aero-designers and others. Humbler
representatives are mechanics, welders, boat-builders, dressmakers,
cooks. The lower levels are expected to keep themselves to them-
selves, except when called to serve some particular need — to make
or mend a chair, to cook a meal, to run a message. Very occasionally
some servant-scholar arises — an Aristotle, a Bacon or a Spencer
—and argues that there are unifying principles in the bottom-up trade.
Upstairs people usually smile indulgently at such quaintness, but
they are not averse to descending the backstairs when it profits them.
Thus a biologist can draw pay from a medical school. A social
philosopher can earn a penny helping to school budding lawyers.
Behind the engineer stands the physicist; behind the space pilot, the
astronomer.

To Upstairs Man, true knowledge is constituted solely of the
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theorems and facts which define The Way Things Are, immutable.
The rest is for tradesmen, troglodytes and the B-stream. Practical
men on the other hand, especially in computing, tend to feel that
the technology is everything and the theory nothing, that theory is
an excuse for woolly minded academics to stand on the toes of the
real men who are grappling with the real issues. Is a chess master,
they ask, strengthened by a course in game theory, or a racing cyclist
by studying Newton’s dynamics? So it has always been, a deadlock.
But now the deadlock matters.

Computing is struggling to come to grips with problems for
which no explanatory theories exist as yet, or for which using
established theories entails impossibly large amounts of processing.
So knowledge engineers are developing rule-based systems that use
heuristics instead of theory. But in doing this the engineers may fail
to see the brick wall ahead. What happens when a rule-based system
encounters a situation for which it has no rules? It has run out of
know-how. What it needs is the ability to work out a way of patching
the gap. But Mycin has no theoretical knowledge of meningitis with
which to do this. Prospector understands nothing of scientific
geology. It is becoming imperative that Upstairs and Downstairs
should begin to fraternize.

Upstairs models, Downstairs models ‘

The social divide looms largest when the time comes to build models
for our problem solving. A model is simply a description of the
structure of a complex world, a representation small enough to be
portable and manageable by a simple brain, yet large enough to
incorporate all the relevant features of the system being modelled.
We use models all the time, to help us predict the behaviour of
systems. They enable us to answer ‘What if 7’ questions. For instance,
a map is a model that helps us solve the problem of how to get
somewhere. It allows you to experiment quickly and painlessly — to
find a route by trial and error. You say, ‘If I go that way and then
that way — no, I need to go that way ...” All our dealings with the
world involve mental models of one form or another that describe
how we think the world works. It can be shown in psychological
experiments that animals too use cognitive models, when a dog
realizes that the only way he can catch a rabbit is by an indirect
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approach, by going around a screen which blocks the straight path.
For computers to solve problems they also need models, but of what
kind? There lies the difficulty. There is a choice, corresponding to the
two levels in the house of knowledge: heuristic models, based on rules
and accumulated know-how, and causal models, based on theories
of how the world actually works.

To illustrate the difference here is a toy example. Figure 44 is a
heuristic model, written out as a couple of decision tables, which
tells you when to open your umbrella. It also caricatures in miniature
the whole tribe of Mycins, Sacons, Prospectors, Puffs and Ritas.
Each and every one of these is like a green-fingered gardener who
knows nothing of botany.

UMBRELLA TABLE
Condition Action
user soaked do-not-open
user outdoors go-to WEATHER TABLE
else do-not-open
WEATHER TABLE
Condition Action
very windy do-not-open
raining open
hailing open
snowing open
sleeting open
else do-not-open

Figure 4. Heuristic tables of when to open an umbrella. Rules are processed
in strict order, until a match with the condition part fires some rule’s action
part

Quite apart from the problem of what to do in situations not covered
by the rules (falling ash from a volcanic eruption?) this heuristic
model possesses only a glimmer of one of the most important features
of expert systems — that is, the ability to provide explanations of its
pronouncements when required. ‘Explanation’ here is only in the
superficial sense of Mycin’s explanations, via retrace of the contexts
and rules invoked in the course of arriving at a decision.

For something more helpful than simply a regurgitation of rules,
we need a causal model. What might it look like in this case? It
would have to capture all the workaday physics of three-space and
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water, and gravity, fabric and permeability, not to mention social
and biological truths about houses and human likes and dislikes.
These would need to be linked and structured in machine memory
in relational representations convenient for checking the validity of
heuristic theories, and convenient also for explaining them and for
generating new modules for such theories. Above all, the causal
model would be very much bigger than its heuristic counterpart, the
two tables. Of course in a nursery example such as this, ‘deep’
explanations of system decisions might not be altogether welcome.
Most of us have in our acquaintance some over-intellectual person
whose readiness to dive back in great detail into first principles is
viewed as a mixed blessing by his friends. To such a one you say
‘Why?" at your peril. We can foresee ramifying sessions with the
ultra-intelligent umbrella-opener:

MACHINE: Please indicate state of affairs.

USER: Outdoors, user soaked. Umbrella closed. Weather
raining.

MACHINE: Advice: ‘don’t open’.

USER: Why?

MACHINE: Rule 003: If user soaked then ‘don’t open’.

USER: Why?

MACHINE: Necessary pre-condition of ‘open’ is that user is not
soaked. If pre-condition of an action not satisfied, then
advice is ‘don’t do it’.

USER: Why?

MACHINE: In this case pre-condition is related to goal. If some
condition implies non-achievability of a goal by an
action, then the negation of the condition is incorporated
in the pre-condition. The goal of the action ‘open’ is a
state in which the user is not soaked. If the user is
soaked then the goal is not achievable by the action
‘open’.

USER! Why?

MACHINE: Drying action categories are: blowing, vacuuming,
blotting, heating, freezing. ‘Open’ is not in any of these
these categories.

USER: Why?

And so on, with the machine plunging deeper into the physics of
evaporation, capillary action and the rest — endless, thorough
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patience for the endless repetition of “Why?” What a splendid inter-
active companion such a system would make for certain small
children!

A graphic example of a heuristic model in action is Fischer or
Karpov playing lightning chess. They can only use heuristic rules
— there is no time for anything else — yet they can still hold their
own against an ordinary master who is allowed all the time in the
world for search and reasoning. In contrast, an engineer who is fault-
finding a machine he has just built is using an entirely causal model,
based on his design of how it is intended to work. There should
be nothing about the machine which he does not understand. The
equipment has not been in existence long enough for any heuristics
to have been collected about its behaviour.

Different ways of building

Quite separate from the type of model is the question of how it is
derived. An almanac for instance is a model of the solar system which
could be constructed either bottom-up, from observations of the
movements of the planets, or top-down using Newton’s laws of
motion and gravity. (Newton’s laws were of course derived in turn
from planetary observations.) Fischer’s heuristics for lightning chess
are built bottom-up from examples. In principle they could be
worked out top-down from the rules of chess but this would be
impracticable: cf. the van Dusen delusion. Primitive man has various
models of the physical world, for example to do with the weather.
‘Red sky at night, shepherd’s delight’ is an entirely heuristic rule,
incorporating no explanation at all, and it is derived bottom-up from
observation. But, ‘The reason why there is no fair wind for Troy is
that the gods are angry’ is a causal explanation using a model which
with the aid of analogy was also derived bottom-up. So causal models
can be constructed from empirical generalizations, and indeed this is
what most of mythology has consisted of since prehistory.

In many practical domains it is possible to get by, sometimes with
flying colours, on heuristic models alone. A cook ignorant of
chemistry, a politician ignorant of sociology, a cabinet-maker
ignorant of geometry, a weather forecaster ignorant of fluid
dynamics — all these are cases in point. Another case is the ability
to do arithmetic, which most readers probably brought to concert
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pitch for one or another school examination before their teens. But
how many of us have any deep knowledge of arithmetic, any
organized theory from which the reasons why these tricks actually
work could be derived? How many could write out Peano’s axioms,
or prove any major theorems of arithmetic?

The discovery that a domain specialist’s top-of-the-head skill can
be mimicked by relatively simple and uniform computational
structures, based on pattern-derived situation—action heuristics, is
what has led to the recent rapid development of expert systems. In
the present state of the art, constructing causal models tends to be
difficult and costly. We are reaching the stage, however, where
heuristic models are no longer enough. An expert system needs to
be able to follow heuristic rules most of the time, responding quickly
and using little in the way of computing resources. Then when a
situation arises to which none of the rules applies, it should be able
to bring into play a causal model of the domain, which will be slow
and expensive but capable of reaching a solution. This way of com-
bining the two types of model in one system is shown in Figure 45.
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Figure 45. Respective roles of heuristic and causal models in a combined
system
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As yet, few knowledge engineers have taken this course, but there
have been two notable successes. A team at Case Western Reserve
University has constructed a system to control an electrical-power
distribution network. This includes both a heuristic model with 800
rules in an associative store and a causal model incorporating a
description of the distribution network together with the quantitative
physical laws governing the behaviour of electricity.! At the
University of Illinois, W. B. Rouse and R. M. Hunt produced a
fault diagnosis system for electromechanical equipment, based on
a mapping from symptomatic patterns to decisions, and also a logical
and physical description of the machinery.? As the technology moves
in this direction we shall be able to have more and more expert
systems that are insightful rather than merely skilful. Outlines of
this deeper kind of expertise can be glimpsed in the diagnosis system
for internal medicine under construction by Harry Pople and Jack
Mpyers at Pittsburgh Medical School.

There is a widespread notion that problem-solving representations
built from causal models are necessarily error-free, proved so by their
implementers, and thus in some important sense ‘sound’, while
heuristic models are by their nature tainted with unbounded and
unquantifiable error. In actuality, formal proofs of correctness are
no less obtainable for heuristic models than for those of other kinds,
provided that the domain is such as to sustain precise mathematical
reasoning at all. Someone says: ‘I need to build an expert problem-
solver, but I don’t buy heuristic production-rule models. How do
I know they are correct, or with proved error bounds?’

He could equally say: ‘I need to make an omelette, but I don’t buy
eggs. How do I know that they are not addled?”

The answer can only be: ‘Get your eggs certificated; or at the very
least buy from a reliable farm. If you don’t want to do that, then
you’ll have to lay them yourself.’

Communicating with alien mentalities

All models are in some way or other caricatures of the real world.
To what degree reality has to be squashed to make it portable
depends critically on what device the model is held in: a human brain,
say, or a large computer. Different mentalities use different models
— the problem arises when they need to communicate. They may
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be quite unable to describe what it is they are talking about in terms
the other can understand. Consider communication with dolphins.
Analysis of the high-bandwidth chat exchanged among dolphins is
being carried out with the aid of computer signal-processing tech-
niques. The sponsor is the US Navy, which is training these
intelligent sea mammals for salvage and retrieval work on the ocean
bed.

At San Diego’s Sea World, dolphins and their killer-whale
relations out-perform the trained seals, apes, dogs and horses of the
circus. Rewards for successful tricks include food, pats on the head
and sometimes just permission to show off, which takes the form
of prancing round the pool in an unbroken sequence of spectacular
high leaps. The dolphin’s brain is anatomically more impressive than
man’s both in size and surface convolution, so it is interesting to
note that Sea World’s chief trainer places the dolphin as not sub-
stantially smarter than the chimpanzee, with which he has had
extensive experience.

What then is the huge brain for? One remarkable trick of the
dolphins is to be able to distinguish at a distance between two metal
spheres suspended in the water, identical in all respects except that
one is hollow at the centre and the other solid. At first some people
thought this mysterious ability indicated that dolphins were blessed
with extra-sensory perception! Then it was realized that they use
very high-channel-capacity sonar, with time resolution of the order
of microseconds. They can detect the difference between the echoes
from the two spheres. Two dolphins can also, as it were, mutually
‘lock on’ their autopilots. As part of Sea World’s daily show two
dolphins swim at high speed in formation to transport to safety the
relatively fragile form of a girl who simulates an accidental fall into
the pool. Carrying her between their flanks they are able to maintain
a pressure which neither crushes her nor lets her slip.

Perhaps the capacious brain is for processing the sonar, so that
information about other dolphins and the surrounding world can
be cross-correlated with the simultaneous flow of visual data. The
Navy research workers broadly agree with this. Part, however, of
the high-speed traffic of weird noises seems interpretable as
expression of mood and general sociability. A dolphin can teach a
complicated new trick to another dolphin, but what part in this is
played by linguistic instruction, as opposed to demonstration and
imitation, is not yet clear.
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The main obstacle to man—dolphin communication may lie in the
disparity between the cognitive worlds of the two life forms. The
fact that dolphins live in a marine world, remarks Michael Arbib
of the University of Massachusetts, ‘must greatly condition what
intelligence they have. If indeed they do have a language, the words
they use will be different from ours. What may seem an obvious
concept to them may be a very complicated concept to us.”> Much
of Arbib’s discussion concentrates on problems of communication
with inhabitants of other planetary systems. What sorts of messages
should we send? Will the intelligences we talk to be natural or
artificial? Should we send pictures, and if so how will the recipients
know which way up the pictures should be viewed? What are the
linguistic and cognitive constants which might be expected to
characterize all sufficiently intelligent beings, regardless of their
perceptual and cultural milieus? On a more immediate level the lack
of cognitive compatibility between humans and machines presents
a major obstacle to the builders of models in computers.

Beyond the bounds of mind

The essential requirement of a model is that it be graspable. It is
assumed by a good many workers in the knowledge-engineering field
that all they need do to make their systems understandable to humans
is to base them on rules. This is very far from the case. It is easy
for rules to be based on a model which is outside the user’s grasp,
whether for reasons of structure or of scale. Take a primitive man
living in tribal Africa, who has never travelled more than a few miles
from his home. We could tell him about New York, and the fact
that it is many thousands of miles away, and he might well set off
to walk there just the same. The idea that there are places that are
too far away to walk to may be beyond his comprehension. Today
we know that the speed of light is 186,000 miles per second, but
in Aristotle’s time the idea that something could move from horizon
to horizon too fast for the eye to perceive its motion was unthinkable.
He concluded from the apparent instantaneity with which the rays
of the rising sun illuminate prominences on the western horizon that
light is not something propagated through space at a definite speed.
How wrong can a scientist be? In Aristotle’s case by about four orders
of magnitude. Apparent instantaneity would presumably disappear
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if the rising sun’s light streaked across the sky at only 18-6 miles
per second.

It is often thought that opposition to Copernicus’s heliocentric
model of the solar system was based solely on religious dogma. In
fact reasonable people, including the great astronomer Tycho Brahe,
pointed out that if the earth were circling the sun, the stars would
appear to move back and forth across the sky over the period of
a year — ‘stellar parallax’, as it is called (Figure 46). No such move-
ment could be detected. They worked out how far away the stars
would have to be in order for the parallax to be immeasurably small,
and decided nothing could be that far away! By Newton’s time other
arguments had prevailed, but it was not until 1832 that astronomers’
instruments were accurate enough to show parallax. The nearest star,
Alpha Centauri, turned out to be 25,300,000,000,000 miles distant,
with a parallax of only three quarters of a second of arc.

Figure 46. Stellar parallax, greatly exaggerated. The angles are so small that
no technology could measure them until the nineteenth century

The vastness of the universe which science has revealed to us has
widened enormously the scales on which we are prepared to think
about space and time. We no longer object to being told that the
speed of light is 186,000 miles per second. When Einstein was young,
astronomers had not begun to conceive the idea that there could



176  The Creative Computer

be other galaxies than our own. Yet so profusely do galaxies stretch
in every direction through space that the small sample easily visible
by telescope from the Northern Hemisphere amounts to one million.
A computer compilation of these has been published as a poster
image on a square yard of glossy black.* The distance to the furthest
galaxies in this map is about a billion light-years. That is not all. By
present optical telescopy the number of galaxies which we can see is
about a thousand times the number selected for the star map as the
million brightest. From observatories in space we will be able to see
a larger number still.

Be that as it may, no matter how much our minds have been
stretched, they will always be finite, and model-builders must
remember that if the end-points of their description-graphs are strung
out so far as to be out of sight, no human user will be able to
comprehend them.

Language and thought

Researchers in AT are starting to make progress in a series of areas
they have identified as crucial for the long-term goal of developing
really useful intelligent machines. The question of how to build
models is one of these. Another is to do with the nature of knowledge,
and the languages in which it is embodied.

The question of whether thought is the mother of language, or
whether it is the other way round, has received attention over the
past 100 years from talents as diverse as Lewis Carroll, Ludwig
Wittgenstein, Jean Piaget and Josef Stalin. Benjamin Lee Whorf
underlined the role of vocabulary in simultaneously reflecting and
guiding perception, this in turn being conditioned by cultural and
economic experience. Even in Scotland there is only one word for
‘snow’, two if one counts ‘slush’. The Eskimo has a dozen, so vital
is it for him to distinguish between the various forms. The life of
the Hopi tribe is such that no need arises in their language for a
noun for ‘time’, or for a tense system of past, present and future
for the verbs. Whorf believed that language acts as a mould for
thought, forcing it into preformed linguistic categories. The machine
intelligence scientist must also adopt a position, for he has to decide
on his research strategy for building intelligent agents in software.
Is he to make the mechanization of knowledge-based reasoning the
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main thrust, only secondarily clothing the system, where he can, with
linguistic trimmings? Or should he go bald-headed for computational
linguistics as the heart of the matter?

Teachers of logic frequently introduce the notion of rule-based
(and hence mechanizable) reasoning with the old chestnut:

Premise 1:  All men are mortal.
Premise 2: Socrates is a man.
Conclusion: Socrates is mortal.

Christopher Longuet-Higgins has constructed the linguistic trap:

Premise 1: Men are numerous.
Premise 2:  Socrates is a man.
Conclusion: Socrates is numerous.

Bertrand Russell gave as another trap the statements:

George 1V wondered whether the author of the Waverley novels was
Walter Scott.

and
Walter Scott is the author of the Waverley novels.
from which we do nor want a computer to deduce:
George 1V wondered whether Walter Scott was Walter Scott.

On such rocks as these has foundered much of the linguistic
philosophy of the past. Today it is accepted that reasoning by formal
manipulation requires prior reduction of the language text to some
more logic-oriented symbolism. For example, using predicate
calculus in the Socrates puzzle we have:

Case A

Premise 1:  for all x, member (x, men) implies mortal (x);
Premise 2: member (Socrates, men);

Conclusion: mortal (Socrates).

Case B

Premise I: numerous (men);
Premise 2: member (Socrates, men);
Conclusion: ?
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In Case A the conclusion follows by substituting ‘Socrates’ for x.
In Case B nothing can be concluded. So once the statements are
re-expressed in a suitable formal language, the conclusions of logic
are reunited with those of common sense.

In the pool of anxious discourse

The issue of language first versus reasoning first is assuming practical
importance now that expert systems and computer information
services are acquiring front-ends for dealing with users in something
approaching natural language. Some of the endless streams of
citizens’ queries to the offices of bureaucracy may one day be re-
directed to automated systems able to advise with endless patience
on, say, pension entitlements. But more than patience, alas, and more
than linguistics, will be needed for a system which has to fish in
the pool of anxious discourse for the inquirer’s true meaning and
desires. The following small sample is taken from letters reputedly
received some years ago by the Ministry of Pensions.

I cannot get eternity benefit in spite of the fact that I saw the insistence
officer. I have eight children, what can I do about it.

I should have more pension since my son is in charge of a spittoon. I get
a separate money when he listened. You want to know what part he is
wounded in. If it’s all the same to you he was wounded in the Dardy Nolls.

In accordance with your instructions I have given birth to twins in the
enclosed envelope.

I want money badly as quick as you can send it. I have been in bed with
the doctor for a week and he doesn’t seem to be doing any good.
One false step, one prolonged hesitation in interpreting, and Heaven
knows what may ensue:

I am glad to state that my husband died yesterday. I will be glad if you will
get a pension. If you don’t hurry up with it I will have to get public resistance.

System responses might be quick enough, but on occasion they could
be embarrassingly misplaced.

Re your dental inquiry. The teeth at the top are alright but the ones in
my bottom are hurting terribly.



Coming to Model Heaven 179

It is easy to mock present-day computerized natural-language
processing for failing to handle instances such as these, but crude
as existing systems are, they are already usable in commercial
applications, and computational linguistics has penetrated laws of
language obscure to theoreticians of the pre-machine era. But irre-
spective of the progress of natural-language processing, programming
intelligent systems requires special logic languages, not only for
dealing with the Socrates problem and its kind (for which con-
ventional programming languages are really not adequate), but also
for building systems that can reason about what other systems know.

Knowing about knowing

What sort of systems might have such a requirement? Consider a
program to assist a travel agent in planning routes and schedules.
So long as the program’s only source of knowledge is the contents
of the airline timetables, there is no problem — except that it will
be caught out by new information (concerning air traffic control
work-to-rules, hurricanes, civil wars, compulsory groundings,
hijacks, revisions or even misprints in the timetables) which ‘every-
body knows about’ but which has not yet reached the agent’s desk
of its own accord. So we would like a program able actively to assist
in the search for knowledge, for example by calling somebody up.
Then it must know what knowledge is, and how to reason about it.

Suppose a system called Travelaid is being run for the benefit of
-a commercial travel agency. Pat is a travel agent who wants details
on flights from Hong Kong to Ulan Bator for a client. Mary is a
Thomas Cook agent who has special information on these flights.
Mike is Mary’s immediate supervisor at Cook’s, whom Pat recently
telephoned about another matter. What Pat does not know is that
Mary and Mike share the same phone.

Pat asks Travelaid to get Mary’s phone number for her and dial
it. The machine does not have Mary’s number in its data-base but
it does have the following three facts:

Fact 1: Pat knows Mike’s telephone number.
Fact 2: Pat just dialled Mike’s telephone number.
Fact 3: Mary’s telephone number = Mike’s telephone number.

The program puts these facts together and infers (by substituting
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equals for equals) that Pat knows Mary’s telephone number, so it
asks her for the number, the very question which she has just asked
it! Moreover, when she protests, Travelaid types, ‘You just dialled
Mary’s telephone number!” Although for once Travelaid is telling
the truth, Pat has no knowledge of having done any such thing and
ends a beautiful contract by ripping Travelaid’s cord out of the wall.
What happened? The program put 2 and 3 together to infer (cor-
rectly) that Pat dialled Mary’s telephone number. Of course Pat could
not recognize the correctness of the inference, not knowing fact 3. So
why was the other inference wrong, proceeding as it seems according
to identically the same scheme?

The short answer is that firstly, as noted above, this is what tends
to happen if one tries to perform deductions directly on natural-
language statements; and secondly, even when translated into logic,
statements about ‘knowing’ are slippery. We need to understand how
a machine can know that you know that it knows that she knows
what it knows. John McCarthy of Stanford University has shown
that this can be handled satisfactorily within first-order predicate
logic.® Using his method there would be little trouble in equipping
Travelaid for deductions about knowing telephone numbers or
knowing anything else — including ‘knowing that’ and ‘knowing
whether’.

McCarthy leaves first-order logic unchanged and treats concepts
simply as one kind of object, so that constants, variables and terms
can all have concepts as their values. By a notational convention he
distinguishes between ‘concept constants’, such as Pat and Mike,
and the corresponding ‘person constants’ pat and mike. Pat
represents the concept of pat. Likewise the concept-variable Horse
represents the thing-variable horse, and Telephone (Mike) evaluates
to the concept of mike’s telephone number. McCarthy’s key move is
to introduce a function Know whose arguments must be concept-
valued and which produces a concept as a result. The clarifying
restriction is that only concepts can be known, just as only liquids can
be drunk.

Fundamentally what is needed is a sound and well-quantified
theory of knowledge, giving the field the same sort of scientific
foundation that Carnot provided for steam engineering and Shannon
did for communications. We shall then have a calculus for reasoning
about knowledge and other mental phenomena, and this is indeed
what McCarthy has concerned himself with.
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The drill-sergeant’s withdrawal

As a high priority, artificial intelligence needs a language that will
deal with logic directly, rather than through imperatives in the
manner of Cobol, Fortran, Basic and others of their breed. Do
computers ever get bored with the interminable streams of com-
mands? ‘Do this, do this, do this ...” The helpless indignity of their
situation recalls that of the recruits marching towards the edge of
a precipice-lined barrack square: ‘For God’s sake say something,
sergeant, even if it’s only goodbye!” For such of the world’s teeming
machines as may be afflicted with ennui or despair, there is news.
They too may one day have to think for themselves. Tomorrow’s
programmers will one day indolently disburden themselves of the
drill-sergeant chore. How relaxing to be able to bark out °... left,
right, left, right ... about turn ... left, right ... now get home using
your own bleeding common sense!’ and then withdraw to the mess-
room,

This has to do with what Ed Feigenbaum calls the ‘What-to-How
spectrum’. Instead of telling the computer how to do something, we
would like to be able to tell it what we want it to do, and leave
it to work out how. Feigenbaum sees this as the ultimate aim of
all AI research.” The idea behind what is known as ‘logic
programming’ is that you should equip the computer with a basic
reasoning engine, and thereafter tell it nothing but facts, on the
understanding that it will do its best with them. As you build its
stock of knowledge with just the right set of relevant assertions about
what is or is not the case in the world of sorting, merging, data
control, queuing, scheduling, game playing or other computing task,
so the system builds its own capability to sort, merge, control data,
manipulate matrices, etc., simply through its own efforts to prove
that any goal statements fed to it really can be deduced logically
from its accumulated store of facts.

As early as 1971 Robert Kowalski, then at Edinburgh, was already
in effect saying: “‘Whatever you want the system to know, tell it the
facts in first-order predicate logic. The result will have an obvious
declarative semantics — it is quite unambiguous in what it says about
its problem world. If, moreover, the system is equipped with a
theorem prover behind the scenes, capable in principle of deducing
anything deducible from the starting facts, then the logical statements
can be given a procedural semantics. So we can forget the years of
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drill-sergeant programming, and use as a programming language a
vehicle which has been there all the time, much studied and well
understood by mathematicians, namely, first-order predicate logic.’

Waiting for a miracle

Kowalski showed in detail how a theorem prover based on J. A.
Robinson’s ‘resolution principle’ could be made into an interpreter
for such a language. But his hearers did not like this. Some felt that
he was right but mad, others that he was wrong if only they could
think exactly how. The majority took the pragmatic view, tried and
tested on prophets in all times and ages, that you might as well ignore
the whole thing until you are shown a miracle or two.

Miracles take time and sweat and ingenuity and doggedness and
flair. Kowalski’s disciples in Edinburgh, Marseilles, Western Ontario
and Hungary have deployed these qualities in good measure over
the intervening years. The name of the result is Prolog, a
programming system faithful in its fashion to the sweep and
simplicity of the original concept, but running on commercial
machines including microcomputers with efficiencies fully com-
parable with, for example, Stanford’s highly optimized pure Lisp
system.?

Prolog works with objects and their relationships, specified by the
programmer as rules. Relationships might be:

John likes Mary

Philip father-of Charles
Charles father-of William
Mary likes John

New relationships can be defined:

x friends-with y if x likes y and
y likes x

and questions can be asked, such as, is John friends with Mary?

In Prolog: Does (John friends-with Mary)
Answer:  YES

A system of relationships has to be quite large before the computer
can be seen to be providing real benefit, but at any serious level
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of complexity, a computing problem normally involves sorting out
relationships between things — membership of sets and so on — and
thus solutions can be represented as series of logical inferences.

Those in charge of the Japanese Fifth Generation Computer
programme are sufficiently convinced of the benefits of logic
programming to have placed it as a central plank in their plans.
Now that Prolog is becoming widely available it will be possible
to assess its effectiveness on a large scale, and to see what further
developments are necessary. Some observers are sceptical about the
usefulness for real-world tasks of the basic operators provided in
systems for mechanizing reasoning, wryly suggesting that in addition
to ‘Implies’ there should be ‘Sometimes implies’ and ‘Ought to imply’.
Certainly ‘fuzzy’ and ‘modal’ operators are being studied as a
possible extension of these techniques. Logic programming could
turn out to be as fundamental to AT as the infinitesimal calculus
was to mechanics.

The shaky foundations of Euclid

It is not just our dealings with language that urgently need to be
formalized. Reasoning about the physical world can also lead us
into serious difficulties. In trying to build causal models, it would
be nice to be able to derive them from our established formalisms
of mathematics, logic and physics. But when we set out to do this
we find that the existing formalisms are not adequate.

Take Euclidean geometry, which we have all encountered in one
form or another at school. Some of us were charmed by its elegance,
certainty and precision; others were frustrated by its insistence on
proving the obvious and its obsession with exactness in a world in
which all measurements are necessarily inexact. Certainly the tech-
niques of exact reasoning are acquiring new importance now with
the spread of digital processing and communications. There are,
however, serious holes in the foundations of Euclid’s geometry and
the assumptions it makes. To illustrate, let us draw a triangle, any
triangle at all (Figure 47). The dotted line dissects the angle BAC
into two components, BAD and DAC. If the line AD is produced
indefinitely as indicated by the dotted arrow, must it necessarily inter-
sect the line BC?

Of course it must! But can you get out your geometry books and
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8
Figure 47. Must the dotted line intersect line BC? Could Euclid prove it?

prove it? No you cannot. Lewis Carroll used this fact to devise an
ingenious proof that all triangles are isosceles.® The problem, as Peter
Hilton of Case Western Reserve University explains, is to do with
the idea of a ‘closure’ (a line round which a bug could run forever).
The notion that a closure partitions the plane into just two sets of
points — ‘inside’ and ‘outside’ — and that passage from one partition
into the other cannot be achieved without crossing the boundary
is not embedded even implicitly in Euclid’s axioms, although it is
in elementary set theory. But set theory is a more remote branch
of mathematics than geometry, and many people have never
encountered it at all.

At least with Euclid, when answers can be derived from the axioms
and data they come quite quickly. There is no fear of having to drop
the whole project on finding the required chain of calculation and
inference to be too long to execute in practice. With physics, once
we leave cooked-up classroom problems for the real world, the
matter stands differently. If some physicist disagrees let him write
a program to control a robot unicyclist. He will find the physics
textbook model wholly inadequate for dealing with such a complex
real task. As with the problem we cited in Chapter 1 of how to get
a robot to go down the street and buy a packet of cigarettes, the
central difficulty is our lack of any formal representation of the
nature of cause and effect.
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Causation and the desert traveller

Most people think that they understand causation perfectly well.
When challenged, some will say that causation can be handled just
like implication, which we certainly can mechanize. Actually it is
not like that at all.

First. A corollary of ‘A implies B’ is ‘IF not-B THEN not-A’, but
a corollary of ‘A causes B’ is ‘IF not-A THEN not-B’.

Second. In contrast to implication, the accepted basis of causation
is probabilistic.

Third. In the probabilistic model, transitivity does not hold. By
contrast, if A implies B, and B implies C, then A implies C.

Fourth. No one objects if a chain of implication forms a loop:
looping of causation statements is frowned upon.

There is a conundrum in causality concerning a traveller who dis-
mounted from a trans-desert bus to complete his journey on foot.
This man had two enemies, each bent on causing his death. The first
had surreptitiously put cyanide into the traveller’s water bottle while
still on the bus. The second, not knowing this, stalked the traveller
for hours before he found a chance to pierce the bottle with a well-
aimed bullet. The bottle’s contents leaked away, and the traveller
died a lingering death from thirst.

Both men were in due course arraigned, and both were found guilty
of attempted murder. On the charge of murder, however, the court
found itself in perplexity. Enemy No. 1 pointed out that all possible
consequences of his action had been nullified by the escape of the
bottle’s contents. Enemy No. 2 pointed out that his action, far from
causing death, had prolonged his intended victim’s life. The court
eventually felt obliged in logic to accept both these arguments. But
at the request of the jury a rider was entered to the effect that there
seemed to be something wrong somewhere.

The Stanford logician Pat Suppes has been devising a technique
for analysing causation that might supply the juridical weapon the
court was lacking. Simplifying somewhat, we start with the idea that
A is a prima facie cause of B if and only if: (1) A precedes B in
time; (2) A has a non-zero probability of occurrence; (3) B’s
probability given that A has occurred is greater than B’s probability
otherwise.

Note that so far this is only prima facie causation, according to
which, for example, a fall in the barometer reading is a cause of
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rain (prima facie it is). We now get rid of such spurious causes by
finding some event C, earlier in time than A, such that (4) B’s
probability given C and A is equal to B’s probability given just C.
This shows that A is not the true cause of B. In the barometer
example, C could be lowered atmospheric pressure (as opposed to
barometric reading, which is A).

Back to the desert courtroom, Suppes-style. Enemy No. 1, it seems,
takes the rap. Enemy No. 2 is acquitted of murder. Is this justice?
It is hard to say. Perhaps our received ideas of justice do not
correspond to a strict logic of causation. No. 1’s deliberate action
certainly doomed his victim to die. To that extent at least, the Suppes
calculus seems to give a fairer result than the court’s troubled verdict.

Physics fails the Monkey

Returning to physics, we find that this science, that is so often sold
as a calculational cure-all for those who want to predict things, was
in fact developed for another purpose: to help physicists clarify their
minds. While physics includes important concepts such as mass, force
and energy, there are many more just as important that it does not:
for example the ideas of closure, containment, support, contact,
obstacles, ways through. Without these, and without an explicit
formulation of cause and effect, physics is incapable of dealing with
the real world.

There is a classic problem in cognitive science to do with a monkey
in a room who wants to get hold of a bunch of bananas hanging
from the ceiling on a string, out of his reach. In the corner stands
a pair of garden shears with long handles, long enough for the
monkey to be able to reach the string with the blades (Figure 48).
How does the monkey work out how to get the bananas? Imagine
the monkey is instead a robot called Monkey, and the bananas are
a tool-kit it has been ordered to retrieve. How do we give it the
necessary knowledge? By feeding it the contents of a physics text-
book? While the robot will be able to derive from this all kinds of
information it does not need to know, such as the tension in the
string and the terminal velocity with which the tool-kit would hit
the floor were it to fall, Monkey will find nothing about how to
make the kit fall in the first place — nothing about situations, actions
and causal laws. As a complete and workable description of how
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Figure 48. How does the monkey work out how to get the bananas?

the physical world behaves, the physics textbook reveals itself as
a fraud.

Among those Al researchers seeking to remedy this is Patrick
Hayes, who studies a subject he calls ‘naive physics’. His aim is to
generate a representation of the world that includes the notions such
as containment, connection, adjacency and barriers that we men-
tioned.!? Just as some ancient Greek, aware of the gappiness and
small scope of Euclid, might have put out an exploratory probe into
the then unknown calculus of sets, so today the first approaches
are being tried to tomorrow’s calculus of causality. The ghosts of
the geometers waited more than 2,000 years. Industrial robot
technology, if nothing else, is this time ensuring a faster pace.




CHAPTER 9

The Cat That Isn’t There

A theologian and a philosopher were having an argument. ‘You’re just like
all philosophers,’ the theologian scoffed, and quoted: ‘You’re a blind man
in a dark room, looking for a black cat that isn’t there.’

‘Ah!’ replied the philosopher, ‘but you would find it

Attributed to William James

The scientist starting work on AI finds himself trying to deal with
matters such as knowledge, belief, reality, truth, perception, causality
and creativity. These are vaguer terms than those he is used to dealing
with. He might be inclined to turn to philosophy for enlightenment.
Indeed, AT is sometimes described as the application of philosophy
to technology, or alternatively of technology to philosophy.

At the same time the public at large, on seeing this kind of work
going on, tend to raise questions also of a philosophical nature. Can
computers think? Are they conscious? Do they have feelings? Sadly,
the answers that come back from philosophers are usually far from
satisfactory. Still, the philosophical issues will continue to arise, but,
interesting as they are, they may confuse our commitment to exploit
these new technologies as quickly as possible for the benefit of
humanity.

It is no surprise that many are worried by the notions of computer
intelligence and creativity. They have not only philosophical but
emotional associations. People have always reacted with consterna-
tion whenever machines have acquired characteristics previcusly
thought to be the exclusive property of human beings. If life is sacred,
then ostensibly attributes that are essential parts of that life acquire
sacredness: these might include the ability to move about, to reason,
to act autonomously, to converse, to reproduce. Machines are
gaining these abilities, or apparent abilities, in turn. Reproduction
has not yet been achieved, but it is certainly in the minds of some
research workers, including Bernard de Neumann at G EC Marconi
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Laboratories, a distant cousin of the great John von Neumann.?!
The biggest source of concern, though, is probably the apparent
encroachment by machines on man’s free intellectual powers.

Alienating mystifications

If it is impious to think that computers can be creative, further unease
can arise as, through developments in A1, human properties become
describable in terms of mechanisms. This can seriously affect the
way we think of ourselves, raising the old question of whether we
are nothing more than machines. As Margaret Boden puts it:

In many humanists’ opinion, the literature of artificial intelligence
inevitably encourages the alienating mystification that there is no essential
difference between people and machines, and thus subtly supports those
social systems that effectually treat people as though they were machines.?

Thus it is only to be expected that discussion of these issues can
become emotional and discourteous, just as did consideration of
Darwin’s ideas in the last century. Consternation can easily turn
to scorn, and in the same way as T. H. Huxley was made a figure
of fun, so can mention of artificial intelligence provoke laughter.
Thomas Watson, the founder of IBM, used actively to discourage
talk about A1 as bad for the company’s image.

Efforts to re-establish the self-esteem of man after the damage
it has supposedly received have led to much muddled thinking.
Several philosophers have seized upon Goédel’s Incompleteness
Theorem as proof of man’s superiority over machine. Kurt Goédel,
an American mathematician born in Austria, showed conclusively
in 1931 that in any sufficiently powerful mathematical system (such
as arithmetic) there will always be propositions that cannot be proved
within the system — they simply have to be assumed. Therefore, it
is reasoned, science can never answer all the questions; therefore
what a wonderful thing is man. What is overlooked in this argument
is the fact that Godel’s Theorem applies just as much to human beings
as to machines, so there will always be things human beings do not
know for certain either. A deep understanding of what machines
can and cannot do is the best reassurance of the continuing value
of man.
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Plato’s indignation

Those outside the scientific community need feel no diffidence about
their instinctive aversion to machines acquiring human mental
properties. Such a reaction can come from the inside as well. Alarm
has been aroused by every historical advance in the supporting
technology of thought and knowledge, even, as we described in
Chapter 3, in the case of the invention of writing! Of course, Plato’s
implied disdain did not inhibit him from writing himself, but then,
things are always different when we do them ourselves, for then we
can make sure they are done right. However, one development which
Plato could not accept at any price was the construction by two
mathematical colleagues of a device for machine-aided theorem
proving. The story is related to us by Plutarch in the Life of Marcellus:

Eudoxus and Archytas had been the first originators of this far-famed
and highly prized art of mechanics, which they employed as an elegant
illustration of geometrical truths, and as a means of sustaining experi-
mentally, to the satisfaction of the senses, conclusions too intricate for proof
by words and diagrams ... But what with Plato’s indignation at it, and
his invectives against it as the mere corruption and annihilation of the one
good of geometry, — which was thus shamefully turning its back upon the
unembodied objects of pure intelligence to recur to sensation, and to ask
help ... from matter; so it was that mechanics came to be separated from
geometry, and, repudiated and neglected by philosophers, took its place
as a military art.?

One might suppose that such snobbery had disappeared by the
twentieth century, certainly within the realms of technology itself,
but far from it. Edsger Dijkstra, one of the greatest computer
scientists of our age and a spiritual descendant of Plato, has claimed
that the development of the microprocessor has put computing back
twenty-five years. His assertion is based on the view that the easy
availability of computing power to people with no systematic training
in good programming will lead to the wholesale abandonment of
the standards and techniques painstakingly developed over the years
by him and his colleagues; all the old mistakes will be repeated.
Dijkstra expounds:

The most common argument in favour of microcomputers that I hear
is their low price. Now let me give you a general advice for ‘deconfusing’
an otherwise confusing presentation. The advice is to remember that when
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anyone is talking in terms of money, it is highly improbable that he knows
what he is talking about, for ‘money’ is a vague and elusive notion when
you come to think about it. For some people, their dollar or their pound,
their guilder or their yen, is not just their currency unit, but has become
their unit of thought. Love of perfection is then driven out by love of cheap-
ness, and eventually they find themselves surrounded by junk ...

The paradoxical fact is that we are back where we were twenty-five years
ago. Again the arithmetic is too slow or the store is too small; again we
have machines with chaotic, unsystemétic order codes, the design of which
has been influenced more by consideration of hardware technology than
by the question whether a wise programmer would care to use them. Recently
someone showed me an issue of one of the monthly magazines for the micro-
processor hobbyist, and I tell you, it was a severe shock to see a revival
of all our old mistakes. It was frightening, it was depressing, it was sickening,
and I hope never to see such magazines again.*

One is left with the uneasy conclusion that the young discipline
of computer science is already constructing a new conservatism to
rival that of its older-established academic cousins — the aversion
of Upstairs Man to whatever comes from the servants’ quarters.

. The Four-Colour Problem succumbs

One can see how mathematicians might feel that to mechanize is
to bedaub the mathematical sub-culture’s precious tapestry with
squirtings from an engineer’s oil-can. After all, has computing ever
helped real mathematics? Had not Plato, perhaps, a point? Until
recently perhaps he had. But in 1976 Ken Appel and Wolfgang
Haken produced by computer a proof of the celebrated Four-Colour
Theorem in topology that had resisted mathematicians for over a
century. A map-maker wants to colour his maps in such a way that
adjoining countries will always be of different colours, so that the
boundaries can be clearly seen. What is the minimum number of
colours that will be sufficient for all possible maps? No map had
ever been found that needed more than four colours, but all attempts
to prove that four would always be sufficient had failed.

By an exhaustive computing process Appel and Haken showed
that all possible maps would have to contain at least one of around
1,800 sub-maps, which were individually listed by machine. They
then proved that every one of these sub-maps had the property that
it could not possibly form part of a map that required more than four
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colours. Hence no such map could exist.® Such a technique of ex-
haustive enumeration is offensive to many mathematicians, just as
physicists tend to despise representations of the world that are not
concise. But in the case of the Four-Colour Problem it seems that
despite the simplicity of the initial question the proof may be intrin-
sically ‘bitty’ and that no elegant Platonic solution is possible. More
and more mathematical problems are now fitting into this category.
In the end, mathematicians may have to swallow their pride.

Considering consciousness

Proof of a different kind becomes pertinent when considering
consciousneds. Futurologists speculate about when computers will
be built that have consciousness and self-awareness. To answer this
we first need to be clear about terms. Freud in one of his later lectures
wrote: “‘What is meant by “conscious” we need not discuss; it is
beyond all doubt.’® All eminent men are wrong occasionally, but
seldom as spectacularly. Consciousness is one of the most elusive
concepts: we all know what it is, but no one can say what it is. More-
over it is the most precious possession that any individual has. If
he is permanently robbed of it, what is left to him? So it has for
us an aura of sacredness. We are not readily going to credit a machine
with this mysterious gift.

A dog is another matter. Dog-owners will tell you that their pet
is so empathic that it is aware not only of its own thoughts but of
its master’s. But how do we decide whether a computer is conscious?
The question may acquire more than intellectual interest. Robots
will one day be built that can move about and converse much as
humans do. They will be turned out on assembly lines as motor cars
are now, and will become as ubiquitous and as much of a social
nuisance. There could even be a stray-robot problem. Their
humanoid characteristics will predispose people to take the same
attitude towards them as towards animals. To be able to operate
on their own, robots will have to be programmed with what would
be in effect a sense of pain, to warn of physical harm, and an instinct
for self-preservation, to tell them to withdraw from danger. Other-
wise they would not last long through the mishaps of everyday life.
The sight of a robot desperately trying to save itself when attacked
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could appeal to the kind of people who would have relished bear-
baiting. Robot-baiting and Hunt-the-Robot could become pastimes.

Would it then be cruelty to torture a robot? If it is not conscious,
presumably not. But how would a robot prove to us that it was
conscious? How, for that matter, would a human? An obvious answer
might be, by telling us about himself. John Locke described
consciousness as ‘the perception of what passes in a Man’s own
mind’.” However, we must not be misled into the view that conscious-
ness and knowledge of self are the same thing, despite the fact that
in humans they go together. Conventional computer programs with
good diagnostic and trace facilities can tell the user a great deal about
their own internal states and processes, yet they can hardly be
regarded as conscious. One might then take the view, ‘Ah, well, if
someone can not tell us about himself, then he is not conscious.’
But even that does not work. The drug curare can totally paralyse
a patient so that though fully awake he cannot so much as twitch
an eyelid. A surgeon could operate on him without anaesthetic, and
the patient would suffer agonies and yet be unable to indicate the
fact by the slightest movement. Another drug could be used to
eradicate his subsequent recollection of the torment. So on the
question-answering test of consciousness, it might be thought
reasonable to operate, yet everyone would agree that to do so would
be monstrous. Moreover such procedures are prohibited in the case
of laboratory animals.

Since it is not effectively possible to prove or disprove one’s own
consciousness, such proof cannot be required in order to determine
an organism’s rights. This has long been accepted in the case of
animals, and laws against cruelty to them have been passed without
first solving the problem of whether animals are conscious or have
souls. Presumably these laws exist not just out of feelings of kind-
ness but because of the implications for humanity of inhuman treat-
ment of anything. After all, no one tortures rocks; it is simply the
human-like response of an animal in pain that gratifies the torturer.
For the same reason therefore laws will probably be enacted to
protect robots. This could be out of simple self-interest on man’s
part. The habit of brushing aside the rights of minorities can be two-
edged. Think what might happen if one day robots started asking
themselves, ‘Are humans really conscious?’
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Killing an-expert system

Of course, animals often have to be ‘put down’ for practical reasons,
and so will robots, but an interesting question arises concerning
expert systems. One of these constructed with the cooperation of
a particular human expert can capture his skills in such faithful detail
that colleagues and friends interacting with the system may recognize
his personal style of thought. Long after he is dead they could
respond to the foibles and fancies of the intellectual companion they
knew. This would be for him a kind of immortality, more vivid and
direct than authorship of books, or passive relics such as photographs
and tape recordings, since it would include fragments of responsive
behaviour. How should we regard the wiping-out of such a system
irretrievably? It would surely be reprehensible in the same way as was
the burning of the great library of Alexandria.

The social accountability of stored knowledge

The knowledge stored in computers can raise moral questions of
another kind. Take a statement from a book to be found in school-
rooms: ‘They are lazy individuals, apparently devoid of morals, and
always prepared to lie, cheat and steal.” Whose conversation are we
overhearing? Perhaps it is a data-processing manager commenting
on the maintenance staff. Or is it a board member of Ford’s about
the workforce at Dagenham? But it could just as plausibly be one
of the shop-stewards on the subject of the board! Maybe it was over-
heard in the Athenacum, and the target was the new Ministers of
the Crown? And yet it sounds not unlike the late Richard Crossman
writing about senior civil servants. Or in the groves of Academe:
‘Tell me, young person, what are the professors like round here?
or ‘You were saying, Dean, about the students ...’

The statement is from a New South Wales textbook, referring to
the Aborigines.® Textbooks are purportedly sources of knowledge.
This fact starts a train of uneasy thought. The knowledge-base in,
for instance, Prospector contains information about the geology of
uranium. As it happens, considerable political tension has arisen over
the discovery of uranium deposits lying beneath the Aborigines’
traditional habitats. Son of Prospector or Grandson of Prospector
might include information about non-geological factors that could
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affect decisions to drill, such as legal data on Aborigines and land
rights. Beyond even that, the proprietors of automated systems might
wish to add to the knowledge-base more than dry technical and legal
facts, and to include looser generalizations about relevant human
groups. Questions of the social accountability of stored ‘knowledge’
will certainly then arise.

The data used by robots will be sensitive in the same way. Ask
Super-Rob, a twenty-first-century robot foreman, the question ‘What
is lazy, apparently devoid of morals and always prepared to lie, cheat
and steal?” and you might get the answer: ‘Homo sapiens.’

What is your robot for?

The question ‘What is your robot for?’ is a particularly delicate one
now. The social problem of galloping unemployment makes many
people suspicious of any technology that reduces the need for human
labour. We need to remind ourselves that there is no logical reason
why knowledge about how to do things more efficiently should be
a bad thing. Fundamentally what robots must be for is the same
as any other technology: to raise the quality of life. They can do
this by increasing the sum total that society can produce, both goods
and services. Despite our current shortage of jobs there is no shortage
of work waiting to be done: renovating our housing, rebuilding
our rapidly deteriorating heritage of Victorian engineering works,
looking after the sick, the aged and the infirm, providing continuing
education for everybody, to say nothing of feeding the starving
millions in the Third World. As Tom Stonier of the Bradford School
of Science and Society has put it, health and education are ‘an infinite
sink for employment’.® The problem is getting it organized to
happen.

Naturally when it does happen it will entail a great deal of change,
and many people will have to change what they do, like it or not.
If society no longer needs what you produce, you have to produce
something else. Expectations will have to change — but not expecta-
tions about material standards of living, rather, expectations about
what is a respectable way of spending one’s time. By that we do
not primarily mean leisure: the traditional aversion of the British
to providing services as opposed to making objects will have to be
overcome.
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The change can only be managed by a judicious mixture of public
and private enterprise, perhaps quite unlike anything we have had
before. Education and retraining will have to be on a massive scale.
Some people say this will have to be a job for government, others
that only small private enterprises can react quickly enough. How-
ever it happens, the main thing that will be required is imagination.

The life of a harlot

Despite the continuing accumulation of work to be done, technical
developments have always been reducing working hours, and auto-
mation will certainly carry on this trend. It is only to be welcomed
if we can spend less time doing what we have to do and more time
doing what we want to do. Some years ago a former Lord Provost
of Edinburgh was so moved by this thought that in his retirement
speech he mis-spoke himself to immortal effect. ‘I'll be away now
to the far highlands,” he informed the solemnly assembled company,
‘where I plan to live the life of a harlot!’

Historians of the occasion now believe that the intended word
was ‘hermit’. Yet, as Freud was the first to emphasize, these slips
can reveal hidden attitudes. Doubtless in a Scottish Lord Provost’s
secret mind, doing quietly what one wants to do is not filed, as it
would be in the mind of a Roman Catholic or a Buddhist, under
‘RETREAT, SAINTLY’ but rather under IDLENESS’ — with
all the depravities into which that devilish state may plunge even
the best Presbyterian! It is a particular obsession of our age and
few others that the only path to spiritual fulfilment is through work.

We are in no danger of having everything done for us by robots
in any sort of future that can be foreseen, nor is the computer a
risk to the high flights of human creativity. It is a mistake to take
up too much time asking ‘Can computers think? ‘Can they be really
creative? For all practical purposes they can. The best course for
us is to leave the philosophers in their dark room and get on with
using the creative computer to the full.




CHAPTER 10

Inventing For All Mankind

There are thousands of them at present in England as well as I believe else-
where; the offspring of the march of intellect. Their object is money; which,
please God, they shall not get from the Publick Treasury.

The Duke of Wellington, on inventors (1830)!

The cosmetic application of codswallop is an art for which Britain’s
public men and women have long been renowned. In the hands of
a master, the material is spread thinly and evenly. Blemishes are
concealed beneath a uniform, healthy tan, and irrelevant or dis-
figuring detail is suppressed.

In practice our national countenance is pocked and plmpled with
a myriad scars and inflammations, carbuncular pitfalls of monetary
policy, pustular escalations of class conflict and the like, not to
mention the quirky patches which add character and attract tourists.
The trouble with codswallop is that if not expertly used it does not
plaster the disorderly expanse uniformly. Instead it seems to
aggregate around the very points which it is intended to smooth
over. In place of sun-tan we see a piebald patchwork, with certain
features and themes densely codswalloped — the rest untouched.

Of all the eye-catching focuses surely pride of place goes to the
theme of technical innovation. The beautician’s story is that innova-
tion is the big magic that could spirit our economy from the
doldrums, if only there were enough of it around. In electronics and
computing, Britain needs midwives to deliver the inventor to the
investor, says the Department of Trade and Industry, adding that
despite an abundance of talent there is a shortage of innovative
projects.



198  The Creative Computer

The Chief Scientist’s tale

Clearly there is a shortage of something. Is it really a shortage of
innovation? According to Sir Alan Cottrell, this too is codswallop.
After retiring from the post of chief scientific adviser to the Cabinet,
Cottrell published a series of analyses indicating a relative surplus
of British inventions — relative, that is, to the capability of British
industry to adopt them and put them to work.? At an investment
rate of about 6 per cent per year, half that of our main European
competitors, there is no possibility that our firms would take up
more than a fraction of the good ideas already lying around, let
alone exploit the latest.

British academic scientists are driven to the uncosy conclusion
that when they discover something useful, this is a most unpatriotic
act. The innovation in due course appears in the open technical
literature, and General Motors, or Olivetti, or Hitachi or some other
of Britain’s economic rivals exploits it against us. Rather than cause
this to happen, a scientist should either do nothing or stick to his
ivory tower. Exploitation of an immediately applicable discovery
needs new plant, new processes, new instrumentation, new working
methods. Either British companies are not willing to take these on,
or the investment cash is not forthcoming, or other forms of enable-
ment are lacking.

No one is claiming that innovation is in itself an automatic boon.
The call is for midwives. If, however, neither the mother nor the
local foster-mother can afford to take the baby on, what then?

The fate of the Bulgar inventor

There is an almost religious veneration for the new-born. Babies
are crooned over, tweaked, tickled, treated as holy. But let the
admirer be asked to act as nursemaid for the little creature, and
how his ardour cools! So with innovation. Reverential codswallop
about creative genius flows today from all responsible spokes-
persons. What are their real feelings? In some earlier times, at least,
it was safer to be a baby than a clever inventor. The eighth-century
Arabian traveller Ibn Fadlan found an interesting custom among
the Volga Bulgars:
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When they observe a man who excels through quick-wittedness and
knowledge, they say: ‘for this one it is more befitting to serve our Lord.’
They seize him, put a rope round his neck and hang him on a tree where
he is left until he rots away .. .3

Arthur Koestler quotes the Turkish commentator Zeki Validi Togan:

There is nothing mysterious about the cruel treatment meted out by the
Bulgars to people who are overly clever. It was based on the simple, sober
reasoning of the average citizens who wanted only to lead what they
considered to be a normal life, and to avoid any risk or adventure into
which the ‘genius’ might lead them.*

It is easy to suspect that this is the basic philosophy at the root
of government reluctance to stimulate investment. That the philo-
sophy is older than the Bulgars is evident from this ancient Chinese
fragment:

Returning to one’s destiny is known as the constant:
Knowledge of the constant is known as discernment.
Woe to him who wilfully innovates

While ignorant of the constant ...

The author was doubtless head of a Civil Service department.

As long ago as 1887 T. H. Huxley was urging a radical change
in the relationship between British science and industry. In a
memorable letter to The Times in January of that year he wrote:

I do not think I am far wrong in assuming that we are entering, indeed
have already entered, upon the most serious struggle for existence to which
this country has ever been committed. The latter years of the century promise
to see us embarked in an industrial war of far more serious import than
the military wars of its opening years. On the East, the most systematically
instructed and best informed people in Europe are our competitors; on the
West, an energetic offshoot of our own stock, grown bigger than its parent,
enters upon the struggle possessed of natural resources to which we can
make no pretension and with every prospect of soon possessing that cheap
labour by which they may be effectually utilized.$

The remedy Huxley pressed for was ‘a public and ceremonial
marriage of science and industry’; industry had to call to its aid ‘every
possible help which was to be gathered from science’.®

More recently, in a series of reports, the Cabinet Office’s Advisory
Council for Applied Research and Development has fired a remark-
able salvo of home truths concerning the UK’s ailing industrial
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technology. It has made extensive recommendations about boosting
investment, increasing awareness, relaxing restrictions, and re-
organizing government responsibility to improve coordination. But
still, ingrained patterns of thought among those in government must
change if ACARD’s proposals or any others are to find fertile soil.
This applies not only to Britain. The American situation is also not
ideal. In the rolling state of Ohio a local dust storm involved an
obscure robot and a famous politician, leaving the robot on its six
legs, but Democratic Senator William Proxmire from Wisconsin
standing inelegantly on one.

The six-legged robot of the prairie

The Senator specializes in withering and hilarious assaults on
federally financed research projects. He regularly presents a ‘Golden
Fleece Award’ to the projects he feels have been the most ridiculous
waste of taxpayers’ money. Past winners have included a study on
why people fall in love, an experiment on how long it takes to cook

Figure 49. Design model of a new development of Robert McGhee’s walk-
ing machine, the AS V-84. With six legs there are always three on the ground
at any one time, ensuring stability (Ohio State University)
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breakfast, a study of relationships in a Peruvian brothel and the
abortive development of a $2 million prototype police car, so gadget-
laden as to ‘make James Bond green with envy’. On this occasion
Proxmire laid into Robert McGhee, Professor of Electrical Engineer-
ing at Ohio State University, whose development of a six-legged
walking robot had been funded in part by a $400,000 grant from the
US National Science Foundation. In presenting the machine with the
Golden Fleece Award, Proxmire suggested that the ‘Bionic Bug’
would be of more use as an adjunct to the University’s football team.
In reply McGhee pointed out that the Veterans’ Administration was
already launching tests of an artificial knee-joint for humans, de-
veloped from his technology, and that N A S A had expressed interest
in connection with the Mars Rover project. The Senator had not
sought McGhee’s own comments before releasing his outburst. In the
end the chief official of Proxmire’s committee accepted blame.

Ironically, thirteen years earlier Ivan Sutherland had been inquir-
ing in Britain whether any academic laboratories would be interested
in bidding for a contract to investigate automated walking. He was
then on secondment to the US Defense Department and in charge of
its Advanced Research Projects Agency’s R&D spending on in-
formation processing. So much importance was seen in such a
development that if no credible domestic bids were forthcoming, his
agency was prepared to consider the unusual step of subsidizing the
work by foreign nationals. It should be obvious on reflection why this
might be so. A quick survey of the world’s land masses prompts the
questions: ‘What proportion of the total terrain is negotiable by jeep
or tractor? What proportion is negotiable by horse, mule, camel,
llama or elephant?” Some people view automobile technology as
having reached a plateau, with nothing but small optimizations here
and there to be expected. Nothing could be more profoundly wrong.
It only looks that way because until supporting technologies for a
new leap forward have been developed no one can ever envisage the
leap. Wheeled transport did not require the microprocessor revolu-
tion as a pre-condition. Legged transport does. This is because the
control required to coordinate the legs is a highly complex task of
information processing.’

There is an interesting precedent. Readers may have seen artists’
reconstructions of prehistoric birds in books on evolution. One in
particular, the Archaeopteryx, had a magnificent flowing tail. A
contemporary observer (who would have had to be an extrater-
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Figure 50. Archaeopteryx

restrial, since our own ancestors were not yet up to ratiocinations of
this kind) might have remarked that this wonderful flying frame had
been highly optimized for aerodynamic stability. Indeed it had, but
it was not manoeuvrable. The development of the brain gave later
birds a different kind of stability through the new principle of feed-
back, and by degrees dispensed with the long tail. A stuffed Archaeo-
pteryx could have been used as a glider. A stuffed seagull cannot. Yet
when its brain is engaged the seagull’s ability to glide is unsurpassed,
asis its ability to manoeuvre. In the same way, microprocessors make
practicable a whole new generation of versatile land vehicles using
legs.

Such lessons had also been drawn and pondered by A1 workers at
the USSR Academy of Sciences’ Institute of Applied Mathematics
and Information Transmission, in collaboration with Moscow State
University. They now have an impressive variety of six-legged robots
under test. This too was brought by McGhee to the attention of
Proxmire’s Senate committee. The saddest point of the story, how-
ever, is that the successful rebuff to ignorant persecution was achieved
by arguments which McGhee regards, as do many, as being entirely
beside the main point. The quick-fire rejoinders lay ready to hand and
they did the job, but McGhee’s instinctive reply, before his
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university’s public relations office came to his aid, was: ‘Basic
research is for producing knowledge, not new products.” But how to
convey this thought to those who have charge of such matters?

Explaining to governments

Scientists are often faced with this dilemma: should they try to
explain their real technical concerns, knowing that their reward may
be fidgets, yawns and puzzled frowns, or should they use the knee-
jerk tactic and hit where they know they can get a response?
References to scientific goals, and attempts to explain them, are often
wasted breath. Hitting the technology button, on the other hand,
seems to buy us something. The knee-jerk tactic is known in the A1
business as ‘yellow perilling’. Everyone, after all, can understand that
intelligent robots could be useful in the industrial struggle against
Japan. But to understand why the scientists themselves consider the
work important — that is not easy to convey to busy people. But it is
often just not appropriate for scientists to justify their work in terms
of immediately visible benefits.

The Dutch government’s advisory group on the social impact of
microtechnology has been afflicted with a similar worry. The group
noted that ‘the speed of innovation makes it increasingly difficult for
governments to follow developments’.® Except that the statement
covers only a small part of what could be said, scientists may well feel:
‘At last someone has said it.’

To those concerned to see that the potential of the synthesis of new
knowledge by computer is fully exploited, this situation presents a
major obstacle. Substantial investment of money and political com-
mitment is going to be needed to make the creative computer happen.
Yet in Britain there is not even one national laboratory for long-
range computing research. The field of artificial intelligence specific-
ally has had particular difficulty in gaining acceptance in the UK
political and scientific establishments. Its existence over the last
twenty-five years has been punctuated by influential cries that the
whole exercise is an infantile disorder. In 1972-3 the Science Research
Council received two reports on long-range policy for computing
science and machine intelligence. One, the careful work of experi-
enced computer professionals, said ‘Build it up!” The other, which
said ‘Wind it up!” came from an outsider, Sir James Lighthill: dis-
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tinguished as a fluid dynamicist, a controversial government expert
and the departing occupant of Cambridge University’s Lucasian
Chair of Applied Mathematics.

Advice to government has traditionally emanated from past
holders of this chair, some of it of uneven quality. Professor Sir
George Biddell Airy once advised Queen Victoria that if the Royal
Salute were fired outside the Crystal Palace, the building would
collapse. More pertinently to us, Airy’s advice secured the with-
drawal of government support for Charles Babbage’s Difference
Engine.

In the case of AI, Lighthill’s recommendations emboldened the
SRC to dismantle the coherent structure of UK work in the field,
with effects which were felt even across the Atlantic. The long-term
cultural and economic damage wreaked by this decision has been
very serious.

Bears and balls

We must believe that Lighthill’s advice did not spring from shallow
roots. Some of it was, however, a little strange. In considering the
question ‘Why build robots?” he remarked:

We have to remember the long-standing captivation of the human
imagination by the very concept, as shown by its continual prominence in
literature, from medieval fantasies of the Homunculus through Mary
Shelley’s ‘Frankenstein’ to modern science fiction. To what extent may
scientists consider themselves in duty bound to minister to the public’s
general penchant for robots by building the best they can?

Incidentally, it has sometimes been argued that part of the stimulus to
laborious male activity in ‘creative’ fields of work, including pure science, is
the urge to compensate for the lack of the female capability of giving birth
to children. If this were true, then Building Robots might indeed be seen as
the ideal compensation! There is one piece of evidence supporting that highly
uncertain hypothesis: most robots are designed from the outset to operate in
a world as like as possible to the conventional child’s world as seen by a man;
they play games, they do puzzles, they build towers of bricks, they recognize
pictures in drawing-books (‘bear on rug with ball’) ...?

The ‘bear on rug’ reference was to a paper on computer vision
published in 1972 by Harry Barrow, Pat Ambler and Rod Burstall.1®
One of the simple pictures used to test their program had ‘Bear on
rug with ball’ as its caption. Lighthill continued:
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Nevertheless, the view to which this author has tentatively but perhaps
quite wrongly come is that a relationship which may be called pseudo-
maternal rather than Pygmalion-like comes into play between a Robot and
its Builder.

Lighthill divided the field of AT into: A — Advanced Automation;
C - Computer-based research into the workings of the central
nervous system; and B — Bridge activities intended to link A and C,
or alternatively, Building Robots. He asserted that while progress in
A and C had been disappointingly slow, they were nevertheless
legitimate areas for research. B on the other hand, he argued, was
getting nowhere and ought to cease. It had ‘grandiose aims’ which it
had failed to reach, he said, adding, ‘This raises doubts about whether
the whole concept of Al as an integrated field of research is a valid
one.’

The nature of Lighthill’s misunderstanding is at root the same as
that encountered by Robert McGhee. As was pointed out at the time,
B should really stand for ‘Basic’, the fundamental research that
constitutes the heart of the subject. It was as if Thomas Hunt Morgan
and his colleagues who pioneered modern genetics had been told:
‘You have the mathematical theory of Mendel to play with. You
have breeding work to do for the community’s good in improving
crops and farm animals. You are also free, and we will even fund this
modestly, to investigate the broader matrix of biological processes in
which the genetical phenomena are embedded. But frankly, we see
no need to be breeding fruit flies. Better switch to cows!” Being able
men, Morgan and his colleagues would doubtless have made more
than adequate cattle breeders, and could indeed have found one or
two shrewd applications for already formulated principles of
academic genetics. But the chromosome theory of heredity would
have had to wait, and everyone, including farmers, would have been
the losers.

The horizons of Delphi

Lighthill also accused A I workers of making wild predictions. Is that
charge justified? The best-known exercise in A1 forecasting was a
‘Delphi’ survey published in 1973 by four scientists from Stanford
Research Institute and Lockheed. The Delphi technique of taking a
survey of a substantial number of people about their views of the
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future is widely used in industry to forecast new products and tech-
nologies. The 1973 predictions are summarized in Figure 51. Nothing
has happened or failed to happen in the intervening years which is
inconsistent with this set of forecasts. Considering individual items
whose dates have already passed:

P5. Convincing prototypes exist for computer identification of
personnel by signature, voice and photographs. A leading centre for
this work has been Case Western Reserve University, and commercial
systems for all three identification media are on the market.

P8. Working systems exist for meningitis, congenital heart disease,
lung disease, thyroid enlargements, acute abdominal pain and in-
ternal medicine more generally, urinary infections, and bacteraemia
and other clinical areas.

Median Median
prototype | commercial

Products date date
HIGH POTENTIAL SIGNIFICANCE

P5 - Automatic identification system 1976 1980
P8 - Automatic diagnostician 1977 1982
P13 - Industrial robot 1977 1980
Pl - Automated inquiry system i 1978 1985
P9 - Personal biological model 1980 1985
P11 - Computer-controlled artificial organs 1980 1990
P18 — Robot tutor 1983 1988
P16 - Insightful economic model 1984 1990
P2 - Automated intelligence system 1985 1991
P20 — General factotum 2000 2010
MEDIUM POTENTIAL SIGNIFICANCE

P14 — Voice response order-taker 1978 1983
P15 - Insightful weather analysis system 1980 1985
P3 - Voice-actuated typewriter 1985 1992
P6 - Mobile robot 1985 1995
P4 - Automatic language translator 1987 1995
P12 - Computer arbiter 1988 1995
P10 - Computer psychiatrist 1990 2000
P17 — Robot chauffeur 1992 2000
P21 - Creation and valuation system 1994 2003
LOW POTENTIAL SIGNIFICANCE

P19 - Universal game player 1980 1985
P7 - Animal/machine symbiont 2000 2010

Figure 51. Dates forecast in 1973 for the appearance of various computer
technologies. So far the predictions have turned out remarkably accurate!!
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P13. ‘Industrial robot’ as used here implies optical and tactile
sensing in addition to programmable manipulation. Several such
devices have been demonstrated and commercial systems are now on
the market, notably from Unimation Corporation.

P1. Powerful prototypes have been tested which are capable of
inferential question-answering, in addition to ordinary data-base
retrieval.

P9 and P11. If the ‘median commercial dates’ of these two are
reversed, today’s laboratory evidence places both developments well
on course.

Pi4. Systems already in commercial use allow the customer to
place orders by interactive terminal or ordinary push-button tele-
phone, with computer-generated voice reply.

P15. The current budget of the UK meteorological centre at
Bracknell includes such insightful aspects. Practical implementa-
tion is likely in this case to fall behind the Delphi projection.

P3. A typewriter which converts the user’s speech into printed
words was introduced into the Japanese market by Nippon Electric
in 1981. The Japanese Kana alphabet, being entirely phonetic, makes
this considerably easier technically than it is for Western languages.

There is one curious item on which the seers lose - not in estimating
its date but in underestimating its commercial significance. ‘Universal
game player’is placed as a low-importance entry, but microprocessor-
driven game attachments to home television sets and hobby com-
puters used mainly for games have constituted a whole boom industry
by themselves. The arcade game Pac-Man collected $1 billion in the
USA in eighteen months, and computer games overall are now
making more profits than the entire film industry. The most note-
worthy feature of the forecast was not, as A I’s critics allege, predic-
tion of things which did not happen, but rather the failure to predict
things which did, such as the swing towards distributed processing
now arising from the microcomputer revolution.

The farther into the future one tries to forecast, the riskier the
exercise becomes. Few people would be prepared to predict when the
computer in the office will really come into its own, as characterized
by a little scene stemming from an idea of Nicholas Negroponte’s.
You will walk into your office in the morning and ask your general
factotum computer, ‘Where is it?’

The machine replies, ‘Where’s what?’

‘You know,’” you retort.
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‘Ah,’ says the machine, and tells you.

On the other hand, Ed Fredkin of MIT has stated that although
it will take at least fifteen years to create a machine equating human
intelligence, it will be no longer than forty. From that it should not
be too great a step to I. J. Good’s predicted ultra-intelligent machine,
which would be, to steal words from the calypso: ‘Smarter than the
man in every way’.

Bringing about the change

Not so far away, abundant benefits are waiting to be gained from
research in AT if the investment and commitment can be mobilized.
One early priority must be stopping the lunatic waste of scarce human
resources in our universities now, where experienced Al scientists
spend much of their time teaching undergraduates other subjects
instead of doing urgent AI research. This is tantamount to using
water in the desert to polish the bumpers of the car.

But how to bring about the change? George Gallagher-Daggitt, an
engineer at Rutherford Laboratory, has called for ‘innovation
centres’. These would ‘allow university researchers to join multi-
disciplinary teams, involving industry and possibly private inventors
as well, without upsetting their promotional prospects. In this
environment they would be subject to the stimulus of commercial
competition and could devote their efforts to commercializing intel-
lectual concepts arising from fundamental research carried out in
universities.”!?

Brave words: something along these lines could surely flip the
switch to the ‘on’ position. Work which presses against the margins
of the possible requires a special environment. Academic excellence
as well as technological know-how must be combined in a fluent mix
of support mechanisms — contracting out, contracting in, government
sponsors, industrial sponsors, research grants, graduate students,
visitorships senior and junior. At the same time the attitudes and
knowledge of government administrators will have to improve
substantially. The British government’s practice of putting generalist
civil servants in charge of research directorates will no longer do. In
the USA the Defense Advanced Research Projects Agency hires
expert academics to head projects on fixed-term appointments, and -
this is clearly a move in the right direction. Even within specialist
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bodies in Britain ignorance can be startling. An official of the
National Computing Centre insisted not long ago that, if there were
to be any mention of medical expert systems in an article he had
commissioned for the Microelectronics Application Project, it
‘should state clearly that the practical applications of the ideas are
far in the future’.

As far as investment cash from the private sector is concerned,
something like the Investment Allowance Scheme as tried in Australia
could make a start. This was introduced in the 1960s, followed by a
planned phase-out. Another dose to revive flagging investment was
administered in the 1970s. To take as an example the purchase of
computer terminals, the usual amortization of capital expenditure for
tax relief would be 30 per cent of the balance each year plus the
residual balance after five years. Under I A S an additional allowance
would be made during the first year of 40 per cent of the purchase
price. The total allowance thus adds up to 140 per cent, a not
insignificant incentive for the investor.

First and foremost the need is for specific projects to concentrate
minds. Sectors ready to yield to determined thrusts include the
following:

Parallel array processing, with special reference to computer vision,
exemplified by ICL’s Distributed Array Processor and CLIP4 at
University College, London. These new architectures promise not
only breathtaking speed-ups but, more importantly, radical con-
ceptual simplifications of complex domains. Applications of cheap
reliable computer vision range from optical inspection of industrial
parts and structures to the input and interpretation of diagrams from
books and documents.

Automatic program synthesis, to help tackle the crisis in the produc-
tion of software. An example of how industry is taking up the ideas
of AT with enthusiasm is the substantial work in automatic program
synthesis going on at IBM’s Yorktown Heights Laboratory and at
Schlumberger.

Expert systems. The country which first establishes an edge in
interactive knowledge-bases will be in a fair position to call the shots.
Knowledge engineering is like genetic engineering: the principles are
relatively simple, the range of applications unlimited. The UK is
currently in possession of the only cheap and portable general-
purpose software for such work. But without the needed follow-up,
the balance of opportunity could quickly change.
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Intelligent robots. Expert systems to drive industrial robots confer
versatility, retrainability and autonomous resourcefulness beyond
anything yet seen in automation. The advantages for manufacturing
are obvious. There could not be a better moment. Not only in the
factory, mobile robots or ‘gofers’ would have many uses, as outlined
in Chapter 1. A team of intelligent gofers at Three Mile Island in
radio contact with the outside world would not have come amiss. As
it happens, the essential problems of robot plan-formation and of
automatic program synthesis are closely related.

Robots and expert systems get together

The connection between the sciences of expert systems and of robotics
is a contentious one. At the boardroom level it is often thought that
there is no connection. Moreover the man who taps carriage wheels
and the man who tests tyre alignments will join forces to put the same
view. Nor is it the slightest use to talk of the Carnot Cycle or the
physics of frictional losses. Boardroom and workbench will be
unanimous that clever talk does not butter the nation’s parsnips.

There is one kind of person who sees the connection instantly and
sees it as important. He is the R&D engineer. But whoever listened
to engineers, except in wartime? So with robotics. The expert-systems
approach to robotics tends to be viewed as diversionary. ‘Haven’t we
got enough to do getting reasonable performance out of dumb robots
without complicating the issue with intelligence? The answer is to
conjure from the past the wild-eyed proposal which must at some
definite moment have come forward for the first time: how about an
internal-combustion approach to railway transport? ‘Haven’t we got
enough to do getting reasonable performance out of steam without
complicating the issue with diesel?’

In the robot context what is this precious ‘diesel’? It is called
‘formalized knowledge’. Standard programming methods do not
allow a robot or other computing system to do any of the following:

(1) Explain what it is doing.

(2) Be taught a better way.

(3) Explain how it does the new way.
(4) Think up a better way.

(5) Explain that too.
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Such capabilities will be highly valuable in an industrial robot of the
future, whether anchored to a work station or free-roving. A needless
gap has opened up, or perhaps it always existed, between excellent
and devoted production engineers and those, on the other hand,
whose primary interests centre round the software design principles
of items (1) to (5). For once, the greater share of blame lies with the
practical men, although by virtue of valiant and long, unrewarded
toil on the dirty end of the job they have the moral right of way. So
too the steam engineers had a right to call out to the diesel experi-
mentalists: ‘Drop your playthings and get back into the real work!’
To have said so would have signified courage, even a little arrogance
—and also uninformed technical judgement.

If there is room for a production-engineering approach to robotics,
then there is room for an expert-systems approach, along with con-
tributions from software technologists, hardware designers, micro-
electronics specialists and programming theorists. Interdisciplinary
teams may be unfashionable in the staid world of peacetime science,
but the technological struggle that lies ahead will not be easy to win
any other way.

The four fallacies

Not long ago efforts to get knowledge-based robotics off the ground
used to encounter variations on a general theme: ‘These scientists
want to play God.” The variations took the form of Four Fatal
Fallacies:

Fatal fallacy No. 1. ‘There are no conceivable socially useful
applications.’

Fatal fallacy No. 2. ‘If there were, the research would be of
immediate benefit to Britain’s hard-pressed industries.’

Fatal fallacy No. 3. ‘Robotics is not an information engineer’s
problem. Hand it to the mechanicals and electricals.’

Fatal fallacy No. 4. ‘There is no need to mimic human ways of
doing and thinking. Machine ways are best.’

While other nations streaked ahead, our science administration
was busy stamping home-produce into the ground. Happily a more
informed awareness seems astir. Number 1 is now seen to be a fatal
fallacy. Let us look at the other three.
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Fallacy No. 2: Sir Alan Cottrell’s analysis has shown that British
industry is not investing nearly enough to be able to take up new
developments. Instead, industrially relevant academic research goes
to fuel the engines of our competitors. Edinburgh’s ‘Freddy’ robotics
work in 1973, drawn to the attention of Lord Stokes, then head of
the British Motor Corporation, was eventually used by General
Motors in the USA.

Fallacy No. 3 seems visible in Britain’s university research. Most
of the cash is flowing to academic hopefuls ready to do battle in the
technology of industrial manipulators with the Goliaths of Unima-
tion, Mitsubishi and Hitachi. But in this war the lethal sling-shots are
in software. It is early days and the balance may yet correct itself.

Fallacy No. 4, the danger of which has been one of the central
themes of this book, is still maintained even by some first-rate pro-
fessionals. A corrective is the Japanese Fifth Generation Computer
Survey and Research Committee’s recommendation of close study of
‘pattern recognition and imitation of the operation of the human
brain’.

Reseeding the scorched earth

The need for positive action is at last becoming apparent to the higher
reaches of the British government and, following recommenda-
tions of a committee chaired by John Alvey of British Telecom,
the Department of Trade and Industry has drawn up a major
national programme in advanced information technology, to cost
£200 million of government money and an equal amount of private
funding over five years. Expert systems are one of four key tech-
nologies identified by Alvey as central to the future of Britain’s
computer and electronics industries; the others are software
engineering, man/machine interfaces and very large-scale integrated
circuits.!®> As might be expected, the proposal to devote substantial
resources to expert-systems work has attracted opposition from other
sectors of the computing community. The Alvey plan is much to be
welcomed, but it remains to be seen whether it will at last reseed the
scorched earth of Al in Britain.

There is also an international dimension in all this. Ed Fredkin has
proposed the establishment of a world institute, perhaps in Geneva,
where scientists could begin a major effort to develop this technology
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on a broad scale, free from political and overtly commercial pres-
sures. The equipment and working conditions would be adequate for
the job and securely established. The institute would be funded by
endowment to avoid the need to show immediate practical results,
but it would have a specific long-term goal, namely, the creation of
anintelligent machine. Fredkin’s reasoning on this is sound. Through
fear of inactivating the scientific mind by strapping it too tightly to
immediate application, it is sometimes believed that the best course
is to let it flap loose. This too can be counter-productive. In the
history of experimental science it is the development of well-chosen
and timely goals which has opened winning lines, rather than
wayward genius. Montaigne, himself a scholar of excellence, wrote
in 1580:

Just as we see that fallow land, if rich and fertile, teems with a hundred
thousand wild and useless weeds, and that to set it to work we must subject
it and sow it with certain seeds for our service . .. so it is with minds. Unless
you keep them busy with some definite subject that will bridle and control
them, they will throw themselves in disorder hither and yon in the vague
fields of imagination.!4

Such an institute is not needed just for the sake of rapid progress,
Fredkin asserts. No complex computer program was ever produced
without bugs, he points out, adding that ‘flaws in the creation of a
“super-intelligence” are frightening to consider’. Thus the project
would have a brief to set standards to guard against such possibilities.
Whatever the institutional basis, if properly enabled, the result of this
generation’s work can be, in Fredkin’s words, ‘the development of a
safe and beneficial AI for the benefit of mankind’.

Since the words of the foregoing paragraph were written, the
Turing Institute has been established in Glasgow in premises adjoin-
ing the University of Strathclyde, with whom the Institute has con-
cluded an Agreement of Association. Its work is dedicated to the
realization of the Fredkin concept.



Postscript

It is commonly thought that the aim of artificial intelligence is to
develop a race of super-clever Daleks, unfathomable to man, that will
eventually dominate the globe. In fact, what AT is about is exactly
the opposite: making machines more fathomable and more under the
control of human beings, not less. Conventional technology has
indeed been making our environment more complex and more
incomprehensible, and if it continues as it is doing now the only
conceivable outcome is disaster. AT seeks to reverse that process and
return technology to its proper place as the obedient yet perceptive
servant of humanity. Together man and machine may then be able
to subdue many, perhaps in time most, of the world’s afflictions.

Many people fear the development of intelligent machines as an
invasion by a race of conquering aliens. Instead, we should see
ourselves as a beleaguered garrison, who at the eleventh hour can see
on the horizon the dust of the relieving column. This book is a shout
from the battlements.




APPENDIX

Basic Principles of Computing

A widely accepted definition of the word ‘computer’ is ‘a general-
purpose, automatic, programmable information-processing
machine’. ‘General purpose’ here means that the machine can do a
wide variety of tasks, not just one; ‘automatic’, that it runs on its own
once started by the user; and ‘programmable’, that the user can
specify at any time and in detail what it is he wants done. The
information being processed can be numbers or words; pictures,
sounds and so on can be handled, but they always have to be reduced
to numbers by some mechanism or other, as for that matter do words.
With modern computing techniques, however, this can largely be
done automatically, so the user does not have to be conscious of any
numbers. In essence the machine is dealing with symbols, and for that
reason some people feel that a better definition of ‘computer’ is
‘symbol manipulator’.

Nearly all computers are surprisingly similar in the principles on
which they work and surprisingly different in their detail. Funda-
mentally they interact with the user by commands. These are English
words which tell the machine what to do; the user types them on a
keyboard like that of a typewriter. The response from the machine
appears on a television screen or something similar. Each computer
can only understand a few dozen words, and the words in use at any
one time constitute its ‘language’. There are many different lan-
guages, each suitable for different purposes: we shall use for our
examples the best known of these, which is called ‘Basic’. A typical
command in Basic is the word ‘PRINT’, which tells the machine to
display something on the screen (the word is left over from the days
when teleprinters were more common than screens). For instance, the
command

PRINT 3+5

elicits the response from the machine:
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8

The computer works out the arithmetical expression and ‘prints’ the
result. A sum can be very complicated:

PRINT 21%(287-35 + 89) — 449

The symbol = is used for ‘multiply’ to avoid confusion with the letter
x. The machine replies:

7858-45

If we try saying something to the computer that is not in its limited
vocabulary:

HELLO

we get the response:

7SYNTAX
ERROR

It assumes we have made a mistake. As simple as the word is, the
machine cannot make head or tail of it.

The computer remembers

A vital part of the computer is a memory in which information can
be held while it is being worked on. We can tell the machine to save
a number in its memory, but to do that we must put a label on the
number in order to be able to get it back again, just as in leaving a
suitcase in a left-luggage office. The label in this case can be a letter,
any letter we choose:

LET A =293

This means ‘Store the number 293 away in the memory and call it A’
Then if we say

PRINT A
we get the response
293

The information will stay in the memory indefinitely.
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The same memory can also be used to store instructions, and this
is where the computer really comes into its own. A procedure in
information processing may be so long and complicated that specify-
ing each step as it arises would be impossibly slow. So, the instructions
can be saved in memory and then executed automatically in the
correct sequence. As a very simple example, take the formula with
which we are all familiar for working out the area of a circle: 4 = nr2.
Suppose we need to know the areas of a large number of circles. We
can load the appropriate instructions into the computer to make it
do this automatically with no further thought on our part. The
procedure is to take the radius of the circle (r), square it, multiply by
7 (3-14) and print out the answer. The radius of course comes from
the world outside the computer, so as a first step the machine has to
be told to accept the ‘data’ from the human user. The instruction for
this is:

INPUTR

This tells the machine to wait for someone to type the number (the
radius of a circle) on the keyboard, and when that has happened to
store it away in the memory with label ‘R’.

Then the arithmetic is done:

LET A = R«Rs3-14

This works out the area and stores it as ‘A’. The last step is to print
out the answer:

PRINT A

When typing in these instructions we precede every line with a number
that tells the machine the order in which they are to be executed and
helps us to refer to them later on. All together the instructions look
like this:

1 INPUTR
2 LET A = R«Rs3-14
3 PRINTA

Having typed them in, we give the command RUN, which tells the
machine to execute all the instructions in its memory. First it
encounters Instruction 1, which makes it wait for us to type in a
radius, say 2. Then taking no appreciable time the computer works
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out the arithmetic in Instruction 2 and (Instruction 3) prints out the
answer:

12-56

For another circle we type R UN again, and so on indefinitely.

Small steps for programs

The three instructions constitute a computer program (always spelt
without an -me), albeit a trivial one. A program is simply a set of
instructions for a computer to do one particular job. To be really
useful a computer needs a more complex task than this. Whatever the
task, the programmer (a human being) has to break it down into a
series of steps, each of which is small enough for the machine to
handle. He then writes the steps out in the appropriate computer
language. This process can be quite difficult. The programmer has to
be careful to get all the steps clear and in the right order. Imagine, for
instance, writing out all the steps involved in changing the wheel of
a car. They might be:

Apply handbrake
Get jack and brace
Remove hubcap
Loosen wheelnuts
Jack up car
Remove wheelnuts
Remove wheel
Get spare

Mount spare
Replace nuts
Lower car

Tighten nuts
Replace hubcap
Replace jack, brace and punctured wheel in car

We must remember the importance of loosening the wheelnuts before
jacking up the car. Readers might like to try the same exercise with
‘Filling a fountain pen’ or ‘Making a pot of tea’. When does the pot
get warmed?

None of these sample procedures involves decisions or questions,
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HOW TO COOK A FRIED EGG

No [ aRD LUCK

Buy new box
of eggs

y

Take an egg
and crack it
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Figure 52. An example of a flowchart
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Input how
many numbers
there are

I

Set running
total to zero

Set counter
to zero

|
I ™

Get a number

I

Add it to total

I

Add 1 to counter

Have we
got all the
numbers
yet?

Divide total by
however many
numbers there are

Output result

Figure 53. A flowchart for finding averages
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but in real life these arise all the time. Any process that involves
decisions is best shown in the form of a flowchart, as in Figure 52.
The diamonds are decision points. Readers could try drawing a
flowchart for ‘How to cross the road’. (This is not as simple as it
might seem.)

An average task

Getting back to the computer, an example of a more substantial
program would be one to work out the average (mean) of a set of
numbers. This is done of course by adding all the numbers together
and dividing by however many numbers there are. A program to do
this cannot simply say ‘Add the first two’, ‘Add the third’, ‘Add the
fourth’ ... because it is not known beforehand how many numbers
there are — it varies from one problem to another. Consequently the
program must go round in a loop, adding each number as it comes in
to an accumulating total, until all the numbers have been received.
To do this it must first find out from the user how many numbers
there are. Then it needs to count the numbers as they are fed in, and
stop after the last one. Then it should do the division and print the
answer. This process is shown in Figure 53.

One location in the memory is used to hold the running total, and
another to keep the count. Each time round the loop, 1 is added to
the count, and then the question is asked, ‘Has the count reached the
required tally yet?” In other words, ‘Have we got all the numbers yet?’
If ‘No’, the program loops back and gets another number. If ‘Yes’, it
does the division and displays the answer. The running total and the
count both have to be set to zero at the beginning — this is a common-
place requirement in computing that is called ‘initialization’. All these
functions can be seen in the flowchart. A complete, carefully worked-
out procedure such as this is known by mathematicians as an
‘algorithm’, specifying exactly what to do in a mechanical way.

Making the program loop back requires two further Basic com-
mands: one is the word GOT O followed by the number of an instruc-
tion. This makes the program jump out of its usual sequence of
instructions and carry on from whatever line is specified. For
example, one can make a program jump back to the beginning and
go round and round a loop for ever by adding ‘GOTO 1’ on the end.
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The decision in a flowchart diamond is implemented in Basic with
the command IF. This can take the form for instance:

IFX=3GOTO 20

The program only ‘goes to’ line 20 if X equals 3. If X is anything else,
the program carries on with the next line in sequence as normal. In
the averaging program an I F instruction is used to test whether the
count has reached the required number yet. If it is still less than the
required number, the program loops back. Otherwise it moves
forward to the closing part of the program.

The program in Basic looks like this. We give an English explana-
tion of each line on the right. Note how closely the program
corresponds to the flowchart.

I INPUTN Get how many numbers there are.
2 LETT=0 Clear running total.

3 LETC=0 Clear count.

4 INPUT X Get a number.
SLETT=T+X Add it to total.

6 LETC=C+1 Add 1 to count

7 IFC<NGOTO 4 Is C less than N?

8 PRINT T/N No - do division to find average.

The command ‘LET C = C + I’ looks a little strange. It is simply
aneat way of adding 1 to C, by telling the machine to take the number
C, add 1 to it, and make that the new value of C.‘"LET T=T+ X’
does the same thing, adding each number in turn to the accumulating
total T.

Making the computer explain itself

It would be nice if the user of this program (as opposed to the
programmer) did not have to understand how the Basic instructions
actually worked. We would like the program to prompt the user,
telling him what has to be done at each stage, that is, typing in the
various numbers. We can do this by using the ability of the PRINT
command to handle words as well as numbers. The words are
enclosed in quotation marks. Thus the command

PRINT *““CHEERS”’
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elicits the response from the machine
CHEERS

We add before each input command in the averaging program a
PRINT instruction that will tell the user as the program runs what it
is the machine is asking for. The sample screen display in Figure 54
shows this, together with a run of the program.

1 PRINT "AVERAGE FINDER"
2 PRINT "HOW MANY NUMBERS'";
3 INPUT N

4 LET T=p

5 LET C=¢

6 PRINT "NUMBER";

7 INPUT X

8 LET T=T+X

9 LET C=C+1

1@ IF C<N GOTO 6

11 PRINT "THE AVERAGE IS ";
12 PRINT T/N

RUN

AVERAGE FINDER

HOW MANY NUMBERS? 4
NUMBER? 12

NUMBER? 37

NUMBER? 25.6
NUMBER? 2

THE AVERAGE IS 19.15

Figure 54. Typing in and running the averaging program on a computer

Real-life computer programs tend to be much bigger and more
complicated. At the next level up from the averaging example could
be a perpetual calendar, that is, a program to work out the day of the
week for any given date; or, a program to find the prime factors of
any given number. For averaging you do not really need a computer;
for finding prime factors of a large number you certainly do. Readers
interested in finding out more about programming should see
one of the books listed in the References.

Many practical applications of computers involve no clever pro-
gramming at all - the computer is useful simply because so many data
are handled. Examples might be invoicing, payrolls or stock control.
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On the other hand scientific number-crunching, weather forecasting
and the control of airline reservations systems and large data-banks
can be very complex. These latter examples generally require very
large computers, while business applications use medium-sized
machines, and the control of factory equipment and assembly-line
robots can be done with minicomputers or microcomputers. Like-
" wise languages vary according to the application. There is a bewilder-
ing array of languages, differing mainly in how much of the
programming donkey work they handle and how much they leave to
the programmer. ‘Low-level’ languages are fast and versatile but they
require the programmer to specify the task in minute detail. ‘High-
level’ languages are more like English and easier to use, but are more
limited in what they can do because the programmer has less control
over exactly how the machine handles the job. High-level languages
include Basic, Fortran, Algol, Pascal and many others.

Bugs and how to find them

Programmers, being human, make mistakes. If these are simply
typing errors, such as PRIM T instead of PRINT, the computer will
fail to recognize the command and will respond:

?SYNTAX
ERROR

In other cases, however, an instruction given will be perfectly valid
but will still be the wrong one for achieving the desired result. For
instance, the instruction ‘PRINT A —B’ could be written when it
should be ‘PRINT B—A’. The computer has no way of knowing it
is wrong and will carry out the instruction happily, giving the wrong
answer to whatever problem it is. The programmer will need to notice
this and do some detective work to find the error or ‘bug’ in the
program.* In the same way, failure to remove the car hubcap or to
loosen the wheelnuts will make the operation of changing the car
wheel unsuccessful. When people say, ‘The computer made a
mistake,’ it was invariably not the computer but the programmer or

* According to Commodore Grace Hopper, USNR, the first bug was exactly that.
While troubleshooting the Mark I computer at Harvard in 1945 she found a two-inch
moth inside, playing havoc with the circuits. She has kept the moth in her laboratory
records as proof of her claim to this piece of jargon.
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the operator who made the mistake. When the electronics themselves
fail (and this happens quite often) the machine virtually never gives
the wrong answer — it simply gives no answer at all. This highlights
the fundamental distinction in all computing between the electronic
and mechanical equipment, known collectively as ‘hardware’, and
the programs, parts of programs and collections of programs that are
called collectively ‘software’ because of the ease with which they can -
be changed.

The absolute predictability of a computer can sometimes be a
nuisance. When the machine is playing a game, we want it to be able
in effect to ‘throw dice’. Space invaders need to arrive unpredictably.
In planning, say, a timber plantation, the trees should be laid out
irregularly rather than in straight lines, to reduce soil erosion. For
such purposes as these, computers have special software routines to
generate random numbers on demand. Since everything the machine
does is deterministic the numbers are not really random — they are
worked out from a very long division calculation and so could be
predicted by someone who went to a lot of trouble. They are called
‘pseudo-random’ and are good enough for most purposes.

When a permanent record of a computer’s ‘output’ is needed, it
can be produced on paper by various devices ranging from an
ordinary teleprinter to a massi