
151

A critique of pure reason’

DREW MCDERMOTT
Yale University, New Haven, CT 06S20, U.S.A.

Cornput. Intell. 3. 151-160 (1987)

In 1978, Patrick Hayes promulgated the Naive Physics Man-
ifesto. (It finally appeared as an “official” publication in
Hobbs and Moore 1985.) In this paper, he proposed that an all-
out effort be mounted to formalize commonsense knowledge,
using first-order logic as a notation. This effort had its roots in
earlier research, especially the work of John McCarthy, but the
scope of Hayes’s proposal was new and ambitious. He sug-
gested that the use of Tarskian seniantics could allow us to
study a large volume of knowledge-representation problems
free from the confines of computer programs. The suggestion
inspired a small community of people to actually try to write
down all (or most) of commonsense knowledge in predictate
calculus. He launched the effort with his own paper on
“Liquids” (also in Hobbs and Moore 1985), a fascinating
attempt to fix ontology and notation for a realistic domain.
Since then several papers in this vein have appeared (Allen
1984; Hobbs 1986; Shoham 1985). I myself have been an
enthusiastic advocate of the movement, having written general
boosting papers (1978) as well as attempts to actually get on
with the work. (1982, 1985). I even coauthored a textbook
oriented around Hayes’s idea (Charniak and McDermott
1985).

It is therefore with special pain that I produce this report,
which draws mostly negative conclusions about progress on
Hayes’s project so far, and the progress we can expect. In a
nutshell, I will argue that the skimpy progress observed so far
is no accident, that in fact it is going to be very difficult to do
much better in the future. The reason is that the unspoken
premise in Hayes’s arguments, that a lot of reasoning can be
analyzed as deductive or approximately deductive, is
erroneous.

I don’t want what I say in this paper to be taken as a criticism
of Pat Hayes, for the simple reason that he is not solely to
blame for the position I am criticizing. I will therefore refer to
it as the “logicist” position in what follows. It is really the
joint work of several people, including John McCarthy, Robert
Moore, James Allen, Jerry Hobbs, Patrick Hayes, and me, of
whom Hayes is simply the most eloquent.

The logicist argument
I should first outline the logicist position. It starts from a

premise that almost everyone in AI would accept, that pro-
grams must be based on a lot of knowledge. Even a program
that learns must start out knowing many more facts than it will
ever learn. The next step is to assume that this knowledge must
be represented somehow in the program. Almost everyone in
AI would accept this, too, but with subtle reservations, which I
will come back to later in the paper.

The next step is to argue that we can and should write down

’This paper is an amplification of a talk given at the A1 Society of
New England meeting, November 1985. The paper contains a few
masculine pronouns that some might object to; bear in mind that the
use of such a pronoun to refer to an anonymous person does not pre-
clude his being female.

R i n d in Canada / lrnpnd au Canada

the knowledge that programs must have before we write the
programs themselves. We know what this knowledge is; it’s
what everybody knows, about physics, about time and space,
about human relationships and behavior. If we attempt to write
the programs first, experience shows that the knowledge will
be shortchanged. The tendency will be to oversimplify what
people actually know in order to get a program that works. On
the other hand, if we free ourselves from the exigencies of
hacking, then we can focus on the actual knowledge in all its
complexity. Once we have a rich theory of the commonsense
world, we can try to embody it in programs. This theory will
become an indispensable aid to writing those programs.

The next step is to argue that mathematical logic is a good
notation for writing the knowledge down. It is in some sense
the only notation. The notation we use must be understandable
to those using it and reading it; so it must have a semantics; so
it must have a Tarskian semantics, because there is no other
candidate. The syntax of the notation is unimportant, so let’s
use a traditional logical notation, because we already know
how to extend it as far as we’re likely to go. The supposed
advantages of newer notations (e.g., semantic networks) are
based on confusion and fantasy - confusion about imple-
mentation versus content, and fantasy about what we some-
times wish our notations would mean.

It is possible to misunderstand the role that logic is supposed
to play in the programs that we will ultimately write. Because
we started by saying that knowledge ought to be represented,
one might conclude that the axiomatic theories we construct
will eventually appear explicitly in the programs, accompanied
by an interpreter of some kind that reads the axioms in order to
decide what to do. This model may in fact be realized, or it
may not be. It is possible, for instance, that a transitivity axiom
will not appear explicitly in a program, but may be embodied
in some kind of graph traverser. The logicists’ argument is that
we ought to forget about the grubby details of programming for
a while (for a generation, let’s say) and instead write down
what people know (or coherently believe) about everyday life.
If we can actually come up with a formal theory of informal
knowledge, then we will have something that future program-
mers will have to reckon with - literally. From this point of
view, it is all the clearer why logicists favor classical logic
over newer notations like associative networks. The purported
differences between logic and the other notations is that the
latter organize knowledge in various ways for use by pro-
grams, and that is precisely what the logicists are not interested
in. All they want are the facts, ma’am, facts like “liquids leave
tilted containers.’’ Unfortunately, this is not the only motive
for favoring logic. There is an unspoken premise in the argu-
ment that a significant amount of thought is deductive. With-
out this premise, the idea that you can write down what people
know without regard for how they will use this knowledge is
without foundation.

How are we supposed to know when we have made progress
in formalizing knowledge? Suppose we write down a bunch of
axioms. How will we know when we’ve written down most of

152 COMPUT. INTELL. VOL. 3. 1987

what people know about the subject? Well, when we can’t
think of anything else to say. But people aren’t that great at
writing down everything they know about a subject; they tend
to leave things out. How will we know when we’re really
getting there? I think the logicists take it for granted that we’ll
be done when all the straightforward inferences follow from
the axioms that have been written down. If something is
obvious to people, Hayes says somewhere, then it must have a
short proof. For this dictum to make sense, a substantial por-
tion of the inferences people make must be deductive. Water
flows out of a tilted cup; this cup is tilted; ergo, water will flow
out of it. If most inferences fit the deductive pattern, then the
notion of logical proof provides an idealized model of infer-
ence. We don’t have to have any particular process model in
mind, because every process model we devise will be an
approximation to this ideal inference engine, and will have to
conform to the inferences that it licenses. When we design an
inference mechanism, it can in fact record the reasons for its
inferences in terms of the deductive support that they receive.
This is the idea behind data dependencies (Doyle 1979): a
program may use any method to amve at a conclusion, but it
ought to be able to list all the actual premises that justify it, so
that if any of those are erased, the conclusion will be erased,
too. The idealized inference engine justifies the practical infer-
ence engine.

Defending deduction
But many inferences are not deductive. If I come upon an

empty cup of soda pop that was full a while ago, I may infer
that my wife drank it, and that’s not a deduction (except in
Sherlock Holmes’s sense), but an inference to the best expla-
nation. (The only way to mistake this for a deduction is to mis-
take logic programming for logic; more on this below.) If
almost all inferences fall into this or some other nondeductive
category, the logicist program will be in serious trouble. It
must be the case that a significant portion of the inferences we
want are deductions, or it will simply be irrelevant how many
theorems follow deductively from a given axiom set. Whatever
follows deductively would in that case be ips0 fucro trivial.

Unfortunately, the more you attempt to push the logicist
project, the less deduction you find. What you find instead is
that many inferences which seem so straightfornard that they
must be deductions turn out to have nondeductive components.
We can begin with two examples from Hayes’s (19856)
Liquids paper:

Suppose an open container with no leaks is empty, but at time r a
falling histoly begins whose botrom is the free top of the con-
tainer: for example, you turn on the bath tap with the plug in. By
axiom (46), this leaving has an arriving on its other side, which
is an inward-directed face of the inside of the bath. By axiom
(59). there must be a filling inside the bath, so the umounr of
water increases: axiom (61). So long as the tap keeps running, it
will go on increasing. Let us suppose that eventually the bath is
full, i .e . , it contains its capacity. [So the bath will overflow.]
(Notice that if the container were closed-a tank being filled
along a pipe, say-then the same line of reasoning would insist
on there being a leaving which could not possibly occur. . . One
can conclude from this contradiction. . . that the amving must
cease to exist at that time, and hence that the flowing . . . along
the supply pipe. . . must cease also. . .)

This seems like a beautiful pair of arguments, a perfect illustra-
tion of Hayes’s desideratum that obvious inferences have short
proofs. Unfortunately, though they may be short, they are not

proofs. Suppose we grant Hayes’s analysis of the second case;
we made the assumption that the filling lasted a certain amount
of time, got a contradiction, and concluded it would not, after
all, last that long. But then the first case, if we are to follow
anything like uniform rules, must be a case of making an
assumption and nor getting a contradiction. All right, bat you
are not allowed in deduction to make an argument of the form
“Assume P; no contradiction?; okay, conclude P.” Some-
thing else is going on.

Another example is the treatment of the planning problem by
logicists, such as Rosenschein (1981). They cast the problem
thus: given some axioms about the effects of actions in the
world, an initial state of affairs, and a desired state of affairs,
find a sequence of actions that can be proven to transform the
world from the initial state to the desired state. This is an inter-
esting problem, but it has nothing to do with planning as prac-
ticed by corporate managers, ordinary people, or robots. Think
of the last time you made a plan, and ask yourself if you could
have proven the plan would work. Chances are you could
easily cite ten plausible circumstances under which the plan
would not work, but you went ahead and adopted it anyway. In
fact, all of the hard parts of planning - especially replanning
during execution - are incompatible with the view that the
object is to prove a plan correct.

This informal survey is borne out by the meager results that
the logicists, including me, have had. In case after case, what
can actually be written down as axioms is fairly puny. (I
forbear from citing other people’s work in this context; one
example of mine is McDermott 1985). On the other side, one
finds nonlogicist researchers like Forbus who concentrate on
writing algorithms to draw inferences, but let themselves be
intimidated by the logicists into thinking they really should be
able to express as axioms the content of the knowledge in those
algorithms. The results (e.g., the axioms in Forbus 1984) are
silly, and fall way short of expressing what they are supposed
to. I used to think the failure was Forbus’s, but I would now
exonerate him, and blame the task, seemingly so feasible but
actually impossible.2.

The obstacles I am describing are not news to logicists.
From the beginning, it has been clear that the logicist project
had to be qualified, or specially interpreted. In what follows, I
will describe all the known defenses of logicism, and argue
that they all fail. There defenses are not mutually exclusive;
each compensates for a different set of ailments, and most logi-
cists have probably believed in most of them most of the time.
Here is the list:

1. The “idealization” defense: View deductive formula-
tions of problems as idealizations. The deductive planning
problem, for instance, can be seen as an idealized version of
the ‘Yeal” planning problem, carried on, perhaps, in a world
theory that+ an idealized version of the real-world theory.

2. The “vocabulary” defense: Emphasize that we can pick
whatever pedicates we like. It may be true that we cannot
deduce that a particular plan will work, but if we change the
problem to one of deducing should-do(agenr, plan), then pro-
gress will be easier.

3. The “queen of the sciences” defense: Find fertile bonds
between deduction and nondeductive inference. For instance,
inference to the best explanation can be seen as finding

’When I say Forbus was “intimidated,” I mean it literally. I
refereed his paper, and asked him to tly to be more logicist. Mea
culpa.

McDERMOTT 153

premises from which an observed conclusion follows deduc-
tively. In this way deduction comes to be the centrepiece of a
grand theory of reasoning, surrounded by interesting variants
of deduction.

4. The “metatheory” defense: Posit the existence of deduc-
tive “metatheones,” theories about how to find and edit the
conclusions of the original, defective “object level” theories.

5 . The “deducto-technology” defense: Argue from the
existence of logic programming that many realistic inference
problems can be seen as essentially deductive.

6. The “nonmonotonic” defense: Argue that by extending
classical logic to allow defeasible conclusions we can capture a
significantly larger set of inferences.

I will refute each of these in order, starting with the idealiza-
tion defense.

Idealizations are not always bad; they are often essential.
For instance, it may be a useful idealization to prove that a cer-
tain plan will win a game of chess, even though the proof
neglects the possibility that someone might suddenly offer the
planner a million dollars to throw the game. One is entirely
justified in simply leaving that kind of possibility out of the
axioms. However, what I am arguing against is a mentality
that would assume in all chess situations that the goal is to find
a provably winning strategy, or that would overlook more
normal situations in favor of situations where such a proof was
possible. The fact is that realistic chess programs (and human
players) do nothing remotely resembling proving that a plan
will work. Of course, for any given algorithm, say, game-tree
search, there is a way of viewing what it does as deducing
something (e.g., the minimax value of a tree), but this claim is
of no interest to us.

I am afraid that in many cases where a deductive problem is
claimed as an approximation to a realistic problem, it is actu-
ally an analogue to a realistic problem, the best deductive
mimic of the real thing. In many cases, this fact may not be
insuperable. The attempt to write down facts in the analogue
domain may yield insights into the actual domain. The result-
ing ontology and axioms may be useful for eventually writing
programs. What we cannot expect from an idealization is the
coverage the logicists are expecting. Many concepts from the
real domain will just not be found in the idealization. Contrari-
wise, there is the danger that too many concepts from the ideal
domain will not be found in the real one, and the idealization
will be so askew as to be useless. Still, as a strategy the use of
idealizations does seem worthwhile, and I will come back to
this idea at the end of the paper.

Next, the “vocabulary” defense. The point made here is
certainly one I would embrace. If one is designing a program
to think about mathematics, being committed to a deductive
approach does not entail confining the vocabulary of the pro-
gram to Zermelo-Frankel set theory. Instead, one would want
whatever predicates a human mathematician would use, such
as interesting-concept(C), appears-provable(rheorem), and so
forth. For instance, one might take all the predicates used
implicitly by Lenat in AM (Lenat 1982) and try to write a pro-
gram that deduced that a concept was interesting or a theorem
was probably provable.

The problem with this defense is that so far it hasn’t helped.
By broadening the range of problems that can be cast as deduc-
tion, we have in many cases simply added to the list of prob-
lems we can’t solve using deduction. There are good reasons
by AM was not a deductive program.

Another problem with the “vocabulary” defense is that it

allows us to replace a hard problem with a trivial one. For
instance, in medical diagnosis, if we run into trouble deduc-
ing diagnosis@atient, disease), switching to possible-diagno-
sis@atient, disease) is not going to help. The new problem in
this case is too easy; all of the action is in differential diagnosis
and weighing evidence, which will now be neglected, or
passed off to some nondeductive module.

The “queen of the sciences” defense may be elaborated
thus: Consider “abduction,” C. S. Peirce’s term for explana-
tory hypothesis generation. This process is nondeductive, but
we can think of it as a sort of “inverse deduction.” For
instance, to explain q. look for an implication of the form (if
p q) that you already know, and propose p as an explanation.
Put more generally, to explain q. find premises that combined
with what you already know will entail q. If this model is
correct, then even though abduction is not a kind of deduction,
still it is justified by deduction. (This view is endorsed, with
reservations, by Chamiak and McDermott (1985).)

This account of explanation is known among philosophers as
the Deductive-Nornological l leory. It is most commonly asso-
ciated with the name of C. G. Hempel (Hempel and Oppen-
heim 1948; Hempel 1965). Unfortunately, it is believed by
almost no one else. It has several bugs as a model of scientific
explanation, which is what it was devised for, and seems hope-
less as a model of explaining the behavior of individual
humans or physical systems. The problem is that a deductive
chain between explanans and explanandum is neither
necessary nor sufficient.

One reason it is not necessary is that we are content if the
explanation merely makes the observed facts probable. Hempel
allowed for this case, and so do all the diagnostic expert
systems like Mycin (Shortliffe 1976) and Prospector (Duda
et al. 1980).

But there are more devious examples. Suppose you read in
the paper that Selma McGillicuddy, of Secaucus, just won the
New Jersey lottery for the second time in the last two months,
for more than a hundred thousand dollars each time. There is
no reason to infer corruption, so you amve at the explanation,
Its a fair lottery; occasionally someone will win twice in suc-
cession. This is a satisfying explanation, but you cannot infer
from it, “Selma McGillicuddy wins the lottery twice in two
months.” (Wesley Salmon first pointed out this class of
explanation; see Salmon (1967, 1979.)

The reason why a deduction of the data is not sufficient is
that the requirement is too easy to meet. There will in general
be millions of deductions leading to the observed conclusion,
almost all of which are absurd as explanations. For example,
one day I noticed that my clock radio was two minutes fast.
Since I am compulsive about accurate clocks, I was bothered,
and sought an explanation. It occurred to me that there had
been a power failure lasting two hours recently. One would
therefore expect that the clock would be two hours slow, but I
remembered that it had a battery backup clock. Hence, the
proper explanation was that the battery-powered clock was
inaccurate, and gained about a minute an hour.

Let us assume that this explanation could be turned into a
deductive argument, with the conclusion, “The clock is two
minutes fast.” So what? There are plenty of other deductions
with the same conclusion. (“A visitor to our house maliciously
set the clock ahead.” “A burst of cosmic rays hit the clock just
right.”) One can argue that these are obviously inferior
explanations, and all we could hope for from the “Queen of
the Sciences” picture is a characterization of an adequate
explanation, but this is a sterile position. The condition of ade-

154 COMPUT. INTELL. VOL. 3. i987

quacy is just too trivial.
If we are not careful, it can become even more trivial. A

premise like “Every clock in the mom is two minutes fast”
will explain “This clock is two minutes fast,” if this clock is
the only one in the room. Hempel sought to avoid this problem
by requiring the premises and conclusion to be “lawlike.” It is
not really clear what this property amounts to, but it is intended
to rule out “The number of planets is the least odd square of a
prime number” as an explanation for “There are nine
planets.” In fact, it eliminates from consideration any explana-
tion of a particular fact, and makes the theory into a theory of
explaining laws.

In a way, the “Queen” defense is a version of the “idealiza-
tion” defense, with similar weaknesses. There must be some
link between the hypothesis and the evidence to be explained,
but it is merely dogmatic to surmise that the link is deductive.
In general, about all we can say about it is that a good hypo-
thesis is one that satisfies a typical human inquirer. I will come
back to this topic later. For now, we can conclude that deduc-
tion cannot be the centerpiece of a theory of abductive
inference.

The “rnetatheory” defense argues that the problems with a
deductive inference engine can be fixed via the intervention of
a deductive “meta-engine” that steps in and edits its output; or
alters its premises; or turns it off to allow a competing theory
to take over. For instance, in the two tank examples from
Hayes, we can imagine this meta-engine doing belief revision,
introducing premises about the persistence of flows, and
retracting them when awkward conclusions arise.

The problem with this defense is its vacuity. The subject
matter of the deductive metatheory must presumably be “legal
interventions in object theories. ” But there are no constraints
on such a theory, from human intuition or anywhere else.
There is certainly no constraint that the interventions preserve
deductive soundness. If there were, this defense would not
accomplish the required strengthening of deduction. So it is
difficult to see how to rule out a theory like “Believe all state-
ments with an odd number of symbols on weekends; believe
all statements with an even number on weekdays.” If the
enterprise becomes one of crafting metatheories of such arbi-
trary power, then we might as well admit we are programming
after all.

There is nothing to say in general about the metatheory idea;
and for any given case there is too much to say. Let’s take the
idea of belief revision, which I bandied about a couple of p m -
graphs back. If you start studying this seriously, you even-
tually wind up studying nonmonotonic logic (about which
much more below). This study will dwarf the metatheory
framework. You will have to construct a very complex and
detailed model to make any progress, and long before you are
done it will be clear that it is completely irrelevant whether it is
targeted for implementation as some kind of deductive meta-
theory or instead as a Lisp program. The metatheory frame-
work contributes nothing, unless you just prefer Prolog
to Lisp.

This brings me to the fifth defense, “deducto-technology. ”
One reason it is easy to overestimate the power of deduction is
because of the existence of a powerful set of tools, such as
backward chaining and unification, which are derived from
automatic-theorem-proving research, but have found a wider
popularity in systems like Prolog (Clocksin and Mellish 1981)
and MRS (Genesereth 1983). These tools turn out to provide
an elegant model of computation, just as powerful as, and in

some cases prettier than, traditional models. Because you can
use these tools to do any computation, and because of their
genesis in theorem provers, it is natural to draw the conclusion
that any computation is in some sense deduction. It is difficult
to refute the argument leading to this conclusion, because there
is no argument as such, just vague associations among con-
cepts. (The fallacy is certainly not hindered by the use of
phrases like “logical inferences per second” .by the logic-
programming community to refer to something as trivial as
list-processing operations.) Serious researchers are not con-
sciously taken in by the fallacy, but even they can get camed
away by the cleverness of deducto-technology.

To take one example of the sort of woolly thinking we are up
against here, consider the way in which values are computed in
Prolog-type systems. A goal containing variables is interpreted
as a request to find values for the variables. The goal
append([a, b], [c, d], X) means, &’Find an X that is the result
of appending [a, b] and [c, d].” If the axioms are written right
values will be found; in this case, X will get bound to [a, b, c,
d]. Contrast this goal with append([a, b], [c, d], [a, b, c, d]),
where the goal is to verify that [a, b, c, d] is the result. It is a
property of reasonably well-behaved Prolog programs that
whenever they can find a value they can verify it. (The oppo-
site property is much harder to achieve. Shoham and
McDermott 1984).

The problem is that while the idea of verifying conclusions
cames over to deduction in general (since it’s just the idea of
proving something), the idea of calculating values does not.
From the point of view of logic, append([a, b], [c, d], X) is
just a Skolemized version of (not(exists(X), append([a, b],
[c, d], X))). (See any textbook for an explanation of Skolemi-
zation, and of the “not.”) It is essentially a useful accident
that backward chaining verifies this conclusion by finding a
value for X. If we try to generalize-beyond backward chaining,
the idea falls apart. Luckham and Nilsson (1971) give a variant
that works for any resolution proof, but not every resolution
proof generates a single value per variable. More important,
once logic is extended beyond finitely axiomatizable first-
order theories (and it often is in the representation-of-knowl-
edge business), the whole idea of resolution and Skolemitation
becomes irrelevant.

Even when the idea works, logic does not provide a general
theory of answer construction. Consider Robert Moore’s
“Bomb in the Toilet” problem: you receive two indistinguish-
able ticking objects in the mail, plus an anonymous phone call
warning that exactly one of them is a bomb. From old movies,
you know that putting a bomb in the toilet is a sure-fire way to
disarm it. What should you do? The answer is, Put both objects
in the toilet. (Perhaps a bathtub would be better.) But if we
pose the problem logically as

effect(Plan, and(disarmed(objectl),
disanned(object.2)))

we might get back (using Luckham and Nilsson’s procedure)

Plan =’ put(object1, toilet)

or

Plan = put(object2, toilet)

That is, the theorem prover will have cheerfully verified that
there is a workable plan, without actually constructing one. Of
course, we can’t really ask any more. Deduction just doesn’t

McDERMOTT 1 c c

provide a theory of computing arbitrary things. All it aspires to
is a theory of verifying arbitrary things.

The nonmonotonic defense
Finally, we come to the most potent defense, the appeal to

“nonmonotonic logic,” the name given to a system of logic in
which conclusions can be defeasible, that is, subject to with-
drawal given more premises. This sort of logic looks tailor-
made for examples like the two involving tanks described
above. We want to infer that the water is still flowing into the
tank so long as we have no reason to believe otherwise; when a
contradiction materializes, the conclusion will be withdrawn.

Nonmonotonicity is almost by definition incompatible with
deduction. Hence, as Israel (1980) has pointed out, “non-
monotonic logic” is somewhat oxymoronic. It is as if to com-
pensate for some deficiency of prime numbers we were to
propose studying “composite primes.” In practice, what is
meant by “a nonmonotonic logic” is an inference system that
provides a simple, general extension to ordinary logic that cap-
tures obvious defeasible inferences. We don’t expect such a
system to do inference to the best explanation, but we do
expect it to infer that your car is still where you parked it last .

Since there might be many alternative “simple, general”
extensions to ordinary logic, we cannot draw any final conclu-
sions about the prospects for nonmonotonic logic. We can,
however, survey what has been accomplished and evaluate its
promise for the future. There are two main methods that have
been employed, the default approach and the circumscriptive.
The default approach attempts to formalize the “negation as
failure” idea of Planner (Hewitt 1969) and Prolog (Clocksin
and Mellish 1981). We extend ordinary logic by allowing
inference rules of the form “From premise p and the inability
to infer q, infer r.” The idea is that r is the default conclusion
from p in the absence of special ovemding information q. An
example would be

(bird a) Consistent(not(abnorma1 a))
(can-fly a)

where “Consistent formula” means that formula is consistent
with all the inferences in the system. For any given bird, we
can then normally infer that it can fly, but if there are axioms
for infemng.abnormality, then we can use them as “gates” to
turn this rule off. Systems of roughly this form have been
studied by Reiter (1980), McDermott and Doyle (1980), Clark
(1978), and others.

The circumscriptive approach, developed by McCarthy
(1980) and his colleagues (Lifschitz 1985; Lifschitz, unpub-
lished manuscript3), avoids adding new inference rules, and
instead augments a first-order theory with an axiom that
expresses the goal to “minimize” some predicate. For
instance, given an axiom

(fodl(x)(if(and(bird x)(not(abnoxmal x)))
(can-fly x)))

one would want to minimize the abnormal predicate, so that as
before we can normally infer for any given bird that it can fly.
To achieve this, we add to the original theory a second-order
axiom. Let A(abnormal;bird) be the conjunction of all the
axioms we already have. (It had better be finite.) In the paren-

’Lifschitz, V. 1986. Pointwise circumscription. Unpublished draft,
January 16, 1986.

I J J

thesis following the A we write the names of predicates we
intend to substitute for. The semicolon separates the to-be-
minimized predicate (abnormal) from the “variable” predi-
cates (bird); there may in general be one or more to be
minimized, zero or more variable. So A (foo;baz) would be the
same set of axioms with abnormal replaced by foo and bird
replaced by baz. Given this notation, the new axiom is

(fOdl(P b)
(if(and)(A(p;b))

(forall(x)(if(p x)(abnormal x)))
(forall(x)(if(abnormal x) (p x)))))

That is, if p is any predicate that satisfies A (after A has been
weakened by changing bird) and is as strong as abnormal, then
abnormal is as strong as p. Another step is now required, and
that is to plug values in for p and b. Suppose that the only bird
we know that can’t fly is Clyde. Then A will include the axiom
about normal bird flight, plus (bird Clyde) and (not (can-fly
Clyde)). If we plug in p = (lambda(y)(= y Clyde)) and b =
(lambda(y)(= y Clyde)), then, because A(p;b) becomes

(and(forall(x)(if(and(= x Clyde)(not(= x Clyde)))
(can-fly x)))

(= Clyde Clyde)
(not(can-fly Clyde)))

the instance we get of the circumscription axiom is

(if(and(forall(x)(if(and(= x Clyde)(not(= x Clyde)))
(can& 4))

(= Clyde Clyde)
(not(can-fly Clyde))
(forall(x)(if(= x Clyde)(abnormal x))))

(forall(x)(if(abnormal x)(= x Clyde))))
But the antecedent of this implication follows from A (abnor-
mal;bird), so we can conclude the consequent, that Clyde is
the only abnormal object. Hence any other bird (if we can
show him unequal to Clyde) will be judged able to fly.

Note how circumscription achieves nonmonotonicity . When
a new axiom is added to A, the circumscriptive axiom
changes, and usually some theorem goes away.

There are two problems with all known varieties of non-
monotonic logic. The first is that it is often not clear without
considerable effort what the consequences of a set of rules are.
The second is that they often fail to achieve the proper “ampli-
fication”; that is, the rules will have overly weak conse-
quences. I will label these two problems with the phrases
“You can’t find out,” and “You don’t want to know.”

In default logics, the “You can’t‘ find out” problem arises
because it is in general undecidable whether a formula is con-
sistent with a theory. In fact, it is even hard to define exactly
what is meant by the phrase “consistent with a theory,” when
the theory in question is the one containing the default rules.
You can’t tell what isn’t inferrable until you’ve inferred every-
thing, and so we are led to the idea of a “stable extension” or
“fixed point” of a default theory. Such a fixed point is a set of
formulas, intuitively a “stable set of beliefs,” which is char-
acterized by a set of “nonconcluded formulas,” such that
(a) everything in the fixed point follows from the original
theory plus the nonconcluded formulas via default inference
rules; and (b) no nonconcluded formula follows. If Clyde is
known to be a bird, then (not(abnormal Clyde)) will be one of
the nonconcluded formulas, and hence (can-fly Clyde) will be
an element of the fixed point; unless (abnormal Clyde) is also

156 COMPUT. INTELL. VOL. 3. !987

deducible, in which case (can-fly Clyde) will not be in the
fixed point. Unfortunately, the fixed points and the sets of non-
concluded formulas are infinite, and in general hard to describe
or find.

Circumscription is also hard to use. What all known versions
of circumscription have in common is this procedure for
arriving at conclusions:

-Add second-order axiom to original theory
-Guess predicate constant to plug in to the axiom
-Simplify

This is the kind of procedure we followed in the example. The
problem with it is that the information added is usually about
the same size as the conclusions you ultimately want to draw.
In fact, it usually looks about the same as those conclusions,
with a few extra lambda’s.

In principle, circumscription could be used mechanically;
you could turn a crank and all the conclusions would come out.
In practice, there is no way to enumerate useful instances of
the second-order axiom, so circumscription has been used only
on small examples for which the desired conclusions are
already known. (In special cases, you can show that circum-
scription and default logics both reduce to computable
algorithms, but these special cases are of no interest to us
here.) Paradoxically, the hopelessly undecidable default logics
suggest a practical algorithm that actually gets somewhere: To
verify that p is consistent, try to prove its negation and fail.
When this procedure halts, it is often a good heuristic approxi-
mation (Clark 1978).

The intractability of nonmonotonic logic has led to a curious
phenomenon. Logicists go ahead and use nonmonotonic con-
structs, and state in the accompanying text what conclusions
they hope will follow, without really knowing if they will. At
this point, it is no longer clear in what sense the reasoning they
are describing is justified by a formal system. This wishful
thinking wouldn’t matter much if the wishes came true. Unfor-
tunately, this brings us to the “You don’t want to know” prob-
lem: When a nonmonotonic system is studied carefully, it
often happens that the conclusions the formal system actually
allows are different from, typically weaker than, what was
expected. In default formulations, the problem arises because
the fixed-points described above are often nondnique. Some of
them are reasonable, but many correspond to sets of beliefs
that would be rejected by the person writing the original rules.
(There is no way to eliminate such fixed point by adding more
default rules; that can only make matters worse.) If a theory
has several alternative fixed points, what actually can be said
to be a theorem of the theory? Either theories like this don’t
have theorems, in which case they can’t serve as the idealized
inference engine we are seeking; or we are stuck with a weak
notion of theorem, in which a theorem is something that is
inferred in all fixed points. Typically this alternative gives us
disjunctive theorems, where some of the disjuncts are counter-
intuitive intruders from unwanted fixed pints. We want the
conclusion p . but we wind up with p or q, where q is off
the wall.

Such overweak disjunctions pop up in the circumscriptive
versions, too. The phenomenon is somewhat different for cir-
cumscription, because the notion of fixed point doesn’t play
the same proof-theoretic role. But we do have a homologous
idea, the minimal model, defined as follows. One model is
“smaller” than another with respect to some predicate P if it
agrees on all other (nonvariable) predicates and its P is a subset

of the other model’s. A minimal model is one with no model
smaller. It can be shown that a formula is true in all minimal
models of A(P; V) if it follows from the A(P; V) plus the cir-
cumscriptive second-order axiom given above.

The overweak disjunction problem now appears in the
following form. Typically there will be minimal models that
differ in important ways, such that some of the models are
“obviously wrong” to a human observer. On the syntactic
side, circumscription will yield a disjunction, such that each
disjunct characterizes a class of minimal models. Hence the
situation is not really that different from the default-logic case,
except that the disjunctions come about as a consequence of
the basic machinery, rather than being tossed in as a kludgy
way of defining the notion of theorem.

In a recent paper, Hanks and McDermott (1985, 1986)
explored one instance of this phenomenon in detail. We
studied a simplified version uf the temporal logic of
McDermott (1982), which was somewhat more complex than
the previous nonmonotonic systems that had been studied. We
were hoping to show that the conclusions we wanted from the
formal system really did follow. We expected that the
multiple-fixed-point problem would defeat the default logics,
but we expected circumscription to work. We were surprised
to discover that circumscription had the same problem as the
default formulations, although in retrospect the similarities
among the various systems seem so overwhelming that the sur-
prise is lessened.

The problem for all the logics is that concepts like “mini-
mization” and “stable sets of beliefs” are just inappropriate
for the temporal domain. The nonmonotonic rule we wanted
was (to put it informally) “states of the world tend to remain
undisturbed. ” All the logics drew conclusions that minimized
disturbances, but that’s not what we really wanted. Instead, we
wanted to avoid disturbances with unknown causes.

What we were trying to state was that a “history” continues
unless it is explicitly “clipped” by subsequent events. Con-
sider the following event sequence:

1. Fred is born
2. A gun is loaded
3. Fred is shot with it

We ought to be able to conclude that Fred is now dead (sony
for the violence). But another scenario would minimize distur-
bance equally well. In this one, the gun ceases to be loaded
before event 3, for no particular reason except to avoid disturb-
ing Fred’s being alive.

Since that paper, Vladimir Lifschitz of McCanhy’s group
has shown‘ that a new idea, “pointwise circumscription,” will
solve a simplified version of the Hanks-McDermon problem.
No one knows if it solves the more complex version, let alone
a realistic set of axioms about physics. No one knows what
other problems are still out there. But what’s really bothersome
about this “solution” is that it is even more top-heavy than
previous versions of circumscription. We will have to know
the answer, in, which case circumscription will verify it for us.
In addition, predicates are allowed to be in the class “to-be-
minimized” on parts of their domains, and “variable” on
other pans, and you have to supply the information about
which part is which in the form of an extra relation.

This kind of solution destroys circumscription in order to
save it. As with all forms of circumscription, we start with the

Fred starts to be ALIVE
Gun starts to be LOADED
Fred becomes DEAD

‘See footnote 3 .

McDERMOlT 157

conclusions that we want to augment our deductive theory
with, and we find a second-order axiom that will give us those
conclusions. If the first axiom we pick doesn’t work, we find a
different axiom. Once the exercise is carried out, we throw the
axiom away; no one knows how to extract any other conse-
quences than the ones we were verifying. Under these circum-
stances, what is the axiom doing for us? In what sense is it
justifying the conclusions, rather than the desired conclusions
justifying it? In practice, it would be just as easy to simply add
those conclusions to the theory directly. This procedure would
be every bit as nonmonotonic (just change the added ingre-
dients when the theory changes), and every bit as magic.

The original goal, of a simple, general extension of classical
logic that would grind out “obviously correct” conclusions,
has eluded us. In the case of default formulations, that’s
because the lures yield nonrecursively enumerable theorems.
In the case of circumscription, it’s because we have to put the
answer in before we can get it out. In both cases, the answers,
when available, are often too weak, although with circum-
scription we often have the option of switching to a different
circumscriptive axiom.

It is important to realize that this crisis does not affect pro-
grams that reason nonrnonotonically. Almost all computerized
inference is nonmonotonic and hence nondeductive. That’s the
problem we started with. What the crisis does affect is our
attempt to extend deduction slightly to cover “obvious” cases.
As things now stand, there is no nonmonotonic system that
justifies the nonmonotonic inferences our programs do. On the
contrary, what ends up happening is that we have to expend a
lot of effort contorting the formal systems to duplicate simple
procedural reasoning. And the effon is a sideshow or after-
thought to the development of the program; it doesn’t con-
tribute anything.

AS I said above, the situation may improve. Someone may
discover tomorrow the kind of nonmonotonic system we are
looking for. But for now we must conclude that there is no
appeal to nonmonotonicity as a way out of some of the prob-
lems of deduction.

Doing without deduction
Let us try to summarize the argument so far. I laid out the

logicists’ project, to express commonsense knowledge in the
form of logical axioms. I sketched the justification for their
project, and pointed out an implicit premise, that a lot of infer-
ence is deductive. I have argued that this premise is wrong,
even if logic is extended in various ways.

With this premise knocked out, how does the original argu-
ment fare? We can now see that no matter how many axioms
you write down about a domain, most of the inferences you
want will not follow from them. For that to happen, you must
also supply a program. In other words, in most cases there is
no way to develop a “content theory” without a “process
model.” (These terms are due to Larry Birnbaum.) A content
theory is supposed to be a theory of what people know, how
they carve up the world, what their “ontology” is. A process
model explains how they use this knowledge. A content theory
is at Newell’s (1981) “knowledge level,” supposedly inde-
pendent of how the facts it expresses are to be manipulated.
What we can now conclude is that content theories are of
limited usefulness, in the case where the contemplated infer-
ences are nondeductive. You cannot just start listing facts
people know, expressed in logic or any other notation, without
saying something about how you assume they will be used by a

program, and hence what class of inferences you are trying to
account for. The only occasion when you can neglect that
chore is when you can point to an important class of purely
deductive inferences involving the knowledge. In that case,
you do know enough about every candidate process model that
you need say no more. But such classes, it now seems,
are rare.

By the way, this point should apply just as much to Lenat
et al.’s (1986) CYC project as to the logickt project. His group
has availed themselves of a broader range of tools, and for-
sworn the discipline of logic, but the same objection presents
itself How will they know when they are making progress?

This argument against free-standing content theories has
unfortunate repercussions on the original argument in favor of
Tarskian semantics. When there was no program, then denota-
tional semantics was the only way to specify the meanings of
our notations. But there is a competing tradition about knowl-
edge representation, which says that a knowledge-representa-
tion system is in essence a special-purpose high-level
programming language. This point of view is explicit in
descriptions of systems like OPS5 (Brownston et al. 1985) and
Prolog (Clocksin and Mellish 1981), but it applies to many
associative nets, too, which are often devices for organizing
chunks of Lisp code. Actually, OPS5 and Pmlog aren’t such
great examples, since they are general-purpose programming
languages. A better example might be a parser-rule notation
like that of Marcus (1980). The notation expresses “knowl-
edge” about the syntax of a language, but it has no denota-
tional semantics. Its semantics areprocedural; a set of rules is
correct if it makes the parser do the right thing.

The competing procedural tradition, in other words, is that a
knowledge-representation system does not actually represent
anything. This position makes the typical logicist’s hair stand
on end, because it means acknowledging that the represented
knowledge is essentially to be used in just one way. It is hard
to count “ways,” but picture the “same fact,” as needed by
two different modules, each with its own special-purpose pro-
gramming notation. The fact would have to be represented
twice. Surely this is not a pleasant requirement to impose on an
intelligent program.

It would be nice if a notation could have both denotational
and procedural semantics. Nothing prevents this; any logic-
based notation that is actually used by a program does ips0
facm have such a dual semantics. (Pure Prolog programs are an
example.) One is tempted to conjecture the converse, that any
procedural notation can be translated into an equivalent deno-
tational notation. Isn’t it just a matter of cleaning up a few
inconsistencies, and making up some ontology? Unfortun-
ately, this optimistic assessment is based on a misconceived
notion of how devices like associative networks are actually
used. In the minds of some researchers, the notation is sup-
posed to have a formal semantics of some kind, and there is not
much doubt that there are equivalent notations that look more
like traditional logic. But in the minds of most users, the sys-
tem is a collection of features - demons and whatnot -just
like a standard programming environment (except, they hope,
more exotic). Any way of using the features that achieves the
immediate programming goal is legitimate. There is nothing
shady about this. For every researcher whose system is mis-
used, there are ten who would encourage such “creative” use
of their system. The chances of being able to find a denota-
tional semantics for any such system are slim.

Still, this deplorable standard of practice cannot by itself

158 COMPUT. INTELL. VOL. 3. 1987

deter us from seeking notations that have both denotational and
procedural semantics. It’s just that this pursuit now seems to
lack any rationale. Some people insist that their notations have
denotational semantics; others (rather more) can’t stand that
constraint. In spite of what I am arguing here, I still find
myself temperamentally in the first group. If a student comes
to me with a denotationless representation, it bothers me.
Formerly I thought I had an argument to convince him to
rethink, but now all I have is indigestion. The student can
always point to his program and claim that it doesn’t draw
absurd conclusions from his absurd notation. The fact that I
might draw an absurd conclusion is my problem.

To take one of my favorite examples, consider a simple fact
like “The Russians have warships deployed off the US coast.”
Unless we are willing to resort to “computerdeutsch” predi-
cates like cumntly-deployed-off-US-coast, a proper repre-
sentation of something like this will have to express explicitly
what the US coast is, roughly how many ships there are and in
what distribution they are found, what period of time is
implied, and so on and on. But who says that’s “proper”? Any
particular application program can probably get by with com-
puterdeutsch. And many eager-beaver notation designers will
resort to “computerenglisch,” such as

(have Russians (deployed warships (off (coast US))))

which seems even worse to me. But why? If the program
works, what’s wrong with it?

Hence, in the original logicist argument, there is a flaw in
the second step, the claim that knowledge must be represented.
Although most AI people would assent to this claim, we now
see that most of them don’t mean it. What they are thinking is
roughly: We will have to write a lot of programs to get the
knowledge in, and we will need special high-level notations to
do it.

The logicist can take comfort in the fact that his opponents
have a hard time distinguishing the “high-level’’ programs
that constitute representations from any old programs. If the
distinction cannot be made, then all programs could be taken to
“represent knowledge,” which I take to be the proceduralist
position in the old procedural-declarative controversy. This
controversy died because no one was really interested in this
sense of “represent,” by which, for instance, a vision program
could be said to represent knowledge about the physics of
image formation. There seems to be a stronger sense in which
AI programs manipulate explicit representations of objects and
facts; denotational semantics provides one answer about what
that sense is, but we now see how unattractive this answer is to
many AI researchers. ,

Defending procedures
It’s not that the logicist never planned to write programs. He

just expected that by the time they were written they would be
seen as optimized versions of theorem provers. All that would
be required to justify those programs would be to show that
they were faithful to the axioms that underlay them.

Now that we have rejected this picture, we need new ways of
justifying inferential programs. AI programs are notorious for
being impenetrably complex. Sometimes this feature is painted
as a virtue, as if the mystery of intelligence ought to be pre-
served in computational models of it. But a model that we
don’t understand is not a model at all, especially if it works on
only a handful of examples (Marr 1977; Bimbaum 1986).

It is probably impossible to make the idea of “justification”

precise enough to support a claim that every program ought to
be justified. And yet it is always satisfying when beside a pro-
gram we can point to a clean, independent theory of why it
works. In vision research, for instance, it was a major step just
to move from “heterarchical” models, with their air of
mystery, to models justified by physics and psychophysi;s. In
the domain of qualitative envisioning (deKleer and Brown
1985; Forbus 1984), there is nothing wrong with the programs
that have been written, but it is clarifying to have Kuipers’s
(1985) analysis of their meaning and limits.

But there are large classes of programs that lack any kind of
theoretical underpinnings, especially those concerned with
inference to the best explanation, or abduction. It would be
nice if we could go back to the philosophers and mine their
wisdom again. Surely if they could come up with such a great
theory of deductive inference they must have done just as well
on other kinds, too. Unfortunately, the philosophers have let
us down. A theory of abduction might start with answers to
questions like these:

What sorts of things need to be explained?
What counts as an explanation?
What counts as evidence for an explanation?
How do you measure the strength of evidential support?
When is evidence strong enough to justify belief in a hypo-

thesis?

So far these questions have received only vague, unmechan-
izable, piecemeal, or ridiculous answers. We have Bayesian
theories, Dempster- Shafer theories, deductive-normological
theories, local induction theories, and a lot of arguments about
which is best, but none of them answers more than one or two
of the questions above, and none seems entirely correct.

This state of affairs does not stop us from writing medical
diagnosis programs. But it does keep us from understanding
them. There is no independent theory to appeal to that can
justify the inferences a program makes. One medical diagnosis
program is better than another if fewer of its patients die in
clinical trials, I suppose. Actually, what’s really bothering me
is that these programs embody racir theories of abduction;
these theories would be the first nontrivial formal theories of
abduction, if only we could make them explicit.

There is an optimistic way and a pessimistic way to view this
situation. The pessimistic view is that A1 researchers are
merely being naive about their chances, buoyed by simple
ignorance of the past failures of philosophers. The reason why
we cannot extract theories from our programs is that there are
no theories to extract. Fodor (1983) puts this conclusion rather
grandiloquently at the end of his book f i e Modularity ofMind:

Localness . . . is a leading characteristic of the sorts of computa-
tions that we know to think about. Consider.. .[the]
contrast . . .between deductive logic - the history of which is,
surely, one of the great success stones of human inquiry - and
confirmation theory [i.e., what I was calling abduction theory
above] which, by fairly general consensus, is a field that mostly
does not exist. My point is that this asymmetry . . . is likely no
accident. Deductive logic is the logic of validity, and validity is a
local property of sentences. . . . The validity of a sentence con-
trasts starkly with its level of confirmation, since the latter. . . is
highly sensitive to global properties of belief systems. . . . We
have, to put it bluntly, no computational formalisms that show us
how to do this, and we have no idea how such formalisms might
be developed. . . . In this respect, cognitive science hasn’t even
started; we are literally no farther advanced than we were in the
darkest days of behaviorism. . . . If someone - a Dreyfus, for

I59 McDERMOTT

example - were to ask us why we should even suppose that the
digital computer is a plausible mechanism for the simulation of
global pmesses, the answering silence would be deafening.

The optimistic view, of course, is that A1 researchers can make
much faster progress than all those philosophers because we
are equipped with “powerful ideas” they didn’t have, espe-
cially the idea of sophisticated autonomous computation. I
hope this is right. But if all we do is go on writing programs,
without any general theories emerging, then I am going to get
increasingly uncomfortable.

Conclusions
To summarize: The logicist project of expressing “naive

physics” in first-order logic has not been very successful. One
reason may be that the basic argument was flawed. You cannot
write down axioms independent of a program for manipulating
them if the inferences you are interested in are not deductions.
Unfortunately, very few interesting inferences are deductions,
and the attempts by logicists to extend logic to cover more
territory have been disappointing. Hence we must resign our-
selves to writing programs, and viewing knowledge repre-
sentations as entities to be manipulated by the programs.

In many respects this is not a critique of logic per se. When
you sit down to express a body of knowledge, the notation you
use recedes quickly into the background. If you are trying to
develop a theory of shape, the constraints imposed by the nota-
tional conventions of logic soon dwindle beside the task of try-
ing to express what you know at all. Hence, as I mentioned
before, I consider Lenat et af.’s (1986) CYC project to be
under much the same shadow as the logicists’ project.

However, there is one respect in which logic is peculiarly
vulnerable, and that is in its resting on denotational semantics.
One can accept my conclusions about the futility of formaliz-
ing knowledge without a program, and yet still, as I do, have a
strong intuition that it is better for a notation to have a denota-
tional semantics than not to. One reason for this might be that
at least a sound semantics helps ensure that the deductive infer-
ences done by a program will be right; they may be trivial, but
at least they will not be wrong.

Another way of justifying formal semantics has recently
been pointed out by Shoham (1986). Suppose a program
manipulates a notation, and you can show that the program’s
conclusions are just those that are true in all A-models of its
premises, where what an A-model is depends on the class of
inferences you are trying to capture. If the characterization of
A-models is intuitively appealing, then you will have provided
an independent justification for the operation of the program.
If we plug “minimal model” into the schema, we get a pro-
gram justified, in a way, by circumscription, excepf that we
dispense with the circumscription ariom, and just use the
semantic notion directly. In the case of temporal inference, the
notion of model we need is different; see Shoham (1986) for
one proposal. Does this idea apply to a wide variety of types of
inference? If so, it provides a way of justifying the ontological
and semantic parts of the logicist project, while, alas, dispens-
ing with the idea of programless knowledge representation.

As a tool for studying issues in the semantics and mechanics
of knowledge representation, logic still seems unsurpassed. I
have in mind examples like Moore’s (1980, 1985) work on a
computational version of Hintikka’s logic of knowledge,
which explained how a thinker can refer to unidentified entities
whose identities are known by someone else; and Chamiak’s

(I 986) work explaining “script variables” as Skolem terms.
The insights these papers provide apply to a variety of reason-
ing programs. Anyone who ignores them just because they are
expressed in terms of logic is risking writing an inelegant,
irrelevant program.

Finally, I should admit that I am still doing work in the para-
digm that I criticize here. In the domain of shape representa-
tion, so little is known that focusing on an idealization cannot
but help teach us something. The problem I would like to
tackle is representing the knowledge required to answer ques-
tions like, Could a paper clip be used as a key ring? The ideali-
zation I have been forced to fall back on is to prove that a paper
clip of a certain size and shape could fit through the hole of a
typical key. It should be obvious how much of the original
problem this leaves out. Still, the territory is so unexplored that
a tour through the idealized fragment could turn up something
interesting. What one cannot hope for is to express as logical
axioms everything there is to know about using shapes in
unusual ways, before designing programs for this task. This
will probably come as a shock to no one but me and a few
friends.

Acknowledgements
I thank Larry Bimbaum, Steve Hanks, Pat Hayes, Yoav

Shoham, and many others for help, some of it against their
will. I should also point out that Carl Hewitt, Marvin Minsky,
and Bill Woods have been saying similar things for a long
time. This work was supported by the National Science Foun-
dation under grant number DCR-8407077.

ALLEN, J. 1984. Towards a general theory of action and time. Artifi-
cial InteIIigence, 23(2): 123- 154.

BIRNBAUM, L. 1986. Integrated processing in planning and under-
standing. Yale Computer Science Technical Report 489, Yale Uni-
versity, New Haven, CT.

BROWNSTON, L., FARRELL, R . . KANT, E.. and MARTIN, N. 1985.
Programming expert systems in OPS5: an introduction to rule-
based programming. Addison-Wesley Publishing Co.. Inc.,
Reading, MA.

CHARNIAK, E. 1986. Motivation analysis, abductive unification, and
nonmonotonic equality. Artificial Intelligence. In press.

CHARNIAK, E. , and MCDERMOTT, D. 1985. Introduction to artificial
intelligence. Addison-Wesley Publishing Co.. Inc., Reading, MA.

CLARK, K. L. 1978. Negation as failure. In Logic and databases.
Edited by H. Gallaire and J . Minker. Plenum Press, New York,

CLOCKSIN, W., and MELLISH, C. 1981. Programming in Prolog.
Springer-Veriag, Berlin, West Germany.

DAVIS, R., and LENAT, D. B. 1982. Knowledge-based systems in
artificial intelligence. McGraw-Hill International Book Company,
New York, NY.

DEKLEER, J . , and BROWN, J . S. 1985. A qualitative physics based on
confluences. In Formal theories of the commonsense world. Edited
by J . Hobbs and R. Moore. Ablex Publishing Corporation, Nor-
wood, NJ, pp. 109-183.

DOYLE, J. 1979. A truth maintenance system. Artificial Intelligence,
12(3): 231 -272.

DUDA, R. O., GASCHNIG. J. G., andHART, P. E. 1980. Modeldesign
in the Prospector consultant system for mineral exploration. In
Expert systems in the microelectronic age. Edited by D. Michie.
Edinburgh University Press, Edinburgh, UK.

FODOR, J . 1983. The Modularity of Mind. MIT Press, Cambridge,
MA.

FORBUS, K. 1984. Qualitative process theory. Artificial Intelligence,
24: 85-168.

GENESERETH, M. R. 1983. An overview of meta-level architecture.

NY, pp. 293-322.

160 COMPUT. INTELL. VOL. 3. 1987

Proceedings of the National Conference on Artificial Intelligence,
Washington, DC, pp. 119- 124.

HANKS, S., and MCDERMOTT, D. 1985. Temporal reasoning and
default logics. Computer Science Department Technical Report
430, Yale University, New Haven, CT.

1986. Default reasoning and temporal logics. Proceedings of
the National Conference on Artificial Intelligence, Philadelphia,
PA.

HAYES, P. J. 19850. The second naive physic manifesto. In Formal
theories of the commonsense world. Edited by J. Hobbs and
R. Moore. Ablex Publishing Corporation, Norwood, NJ, pp.
1-20.

1985b. Liquids. In Formal theories of the commonsense
world. Edired by J. Hobbs and R. Moore. Ablex Publishing Cor-
poration, Norwood, NJ, pp. 71 - 107.

HEMPEL, C. G. 1965. Aspects of scientific explanation. Free Press,
New York, NY.

HEMPEL, C. G., and OPPENHEIM, P. 1948. Studies in the logic of
explanation. Philosophy of Science, 15: 135- 175.

HEWIITT, C. 1969. PLANNER: a language for proving theorems in
robots. Proceedings of the First International Joint Conference on
Artificial Intelligence, Washington, DC, pp. 295 -301.

HOBBS, J. 1986. Commonsense summer: final report. Artificial
Intelligence Center, SRI International, Menlo Park, CA. Technical
note.

HOBSS, J., and MOORE, R. 1985. Formal theories of the common-
sense world. Ablex Publishing Corporation, Norwood, NJ.

ISRAEL, D. 1980. What’s wrong with non-monotonic logic? Proceed-
ings of the National Conference on Artificial Intelligence, Stand-

KUIPERS, B. 1985. The limits of qualitative simulation. Proceedings
of the International Joint Conference on Artificial Intelligence, Los
Angeles, CA, pp. 128-136.

LENAT, D. B. 1982. AM: discovery in mathematics as heuristic
search. In Knowledge-based systems in artificial intelligence.
Edited by R. Davis and D. B. Lenat. McGraw-Hill International
Book Company, New York, NY.

LENAT, D. B., PRAKASH, M., and SHEPHERD, M. 1986. CYC: using
commonsense knowledge to overcome brittleness and knowledge
acquisition bottlenecks. A1 Magazine, 6(4): 65 -85.

LIFSCHITZ, V. 1985. Computing circumscription. Proceedings of the
International Joint Conference on Artificial Intelligence, Los
Angeles, CA, pp. 121 - 127.

ford, CA, pp. 99-101.

LUCKHAM, D. C., and NILSSON, N. J. 1971. Extracting information
from resolution proof trees. Artificial Inteliigence, 2(1): 27-54.

MARCUS, M. P. 1980. A theory of syntactic recognition for natural
language, MIT Press, Cambridge. MA.

MARR, D. 1977. Artificial Intelligence - a personal view. Artificial
Intelligence, 9: 37 -48.

MCCARTHY, J. 1980. Circumscription: a nonmonotonic inference
rule. Artificial Intelligence, 13: 27 -40.

MCDERMOTT, D. 1978. Tarskian semantics or, no notation without
denotation! Cognitive Science, 2(3): 277 -282.

1982. A temporal logic for reasoning about processes and
plans. Cognitive Science, 6: 101 - 155.

1985. Reasoning about plans. In Formal theories of the
commonsense world. Edited by J. Hobbs and R. Moore. pp. 269-
317.

MCDERMOTT, D., and DOYLE, J. 1980. Non-monotonic logic I. Arti-
ficial Intelligence, 13: 41 -72.

MOORE, R. C. 1980. Reasoning about knowledge and action. SRI
Artificial Intelligence Center Tecfinical Report 191, SRI Inter-
national, Menlo Park, CA.

1985. A formal theory of knowledge and action. In Formal
theories of the commonsense world. Edited by J. Hobbs and R. C.
Moore. Ablex Publishing Corporation, Norwood. NJ.

NEWELL, A. 1981. The knowledge level. A1 Magazine, l(3): 1-20.
REITER, R. 1980. A logic for default reasoning. Artificial Intelli-

gence, 13: 81 - 132.
ROSENSCHEIN, S. J. 1981. Plan synthesis: a logical perspective. Pro-

ceedings of the International Joint Conference on Artificial Intelli-
gence, Vancouver, B.C., pp. 331 -337.

SALMON, W. C. 1967. The foundations of scientific inference. Uni-
versity of Pittsburgh Press, Pittsburgh, PA.

1975. Theoretical explanation. In Explanation. Edited by S.
Koerner. Yale University Press, New Haven, CT, pp. 118- 145.

SHOHAM, Y. 1985. Naive kinematics: one aspect of shape. Proceed-
ings of the International Joint Conference on Artificial Intelligence,
Los Angeles, CA, pp. 436-442.

1986. Time and causality from the standpoint of artificial
intelligence. Ph. D. dissertation, Yale University , New Haven, CT.

SHOHAM, Y., and MCDERMOTT. D. 1984. Knowledge inversion. Pro-
ceedings of National Conference on Artificial Intelligence, Austin,

SHORTLIFFE. E. 1976. Computer-based medical consultations:
TX, pp. 295-299.

MYCIN. Elsevier, New York, NY.

