
151 

A critique of pure reason’ 

DREW MCDERMOTT 
Yale University, New Haven, CT 06S20, U.S.A. 

Cornput. Intell. 3. 151-160 (1987) 

In 1978, Patrick Hayes promulgated the Naive Physics Man- 
ifesto. (It finally appeared as an “official” publication in 
Hobbs and Moore 1985.) In this paper, he proposed that an all- 
out effort be mounted to formalize commonsense knowledge, 
using first-order logic as a notation. This effort had its roots in 
earlier research, especially the work of John McCarthy, but the 
scope of Hayes’s proposal was new and ambitious. He sug- 
gested that the use of Tarskian seniantics could allow us to 
study a large volume of knowledge-representation problems 
free from the confines of computer programs. The suggestion 
inspired a small community of people to actually try to write 
down all (or most) of commonsense knowledge in predictate 
calculus. He launched the effort with his own paper on 
“Liquids” (also in Hobbs and Moore 1985), a fascinating 
attempt to fix ontology and notation for a realistic domain. 
Since then several papers in this vein have appeared (Allen 
1984; Hobbs 1986; Shoham 1985). I myself have been an 
enthusiastic advocate of the movement, having written general 
boosting papers (1978) as well as attempts to actually get on 
with the work. (1982, 1985). I even coauthored a textbook 
oriented around Hayes’s idea (Charniak and McDermott 
1985). 

It is therefore with special pain that I produce this report, 
which draws mostly negative conclusions about progress on 
Hayes’s project so far, and the progress we can expect. In a 
nutshell, I will argue that the skimpy progress observed so far 
is no accident, that in fact it is going to be very difficult to do 
much better in the future. The reason is that the unspoken 
premise in Hayes’s arguments, that a lot of reasoning can be 
analyzed as deductive or approximately deductive, is 
erroneous. 

I don’t want what I say in this paper to be taken as a criticism 
of Pat Hayes, for the simple reason that he is not solely to 
blame for the position I am criticizing. I will therefore refer to 
it as the “logicist” position in what follows. It is really the 
joint work of several people, including John McCarthy, Robert 
Moore, James Allen, Jerry Hobbs, Patrick Hayes, and me, of 
whom Hayes is simply the most eloquent. 

The logicist argument 
I should first outline the logicist position. It starts from a 

premise that almost everyone in AI would accept, that pro- 
grams must be based on a lot of knowledge. Even a program 
that learns must start out knowing many more facts than it will 
ever learn. The next step is to assume that this knowledge must 
be represented somehow in the program. Almost everyone in 
AI would accept this, too, but with subtle reservations, which I 
will come back to later in the paper. 

The next step is to argue that we can and should write down 

’This paper is an amplification of a talk given at the A1 Society of 
New England meeting, November 1985. The paper contains a few 
masculine pronouns that some might object to; bear in mind that the 
use of such a pronoun to refer to an anonymous person does not pre- 
clude his being female. 
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the knowledge that programs must have before we write the 
programs themselves. We know what this knowledge is; it’s 
what everybody knows, about physics, about time and space, 
about human relationships and behavior. If we attempt to write 
the programs first, experience shows that the knowledge will 
be shortchanged. The tendency will be to oversimplify what 
people actually know in order to get a program that works. On 
the other hand, if we free ourselves from the exigencies of 
hacking, then we can focus on the actual knowledge in all its 
complexity. Once we have a rich theory of the commonsense 
world, we can try to embody it in programs. This theory will 
become an indispensable aid to writing those programs. 

The next step is to argue that mathematical logic is a good 
notation for writing the knowledge down. It is in some sense 
the only notation. The notation we use must be understandable 
to those using it and reading it; so it must have a semantics; so 
it must have a Tarskian semantics, because there is no other 
candidate. The syntax of the notation is unimportant, so let’s 
use a traditional logical notation, because we already know 
how to extend it as far as we’re likely to go. The supposed 
advantages of newer notations (e.g., semantic networks) are 
based on confusion and fantasy - confusion about imple- 
mentation versus content, and fantasy about what we some- 
times wish our notations would mean. 

It is possible to misunderstand the role that logic is supposed 
to play in the programs that we will ultimately write. Because 
we started by saying that knowledge ought to be represented, 
one might conclude that the axiomatic theories we construct 
will eventually appear explicitly in the programs, accompanied 
by an interpreter of some kind that reads the axioms in order to 
decide what to do. This model may in fact be realized, or it 
may not be. It is possible, for instance, that a transitivity axiom 
will not appear explicitly in a program, but may be embodied 
in some kind of graph traverser. The logicists’ argument is that 
we ought to forget about the grubby details of programming for 
a while (for a generation, let’s say) and instead write down 
what people know (or coherently believe) about everyday life. 
If we can actually come up with a formal theory of informal 
knowledge, then we will have something that future program- 
mers will have to reckon with - literally. From this point of 
view, it is all the clearer why logicists favor classical logic 
over newer notations like associative networks. The purported 
differences between logic and the other notations is that the 
latter organize knowledge in various ways for use by pro- 
grams, and that is precisely what the logicists are not interested 
in. All they want are the facts, ma’am, facts like “liquids leave 
tilted containers.’’ Unfortunately, this is not the only motive 
for favoring logic. There is an unspoken premise in the argu- 
ment that a significant amount of thought is deductive. With- 
out this premise, the idea that you can write down what people 
know without regard for how they will use this knowledge is 
without foundation. 

How are we supposed to know when we have made progress 
in formalizing knowledge? Suppose we write down a bunch of 
axioms. How will we know when we’ve written down most of 
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what people know about the subject? Well, when we can’t 
think of anything else to say. But people aren’t that great at 
writing down everything they know about a subject; they tend 
to leave things out. How will we know when we’re really 
getting there? I think the logicists take it for granted that we’ll 
be done when all the straightforward inferences follow from 
the axioms that have been written down. If something is 
obvious to people, Hayes says somewhere, then it must have a 
short proof. For this dictum to make sense, a substantial por- 
tion of the inferences people make must be deductive. Water 
flows out of a tilted cup; this cup is tilted; ergo, water will flow 
out of it. If most inferences fit the deductive pattern, then the 
notion of logical proof provides an idealized model of infer- 
ence. We don’t have to have any particular process model in 
mind, because every process model we devise will be an 
approximation to this ideal inference engine, and will have to 
conform to the inferences that it licenses. When we design an 
inference mechanism, it can in fact record the reasons for its 
inferences in terms of the deductive support that they receive. 
This is the idea behind data dependencies (Doyle 1979): a 
program may use any method to amve at a conclusion, but it 
ought to be able to list all the actual premises that justify it, so 
that if any of those are erased, the conclusion will be erased, 
too. The idealized inference engine justifies the practical infer- 
ence engine. 

Defending deduction 
But many inferences are not deductive. If I come upon an 

empty cup of soda pop that was full a while ago, I may infer 
that my wife drank it, and that’s not a deduction (except in 
Sherlock Holmes’s sense), but an inference to the best expla- 
nation. (The only way to mistake this for a deduction is to mis- 
take logic programming for logic; more on this below.) If 
almost all inferences fall into this or some other nondeductive 
category, the logicist program will be in serious trouble. It 
must be the case that a significant portion of the inferences we 
want are deductions, or it will simply be irrelevant how many 
theorems follow deductively from a given axiom set. Whatever 
follows deductively would in that case be ips0 fucro trivial. 

Unfortunately, the more you attempt to push the logicist 
project, the less deduction you find. What you find instead is 
that many inferences which seem so straightfornard that they 
must be deductions turn out to have nondeductive components. 
We can begin with two examples from Hayes’s (19856) 
Liquids paper: 

Suppose an open container with no leaks is empty, but at time r a 
falling histoly begins whose botrom is the free top of the con- 
tainer: for example, you turn on the bath tap with the plug in. By 
axiom (46), this leaving has an arriving on its other side, which 
is an inward-directed face of the inside of the bath. By axiom 
(59). there must be a filling inside the bath, so the umounr of 
water increases: axiom (61). So long as the tap keeps running, it 
will go on increasing. Let us suppose that eventually the bath is 
full, i .e . ,  it contains its capacity. [So the bath will overflow.] 
(Notice that if the container were closed-a tank being filled 
along a pipe, say-then the same line of reasoning would insist 
on there being a leaving which could not possibly occur. . . One 
can conclude from this contradiction. . . that the amving must 
cease to exist at that time, and hence that the flowing . . . along 
the supply pipe. . . must cease also. . .) 

This seems like a beautiful pair of arguments, a perfect illustra- 
tion of Hayes’s desideratum that obvious inferences have short 
proofs. Unfortunately, though they may be short, they are not 

proofs. Suppose we grant Hayes’s analysis of the second case; 
we made the assumption that the filling lasted a certain amount 
of time, got a contradiction, and concluded it would not, after 
all, last that long. But then the first case, if we are to follow 
anything like uniform rules, must be a case of making an 
assumption and nor getting a contradiction. All right, bat you 
are not allowed in deduction to make an argument of the form 
“Assume P; no contradiction?; okay, conclude P.” Some- 
thing else is going on. 

Another example is the treatment of the planning problem by 
logicists, such as Rosenschein (1981). They cast the problem 
thus: given some axioms about the effects of actions in the 
world, an initial state of affairs, and a desired state of affairs, 
find a sequence of actions that can be proven to transform the 
world from the initial state to the desired state. This is an inter- 
esting problem, but it has nothing to do with planning as prac- 
ticed by corporate managers, ordinary people, or robots. Think 
of the last time you made a plan, and ask yourself if you could 
have proven the plan would work. Chances are you could 
easily cite ten plausible circumstances under which the plan 
would not work, but you went ahead and adopted it anyway. In 
fact, all of the hard parts of planning - especially replanning 
during execution - are incompatible with the view that the 
object is to prove a plan correct. 

This informal survey is borne out by the meager results that 
the logicists, including me, have had. In case after case, what 
can actually be written down as axioms is fairly puny. (I 
forbear from citing other people’s work in this context; one 
example of mine is McDermott 1985). On the other side, one 
finds nonlogicist researchers like Forbus who concentrate on 
writing algorithms to draw inferences, but let themselves be 
intimidated by the logicists into thinking they really should be 
able to express as axioms the content of the knowledge in  those 
algorithms. The results (e.g., the axioms in Forbus 1984) are 
silly, and fall way short of expressing what they are supposed 
to. I used to think the failure was Forbus’s, but I would now 
exonerate him, and blame the task, seemingly so feasible but 
actually impossible.2. 

The obstacles I am describing are not news to logicists. 
From the beginning, it has been clear that the logicist project 
had to be qualified, or specially interpreted. In what follows, I 
will describe all the known defenses of logicism, and argue 
that they all fail. There defenses are not mutually exclusive; 
each compensates for a different set of ailments, and most logi- 
cists have probably believed in most of them most of the time. 
Here is the list: 

1. The “idealization” defense: View deductive formula- 
tions of problems as idealizations. The deductive planning 
problem, for instance, can be seen as an idealized version of 
the ‘Yeal” planning problem, carried on, perhaps, in a world 
theory that+ an idealized version of the real-world theory. 

2. The “vocabulary” defense: Emphasize that we can pick 
whatever pedicates we like. It may be true that we cannot 
deduce that a particular plan will work, but if we change the 
problem to one of deducing should-do(agenr, plan), then pro- 
gress will be easier. 

3. The “queen of the sciences” defense: Find fertile bonds 
between deduction and nondeductive inference. For instance, 
inference to the best explanation can be seen as finding 

’When I say Forbus was “intimidated,” I mean it literally. I 
refereed his paper, and asked him to tly to be more logicist. Mea 
culpa. 
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premises from which an observed conclusion follows deduc- 
tively. In this way deduction comes to be the centrepiece of a 
grand theory of reasoning, surrounded by interesting variants 
of deduction. 

4. The “metatheory” defense: Posit the existence of deduc- 
tive “metatheones,” theories about how to find and edit the 
conclusions of the original, defective “object level” theories. 

5 .  The “deducto-technology” defense: Argue from the 
existence of logic programming that many realistic inference 
problems can be seen as essentially deductive. 

6. The “nonmonotonic” defense: Argue that by extending 
classical logic to allow defeasible conclusions we can capture a 
significantly larger set of inferences. 

I will refute each of these in order, starting with the idealiza- 
tion defense. 

Idealizations are not always bad; they are often essential. 
For instance, it may be a useful idealization to prove that a cer- 
tain plan will win a game of chess, even though the proof 
neglects the possibility that someone might suddenly offer the 
planner a million dollars to throw the game. One is entirely 
justified in simply leaving that kind of possibility out of the 
axioms. However, what I am arguing against is a mentality 
that would assume in all chess situations that the goal is to find 
a provably winning strategy, or that would overlook more 
normal situations in favor of situations where such a proof was 
possible. The fact is that realistic chess programs (and human 
players) do nothing remotely resembling proving that a plan 
will work. Of course, for any given algorithm, say, game-tree 
search, there is a way of viewing what it does as deducing 
something (e.g., the minimax value of a tree), but this claim is 
of no interest to us. 

I am afraid that in many cases where a deductive problem is 
claimed as an approximation to a realistic problem, it is actu- 
ally an analogue to a realistic problem, the best deductive 
mimic of the real thing. In many cases, this fact may not be 
insuperable. The attempt to write down facts in the analogue 
domain may yield insights into the actual domain. The result- 
ing ontology and axioms may be useful for eventually writing 
programs. What we cannot expect from an idealization is the 
coverage the logicists are expecting. Many concepts from the 
real domain will just not be found in the idealization. Contrari- 
wise, there is the danger that too many concepts from the ideal 
domain will not be found in the real one, and the idealization 
will be so askew as to be useless. Still, as a strategy the use of 
idealizations does seem worthwhile, and I will come back to 
this idea at the end of the paper. 

Next, the “vocabulary” defense. The point made here is 
certainly one I would embrace. If one is designing a program 
to think about mathematics, being committed to a deductive 
approach does not entail confining the vocabulary of the pro- 
gram to Zermelo-Frankel set theory. Instead, one would want 
whatever predicates a human mathematician would use, such 
as interesting-concept( C), appears-provable(rheorem), and so 
forth. For instance, one might take all the predicates used 
implicitly by Lenat in AM (Lenat 1982) and try to write a pro- 
gram that deduced that a concept was interesting or a theorem 
was probably provable. 

The problem with this defense is that so far it hasn’t helped. 
By broadening the range of problems that can be cast as deduc- 
tion, we have in many cases simply added to the list of prob- 
lems we can’t solve using deduction. There are good reasons 
by AM was not a deductive program. 

Another problem with the “vocabulary” defense is that it 

allows us to replace a hard problem with a trivial one. For 
instance, in medical diagnosis, if we run into trouble deduc- 
ing diagnosis@atient, disease), switching to possible-diagno- 
sis@atient, disease) is not going to help. The new problem in 
this case is too easy; all of the action is in differential diagnosis 
and weighing evidence, which will now be neglected, or 
passed off to some nondeductive module. 

The “queen of the sciences” defense may be elaborated 
thus: Consider “abduction,” C. S. Peirce’s term for explana- 
tory hypothesis generation. This process is nondeductive, but 
we can think of it as a sort of “inverse deduction.” For 
instance, to explain q. look for an implication of the form (if 
p q) that you already know, and propose p as an explanation. 
Put more generally, to explain q. find premises that combined 
with what you already know will entail q. If this model is 
correct, then even though abduction is not a kind of deduction, 
still it is justified by deduction. (This view is endorsed, with 
reservations, by Chamiak and McDermott (1985).) 

This account of explanation is known among philosophers as 
the Deductive-Nornological l leory.  It is most commonly asso- 
ciated with the name of C. G. Hempel (Hempel and Oppen- 
heim 1948; Hempel 1965). Unfortunately, it is believed by 
almost no one else. It has several bugs as a model of scientific 
explanation, which is what it was devised for, and seems hope- 
less as a model of explaining the behavior of individual 
humans or physical systems. The problem is that a deductive 
chain between explanans and explanandum is neither 
necessary nor sufficient. 

One reason it is not necessary is that we are content if the 
explanation merely makes the observed facts probable. Hempel 
allowed for this case, and so do all the diagnostic expert 
systems like Mycin (Shortliffe 1976) and Prospector (Duda 
et al. 1980). 

But there are more devious examples. Suppose you read in 
the paper that Selma McGillicuddy, of Secaucus, just won the 
New Jersey lottery for the second time in the last two months, 
for more than a hundred thousand dollars each time. There is 
no reason to infer corruption, so you amve at the explanation, 
Its a fair lottery; occasionally someone will win twice in suc- 
cession. This is a satisfying explanation, but you cannot infer 
from it, “Selma McGillicuddy wins the lottery twice in two 
months.” (Wesley Salmon first pointed out this class of 
explanation; see Salmon ( 1967, 1979.) 

The reason why a deduction of the data is not sufficient is 
that the requirement is too easy to meet. There will in general 
be millions of deductions leading to the observed conclusion, 
almost all of which are absurd as explanations. For example, 
one day I noticed that my clock radio was two minutes fast. 
Since I am compulsive about accurate clocks, I was bothered, 
and sought an explanation. It occurred to me that there had 
been a power failure lasting two hours recently. One would 
therefore expect that the clock would be two hours slow, but I 
remembered that it had a battery backup clock. Hence, the 
proper explanation was that the battery-powered clock was 
inaccurate, and gained about a minute an hour. 

Let us assume that this explanation could be turned into a 
deductive argument, with the conclusion, “The clock is two 
minutes fast.” So what? There are plenty of other deductions 
with the same conclusion. (“A visitor to our house maliciously 
set the clock ahead.” “A burst of cosmic rays hit the clock just 
right.”) One can argue that these are obviously inferior 
explanations, and all we could hope for from the “Queen of 
the Sciences” picture is a characterization of an adequate 
explanation, but this is a sterile position. The condition of ade- 
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quacy is just too trivial. 
If we are not careful, it can become even more trivial. A 

premise like “Every clock in the mom is two minutes fast” 
will explain “This clock is two minutes fast,” if this clock is 
the only one in the room. Hempel sought to avoid this problem 
by requiring the premises and conclusion to be “lawlike.” It is 
not really clear what this property amounts to, but it is intended 
to rule out “The number of planets is the least odd square of a 
prime number” as an explanation for “There are nine 
planets.” In fact, it eliminates from consideration any explana- 
tion of a particular fact, and makes the theory into a theory of 
explaining laws. 

In a way, the “Queen” defense is a version of the “idealiza- 
tion” defense, with similar weaknesses. There must be some 
link between the hypothesis and the evidence to be explained, 
but it is merely dogmatic to surmise that the link is deductive. 
In general, about all we can say about it is that a good hypo- 
thesis is one that satisfies a typical human inquirer. I will come 
back to this topic later. For now, we can conclude that deduc- 
tion cannot be the centerpiece of a theory of abductive 
inference. 

The “rnetatheory” defense argues that the problems with a 
deductive inference engine can be fixed via the intervention of 
a deductive “meta-engine” that steps in and edits its output; or 
alters its premises; or turns it off to allow a competing theory 
to take over. For instance, in the two tank examples from 
Hayes, we can imagine this meta-engine doing belief revision, 
introducing premises about the persistence of flows, and 
retracting them when awkward conclusions arise. 

The problem with this defense is its vacuity. The subject 
matter of the deductive metatheory must presumably be “legal 
interventions in object theories. ” But there are no constraints 
on such a theory, from human intuition or anywhere else. 
There is certainly no constraint that the interventions preserve 
deductive soundness. If there were, this defense would not 
accomplish the required strengthening of deduction. So it is 
difficult to see how to rule out a theory like “Believe all state- 
ments with an odd number of symbols on weekends; believe 
all statements with an even number on weekdays.” If the 
enterprise becomes one of crafting metatheories of such arbi- 
trary power, then we might as well admit we are programming 
after all. 

There is nothing to say in general about the metatheory idea; 
and for any given case there is too much to say. Let’s take the 
idea of belief revision, which I bandied about a couple of p m -  
graphs back. If you start studying this seriously, you even- 
tually wind up studying nonmonotonic logic (about which 
much more below). This study will dwarf the metatheory 
framework. You will have to construct a very complex and 
detailed model to make any progress, and long before you are 
done it will be clear that it is completely irrelevant whether it is 
targeted for implementation as some kind of deductive meta- 
theory or instead as a Lisp program. The metatheory frame- 
work contributes nothing, unless you just prefer Prolog 
to Lisp. 

This brings me to the fifth defense, “deducto-technology. ” 
One reason it is easy to overestimate the power of deduction is 
because of the existence of a powerful set of tools, such as 
backward chaining and unification, which are derived from 
automatic-theorem-proving research, but have found a wider 
popularity in systems like Prolog (Clocksin and Mellish 1981) 
and MRS (Genesereth 1983). These tools turn out to provide 
an elegant model of computation, just as powerful as, and in 

some cases prettier than, traditional models. Because you can 
use these tools to do any computation, and because of their 
genesis in theorem provers, it is natural to draw the conclusion 
that any computation is in some sense deduction. It is difficult 
to refute the argument leading to this conclusion, because there 
is no argument as such, just vague associations among con- 
cepts. (The fallacy is certainly not hindered by the use of 
phrases like “logical inferences per second” .by the logic- 
programming community to refer to something as trivial as 
list-processing operations.) Serious researchers are not con- 
sciously taken in by the fallacy, but even they can get camed 
away by the cleverness of deducto-technology. 

To take one example of the sort of woolly thinking we are up 
against here, consider the way in which values are computed in 
Prolog-type systems. A goal containing variables is interpreted 
as a request to find values for the variables. The goal 
append( [a, b], [c, d], X) means, &’Find an X that is the result 
of appending [a, b] and [c, d].” If the axioms are written right 
values will be found; in this case, X will get bound to [a, b, c, 
d]. Contrast this goal with append([a, b], [c, d], [a, b, c, d]), 
where the goal is to verify that [a, b, c, d] is the result. It is a 
property of reasonably well-behaved Prolog programs that 
whenever they can find a value they can verify it. (The oppo- 
site property is much harder to achieve. Shoham and 
McDermott 1984). 

The problem is that while the idea of verifying conclusions 
cames over to deduction in general (since it’s just the idea of 
proving something), the idea of calculating values does not. 
From the point of view of logic, append([a, b], [c, d], X) is 
just a Skolemized version of (not(exists(X), append( [a, b], 
[c, d], X))). (See any textbook for an explanation of Skolemi- 
zation, and of the “not.”) It is essentially a useful accident 
that backward chaining verifies this conclusion by finding a 
value for X. If we try to generalize-beyond backward chaining, 
the idea falls apart. Luckham and Nilsson (1971) give a variant 
that works for any resolution proof, but not every resolution 
proof generates a single value per variable. More important, 
once logic is extended beyond finitely axiomatizable first- 
order theories (and it often is in the representation-of-knowl- 
edge business), the whole idea of resolution and Skolemitation 
becomes irrelevant. 

Even when the idea works, logic does not provide a general 
theory of answer construction. Consider Robert Moore’s 
“Bomb in the Toilet” problem: you receive two indistinguish- 
able ticking objects in the mail, plus an anonymous phone call 
warning that exactly one of them is a bomb. From old movies, 
you know that putting a bomb in the toilet is a sure-fire way to 
disarm it. What should you do? The answer is, Put both objects 
in the toilet. (Perhaps a bathtub would be better.) But if we 
pose the problem logically as 

effect(Plan, and(disarmed(objectl), 
disanned(object.2))) 

we might get back (using Luckham and Nilsson’s procedure) 

Plan =’ put(object1, toilet) 

or 

Plan = put(object2, toilet) 

That is, the theorem prover will have cheerfully verified that 
there is a workable plan, without actually constructing one. Of 
course, we can’t really ask any more. Deduction just doesn’t 
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provide a theory of computing arbitrary things. All it aspires to 
is a theory of verifying arbitrary things. 

The nonmonotonic defense 
Finally, we come to the most potent defense, the appeal to 

“nonmonotonic logic,” the name given to a system of logic in 
which conclusions can be defeasible, that is, subject to with- 
drawal given more premises. This sort of logic looks tailor- 
made for examples like the two involving tanks described 
above. We want to infer that the water is still flowing into the 
tank so long as we have no reason to believe otherwise; when a 
contradiction materializes, the conclusion will be withdrawn. 

Nonmonotonicity is almost by definition incompatible with 
deduction. Hence, as Israel (1980) has pointed out, “non- 
monotonic logic” is somewhat oxymoronic. It is as if to com- 
pensate for some deficiency of prime numbers we were to 
propose studying “composite primes.” In practice, what is 
meant by “a nonmonotonic logic” is an inference system that 
provides a simple, general extension to ordinary logic that cap- 
tures obvious defeasible inferences. We don’t expect such a 
system to do inference to the best explanation, but we do 
expect it to infer that your car is still where you parked it last . 

Since there might be many alternative “simple, general” 
extensions to ordinary logic, we cannot draw any final conclu- 
sions about the prospects for nonmonotonic logic. We can, 
however, survey what has been accomplished and evaluate its 
promise for the future. There are two main methods that have 
been employed, the default approach and the circumscriptive. 
The default approach attempts to formalize the “negation as 
failure” idea of Planner (Hewitt 1969) and Prolog (Clocksin 
and Mellish 1981). We extend ordinary logic by allowing 
inference rules of the form “From premise p and the inability 
to infer q, infer r.” The idea is that r is the default conclusion 
from p in the absence of special ovemding information q. An 
example would be 

(bird a )  Consistent(not(abnorma1 a ) )  
(can-fly a )  

where “Consistent formula” means that formula is consistent 
with all the inferences in the system. For any given bird, we 
can then normally infer that it can fly, but if there are axioms 
for infemng.abnormality, then we can use them as “gates” to 
turn this rule off. Systems of roughly this form have been 
studied by Reiter (1980), McDermott and Doyle (1980), Clark 
(1978), and others. 

The circumscriptive approach, developed by McCarthy 
(1980) and his colleagues (Lifschitz 1985; Lifschitz, unpub- 
lished manuscript3), avoids adding new inference rules, and 
instead augments a first-order theory with an axiom that 
expresses the goal to “minimize” some predicate. For 
instance, given an axiom 

(fodl(x)(if(and(bird x)(not(abnoxmal x))) 
(can-fly x))) 

one would want to minimize the abnormal predicate, so that as 
before we can normally infer for any given bird that it can fly. 
To achieve this, we add to the original theory a second-order 
axiom. Let A(abnormal;bird) be the conjunction of all the 
axioms we already have. (It had better be finite.) In the paren- 

’Lifschitz, V. 1986. Pointwise circumscription. Unpublished draft, 
January 16, 1986. 
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thesis following the A we write the names of predicates we 
intend to substitute for. The semicolon separates the to-be- 
minimized predicate (abnormal) from the “variable” predi- 
cates (bird); there may in general be one or more to be 
minimized, zero or more variable. So A (foo;baz) would be the 
same set of axioms with abnormal replaced by foo and bird 
replaced by baz. Given this notation, the new axiom is 

(fOdl(P b) 
(if(and)(A(p;b)) 

(forall(x)(if(p x)(abnormal x))) 
(forall(x)(if(abnormal x) (p x)) ))) 

That is, if p is any predicate that satisfies A (after A has been 
weakened by changing bird) and is as strong as abnormal, then 
abnormal is as strong as p. Another step is now required, and 
that is to plug values in for p and b. Suppose that the only bird 
we know that can’t fly is Clyde. Then A will include the axiom 
about normal bird flight, plus (bird Clyde) and (not (can-fly 
Clyde)). If we plug in p = (lambda(y)(= y Clyde)) and b = 
(lambda(y)(= y Clyde)), then, because A(p;b) becomes 

(and(forall(x)(if(and( = x Clyde)(not( = x Clyde))) 
(can-fly x))) 

(= Clyde Clyde) 
(not(can-fly Clyde))) 

the instance we get of the circumscription axiom is 

(if(and(forall(x)(if(and( = x Clyde)(not( = x Clyde))) 
(can& 4 ) )  

(= Clyde Clyde) 
(not(can-fly Clyde)) 
(forall(x)(if( = x Clyde)(abnormal x)))) 

(forall(x)(if(abnormal x)( = x Clyde)))) 
But the antecedent of this implication follows from A (abnor- 
mal;bird), so we can conclude the consequent, that Clyde is 
the only abnormal object. Hence any other bird (if we can 
show him unequal to Clyde) will be judged able to fly. 

Note how circumscription achieves nonmonotonicity . When 
a new axiom is added to A, the circumscriptive axiom 
changes, and usually some theorem goes away. 

There are two problems with all known varieties of non- 
monotonic logic. The first is that it is often not clear without 
considerable effort what the consequences of a set of rules are. 
The second is that they often fail to achieve the proper “ampli- 
fication”; that is, the rules will have overly weak conse- 
quences. I will label these two problems with the phrases 
“You can’t find out,” and “You don’t want to know.” 

In default logics, the “You can’t‘ find out” problem arises 
because it is in general undecidable whether a formula is con- 
sistent with a theory. In fact, it is even hard to define exactly 
what is meant by the phrase “consistent with a theory,” when 
the theory in question is the one containing the default rules. 
You can’t tell what isn’t inferrable until you’ve inferred every- 
thing, and so we are led to the idea of a “stable extension” or 
“fixed point” of a default theory. Such a fixed point is a set of 
formulas, intuitively a “stable set of beliefs,” which is char- 
acterized by a set of “nonconcluded formulas,” such that 
(a) everything in the fixed point follows from the original 
theory plus the nonconcluded formulas via default inference 
rules; and (b) no nonconcluded formula follows. If Clyde is 
known to be a bird, then (not(abnormal Clyde)) will be one of 
the nonconcluded formulas, and hence (can-fly Clyde) will be 
an element of the fixed point; unless (abnormal Clyde) is also 
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deducible, in which case (can-fly Clyde) will not be in the 
fixed point. Unfortunately, the fixed points and the sets of non- 
concluded formulas are infinite, and in general hard to describe 
or find. 

Circumscription is also hard to use. What all known versions 
of circumscription have in common is this procedure for 
arriving at conclusions: 

-Add second-order axiom to original theory 
-Guess predicate constant to plug in to the axiom 
-Simplify 

This is the kind of procedure we followed in the example. The 
problem with it is that the information added is usually about 
the same size as the conclusions you ultimately want to draw. 
In fact, it usually looks about the same as those conclusions, 
with a few extra lambda’s. 

In principle, circumscription could be used mechanically; 
you could turn a crank and all the conclusions would come out. 
In practice, there is no way to enumerate useful instances of 
the second-order axiom, so circumscription has been used only 
on small examples for which the desired conclusions are 
already known. (In special cases, you can show that circum- 
scription and default logics both reduce to computable 
algorithms, but these special cases are of no interest to us 
here.) Paradoxically, the hopelessly undecidable default logics 
suggest a practical algorithm that actually gets somewhere: To 
verify that p is consistent, try to prove its negation and fail. 
When this procedure halts, it is often a good heuristic approxi- 
mation (Clark 1978). 

The intractability of nonmonotonic logic has led to a curious 
phenomenon. Logicists go ahead and use nonmonotonic con- 
structs, and state in the accompanying text what conclusions 
they hope will follow, without really knowing if they will. At 
this point, it is no longer clear in what sense the reasoning they 
are describing is justified by a formal system. This wishful 
thinking wouldn’t matter much if the wishes came true. Unfor- 
tunately, this brings us to the “You don’t want to know” prob- 
lem: When a nonmonotonic system is studied carefully, it 
often happens that the conclusions the formal system actually 
allows are different from, typically weaker than, what was 
expected. In default formulations, the problem arises because 
the fixed-points described above are often nondnique. Some of 
them are reasonable, but many correspond to sets of beliefs 
that would be rejected by the person writing the original rules. 
(There is no way to eliminate such fixed point by adding more 
default rules; that can only make matters worse.) If a theory 
has several alternative fixed points, what actually can be said 
to be a theorem of the theory? Either theories like this don’t 
have theorems, in which case they can’t serve as the idealized 
inference engine we are seeking; or we are stuck with a weak 
notion of theorem, in which a theorem is something that is 
inferred in all fixed points. Typically this alternative gives us 
disjunctive theorems, where some of the disjuncts are counter- 
intuitive intruders from unwanted fixed pints. We want the 
conclusion p .  but we wind up with p or q, where q is off 
the wall. 

Such overweak disjunctions pop up in the circumscriptive 
versions, too. The phenomenon is somewhat different for cir- 
cumscription, because the notion of fixed point doesn’t play 
the same proof-theoretic role. But we do have a homologous 
idea, the minimal model, defined as follows. One model is 
“smaller” than another with respect to some predicate P if it 
agrees on all other (nonvariable) predicates and its P is a subset 

of the other model’s. A minimal model is one with no model 
smaller. It can be shown that a formula is true in all minimal 
models of A(P; V )  if it follows from the A(P; V) plus the cir- 
cumscriptive second-order axiom given above. 

The overweak disjunction problem now appears in the 
following form. Typically there will be minimal models that 
differ in important ways, such that some of the models are 
“obviously wrong” to a human observer. On the syntactic 
side, circumscription will yield a disjunction, such that each 
disjunct characterizes a class of minimal models. Hence the 
situation is not really that different from the default-logic case, 
except that the disjunctions come about as a consequence of 
the basic machinery, rather than being tossed in as a kludgy 
way of defining the notion of theorem. 

In a recent paper, Hanks and McDermott (1985, 1986) 
explored one instance of this phenomenon in detail. We 
studied a simplified version uf the temporal logic of 
McDermott (1982), which was somewhat more complex than 
the previous nonmonotonic systems that had been studied. We 
were hoping to show that the conclusions we wanted from the 
formal system really did follow. We expected that the 
multiple-fixed-point problem would defeat the default logics, 
but we expected circumscription to work. We were surprised 
to discover that circumscription had the same problem as the 
default formulations, although in retrospect the similarities 
among the various systems seem so overwhelming that the sur- 
prise is lessened. 

The problem for all the logics is that concepts like “mini- 
mization” and “stable sets of beliefs” are just inappropriate 
for the temporal domain. The nonmonotonic rule we wanted 
was (to put it informally) “states of the world tend to remain 
undisturbed. ” All the logics drew conclusions that minimized 
disturbances, but that’s not what we really wanted. Instead, we 
wanted to avoid disturbances with unknown causes. 

What we were trying to state was that a “history” continues 
unless it is explicitly “clipped” by subsequent events. Con- 
sider the following event sequence: 

1. Fred is born 
2. A gun is loaded 
3. Fred is shot with it 

We ought to be able to conclude that Fred is now dead (sony 
for the violence). But another scenario would minimize distur- 
bance equally well. In this one, the gun ceases to be loaded 
before event 3, for no particular reason except to avoid disturb- 
ing Fred’s being alive. 

Since that paper, Vladimir Lifschitz of McCanhy’s group 
has shown‘ that a new idea, “pointwise circumscription,” will 
solve a simplified version of the Hanks-McDermon problem. 
No one knows if it solves the more complex version, let alone 
a realistic set of axioms about physics. No one knows what 
other problems are still out there. But what’s really bothersome 
about this “solution” is that it is even more top-heavy than 
previous versions of circumscription. We will have to know 
the answer, in, which case circumscription will verify it for us. 
In addition, predicates are allowed to be in the class “to-be- 
minimized” on parts of their domains, and “variable” on 
other pans, and you have to supply the information about 
which part is which in the form of an extra relation. 

This kind of solution destroys circumscription in order to 
save it. As with all forms of circumscription, we start with the 

Fred starts to be ALIVE 
Gun starts to be LOADED 
Fred becomes DEAD 

‘See footnote 3 .  
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conclusions that we want to augment our deductive theory 
with, and we find a second-order axiom that will give us those 
conclusions. If the first axiom we pick doesn’t work, we find a 
different axiom. Once the exercise is carried out, we throw the 
axiom away; no one knows how to extract any other conse- 
quences than the ones we were verifying. Under these circum- 
stances, what is the axiom doing for us? In what sense is it 
justifying the conclusions, rather than the desired conclusions 
justifying it? In practice, it would be just as easy to simply add 
those conclusions to the theory directly. This procedure would 
be every bit as nonmonotonic (just change the added ingre- 
dients when the theory changes), and every bit as magic. 

The original goal, of a simple, general extension of classical 
logic that would grind out “obviously correct” conclusions, 
has eluded us. In the case of default formulations, that’s 
because the lures yield nonrecursively enumerable theorems. 
In the case of circumscription, it’s because we have to put the 
answer in before we can get it out. In both cases, the answers, 
when available, are often too weak, although with circum- 
scription we often have the option of switching to a different 
circumscriptive axiom. 

It is important to realize that this crisis does not affect pro- 
grams that reason nonrnonotonically. Almost all computerized 
inference is nonmonotonic and hence nondeductive. That’s the 
problem we started with. What the crisis does affect is our 
attempt to extend deduction slightly to cover “obvious” cases. 
As things now stand, there is no nonmonotonic system that 
justifies the nonmonotonic inferences our programs do. On the 
contrary, what ends up happening is that we have to expend a 
lot of effort contorting the formal systems to duplicate simple 
procedural reasoning. And the effon is a sideshow or after- 
thought to the development of the program; it doesn’t con- 
tribute anything. 

AS I said above, the situation may improve. Someone may 
discover tomorrow the kind of nonmonotonic system we are 
looking for. But for now we must conclude that there is no 
appeal to nonmonotonicity as a way out of some of the prob- 
lems of deduction. 

Doing without deduction 
Let us try to summarize the argument so far. I laid out the 

logicists’ project, to express commonsense knowledge in the 
form of logical axioms. I sketched the justification for their 
project, and pointed out an implicit premise, that a lot of infer- 
ence is deductive. I have argued that this premise is wrong, 
even if logic is extended in various ways. 

With this premise knocked out, how does the original argu- 
ment fare? We can now see that no matter how many axioms 
you write down about a domain, most of the inferences you 
want will not follow from them. For that to happen, you must 
also supply a program. In other words, in most cases there is 
no way to develop a “content theory” without a “process 
model.” (These terms are due to Larry Birnbaum.) A content 
theory is supposed to be a theory of what people know, how 
they carve up the world, what their “ontology” is. A process 
model explains how they use this knowledge. A content theory 
is at Newell’s (1981) “knowledge level,” supposedly inde- 
pendent of how the facts it expresses are to be manipulated. 
What we can now conclude is that content theories are of 
limited usefulness, in the case where the contemplated infer- 
ences are nondeductive. You cannot just start listing facts 
people know, expressed in logic or any other notation, without 
saying something about how you assume they will be used by a 

program, and hence what class of inferences you are trying to 
account for. The only occasion when you can neglect that 
chore is when you can point to an important class of purely 
deductive inferences involving the knowledge. In that case, 
you do know enough about every candidate process model that 
you need say no more. But such classes, it now seems, 
are rare. 

By the way, this point should apply just as much to Lenat 
et al.’s (1986) CYC project as to the logickt project. His group 
has availed themselves of a broader range of tools, and for- 
sworn the discipline of logic, but the same objection presents 
itself How will they know when they are making progress? 

This argument against free-standing content theories has 
unfortunate repercussions on the original argument in favor of 
Tarskian semantics. When there was no program, then denota- 
tional semantics was the only way to specify the meanings of 
our notations. But there is a competing tradition about knowl- 
edge representation, which says that a knowledge-representa- 
tion system is in essence a special-purpose high-level 
programming language. This point of view is explicit in 
descriptions of systems like OPS5 (Brownston et al. 1985) and 
Prolog (Clocksin and Mellish 1981), but it applies to many 
associative nets, too, which are often devices for organizing 
chunks of Lisp code. Actually, OPS5 and Pmlog aren’t such 
great examples, since they are general-purpose programming 
languages. A better example might be a parser-rule notation 
like that of Marcus (1980). The notation expresses “knowl- 
edge” about the syntax of a language, but it has no denota- 
tional semantics. Its semantics areprocedural; a set of rules is 
correct if it makes the parser do the right thing. 

The competing procedural tradition, in other words, is that a 
knowledge-representation system does not actually represent 
anything. This position makes the typical logicist’s hair stand 
on end, because it means acknowledging that the represented 
knowledge is essentially to be used in just one way. It is hard 
to count “ways,” but picture the “same fact,” as needed by 
two different modules, each with its own special-purpose pro- 
gramming notation. The fact would have to be represented 
twice. Surely this is not a pleasant requirement to impose on an 
intelligent program. 

It would be nice if a notation could have both denotational 
and procedural semantics. Nothing prevents this; any logic- 
based notation that is actually used by a program does ips0 
facm have such a dual semantics. (Pure Prolog programs are an 
example.) One is tempted to conjecture the converse, that any 
procedural notation can be translated into an equivalent deno- 
tational notation. Isn’t it just a matter of cleaning up a few 
inconsistencies, and making up some ontology? Unfortun- 
ately, this optimistic assessment is based on a misconceived 
notion of how devices like associative networks are actually 
used. In the minds of some researchers, the notation is sup- 
posed to have a formal semantics of some kind, and there is not 
much doubt that there are equivalent notations that look more 
like traditional logic. But in the minds of most users, the sys- 
tem is a collection of features - demons and whatnot -just 
like a standard programming environment (except, they hope, 
more exotic). Any way of using the features that achieves the 
immediate programming goal is legitimate. There is nothing 
shady about this. For every researcher whose system is mis- 
used, there are ten who would encourage such “creative” use 
of their system. The chances of being able to find a denota- 
tional semantics for any such system are slim. 

Still, this deplorable standard of practice cannot by itself 
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deter us from seeking notations that have both denotational and 
procedural semantics. It’s just that this pursuit now seems to 
lack any rationale. Some people insist that their notations have 
denotational semantics; others (rather more) can’t stand that 
constraint. In spite of what I am arguing here, I still find 
myself temperamentally in the first group. If a student comes 
to me with a denotationless representation, it bothers me. 
Formerly I thought I had an argument to convince him to 
rethink, but now all I have is indigestion. The student can 
always point to his program and claim that it doesn’t draw 
absurd conclusions from his absurd notation. The fact that I 
might draw an absurd conclusion is my problem. 

To take one of my favorite examples, consider a simple fact 
like “The Russians have warships deployed off the US coast.” 
Unless we are willing to resort to “computerdeutsch” predi- 
cates like cumntly-deployed-off-US-coast, a proper repre- 
sentation of something like this will have to express explicitly 
what the US coast is, roughly how many ships there are and in 
what distribution they are found, what period of time is 
implied, and so on and on. But who says that’s “proper”? Any 
particular application program can probably get by with com- 
puterdeutsch. And many eager-beaver notation designers will 
resort to “computerenglisch,” such as 

(have Russians (deployed warships (off (coast US)))) 

which seems even worse to me. But why? If the program 
works, what’s wrong with it? 

Hence, in the original logicist argument, there is a flaw in 
the second step, the claim that knowledge must be represented. 
Although most AI people would assent to this claim, we now 
see that most of them don’t mean it. What they are thinking is 
roughly: We will have to write a lot of programs to get the 
knowledge in, and we will need special high-level notations to 
do it. 

The logicist can take comfort in the fact that his opponents 
have a hard time distinguishing the “high-level’’ programs 
that constitute representations from any old programs. If the 
distinction cannot be made, then all programs could be taken to 
“represent knowledge,” which I take to be the proceduralist 
position in the old procedural-declarative controversy. This 
controversy died because no one was really interested in this 
sense of “represent,” by which, for instance, a vision program 
could be said to represent knowledge about the physics of 
image formation. There seems to be a stronger sense in which 
AI programs manipulate explicit representations of objects and 
facts; denotational semantics provides one answer about what 
that sense is, but we now see how unattractive this answer is to 
many AI researchers. , 

Defending procedures 
It’s not that the logicist never planned to write programs. He 

just expected that by the time they were written they would be 
seen as optimized versions of theorem provers. All that would 
be required to justify those programs would be to show that 
they were faithful to the axioms that underlay them. 

Now that we have rejected this picture, we need new ways of 
justifying inferential programs. AI programs are notorious for 
being impenetrably complex. Sometimes this feature is painted 
as a virtue, as if the mystery of intelligence ought to be pre- 
served in computational models of it. But a model that we 
don’t understand is not a model at all, especially if it works on 
only a handful of examples (Marr 1977; Bimbaum 1986). 

It is probably impossible to make the idea of “justification” 

precise enough to support a claim that every program ought to 
be justified. And yet it is always satisfying when beside a pro- 
gram we can point to a clean, independent theory of why it 
works. In vision research, for instance, it was a major step just 
to move from “heterarchical” models, with their air of 
mystery, to models justified by physics and psychophysi;s. In 
the domain of qualitative envisioning (deKleer and Brown 
1985; Forbus 1984), there is nothing wrong with the programs 
that have been written, but it is clarifying to have Kuipers’s 
(1985) analysis of their meaning and limits. 

But there are large classes of programs that lack any kind of 
theoretical underpinnings, especially those concerned with 
inference to the best explanation, or abduction. It would be 
nice if we could go back to the philosophers and mine their 
wisdom again. Surely if they could come up with such a great 
theory of deductive inference they must have done just as well 
on other kinds, too. Unfortunately, the philosophers have let 
us down. A theory of abduction might start with answers to 
questions like these: 

What sorts of things need to be explained? 
What counts as an explanation? 
What counts as evidence for an explanation? 
How do you measure the strength of evidential support? 
When is evidence strong enough to justify belief in a hypo- 

thesis? 

So far these questions have received only vague, unmechan- 
izable, piecemeal, or ridiculous answers. We have Bayesian 
theories, Dempster- Shafer theories, deductive-normological 
theories, local induction theories, and a lot of arguments about 
which is best, but none of them answers more than one or two 
of the questions above, and none seems entirely correct. 

This state of affairs does not stop us from writing medical 
diagnosis programs. But it does keep us from understanding 
them. There is no independent theory to appeal to that can 
justify the inferences a program makes. One medical diagnosis 
program is better than another if fewer of its patients die in 
clinical trials, I suppose. Actually, what’s really bothering me 
is that these programs embody racir theories of abduction; 
these theories would be the first nontrivial formal theories of 
abduction, if only we could make them explicit. 

There is an optimistic way and a pessimistic way to view this 
situation. The pessimistic view is that A1 researchers are 
merely being naive about their chances, buoyed by simple 
ignorance of the past failures of philosophers. The reason why 
we cannot extract theories from our programs is that there are 
no theories to extract. Fodor (1983) puts this conclusion rather 
grandiloquently at the end of his book f i e  Modularity ofMind: 

Localness . . . is a leading characteristic of the sorts of computa- 
tions that we know to think about. Consider.. .[the] 
contrast . . .between deductive logic - the history of which is, 
surely, one of the great success stones of human inquiry - and 
confirmation theory [i.e., what I was calling abduction theory 
above] which, by fairly general consensus, is a field that mostly 
does not exist. My point is that this asymmetry . . . is likely no 
accident. Deductive logic is the logic of validity, and validity is a 
local property of sentences. . . . The validity of a sentence con- 
trasts starkly with its level of confirmation, since the latter. . . is 
highly sensitive to global properties of belief systems. . . . We 
have, to put it bluntly, no computational formalisms that show us 
how to do this, and we have no idea how such formalisms might 
be developed. . . . In this respect, cognitive science hasn’t even 
started; we are literally no farther advanced than we were in the 
darkest days of behaviorism. . . . If someone - a Dreyfus, for 
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example - were to ask us why we should even suppose that the 
digital computer is a plausible mechanism for the simulation of 
global pmesses, the answering silence would be deafening. 

The optimistic view, of course, is that A1 researchers can make 
much faster progress than all those philosophers because we 
are equipped with “powerful ideas” they didn’t have, espe- 
cially the idea of sophisticated autonomous computation. I 
hope this is right. But if all we do is go on writing programs, 
without any general theories emerging, then I am going to get 
increasingly uncomfortable. 

Conclusions 
To summarize: The logicist project of expressing “naive 

physics” in first-order logic has not been very successful. One 
reason may be that the basic argument was flawed. You cannot 
write down axioms independent of a program for manipulating 
them if the inferences you are interested in are not deductions. 
Unfortunately, very few interesting inferences are deductions, 
and the attempts by logicists to extend logic to cover more 
territory have been disappointing. Hence we must resign our- 
selves to writing programs, and viewing knowledge repre- 
sentations as entities to be manipulated by the programs. 

In many respects this is not a critique of logic per se. When 
you sit down to express a body of knowledge, the notation you 
use recedes quickly into the background. If you are trying to 
develop a theory of shape, the constraints imposed by the nota- 
tional conventions of logic soon dwindle beside the task of try- 
ing to express what you know at all. Hence, as I mentioned 
before, I consider Lenat et af.’s (1986) CYC project to be 
under much the same shadow as the logicists’ project. 

However, there is one respect in which logic is peculiarly 
vulnerable, and that is in its resting on denotational semantics. 
One can accept my conclusions about the futility of formaliz- 
ing knowledge without a program, and yet still, as I do, have a 
strong intuition that it is better for a notation to have a denota- 
tional semantics than not to. One reason for this might be that 
at least a sound semantics helps ensure that the deductive infer- 
ences done by a program will be right; they may be trivial, but 
at least they will not be wrong. 

Another way of justifying formal semantics has recently 
been pointed out by Shoham (1986). Suppose a program 
manipulates a notation, and you can show that the program’s 
conclusions are just those that are true in all A-models of its 
premises, where what an A-model is depends on the class of 
inferences you are trying to capture. If the characterization of 
A-models is intuitively appealing, then you will have provided 
an independent justification for the operation of the program. 
If we plug “minimal model” into the schema, we get a pro- 
gram justified, in a way, by circumscription, excepf that we 
dispense with the circumscription ariom, and just use the 
semantic notion directly. In the case of temporal inference, the 
notion of model we need is different; see Shoham (1986) for 
one proposal. Does this idea apply to a wide variety of types of 
inference? If so, it provides a way of justifying the ontological 
and semantic parts of the logicist project, while, alas, dispens- 
ing with the idea of programless knowledge representation. 

As a tool for studying issues in the semantics and mechanics 
of knowledge representation, logic still seems unsurpassed. I 
have in mind examples like Moore’s (1980, 1985) work on a 
computational version of Hintikka’s logic of knowledge, 
which explained how a thinker can refer to unidentified entities 
whose identities are known by someone else; and Chamiak’s 

( I  986) work explaining “script variables” as Skolem terms. 
The insights these papers provide apply to a variety of reason- 
ing programs. Anyone who ignores them just because they are 
expressed in terms of logic is risking writing an inelegant, 
irrelevant program. 

Finally, I should admit that I am still doing work in the para- 
digm that I criticize here. In the domain of shape representa- 
tion, so little is known that focusing on an idealization cannot 
but help teach us something. The problem I would like to 
tackle is representing the knowledge required to answer ques- 
tions like, Could a paper clip be used as a key ring? The ideali- 
zation I have been forced to fall back on is to prove that a paper 
clip of a certain size and shape could fit through the hole of a 
typical key. It should be obvious how much of the original 
problem this leaves out. Still, the territory is so unexplored that 
a tour through the idealized fragment could turn up something 
interesting. What one cannot hope for is to express as logical 
axioms everything there is to know about using shapes in 
unusual ways, before designing programs for this task. This 
will probably come as a shock to no one but me and a few 
friends. 
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