pUILUTG fetmnt Tl Wunng

Brightware Corporation

introduction describes the-
an solve. Surveying a range of neural-nef
tion and operation of artificial neural systems.
the process of building neural-network appli

deliberately restricted to those that can be easily nmdm'.md and |
the novice practitioner. In some cases, the author describes alter
application, to allow you to compare and contrast their advmmge.id

Organized by application areas, rather than by specific network architects
Building Neural Networks shows why certain networks are more sumble than
specific kinds of problems. Skapura also reviews principles of neural informati
furnishes an operations summary of the most popular neural-network processing mod
the book provides information on the practical aspects of application design, and
topic-oriented chapters on specific applications of neural-network systems. These appl
include networks that perform:
« Pattern matching, storage, and recall
« Business and financial systems
+ Data extraction from images
* Mechanical process control systems
« New neural networks that combine pattern matching with fuzzy logie
‘The book includes application-oriented exercises that further help you see how a neural network
solves a problem, and that reinforce your understanding of modeling techniques. Source c
C) for the network simulations described in the book is av le electronically from
Addison-Wesley (see preface).
About the Author: David M. Skapura is the coauthor, with James A. Freeman, of Neural
L Neiworks: Algorithms, Applications, and Programming Techniques. He is currently employed by
* Brightware Corporation (a spin-off of Inference Corporation), where he works as an applications
nd applications. He is also the
Fand president of Scient Computing, a small Houston consulting firm specializing in
icati 5 pace Information Systems,
tigated the applicability of neural networks to NASA's advanced automation
‘He is an adjunct instructor at the University of Houston at Clear Lake.

‘mation about Addison-Wesley

gopher site or visit our World ” “| I” ‘”w 90000
; 9219

9 1780201153

Building Neural Networks

Building Neural Networks

David M. Skapura

Brightware Corporation
and
Adjunct Faculty, School of Natural and Applied Sciences
University of Houston at Clear Lake

ACM Press
New York, New York

A
vy
Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California «+ New York
Don Mills, Ontario « Wokingham, England + Amsterdam « Bonn
Sydney + Singapore * Tokyo « Madrid * San Juan « Milan « Paris

Excerpt from STAR TREK © 1995 by Paramount Pictures.
All rights reserved. Reprinted with permission.

Quotation from Arthur C. Clarke excerpted from Profiles of the Future and Inquiry Into the Limits of
the Possible, published in 1962 by Harper and Row Publishers, copyright 1962 by Arthur C. Clarke.
Used with permission of the Scovil Chichak Galen Literary Agency Inc.

Sponsoring Editor: Peter S. Gordon

Associate Editor: Helen M. Goldstein

Production Supervisor: Nancy Fenton

Cover Designer: Diana C. Coe

Senior Manufacturing Supervisor: Roy E. Logan

Composition: Windfall Software (Paul C. Anagnostopoulos, Jacqueline Scarlott), using ZzTgX
Project Manager: Diane B. Freed

This book is published as part of ACM Press Books—a collaboration between the Association for
Computing Machinery and Addison-Wesley Publishing Company. ACM is the oldest and largest
educational and scientific society in the information technology field. Through its high-quality
publications and services, ACM is a major force in advancing the skills and knowledge of IT
professionals throughout the world. For further information about ACM, contact:

ACM Member Services ACM European Service Center
1515 Broadway, 17th Floor Avenue Marcel Thiry 204

New York, NY 10036-5701 1200 Brussels, Belgium

Phone: 1-212-626-0500 Phone: 32-2-774-9602

Fax: 1-212-944-1318 Fax: 32-2-774-9690

E-mail: ACMHELP@ACM.org E-mail: ACM_Europe @ ACM.org

Library of Congress Cataloging-in-Publication Data

Skapura, David M.
Building neural networks / David M. Skapura.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-53921-7
1. Neural networks (Computer science) I Title.
QA76.87.5615 1996
006.3—dc20 94-39062
CIP

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Access the latest information about Addison-Wesley books from our Internet gopher site or from our
World Wide Web page:

gopher aw.com

http://wuw.aw.com/

Copyright © 1996 by the ACM Press, a division of the Association for Computing Machinery (ACM).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

123456789 10-MA-99 98 97 96 95

The need for a book such as this one became apparent to me as a result of teach-
ing neural-network theory to computer science graduate students at the University
of Houston-Clear Lake and of advising practicing programmers. As part of that
ongoing experience, I found that most people were able to grasp the concepts un-
derlying the operation of the different networks in fairly short order, but when I
asked them to apply the networks they had learned about toward solving a prob-
lem of their own choice, most of them had a great deal of difficulty constructing
the application. The reason for this difficulty, I discovered, was that the network
theory alone offered the student very little insight into what kind of applications
the network could address, or how to go about formatting the application data for
use by the network.

I then began a search for a book that would complement the theoretical
presentation of neural-network operation with material describing the application
of the networks to real-world problems. To my dismay, I could not find one
that adequately described the process of building neural-network applications.
It seems that those of us who earn our livelihood investigating neural networks
and developing applications that utilize the technology have taken for granted the
development process for new applications. We read about a network architecture
or learning algorithm, and almost without consciously thinking about it, we see
ways to apply the network to some problem we have not yet solved.

However, for the student or practitioner who does not yet have the benefit of
experience working with connectionist models, the process of constructing an ap-
plication is typically the most confusing part of utilizing a neural network. Even
after a semester or two of studying the theory, most students do not fully compre-
hend the potential of a network, nor do they completely understand the limitations
of each of the network models. For the working professional, who may not have
time to attend formal classes in the theory underlying neural networks, the prob-
lem is even more profound.

Thus, anyone interested in learning about the practical applications of neural-
network technology is faced with a quandary: The theory governing the operation
of neural networks can be learned by studying any of the currently available
textbooks, yet learning to successfully apply the technology is usually a trial-
and-error process. It is to the resolution of this quandary that I have dedicated
this book. My own experience teaching neural networks indicates that people
learn best when shown numerous examples of how other people have applied the
technology. If they can relate how a similar problem was solved using a neural
network, the approach for the problem at hand becomes self-evident. The key,

v

vi Preface

then, is to give readers plenty of examples, each in sufficient detail so that the
student can assimilate the information and use the accumulated experience of
others to create his or her own applications.

For this reason, I have written this book as a survey of many different neural-
network applications as described in the literature. While researchers on the cut-
ting edge of neural-network technology will likely find the examples described
in this book simplistic, I have nevertheless deliberately restricted the applications
to those that are easily understandable and recreatable by the novice practitioner.
In almost every case, I have also elaborated on the details of the applications as
they were originally described. I have done so in an attempt to illustrate why the
original authors selected the network they did, to show how the application data
were collected and formatted for the network, and to describe the interpretation
of the output of the network. In some cases, I have described possible alternative
approaches to the same application, to allow the reader to compare and contrast
the different approaches.

This book is organized to allow the reader to examine application areas,
without regard to specific network architectures or learning algorithms. I feel that
this is probably the best method for allowing readers to compare the operation
of the different network architectures, although it does force a certain amount of
overlap in the content of the book. Hopefully, it will also convey an understanding
of why certain networks are better suited to certain kinds of problems than oth-
ers. To accommodate the wide variety of readers I anticipate for this book, I have
divided the text into nine chapters; an introductory chapter to establish the prin-
ciples of neural information processing, a review chapter in which I summarize
the operation of the most popular neural network processing models, a chap-
ter dedicated to the practical issues of application design, and six topic-oriented
chapters. I have attempted to organize the book into a sequence where the in-
formation presented becomes progressively more difficult. However, each of the
last six chapters is devoted to a specific topic that is relatively independent of the
other five topic chapters. Thus, an instructor can tailor the material to suit the
needs of a specific class. Entire chapters may be skipped without fear of missing
background information on which later chapters depend.

For readers who may be unfamiliar with the different application areas de-
scribed by the chapter titles, I offer the following chapter synopses:

* Chapter 1 is an introduction to information processing using neural net-
works. This chapter is intended to provide the reader with the information
necessary to appreciate the operation of the various neural-network models.
Beginning neural-network practitioners should read this chapter without fail,
because much of the background for the remainder of the text is established
here.

¢ Chapter 2 provides a review of the most popular neural network models, with
an emphasis on the practical aspects of the technology. In this chapter, I have
also attempted to show how the various models compare with each other,

Preface vii

because many times the success of an application can be determined based
on the selection of an appropriate neural-network model.

¢ Chapter 3 describes the process of engineering a neural-network application.
In this chapter, I have provided a detailed overview of the critical issues of
data formatting, network training, and performance evaluation. This chapter
concludes with a detailed example of a practical neural-network application.
Readers already comfortable with neural-network theory, but not the prac-
tical issues of application development, should therefore begin their studies
here.

* Chapter 4 begins the discussion of real applications of the technology. In this
chapter, I focus on networks that perform simple pattern matching, storage,
and recall. Networks that exhibit these characteristics are typically used for
applications where the input patterns (those that are presented after training)
are noisy or incomplete.

¢ Chapter 5 contains a survey of business- and finance-related applications,
where neural networks have been used for a variety of purposes, from fore-
casting stocks and bonds future values to performing credit risk assessment.

¢ Chapter 6 presents a survey of applications where the neural network is used
to classify the input pattern presented to the network into one of several
useful categories. Also covered in this chapter are the concepts of static and
dynamic categorization, with example applications of each type.

» Chapter 7 describes applications of the technology where a neural network
is used to extract meaningful information from image data to identify (and in
some cases classify) familiar objects in the images. Most of the applications
described in this chapter also illustrate how multiple networks can be linked
together to perform different aspects of the image-recognition process.

s Chapter 8 focuses on applications where the neural network is used to control
a mechanical process, with special attention paid to issues in robotic control.
Also contained in this chapter is a brief review of process-control theory,
for readers that may not be familiar with the traditional methods of system
control.

e Chapter 9 describes a new type of neural network, combining the pattern-
matching abilities of neural networks with the inexact reasoning power of
fuzzy logic. After a brief introduction to the concepts underlying the oper-
ation of fuzzy-logic systems, this chapter describes the implementation of
networks that may portend the future of neural-network technology.

I expect that the readers of this book will be primarily practicing engineers
in industry who are interested in exploring the practical aspects of this exciting
technology, or upper-level undergraduate or first year graduate students in an
engineering or computer science discipline. Because of the emphasis on practical
applications, this book can be used as part of a self-study program. In that regard,

viii Preface

a strong background in mathematics is not essential to gain the maximum benefit
from this book, although a good understanding of vector and matrix mathematics
should be considered essential when dealing with neural networks.

Readers who are already familiar with the general concepts underlying
neural-network theory can expect to use this book as a guide to developing suc-
cessful applications of the technology. Readers with little or no understanding of
neural networks should seriously consider augmenting the review material con-
tained in Chapter 2 with a more theoretical text book. I highly recommend Neural
Nenworks: Algorithms, Applications, and Programming Technigues, which I co-
authored with Dr. James Freeman in 1991, because many of the ideas contained
in this book originated, in part, from applications built by my students using our
original text.

Because the emphasis of this book is on the practical application of neural-
network technology, I have included a number of application-oriented exercises
interspersed throughout the text. These exercises are designed to encourage the
reader to consider the different aspects of the neural network that contribute to
the successful solution of a problem in the application being described, or to
reinforce the understanding of a technique used to model the application data
for use by the network. In some cases, the solution to the exercises can only be
found through a correct understanding of the operation of the network. For these
problems, I have included an appendix to the book that describes the solution
and how it can be found. In other cases, the solution is a matter of individual
creativity, and a single correct solution does not exist. I must therefore rely on
the class instructor to determine the correctness (or perhaps more correctly, the
appropriateness) of the student’s solution to these exercises.

For those readers interested in the application of neural networks, but
not necesarily in the implementation of the code needed to simulate them,
Addison-Wesley has graciously agreed to provide the reader with access to
source code, written in C, needed to simulate most of the networks described
in this book. Readers may obtain the source code for programs in this book at
http://www.aw.com/cseng/. The reader need only download the code (and,
for example problems, the application data files), compile it using any of the C
compilers available commercially, and execute the program. The availability of
these simulators provides another learning tool for the student, in that many of
the applications described in the text can be recreated, verified, and tested by
the reader, simply by providing the network simulator with the appropriate ap-
plication data file. The network simulators also allow readers to quickly begin
creating and testing applications of their own design by allowing them to concen-
trate on the appropriateness of the network solution, without having to concern
themselves with the correctness of the simulator code.

Finally, there are many measures of success in the publishing industry. Many
people judge the success of a book on the number of sales it produces. Others
have a more qualitative assessment of success—such as how well the material
is presented, or how closely the subject matter maps to a particular curriculum.

Acknowledgments ix

Personally, I will consider this book a success if my readers come away from this
book with a new insight into how neural-network applications can be successfully
developed. T hope that my enthusiasm for the technology carries over to you,
and that some day I will get the chance to read about the successful applications
created by my readers.

ACKNOWLEDGMENTS

This book exists because of the selfless efforts of many people—far too many to
name here. The many students who acted as unwitting guinea pigs when exercises
were tried in class, or those students who worked out the solutions to the in-class
problem sessions contributed more to the quality of this text than they will ever
know. However, there are a few people whose efforts went far beyond the call
of duty, and I would like to formally thank those individuals for their help and
cooperation.

First of all, there are a few of my students whose work was so superlative
that their class projects or thesis work was incorporated as one of the applications
in this text. Jean-Baptiste Enombo developed the concept and the working proto-
type for the prostate cancer recognition application described in Chapter 6 as his
masters thesis research project. Pratibha Rao Boloor and Libin Wu developed the
computer diagnostic application described in Chapter 4 as their in-class project,
and Ms. Boloor went on to incorporate the core of that application as part of her
masters thesis research project.

Next, I owe a great debt to Dr. James Freeman, quite possibly one that I
will never be able to repay. In many ways, Jim’s efforts as mentor, counsel,
friend, and critic contributed significantly to the quality of this text. He taught me
almost everything I know about neural network technology, and, in ways he will
probably never recognize, he pushed me to be better than I thought I was. It was
through my collaboration with him on our first book that I recognized that I really
could write professionally, and that I had something to contribute technically.

Then there are the people responsible for the actual publication of this book:
Peter Gordon and Helen Goldstein, both with Addison-Wesley, decided to take a
chance on an obscure author, and allowed me to solo on this project; Diane Freed,
whose attention to detail makes reading this finished book easy, acted as publica-
tion manager during the production efforts on the project; Nancy Fenton, with
Addison-Wesley, managed the coordination of several different tasks (e.g., the
cover design and the manuscript revisions); Paul C. Anagnostopoulos oversaw
the composition of the book, and Jacqui Scarlott generated the page makeup from
my original LaTeX source files and artwork; my copyeditor, Kathy McQueen,
who no doubt tired of my use of the word “data” instead of “‘datum,” converted
my prose into proper English; and Diana C. Coe, who produced the outstanding
cover art from my disorganized concept. Thank you all.

X Preface

Finally, to Darlene, Danielle, and Devin, my wife and children, and my
parents, Michael and Dorothy Skapura, I only hope that you know how much
your love, support, and patience has meant to me while this book was being
written. Words alone can never completely express my gratitude.

D.M. S.
Houston, Texas

Chapter 1

C O N T E N T

Foundations 7

1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2

Motivation 3

Neural-Network Fundamentals 6
Single Neuron Computations 8
Network Computations 21
Network Simulation 23
Foundations Summary 26
Suggested Readings 26
Bibliography 27

Paradigms 29

2.1
2.2
2.3
2.4
2.5
2.6

Chapter 3

The Backpropagation Network 29

The Counterpropagation Network 42
Adaptive Resonance Theory 46

The Multidirectional Associative Memory 52
The Hopfield Memory 55

Network-Learning Summary 63

Suggested Readings 63

Bibliography 64

Application Design 65

3.1
3.2
3.3
3.4
3.5
3.6

Developing a Data Representation 66
Pattern Representation Methods 71
Exemplar Analysis 77

Training and Performance Evaluation 85
A Practical Example 89
Application-Design Summary 97
Suggested Readings 97

Bibliography 98

Xi

xii

Contents

Chapter 4
Associative Memories 99

4.1
4.2
4.3
4.4
4.5
4.6

Associative-Memory Definitions 100
Character Recognition 101
State-Space Search 110

Image Interpolation 117
Diagnostic Aids 122
Associative-Memory Summary 125
Suggested Readings 126
Bibliography 126

Chapter 5
Business and Financial Applications 729

5.1
5.2
5.3
5.4
5.5

Financial Modeling 130

Market Prediction 137

Bond Rating 143

Predicting Commodity Futures 148
Financial-Applications Summary 152
Suggested Readings 153
Bibliography 154

Chapfer 6
Pattern Classification 1755

6.1
6.2
6.3
6.4

NETtalk 156

Radar-Signature Classifier 161
Prostate-Cancer Detection 171
Pattern-Classification Summary 181
Suggested Readings 181
Bibliography 182

Chapter 7
Image Processing 185

7.1
7.2
7.3
7.4
7.5

Image-Processing Networks 186

Gender Recognition from Facial Images 192
Imagery Feature Discovery 197

Aircraft Tracking in Video Imagery 203
Image-Processing Summary 208

Suggested Readings 208

Bibliography 209

Contents

xiii

Chapter 8
Process Control and Robotics 277

8.1
8.2
8.3
8.4
8.5

Chapter 9

Control Theory 212

Cart/Pole Balancer 221
Bipedal-Locomotion Control 228
Robotic Manipulator Control 234
Control-Application Summary 240
Suggested Readings 241
Bibliography 241

Fuzzy Neural Systems 243

9.1
9.2
9.3
9.4
9.5

Fuzzy Logic 244

Implementation of a Fuzzy Network 252
Fuzzy Neural Inference 260

Fuzzy Control of BPN Learning 267
Fuzzy Neural-System Summary 275
Suggested Readings 276

Bibliography 276

Answers to Selected Exercises 279

Index 283

C H A P T E R

=

Foundations

Any sufficiently advanced technology is indistinguishable from magic.
— Arthur C. Clarke

The publication of the three-volume set titled Parallel Distributed Processing
(PDP) [6] in 1986 marked the beginning of the renaissance in neural-network
technology. Originally a field that predated the digital computer by a decade, and
one that received an enormous amount of attention in the 1960s, neural-network
research dwindled to almost nothing after the publication of Perceptrons [5] in
1969 by Professors Marvin Minsky and Seymour Papert of the Massachusetts In-
stitute of Technology (MIT). In their dissertation, Minsky and Papert analyzed
the operation of the simple two-layer perceptron in great detail. Their analysis
revealed many fundamental limitations of the two-layer, linear-threshold percep-
tron, and they further suggested that these limitations would naturally carry over
into the more complex multilayer perceptron architectures.

In Volume 1 of PDP, Stanford University’s David Rumelhart and his col-
leagues popularized a mathematically sound technique (originally described by
Paul Werbos [7]) showing that multilayer perceptrons could indeed overcome the
limitations Minsky and Papert had found with the two-layer perceptron. More-
over, they popularized the notion that there were other, perhaps more viable
network architectures that could be successfully used to address complex pattern-
recognition applications. The renewed interest in neural networks generated by
the publication of PDP convinced government and independent research organi-
zations to begin again their investigations into the potential of the connectionist
networks. Subsequently, many research papers and textbooks were published de-

_scribing a multitude of variations on the basic connectionist ideas popularized in
PDP. Conferences were organized, and, by 1989, there were at least two profes-
sional societies chartered to act as a forum for neural-network researchers.

By 1991, neural networks had received such an enormous amount of atten-
tion that even people outside the research and development (R&D) community
understood the significance of computers that could /earn new things without

1

2 Foundations

having to be explicitly reprogrammed. As proof of this popular recognition, con-
sider the fact that the main character in the most popular motion picture of 1991
spoke a line of dialogue indicating that his

“CPU is a neural net processor—a learning computer”

—and almost everyone who saw the film understood the technological signifi-
cance of that comment. Currently, the character called “Data” in Star Trek: The
Next Generation is portrayed as an android with the ability to learn via his “neural
net” circuitry.

Yet, with all of the attention that neural networks have received in the last
decade, there are still only a handful of commercially successful applications of
the technology. Many people have heard of neural networks, yet relatively few,
computer professionals and laypersons alike, have any concept of what they are
or how to successfully apply them. Even university students, after having studied
the theory of the technology for a semester or two, usually fail miserably in their
first (several) attempts to build a neural-network application.

Why, then, are people so enthralled with neural-network technology? One
of the primary reasons why neural networks are exciting is because the technol-
ogy offers the promise of computer systems that can dynamically adapt to new
situations. In every other form of programming, all the actions to be performed
by the computing system, and the data structures that define the world model for
the computer, must be explicitly and procedurally declared by a human program-
mer prior to execution on the computer. The programmer is therefore ultimately
responsible for every aspect of the application. If something does not work as ex-
pected (or desired), it is the human programmer that must make the necessary
changes to the application.

In contrast, neural networks only require that an application developer
specify the appropriate network learning algorithm, define an interpretation for
the signals that will be propagated through the network, and provide a set of
application-specific data patterns that collectively represent the desired behavior
of the network. The details of how an input pattern is transformed into an ap-
propriate output pattern are determined by the network itself, which provides an
information-processing architecture that is, by its nature, adaptive. The network
learns the application data patterns by modifying a set of weight values contained
in its internal structure. With each alteration, the knowledge contained by the net-
work is modified. In some networks, a weight modification represents an increase
in knowledge; in others, it represents a modification of the entire knowledge base.
In either case, the ability to adapt to better accommodate new circumstances is
what makes neural-network technology so intriguing.

Unfortunately, this approach to information processing is so radically differ-
ent from the mainstream approach to computer programming that relatively few
people understand the concepts underlying the operation of the neural-network
paradigms that have thus far been defined. Even fewer have a deep understanding
of the operation of the networks, a knowledge that must be considered essential

1.1 Motivation 3

if we are to create successful applications of the technology, and transition it into
widespread, commercial use.

In subsequent chapters, we will review several of the most popular algo-
rithms that govern the operation of the different network paradigms. We shall also
explore how neural networks have been successfully applied to a variety of real-
world problems. However, before we plunge into the details of the networks and
their applications, let us first review some of the reasons why we should consider
the use of neural networks as an information-processing technology, and how we
might go about successfully building neural networks.

1.1 MOTIVATION

Computers are everywhere. It is now virtually impossible to function in modern
society without interacting, in some manner, with a computer-controlled system.
Computers perform most of our banking and financial transactions, they control
the performance of most of our automobiles, they even control the operation of
many of our household appliances. Computer technology is so pervasive that we
have come to accept computers as an integral part of our everyday lives, perhaps
without even realizing the extent of our dependence on them.

Why have computers had such a profound effect on our lives? From a prac-
tical perspective, the answer to this question lies in the old “biggest bang for the
buck” adage. Modern computer technology is inexpensive, reliable, and, from our
human perspective, extremely fast. Today, for example, an 8-bit microcontroller
containing 16,384 bytes of memory (16 KB), that can execute upwards of half
a million instructions every second, can be had for less than $5 each (in quan-
tity). Given such a low cost for so much general-purpose capability, it should be
no surprise to anyone that computers are now integrated into almost every new
electronic control system devised.

However, for all the performance offered by these modern, electronic won-
ders, there remain many types of automation problems that conventional com-
puter systems simply cannot address. These problems can be classified in several
different ways; some are referred to as nonpolynoemial (NP) problems, because
the amount of time needed to solve such a problem, when implemented on a se-
quential processor, increases at a rate that cannot be expressed as a polynomial
function of the size of the problem. Others are called intractable, meaning that
the problems, by their nature, are extremely difficult to cast in terms of the con-
ventional, Von-Neumann computer architecture. Examples of such problems in-
clude weather forecasting; vision and image interpretation; speaker-independent,
connected-speech understanding; and cursive, handwritten character recognition.

It is interesting to note that, with the possible exception of weather forecast-
ing, all of the example application areas cited are things that people do extremely
well. So well, in fact, that, most of the time, we perform these difficult tasks with-
out even being consciously aware that we are solving the problems. Moreover, we

4 Foundations

Figure 1.1 This diagram illustrates the use of video equipment to capture images for
processing by a computer. Visible light is captured by the video camera, which converts
the image into an analog, electrical signal that is transmitted to the video-acquisition
subsystem. This raster signal is then subjected to an analog-to-digital conversion process
that translates each resolvable point in the image into a binary number that indicates the
luminescence (and color mapping, if appropriate) of the pixel. The matrix of digitized
pixels is finally transferred to the computer for further processing.

solve these problems through the use of chemical-based switching components—
‘neurons—that turn on and off at a maximum rate of about 1,000 times per second.
Computers, however, are composed of electronic devices that can switch in ex-
cess of a billion times per second. So, why is it that people can instantaneously
solve these difficult problems if computers that operate a million times faster
cannot?

The answer to this question probably lies in the architectural differences be-
tween the human brain and the computer. The brain, while limited to operations
measured in milliseconds, appears to be able to process a vast amount of infor-
mation in parallel, while a computer, though much faster, usually processes all of
its information sequentially. To put these differences in perspective, consider the
process a serial computer must perform to simulate human vision.

Because a computer has no peripheral devices that can sense information in
the visible spectrum of electromagnetic radiation, we can synthesize the operation
of the human eyes through the use of video equipment. Visible light can be
acquired by a video camera, digitized into a binary form, and arranged into a
matrix of dots (also known as picture elements, or simply pixels) that a computer
can process. Figure 1.1 illustrates just such an arrangement.

However, when the computer processes the digitized image information, it
must, by the inherent structure of the machine, access the image data one pixel
at a time. In order to make any sense of the image data, the computer must
execute a program that somehow attempts to correlate the state of each pixel to

1.1 Motivation . 5

the state of many surrounding pixels. The specific algorithm employed to analyze
the image data, while not necessarily the same as the one we propose here, begins
by scanning the entire image for edges, or areas of high contrast. Having found
all discernible edges, the next step might be to eliminate those edges that do
not abide by certain real-world constraints. Then, after all of the objects in the
image have been outlined, the computer must attempt to fill in the objects by
determining texture or simply identifying which objects might be opaque, which
are translucent, and which are transparent. Finally, after the entire image has been
processed, the computer can then attempt to classify the objects in the image to
categories that are meaningful to the vision application.

Compare that process with how a neural network might process the same im-
age. As depicted in Figure 1.2, a network composed of several layers of simple,
analog processing elements receives the entire image in parallel at the input layer,
after the image has been collected from the image-acquisition subsystem.' The
image data are then distributed to other layers of processing elements by trans-
mitting the information, again in parallel, through a set of weighted connections
that modulate the image pattern. The receiving elements integrate the modulated
input pattern, and respond with a single output signal that indicates the magni-
tude of the input stimulation received by each unit. The output from each unit on
the layer is then propagated forward to the next layer in the same manner. This
process repeats, layer by layer, until the final layer in the network has produced
an output. Ultimately, it is this output layer that the vision-application program
will interpret as the identification of the objects contained in the image data.

Note that, unlike the sequential approach we described for the conventional
computer, a neural network can exploit the parallelism inherent in the video
image. By its very nature, the amount of time needed to completely analyze all
of the pixels in an image pattern is equivalent to the amount of time needed
by a single processing element to generate an output from a steady-state input
pattern, multiplied by the number of layers in the network. The time required to
process an image does not vary with the number of objects in the image, nor
does it change as a result of fluctuations in the ambient lighting. Rather, it is
predetermined by the size and physical implementation of the network. Because
our emphasis in this text is the practical implementation of applications based on
these networks, let us now turn our attention to the computations performed by
the network, to better understand how to go about successfully implementing our
applications.

1. Neurobiology tells us that biological neural systems operate primarily in the frequency domain,
with neural cells being stimulated by repetitive activation of neighboring cells. Our models, however.
operate primarily (although not exclusively) as spatial-pattern classifiers, with patterns being repre-
sented by signal amplitude.

6 Foundations

i
T
T A

Figure 1.2 This diagram illustrates how a layered neural-network structure could

be used to process a video-image pattern. In this diagram, each node in the network
represents a single processing element, and each arc represents a weighted connection. In
this example, each pixel from the display image is interpreted as an input signal to one
processing element on the input layer. Signals from the input layer are then propagated
to all the elements on the subsequent layer through the weighted connections between
the elements. The arrowhead on each arc is used to indicate the normal direction of
information flow through the network.

1.2 NEURAL-NETWORK FUNDAMENTALS

In general, a neural network is a collection of simple, analog signal processors,
connected through links called interconnects, or simply connections. Schemat-
ically, a neural network is represented in the form of a directed graph, where the
nodes represent the processing elements, the arcs represent the modulating con-
nections, and arrowheads on the arcs indicate the normal direction of signal flow.
As shown in Figure 1.3, the processing elements are usually grouped together into
a layered structure known as a slab, or layer, where each processing element on

1.2 Neural-Network Fundamentals 7

0, 0, O3 o,

Figure 1.3 The general structure of a layered, feed-forward neural network is shown.
In this diagram, the signals representing the input pattern vector are applied to the
input connections on the bottom layer. Similarly, output signals from the network are
transmitted to the outside world through the connections from the top layer. For clarity,
we will henceforth omit the input and output connections to the network, because these
connections do not alter the signals applied to them.

each layer performs an analog integration of its inputs to determine its activation
value.

Processing begins with the entire network in a quiescent state. An external
pattern, comprised of a set of signals to be processed by the network, is then
applied to the input layer, where each signal stimulates one of the processing
elements on the input layer. Each processing element on the input layer generates
a single output signal, with a magnitude that is a function of the total stimulation
received by the unit. Collectively, the outputs produced by all of the processing
elements on the layer are then passed on as the input pattern to the subsequent
layer of processing elements. This process is repeated, until the final layer of
processing elements has produced an output for the current input-pattern vector.

While there are many variations on this general neural network processing
model, it is easy to see that the macroscopic behavior of the network is deter-
mined by the microscopic behavior of the individual processing elements. For
that reason, let us now focus our attention on the operation of the processing ele-
ment.

8 Foundations

f (net;)
net;
Wii1 Wio2 Wi3 WigWisWig W
P A T A AN

Figure 1.4 A typical processing element is shown. Notice that each input connection to
the unit has a weighting value associated with it, and that the unit produces a single output
that is transmitted to many other processing elements.

1.3 SINGLE NEURON COMPUTATIONS

Figure 1.4 illustrates the “typical” model of a neural-network processing element
(also known interchangeably as a node, or unit). At its input, the unit behaves
like an analog integrator, where modulated input signals are combined to form an
aggregate input signal to the unit. An important aspect of our typical unit is the
notion that both the magnitude and the polarity of the input signals contribute to
the net input received by a network unit. In this manner, we provide a mechanism
whereby input signals can have a relatively large or small, excitatory or inhibitory
effect on the unit.

In some neural-network paradigms, like the early McCulloch-Pitts [4] model,
units are defined such that a single inhibitory input signal is sufficient to squelch
the output from the unit, independent of the total excitatory input. Because most
of the current neural-network models forego that approach, we will focus our
attention on units that combine their inputs in direct proportion to the stimulation
signal driving the connection.

In a truly analog system, each unit would operate continuously on its inputs.
However, in order to facilitate the simulation of these networks on a digital com-
puter system, we shall model the behavior of the unit as though it operates in
discrete time. As we have already indicated, each unit receives input stimulation
from a variety of other units, with the notable exception of the input layer, which
receives inputs from only one source. In either case, the computation performed
by the unit to determine its input stimulation is almost always the same: The sig-
nal driving each connection is modulated (multiplied) by the weighting value
of the connection, and each modulated input is then integrated (algebraically
summed) by the unit to produce the stimulation signal to the unit.

1.3 Single Neuron Computations 9

The calculations needed to perform the input computation described above
for each unit i in the network at time ¢ are given by the equation

net; (1) = Y wij(t)o;(r) (1.1)
j=1

where the term net; (¢) represents the net input signal to the i % unit in the network,
0;(t) represents the output from the 7™ unit in the network, the term w; ()
represents the weighting value associated with the connection that runs from the
7™ unit ro the i™ unit, and the value n represents the number of other units
connected to the input of the i unit.

Using this model, we can see the similarity between the input computation
performed by the network unit and a vector inner-product computation. Specif-
ically, if we consider the set of input signals to a unit as a vector, o, having
dimension n, and we consider the input connection weight values to the unit i
as another vector, w;, also of dimension #n, then the input calculation performed
by the unit is analogous to the equation

net; =0 - w; (1.2)
= [loll [Iw;ll cos(®) (1.3)

where 0 represents the angle between the two vectors in #n-dimensional Euclidian
space.

At this point in our discussion, it is useful to recall the mathematical implica-
tions of the inner product. As shown in Figure 1.5, the inner product between two
vectors in n-dimensional hyperspace is a measure of the projection of one vec-
tor onto the other. In many of the neural-network applications we will discuss in
subsequent chapters, we will find this vector analogy useful in understanding the
behavior of the network. We shall therefore consider patterns of signal activity
within a network as pattern vectors, and connection weight values to individual
units as weight vectors.

1.3.1 Neuron Activation

Referring again to Figure 1.4, the next step after determining the input stimulation
received by the unit is to convert the input value to an activation value (or simply,
activation). The activation of a unit is analogous to the degree of excitation of the
unit. The stronger the activation, the more likely the unit is to excite (or inhibit)
other units in the network. Typically, a unit determines its activation directly from
its input stimulation, according to the general equation

a; (1) = Fi(a;(t — 1), net;(¢)) (1.4

This formulation allows us to account for the fact that the activation of the
unit is always an explicit function of the net input to the unit at the current time

10 Foundations

ab

Figure 1.5 The projection of one vector onto another is shown. (a) The projection of
vector a onto b in n-space. (b) Orthogonal vectors have an inner product equal to zero,
meaning that no part of one vector projects onto the other. (c) Parallel vectors produce an
inner product that equals the product of the magnitude of the two vectors.

(net; (1)), while also allowing us to account for the fact that it may also depend
on the activation of the unit at the previous time step, as denoted by the a;(t — 1)
term.

In most cases, the activation of the unit is equivalent to the current input;
that is,

a;(t) = net; (1) 1.5)

1.3.2 Activation Functions

Once the activation of the unit is known, the unit produces an output signal that is
related to its activation by a transfer function known as the activation function.
Expressed mathematically,

0i(t) = fi(ai(r)) (1.6)
= fi(net; (1)) 1.7

where Eq. (1.7) is a more intuitive formulation of Eq. (1.6), but is only valid when
Eq. (1.5) holds.

1.3 Single Neuron Computations 1

The specific form of the activation function used by a unit is dependent on
several factors, including

* The type of network containing the unit.
¢ The function being performed by the unit.
¢ The external interpretation of the output of the network.

The networks that form the basis of the applications we will study in all
subsequent chapters share many general characteristics, yet each is also unique in
terms of how it behaves with respect to certain kinds of applications. Because our
objective in this chapter is to establish a strong foundation for the applications-
oriented studies we will pursue in later chapters, we shall begin by focusing on
the basics of neural-network operation.

Because of the important role played by activation functions in the various
neural-network paradigms, we shall now describe the details of the most popular
(and versatile) activation functions.

1.3.2.1 The Linear Unit

The linear unit is a very straightforward processing element—basically, the sum
of everything that comes in to the unit is what goes out. Expressed mathemati-
cally

fl(net; (1)) = net; (1) (1.8)

where the superscript / is used here to indicate the linear activation function.
Units exhibiting this kind of response play several important roles in neural-
network applications, including use as

* Fan-out units, where a single input signal must be distributed unaltered to
many other processing elements. The application of such a device can be
seen in the input layer of the general network structure described earlier in
this chapter.

¢ A linear combiner, where many input signals must be integrated in a coherent
manner. Applications of this device include linear pattern interpolation and
pattern multiplexing.

* An analog output device, where the signal produced by the unit is to be
interpreted by either another network unit or by the outside world as a con-
tinuously variable indicator.

Because of its versatility, the linear function is one of the most often used
neural-network activation functions. We will see many applications of the linear
unit in subsequent chapters, where these units are used in all three of the capaci-
ties described above.

12 Foundations

f(net)

1.0+

0 net.

1

Figure 1.6 The response of a binary-threshold unit is shown. In this diagram, the output
from the unit can be in one of two possible states. The transition region, which is shown
here as the vertical line between the two states, is depicted only to indicate the transition
point between states.

1.3.2.2 Binary-Threshold Units

A binary-threshold unit, as its name implies, is a unit that has two stable states—
essentially active or inactive. The activation function used to impart this behavior
to a unit is given by the equation

1 ifnet;(t) >0
0 otherwise

fP (neti(1)) = (1.9)

where the term 6 is used here to represent the point of transition between the two
states. In many neural-network paradigms, 6 is set to zero, in which case the unit
becomes a polarity detector. If the input activation is positive (greater than zero)
the unit fires, and produces an active output. In any other case, the output from the
unit is inhibited (set to zero), indicating the absence of sufficient stimulation in
the input to overcome the threshold. In Figure 1.6, we have graphed the response
of this activation function with respect to the input stimulation received by the i
unit.

Neural-network units that exhibit this behavior are typically used to detect
the presence (or absence) of features in the input pattern presented to the unit.
For example, consider the binary-threshold unit illustrated in Figure 1.7. Looking
at the weighting values associated with each of the input connections, you can
see that the unit will only respond with a positive output when input signals two
and four are active simultaneously, while input signal three is not active. We can

1.3 Single Neuron Computations 13

0.0 0.3 -0.2 0.2

e / \ N

Figure 1.7 This diagram illustrates how a binary-threshold unit can act as a feature
detector. The operation of the unit is described in the text.

therefore interpret a positive response from this unit as an indication that features
two and four are present in the input pattern, while feature three is absent.

1.3.2.3 Sigmoidal Units

Sigmoidal units operate in a manner similar to the binary-threshold units de-
scribed in the previous section. Like the binary-threshold units, sigmoidal units
produce an output signal that has two stable states and a transition region. The dif-
ference between sigmoidal and binary-threshold units is that sigmoidal units are
mathematically continuous, and therefore differentiable. There are many func-
tions that can be used to model a sigmoidal response curve: The two most com-
monly used formulations are given by the equations

s 1
fi (net; (1)) = mm (1.10)
and
f¥ (et (1)) = %(1 + tanh(Anet; (1)) (1.11)

Eq. (1.10) is the most general formulation for the sigmoidal function, be-
cause we can control both the point of transition and the shape of the curve by
varying the values of 6 and 7. It also has the benefit of being computationally less
expensive than the formulation of Eq. (1.11). However, Eq. (1.11) also allows us

14 Foundations

f (net;)

1.0 T

0.5

net;

Figure 1.8 The response of a sigmoidal unit is shown. Notice the smooth S shape of the
curve. The continuous response exhibited by this activation function makes it a natural
choice for networks that employ the use of derivatives to minimize error.

to control the shape of the curve by varying the independent gain parameter, A.
This function is used in some specialized networks where the gain required must
be determined empirically for the application.

In either case, the response of a unit that utilizes the sigmoidal activation
function is illustrated in Figure 1.8. Notice the similarity between the sigmoidal
function and the binary-threshold function shown earlier in Figure 1.6:

* Both activation functions have two regions where significant variations in
input do not drastically alter the output produced by the unit.

* The width of the transition region in both functions is negligible when com-
pared to the width of the stable regions.

* In both functions, the transition region tends to exist around zero activa-
tion, although it can be shifted left or right by modifying the value of 6 in
Eq. (1.10).

As in the case of the binary-threshold unit, sigmoidal nodes are typically
used as feature detectors and for purposes of pattern classification. In these ap-
plications, the output from a sigmoidal unit is interpreted in the same manner as
an output from the binary-threshold unit: An active output is interpreted as an in-
dication of the presence of a specific combination of features in the input pattern,
while an inactive output usually indicates the absence of those features.

However, do not make the mistake of assuming that a sigmoidal unit is
merely a differentiable form of a binary-threshold unit. The continuous nature
of the sigmoidal function also creates a situation that can cause confusion about
what the unit is actually classifying. To illustrate this point, recall our previous

1.3 Single Neuron Computations 15

f (net))

1.0 +
1=0.1

1=0.5
/
1=1.0

0.5 1

net;

Figure 1.9 The graph of the sigmoid function for different values of t is shown.
Notice that as T approaches zero, the sigmoid becomes deterministic, because there is no
stochastic element to the function value.

discussion of the binary-threshold unit, where we indicated that there were two
valid states for the output signal: an active and inactive state that we could in-
terpret as an indication of the presence or absence of some set of features in the
input pattern. With the sigmoidal activation function, we are allowing a third pos-
sible state for the output of a unit—an undefined state somewhere between active
and inactive.

To clarify this concept, consider again the response curve illustrated in Fig-
ure 1.8. Notice that because the sigmoidal function is continuous, a unit that uses
the sigmoid-activation function can generate any real output value between its
minimum (0.0) and maximum (1.0) limits. Because our objective is to classify the
input into one of two valid states, we shall interpret an output from the sigmoidal
unit that has a value greater than 0.8 as an active output, while we consider an
output value less than 0.2 as an inactive output. Output values that fall between
0.2 and 0.8 will be considered in transition.

Now, consider the output produced by the sigmoidal unit when the entire
input pattern is inactive (numerically zero). Zero stimulation, modulated by any
weighting value, produces zero activation. Yet, zero activation to a sigmoidal unit
produces an output of 0.5, halfway between our valid output states. This kind
of response is counterintuitive, because most of the time we would expect the
absence of all features in the input to result in an inactive output from the unit.

As we mentioned earlier, we can change the effect of the transition region on
the behavior of the sigmoidal unit by changing the value of 7. Figure 1.9 shows
the effect of 7 on the sigmoidal function.

16 Foundations

We will explore the ramifications of this behavior further in Chapter 2, when
we begin our discussions of network paradigms. For now, we shall continue our
analysis of activation functions with a discussion of competitive units.

1.3.2.4 Competitive Units

The outstar [3] is a dynamical unit that, in most network simulations, behaves
like a unique form of the binary-threshold unit. Like the binary-threshold unit,
it typically has only two stable states’—active (which we represent numerically
with a value of one) and inactive (indicated by a value of zero). When active,
the outstar transmits a memory pattern, described by the weight values stored in
the output connections from the unit, to the subsequent layer of units. Similarly,
when inactive, the outstar contributes nothing to the next layer.

By itself, the behavior of the outstar is interesting, but it is not very useful.
A unit that can produce memory patterns has little practical value unless we can
somehow incorporate the ability to selectively activate multiple outstars. We ac-
complish this selectivity by combining the outstar function with another neural
device called, appropriately enough, the instar. The instar complements the out-
star, in that instars are excited only by specific input patterns. Moreover, units on
a layer of instars can compete among themselves whenever a new input pattern is
present. The competition can be thought of as a selection process. By associating
a specific outstar with each instar, and then allowing each instar to excite its cor-
responding outstar only upon winning the competition, we will have constructed
a network capable of storing, and selectively recalling, output memory patterns
that are associated with specific input patterns.

As you can probably tell from this discussion, the process of determining the
winner of the competition occurs locally during the input-activation calculation.
If we were concerned with designing truly analog neural networks, the design of
the network would have to account for the competition among units as part of the
activation of each competitive unit. For the purpose of describing applications,
however, we can account for any conceptual differences between competitive
instars and the general unit through the implementation of the activation function
of the outstar. Also, rather than trying to continue distinguishing the function of
the instars and the associated outstars, we will henceforth simplify our discussion
by referring to the combined function as a competitive unit.

The general form of the activation function used by the competitive unit is
given by the equation

£ (net; (1)) = 1 if net,»(.t) =max{net;(¢)}, 1 <j<n (1.12)
0 otherwise .

2. Being a dynamical unit, the behavior of the outstar is governed by a difference equation that
describes not only the continuously variable output from the unit but the dynamic learning law as
well. We have simplified the discussion of the unit here to illustrate its practical value as a memory
device once training has been completed.

3. Applications that will be, at least initially, simulated on digital computers.

1.3 Single Neuron Computations ' 17

2)(8) (&) (s) = (1)

(b)

D)) (s

Figure 1.10 The process of accessing memory patterns is shown. (a) Unit 1 wins the
competition, and sends its memory pattern to the output layer. (b) When unit i wins the
competition, the output from the network becomes the memory pattern stored in the
connections between unit i and the output layer.

Inspection of Eq. (1.12) tells us that, for all » units on a competitive layer,
only competitive unit i (the one with the largest activation, and therefore the
winner of the competition) will fire, while all the other units on the layer will
remain inactive. By itself, this behavior means that for any input pattern applied
to a layer of competitive units, one unit* will dominate the others and it alone will
generate an active output.

To see how this behavior might be used to perform a useful function, con-
sider the network structure depicted in Figure 1.10. As illustrated in the diagram,
we have allowed a layer of competitive units to feed a layer of linear units. Now
recall the operation of a linear unit: The output produced by the unit is the sum
of all the modulated inputs it receives. If only one competitive unit activates for
any input pattern applied to the layer, the linear units are each receiving only one
active input signal—the one connected to the winning unit on the layer of com-
petitive units—while receiving no activation from any of the other competitive

4. Usually, but not always, a different unit for each different input pattern.

18 Foundations

units. Thus, the layer of linear units has become a pattern multiplexer, produc-
ing an output pattern that is exactly equal to the pattern stored in the connection
weights between the linear layer and the winning competitive unit.

Viewed from this perspective, the connections between the competitive layer
and the linear layer become a pattern memory, each connection storing one
component of one pattern. Using this kind of network structure, with a layer of
n competitive units feeding a layer of m linear units, we have the ability to store
and recall n, m-dimensional pattern memories, each one accessed by activating
one and only one of the competitive units. In several of the applications we
will discuss in subsequent chapters, this type of pattern storage is critical to the
successful operation of the network.

There is, however, another interesting facet to the operation of the competi-
tive unit; namely, linear interpolation. Suppose we were to modify the activation
function of the competitive unit to allow two or more units to win the competition
and generate an output. Suppose, further, that we modified the activation function
for competitive units to make the output from each winning unit proportional to
the activation of the unit with respect to the activation received by all winning
units.

Specifically, let

X={X;|X;eR,1 <i<n}
and
Y={Y|Y;=max{X - Y}, | <i <w,w <n}

where we will interpret X as the set of activations in the competitive layer of n
units, and Y as the subset of X containing the largest w values from X. These
equations, while somewhat confusing in their form, are actually quite simple in
their function: We are simply recursively extracting the largest w values from
X and placing them in subset Y by first eliminating the values already extracted
from X, then finding the largest value in what remains, and adding that value to
the subset Y.

Thus, to achieve the desired interpolation response from the competitive
layer, we merely change the activation function of the competitive units to

: i(t) .
fl(net;(t)) = { re, 7 ifneti() €Y (1.13)
0 otherwise

where

w
nety, (t) = Z Y;
—

1.3 Single Neuron Computations 19

Figure 1.11 Interpolation by competitive units is shown. In this example, units 2 and 5

have won the competition with almost identical activations. The linear units act as pattern
integrators, combining the two pattern vectors being sent from the competitive layer into a
linear interpolation between the patterns.

To illustrate how the interpolation function works, consider the two-layer
network structure illustrated in Figure 1.11. Here, as in Figure 1.10, the layer
of linear units acts as a pattern integrator. The difference in this example is that
now there are multiple competitive units sending pattern memories to the output.
Moreovér, each pattern memory is being attenuated by an output signal that has
been diminished by an activation relative to the total activation from all other
winning units.

In this example, the output produced by the linear units will be a linear
interpolation among the patterns stored in the connection weights that run from
the winning competitive units to the linear units. If the pattern memories stored
in the network represent a continuous mathematical function, the integration of
the patterns represents a linear interpolation among the memory patterns.

We can also view the pattern interpolation as a vector average. As shown
in Figure 1.12, the linear units combine the pattern vectors sent from the com-
petitive layer into a resultant vector that represents the average pattern from the
competitive units. This kind of behavior is very useful when performing best-
approximation applications, where it is desirable to produce an output pattern that
is interpolated between the r output patterns associated with the r input patterns
that most closely match the current input pattern.

1.3.2.5 Gaussian Units

Units that employ a Gaussian activation function are used primarily in applica-
tions where it is desirable to classify input patterns into one of several predefined
classes. Like the other network units that we have already investigated, Gaussian

20 Foundations

Figure 1.12 The interpolation process among pattern vectors is shown. In this diagram,
vectors X; and x; represent the two pattern vectors stored in the output connections from
winning outstars i and j. If unit i wins the competition with a total activation of 0.9, and
unit j finished second with an activation of 0.7, the resultant vector x is

(0.9)X.+(07 |
09+07)% " \oot07)%

units convert their input activation into an output signal by applying an activa-
tion function to the input. Unlike the other types of units that we have studied,
Gaussian units are not necessarily output limited.

Let us now consider the form of a typical Gaussian activation function

net; —1

finet) =e o7 (1.14)

where, as before, net; represents the net input to the unit, and the term o is a
smoothing parameter. The form of this function is shown in Figure 1.13 for values
of net; in the range between —1 and 1.

We can observe from the graph of the Gaussian activation function that there
is a very narrow range of input values that will allow the unit to generate an
active output. In this case, any input value from approximately 0.5 to —oo will be
quickly squelched, while inputs above 0.5 will cause the unit to quickly saturate.
In this manner, the Gaussian unit acts like a filter, allowing only input patterns
that produce activations within a very narrow range to pass, while effectively
cancelling all other inputs.

Consider the behavior of this unit in a neural network. Because each unit on a
layer is typically excited by a number of connections coming from another layer,

1.4 Network Computations 21

0.5 1.0

-1.0 -0.5 0.0

Figure 1.13 This graph shows the form of a Gaussian activation function. Because this
is an exponential function, the output is limited only by the value of the input. Units that

employ this activation function must therefore be designed to ensure that their input value
never exceeds one.

the pattern contained in the input connections to the unit act as a tuner. When
the layer feeding the Gaussian unit produces an output pattern that matches the
pattern contained in the input connections to the Gaussian (in an inner-product
sense), the Gaussian detects the match and generates a signal indicating that
the match occurred. Conversely, when the output pattern from the layer feeding
the Gaussian is significantly different from the pattern contained in the input
connection weights, the Gaussian produces no output, indicating the input was
not successfully matched.

1.4 NETWORK COMPUTATIONS

In the previous section, we saw how each unit in the network behaves. Now,
let us turn our attention to the macroscopic behavior of a network consisting of
these processing elements. In the brief summary that follows, we shall see how,
collectively, a network can perform computations that are beyond the capability
of any single processing element.

As an illustration of network computation, consider the network shown in
Figure 1.14. For the sake of clarity, we shall assume that prior to any pattern
presentation, the network is quiescent. Further, we assume that each processing

element in this example network operates according to the following two-step
algorithm:

1. When an input signal is present, the i unit computes its activation, a; (1),
using Egs. (1.1) and (1.5). Specifically,

22 Foundations

Figure 1.14 This diagram shows how a neural network can be made to perform complex
pattern transformations. The details of this process are described in the text.

n

ai(1) =net; (1) = Y _ wij(1)o;(t) (1.15)

j=1

2. When the activation, a;(), is known, the unit produces an output according
to the activation function

1 ifa;(t)>0.5
0 otherwise

frtai) = |

If we examine the configuration of the network based on the weighting val-
ues of the connections, we now observe several interesting facts about the behav-
ior of the network. For example,

¢ If the input signals are assumed to be binary (0 or 1 only), the units on the
input layer act as noise filters for the input signals. Only input signals that
are above the 0.5 threshold point are admitted. Signals below the threshold
point are eliminated.

¢ The middle, or hidden, layer of units act as feature detectors, activating
only in response to certain conditions at the output of the input layer. In this
example, unit H; detects the condition that either input unit is active, while
unit H, responds only when both input units are active simultaneously.

» The output layer, which, in this case, consists of only one unit, is performing
a logical conjunction between the features detected by the hidden-layer units.

Based on these observations, we can express the output of the network in this
example as a Boolean function of the input signals to the network. Namely,

1.5 Network Simulation 23

ot)=(a(t—=2)+b(t—=2))-(a(t =2)-b(t —2))
=a(t —2)db(t —2)

where the notation o(#) is used to represent the output signal from unit o at time
t. Similarly, a(t — 2) and b(t — 2) are used to represent the input signals to the
network, a and b two time steps earlier. Assuming that we interpret the input and
output signals from this network as binary patterns, we can see that the network
is performing a logical exclusive-or (XOR) operation on its inputs.

Perhaps more importantly, this example illustrates how we can use a neural
network to perform complex functions in parallel. In the XOR network of Figure
1.14, the hidden-layer units are acting as feature detectors. If each processing
element in the network is, in fact, a discrete processor, we can see that the two
units on the hidden layer are operating on the same data® at the same time.
Hence, the amount of time required to detect two features in the input pattern is
equivalent to the amount of time it takes one of the units to compute its activation
and generate an output.

We can extend this notion of parallelism indefinitely. For example, imagine
another network designed to perform a function similar to, but significantly more
complex than the XOR function. Suppose the input pattern vector in this new ap-
plication contains 10,000 input elements, rather than just two. By understanding
the process of pattern propagation through the simple XOR network, we can sur-
mise that a larger network could operate fundamentally the same way. The only
difference between these two example networks is in the complexity of their re-
spective tasks: Rather than detecting the occurrence of only two features in the
input pattern, the larger network can detect thousands of features in the input pat-
tern. Moreover, if each processing element on each layer operates in parallel with
every other unit on the same layer, the time required to detect all pertinent fea-
tures in any pattern is reduced to the propagation time of just one unit.

1.5 NETWORK SIMULATION

If we were to construct networks of analog processors that had variable intercon-
nection weights to communicate information among themselves, the amount of
time needed to completely propagate patterns through the network would be very
short—essentially unit time. In fact, several such devices exist. Some use opti-
cal methods for implementing the interconnections, while others use conventional
electronic schemes. No matter which approach is taken, though, such implemen-
tations are almost always application specific. By committing the interconnection
scheme to silicon (or to volume holograms), the structure of the network itself be-
comes fixed. Often, such a restriction is not an issue once an application has been
completed. In the early stages of application design, however, when the network

5. The output pattern vector from the input layer of nodes.

24 Foundations

is learning the desired behavior, it is almost always necessary to modify (or com-
pletely redesign) a network to achieve better results. Thus, in the early stages of
application development, it is preferable to have a soff network architecture, one
that can be changed rapidly in both network size and learning method.

This desire for flexibility can be accommodated by network simulators—
programs that run on conventional computers that cause the computer to mimic
the behavior of the simple, analog processors that comprise the network. In soft-
ware, the network structure is modeled in memory, allowing easy alteration. The
network paradigm—the algorithm that governs the operation of the processing el-
ements within the network and, ultimately, the behavior of the network itself—is
simply a computer program that is performed repetitiously.

As an illustration of how a software simulator works, consider the generic
neural-network structure depicted in Figure 1.15, and the algorithm needed to
simulate that network structure on a conventional computer:

Locate the input layer structure in memory.
Copy the input pattern into the output of the input layer.
For each layer from the first non-input layer to the output,
For each unit on the current layer,
Set the accumulated input value for this unit to zero.
For each input connection to this unit,
Compute the modulated input across this connection.
Add the modulated input to the accumulated input.
End loop.
Convert the accumulated input to its corresponding output.
Store the output value for the unit in the layer structure.
End loop.
End loop.
Return the output values from the top-most layer structure.

A software simulator for a neural network allows an application developer to
rapidly construct different neural networks, and test the behavior of each network
on specific problems. However, there are also two significant issues that must be
addressed when relying on software for simulating these networks. These issues
are

* Memory consumption. Each connection in the network is usually modeled as
one or more floating-point numbers in the simulation program. At ten bytes
of memory per 80 bit floating-point number, and as many as three floating-
point variables that must be allocated per connection in the network, the
amount of memory needed to construct a neural-network simulation grows
geometrically with the number of processing elements in the network.

e Simulation time. The input to each processing element in the network is nor-
mally computed by performing a floating-point multiply and a floating-point
addition for each input connection attached to the unit. Given the combina-
torial relationship between connections and processing elements, the amount

1.5 Network Simulation i 25

Figure 1.15 The structure of a multilayer, feed-forward network is illustrated. Notice
that the number of connections needed to construct this network grows geometrically
with the number of processing elements in the network. To simulate this structure on a
computer, each connection weight must be stored in computer memory, as must the output
signal produced by each processing element in the network. The algorithm that must be
executed by a computer to simulate the signal flow through the network is described in the
text.

of computer time needed to simulate even rather small networks (networks
containing fewer than 10,000 connections) can rapidly overwhelm the host
processor.

While these issues present a problem for simulating large neural networks,
they are usually not insurmountable—one merely finds a higher-performance
computer on which to run the simulator if the network grows too large. Moreover,
from an application-development perspective, the flexibility attainable through
the use of software usually more than compensates for the problem of finding
a host computer with enough power and online memory to simulate the network.

When an application is completed to the point where no additional “tweaks”
need to be made to the network, the network can be deployed in either its software
form or by migrating the network to one of the previously mentioned neural-
network devices. As a software implementation, the network has the advantage of
being transportable between compatible machines. However, if simulation time is
important in the application, and the network is fairly large, a dedicated neural-
network device, which has the dual benefits of being much faster than software
and lower cost (in large quantities), should be considered.

26 Foundations

1.6 FOUNDATIONS SUMMARY

In this chapter, we have presented an overview of what neural networks are and
how they work. We have discussed a little of how neural networks can help us
solve “difficult” computer automation problems, and shown how the architecture
of the network lends itself naturally to problems that are inherently parallel. We
have seen how the microscopic operation of the individual processing elements in
the network influence the operation of the entire network. We have also explored
some of the practical issues associated with the development of neural-network
applications, including the issues associated with simulation of the network. We
have touched on the concepts of data representation and shown how different
types of neural-network units can be used to implement those representations.
In short, we now have a solid understanding of the fundamentals of neural net-
works.

The only fundamental issues we have not addressed in this chapter are those
related to the algorithms governing the operation of the various network mod-
els. In the next chapter, we shall overcome this deficiency by reviewing sev-
eral of the most popular network paradigms, in order to provide the background
to determine the kinds of problems for which each network paradigm is best
suited.

SUGGESTED READINGS

There are now many excellent books available describing the many different
aspects of neural networks. The PDP set [6] continues to be the “bible” of
neural-network technology. It contains an excellent description of several dif-
ferent neural-network paradigms, and in the process shows how the study of
biological intelligence has led to the development of these neural models. It is
also an excellent resource for the novice practitioner, with software to simulate
several of the network models described in the text provided in Volume III of the
series.

Researchers interested in a comprehensive presentation of the most common
neural-network paradigms, from the perspective of an application developer, are
referred to Neural Networks: Algorithms, Applications, and Programming Tech-
niques [2] by James A. Freeman and David M. Skapura. Another excellent text
describing the theoretical operation of neural networks is Jacek Zurada’s Intro-
duction to Artificial Neural Systems [8]. Finally, for those readers interested in
exploring the subtle details of neural-network operation, and understanding the
behavior of the different networks from a mathematical point of view, James A.
Freeman’s Simulating Neural Networks with Mathematica [1] is an outstanding
work that also provides easy-to-use source code for interactively experimenting
with neural networks from within the Mathematica environment.

Bibliography 27

BIBLIOGRAPHY

1. James A. Freeman. Simulating Neural Networks with Mathematica. Addison-Wesley,
Reading, MA, 1993.

2. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applications,
and Programming Techniques. Addison-Wesley, Reading, MA, 1991.

3. Stephen Grossberg. Studies of Mind and Brain. Reidel Publishing Company, Boston,
MA, pp. 79-88, 1988.

4. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

5. Marvin L. Minsky and Seymour J. Papert. Perceptrons, Expanded Edition. MIT Press,
Cambridge, MA, 1988.

6. David Rumelhart, James McClelland, and the PDP Research Group. Parallel Dis-
tributed Processing, Vols. I-11I. MIT Press, Cambridge, MA, 1986.

7. Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, November 1974.

8. Jacek Zurada. Introduction to Artificial Neural Systems. West, St. Paul, MN, 1992,

C H A P T E R

==

Paradigms

I'm attempting to build a mnemonic memory device using stone knives and bear skins.

— Mr. Spock in Star Trek: City on the Edge of Forever

In Chapter 1, we described the process of propagating pattern vectors through
a general network structure. Throughout that discussion, we assumed that the
networks had been previously configured with the appropriate connection-weight
values to make the network perform the desired input-to-output pattern transfor-
mation. Now that we understand the process of propagating information through
a neural network, the next logical question is How do we configure these networks
with the appropriate connection weights for a given application?

In most cases, the answer is—we do not. It is the network that finds the
appropriate set of connection-weight values to solve the problem.! In so doing,
the network is said to be learning to reproduce the desired transformation.

In this chapter, we shall present an overview of several of the most common
neural-network architectures and learning mechanisms. The material covered in
this chapter is by no means comprehensive; readers interested in a more formal
treatment of the theory underlying these networks are referred to the books de-
scribed in the Suggested Readings section at the end of this chapter. Instead, our
intent here is to summarize the learning methods employed by the most popu-
lar network models in order to convey an understanding of the types of problems
each network is best suited to solve.

2.1 THE BACKPROPAGATION NETWORK

The backpropagation network (BPN), which is also sometimes referred to as a
multilayer perceptron (MLP), is currently the most general-purpose, and (not

1. The Multidirectional Associative Memory and Hopfield Memory being the notable exceptions.

29

30 Paradigms

X

Figure 2.1 This diagram illustrates the process of minimizing the error of a function
through a set of empirical data points. In this graph, the horizontal axis represents the
independent variable, x, while the vertical axis represents the dependent variable, y. The
curve plotted through the graph represents the value of a function f(x), such that the
distance between the value of y for any x and the computed value of f(x) is minimal.

coincidentally) commonly used neural-network paradigm. The BPN achieves its
generality because of the gradient-descent technique used to train the network.

Gradient descent is analogous to an error-minimization process. Error mini-
mization, as the term implies, is an attempt to fit a closed-form solution to a set
of empirical data points, such that the solution deviates from the exact value by a
minimal amount. Figure 2.1 illustrates the error-minimization concept.

The BPN learns to generate a mapping from the input pattern space to the
output pattern space by minimizing the error between the actual output produced
by the network and the desired output across a set of pattern vector pairs, or
exemplars. The learning process begins with the presentation of an input pattern
to the BPN. That input pattern is propagated through the entire network, until
an output pattern is produced. The BPN then makes use of what is called the
generalized delta rule to determine the error for the current pattern contributed by
every unit in the network. Finally, each unit modifies its input connection weights
slightly in a direction that reduces its error signal, and the process is repeated for
the next pattern.

As shown in Figure 2.2, the BPN is a layered, feed-forward network, com-
prised of one input layer, one or more middle, or hidden, layers and one output
layer. Processing elements are usually connected only between layers, and then
only to layers immediately above or below any given layer. The number of pro-
cessing elements on each layer will differ from application to application, as will
the number of hidden layers. Usually, however, there is only one hidden layer,
because the availability of such a layer is sufficient to allow the BPN to form
intermediate representations of the training inputs, which, in turn, allow the net-

2.1 The Backpropagation Network 31

Figure 2.2 The typical structure of the BPN is shown. In this diagram, we illustrate the
use of a bias unit on each layer. The bias unit is a processing element with an output that
is always active (1). In such an architecture, the connection weight between the bias unit
and each unit on the subsequent layer forms an activation that must be overcome by the

remainder of the inputs to each unit—thereby preconditioning the activation of each unit.

work to reproduce the set of desired output patterns for all of the training vector
pairs.

2.1.1 Learning in the BPN

A BPN application begins by creating a BPN structure with a pseudorandom
internal configuration. The network is initially randomized to avoid imposing any
of our own prejudices about an application on the network. Next, we collect a
set of training patterns that are representative of the application we will ask the
BPN to learn. These training patterns can be thought of as a set of ordered vector
pairs {(x1,y1), (X2.¥2), ..., (Xp, yp)} where each x; represents an input pattern
vector and each y; represents the output pattern vector associated with the input
Vector X;.

The process of training the network then proceeds according to the following
algorithm, which is derived as a natural result of finding the gradient of the
error surface (in weight-space) of the actual output produced by the network with
respect to the desired result:

1. Select the first training vector pair from the set of training vector pairs. Call
this the vector pair (X, y).

2. Use the input vector, X, as the output from the input layer of processing
elements.

3. Using Eq. (1.1), compute the activation to each unit on the subsequent layer.

4. Apply the appropriate activation function, which we denote as f(net") for
the hidden layer and as f(net’) for the output layer, to each unit on the

32

10.

11.

Paradigms

subsequent layer. Here, appropriate refers to the one activation function that
is best suited to the function to be performed by this layer of units. The
selection of this function will vary by layer and application.

Repeat steps 3 and 4 for each layer in the network.

Compute the error, 8;k, for this pattern p across all K output layer units by
using the formula:

8% = Ok — ox) f'(net)) @2.1)

h

Compute the error, & o

formula

for all J hidden layer units by using the recursive

K
82}. = f’(net’}) ;Skakj .2)

Update the connection-weight values to the hidden layer by using the equa-
tion

it + 1) = wji(0) + 08 x; 2.3)
where 7 is a small value used to limit the amount of change allowed to any

connection during a single-pattern training cycle.

Update the connection-weight values to the output layer by using the equa-
tion

wij (t + 1) = wy; (1) + 085, f (net)) 2.4)

Repeat steps 2 through 9 for all vector pairs in the training set. Call this one
training epoch.

Repeat steps 1 through 10 for as many epochs as it takes to reduce the sum-
squared error to a minimal value. The calculation of the sum-squared error
is performed for the output-layer units only, across all P training patterns,
according to the formula

P K
E=Y"% "9 2.5)

p=1 k=1

Examination of the algorithm just described reveals that the BPN is learning

to recognize features in the input patterns, and convert the detection of those
features into the desired output pattern, by slowly altering the network connection
weights to minimize the error across all of the training patterns. We can see this

2.1 The Backpropagation Network 33

f (net)

1.0 T f(net)=0.01

f'(net) = 0.25
F(net) =0.01 |

net,—

Figure 2.3 The sigmoidal activation function, showing how the magnitude of its
derivative changes with the amount of saturation, is illustrated.

behavior in the form of the equations that define the error signal at each layer: In
this case, Eq. (2.1) determines the error signal, §%;, for the output layer and Eq.

pk>
(2.2) computes the error signal, 82 i for the hidden layer. We shall first examine
Eq. (2.1).

In computing a value for SZk, we are first taking the difference between the
actual output produced by each unit (of) and the desired output from the unit
(yx). That much is intuitive; error should include some measure of the difference
between the actual and the desired results. However, the role of the derivative
of the activation function is somewhat mysterious. Other than the fact that the
derivative is required as part of the differentiation of the sum-squared pattern
error with respect to the activation of the unit, it also controls the amount of
change allowed at this unit, and, through Eq. (2.2), to units that provide input
to this unit.

To illustrate this concept, ‘consider the sigmoidal activation function, as
graphed in Figure 2.3. Here, we can see that the derivative of the sigmoid has
its largest value (slope) in the transition region. Once the unit has been saturated,
either positively or negatively, the derivative of the sigmoid is almost zero. Hence,
by Eq. (2.1), the derivative is used to control when units are allowed to make rela-
tively large changes to their input connections, because it governs the magnitude
of the error signal at each output unit. Output units that are saturated are very
slow to change, while output units that have inputs that have not yet saturated
them can be strongly influenced by an error signal.

34 Paradigms

Exercise 2.1: Determine the effect of the linear activation function on learning
in a BPN. Will linear units train more rapidly, or more slowly, than sigmoidal
units? m

With respect to hidden-layer units, Eq. (2.2) says that the error signal to a
hidden unit, 82 ;» 18 the product of the derivative of the activation function of the
unit and the weighted sum of the errors at units to which the particular hidden unit
contributed. We have already seen how the derivative plays a role in determining
error; let us now consider the role played by the weighted sum-of-errors in the
computation of the hidden-layer error.

We must first note that, unlike for the output-layer units, we have no a priori
knowledge about what state hidden-layer units should be in to produce the correct
output from the network. Therefore, an error measure with respect to a desired
value has no meaning for a hidden-layer unit. However, we do know what the
error at each output-layer unit is, and we also know that the actual output from
the network is a function of the input stimulation received from the top-most layer
of hidden units. We can therefore infer? a relationship between the error measure
at the first hidden layer and the contribution (through the connection weight) of
each hidden unit to the error at the output layer.

Finally, if we combine the error computation with the weight update equation
for the hidden layer, we see that only connections to active input units are allowed
to be modified significantly. The net effect of the entire process, as we have
illustrated in Figure 2.4, is to reduce the negative effect from active inputs while
increasing the positive effect of units that lead to lower error signals. Thus, the
units in a BPN layer tend to organize themselves in ways that allow them to
recognize features in an input pattern that leads toward the correct output, while
ignoring features that tend to misclassify the pattern.

Exercise 2.2: In all practical applications of the BPN, the hidden layer units use
the sigmoidal activation function, never a linear function. Why is this true? m

2.1.2 BPN Training Issues

In spite of its generality, there are a few issues that any good application devel-
oper must consider when training the BPN. The first is the role that the hidden
layer plays when the network is learning. In most cases, the hidden layer is learn-
ing an internal representation of the input patterns that will enable it to perform
a nonlinear mapping from the input space to the output space. For that reason,
the sigmoid function described in Chapter 1 is employed almost exclusively as
the activation function for a BPN hidden layer.

Exercise 2.3: Consider the operation of a three-layer BPN that uses the linear
activation function for the hidden layer units. Such a network will be unable to

2. And mathematically derive.

2.1 The Backpropagation Network 35

§=038 S

0.1

3
2.0 AN
25 01/ -1.5 -0.2

0.3\ -2.1
2.5 01/ -1.0 0.3

Figure 2.4 The process of changing connection weights to reduce error values is shown.
(a) The initial state of this simple, two-layer network shows input 1 actively contributing

to a large and small error, unit 2 passively contributing to the errors, unit 3 contributing to
a reduction in the errors, and unit 4 passively contributing to a reduction in the errors. (b)
After applying Eq. (2.18), the connection weights have been modified to reduce the error

and reinforce the correct state from the active units, while only minimal changes occur to
the connections from the passive units.

learn training sets that contain exemplars that are linear combinations of other
exemplars, unless the output patterns associated with each are also linear combi-
nations. Why? =

The second most common problem encountered by a novice when training
a BPN is the issue of dealing with binary outputs when training a BPN with
sigmoidal output units. Specifically, the application designer should ensure that
the network is trained to produce output values of {0.1, 0.9} instead of the desired
response values of {0, 1}. Also, we should interpret output values generated by a
sigmoidal unit in the BPN in excess of 0.8 as active (1) and values less than 0.2
as inactive (0) after training has been completed.

The reason for these constraints can be seen with a simple analysis of the
equations governing the behavior of the BPN. In Chapter 1, we described the
function used to compute the sigmoidal response to an arbitrary input value,

36 Paradigms
which we repeat here for reference.’

(2.6)

1
fnete) = -——— e
As we discussed earlier in this section, the derivative of the sigmoid function
with respect to the input to the unit is needed to compute the error signal at the
k'™ output unit. Specifically,

f(nety) = 3f (nety) 2.7)
anety
=or(1 — 0y), 2.8)

where the term oy is used to represent the output signal from the k" output unit.
Inspection of Eq. (2.7) tells us that the derivative of the sigmoid will approach
zero as the output from the sigmoidal unit saturates.

Considering then Eq. (2.1), which governs the computation of the error sig-
nal at the output layer on the BPN, we can see that sigmoidal units that have
saturated always have a very small error signal, even if the actual output (o) is
opposite the desired output (yi). Thus, saturated sigmoidal units in a BPN adapt
very slowly.

We can decrease the training time for such a network by simply limiting
the target value for output patterns to {0.1, 0.9}, thus preventing saturation and
allowing the output units to continue to adapt. Likewise, we can improve the
network’s ability to classify new input patterns after training has been completed
by allowing a margin of error around the actual output. We can interpret output
signals in excess of 0.8 as “close enough™ to the target value of 0.9 in sigmoidal
units, because the output value 0.8 is just above the knee of the sigmoidal curve,
as shown in Figure 2.5.

2.1.3 BPN Production Mode

Once the BPN has successfully learned to replicate all the training output vectors
given any of the input patterns, learning stops, and the connection-weight values
are frozen. To access the information stored in a trained network, we select an
input pattern vector typical of the patterns in the training set, and repeat steps 2
through 5 of the learning algorithm. Essentially, we simply propagate the new in-
. put pattern through to the output. If the input were identically equal to one of the
training input patterns, the BPN will produce the output pattern that was associ-
ated with that input pattern during training, within some small margin of error. If
the input pattern is slightly different from any of the training input patterns, the

3. We have simplified the analysis here by assuming an instantancous pattern, p, is being propagated
through the network.

2.1 The Backpropagation Network 37

f'(net))

15 510 05 00 05 1.0 15 net,

Figure 2.5 This graph shows the relationship between the sigmoidal activation function
and its derivative. Notice that the transition region of the sigmoid is centered at zero, with
the highest rate of change between output values of 0.2 and 0.8. This is why we tend to
classify outputs from a sigmoidal unit below 0.2 as zero and values above 0.8 as one.

BPN will respond with an output pattern that resembles one of the training out-
puts, to a degree that the number of features in the current input pattern match the
features the BPN learned to recognize during training.

When is this kind of behavior desirable? Practically speaking, the BPN is
most useful when you have an application that requires a generalization of the in-
put training patterns into different classifications, or categories. For example, con-
sider the problem of converting written text into phonemes for speech synthesis.
In 1986, Dr. Terrence Sejnowski and his associates showed how a MLP network
could be trained to categorize a sliding window of seven alphabet characters into
a single phoneme in discrete time using an explicit training set containing 2,000
words.* They further showed that the same BPN, after training, could be used to
process words the network had never seen before [9]. This application, like many
of the other applications discussed at length in this book, succeeds because of the
ability of the BPN to identify features in input patterns and produce meaningful
outputs based on the detection (or observed absence) of those features in a new
pattern.

2.1.4 BPN Variants

As we mentioned earlier, the BPN is perhaps the most commonly used neural-
network model, due to its generality. There are, however, numerous variations

4. The NETtalk application mentioned here is described in detail in Chapter 6.

38 Paradigms

Output Pattern

Context Units Input Pattern

Figure 2.6 The structure of the Elman network is shown. The operation of the network
is described in the text. Source: Simulating Neural Networks with Mathematica [3].
Copyright ©1994, Addison-Wesley. Used with permission.

on the standard BPN model, each offering a slightly different, if not better, pro-
cessing model for information storage. While space precludes us from a detailed
description of each of these variations, we shall now briefly summarize several
popular BPN variants, describing the strengths and weaknesses of each model
from an application perspective. Readers interested in an in-depth description of
the operation of the following networks are referred to Simulating Neural Net-
works with Mathematica [3].

2.1.4.1 The Elman Network

The Elman network is essentially a standard, three-layer BPN, except that a
number of context units are added to the input layer. As shown in Figure 2.6,
the context units do nothing more than duplicate the activity of the hidden layer,
at the previous time step, at the input of the network. This variation allows the
Elman network to deal with what we shall refer to as conflicting patterns in the
next chapter.

For our purposes here, we shalt consider pattern conflicts to be simply a one-
to-many mapping; that is, multiple outputs generated from a single input pattern.
Such a condition will confound a standard BPN. The Elman network, however,
deals with such a situation by augmenting the input pattern with the condition of
hidden layer at the previous time step. Thus, the feedback units are essentially

2.1 The Backpropagation Network 39

Output Pattern
Y

State Units Plan Units

Figure 2.7 The architecture of the Jordan network is shown. Notice that the feedback
in this network is not only from the output layer to the state units on the input layer but
also between the state units themselves. The operation of the network is described in
the text. Source: Simulating Neural Networks with Mathematica [3]. Copyright ©1994,
Addison-Wesley. Used with permission.

establishing a context for the current input, allowing the network to discriminate
between “identical” input patterns that occur at different times.

2.1.4.2 The Jordan Network

The Jordan network is essentially a modified Elman network, in that both net-
works extend the input pattern with feedback to distinguish between similar input
patterns. However, as shown in Figure 2.7, the Jordan network obtains its feed-
back from the output layer, instead of the hidden layer. Also, unlike the Elman
network or the BPN, the Jordan network provides interconnections between state
units on the input layer.

The Jordan network is designed to learn sequences of patterns, in that the
feedback from the output layer not only serves to set the context for the input
pattern but also establishes the output of the network at the previous time step as
part of the input. In this manner, the Jordan network is quite useful in applications
where the pattern vectors that must be learned are related to each other in a
specific time sequence.

40 Paradigms

Fax) fAx) f (X) Fr(xm), f AXm)eeefn(Xm)

Functional Links

X X m
Figure 2.8 The input layer of the FLN is shown. In this diagram, each element of

the input pattern, x, passes through a functional link before it is distributed to the next
layer in the network. In this model, all n components of the modified input are received
by each unit on the subsequent layer. In effect, this version of the FLN increases the
dimension of the input pattern by a factor of n, which increases the likelihood of having
unique patterns at the hidden layer, thereby allowing the FLN to more easily discriminate
between similar exemplars. Source: Simulating Neural Networks with Mathematica [3].
Copyright ©1994, Addison-Wesley. Used with permission.

2.1.4.3 The Functional-Link Network

The functional-link network (FLN) is almost identical in form and operation to
the BPN. The only difference between the two paradigms is in the operation of
the input layer. In the BPN, and most of its derivative networks, the input pattern
is distributed unaltered through the input layer. In effect, the input layer in the
BPN is nothing more than a fan-out layer. In the FLN model, the operation of
the input layer is modified to include a functional link, which allows the input
layer to modify the input pattern before distributing it to the hidden layer of the
network. Figure 2.8 shows the conceptual model of the input layer in the FLN
paradigm.

There are two types of modifications that the functional links can perform
in the FLN architecture: the functional-expansion model, which produces mul-
tiple data elements from a single input through the application of a set of pre-
defined functions, and the tensor model, which multiplies certain components
of the input pattern together. The primary benefit to the FLN is that the number
of processing units needed to learn the application is significantly reduced over
the equivalent BPN model. In fact, it is often possible for an FLN to learn an

2.1 The Backpropagation Network 41

Output Units

? L ? Input Units

Figure 2.9 A typical PNN architecture is shown. In this network, the number of
pattern units always equals the number of exemplars in the training set, while the
number of summation units equals the number of groups into which the input pattern
can be classified. Notice the selectivity of the connections between the pattern layer
and the summation layer. The operation of the network is described in the text. Source:
Simulating Neural Networks with Mathematica [3]. Copyright ©1994, Addison-Wesley.
Used with permission.

application without a hidden layer, which is needed to encode intermediate repre-
sentations in the BPN.

2.1.4.4 The Probabilistic Neural Network

The probabilistic neural network (PNN) is related to the BPN primarily in struc-
ture. As shown in Figure 2.9, the structure of the PNN is a layered, feed-forward
network, just like the BPN. The primary difference between the PNN and the
BPN is in the operation of the units in the network. In the PNN, we implement
a Bayesian decision strategy for classifying input vectors. This behavior is pro-
vided by using a Gaussian activation function on the pattern layer, combined with
the operation of the summation units. The pattern units operate by computing the
inner product of the input pattern vector and weight vector to each unit, just as in
the BPN. Here, however, we must ensure that the input vector has been normal-
ized prior to presentation to the network.

In essence, the network operates by summing the outputs from all pattern
units, which, because of the Gaussian activation function, serve to classify the
input patterns into classes. Thus, the PNN is actually computing the a posteriori

42 Paradigms

probability distribution function for a single class, evaluated at the point defined
by the input pattern. This behavior is useful in classification applications, where
we want to estimate the likelihood that a new pattern is a member of any of our
predefined classes.

2.2 THE COUNTERPROPAGATION NETWORK

The counterpropagation network (CPN), as originally defined by Robert Hecht-
Nielsen [7] is a network that learns a bidirectional mapping in hyperdimensional
space; in other words, it learns both a forwardmapping (from rn-space to m-space)
and, if it exists, the inverse mapping (from m-space back to n-space) for a set of
pattern vectors. Interestingly, the complete CPN learns both of these mappings
simultaneously. In most practical applications, however, we are only concerned
with the forward-mapping operation. We will therefore restrict our discussion of
the CPN to the forward mapping half of the network, and henceforth use the term
CPN to refer to the feed-forward half of the complete network.

The architecture of the CPN is illustrated in Figure 2.10. Notice that, unlike
the general neural-network architecture we have already seen, the CPN has ex-
actly three layers: an input layer composed of a number of (primarily) fan-out
units; one hidden layer, containing a set of competitive units; and a linear-output
layer. In the discussion that follows, we shall deliberately ignore the dimension
of all three layers in the network, because the number of units needed will vary
from application to application. What will not vary is the learning process used
by the CPN to store pattern vectors, which we shall now describe.

2.2.1 The CPN Learning Process

Initially, a CPN constructed to perform a specific application will know nothing
about the application: The connection weights in the network will be in an ini-
tialized state.> We start the learning process by collecting a set of exemplars, or
training patterns, that collectively define the entire application. Because we want
the CPN to perform a vector-mapping function, we define our training patterns
to be an ordered set of vector pairs, {(x1, y1), (X2,¥2), ..., (Xp, ¥p)}. The CPN
then learns to produce y; given x; by adapting itself according to the following
algorithm:

1. Randomly select any training pair, (X;,y;), from the training set. Call these
vectors the current training vector pair, (X, y).

2. Normalize the input vector, X, by dividing every component of x by the
magnitude of the vector, where we compute the magnitude by

5. The exact state of the connections can be precisely defined at initialization. A good explanation for
how the initial connection weights are determined for a CPN can be found in several of the texts listed
in the Suggested Readings section of this chapter.

2.2 The Counterpropagation Network 43

Figure 2.10 The architecture of the CPN is shown. In this diagram, we have unwrapped
the five layers of the network to show the signal flow as a feed-forward network.

The details of the operation of this network are described in the text. Source: Neural
Networks: Algorithms, Applications, and Programming Techniques [2]. Copyright
©1991, Addison-Wesley. Used with permission.

2.9)

3. Using the normalized input vector as the output from the input l'ayer in the
CPN, compute the activation to each unit on the competitive hidden layer by
using Eq. (1.1).

4. Determine the winning unit on the competitive layer by selecting the unit
with the largest activation. Call this unit W.

5. Adjust the connection weights between the winning unit and all n input-layer
units according to the equation

Wiwn(t + 1) = W (t) + a(x, — Wwn (1)) (2.10)

where the term « is a small constant used to limit the amount of change to
the connections.

6. Repeat steps 1 through 5 until all p input patterns have been processed once.

7. Repeat step 6 until each input pattern is consistently associated with the
same competitive unit. Note that some input patterns may be exclusively

44 Paradigms

associated with one competitive unit, and sometimes several patterns will
cause the same unit to win.

8. Select the first vector pair in the training set. Call it the current pattern.
9. Repeat steps 2 through 4 for the current training pattern.

10. Adjust the connection weights between the winning unit and all M output-
layer units according to the equation

WmW(t + 1) = WmW(t) + ﬁ(Ym - me(f)) (2°11)

where the term f is used to limit the amount of change to the output connec-
tions.

11. Repeat steps 9 and 10 for each vector pair in the training set.

12. Repeat steps 8 through 11 until the difference between the desired output, y;,
and the weight vector w,, is reduced to an acceptably small value.

Now that we know the mechanics of learning in the CPN, let us consider
the qualitative aspects of the learning algorithm. First, from inspection of the
algorithm, we observe that input vectors to the network are normalized prior to
propagation to the hidden layer. The reason for the normalization is not intuitive,
until you consider the process of computing activation in a competitive unit. Re-
call that each competitive unit computes an input value, net;, using a process that
is analogous to computing an inner product between vectors. We have already
ensured that the input vector to the competitive layer, X;, is normalized. If we
further ensure that the input weight vectors to each hidden layer unit, w;, are
normalized,” Eq. (1.3) tells us that each competitive unit will receive an input
stimulation that exactly corresponds to the cosine of the angle between these two
vectors in Euclidian space. Thus, in the CPN, hidden-layer units compete for the
right to adapt their connection weights (and later produce an output) based on
how closely their input-weight vectors match the current input vector in direction
only. This process is illustrated in Figure 2.11.

The output connections from the hidden layer in the CPN are adjusted in a
manner similar to the adjustment made to the input connections. However, notice
that the competitive training occurs first in the algorithm. The reason for this sep-
aration is to ensure that all of the input training patterns have successfully been
categorized by the competitive units. Once all of the input patterns are correctly
classified (by being associated with a particular, competitive unit), training the
network to produce the correct output is simply a matter of adjusting the connec-
tion weights from the appropriate winning unit such that

6. Here, as with most neural-network models, the definition of the term acceptably small is applica-
tion specific, and must be determined by the developer.

7. Input-weight vectors are normalized to the competitive layer. The process by which this normal-
ization occurs is a function of the interaction between the initialization of the connection weights and
the adaptation process, described by Eq. (2.10).

2.2 The Counterpropagation Network 45

W2 s

Figure 2.11 The process of matching patterns in Euclidian space is shown. In this
diagram, the vector x represents the current input to the network, while vectors w; and
w, each represent a weight vector to two competitive units in a CPN. Because all vectors
are normalized, unit 2 wins the competition because X is closer to w, in an inner-product
sense than it is to w;. the new value of w, is the vector w’z‘, which has been adjusted
toward x.

* If the winning unit is uniquely associated with a single input pattern, the
output pattern associated with that input pattern is exactly encoded into the
output connections to the linear layer.

* If the winning unit is associated with more than one input pattern, the output
pattern encoded into the connections to the linear layer is the vector average
of the output patterns associated with the inputs categorized by that compet-
itive unit.

2.2.2 CPN Pattern Recall

After all of the training patterns have been successfully encoded in the CPN,
learning stops and the network is then used exclusively in its production mode. In
this mode, new input patterns are applied to the network, and the CPN is expected
to return an appropriate output pattern vector. In the case of the CPN, appropriate
means that the network should produce the exact pattern (y;) associated with the
input pattern (x;) that most closely resembles the current input pattern.

The process by which the CPN performs this function is through the inter-
action between the competitive units and the linear-output units; when the CPN
is learning, a new input pattern is normalized and propagated to the hidden layer.

46 Paradigms

The hidden-layer units compete for the right to fire, based on how closely the
normalized input pattern matches the pattern vectors stored in the input connec-
tions to each competitive unit. The one unit with the strongest activation® wins
the competition, and it stimulates the memory pattern stored in its output connec-
tions. The linear units serve to either multiplex the outputs from the competitive
outstars or integrate the outputs from multiple, winning outstars, depending on
the behavioral mode of the network.

Exercise 2.4: Consider the use of a CPN in an application to determine the
parity bit of an eight-bit binary input pattern. Is the CPN the best choice for such
an application? Justify your answer by relating the behavior of the CPN to the
behavior of a BPN trained to perform the same application. m

Because of this behavior, the CPN excels in applications that require exact
(or interpolated) output patterns from noisy input patterns.

2.3 ADAPTIVE RESONANCE THEORY

The adaptive resonance theory (ART) networks, and most of the networks derived
from the basic ART architecture, were developed by Stephen Grossberg, Gail
Carpenter, and colleagues at Boston University as part of an attempt to resolve
what they called the stability-plasticity dilemma [5] common in most neural-
network paradigms.

As an example of this dilemma, consider how a BPN is used when con-
structing a neural-network application. After collecting pattern data about the
application domain, the BPN is placed in a learning mode where the training
vectors are encoded by the network. Once the network has converged to a so-
lution, training stops and the BPN is used in its production mode to perform the
application. If new application data patterns are later acquired, the BPN must be
completely retrained using the expanded training set, because attempting to re-
train the BPN using only the new patterns will result in the network forgetting
previously learned patterns.

Exercise 2.5: Why does the BPN forget previously encoded patterns when re-
trained only on new exemplars? m

Grossberg and his colleagues set out to develop a network that could adapt
itself to store new information when presented with previously unseen patterns,
yet remain stable enough to retain previously learned patterns without corrupting
them. Additionally, they wanted to show how a neural network could solve such
a problem, and remain biologically plausible. The resulting network architectures
were called ART1 and ART2. The only real difference between them, aside from

8. Which is also the unit that has an input-weight vector most closely aligned in Euclidian direction
to the current input vector.

2.3 Adaptive Resonance Theory 47

the relative increase in complexity in the structure of the ART2 input layer, is that
ART] is restricted to binary input patterns while ART2 can handle continuously
variable inputs.

Before we begin our discussion of the ART networks, however, you should
be aware that these networks are fairly complex dynamic systems. Grossberg
has developed a set of equations for the networks that simultaneously endow
them with the desired behavior and effectively replicate functions observed in
biological systems. For our review, however, we shall simplify the discussion
by presenting a qualitative overview of the operation of the networks. Readers
interested in the theoretical details governing the operation of the ART networks
are referred to the Suggested Readings section at the end of this chapter.

2.3.1 ART1 Operation

The ART1 network consists of two layers of processing elements, labeled F; and
F,, each fully interconnected with the other. The units in layer F; also have lateral
inhibiting connections, so that competition can be accommodated. As illustrated
in Figure 2.12, ART1 also requires two additional functional elements called the
gain control and orienting subsystem. The purpose of these elements is to guide
the network toward an appropriate solution to the pattern-matching problem.

A concept fundamental to the operation of ART1 is the notion of memory.
In the ART1 network, memory can take two forms: Short-term memory (STM) is
the term used by Professor Grossberg to refer to the activation patterns in each
layer, while long-term memory (LTM) refers to the information stored in the
connections between layers.

With this background in mind, let us now consider how information is pro-
cessed in the ART1 network. As in the case of the BPN, the network is initially
stimulated by the application of some pattern vector from the outside world.
Unlike the BPN, where input-tayer units are simply fan-out units, ART1 prepro-
cesses the input vector, i, to compensate for the bias from the gain control.? This
processing, which is performed automatically by the activation function of the F;
layer units, amounts to a prescaling that ensures that the outputs produced by the
F\ units remain binary, even though they also receive input from the gain-control
unit.

After preprocessing, the Fi-layer units produce an output vector (x) that
simultaneously stimulates the F»-layer units and the orienting subsystem (r).
At this point, the stimulation on r is such that i and x both cancel each other,
effectively inhibiting the reset function produced by r. The units on layer F, then
compute their activation using the by-now familiar sum-of-products calculation
described by Eq. (1.14). As with the hidden layer in the CPN, the F5 layer in the
ART]1 network is competitive.

9. All units in the ART1 network are constructed such that activation can only occur if any two of the
three possible inputs are active. This restriction is referred to as the two-thirds rule.

48 Paradigms

F2
Gain \ Orienting
Control Subsystem

Figure 2.12 An example of an ART1 network structure is shown. In this diagram, solid
lines represent excitatory connections and dashed lines represent inhibitory connections.
Source: A connectionist approach to heuristically pruninglarge search trees [S]. Copyright
©1990, by David M. Skapura. Used with permission.

At this point, we should note that the competition performed in the ART1 F;
layer is slightly different from the competition implemented in the hidden layer in
the CPN. Whereas the competitive layer in the CPN used normalized pattern vec-
tors, the ART1 F, layer uses the full magnitude of the pattern vectors to compute
their activations. Hence, we can see that the F>-layer units are competing with
each other using the entire projection'® of the input pattern on their connection-
weight vectors as the basis for their competition.

If we further note that the patterns stored in the bottom-up connections that
run from layer F| to layer F> are memories of STM patterns seen previously by
the F-layer units, it then becomes evident that the F>-layer units are performing
a coarse pattern match between the current STM pattern, X, and the long-term
memories of patterns previously seen. Thus, during each pattern propagation
cycle, the F>-layer units are competing with each other based on the degree of
match between the current STM pattern at F| and the LTM pattern stored in the
bottom-up connection weights to the F>-layer units.

10. As compared to just the direction of the vectors, as in the CPN.

2.3 Adaptive Resonance Theory 49

For now, we shall assume that the F unit with the largest activation is the
unit that has learned to recognize the specific input pattern vector (although, as
we shall see, that is not always the case). That unit is declared the winner, and
activity on all other F, units is inhibited. We accomplish this by applying the
competitive activation function, given by Eq. (1.12), to all F>-layer units.

Having found a candidate match, the F, layer can now be viewed as a com-
petitive layer, in that the winning unit activates a memory pattern stored in its
connections back to the F layer. The units on the Fj layer then begin process-
ing the feedback pattern from F,, comparing the memory pattern (which we shall
call x*) with the activity pattern, x, generated by F). If the two patterns match,
the reset signal is again inhibited and the network enters its resonant state where
the F, memory reinforces the input.

If, however, the memory pattern sent back from F, does not match the x
template, the new activity pattern on F; will cause the orienting subsystem to
activate, sending a reset signal back to the F layer. This has the effect of forc-
ing any currently active F unit into a long-term inhibition state, thus preventing
the unit from again matching the x template on the next iteration (note that it
has no effect on any inactive unit). With all F, units off (due to a memory mis-
match), the entire process is repeated until a matching pattern is found or all F»
units are reset, in which case a new F, unit is encoded with the pattern to be
stored (x).

Notice that in the scenario just described there is no separation between
learning and production modes. The ART1 network processes information in the
same way any time a new external stimulation is provided. If the external pattern
is one that the network has already learned, it will quickly recall and reinforce that
pattern. If the input represents a previously unseen pattern, the ART1 network
will extend itself to encode that new information by adding a unit to the F, layer
and encoding the new information in the connections between this new unit and
all Fy layer units. Thus, ART1 behaves like an extensible pattern memory, starting
out knowing nothing about the world, and rapidly expanding as it learns about its
application environment.

2.3.2 ART2 Operation

Macroscopically, ART2 is virtually identical to the ART1 network in the way it
operates. The only real difference between the two networks is in the operation
of the Fy layer. The structure of the F layer in ART2 is composed of seven sub-
layers, each with units that directly connect to corresponding units on other sub-
layers. The purpose of these sublayers is to allow the ART2 network to process
analog, continuously variable inputs. The network accomplishes this goal by im-
plementing the behavior described by the following equations for each sublayer:

50 Paradigms

w; = I; + au; (2.12)
o (2.13)
Xji=—— .
e+ wll
vi = f(x;) + bf(qi) 2.14)
i (2.15)
uj = .
e+l
pi=u; + Z g(yjzij (2.16)
J
Pi
i = (2.17)
RPN Y
uj +cpi
rp=—— (2.18)
llull + llcpll

where the term e is used to represent a small constant value to prevent division
by zero. While these equations may make the operation of the ART2 F| layer
clear to the reader with a strong mathematical background, it is equally important
that we illustrate the operation of the layer from a practical standpoint, because
many readers will likely want to employ the use of the ART2 network for some
application.

First, you should note the various feedback paths provided in the structure of
the F| layer, as shown in Figure 2.13. Specifically, feedback exists between the
u and w sublayers, and between sublayers q and v. This feedback structure in-
dicates that signals must propagate completely through the F) sublayer structure
at least twice in order to ensure that the layer is operating as it is intended: once
when the input pattern is first applied, while all of the sublayers are quiescent,
then again to allow the sublayers that receive feedback to process the feedback
signals.

Now let us consider the function of each sublayer in ART2. We shall begin
by stepping through the pattern propagation process in the F layer structure as
though the network were processing a new input pattern. We therefore assume
that the initial state of each sublayer in F) is inactive, and that there is no active
pattern being propagated downward from layer F;.

From Eq. (2.12), we can see that each unit on w produces an output signal
that is, initially, just the input received by the unit from the external source. Sub-
layer x then normalizes the input vector received from w, as shown by Eq. (2.13).
Next, sublayer v performs a contrast enhancement on the normalized input vec-
tor, effectively filtering out any pattern component that does not significantly
affect the direction of the pattern vector. This behavior is shown in Eq. (2.14),
where the term f (x;) performs the filtering function. The contrast-enhanced, nor-
malized pattern is then propagated to sublayer u, where it is re-normalized and
buffered for presentation to sublayers p and r.

2.3 Adaptive Resonance Theory 51

Reset to F, Output to F,

2

Input Pattern

Figure 2.13 This diagram illustrates a typical structure for the ART2 F; layer. In this
structure, the seven sublayers that comprise the ART2 F layer act to buffer the input
pattern (w), normalize it (X), contrast enhance it with feedback from the output of the
layer (v), normalize the enhanced input pattern and hold it for comparison with the LTM
pattern sent back from F, (u), buffer the output of the F| layer and hold the LTM pattern
from F; (p), and normalize the output pattern prior to feeding it back into the contrast
enhancer (q). The sublayer r replaces the single unit in the orienting subsystem of the
ART! network, allowing the internal pattern at the u sublevel to be compared component
by component with the LTM pattern sent back from F», seen at p, which becomes the
equivalent of x*.

Now things start to get interesting. Sublayer p buffers the output pattern
vector from sublayer u for propagation to layer F, and sublayer q, and simul-
taneously provides a comparison pattern for sublayer r, which controls the re-
set function for the network. Sublayer q then normalizes the output pattern, and
buffers it for feedback to sublayer v. At this point, all sublayers on F) are active.
Because the patterns received by sublayer r from sublayers u and p are identical,
reset is inhibited. In a real network structure, the output from sublayer p would
then be propagated forward to layer F>. Simultaneously, the F| layer would itself
be changing its state, due to the introduction of the feedback signals.

Because this network is currently implemented in software only, we can sim-
plify the signal propagation process by ignoring the pattern propagation to F»
until the Fy layer has stabilized. Thus, we now begin the second pass of signal
propagation through the Fj-layer structure. Sublayer w produces a new output

52 Paradigms

pattern, based on the feedback it receives from sublayer u, which is the contrast-
enhanced form of the input. The feedback loop from u to w then serves to am-
plify the significant components of the true input pattern, while squelching the
components that were filtered out during the first phase of pattern enhancement.
Similarly, sublayer v receives feedback from sublayer q, which serves to enhance
the components of the internal pattern that are actually propagated to layer F5.

We should also observe that, as described by Freeman and Skapura [4], the
form of the function f(q;) controls the contrast enhancement performed by sub-
layer v, with logistic functions (such as the sigmoid, or other rapidly transition-
ing functions) providing a very sharp pattern enhancement. Likewise, a linear,
or other gradual activation function, on sublayer q will provide a soft contrast
enhancement in the F layer. In any case, after the second phase of pattern en-
hancement has completed, the output from the p sublayer can be propagated to
the F layer to stimulate a memory retrieval competition, as we described in the
ART1 network.

Once F, produces an output, the memory stimulated by the winning F, unit
is fed back into the F) layer for pattern comparison. We can see this behavior
in Eq. (2.16), where the function g(y;) is nothing more than the output from
the competitive F, layer. Thus, the final output produced by sublayer p is the
combination of the normalized output vector (which is still buffered as the output
from sublayer u and the memory stored in the top-down connections between the
winning F, unit and the F) layer.

When F; activates its memory pattern, sublayer r is provided with two pat-
tern vectors for comparison: the normalized output pattern from the F; layer, as
represented by the output from sublayer u, and the memory stimulated by the
propagation of the input pattern to the F» layer, as provided by the modified out-
put of the p sublayer. If these two patterns compare favorably, reset is inhibited,
and the network enters its resonant state. If the two patterns do not compare, the
reset signal is activated by the r sublayer, and the pattern propagation process
starts anew, just as in ART1.

Applications of this network include systems that must perform complex pat-
tern classification and recognition. The ART networks also form the basis of sev-
eral other networks designed to perform visual pattern recognition: A network to
detect boundaries in computer vision applications (the boundary-contour system
[5]) and a motion-detection network, also applicable to computer-vision applica-
tions [1].

2.4 THE MULTIDIRECTIONAL ASSOCIATIVE
MEMORY

All of the networks described to this point share the attribute of learning about
an application through repetitive exposure to example patterns taken from the
application domain. In this section, we shall consider a network paradigm that
performs complex, multidimensional pattern transformations after being initial-
ized with connection weights that are computed ahead of time for the desired

2.4 The Multidirectional Associative Memory 53

application. To simplify the discussion, we shall first consider the operation of the
bidirectional associative memory (BAM), [8] which performs a two-way map-
ping between pattern spaces. We then extend the discussion to include networks
that perform a mapping function among multiple pattern spaces.

2.4.1 The Bidirectional Associative Memory

As in our previous discussions, we begin our examination of the BAM with a
description of the type of function we desire the network to perform. The BAM is
designed to perform a simultaneous mapping between two vector spaces, which
we will refer to as x and y. Specifically, let our training!! data consist of a set of L
ordered vector pairs, {(X1, y1), (X2, ¥2), (XL, y1)}, withx; € R?, and y; € R™.
Then, we can describe the desired behavior for the BAM in the following manner:
Given any pattern vector from the training set, x;, the BAM will produce the
corresponding y; as output and, conversely, will produce the appropriate x; from
its associated y;.

If we make the further restriction that all x; vectors form an orthonormal set,
we can construct an interpolative associative memory by defining the weight
matrix, W, for the interconnections from the x layer to the y layer as

L
W=>"yx (2.19)

i=1

Similarly, the connection weights from the y layer back to the x layer are simply
the transpose of W.

In this context, an interpolative associative memory is a device that performs
a mapping, ¢, from x to y such that (x;) =y; if x; is a member of the training
set, and, if presented with an arbitrary x, ®(x) = y; if X is closer'? to x; than it is
to any otherx;, j =1,2,..., L.

The network architecture needed to perform this type of function is shown
in Figure 2.14. Here, as with the ART networks, the BAM consists of two layers
of units, with the output from each layer fully interconnected with the units on
the other layer. Activation patterns, x and y, are accessed through the external
connections to the network.

By combining the standard computation for the activation of units given by
Eq. (1.4) with an activation function for units in the BAM given by

+1 a;(t)>0
f@@®)={a@t-1) a@)=0 (2.20)
-1 a;(t) <0

11. The word training is used here only to indicate that the application data embody the desired
mapping. As mentioned previously, no iterative learning occurs in this network.

12. The concept of closeness is relative to how patterns are compared by the network. In'the BAM,
closeness is measured in terms of Hamming distance.

54

Paradigms

78
A

<2

e\
Vi

W

X
SXA

Figure 2.14 This diagram illustrates the structure of the BAM. Notice that the
connections between layers are shown as bidirectional connections, indicating that the
units on each layer communicate directly with all units on the other layer.

we will have constructed a processing model that behaves like the interpolative
associative memory, described previously. To illustrate the operation of the net-
work, consider the following algorithm:

1.

After initialization of the weight matrices, apply an initial input vector to
either (or both) the x and y layers in the BAM. Use a —1 to represent the
inactive state, and a +1 to indicate the active state of the units.

Propagate the input pattern to the other layer (or, in the case when both inputs
are present, select either x or y as the initial source) using Eq. (1.1).

Compute the new activation pattern at the destination layer by applying
Eq. (2.20).

Propagate the new activation pattern back to the source layer, again using
Eq. (1.1).

Update the activation on the first layer by applying Eq. (2.20).

Repeat steps 2 through 5 until the activation patterns stop changing in both
layers.

In my earlier text [4], we provide a detailed mathematical analysis of the

operation of the BAM, and show why it will always converge to a stable con-
figuration. Without going into that level of detail here, we can conceptualize the
operation of the BAM by drawing an analogy between the iteration of activation
patterns between layers in the network, and the process of minimizing an energy
(or Lyapunov) function in a dynamical system. Using this analogy, we can de-

2.5 The Hopfield Memory 55

scribe the configuration of the network (given by the connection-weight matrix)
as an energy landscape. The initial state of the system, specified by the input pat-
tern vector(s), describes a point on the energy landscape. If the input vector(s)
match one (or both) of the training vectors, the starting point is one of the energy
minima. If, however, the input vector(s) differ from the patterns in the training
set, the starting point is a point of higher potential on the energy landscape.
Successively iterating the new pattern between layers lowers the energy in
the system, and, eventually, the network settles into a state where the activation
in each layer of units represents either the best match input pattern and its associ-
ated output, or the complement of those patterns. Because the connection weights
in the BAM remain unchanged after initialization, we can now see that pattern
matching and associative memory recall is accomplished in the BAM by mini-
mizing the Lyapunov function defined by its connection-weight matrix, starting
from a point on the energy landscape determined by the input pattern vector.

2.4.2 Extending the BAM

Using the BAM architecture as a starting point, Masifuma Hagiwara [6] of Keio
University described a straightforward method for extending that architecture into
a multidirectional associative memory (MAM). Figure 2.15 depicts several pos-
sible configurations of such a network, with the interconnection-weight matrices
defined between each combination of two layers in the same manner as they were
defined for the BAM.

The algorithm for accessing the information stored in such a network is the
same as for the BAM, with the addition of the extra steps necessary to account
for all of the layers in the MAM. One benefit of extending the architecture to
allow MAM mappings is to improve the performance of such a system in the
face of noisy input patterns. In the BAM, for example, it is possible to settle in
a minimum energy state that recalls the complement of the training patterns. That
possibility is reduced by the addition of the extra layers, because each additional
layer provides a feedback mechanism to every other layer. Figure 2.16 illustrates
this performance enhancement by comparing the ability of a BAM and a three-
way MAM to accept a noisy input and convert it into the appropriate pattern.

2.5 THE HOPFIELD MEMORY

A recurrent network is one in which feedback connections are implemented be-
tween layers. In its simplest form, a recurrent network has feedback connections
only from the output layer directly back to the input layer. The BAM is an exam-
ple of such a network. However, there are multilayer recurrent-network models
that allow feedback between all layers; that is, a hidden layer will provide feed-
back to the input layer, and the output will provide feedback to the hidden layer.
The common denominator in all multilayer recurrent networks is the function of

56 Paradigms

(a)

Figure 2.15 Several possible configurations for the MAM are shown. In each case, the
connection-weight matrix between layers is defined in exactly the same manner as the
connection-weight matrix was defined for the BAM. (a) A three-way associative memory.
(b) A four-way associative memory.

the feedback connections—they are used as a state indicator, endowing the net-
work with the ability to anticipate its next state from its current state. Figure 2.17
illustrates the general form of a multilayer recurrent network.

The Hopfield memory (named for its inventor, Professor John Hopfield) is a
unique implementation of a recurrent network. Unlike the BAM and multilayer
networks that we have already studied, the Hopfield memory is constructed with
only a single layer of units. In this arrangement, each unit receives a direct input
signal from an external source, and feedback from every other unit in the network.
A typical Hopfield network is illustrated in Figure 2.18.

Inspection of the architecture of the Hopfield memory suggests the behavior
of such a network: An external pattern is provided as an initial input, which the
network then iterates (in discrete time) until it stabilizes in a particular state. At
each time step, the activation of each Hopfield unit is dependent on the initial
input and the feedback received from all other units.

2.5 The Hopfield Memory 57

MAM Layers BAM Layers

X Y y4 X Y
OOmEOE 00000 OOEO COEEOE 00000
EORCOR OOOOC0 OOESC EOROOE OO0O0O0
OOoOOE 00000 OO0 2~ OOO0OCOE 00000
EOOROC OOOOC OOWO EOCOEOO OO0O0O0

(a) omOoOmm OOO0O OOEMO 2 OEOOEE 00000
EECECO 00000 OO0 2 EEOROO 00000
EECO00 00000 ERO000 00000
EOROO0 EORO0O

OoOom00 Ooooo oomo gommoo oooog
OOmOE0 00000 oomo OEEORO 00000
OmO0o0Om Ooomo oomo EOOOONE OONED
(b) OmOOOE OEEEO OOmo EOO0000 OmOON
ONEEEE EOORO OON0 EREROO OmO00
OEO00m EOOEO O0Om0O EOOO0OR OROON
OoEOoOm OmEm0 OEOOEO OONE0
OomoOoom m]]| | [m]m]

Figure 2.16 The ability of a MAM and a BAM to recall patterns stored in their internal
connection-weight matrices is shown. (a) The initial input, shown as the activation pattern
on layer x, is intended to represent the bit map of the character “A,” corrupted with an
error probability of 44%. (b) The three-layer MAM settles into a steady-state solution
that shows the correct pattern, while the BAM converges into a false recollection state.
Source: Multi-directional associative memory [6]. Copyright ©1990, Lawrence Erlbaum
Associates, Inc. Used with permission.

2.5.1 Recurrent Signal Propagation

Before we consider the operation of the Hopfield memory, let us first investi-
gate the process of recurrence in neural networks. We shall begin by looking
at the propagation of signals through a single layer, feed-forward network. As
illustrated in Figure 2.19, such a network takes an input pattern vector, i, and
produces an output pattern vector o by propagating i through its internal con-
nections and transforming the resulting activations through the application of an
activation function. The process of computing the output pattern is analogous to
a vector-matrix multiplication. We can represent the computation performed by
this simple network mathematically as

o(t) = I'[Wi(1)] (2.21)

where I'[-] represents the application of the activation function to each compo-
nent of the vector produced by the vector-matrix multiplication between the input
pattern i(¢) and the weight matrix W.

Specifically, let

58 Paradigms

Figure 2.17 This diagram illustrates the architecture of one type of recurrent network.
In this diagram, we have borrowed the z~! notation from mathematics to denote a discrete
time-step delay. The operation of this network is similar to the operation of the BPN,
except that connections from the feedback units in the output layer are provided directly
to the respective input units in the network. Notice that feedback connections are matched
1:1 between input and output units, not fully interconnected like the normal units on each
layer.

wii w2 o Wip
w3 w22 e W2p

W= . . . (2.22)
Wi Wm2 -+ Wpyp

Now, given an input vector i(r), the function performed by the operator I'[-] is de-
scribed by a vector-matrix multiply, followed by the application of the activation
function to each component of the resulting activation vector.

Equation (2.21) describes the general process of computing an output from
an input performed by a layer of network units. However, because we are now
dealing with recurrence, we must consider the operation of the network in dis-
crete time. At every time step, 7, the input received by a unit is the combination
of the original input vector, i(r), and the output produced by the layer at an ear-
lier time, as seen through the feedback connections to the unit, o(r — 1) W. For
the purpose of simplifying our analysis, we shall consider the delay to be equiv-
alent to a single time step, which is also the amount of time required by each
unit to compute an output from the current input. Such a network is depicted in
Figure 2.20.

2.5 The Hopfield Memory 59

-
] /
] i
] N
(X X]
\ \

Iy 1o I3 Ig4 I,

1|

|

t—
I

1T

Figure 2.18 The architecture of the Hopfield memory is shown. In this diagram, we
have eliminated any feedback connections from each unit to itself. The operation of this
network is described in the text. Source: Neural Networks: Algorithms, Applications, and
Programming Techniques [2]. Copyright ©1991, Addison-Wesley. Used with permission.

o(to(t (t O (1) = o(t)

ey

YW W

AAES O

Figure 2.19 A neural-network model illustrating the analogy between network
computation and a vector-matrix multiplication. The details of this computation are
described in the text.

We assume that, prior to receiving any external input, all units on the layer
are quiescent. When the first input pattern arrives at time fo, the total input re-
ceived by a unit is restricted to the external input, i;(zy), because

60 Paradigms

0,(t) out) ogt) o

Ladd. e

e wow

=X X[—x*

[N

(1) L44=1) 1481 (=1

Figure 2.20 A recurrent neural network illustrating the delay required by the feedback
from the output is shown. To distinguish between the external input, i(t), and the net input
received by each unit (including the feedback signals), we will refer to the net input as

x(1).

[x(t0)] = T'[i(t0) + WY] (2.23)
=T[i(10)]

Using this model, we can describe the processing performed by a recurrent
network as a series of state transitions. At time ¢, the output from the network
is determined only by the input pattern. Feedback from the output is delayed until
the next time step. At each subsequent time step, the output from the network is
given by

o(t) =T [Wx(- 1)] (2.24)

where the input vector is the recurrent function of all previous time steps. The
dependence of the network on the initial input becomes evident if we expand Eq.
(2.21) to an arbitrary time step ¢,

o(t1) = T'[Wx(t)]
o(r2) = T'[WTI'[x(10)]]

o(t) =T[WI[...T[Wx(@{)]...1] (2.25)
where, according to Eq. (2.23), x(f) = i(tp).

2.5 The Hopfield Memory 61

This processing model summarizes the operations performed in an iterative
recurrent-network, such as the Hopfield memory, but obviously is not appropri-
ate for all recurrent-network models. In fact, the Elman and Jordan networks
described earlier in this chapter do not operate iteratively at all; rather, these re-
current networks rely on the fact that the feedback units are in a stable state prior
to any forward pattern propagation. That being said, let us now consider the op-
eration of the Hopfield memory.

2.5.2 Signal Propagation in the Hopfield Memory

To put the operation of the Hopfield memory in practical terms, we should note
the similarity between this network and an analog electrical circuit with feedback.
As shown in Figure 2.21, the Hopfield memory can be implemented as a series of
sigmoidal amplifiers providing feedback to each other through resistive elements.
The inputs to the amplifier are not perfect: Each has a resistive-capacitive (RC)
component that must be considered. Inspection of the electrical model indicates
that every unit in the network receives an input that is the combination of the
external input and the feedback signals from all other units, minus the leakage
that must occur across the input resistor. Thus, we can write the computation
performed by each unit in the Hopfield network at each time step as

n .
Au,' = Zw,-jvj — %L + ii At (2'26)
=1

where the term v; represents the output from the j th unit at the previous time step,
and 7 is the system time constant.'3

The Hopfield memory is similar in structure to the single-layer network we
examined in the previous section, with only the interconnections between each
unit and itself eliminated. Thus, the weight matrix (W) for the Hopfield memory
is described by

0 wp - wp
w O Py w

w=| 2 .2" (2.27)
Wm1 Wm2 - 0

By substituting this new matrix for W in Eq. (2.23), we can see the similarity
between the computation performed by the Hopfield memory, as described in Eq.
(2.24), and the computation performed by a general recurrent network. In the
Hopfield memory, the activation at each time step for every unit in the network
is determined by the external input to the unit (i;) and the weighted sum of the
feedback to the unit from all other units. Moreover, the feedback in the Hopfield
memory, and hence the output at any time ¢ > 0 is a recurrent function of the

13. From the analogy to the analog RC electrical circuit indicated earlier.

62 Paradigms

NN 2
cip lclp | lc %p
+{ | To other
? ¢ —— amplifiers
\J\
% ? From other
lifi
I I I3 amplifiers
.R1n

Figure 2.21 The electrical model illustrating the structure of the Hopfield memory

_is shown. In this diagram, the solid dots represent weighted connections, as shown in
detail in the exploded view. Because resistors always have positive values, we instead use
inverting amplifiers to model the inhibitory connections. Note that there is no feedback
between any unit and itself in this arrangement. Source: Neural Networks: Algorithms,
Applications, and Programming Techniques [2]. Copyright ©1991, Addison-Wesley. Used
with permission.

original input. Given this processing model, there are only two outcomes that can
be reasonably expected: The network will either oscillate between output states
forever, or will eventually settle into a stable pattern that is reinforced by the
feedback in the network. Obviously, the desirable situation is to have the network
stabilize. But how can we guarantee that it will?

The answer to that question is in the form of the connection-weight matrix.
Mathematically, if the weight matrix is symmetric, convergence is guaranteed.
The issue, then, becomes one of ensuring that the connection weights in the
Hopfield memory are configured appropriately for the specific application.

2.5.3 Connection-Weight Initialization

The Hopfield network, like the BAM and MAM networks described earlier, is
initialized to perform a specific application, rather than adapting its connection
weights during a learning period. Unlike the BAM and MAM networks, however,
the connections in the Hopfield network are initialized to values that numerically
describe an energy function that is defined specifically for the application. The

Suggested Readings 63

classic example of the Hopfield network is the “Traveling Salesperson” (TSP)
problem, which is described at length in [13] and [4].

In essence, the connection weights in the Hopfield network are selectively set
to ensure that only certain units are active at any given time. This is accomplished
by setting the feedback connections between each unit and its neighboring units
such that an active output from one unit tends to inhibit its neighbors. Because
feedback is provided between all units in the network, and all other units, we
can guarantee that the weight matrix is symmetrical by simply ensuring that the
feedback connection weight between any two units, which we shall arbitrarily
refer to as A and B, is the same as the feedback connection between B and A.

Thus, by initializing the network connection weights, instead of allowing
the network to find its own weighting values, we ensure that the network will
converge to a solution. In Chapter 8, we shall investigate an interesting variation
on the Hopfield memory, which allows the connection weights to be adapted to
improve the performance of the network over time.

2.6 NETWORK-LEARNING SUMMARY

In the previous sections, we have described several different methods for deter-
mining the connection-weight values needed to produce a neural network that
will solve a particular problem. In so doing, we have (hopefully) conveyed the
idea that each network paradigm has its own quirks and foibles, determined by
the structure of the particular network, the learning process employed by the net-
work, and the method by which units compute their activation values. The point
of this discussion was to show that there are many different kinds of neural net-
works, and that each has a very particular kind of problem that it is designed to
solve. The misuse of a neural-network paradigm is very often the reason why ap-
plications fail. Now that we are armed with an understanding of the internals of
the various neural-network paradigms, we can begin to better determine which
networks are most appropriate for a particular problem.

SUGGESTED READINGS

There are a number of excellent textbooks that describe the detailed operation
of the various networks we have discussed in this chapter. For those interested
in the underlying algorithms, as well as understanding how to go about writ-
ing programs to implement the simulations of these networks on conventional
computers, an excellent text is Neural Networks: Algorithms, Applications, and
Programming Techniques by James A. Freeman and David M. Skapura [4]. An-
other excellent book describing the operation of these and various other network
paradigms, as well as many applications of the technology is Introduction to Arti-
ficial Neural Systems by Jacek Zurada [14]. For those interested in exploring the
variety of data representation schemes used to address specific applications, the
series of books edited by Branko Soucek and The IRIS Group [15-17] presents

64 Paradigms

an outstanding compilation of papers describing the implementation of neural-
network applications on a variety of computer platforms. Of course, the pro-
ceedings of any of the major conferences on neural networks, such as the IEEE
Conference on Neural Networks or the INNS World Congress on Neural Net-
works, always contain an excellent cross section of the theory and application of
the technology.

BIBLIOGRAPHY

1. Gail A. Carpenter and Stephen Grossberg. Invariant pattern recognition and recall by
an attentive self-organizing ART architecture in a nonstationary world. In Maureen Caudill
and Charles Butler, editors, Proceedings of the IEEE International Conference on Neural
Networks. San Diego, CA, pp. 11(727-735), June 1987.

2. Gail A. Carpenter, Stephen Grossberg, and Courosh Mehanian. Invariant recognition of
cluttered scenes by a self-organizing ART architecture: CORT-X boundary segmentation.
Neural Networks, 2(3):169-181, 1989.

3. James A. Freeman. Simulating Neural Networks with Mathematica. Addison-Wesley
Publishing Company, Reading, MA, 1994.

4. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-
tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,
MA, 1991.

5. Stephen Grossberg. A neural model of attention, reinforcement, and discrimination
learning. International Review of Neurobiology, 18:263-327, 1975.

6. Masifuma Hagiwara. Multi-directional associative memories. In Proceedings of the
International Joint Conference on Neural Networks, pp. 11(3-9), Washington, DC, January
1990.

7. Robert Hecht-Nielsen. Counterpropagation networks. In Maureen Caudill and Charles
Butler, editors, Proceedings of the IEEE International Conference on Neural Networks.
San Diego, CA, June 1987. :

8. Bart Kosko. Bidirectional associative memories. IEEE Transactions on Systems, Man
and Cybernetics, 18(1):49-60, January-February 1988.

9. Terrence J. Sejnowski and C. R. Rosenberg. Parallel networks that Iearn to pronounce
english text. Complex Systems, (1):145-168, 1987.

10. Branko Soucek, editor. Fast Learning and Invariant Object Recognition. John Wiley,
New York, 1992.

11. Branko Soucek, editor. Fuzzy, Holographic and Parallel Intelligence. John Wiley,
New York, 1992.

12. Branko Soucek, editor. Neural and Massively Parallel Computers. John Wiley, New
York, 1988.

13. David W. Tank and John J. Hopfield. Collective computation in neuronlike circuits.
Scientific American, 257(6):104—114, December 1987.

14. Jacek Zurada. Introduction to Artificial Neural Systems. West Publishing Company,
St. Paul, MN, 1992.

C H A P T E R

Application Design

The journey of a thousand miles begins with one step.
— Lao-Tsze

In the first two chapters of this book, we discussed how neural networks operate
microscopically and macroscopically. We have seen how all neural-network mod-
els share certain operational characteristics, such as the distribution of knowledge
throughout the network structure, and the massively parallel operation of the sys-
tem. The most important characteristic shared by all of these networks, however,
is that they all perform some useful information-processing function that can be
exploited to solve other problems.

However, simply knowing how these neural-network models behave is quite
often only half of the problem in creating practical applications. The other aspect
of building successful neural-network applications is the process of acquiring and
modeling the application data, selecting the most appropriate network model for
the application, and training the network to perform the application. In this chap-
ter, we shall focus on the process of application-data modeling, showing the inter-
relationship between the chosen data representation scheme and the operation of
the neural-network processing model.

We shall begin our study of neural-network application design by first de-
scribing some of the issues that an application developer will likely encounter
when building a neural-network application. We shall then tie together the con-
cepts of data representation and network paradigm selection, showing why the
behavior of the network model must be considered when developing an applica-
tion. We conclude this chapter by describing, in detail, a specific example of a
viable neural-network application, illustrating the process of collecting and refin-
ing the training data for the network.

65

66 Application Design

3.1 DEVELOPING A DATA REPRESENTATION

From our discussion of neural-network operational characteristics in the first two
chapters of this book, we know that all of the popular neural-network paradigms
process information in the form of input pattern vectors. We also know that all of
the neural models produce an output pattern that must be interpreted by a higher-
level process, although the actual form of the output will vary depending on the
specific network model. For example, the BPN produces an output pattern that
is completely independent of the input pattern; that is, the output produced by
the network is generated by a different set of processing elements than those that
accept the input pattern. In contrast, the Hopfield memory produces an output
pattern that is actually an altered form of the original input pattern.

In all cases, the pattern vectors propagated through the network model al-
ways comprise one of two types of signal' components: analog, or continuously
variable, signals; and discrete, or quantized, signals. In Figure 3.1, we illustrate
the different types of informational signals used in neural-network models. No-
tice that both types of signals share one common trait: Both are finite-amplitude
signals, varying in amplitude between their minimum and maximum values, al-
though the range of the variance may differ dramatically from signal to signal.

As we already know, most of our neural-network models are designed to
detect, and respond to, the presence of features in an input pattern vector that is
presented as a static pattern to the network. Here, then, is the crux of the dilemma
that we face as application developers: How can we capture a myriad of time-
varying signals and represent them so that a neural-network model can process
them as spatial pattern vectors? ,

Because our job as applications designers is to create a network that performs
the correct input-to-output transformation across a wide variety of different input
patterns, we must consider how our choice of pattern representation will interact
with the network model when information is propagating through the network.
In essence, we must design the data representation scheme for the application
to maximize the ability of the selected network model to detect, and respond
to, any features that may exist in the input pattern that will enable the network
to produce the correct output pattern. Here, we must concern ourselves with the
issues of deciding how to capture the application data, and properly format it prior
to presentation to the network.

Then, too, we must consider the representation of the output pattern that we
will ask the network to produce, and balance that against the intrinsic ability of
the network model to produce the desired output. All too often, novice applica-

1. In the ensuing discussion, we shall describe the operation of the neural models as though the
network exists as a physical entity. Because most network models are (at least, initially) implemented
as software simulations, the idea of “signals propagating through connections” is clearly an abstract
concept.

3.1 Developing a Data Representation 67

(a)

(b)

Figure 3.1 This diagram depicts the two different types of information-bearing signals
that can be used by a neural model. Notice that the signals do not need to be periodic, nor
does the time base need to be consistent between different signals. (a) Analog signals vary
in amplitude smoothly, allowing the signal to take on any value between its minimum and
maximum amplitude. (b) A discrete signal behaves as a step function. A signal of this
type can take on only one of two values: its minimum and maximum amplitudes. Values
between the minimum and maximum are never valid.

tion developers select a “natural” representation for the output, only to find after
hours? of training time that the network cannot produce the desired output.

In the remainder of this section, we shall consider these issues in depth, and
provide a set of guidelines that can be used to maximize the success rate of an
application using neural-network models. We begin this discussion by addressing
the issue of scaling input signals prior to presentation to a neural-network model.

3.1.1 Internal Representation Issues

All of the neural models described in Chapter 2 of this book, and all of the
paradigms used to construct the applications described in subsequent chapters,
are defined to process patterns that are composed of signals that are limited in am-
plitude. Typically, these signals are held in the range of zero and one.> We impose
these limits on the pattern signals to allow the network to use its interconnection
weights to encode the representation of the application pattern vectors.

If we did not limit the amplitude of signals in the network, pattern com-
ponents with very large amplitude swings would dominate the behavior of the
network. This is true because, as we described in Chapter 1, the instantaneous

2. Or perhaps weeks.

3. Some network models require that signal values vary in range between —1 and 1. We will hence-
forth use the term bipolar to distinguish these networks from their binary counterparts.

68 Application Design

behavior of each processing element in the network is governed by the total stim-
ulation received by the unit, which we have defined as the algebraic sum of all of
the weighted input signals to the unit. Recall from Chapter 1,

n
net; = ZO,‘U)J',‘ 3.1

i=1

where net; is the activation of the ;™ unit in the network, which is determined
by gating the output of the i unit (o;) through the modulating interconnection
between the units (wj;), for all input signals.

Inspection of Eq. (3.1) tells us that, to allow the network connection-weight
values to control the activation of each unit, we must ensure that the output signal
from each unit (or external input) be limited in amplitude to a fairly narrow range,
typically between zero and one. Otherwise, signals with very large amplitudes
will saturate the activation function of the unit during training, and diminish
the effective range of the interconnection weights in the network. This issue is
particularly relevant when we consider that most of the activation functions used
in neural-network models are designed to switch between the active and inactive
states at approximately zero activation. Moreover, signals propagating through a
network structure are transient, generated in response to the instantaneous input
to the network. Therefore, if we were to allow signals of significantly different
amplitudes to propagate through a given network, the network would have no
way of determining which units were activated in response to large, instantaneous
signals, and which were activated because a connection weight (or set of weights)
was set to amplify a specific, but low-amplitude, signal.

In contrast, by limiting the amplitude of the signals propagating through
the network to the range between zero and one, we give the network a much
greater effective range for connection-weight values. As shown in Figure 3.2,
large, positive connection weights will enhance a unit’s response to a signal,
while large, negative connection weights will suppress a unit’s response. Also,
we can effectively disconnect an input to a unit by setting the connection-weight
value for that input to zero. In this manner, the network can encode information
by selectively varying the values of the weights in each of the interconnections.

3.1.2 External Interpretation Issues

Another important concept to consider when developing an application using
neural networks is how the output from each layer in the network is to be in-
terpreted. From an application perspective, we shall be primarily concerned with
the interpretation of the input and output patterns, because the behavior of the
network will, for the most part, govern the internal representation of information
in the network.

In this regard, it is important to recognize that, individually, the processing
elements within a network have little or no understanding of the application the
network is being asked to learn. The only thing the processing elements know

3.1 Developing a Data Representation 69

v

Figure 3.2 This diagram illustrates how very large input signals can dominate the
behavior of a neural network. Using line thickness to depict the effective range of values
for each connection weight, this diagram shows that the interconnections from the unit
with the large amplitude signal have a narrow effective range, between —1 and +1,
because values outside this range will only amplify the magnitude of the input signal.
However, by limiting the magnitude of the input signal, the connection weight has a
much larger effective range, and thus can be used to amplify, attenuate, or squelch the
input signal. It is this characteristic of selectively enhancing or diminishing certain input
components that enables a neural network to perform complex pattern matching. It is also
the reason why we must limit the magnitude of the signals within the network.

how to do is to compute an input stimulation and produce a corresponding output
signal. Similarly, the patterns that are propagated through a neural network con-
sist of a set of component signals that, individually, reveal very little about the
entire pattern.

Even when viewed collectively, the patterns often do not take on a meaning
until we define how the information is to be interpreted externally. As an illustra-
tion, consider the binary patterns

x =00010001011111000100011001011001001
y = 10000100001000010000100001000011110

Without an interpretation, all we can say about x and y is that these two pat-
terns are significantly different from each other. But how different are they? There
are many methods we could use to analyze the degree of difference between
them. For example, we could choose to interpret x and y as binary numbers. We

70 Application Design

OOoomb& mOOO0
JUOmonm B0
EREE mOOO0
JOmOoO BOOOO
CJmm] B0
HECERR BROOOO
Rl ERER
(a) (b)

Figure 3.3 This diagram illustrates how the character L can be represented as a bit-
mapped vector. We interpret the pattern vectors by first chopping each 35-element vector
into a 7 row x 5 column matrix. Then, by replacing each 1 in the resulting matrix with
an opaque dot, and each 0 with a transparent dot, we obtain a pattern that resembles the
symbol “L” as might be written (a) cursively, and (b) in block form.

could then say that the difference between x and y is the mathematical differ-
ence, given by x — y. Another interpretation might cause us to consider x and y as
pattern vecrors, with significance in both magnitude and direction in hyperspace.
Using such a scheme, each bit position in the pattern vector would be interpreted
as an indication of the status of the individual components in the pattern. To an-
alyze the difference* between patterns, we might employ a vector inner-product
calculation to determine the projection of x onto y.

In both of these examples, every bit position in each pattern has significance.
We cannot change the state of a single bit anywhere in either pattern without
(perhaps significantly) altering the interpretation of the pattern. Fixed pattern rep-
resentations, such as those just described, are common in computer applications
because modern digital computers are designed to efficiently perform explicit
comparisons. However, many applications that are now considered “difficult” on
conventional computers involve the analysis of patterns that do not have an ex-
plicit representation. Quite often in problems of this kind, significantly different
patterns must be associated together in order to produce the same results. Such is
the case with the patterns contained in x and y.

Surprisingly, as different as x and y appear on initial inspection, there is at
least one easily observed interpretation that produces two different representa-
tions of the same thing: The image of the letter “L.” Figure 3.3 illustrates how we
produce this interpretation.

Given this new interpretation scheme, it is easy to see how x and y are re-
lated. Prior to having that interpretation, however, comprehending the informa-
tion in the patterns was difficult. By extension, we cannot expect our neural-

4. Or, perhaps more importantly, the similarity.

3.2 Pattern Representation Methods 71

network models to have any inherent understanding of an application; we must
provide that interpretation outside the network.

3.2 PATTERN REPRESENTATION METHODS

There are a variety of techniques that can be used to represent an external pa-
rameter for a neural-network model. The selection of an appropriate technique,
however, is often complicated by a number of application-specific factors, includ-

ing

o The nature of the data source. Specifically, is the parameter being modeled a
continuously variable signal, or is it a discrete value?

o The range of the parameter. Because we want to compress the effective range
of all external signals to values between zero and one, we must consider the
entire range of values for the parameter across the entire training set.

* Any interrelationship between parameters. Often, an application will use a
number of parameters from different, but related, data sources. In such cases,
it often (but not always) makes sense to treat these parameters in a similar
fashion.

» Any interrelationship between patterns. The most common mistake made by
novices is to assume that there is no duplication of information in any of
the training patterns they have collected, when, in fact, they have introduced
duplications by their selection of data-formatting schemes.

Unfortunately, there are no hard and fast rules that can be used to determine
how each parameter in an application data set should be represented. Often, the
determination of the best technique comes from an innate understanding of the
application. For the novice neural-network practitioner, however, the choice of an
appropriate representation scheme for the application data also requires some in-
sight into how the network will treat the data internally. For that reason, we shall
now explore several common techniques for neural-network application-data for-
matting, emphasizing the interaction between the data-representation scheme and
the network operation.

Obviously, the following review is not meant to be an exhaustive summary
of all possible techniques for data formatting. Quite often, the application de-
signer must be creative when developing a suitable representation scheme for a
specific application. The following summary is, however, a good synopsis of the
most common, and practical, techniques used to format data for neural-network
applications.

3.2.1 Binary Patterns

As we now know, neural-network processing elements produce output signals
that vary in magnitude, usually in the range from zero to one. We have also

72 Application Design

assumed throughout our discussions that input and output patterns are comprised
of a set of numerical values in the range of the output signals produced by the
units in the network. It is therefore not very difficult to understand why binary
patterns are the easiest patterns to represent for a network; they provide a very
direct method of representing an input pattern. We simply list the features of the
input that we deem important to distinguish the pattern, associate each feature
with a bit position in a pattern vector, and use the binary digits {0, 1} to indicate
the presence or absence of the features in each pattern instance. Usually, because
of the way information is propagated through a neural network, we choose 1 as
the representation of an active pattern element, and 0 to indicate the absence of a
feature.

With regard to output patterns, most applications that utilize a binary-data
format can be thought of as performing a classification function; that is, the
outputs produced by such a network are interpreted as an indication that the input
pattern belongs to a particular class of patterns seen during training that share
common attributes. Sometimes, the classifications are exclusive. In such cases,
only one output unit is active for any given input pattern, and the active output is
interpreted as an indication of the category to which the input pattern belongs. In
other cases, the classifications are more general, and multiple output units can be
active simultaneously.

In all cases, however, whenever a binary representation is chosen for a partic-
ular application, any processing element that must produce binary output signals
will employ some form of nonlinear function as its activation function, such as
the sigmoid. The reason for choosing a nonlinear function can be found by relat-
ing the binary nature of the data representation to the activation response of the
function. In order to classify patterns into one of two states, the network units
must utilize an activation function with a bistable response.

Exercise 3.1: Consider a neural-network application to map a set of attributes
to a room designation. For example, in a house, a living room normally contains
a sofa, a coffee table, and a floor lamp, while a kitchen contains an oven, a re-
frigerator, and a table. Devise a data representation for a network that will accept
an attribute pattern vector and produce a corresponding room designation for five
different rooms. Generate a set of training patterns, consisting of a number of
attribute-designation vector pairs, to show how your data representation solves
the problem. m

3.2.2 Tertiary and n-ary Patterns

The binary representation scheme maps nicely into all neural-network paradigms.
In fact, it can be used in any situation where patterns are composed of elements
that are either present or absent, such as in video displays, where luminescent dots
are used to produce monochromatic images, or in diagnostic applications, where
the presence or absence of symptoms can be used to deduce problems. Unfortu-
nately, not all applications can be modeled using a simple binary representation.

3.2 Pattern Representation Methods 73

In many situations, pattern elements are not always simply present or absent—
sometimes, they are also in an intermediate, or a don’t care, state.

A good example of this kind of situation can be found in the representation of
the state patterns for a game such as tic-tac-toe. In tic-tac-toe, each board position
can have three states: It can be occupied by the “X” token, occupied by the “O”
token, or vacant. If we attempt to model the game situation by using a binary
representation of the current board state, we quickly find that it is not possible
to map three conditions into two indicators. To resolve problems of this type, we
shall now consider an extended form of binary representation.

Many successful neural-network applications overcome the n-ary represen-
tation problem by using multiple binary inputs (or outputs) to represent non-
binary states. The most straightforward approach is to consider each feature in
the pattern as an individual subpattern. Then, for each subpattern, choose a data
representation that allocates as many positions in the pattern vector as there are
possible states for the feature. Finally, concatenate the multiple subpatterns into
one long pattern vector. Figure 3.4 illustrates this concept for the tic-tac-toe ex-
ample.

Exercise 3.2: Modify your data representation scheme from Exercise 3.1 to in-
clude attributes that are common to more than one room. For example, a fireplace
could be an attribute of a living room and a game room. Show how your modified
representation scheme deals with shared attributes when the attribute is unknown
for a certain room. m

A significant benefit of this representation scheme is that it lends itself to
many neural-network applications where the network must discriminate between
similar patterns. This data-representation scheme supports that behavior in a net-
work by insisting that different subpattern vectors are orthogonal to each other.
Because most network units compute their input stimulation using an inner-
product calculation, orthogonal vectors are easily detected by the network.

There are drawbacks to this approach, as well. The most significant is the
issue of network size. As we have seen previously, the addition of a single unit in
a layered network structure increases the number of connections that have to be
modeled by the number of input units plus the number of output units connected
to the new unit. Because most neural networks are simulated in software (at least
initially), each connection in the network consumes memory, and requires CPU
time to process. Therefore, by using a very large number of input units to model
n categories, we have geometrically increased the amount of memory needed
to model the network and the amount of time needed to propagate information
through the network structure.

3.2.3 Analog Patterns

Another method for representing n-ary data in a neural network is to use a single
unit to represent each feature, but, rather than simply indicating the presence
or absence of the feature with binary numbers, we scale the value to indicate

74 Application Design

1 2 3
X =100
4 O =010
(a) 5 6
_ =001
7 8 9
X (0]
1 2 3 4 5 6 7 8 9
(b) (@) X (@) =100 010 001 010 100 010 001 100 001
X 0 O X O X
X

Figure 3.4 A scheme for representing the tertiary tic-tac-toe game situation is shown. In
this example, each board position is allocated three pattern elements, one to indicate that

the position is occupied by the “X” token, one to indicate that the position is occupied by
the “O” token, and one to indicate the position is vacant. The entire data game situation is
then the concatenation of the nine subpattern representations, where the first three pattern
elements indicate the state of the first board position, the second three indicate the state of
the second position, and so on.

the degree to which a feature exists in a particular pattern. As before, when a
feature is present in a pattern, we denote that fact by representing the feature
with a 1 at the corresponding position in the pattern vector. Likewise, when the
feature is absent, we indicate that condition by setting the corresponding pattern
component to 0. To indicate that a feature is in a third (or n™" state, we use a value
proportional to the state of the unit, scaled between 0 and 1. If, for example, a
feature can take on three states, we might represent the third state with a value of
0.5. It is important to recognize, however, that the values chosen to represent the
different states ought to reflect the magnitude of the change in the feature.

In the tic-tac-toe game representation problem, for example, our first attempt
at assigning values to the different position states might naturally cause us to use
a 0 to indicate an unoccupied position, a 0.5 to indicate the “O” token occupies
the position, and a 1 to indicate the “X” token owns the position. However, using
this representation scheme is an error, in that asking a network unit to learn to
produce an intermediate output (the target value 0.5) is significantly more difficult

3.2 Pattern Representation Methods 75

than expecting a binary unit to learn to saturate one way or the other under certain
conditions. A much better representation for this example would be to let a 0
indicate that the “O” token owns the position, a 1 indicate that the “X” token
owns the position, and the 0.5 to indicate the unoccupied state.

The same situation exists when using large-scale, continuously variable, or
analog, signals in pattern vectors. Suppose, for example, that one component of
an input pattern vector that we might need is a measurement taken from some
data-acquisition device that provides an analog signal in the range of 0.0 to
1000.0. Suppose, further, that the signal that we want to model for the network
normally varies in the range from 900 to 950. We can incorporate that signal
into our pattern vector by simply scaling the signal to fit within the range cor-
responding to output signals produced by the neural-network units. In this case,
we simply take the analog value provided by the instrument, subtract out the bias
value (900), and scale it down by dividing by the valid range of the signal (50).

However, care must be taken when choosing to represent an output pattern
component in this manner. The activation function chosen for the output layer of
network units must allow the unit to produce a continuous output in the desired
range. Alternatively, the network unit could produce a scaled-down output, which
we would then convert to its true value by postprocessing the output. In either
case, be certain that you have selected an activation function for the unit that is
linear, or very nearly linear, in the range of the expected outputs.’

Also, we must be wary of the fact that a continuously variable network out-
put unit that is expected to produce a very precise signal is being restricted to
a very precise input stimulation value. Any network used to perform this func-
tion must be able to set its connection weights very precisely. In practice, it is
extremely difficult to create a network that performs a complex transformation
across a variety of patterns and still generates very precise output values, unless
the network incorporates some type of pattern memory® as part of its structure.
Thus, we must be careful to avoid using the wrong network paradigm when we
expect the network to produce very precise output signals.

Exercise 3.3: Develop a general equation to scale a single component (x;) to a
value between two variable limits, which we will denote as L for the lower limit
and U as the upper limit. You may assume that you have access to a function
called max(x) that extracts the largest value from a set of values, x, and another
called min(x), which returns the smallest value. Note that negative numbers are
legal. m

5. Many times, I have seen students carelessly attempt to use sigmoidal units to produce analog
outputs. and then wonder why the network could never produce an accurate solution.

6. Such as the competitive unit. as described in Chapter 2.

76 Application Design

3.2.4 Temporal Patterns

One of the most confusing aspects of creating a data-formatting scheme for an
application is the question of how to model parameters in the time domain for
presentation to a spatial pattern network. Fortunately, not all applications require
temporal patterns. However, some do, and mest of the networks that are now in
common use are not designed to process time-dependent data patterns. Instead,
most network models respond to instantaneous pattern vectors that persist at least
until the network has completely propagated the pattern through its internal struc-
ture. That being the case, we must devise a method for representing patterns that
have a temporal relationship as spatial patterns for our networks.

The most natural, and commonly used method for accomplishing this task is
to simply concatenate multiple, discrete time patterns into a single pattern vector.
In this manner, the network will learn to distinguish the relationships between the
different temporal patterns exactly as it learns to identify relationships in spatial
patterns. For example, if we were to build a network that could recognize the
differences between two monochromatic photographs of the same scene, taken
a few seconds apart, our approach to formatting the image data would consist of
the following steps:

1. Digitize the photographs to produce two matrices of pixels, each describing
one photograph.

2. Scale each pixel to a value between zero and one. Notice that because the
pixels all come from the same image source, we can use the same scale factor
for all pixels.

3. Create an image vector for each photograph by concatenating the rows in
each matrix. This produces two image vectors.

4. Create a pattern vector for the network by concatenating the two image vec-
tors.

In Figure 3.5, we illustrate the process of concatenating temporal patterns.

The primary benefit of this approach to representing temporal data is that it
maps cleanly into most real-world applications. For example, while comparing
digitized photographic images is not usually considered a task for automation,
comparing millions of sequential video frames is considered extremely difficult,
even for people. Even for a neural network, such a task would prove impossible.
Fortunately, most applications only require two or three frames of data to be com-
pared during any given analysis. In this case, the network simply performs the
same analysis repeatedly, shifting sequential video frames through a multiframe
window. '

Obviously, the drawback to this approach is the same as the problem asso-
ciated with n-ary data patterns—the additional memory and CPU time needed
to create and process a network that can accept twice (or three times) as much
input data as is required for a single image is daunting. Another problem associ-
ated with this scheme is that, sometimes, it is not possible to capture the temporal

3.3 Exemplar Analysis 77

00000001++-000000011+--0
o i
L
N v
h, N
Image(t) Image(t+1)

Figure 3.5 This diagram illustrates how temporal data can be encoded as a spatial
pattern for examination by a neural network. Even though we show the pixel values as
binary here, they could just as easily be analog values representing gray-scale intensity, or
even color hue. The details of the pattern-generation process are described in the text.

aspect of the pattern data by simply concatenating discrete time pattern vectors.
Fortunately, these situations are rarely encountered by the novice application de-
veloper.

3.3 EXEMPLAR ANALYSIS

The next step in building a successful neural network after collecting the applica-
tion data that will be used to train the neural network and formatting that data for
presentation to the network is to perform an analysis of the data. As part of the
analysis process, we must ensure that

e The data collected provides an accurate representation of the application
problem space;

e There are no inconsistencies in the data that the network will not be able to
resolve; and

* Any problems uncovered as part of the analysis can be corrected without
compromising the effectiveness of the network.

In the remainder of this section, we shall describe a methodology for per-
forming such an analysis. For simplicity, we have assumed that the application
uses a BPN model, although the concepts discussed could be easily adapted to
other network models. We shall begin with an approach to ensuring that the train-
ing data provide a complete representation of the problem space. We shall then
investigate some techniques for verifying that there are no anomalies in the data

78 Application Design

that would prevent the network from learning the desired transformation, and dis-
cuss methods for correcting such anomalies. We then conclude the discussion of
our analysis strategy with some general suggestions for correcting the deficien-
cies that we might discover in our training set.

3.3.1 Ensuring Coverage

In any neural-network application, it is imperative to ensure that the data patterns
used to train the network provide a complete representation of the problem space.
If we do not, the network may learn how to perform the requested transformation
on our training set, as well as every input pattern presented to it. When this situa-
tion occurs, we find that the network has learned only how to produce the desired
outputs—not how to identify the features of the input pattern that characterize
the desired outputs, which is the real reason for building the application in the
first place. To ensure that the network can perform the desired transformation in
production mode, we must provide it with example patterns during training that
not only represent the desired output but also are contra-indicative of the desired
output.

Ideally, the mix of patterns in an application where the network is being used
to classify input patterns into an appropriate output pattern should be about one-
to-one; that is, approximately half of the training patterns should represent the
desired input-to-output pattern classification, while the other half of the exem-
plars should represent what we shall refer to as null patterns, which are simply
patterns that do not indicate the desired output. However, caution is required
when creating an application in this manner. After training such a network, the
application developer must ensure that the network not only can perform the de-
sired classification on valid input patterns but also can correctly identify all null
patterns.

There are also exceptions to the 1:1 coverage rule. Specifically, we can
forego the 1:1 pattern-mix requirement on any application where we can guar-
antee that the network will never be used to classify an input (after training) that
can not be classified. In cases such as this, we assume that the process that runs to
collect and format the data prior to propagation through the network also ensures
that the data collected represent a viable pattern for classification.

For example, consider an application similar to the one described earlier in
this chapter, where a neural network was to be used to classify an input image
pattern consisting of monochromatic video pixels into a corresponding character
representation. In this case, we could train a network to perform two simultane-
ous classifications: one indicating the character represented by the input image
pattern, and another indicating the type of character represented by the image. In
Figure 3.6, we illustrate a typical structure for a network designed to perform this
character classification function.

By inspection of the output layer in this network structure, we can conclude
that this network will always try to classify the input as one of the predefined
character set, even if the input pattern is garbage. Because we have provided no

3.3 Exemplar Analysis 79

Figure 3.6 This diagram illustrates how a three-layer BPN could be constructed to
classify a pixel image of a character into its corresponding type and identification.

As shown on the output layer, we train the network to perform two simultaneous
classifications, with a subset of the output units indicating the type of the character image,
and the remainder identifying the character itself.

direct mechanism for the network to indicate that an input pattern is not one
of the desired outputs, we must either ensure that the network is never asked
to classify an invalid input, or we must use an indirect method to recognize an
invalid pattern.

Unfortunately, there are drawbacks to both methods. If we attempt to filter
out all possible illegal input patterns prior to propagating the pattern through the
neural network, we will have effectively nullified the function of the network. Put
another way, if we can identify all of the legal input patterns before we use the
network to classify them, have we not already classified the input? If so, what
purpose does the neural network serve? Moreover, by filtering the input patterns,
we will have eliminated the benefit of using a network to classify noisy inputs.

However, we might be tempted to add another output unit to the network,
which we would train to activate whenever the input pattern does not contain a
valid character representation. Then, we must concern ourselves with collecting a
representative sampling of null patterns that we could use as part of the training
set. The problem we face with this approach is the definition of a null pattern
for this application. What are the characteristics of an input pattern that does
not contain a valid character image, and how shall we collect a representative
sampling of those patterns?

The most practical approach to resolving dilemmas such as these is to com-
bine the neural network with a data-collection routine that performs a coarse

80 Application Design

filtering of the patterns passed on to the network. This is not to say that we have
to verify that the image pattern contains one of the characters used to train the
network, because that would be defeating the purpose of the network. Rather, we
need only ensure that the image pattern that we will ask the network to classify
contains some nonblank pixels, that the image of the character is properly framed,
and that the image contains only one character. These tests are easily performed
using conventional programming tools, and patterns that pass can then be classi-
fied by a neural network without compromising the effectiveness of the network.
Finally, we can employ an indirect analysis of the output of the network to deter-
mine if the input were successfully classified.

3.3.2 Exemplar Consistency Checking

One of the most common errors made by novice application developers is the
“presumption of innocence” mistake made when collecting training data. Unlike
the criminal justice system in the United States, where an individual is presumed
innocent until proven guilty, we cannot assume that, just because we have col-
lected a set of empirical data that faithfully represents the desired function of the
neural network, there will not be errors in the training set that will prevent the
network from learning the application. The sources for errors in data collection
are many: Temporal inconsistencies, data formatting errors, and conflicting ex-
emplars are just a few of the common errors that can be inadvertently introduced
into a pristine training set. ‘

From a training perspective, the most difficult problem to recognize is the
issue of conflicting exemplars. A conflict occurs when two or more identical (or
very similar) input patterns are associated with different outputs. To see why this
is a problem, consider the behavior of the BPN, which is designed to transform
a given input into a specific output pattern. For this example, let us suppose that
we have collected a set of exemplars containing two instances of input pattern
A, which we shall refer to as A; and A,. We shall further suppose that pattern
A} is associated with output pattern B, and pattern A; is associated with output
pattern C. Finally, we shall assert that pattern B is different, by at least a single
component, from pattern C.

During training, the BPN learns to reproduce the input-to-output transforma-
tion by sequentially propagating a given input through to the output, then mod-
ifying its connection weights to produce a better approximation of the desired
output. So, when pattern A, is applied to the network, the network adjusts itself
to produce a better version of pattern B at the output. Later, pattern A is applied
to the network. This time, however, the desired output pattern is C, which is dif-
ferent from B. When the network adjusts itself to produce a better approximation
of C, it is effectively unlearning its representation of B. Similarly, when pattern
A} is again presented to the network during the next epoch, the network unlearns
its encoding of output C in favor of B, which is the output associated with input
Aj. However, A| and A» are identical, creating a situation in which the network

3.3 Exemplar Analysis 81

is faced with an unresolvable conflict: It cannot produce both B and C from a
single output layer when presented with A, because B and C are different. Thus,
a conflict represents a situation that prevents the network from ever learning the
application.

Fortunately, conflicts can usually be corrected by adjusting the data represen-
tation scheme for the exemplars. Unfortunately, an adjustment usually cannot be
made until the conflict is identified. Because a training set may contain hundreds,
or even thousands, of exemplars that have been collected and formatted for use by
the neural network, identifying the specific exemplars that are causing the con-
flict can be a very tedious task. Because of the large number of patterns involved,
and the combinatorial nature of the problem, it is impractical for a developer to
manually inspect each pattern to ensure that it does not represent a conflict with
another pattern in the training set. There are, however, training techniques that a
savvy application developer can employ to assist in the identification of exemplar
conflicts. ,

One simple technique is to perform a binary search of the exemplar set to
identify conflicting patterns. When training a BPN, the global error begins to drop
quickly after a few (relatively speaking) training epochs, and eventually “flattens”
out as the number of errors generated by the network decreases. This fact is eas-
ily observable by plotting the global error during training versus training epoch,
which we illustrate for a typical BPN application in Figure 3.7. However, the
number of epochs that constitute a “few” depends on a number of application-
specific factors, including the topology of the network, the number of exemplars
in the training set, the specific learning rate (1) and momentum («) values used,
and the number of components in the input and output patterns. For purposes of
this discussion, we shall assume that 30 epochs is sufficient to lower the global er-
ror of the network to a value around 0.2, which is usually low enough to indicate
that the network will learn all the exemplars in the training set. However, read-
ers should note that the actual number of epochs needed to lower the global error
for any given application may be as high as 10,000, or as low as two or three,
depending on the application and the network.

We can exploit this characteristic drop in global error during training when
attempting to identify exemplar conflicts by breaking the entire training set into
successively smaller subsets and using each subset to train the network for a
“few” epochs. For example, if we suspect an exemplar conflict exists in a given
training set, we can first train the network for 30 epochs on the complete train-
ing set and note the global error. We then split the training set in half, and train
another network using just the first subset. If the error after 30 epochs is signifi-
cantly lower than the error after the previous test, we can assume that the conflict
exists between some pattern in the first subset and another pattern in the second
subset. If not, we simply halve the training set again, and repeat the process until
we find a subset that produces an acceptably low global error after the required
30 epochs.

82 Application Design

1.0+

0.0

Training Epochs

Figure 3.7 This graph shows the typical reduction of the global error as training
progress in a BPN application, assuming that there are no conflicts in the data. Notice that
the change in the error is initially very small, followed by a period of rapid improvement.
During this rapid drop, the network has found a configuration that encodes most of the
training exemplars, and is merely reinforcing that configuration. However, there are
always a few patterns (or pattern components) that do not fit into the initial encoding
scheme, and must be individually corrected by the network. This is the phase following
the knee of the curve, when the global error is reduced very slowly.

We can then identify the specific pattern(s) causing the conflict by gradually
adding patterns from the second subset back to the first, and retraining the net-
work for 30 epochs. When the error Jjumps back up, we will have included the
conflicting pattern in the training set. We then repeat the process, using succes-
sively smaller groupings, until the specific conflict has been identified.

Once all of the conflicts have been identified and corrected, training can
proceed in the normal manner. The primary disadvantage of this approach is the
amount of time involved in identifying the conflict. Because most neural-network
applications are initially prototyped in software, it can take hours, days, or even
weeks to perform all of the training needed to identify, and correct, all of the
conflicts.

3.3.3 Resolving Inconsistencies

In the previous section, we alluded to the process of correcting exemplars without
providing a description of how to perform that correction. We shall now describe
some approaches for resolving inconsistencies in the training data. We cannot,
however, recommend a specific technique from the set of techniques that we shall
present here, because each approach has its own benefits and drawbacks. We shall
therefore summarize each approach, describing the advantages and disadvantages

3.3 Exemplar Analysis 83

of each, and trust that the reader can make his or her own determination about the
appropriateness of each with respect to the application.

3.3.3.1 Eliminating Patterns

The most intuitive method for eliminating conflicts in training data is to simply
exclude the patterns causing the conflicts. The benefit of this approach is that it
is simple and easy to implement. The disadvantage is, of course, that by discard-
ing a training pattern, we have reduced the effectiveness of the neural-network
solution.

More often than not, a pattern conflict can be corrected by other means,
and eliminating valid training exemplars is not required. There are, however, a
few, rare, occasions when it is more appropriate to discard a training exemplar
rather than trying to force it to fit into an application. For example, when it
can be determined that a specific, conflicting exemplar represents an invalid, or
inaccurate, data point in the training set, it is better to throw out the conflict than
to try to massage it to fit the application requirements. Such a conflict might occur
when the training data were collected with a noisy, or uncalibrated, sensor.

Another case where eliminating an exemplar would be considered a viable
option is when it can be determined that the exemplar in question represents
a situation that, while possible, is not likely to occur in practice. For example,
while it is possible for a snowstorm to occur in Houston in August,’ it is certainly
not likely. We could therefore discount such an exemplar if we were building a
weather-prediction application for southeastern Texas, and the encoding of such
an exemplar were causing a conflict in our data-representation scheme.

3.3.3.2 Combining Patterns

Often, conflicting patterns in a training set occur because the application data
were collected over some period of time, during which the input situation was
duplicated, but the resulting output situation differed. Thus, our empirically ob-
tained training set will contain conflicting exemplars that will prevent the network
from ever learning the application.

One method for countering this situation is to combine similar patterns; that
is, associate an output pattern that is the union of all of the output patterns associ-
ated with the exemplars that have duplicate input patterns. For example, consider
the three binary exemplars

x; =010110, y, = 10000
X, =010110, y, = 00100
x3 = 010110, y3 = 00001

7. For those readers unfamiliar with weather patterns in Houston, temperatures in August rarely drop
below 20° C. and often exceed 35° C.

84 Application Design

Obviously, if we were to try to build a network to learn just these exemplars,
the network would never be able to produce a solution, no matter how long we
trained it. If, however, we combine the three conflicting patterns into one, we
eliminate the conflict and create a training set that the network can learn. In this
example, the three conflicting exemplars reduce to

x'=010110. y =10101.

While this technique is guaranteed to eliminate conflicts in the training set,
we must advise caution on the part of the developer. Depending on the appli-
cation, it may not make sense to combine the output patterns. If, for example,
the outputs from the network were expected to be mutually exclusive, combining
output patterns in this manner would defeat the entire purpose of the network. In
cases such as this, the developer must either revise the data representation scheme
for the input pattern in order to differentiate “identical” inputs, or alter the inter-
pretation of the output pattern to allow combination.

3.3.3.3 Altering the Representation Scheme

Another effective technique for eliminating conflicts in a training set is to simply
change the way in which the exemplars are encoded for the network. As we men-
tioned in the previous section, a one-to-many conflict is usually the result of data
collected over some period of time, without providing a means of indicating the
sample time as part of the pattern encoding. Therefore, one of the most straight-
forward techniques for resolving such a conflict is to simply encode a unique
indicator as part of the pattern itself.

If the three patterns described in the previous section were actual data sam-
ples taken from a set of sensors from a piece of equipment that we were monitor-
ing at different time periods, we could simply add a few additional components
to the pattern to distinguish them for the network. For example,

x; = 001010110, y; = 10000
x2 = 010010110, y, =00100
x3=100010110, y3=00001

where we have simply appended the x; pattern to a three-bit code indicating the
discrete time of the sample.

This approach has several benefits, not all of which are obvious. For exam-
ple, while it may seem as though we have now rendered the significance of the
former pattern irrelevent (because we might assume that the output can be di-
rectly determined from the time stamp), most applications that we are likely to
create will contain many other patterns that the network will have to learn. By
adding these three bits to each input pattern, we have guaranteed that we have
eliminated a conflict without inadvertantly introducing another conflict, as it is

3.4 Training and Performance Evaluation 85

impossible to create a “new” conflict by appending information to a pattern, un-
less the original patterns were conflicting anyway.

Moreover, this technique can be used to resolve nontemporal pattern con-
flicts. If, for example, conflicting patterns occured because the data were col-
lected from different locations, the conflict could be easily resolved by appending
location bits, instead of time codes.

3.4 TRAINING AND PERFORMANCE EVALUATION

The final step in creating a neural-network application is training and testing the
network. Most of the time, training is an operation that occurs before the net-
work is tested, although some network models (the ART networks, or Hopfield
memory, for example) do not have two separate phases of operation. In this sec-
tion, we shall summarize some of the commonly accepted guidelines for train-
ing a network that has separate learning and production phases. We shall also
describe several techniques that allow an application developer to evaluate the
performance of a trained network after training has been completed.

While these techniques are obviously slanted toward the network models that
are trained prior to use, many of the guidelines presented in the remainder of this
section can be adjusted for those paradigms that do not fit the mold.

3.4.1 Training Guidelines

In all of the network models that we have described, there is a measurement
defined that will allow us to evaluate how well the network has encoded the
patterns in the training set. For the BPN, that measure is the global error, while,
for the ART networks, the measure is indicated by the number of resets that occur
in the orienting subsystem. In every case, however, we must address the issue of
determining what constitutes an “acceptable” error for the network.

For the ART networks, an acceptable error is a situation in which no resets
occur after we have presented the network with all of the patterns that we expect
it to learn. Such a condition almost always requires that we expose the network
to all of the exemplars at least twice: once to allow the network to encode the
patterns, and a second time to evaluate whether all of the patterns were learned
(recall the issue of supersets and subsets, described in Chapter 2).

Determining an acceptable error for the BPN, however, is a much more com-
plicated process, because the global-error parameter computed during training is
a function of not only the state of the network but also the specific training set the
network is being asked to learn. Therefore, a minimal error for one application
may be rather high (0.1), while, for another, the network may easily achieve a
very small global error (0.01).

Practically speaking, a BPN should always be able to obtain a global error of
0.2, if there are no conflicts in the training set. The guideline for the BPN, then,
is to train the network until the global error falls below 0.2. When that occurs,

86 Application Design

note the training epoch, and save the state of the network for archival purposes.
Then continue training until the error falls below 0.1. If the number of additional
training epochs required to achieve that error is fewer than 30% of the number of
epochs required to obtain the original error (0.2), repeat the process and shoot for
an error of 0.05.

Continue this process, successively halving the target error value, until the
number of additional epochs exceeds the 30% guideline, then stop. Any training
performed beyond that point will not significantly improve the performance of
the network; indeed, it is possible to overtrain a BPN. In such cases, the network
becomes predisposed to favor the desired output patterns, and tends to organize
itself to produce those output patterns, even when the input pattern is outside the
training domain.

3.4.2 Partial-Set Training

After training is complete, we must evaluate the effectiveness of the training by
testing the operation of the network. In so doing, we are not only evaluating how
well the network has learned the application but also how complete our training
set was for the application. As we shall now describe, it is entirely possible to
create a network that can successfully learn a specific training set, but still not
perform adequately in an application because the training set was incomplete.

Typically, network effectiveness is measured by presenting the trained net-
work with patterns that were not part of the training set, and evaluating how
well the network interprets those new inputs. Depending on the network (and the
application), we would expect the trained network to be able to produce output
patterns that correspond favorably with outputs that we would expect the network
to produce, assuming that our data-representation scheme is consistent with the
scheme that we employed during training.

For example, if we were to train a BPN to recognize the image patterns of a
set of handwritten English characters, we would evaluate the effectiveness of the
trained network by presenting it with a set of new (and slightly different) input
patterns, then comparing the actual output of the network with the output that we
expected. If the training were sufficient, and the new input is not outside of the
range of characteristics that the network learned to recognize, it should be able to
correctly identify the new character pattern. If, however, the new input pattern is
sufficiently different from the training set, we should not expect the network to
perform any reasonable classification. In other words, while it is entirely reason-
able to expect the network to interpolate patterns, we should never expect it to
be able to extrapolate patterns.

To be able to evaluate the effectiveness of the trained network, we must be
able to present the network with a set of control patterns that were not used
during training, but which are similar to the training patterns. There are a number
of techniques that we might employ to obtain the required control patterns for
our evaluation. The easiest, and most common technique is to simply withhold

3.4 Training and Performance Evaluation 87

a number of patterns randomly extracted from the original training set, then use
those withheld patterns to determine the effectiveness of the training.

This technique is quite viable, and is almost always sufficient to measure the
effectiveness of the training for a neural network. However, you should be aware
that there are some potential failings with this approach that can cause misleading
results. The most common problem encountered is the sequencing of the training
set during network training. Essentially, it is possible for the network to learn that
some patterns always precede others, and therefore become predisposed.

This situation is often only found when the application developer deliber-
ately changes the sequence of the pattern presentation during training. In fact, a
colleague of mine reported that during one application-development effort, a BPN
that learned a training set in one trial failed to learn the same training set when the
sequence of pattern presentation during training was changed, even though the
initial configuration of the network was the same.® Thus, the problem with sim-
ply withholding a portion of the training set as a control set to measure network
effectiveness is that complete coverage of the application domain is not guaran-
teed.

3.4.3 Hold-One-Out Training

Another technique used to measure the effectiveness of network training is called,
appropriately enough, the hold-one-out technique. In this approach which is de-
scribed in detail in Computers That Learn, [2], one exemplar is extracted from the
training set, the network is trained using the partial training set, and the withheld
pattern is used to determine the effectiveness of the training. However, unlike the
partial-set training approach, this process is repeated for every exemplar in the
training set. Thus, for a training set containing » exemplars, the network must be
trained » times.

The benefit of this approach is that, once we have obtained a network that
can successfully recognize the withheld exemplar on all trials, we have ensured
that the training set is complete, and that the network will be able to recognize
the similarities in any new input pattern. The problem with the approach, unfor-
tunately, is time. As we have already discussed, training a network to correctly
recognize an entire training set once is a time-consuming process. Repeating the
entire training process n times, where » is the number of exemplars in the training
set, will often make this approach untenable.

3.4.4 Pathology Analysis

The final approach we shall describe for evaluating the effectiveness of network
training is perhaps the most difficult of the three techniques described in this sec-
tion for the novice practitioner to implement. However, actually performing the
analysis is often a very enlightening experience. In essence, what this technique

8. Kenneth Marko, speaking at ICNN "90.

88 Application Design

5.75.35.1 N 0.9

Figure 3.8 A Hinton diagram illustrating the activity of a layer of units in a neural
network is shown. In this diagram, each indicator is assigned to a specific unit in the
network, and behaves like an analog “thermometer,” visually indicating the amplitude
of the output of the unit. When viewed collectively, the Hinton diagram can tell us, at a
glance, which units are strongly active, which units are off, and which are indeterminate.

ascribes is to dissect the network after training, examining the configuration of
the connection weights and identifying the features of the input pattern that the
network configured itself to recognize.

The easiest method for accomplishing this analysis is to use a graphical tool
called the Hinton diagram [1], named for its originator, Geoffrey Hinton. As
shown in Figure 3.8, the Hinton diagram allows the developer to view the activity
of each unit in the network, and to visualize the relative importance of each
component of an input pattern to each unit in the network.

Using the Hinton diagram to visualize activity in the network, the application
developer can identify the units in the network that respond to different pattern
components. This analysis can be performed using the exemplars from the train-
ing set, or can be used only when specific pattern components are tested. For
example, consider an input pattern containing components representing several
independent parameters. During training, the network learns to recognize the in-
puts and to produce the corresponding outputs. After training, however, we can
selectively activate just the individual unit(s) on the input that represent one, or
any combination of the external input parameters. Then, using the Hinton dia-
gram to visualize the activity in the network, we can identify those units that
respond most strongly to the individual inputs.

Similarly, we can use the Hinton diagram to visualize the input connection
weights to each unit in the network. In this manner, we can identify the features,
or combinations of features, in the input pattern that excited each unit. Likewise,
we can easily identify connections that inhibit the activation of each unit. By
performing such an inspection after training a network, we can determine the
characteristics of the input that the network deemed important to successfully

3.5 A Practical Example 89

recognizing the exemplars. In practice, we often find that a trained network has
found the underlying relationships in the data. We can then use that knowledge
to further refine the training set, usually by eliminating input components that the
network did not use during training.

3.5 A PRACTICAL EXAMPLE

Now we shall try an exercise to reinforce the concepts we have studied in this
chapter. Let us suppose that we are given the task of developing an automated
system to predict the weather in a certain region of the country. Because this task
inherently requires a good bit of speculation and guesstimation, we have decided
to use a neural network to provide the prediction. We know that we have access
to a plethora of empirical data describing current conditions and surrounding
weather patterns, so all that remains to complete the forecasting system is the
task of building and training the neural network.”

3.5.1 Defining the Data Sources

We begin the development of our neural-network weather-forecasting system by
first defining the data sources we have available for the network to use as a basis
for its forecasts. These are

¢ The current temperature, measured in degrees Celsius.

¢ The current atmospheric pressure, in inches of mercury.

¢ The current relative humidity, as a percentage.

¢ The current wind speed, in kilometers per hour (KPH).

¢ The current wind direction, in compass direction (N, NE, E, ..., W, NW).

e The current cloud cover, in a decimal scale from zero to nine, where zero
indicates clear skies and nine indicates total overcast.

* A subjective indication of the current weather condition (e.g., rain, thunder-
storms, snow, sleet, hail, sun, fog, windy, and mild).

Moreover, we shall assume that we have access to the same information from
several surrounding weather stations. For this exercise, we shall assume that there
are eight other weather stations with which we share information, each located
100 kilometers from our position. Furthermore, we shall assume that each remote
station is situated so that it lies in one of the primary compass directions from our
position, as depicted in Figure 3.9.

9. Actually. we would also have to define and implement all of the preprocessing and postprocess-
ing functions needed to collect the current data. coerce it for the network, and interpret the output
produced by the network. For clarity, we have omitted those tasks in this discussion.

90 Application Design

]]
]

Figure 3.9 A map showing the position of the nine weather stations described in the
text is shown.

3.5.2 Selecting a Network

Once we have defined the data that we will use to train the network, the next
step in developing the network application is to decide on an appropriate network
paradigm. We do this by first identifying the characteristics of the application that
will influence the paradigm selection, then selecting a network paradigm that can
account for the application requirements.

For our example application, we know that the network must produce an
output that is different from its input. Specifically, we shall require this network
to produce a forecast of the weather for the next day, given the current situation
and recent weather conditions. We also know that the network will be required
to find general relationships in the input patterns presented to it, to produce the
corresponding output, as opposed to recalling the patterns that it has learned. We
can therefore conclude that we will need one of the mapping networks for this
application.

From our discussions in Chapter 2, we know that the BPN, or possibly the
forward-mapping CPN, could be used to satisfy the mapping requirement for this
application. However, we can probably eliminate the CPN from consideration
due to the requirement to produce a generalized mapping between the input and
the output patterns. The CPN will not satisfy this requirement due to the way
that it processes input patterns. As an illustration of why this is so, recall from
our discussions in Chapter 2 that the instar layer in the CPN attempts to match
inputs by measuring the distance between pattern vectors in Euclidian space.
While this pattern-matching characteristic is useful in some applications, it is
more appropriate as a pattern memory than as a feature detector, which is the
essence of this application. Thus, we should select the BPN as the best network

3.5 A Practical Example 91

model for this application, although we may decide to try another paradigm later,
if, after training, the BPN proves ineffective.

Exercise 3.4: Would an ART network also be appropriate for this application?
Explain your answer in terms of the internal operation of the network. =

3.5.3 Defining the Input Pattern

Now that we have selected a network model, we can define a data formatting
scheme that will allow us to represent the input parameters that the BPN will
learn. We know that the BPN requires input patterns to be represented as vectors
composed of elements that range in magnitude between zero and one. Therefore,
we must find a way to translate each of the data elements that will comprise
the input pattern into a value (or set of values) such that no pattern component
exceeds the range between zero and one.

We begin by examining the form of the raw data that will be used as the
input to the network. Inspection of the data sources tells us that there are only
two different types of inputs that we will have to consider: Scaled, continuously
variable values (in some arbitrary, but practical, range), and n-ary representations
of category values. The data parameters that can be scaled include

¢ Temperature, which will vary between —10° C and 40° C.

¢ Atmospheric pressure, which will vary between 26 and 34 inches of mercury.
¢ Relative humidity, which will vary between 0 and 100 percent.

¢ Wind speed, which will vary between 0 and 250 KPH.

¢ Cloud cover, which will vary from O to 9.

If we scale each of these inputs between zero and one, using the range identified
for each parameter, we will be able to represent each of these parameters as a
single component of an input pattern for our BPN. Practically speaking, however,
we also observe that wind speeds will normally vary between O and 40 KPH.
By scaling wind speed in the range of 0 to 250 KPH, we have accounted for all
possible variations in the parameter, but we have also diminished the influence
of the parameter on the weather prediction for all but the most extreme weather
conditions. Therefore, we shall now refine our representation for wind speed to
better reflect the normal variations in the parameter.

Rather than scaling wind speed as a single value in the range of 0 to 250
KPH, we shall henceforth consider wind speed on two different scales: normal
wind speed, which will range from 0 to 40 KPH inclusive, and windstorm speeds,
which will encode wind speeds above 40 KPH. Both of these parameters will
be scaled in their respective ranges, and thus, the wind-speed indicator for the
network will consist of two scaled parameters in the input pattern vector.

Finally, we define a representation for the two remaining parameters that will
be monitored.

92 Application Design

b ol e e e

Our Station North NorthWest

Station TPHCW,W,NSEW NESESWNWRTSSSIHSUFWM
N TPHCW1W2NSEWNESESWNWRTSSSIHSUFWM
NE TPHCWWNSEWNESESWNWRTSSSIHSuFWM
E TPHCW1W2NSEWNESESWNWRTSSSIHSuFWM
SE TPHCWMW,NSEWNESESWNWRTSSSIHSuFWM
S TPHCW1W2NSEWNESESWNWRTSSSIHSUFWM
SW TPHCWMWNSEWNESESWNWRTSSSIHSUFWM
W TPHCWMWNSEWNESESWNWRTSSSIHSUFWM
NW TPHCWWNSEWNESESWNWRTSSSIHSUFWM

Figure 3.10 This diagram illustrates the encoding of the current weather situation as a
pattern vector for presentation to the BPN described in the text.

* Wind direction can be represented by eight different categories. Thus, wind
direction can be encoded by an eight-component vector, where only one (or
possibly two adjacent) elements are active for any given pattern.

* The current weather condition can be represented by a nine-component vec-
tor, with at least one but possibly several elements active simultaneously.

Using this encoding scheme, we can represent the seven data parameters that
describe the current conditions as a vector with 23 components: one for each of
the four scaled parameters, two for wind speed, eight for wind direction, and nine
for subjective assessment. Because we have eight other stations from which we
can obtain data, we can encode the parameters from each of those stations in
a similar fashion, and represent the entire weather picture as a 207-component
vector, as shown in Figure 3.10.

3.5.4 Defining the Output

Now that we have an idea of what the input patterns will look like for the example
application, we shall next consider the format for the output pattern that we will
expect the network to produce. The first step in this process is to decide exactly
what we want the network to tell us when it is presented with a new input.

We have already decided that the network should provide us with a forecast
of what the weather will be 24 hours from now. What we have not yet decided

3.5 A Practical Example 93

on is a definition of the indicators that the network must produce that we can
interpret as a weather forecast. To define these indicators, we can call on our
experience with the local meteorologist on the evening news, and decide that an
acceptable forecast contains (at least) the following information:

e A temperature prediction.

¢ A prediction of the chance of precipitation occuring.

¢ Anindication of the expected cloud cover.

e A storm indicator, to signal a potential for extreme weather conditions.

Notice that, while we could have chosen to ask the network to produce a
more comprehensive forecast by including specific indicators for rain, snow, and
sleet, we have chosen instead to limit the network to a generic precipitation
forecast. We have done so for the following two reasons:

1. The weather characteristics that point to a chance of precipitation are more
general, and therefore easier for the network to learn to recognize, than are
the specific indicators for rain, snow, and sleet.

2. Normally, the temperature indicator will allow us to infer the type of precip-
itation that will occur. For example, if the temperature is forecast to be —4°
C, we should expect any precipitation that occurs to fall as snow.

Having defined the expected outputs from the network, all that remains to
complete the encoding of the output pattern is to define a representation for each
expected output. There are several ways in which this can be accomplished, and
no one technique is necessarily better than any other. As a learning aid, we leave
the specification of the output encoding for this application to the reader as an
exercise.

Exercise 3.5: Define a suitable data-representation scheme for the output of the
weather-forecasting network application. As part of your answer, be sure to define
the activation function that will be used by each output unit in the network. m

Exercise 3.6: Having completed Exercise 3.5, describe how the output layer on
this BPN will be trained. Keep in mind the BPN training algorithm we discussed
in Chapter 2. Note any issues that you feel will have to be addressed during the
training process. ®

3.5.5 Collecting the Training Exemplars

Having defined the format of the input and output patterns that we will expect the
BPN to learn for this application, we must next determine how we will collect
the data that we will use to train the network. To accomplish this goal, we must
consider how the network will be expected to operate after training has been
completed.

In production mode, we will present the network with a pattern vector
formed by the encoding of the current weather conditions as collected from the

94 Application Design

nine weather stations. This pattern vector will then be propagated through the
network structure, and the output produced by the network will be interpreted as
the forecast for tomorrow’s weather conditions. In other words, the training set
for this application must consist of a set of exemplars that associate the known
weather conditions at a specific point in time with the conditions that preceded
the current situation by 24 hours. In order to successfully train our network, we
must therefore have collected a set of historical exemplars where we know the
correct output for every input.

There are two methods we can employ to collect the necessary data: The
first assumes that we have no historical information available, and must therefore
begin tracking the weather for some period of time; the second assumes that
we have an extensive collection of data records, and merely need to extract the
required information. For discussion purposes, we shall assume that we already
have available all of the required information.

There remain two questions that we have to resolve to build our training set.
First, How far back in time do we have to go to have a complete training set?
Second, What granularity do we need to have to develop an accurate forecast?
The answers to these questions will determine size of the training set we must
create, and, to a large extent, the amount of time needed to train the network.!?
To answer the first question, we must decide how much time is required to obtain
an accurate picture of the weather.

If we are going to forecast the weather in Honolulu, Hawaii, we probably
only need a few month’s worth of data, because the variation in the weather in
Honolulu is very slight. If we are going to forecast the weather in Pittsburgh,
Pennsylvania, however, we probably need at least a year’s worth of data because
the weather changes dramatically with each of the four seasons. In either case, we
need to go back far enough in time to ensure that we can accurately capture the
entire domain of the problem.

The answer to the second question is not quite as easy to obtain. The natural
choice is probably to limit the granularity to a daily sample, because we are only
expecting the network to provide us with a forecast for the next day’s weather.
However, if we limit the granularity to a daily sample, we will likely omit a great
deal of pertinent information, simply because the weather can change quite dra-
matically in a very short period of time, certainly much faster than once a day.
However, if we reduce the sample time to once an hour, we introduce the possi-
bility of developing an error-riddled training set, because we are associating an
instantaneous snapshot of the current weather conditions with an instantaneous
snapshot of the weather conditions 24 hours hence. Using this scheme, it is very
likely that we would encode many conflicting exemplars—one exemplar indicat-
ing rain today at noon means sunny conditions tomorrow at noon, while another
exemplar indicates that rain at noon today means rain tomorrow at noon—which
would have to be resolved before we could successfully train the network.

10. Assuming, of course, that the initial network is developed using a software simulator.

3.5 A Practical Example 95

We shall therefore compromise on this question, and refine our definition of
the output pattern. We will collect input data on an hourly basis, but the corre-
sponding output pattern will be the average of the instantaneous patterns over
a 12-hour period. By using this refined scheme, we have significantly reduced
the possibility of conflicts in the training set while simultaneously increasing the
amount of information that the network will have available to make its forecast.

3.5.6 Training the Network

After gathering and formatting the 8,760 exemplars that comprise our training set,
we can construct the network and start the training process. We begin by defining
the number of hidden layers we will need for this network (normally one), and
“the number of units that we will implement on each layer (the prevailing wisdom
among researchers suggests that we should start with approximately one-fifth of
the number of input elements on the hidden layer, then gradually increase or
decrease that number based on how well the network trains). Because the number
of units on the input and output layers is fixed by the specification of the input
and output patterns for this network, we need only define the number of hidden-
layer units we shall require. For this application, we shall begin with 42 sigmoidal
units on a single hidden layer.

As we indicated earlier in this chapter (in Section 3.4.3), the most compre-
hensive method for ensuring that the network has learned the desired mapping is
to train it with the hold-one-out technique. Unfortunately, this method is not very
practical for our application. If we were to employ this training method, we would
have to perform 8,760 different training sessions, holding one exemplar out dur-
ing each training session, then test the network using the withheld exemplar.

Given that our network contains approximately 9,000 connections, and as-
suming that we are training the network using a software simulator, we can expect
such an exhaustive test to consume months of development time.

Exercise 3.7: Compute the amount of time needed to perform the hold-one-out
training method for the weather-forecasting application. Assume that the BPN
simulator is running on a serial machine rated at 1| MFLOPS (million floating-
point operations per second); that each connection requires two floating-point
calculations for the feed-forward computation, six floating-point calculations for
the backpropagation computation, and 10 floating-point calculations for the sig-
moid; and that 100 epochs are needed to determine if the network is going to
converge.

A much more practical technique for training this network is to randomly se-
lect a portion of the training set, and withhold those randomly selected exemplars
as a control group. Then, train the network with the remaining exemplars until
the global error has lowered sufficiently, and test the operation of the network
with the control exemplars. If the training set provides the necessary coverage,
the network should produce outputs that closely match (but are not necessarily
identical to) the outputs associated with each of the control patterns.

96 Application Design

3.5.7 Completing the Application

Normally, the first network created by a developer to address a new application
can be expected to have a number of problems associated with it. It may not
converge during training, or, after converging, may not do well predicting the
output when presented with a new input.

There are a number of things that an application developer could, and proba-
bly should, do to improve the effectiveness of the network. Herewith, we provide
a brief summary of some of the more commonly accepted techniques for improv-
ing the effectiveness of the network.

* Monitor the progress of the training by plotting the global error of the net-
work versus the training epoch. Global error should always decrease, even if
only slightly, from epoch to epoch. When the error begins to oscillate, note
the training epoch, and proceed with the following tests, training the network
in each case to the point where the oscillation originally began.

* If the network does not converge during training, try reducing the size of
the training set. If the network converges with the smaller training set, a
conflict may exist in the data that prevents the network from learning the
entire application.

* If the network does not learn the reduced training set, continue the process
of pruning the training set until a network does converge. Then start adding
training exemplars back gradually, retraining a new network after each addi-
tion. When you obtain a training set that again does not converge, examine
the training set for conflicts.

* If no conflicts are found and the network still does not converge, examine
the state of the network connections to see if any of the hidden-layer units
have become saturated. If saturated units are found (they are indicated by
input connections that are predominately very positive, or very negative, in
their weighting values), add a few more (approximately 20% of the number
of units already on the layer) and repeat the training process.

* If no saturated units are found, but the network does not converge, try low-
ering the learning rate parameter (1) and training longer. A lower learning
rate will slow the amount by which connections are adjusted, thereby allow-
ing the network to more easily find a minimal error location on the weight
surface.

* If the network converges but does not produce accurate outputs, evaluate the
coverage of the training set. It could be that the network has learned a subset
of the problem domain very well, but the control set consists of patterns that
are outside of the application domain described by the training set.

* If the network converges but does not produce accurate outputs, and you
have determined that the training set provides adequate coverage, consider
refining the pattern representation to include additional indicators (in this

Suggested Readings 97

example, consider adding a season indicator to the input) to help the network
discriminate between similar inputs that produce very different outputs.

Readers should note that these suggestions are primarily for applications that
use the BPN. Other network paradigms require other techniques, although those
methods are not strategically much different from the ones outlined here. Rather,
the other techniques are tailored to the operation of the different network models,
just as these are specific to the operation of the BPN.

Exercise 3.8: Build the weather-forecasting network described in this section.
Collect your own data using daily weather reports obtained from local newspa-
pers (which are usually archived by libraries). Train the network, and evaluate its
effectiveness after training. m

3.6 APPLICATION-DESIGN SUMMARY

In this chapter, we have examined the details of designing a neural-network ap-
plication, and shown how the selection of a data-representation scheme can in-
fluence the success of the application. We have also taken our first steps toward
developing applications of our own design, by working through a detailed exam-
ple of a viable neural-network application.

With these foundations well established, we are now ready to begin a detailed
investigation of the other successful applications of the technology. In subsequent
chapters, we will draw heavily from the concepts presented in this chapter as we
describe how each application was constructed, and show how other researchers
have overcome many obstacles to produce successful applications.

SUGGESTED READINGS

At this writing, there are not very many good textbooks available that address
the idea of application design and data preparation; hence, this book was writ-
ten in an attempt to fill that void. However, there are a number of conferences
held annually that sponsor an applications track, where researchers describe suc-
cessful applications of the technology. The interested reader will find a variety
of data modeling techniques described in the technical papers in the proceedings
of those conferences. The best source for applications papers can be found in the
proceedings of the annual Neural Information Processing Systems: Natural and
Synthetic conference and workshop, the IEEE Conference on Fuzzy Logic and
Neural Networks, and the World Congress on Neural Networks, sponsored by the
International Neural Network Society.

98 Application Design

BIBLIOGRAPHY
1. G. E. Hinton and T. J. Sejnowski. Parallel Distributed Processing. MIT Press, Cam-
bridge, MA, p. 301, 1986.

2. S. M. Weiss and C. A. Kulikowski. Computers That Learn, Morgan-Kaufmann Pub-
lishers, Inc., San Mateo, CA, 1991.

C H A P T E R

==

Associative Memories

An idea is a feat of association.
— Robert Frost

An associative memory is, quite simply, any device that associates a set of prede-
fined output patterns with specific input patterns. A computer-memory chip is an
excellent example of a simple associative memory: It produces a single output da-
tum from a set of predefined data patterns when presented with a specific address
as input (along with the appropriate control signals). An important characteristic
of the memory is that there is no requirement for a specific mapping from the in-
put to the output; that is, the output produced can take on any legal value for any
given input, so long as each output pattern was stored at a specific location in the
memory at some earlier time.

However, to say that a computer-memory chip is equivalent to an associative
memory is somewhat misleading. The behavior of a computer memory resembles
the behavior of an associative memory only as long as the input patterns to the
device are members of the set of addresses that were initialized with a desired
output pattern. Moreover, we must also have some guarantee that the address
patterns sent to the memory are accurate. If the input address to the memory
deviates from the desired pattern by a single bit, the output pattern produced by
the memory will either be the wrong one or be correct only through happenstance.

In this chapter, we shall explore the applications of associative-memory net-
works. In the process, we shall show how the structure of the network endows the
applications with a robustness that is not found when other techniques are em-
ployed. We shall begin this discussion with a brief review of associative-memory
definitions, to illustrate the different types of behavior obtainable with an associa-
tive memory. We then discuss the implementation of several applications of the
technology, showing how the associative-memory network provided a solution
for each application that could not have been easily obtained using conventional
methods.

99

100 Associative Memories

4.1 ASSOCIATIVE-MEMORY DEFINITIONS

Compare the behavior of the computer memory described earlier with that of nat-
ural memory. When we see the face of another person that we know, it makes no
difference to us whether that person’s appearance has changed slightly. We con-
tinue to recognize that person even if he or she has changed hairstyle, has grown
a beard, or is wearing sunglasses. We will almost certainly note the differences,
but unless the changes have been many and significant, we will recognize the face
nonetheless. From this example, we can see that the behavior of biological mem-
ory is significantly more robust than the behavior of the computer memory.

In many applications, the robustness of the biological memory is a desirable
quality. There are many situations where we would find it desirable for a com-
puter system to do something intelligent (but predictable) when presented with
a situation that differs slightly from anything we may have anticipated prior to
deploying the system. Intelligence in the face of noisy or incomplete input in-
formation is especially desirable. Thus, we pose the following question: How can
we endow a computer with the ability to mimic the robustness found in biological
memories?

The most intuitive answer to this question is to construct memory devices
that operate in a manner similar to the biological-memory systems. In Chapter 2,
we described the operation of several different neural-network structures. In ret-
rospect, we can see that the behavior of many of these networks is remarkably
similar to the behavior we expect from an associative-memory device. Yet, with
so many different networks to choose from, how can we be sure that the network
we select for an application is the most appropriate? To assess the applicability
of these networks to the kinds of automation problems we intend to address, we
must first define a set of categories that describe certain predictable behaviors. We
can then distinguish the network paradigms based on these categories. One such
classification for associative memories is as follows:

« A heteroassociative memory is a device that produces an output pattern that
was stored as one of a set of output patterns. The specific pattern generated
is the one associated with the input that is most similar to the current input.

e An interpolative associative memory generates an output pattern that dif-
fers from the predefined output associated with the input closest to the cur-
rent input by an amount that corresponds to the difference between the cur-
rent input and the closest training input.

* An autoassociative memory converts a corrupted input pattern into the pat-
tern that most closely resembles the current input. Notice that, in this defini-
tion, the output from the network is equivalent to the input.

After the connection weights have been configured for an application, the
BPN, CPN, BAM, and MAM can all operate as heteroassociative and autoas-
sociative memories, although each can also be used in distinctly different ways.
Similarly, the CPN with more than one winning competitive unit illustrates the
behavior of an interpolative associative memory. In the remainder of this chap-

4.2 Character Recognition 101

AN B A ez
AR A A
A4 A A

Figure 4.1 All of these images represent the same character. Notice the variety of
shapes, and consider that there are 25 other letters (not to mention the ten digit characters,
the 26 lower-case letters, and punctuation marks) that can take on the same variety in their
representations.

ter, we shall investigate how these networks can be used to address associative-
memory applications.

4.2 CHARACTER RECOGNITION

As we described in the beginning of this chapter, the process of associating a
meaningful interpretation with a visual image is quite often a complex task, es-
pecially when the form of the images to be processed can vary significantly. For
example, consider the images of the characters illustrated in Figure 4.1. While we
easily recognize that all of these images represent the same character, the process
of programming a computer to perform the same task is daunting. Moreover, if
we were to add to this set of characters another form, one that was similar to, but
not exactly the same as one we had seen previously, we would likely recognize
the character, but our computer program may not.

As we have already alluded, a neural-network can quite easily be constructed
that will perform the character-recognition function. However, as we saw in
Chapter 2, there are many different neural-network paradigms, with many dif-
ferent types of behavior. Several of those paradigms can be used to successfully
solve this problem, and at least one cannot. Of those that can be used, two net-
works are very appropriate for this problem, and the others will merely suffice.

102 Associative Memories

The issue that we must address, then, is how do we select the proper network for
the given application?

To construct a network that will perform the character-recognition task,
we must first define the data-representation scheme we will use to model the
problem. This is an important point, and unfortunately, one that is commonly ne-
glected by a novice neural-network application developer. As we shall describe in
this section, the choice of the data-representation scheme for an application will
quite often imply the use of certain neural-network paradigms.

Let us begin, then, by defining a suitable data representation for our neural-
network character recognizer. Referring again to Figure 4.1, you should first
notice that each image is approximately the same size as all the other images,
both horizontally and vertically. We shall therefore assume that the network that
we will construct to recognize these images will not have to deal with differently
sized characters,! and restrict our network design to the recognition of differently
shaped images.

4.2.1 Input Pattern Definition

To build a neural network that can associate character images with character
meaning, we must first determine the means of image acquisition for the applica-
tion. The most common method of acquiring image information (in the sense that
a computer processes information) is through the use of raster video techniques.
As shown in Figure 4.2, a video image can be thought of as a two-dimensional
matrix of pixels. A monochromatic pixel, in its simplest form, is a binary indi-
cator of the illumination status of the pixel: a logic “1” is usually interpreted as
a white (or illuminated) pixel, while a logic “0” is typically used to indicate a
black (or nonilluminated) pixel. For images more complex than simple text char-
acters, a gray-shade (or color) pixel representation is often used, but that requires
additional information about each pixel. For this application, binary information
will be sufficient to construct images of all the characters the system will ever
process.

Using the video pixel matrix as the basis for our character-image represen-
tation, we must next select the resolution that we will need to adequately model
the character image for the neural network. Because our application is to build
a network that will correctly recognize a variety of different character shapes as
a limited number of characters, we will require a character matrix that provides
only a moderate resolution—say, eight pixels horizontally and ten pixels verti-
cally. However, if our application required that the network be able to discrim-
inate between characters that have only subtle differences, a higher resolution
image would be necessary, because each additional pixel in the image would give
the associative memory a corresponding increase in information that it can use to
differentiate characters.

1. If we cannot guarantee that the images will be approximately the same size, we could prescale the
character images before asking the neural network to classify them.

4.2 Character Recognition 103

EEEN (1 Hel=
CmOCm Soham
=l ey | DocEm
ml sy | Doomm
OmOC . coomm
m] =iml OCamm
EEEN HHE

Figure 4.2 A variety of video-matrix representations for the character D are shown.
Notice the difference in the resolution of the character as the number of pixels in the
image matrix varies—more pixels provide a higher-quality, easier-to-distinguish image
while fewer pixels result in a character image that is jagged looking.

By concatenating the ten row vectors of eight pixels that comprise the char-
acter matrix into a single, 80-element vector, we will have formed a pattern that
is suitable for input to an associative-memory neural network. Moreover, by con-
sidering the input image as a vector, with both magnitude and direction in n-
dimensional hyperspace, we have provided the network with the inherent ability
to compare images of new characters with images of characters it has already
learned to recognize.

4.2.2 Output Pattern Definition

The next step in constructing the data representation for the application is to
define the form of output that we will interpret as the meaning of the input image.
There are several schemes we can use to define the form of the output pattern. The
most straightforward approach is to use a classification scheme in which one, and
only one, output element is active for any given input pattern. The position of
the active output element will determine the corresponding character. A neural-
network implementation of this scheme is depicted in Figure 4.3. Using this
strategy has the advantage of simplicity: It is relatively easy to construct a layer
of processing elements in a neural network that will produce a one-and-only-one
output across the layer. It is also very easy for the external application to interpret
the output from the network: It need only determine which output unit is active,
and then use the character associated with the active unit.

Unfortunately, the classification scheme we are using at the output also has
some implicit disadvantages. For instance, it requires that we must be able to
completely specify beforehand the number of different characters that the mem-
ory must recognize. If, at some later time, we should need to add another charac-
ter to the set of recognized characters, the output must be extended to accommo-
date the new character.

While this simple extension may not seem devastating from a system per-
spective, remember that we are using interconnected processing elements to rep-
resent each pattern element. Thus, the addition of a single output unit to an
associative memory network adds a relatively large number of interconnections

104 Associative Memories

DEE® a0
\

N

ﬂ»@
©
O,
=)
S
S
(o) — =
O

.

mimy 1 1 71 1 Infn]

Figure 4.3 A neural-network structure arranged to identify characters using a video
pixel input pattern and an output classification scheme is shown. In this diagram, the input
image pattern becomes the output from the input layer of units. After propagating this
input pattern through the internal network structure (shown in this diagram in a simplified
form), each unit on the output layer of units produces an output signal based on the
stimulation it has received from the rest of the network. If the network has been trained
appropriately, only one unit on the output layer will produce an active output—in this
case, the unit associated with the character Q.

(along with the corresponding time to process the new connections), and forces
us to completely retrain the network. Retraining will be necessary? because it is
unlikely that the newly created input connections to the new unit will have any
a priori understanding of the application.

2. The need to retrain the network will vary with the network paradigm being used. See Chapter 2 for
more information on this topic.

4.2 Character Recognition 105

mim |] = OUEEERLI
m | [mm] . | | [] e
[| [mjmimi] | [| (i) | |
[Imimminin] | BOOO000m
BUO0O000R [(]
@) BOCCCO0R 000000
[ImmEminin | | |mmmmin]
ERCCCCEE ERLCEEE
EECCEEC] | |mm]l
miml |11 |mE O0mANECE
o 00111100 01100110 ... 01100110 00111100
) 00111100 01100110 ... 01100110 00111101
1001111 = O
© 1010001 = Q

Figure 4.4 This diagram illustrates how small differences in the input to an associative-
memory network can result in substantially different outputs from the network. (a) The
raster images of the characters O and Q. (b) The input vectors of the two images in binary
form. (c) The ASCII codes for the two characters, also in binary form. Note the number
of bit differences between these two output patterns.

Another data-representation scheme we might use to interpret the output
from the network is to use some predefined code, such as an ASCII represen-
tation, to indicate the meaning of the image pattern. This scheme has the advan-
tage of fewer processing elements on the layer (seven, to represent 128 different
characters versus 62 to represent the 26 upper-case, 26 lower-case, and ten digit
characters), a significant consideration with regard to simulation time and net-
work storage requirements. Unfortunately, it also has the disadvantage of being
more difficult to train. Subtle differences in the images of two similar characters
will often result in significantly different output responses from the network. An
example of this situation is shown in Figure 4.4.

4.2.3 Network Specification

Recall from our previous discussion the objective of this application: to correctly
recognize the images of characters that will often have very great differences in
shape, even between identical letters, due to differences in style. The fact that we
want the associative memory to produce an exact output, even though the input
pattern used may be slightly different from any of the images the network has

106 Associative Memories

learned to recognize, suggests that we should use a classification scheme (e.g.,
allowing each output unit to uniquely represent ex.actly one of the desired output
classes) for generating outputs, because this approach provides us with a greater
separation between output patterns, and thus improves the ability of the network
to successfully categorize new input patterns.

Next, let us consider the comparison process that a neural network will per-
form when processing new input images. Recall from Chapter 1 that each pro-
cessing element in a neural network produces an output signal that is derived
from the aggregate stimulation the unit receives from all of it inputs. Because
there are many different types of comparisons that can be performed by such a
processing element (e.g., Euclidian distance metric, Hamming distance, and fea-
ture extraction), we must decide which is best suited to the application at hand.
We have already decided the form of the input pattern to the network for this
application—image data in the form of a binary vector containing 80 pattern ele-
ments. If we consider each input pattern as a vector in Euclidian space, we could
use a competitive layer of elements to process the input, with the winning unit be-
ing designated as the unit that has been encoded with the training image that best
matches the current input image. Such a comparison is illustrated in Figure 4.5.

However, a simple Euclidian comparison such as the one performed by a
competitive layer has two significant problems with respect to this application:

* The number of patterns that can be distinguished will be limited to the num-
ber of units on the competitive layer.

* Spatial comparisons cannot easily distinguish subtle differences between
similar, but different, patterns.

Referring again to Figure 4.5, notice that a competitive layer can only perform
comparisons between the current input pattern and those patterns associated with
each unit on the competitive layer.> Thus, a competitive layer is restricted to
comparisons between the current input and a fixed number of prestored patterns.
If, at some later time, we wish to extend the application to include recognition
of some characters that were not part of the original training, we would have to
reconstruct the entire application with a network containing a similar number of
additional competitive units, one for each new character to be recognized.

Now consider the characters shown in Figure 4.6. Two of these are the lower-
case letters g and ¢, and two are different images of the decimal character 9. If
we were to use a competitive network, three different units would be needed to
distinguish the g, the ¢, and the 9. But, with only three units to recognize these
four characters, and with each unit using a Euclidian distance comparison, how
can we guarantee that the appropriate unit wins the competition? Specifically,
which unit would win the competition if the input pattern were the distorted
image of the 97 If the image vector of the g is closer to the image vector of the
distorted 9 than is the image vector of the 9, how can we prevent the network from

3. As defined by the weight values in the input connections to each unit.

4.2 Character Recognition 107

Figure 4.5 The comparison of pattern vectors in Euclidian space is shown. In this
diagram, each of the vectors labeled w; represent image vectors of characters the
competitive layer has learned to recognize. The current input image vector, labeled i, is
closest in Euclidian distance to vector w3. Unit 3 will therefore win the competition, and
generate the output that was associated with this unit during the training process.

misclassifying the distorted 9 as a g? The answer to these questions, if we are
using a competitive layer to compare vectors in Euclidian space, is that we must
again add more units to the layer, to ensure that each subtle nuance in character
images is captured within the network.

Practically speaking, however, building a neural network that will contain a
distinct unit to detect each unique variation of each possible character image is no
solution at all. A network cannot contain an infinite number of units, nor can it be
realistically expected to exactly recognize each of an infinite number of possible
input patterns. A much better approach for this application would be to use a
network that can recognize the features of the input that tend to correctly classify
the image patterns. The BPN, also described in Chapter 2, does an excellent job
of categorizing outputs based on generalizing input patterns into their feature
components.

108 Associative Memories

v g oq g

Figure 4.6 Four similar character images are shown. (a) A lower-case g. (b) A lower-
case ¢. (¢) The digit 9. (d) A distorted 9. The details of the comparison among these
image patterns is described in the text.

Figure 4.7 The BPN structure needed to solve the character recognition application. The
operation of the network is described in the text. Source: Neural Networks: Algorithms,
Applications, and Programming Techniques [2]. Copyright ©1991, Addison-Wesley. Used
with permission.

We shall therefore specify the network for our character-recognition appli-
cation as a three-layer BPN, similar to the network illustrated in Figure 4.7. In
this approach, the first layer will act as a fan-out layer that will simply hold
the input image pattern for the rest of the network, the second layer will act as
a feature-identification layer, with each unit responding to the presence (or ab-
sence) of features that tend to classify the input, with an output layer consisting
of n units, where n is the number of characters to be recognized. Using this en-
coding scheme, we shall expect the output of the network to produce only a single
active unit for each input pattern presented, and we shall interpret the position of
the active output unit as the indicator of the character itself.

4.2 Character Recognition 109

Because the output units in this application are essentially binary, we shall
employ the sigmoidal activation function on both the hidden and output layers for
this network. The hidden-layer units will require the nonlinearity in the activation
function to help the network distinguish between nonlinearly separable patterns.
The output layer units will use the sigmoid function to relax the restrictions on the
range of input signals each unit must receive to produce a specific output, while
creating a situation where it will be relatively easy for the units to produce either
strongly active or inactive output signals.

Using the input and output data-representation schemes described previ-
ously, we know that there must be 80 input units and 62 output units (one for
each upper- and lower-case letter character, and one for each of the ten digit char-
acters). All that remains to complete the network specification is to determine the
number of hidden-layer units for the application; select a learning-rate parameter
(1) and, if required, a momentum term (c); and to train the network.

Unfortunately, there is no hard-and-fast rule that can be used to precisely de-
termine any of these parameters for every application. As a general rule, however,
a learning rate of 0.5 and momentum value of 0.2 should be about right for a first
trial. We select these values for the following reasons:

o As the learning rate approaches unity, learning in the BPN becomes deter-
ministic. This means that connection-weight changes are made to eliminate
the instantaneous pattern error every time the network adapts. Unfortunately,
the network must be able to learn more than one pattern, which it cannot do
under these circumstances, because changes to completely eliminate the er-
ror in one pattern almost always result in the introduction of errors in other
patterns.

e Conversely, as the learning rate approaches zero, learning in the BPN slows
equivalently. While slower learning increases the ability of the network to
encode patterns, it also increases the likelihood of entrapping the BPN in
a local minimum on the error surface during learning, creating a situation
where the network never converges to an acceptable solution.

e Choose a fairly small, but nonzero, value for the momentum parameter to
reduce the ability of a single outlyer in the training set from adversely affect-
ing the direction of the weight update during training. If momentum is too
high, any outlyer patterns can overwhelm the connection-weight update on
the next pattern, thus preventing the network from encoding that pattern.

The guideline for specifying the number of hidden-layer units in the BPN is
as follows: Start with a fraction of the number of input units, train the network,
and adjust the number of units based on how well the network trained. Generally,
for a BPN that contains more inputs than outputs (as do most BPN applications),
a good place to start is with one-quarter to one-third as many hidden units as input
units. Then, after training has been completed, the number can be adjusted up or
down, based on whether the network learned the application (if not, adjust up),

110 Associative Memories

or if many hidden-layer units never activate for any of the input patterns (adjust
down).

Exercise 4.1: Specify a neural-network solution for a character-recognition ap-
plication, this time using the ASCII representation of each character as the de-
sired output. Indicate the type of network used, the number of units on each layer,
and the activation function for each layer of units, and describe any potential is-
sues that must be addressed in order to make the application successful. m

4.3 STATE-SPACE SEARCH

We have all played games that require us to perform pattern-matching and state-
space searches. For example, when we played tic-tac-toe as children, we quickly
learned which strategies offered us the best prospects for winning, and which
strategies tended to result in ties or losses. We probably learned to recognize the
game situations that produced those results without consciously realizing that we
were, from a computational viewpoint, performing a rapid search of a relatively
large state-space. To put this notion in perspective, consider that in the simple
game of tic-tac-toe, there are precisely 362,880 (9!) different ways that the game
board can be completely filled. To be fair, however, the number of possible situ-
ations that can be encountered in a typical game is significantly smaller, because
we usually do not continue after one player has won.

If we were to model this game so that a computer could play against a
human opponent, we would likely begin by defining a state-space for the game
that the computer could search and evaluate. We would probably use a graph to
model the state-space for the computer, representing each legal game situation
by a node, and using the arcs between nodes to represent the move made to
transition between the legal situations. Finally, we would program the computer
to construct and search partial game state-graphs, with each search beginning at
the node representing the current game situation, and proceeding forward using
an algorithm like the minimax to determine the best move for the computer, given
the current situation.

Let us separate ourselves from the classical perspective of modeling situa-
tions for computer processing for a moment, and consider the process whereby
we learned to play the game. Usually, our first experience with tic-tac-toe comes
as a child, and involves a series of trial-and-error attempts to learn the strategies
of the game. After being told the rules and objectives, we begin by making moves
randomly, eventually winning or, more likely, losing as a result of luck and our
opponents skill. After many trials, we learn to associate desirable next-state sit-
uations with current-state patterns. Eventually, after much practice, we achieve a
level of competence that virtually guarantees that any future game we play will
be either won or drawn, simply because we have progressed to a point where we
quickly recognize any situation that we will likely encounter, and have associated
the proper response with that situation.

4.3 State-Space Search 111

This process of associating patterns is the essence of a heteroassociative
memory. Therefore, it seems reasonable to assume that we could teach an asso-
ciative memory network to play tic-tac-toe against a human opponent. The only
question that remains is: How?

4.3.1 Input-Output Specification

From an application perspective, it is clear that the neural network we want to
build will use the current game situation as input, and will output a recommen-
dation of the proper move based on the current situation. Using this scenario, let
us first consider how to unambiguously model the current game situation for an
associative-memory network.

We know, from our experience, that any position on the tic-tac-toe game
board can legally exist in three distinct states: unoccupied (or blank), occupied
by the X token, and occupied by the O token, which we will henceforth denote
as b, X, and 0. We also know that input pattern elements to a neural network
are usually binary values, although they can be continuously variable in the range
between their limits. We therefore have a situation where we are attempting to
describe three distinct states using network-processing elements that are designed
to operate on primarily binary values. We can address this issue in one of the
following two ways:

e We could map one input pattern element to each legal board space, and let
each pattern element have three legal values, say {0.5. 1.0, 0.0}, to represent
{b, X, O}, respectively.

e We could map multiple input pattern elements to each legal board space, and
then use combinations of binary patterns to represent the three legal game
states.

We shall select the second of these two options for the reasons described in
Chapter 3.* We will further specify the use of three inputs for each of the nine
board positions, one to represent each of the possible position states (b, X, O)
using a one-and-only-one representation technique. Thus, we will require a total
of 27 inputs to the network, only nine of which will be active for any valid input
state.

To produce the desired output from the network, we will need only nine
units, one for each of the nine board positions. We shall expect the network to
activate units on the output layer when presented with the current game situation
at the input layer. The units activated by the network will be interpreted as the
position on the game board where the next token should be placed. As before,
the internal configuration of the network (i.e., the number of hidden-layer units,
if any) will depend on the network paradigm selected to implement this memory.
Figure 4.8 illustrates the general form of the network needed to play tic-tac-toe.

4. See Section 3.2.2, Tertiary and n-ary Patterns. for the details on this issue.

112 Associative Memories

170
X
X
0

Figure 4.8 The structure of a neural network designed to learn to play tic-tac-toe

is illustrated. Notice that the network is used only to assess the current situation and
recommend the next move. External software (or possibly even hardware) will be
necessary to sense the state of the game, to convert that information into the form needed
by the network, and finally to implement the recommended move.

4.3.2 Exemplar Acquisition

In this application, there are several issues associated with acquiring the exemplar
data that we did not encounter in the character-recognition application. These
issues are

* Alack of immediate feedback with regard to the quality of a particular move.
Usually, the results of a move made early in the game do not become appar-
ent until the game is almost over.

* Temporal constraints on the exemplars acquired across multiple games, pos-
sibly creating a situation where the network might never learn the application
due to conflicts in the training exemplars.

* Rotational duplication of training patterns, resulting in many exemplars that
are functionally redundant, but necessary, depending on the network para-
digm selected for the application.

To illustrate why these issues are a concern, we must take into account the
process by which a neural network learns to reproduce a target output from cer-
tain input patterns. Depending on the network, training is usually implemented
from instantaneous exemplars; that is, a network learns to reproduce a set of

4.3 State-Space Search 113

exemplars by slowly adjusting its internal connection weights based on the pre-
sentation of a single input and a desired output. Training continues by repetitively
showing the network the same set of exemplars, until the network can accurately
reproduce all of the target outputs when presented with the corresponding input
patterns, one at a time. This learning process means that the network being trained
has no specific memory of patterns previously seen, nor does it have any fore-
knowledge of patterns that have not yet been seen.

With those constraints in mind, consider the process of collecting the training
data that we will need to construct our exemplars for this application. Because
the neural network is intended to be an opponent for a human player, we might
expect the game to be played interactively; that is, players would be expected
to alternate turns. However, we have no way of telling the network whether the
first move it makes, be it defensive or offensive, is good or bad until the game
is almost over. This time lag between action and feedback, coupled with the lack
of explicit pattern memory in the network, will make it impossible to train the
network interactively. Therefore, we shall back off from our interactive training
requirement, and create a situation that will allow the network to observe and
learn from other players before ever making a move.

We can create such a situation by playing several games either against our-
selves or against another human player, and recording each move made as a
situation-move ordered pair. Then, after recording the evolution of many different
games, we can transcribe the sequence of moves into exemplars for the network.
The network can then be trained normally. Once it has learned the exemplars, we
can then test the memory by allowing it to effect its own moves interactively. If
training has been sufficient, the network should be able to play the game as well
as the user. If not, additional exemplars should be added to the original training
set, and the network retrained.

The scenario just described addresses the issue of dealing with a lack of im-
mediate feedback. The other two issues are also significant concerns, especially
when using certain networks. For example, consider what might happen if we
simply used the training data acquired as previously described to teach a BPN the
tic-tac-toe application. The BPN is a spatial mapping network, meaning that it
will always try to find a way of producing a given output when presented with a
given input. It has no mechanism built into it to allow it to learn many different
outputs that are associated with one input, which, unfortunately, is quite likely the
case in this application.

For example, if we have collected our exemplars by playing many different
games and recording each and every situation-move pair as a separate exemplar,
we will have multiple exemplars that have exactly the same input pattern—say,
the empty game board—with different associated outputs. This situation, which
is illustrated in Figure 4.9, presents a problem for the BPN because it has no
explicit memory of any exemplars, other than the one that it is attempting to learn.
Thus, every time a conflicting exemplar is presented to the BPN, the network
will attempt to learn the new target output by unlearning any conflicting output

114 Associative Memories

(b) 100100 100 100 100 100 100 100 100 100 000 000
100 100 100 100 100 100 100 100 100 000 010 000

Figure 4.9 This diagram illustrates how conflicting training information might be
acquired for the tic-tac-toe example. (a) The initial game-board situation commonly
results in one of two next-state situations. (b) The two exemplars resulting from situation
(a). Notice that both have the same input pattern, but the output patterns are significantly
different. We refer to exemplars that exhibit this quality as conflicting.

pattern it may have already seen, creating a situation where the network will never
converge to a global solution.

We could solve this problem by choosing to use one of the BPN-variant
networks—for example, the Jordan network—as the basis for this application.
The Jordan network allows us to deal with the one-to-many mapping problem
by virtue of the feedback provided from the output layer to the input layer. In a
sense, the state units provide a discrimination pattern that the Jordan network can
use to separate the duplicate patterns.

Exercise 4.2: We have just described why conflicting exemplars present a train-
ing problem for the BPN. Identify another network paradigm, different from the
BPN and its variants, that will not have a problem with conflicting exemplars. Ex-
plain why the selected network can deal with a one-to-many pattern mapping. m

With regard to the rotational issue, we can offer no easy solution, other than
to say that it is a common problem in neural-network applications, and must
be dealt with on an application basis. For this particular application, the best

4.3 State-Space Search ‘ 115

solution might be to ensure that the training exemplars include several instances
of every possible variation, with the frequency of the various instances mirroring
the occurrence of the situations.

Exercise 4.3: Based on the previous discussion and your knowledge of the dif-
ferent neural-network paradigms, define the architecture of a neural network that
could learn the tic-tac-toe application. Specify the network-learning paradigm,
the number of layers needed, and the number of units and activation function for
each layer in the network. m

4.3.3 Network Specification

Now that we have defined the input and output data representations for the net-
work, we can complete the application by selecting the appropriate network-
learning paradigm, and by constructing the network from the specifications. To
select an appropriate network paradigm, we shall first review what we already
know about the tic-tac-toe application, because the requirements of the applica-
tion will influence the selection of the proper network paradigm.

e The form of the input and output patterns in each exemplar will be binary
vectors. If the selected network prefers the use of continuous or bipolar’
patterns, we must convert the exemplar format accordingly.

e When the network receives an input pattern after training has been com-
pleted, the output produced by the network should be the pattern that most
closely resembles the current situation, as indicated by the input pattern
vector. The best technique for accomplishing this comparison is via the
Hamming-distance measure.

o It would be preferable to have the memory learn the application interactively,
if possible. If not, we must be able to collect a representative sampling of
exemplars to train the network offline.

e The network selected must be able to deal with a one-to-many (1:M) map-
ping of inputs to outputs, in order to learn different strategies for similar
situations. If the selected network cannot handle 1:M pattern associations,
then we must preprocess the exemplars to eliminate conflicting exemplars.

o Rotational duplication of situations cannot be dealt with easily within the
network without some preprocessing of the input patterns. The most straight-
forward approach for resolving this issue is to simply ensure that the training
set includes many examples of rotated situations.

There is no one network paradigm that will satisfy all of these constraints.
Instead, we shall compromise, and select a modified ART1 network as the best
choice for this application. The network, as shown in Figure 4.10, is functionally

5. In this text, we reserve the term binary to refer to elements from the set {0, 1}. Similarly, the term
bipolar is reserved for patterns containing elements from the set {—1, 1}.

116 Associative Memories

Linear Outputs

Figure 4.10 The ART] network, modified with the addition of an outstar layer from F,
to the linear-output layer, is shown. Recall that the F3 layer is a competitive layer in the
art model, meaning that after the network achieves resonance (when it has either matched
or stored the input pattern), the associated output pattern can be stored in the connection
weights between the winning F>-layer unit and the linear-output layer. © David M.
Skapura, 1990. Reprinted from A Connectionist Approach to Heuristically Pruning Large
Search Trees. Used with permission.

identical to the ART1 network described in Chapter 2, with the exception of the
outstar layer that we have combined with the F, layer, and the linear-output units
that will serve to identify the next move position. Why do we need this modi-
fication to the ART network? Quite simply, ART1 acts as a constantly learning
pattern memory, but it has no built-in provision for storing patterns to be asso-
ciated with the memory patterns. The addition of the outstars, which are merely
a logical extension of the existing F>-layer units, provide the network with the
ability to store the associated pattern memories. The linear-output layer acts as
a pattern multiplexer, providing a common output location for all of the patterns
that can be produced by the Fa-layer units. More importantly, though, the outstar

4.4 Image Interpolation 117

learning law allows the outstar to learn the average of all of the pattern vectors
associated with the unit, thereby solving the 1:M pattern issue.

4.4 IMAGE INTERPOLATION

Earlier in this section we saw how video imagery could be used as an input to
an associative memory designed to recognize text characters in the image. We
shall now investigate a variation of that application, this time showing how an
interpolative associative memory can be used to produce meaningful responses
when an input pattern varies from the training exemplars. For this application,
first described by James Freeman [1, 2], the input to the memory is the two-
dimensional (2D) image of a model of the space shuttle that can be rotated about
a single axis. The output from the memory is then expected to be the angle of
orientation of the shuttle model with respect to a fixed reference position.

The purpose of this application, as described in the original paper, was to
show how a neural network could be used to perform the rudimentary functions
associated with image understanding. The original experiment was conducted as
a precursor to the more complicated problem of stereoscopic computer vision,
where the third dimension (depth) becomes a concern.

4.4.1 Input Pattern Specification

As we saw in the character-recognition application, computer image processing
usually begins with some form of video camera being used to acquire the image
information. The video data, in the form of raster pixels, is then digitized® and
collected together as a frame of imagery. Each frame of data represents a snapshot
of the scene, essentially a moment frozen in time, that can be used to perform a
static analysis of the image.

In the character-recognition application, the image processing was fairly
straightforward—the application expected the image data to contain a recogniz-
able character, and the character image was expected to be well behaved (i.e., po-
sitioned and oriented in a particular manner within the character matrix). Because
we were only concerned with the identification of monochromatic text images,
the pixels in the character image could be represented as binary values.

For the spacecraft orientation system, monochromatic video was also used
to provide the input image for the system. In this case, however, each pixel was
digitized into one of 256 gray shades, rather than simply on or off. While not
necessary to the success of the application, the gray shading was used to assess
the ability of a neural network to handle complex image data. Because gray
shades allow for shadows on the image, and provide softer transitions at areas

6. A quantizing process. where each pixel is assigned an integer value indicating its luminescence.
and. if appropriate, its color.

118 Associative Memories

of high contrast, it was felt that gray shading provided a more comprehensive test
of the associative memory than if the Input image were simply binary.

The original image obtained from the video input system was a 256 x 256
pixel matrix, with the image of the shuttle model positioned at the center of
the frame. Using conventional pixel compression techniques, the video image
was then reduced to a 32 x 32 pixel image in order to reduce the computational
complexity to a size that was manageable in a neural-network simulation.” The
1,024 pixels from the compressed image were then each scaled to a value between
zero and one, by translating each pixel according to the equation

==L i 1004 4.1)
max{p,}

where i; represents the value of the ;th pixel in the input pattern (i), and Di
represents the value of the i™ pixel in the image pattern (p). The resulting values
were thresholded into binary pattern elements, and concatenated into a pattern
vector comprised of 1,024 binary elements, each representing a gray-shade pixel
from the compressed image of the shuttle model. Figure 4.11 illustrates the form
of the input pattern, and shows how it corresponds to the original, digitized image
of the shuttle.

4.4.2 Output Pattern Specification

For this application, the associative memory was expected to provide an inter-
polated estimate of the orientation of the space-shuttle model from the image of
the model. Because the model had only one axis of rotation, the neural network
had merely to provide an indication of the rotational orientation of the model
given the input image. To see how that was accomplished, let us now consider
the method used by the application developers for representing the rotational ori-
entation in a manner that can be reproduced by a neural network.

First, given that the model had only one degree of freedom, we can conclude
that the orientation, while continuously variable, can always be expressed by an
angular difference between the current position and some predefined reference
position. For this application, the nose-up orientation was selected as the refer-
ence position.

Next, we must determine how we should model outputs from the network so
that we might interpret the network response as an indication of the angular dif-
ference between the current input image and the reference position. One method
for satisfying this requirement is to specify the output value from the network as
an indication of the sine (or cosine) of the angle between the two positions. Us-

7. In this application, as in most of the applications described in this text, the neural network was
implemented as a software program running on a conventional computer system. Simulators tend to
be extremely slow when running large networks: hence, smaller networks are preferred.

4.4 Image Interpolation 119

Figure 4.11 This diagram illustrates how the input pattern vector was formed from
the digitized image of the space shuttle. The image of the shuttle has already been
preprocessed to compress the image to 1,024 pixels. Source: Adapted from Neural
networks for machine vision: the Spacecraft Orientation Demonstration [1]. Copyright
©1988. Used with permission of the author.

ing this interpretation, we can guarantee that the output from the network will
be limited to values in the range of —1...1 (because the sine and cosine func-
tions have those minimum and maximum values). This representation scheme
also maps well into the kind of output that can be easily produced by a neural
processing element; in this case, as a continuous bipolar output.

Finally, because in this application we expect the output to be interpolated
between specific training points, we can improve the ability of the network to
resolve points if we ask it to provide both the sine and cosine values for the input
orientation. By so doing, when the network interpolates an output, we will have
an external measure of how accurate the interpolation was by having two different
indications of the interpolated value. If the interpolation produces an exact (or
very near exact) response, the difference of the angles that produce the resulting
sine and cosine values will be very small. However, the interpolation is somewhat
less accurate, we should expect differences in the angles indicated by the sine
and cosine outputs. When this occurs, we can choose to externally refine the
approximation provided by the network by averaging the two angles indicated.
Such a situation is illustrated in Figure 4.12.

120 Associative Memories

(@) (b)

Figure 4.12 This figure depicts the use of two interpolated output signals as a measure
of the confidence in the interpolation process. (a) When the angles indicated by both
outputs agree, confidence in the interpolation process is very high, and no external
averaging is required. (b) When the output angles differ, confidence in the interpolation is
diminished, but externally averaging the output angles can produce better results.

4.4.3 Network Specification

Having completed the specification of the input and output patterns for the asso-
ciative memory, we are now able to complete the application by selecting an ap-
propriate neural-network paradigm. To choose the most appropriate neural model,

let us first review the two primary requirements of the memory for this applica-
tion:

* The memory must be able to accept digitized video images as input. The
outputs to be produced by the network will be the numeric value of the
sine and cosine of the angle between the reference position and the current
position of the shuttle model, as contained in the input image pattern.

* The network must be able to recall exact matches to input patterns, or to
interpolate between training examples when the current input differs from
one of the training inputs.

Based on these requirements, the developer of this application selected the
forward half of the CPN as the most appropriate network paradigm. The forward
half of the CPN is a logical choice for this application, due to the fact that the
CPN can produce outputs that are analogous to linearly interpolated, continuous
mathematical functions. Specifically, by constructing a CPN containing 1,024
inputs, 12 hidden units, and 2 outputs, and training the network to recognize
12 different images of the shuttle model, each rotated by 30 degrees from its
neighboring image, the network became a heteroassociative memory for the 12
images.

After training was completed, the behavior of the network was altered to
allow two hidden units to win the competition for any new input pattern. This

4.4 Image Interpolation 121

modification allowed the CPN to perform a linear interpolation between the an-
gles associated with the images that most closely correspond (in Euclidian space)
to the current input image. Thus, if the input image indicated that the shuttle was
at an orientation of 41 degrees, the competitive units that learned to recognize the
image at 30 degrees and 60 degrees would win the competition, with the first hav-
ing a slightly higher activation than the second. When these two units then sent
their respective angle information to the output layer, the linear units at the output
of the CPN integrated the responses from the two winning units, and provided a
linear interpolation between them.

There were, however, two problems with this particular implementation:
First, the CPN offered no method for internally detecting when an input pattern
exactly matched one of the training patterns, and, thus, an interpolation between
two units was performed even when the input was one of the training inputs.
Second, the method of interpolation was a problem; linear interpolation between
angles is at best a crude method of approximating an angle. We can illustrate this
concept with an example.

Using the scenario described above, let the current input image represent the
shuttle at 45 degrees, halfway between two training points. After propagating that
image pattern to the hidden layer, the units associated with the input image at 30
degrees and 60 degrees will win the competition, with identical activation values.
The values propagated to the linear output units are then given by the equations

s =0.5sin(30°) + 0.5 sin(60°)
=0.25+0.433
=0.683

and

¢ =0.5¢c0s(30°) + 0.5 cos(60°)
=0.683

because each of the two winning units contributes an equal share of its output
pattern to the total output. Now, by taking the inverse sine and cosine of the values
produced by s and ¢, we find that the angle indicated by unit s is 43.08 degrees
and that the angle indicated by unit ¢ is 46.92 degrees. Only by averaging the
results provided by the network can we compensate for the error introduced by
the linear interpolation process.

Exercise 4.4: Determine the output from the interpolative CPN if the input pat-
tern were 120 degrees. Assume that, as before, two units win the competition
when the input pattern is propagated forward. =

Exercise 4.5: Describe the modifications you might make to the CPN to detect
when an input pattern exactly matches one of the training inputs. Be sure that
your solution does not rely on any external information beyond the input pattern
being provided to the network. m

122 Associative Memories

4.5 DIAGNOSTIC AIDS

The last example of an associative-memory application that we will study is based
on an unpublished application developed by one of my students. The objective
of the project was to determine if an associative-memory neural network could
be used to assist in the diagnosis of equipment failures in large, complex com-
puter systems. Specifically, an autoassociative memory was trained to recognize
patterns that consisted of a variety of symptoms that, in specific combinations,
indicated certain failure modes in the equipment. After training the network, the
memory was used to match a partial list of symptoms against the complete pat-
terns stored in the memory. The output pattern produced by the network was
compared to the partial pattern to determine if the operator may have overlooked
certain symptoms during the diagnostic process that, if present, could help pin-
point the source of the problem.

This application was found to be very useful in practice, because, as with
most fairly complicated systems, many failure modes tend to produce identical
symptoms: For example, a blank cathode-ray tube (CRT) screen in a desktop
computer system can be indicative of a power-supply problem, a bad graphics
card, incorrectly connected cables, or a defective power switch. Only by look-
ing at the complete list of symptoms can we identify the source of the failure
(e.g., if the CRT is blank, the light over the switch is on, the cables are all con-
nected correctly, and the computer produces an abnormally long beep during
the bootstrap process, we can identify the source of the problem as the graphics
card).

Compounding the problem, the diagnosis of equipment failures is often com-
plicated by the fact that certain failures sometimes induce other failures that, in
turn, produce a whole new set of symptoms. The symptoms of the induced prob-
lem can ultimately mask the symptoms of the original problem, complicating
the diagnosis. Often, the only method that exists for identifying and correcting
these kinds of problems is to have specialized technicians perform an analysis
of the failure. The problem with this solution, however, is the loss of generality
with the technicians—if a technician becomes so specialized that he or she can
only diagnose problems in certain kinds of equipment, the diagnostic skills of
the technician cannot be reapplied to another system without significant retrain-
ing.

A possible solution to this dilemma lies in the ability of an autoassociative
neural network to match partial input patterns, producing as output the training
patterns that most closely resemble the partial input. In this manner, the autoasso-
ciative memory can be used to capture the specialized symptom knowledge avail-
able from a system designer, which can then be integrated into a field-diagnostic
system. By automating the diagnostic process, equipment failures can be rapidly,
and accurately, diagnosed by technicians who require fewer equipment-specific
diagnostic skills, thus lowering the cost of maintenance to the end user of the
systems.

4.5 Diagnostic Aids 123

4.5.1 Symptom Representation

To illustrate the method used to represent symptom patterns for an autoassociative
memory, we will select a fairly common application as an example. Specifically,
we will focus on the diagnosis of the failures that may occur in a desktop com-
puter system. We must begin by identifying all possible problem symptoms® that
are recognizable without specialized test equipment. Examples of such symptoms
might include the following:

e There is no fan noise (indicating the fan is not turning).
* The CRT screen is blank.

e The cursor is present on the CRT screen.

e The computer sounds two quick beeps during boot.

* The computer sounds one long beep, followed by two quick beeps during
boot.

* An error message appears on the CRT during boot.
¢ The computer does not respond to keyboard inputs.
* The disk light does not turn on during boot.

¢ The stepper motor in the diskette makes no noise when the disk light is on.

Inspection of this symptom list reveals that there are interdependencies in the
symptoms, meaning that the presence of one symptom may imply the absence of
another. For example, if the CRT screen is blank, we can infer that no error mes-
sage appeared on the CRT screen during the boot process; if one had appeared,
it would have persisted until the computer was rebooted. Such interdependen-
cies are common in diagnostic applications, and will not present a problem for
an autoassociative network. However, the fact that there are interdependencies in
the symptoms means that the application developer must ensure that there are no
conflicts in the diagnostic exemplars prior to training the network. Otherwise, the
network will learn incorrect diagnosis patterns, and, in production, will reproduce
the same faulty patterns.

Having completed the list of symptoms that we will use to diagnose the
failures in our desktop computer system, we must now determine an appropriate
representation scheme for processing by a neural network. As in all previous
applications, it is preferable to cast each component of the training pattern into
a binary form to make it compatible with the form of the output signals produced
by neural processing elements. However, there are at least three states that we
must be able to represent for most of the symptoms (e.g., present, absent, and
unknown). This means that our pattern representation scheme must allow us to
accommodate tertiary patterns.

8. For brevity. we will not identify all possible problem symptoms. Rather, we shall identify a subset
of typical symptoms, and expect that the reader can extrapolate from those examples.

124 Associative Memories

29

present absent unknown
N J
TN
Symptom X

Figure 4.13 This diagram illustrates the use of three binary units to represent one of
three possible states for each symptom in the pattern. Notice that, by using this scheme,
only one of the three units can be active at any given time.

We have already seen one example of how to represent three states using
binary pattern components in our discussion of the tic-tac-toe application. We
will utilize the same scheme here, assigning one unit for each of the three possible
states we can assign to a symptom. Then, for each symptom we have identified,
we will set the output of the unit corresponding to the state of the symptom to the
active mode, leaving the other two units associated with that symptom inactive.
An example of this scheme is shown in Figure 4.13.

The input pattern to the autoassociative network can therefore be defined as
the concatenation of all of the symptoms identified for the application, with the
three units associated with each symptom set to the proper states. Units associated
with symptoms that are unknown or irrelevant are set to the unknown state prior to
propagating the complete pattern through the network. With respect to the output,
we know that the network is going to be expected to produce the pattern from the
training set that best matches some partial input pattern. Thus, we know that the
output layer from the network must have exactly the same number of elements as
the input layer, and must be interpreted in exactly the same manner as the input
pattern, even if the input and output layers are not physically the same layer in
the network structure.

4.5.2 Network Specification

There are three network paradigms that lend themselves to performing the kind
of pattern matching required by this autoassociative application: the Boltzmann-

4.6 Associative-Memory Summary 125

completion network [2, 3], the BPN, and the BAM.® The Boltzmann network is
probably the best suited of the three for this application, but, because of signifi-
cant processing constraints, was eliminated from consideration.

Of the two remaining networks, both can be specified in the same manner,
with respect to the input-output layers. The number of units on both layers will
be exactly the same, and that number can be determined by multiplying the total
number of symptoms that define the application by three, because each symptom
requires three units. Furthermore, as the input and output patterns are composed
of binary elements, we can use the sigmoidal activation function for the units in
the BPN, and the BAM activation function if the BAM is selected.!”

Which of these two networks will provide a better solution? A cursory analy-
sis of the processing required by the application tends to indicate the BAM, due
to its use of Hamming distance to compare patterns. For this application, the
Hamming-distance measure seems to be indicated because we are interested in
matching patterns that may differ from training exemplars by only a few symp-
toms. However, because we are using a tertiary pattern representation, the BAM
(and its MAM counterparts) may settle into invalid output states (e.g., one where
more than one unit is active for a single symptom) if the partial input pattern used
to start the pattern-matching process is relatively sparse.

For that reason, we selected a three-layer BPN for this application, and
achieved excellent results. The BPN learned to recognize the combination of
symptoms that distinguished the different pattern vectors, and was able to rec-
ognize and reconstruct complete symptom patterns from partial patterns contain-
ing only 50% of the total information needed to uniquely identify the pattern.
Moreover, when presented with partial inputs that tended to indicate multiple ex-
emplars, the BPN produced reduced outputs from the ambiguous units that, if
known, would uniquely distinguish the patterns. Thus, the BPN provided us with
a means of identifying which of the unknown symptoms had yet to be positively
determined, something that the BAM could not have done.

4.6 ASSOCIATIVE-MEMORY SUMMARY

In this chapter, we have investigated the application of associative memories to
several real-world problems. We have defined the three basic types of associa-
tive memories (hetero-, interpolative, and autoassociative) and shown how each
of the three has been successfully applied. We have seen how some of the neu-
ral processing models described in Chapter 2 can be used to construct associative
memories, and investigated the issues associated with acquiring and formatting
the application data for use by the neural-network. While the applications de-
scribed in this chapter are somewhat simplistic, they nevertheless illustrate the

9. The BPN and BAM architectures are discussed at length in Chapter 2.
10. If the BAM is selected, bipolar outputs must be substituted for the binary format.

126 Associative Memories

basic concepts associated with building neural-network applications, and provide
the first examples of the process of engineering practical applications. In later
chapters, we will build on these foundations, as we develop more sophisticated
applications of neural-network technology.

SUGGESTED READINGS

Although there are precise mathematical definitions for each of the three
associative-memory models described in the first part of this chapter, space pre-
cludes us from providing the details of those definitions in this text. The reader
interested in exploring these definitions further is referred instead to [2] for de-
tails.

With respect to associative-memory applications, the literature abounds with
applications that utilize neural networks as their base technology. The best source
of technical papers describing applications of associative-memory networks is
in the proceedings of the International Joint Conference on Neural Networks
(IJCNN), a conference sponsored by the Institute of Electrical and Electronic
Engineers (IEEE) and the International Neural Network Society (INNS). The
IJCNN conferences were held annually from 1987 through 1992 (with one mid-
year conference held in 1990), and proceedings are available from the IEEE.
Another good source of applications papers is the Advances in Neural Informa-
tion Processing Systems (NIPS) conference proceedings, published annually by
Morgan Kaufmann Publishing Company.

The tic-tac-toe application described in this chapter was taken from a more
complete assessment of the ability of neural networks to perform parallel state-
space searches, the results of which were published in 1990 as my master’s
thesis at the University of Houston—Clear Lake [5]. Likewise, the spacecraft-
orientation application described in this chapter was based on a research project
conducted by an associate of mine, Dr. James Freeman, while under contract to
the NASA/Johnson Space Center Artificial Intelligence Section [1].

Readers interested in a more formal mathematical treatment of associative
memories are referred to Foundations of Neural Networks [4] by Tarun Khanna.
Finally, for a formal investigation into the theoretical limits of several different
associative-memory network models, readers are referred to Chapter 6 of Intro-
duction to Artificial Neural Systems [6] by Jacek Zurada.

BIBLIOGRAPHY

1. James A. Freeman. Neural networks for machine vision: the spacecraft orientation
demonstration, e*ponent, The Ford Aerospace Technical Journal, Fall 1988, pp. 16-20.
2. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-

tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,
MA, 1991.

Bibliography 127

3. G. E. Hinton and T. J. Sejnowski. Parallel Distributed Processing, Vol. I. MIT Press,
Cambridge, MA, pp. 282-317, 1986.

4. Tarun Khanna. Foundations of Neural Networks. Addison-Wesley Publishing Com-
pany, Reading, MA, 1990.

5. David M. Skapura. A Connectionist Approach to Heuristically Pruning Large Search
Trees. Master’s thesis, University of Houston—Clear Lake, 1990.

6. Jacek Zurada. Introduction to Artificial Neural Systems. West Publishing Company, St.
Paul, MN, pp. 313-388, 1992.

C H A P T E R

Business and Financial
Applications

All our knowledge has its origins in our perceptions.

— Leonardo da Vinci

In the business world, success is measured by the financial bottom line—an or-
ganization that makes money flourishes, while an organization that loses money
(or merely breaks even) flounders. Often, the most profitable organizations are
the ones that do the best job anticipating the marketplace. Because crystal balls
have not yet been perfected, businesspeople often attempt to anticipate the mar-
ket by interpreting innumerable external parameters, such as prevailing economic
indicators, public opinion, and even the current political climate. Many larger
businesses currently employ full-time statisticians to construct models of a spe-
cific market, then evaluate individual business opportunities based on the model.
Recently, however, many smaller businesses have found success using neural net-
works, instead of statistical models, to anticipate changes in the marketplace.

In this chapter, we shall investigate a diverse set of neural-network applica-
tions that businesses and financial institutions' have employed to help make better
predictions about investment opportunities. In several of the applications we shall
study, the neural network is used to analyze trends in large quantities of empirical
data. In others, the network performs an information-fusing function—that is,
from many pieces of (apparently) unrelated data, the network learns to produce
abstractions that imply more about the problem domain than is discernible from
the component pieces. In all cases, the neural network adds value to the appli-
cation by learning to recognize the general characteristics of a specific financial
model, and then provides a mechanism for using the learned generalities to pre-
dict the success of an investment at some future time.

1. Not to mention individual investors.

129

130 Business and Financial Applications

We shall begin our investigation of the business and financial applications
of neural networks by first examining some of the general issues associated with
modeling a financial application for use by a neural network. We then present a
survey of several successful applications of the technology, showing how each
application was constructed, and illustrating the role of the neural network in the
final system implementation.

5.1 FINANCIAL MODELING

Time is always the underlying component in any financial-analysis model. De-
pending on the application, we may be interested in understanding the history of
how a market has responded to some external stimuli, or we may simply be eval-
uating the personal credit history of a loan applicant. Unfortunately, most neural-
network paradigms are fairly limited with respect to temporal pattern recognition
and classification. If we are to successfully apply the current generation of neural
networks to financial applications, we must first develop a strategy for convert-
ing a temporal sequence of indicators into a spatial pattern that the network can
process. We can accomplish this goal through the use of several popular financial-
analysis techniques, which we shall now describe in detail for readers who are not
experts in market analysis. Readers already comfortable with financial-modeling
techniques may skip the remainder of this section without fear of missing any-
thing important with regard to the neural-network applications that we shall de-
scribe.

5.1.1 Discrete Time Sampling

In general, the technique that provides the most general approach for converting
temporal sequences into spatial patterns is the process of discrete time sampling.
As the name suggests, discrete time sampling is the process of quantizing a
continuously variable signal by sampling it at regular time intervals. A sequence
of n samples can be concatenated to form a single pattern that encapsulates a
quantized signature of the signal.

To illustrate this concept, consider an application to analyze the performance
of the stock market over a period of time. As indicated by the bar chart depicted
in Figure 5.1, the stock market is a prime example of a financial model that varies
(sometimes drastically) with the passage of time. On any given business day, a
single value can be computed from a set of key stocks that provides an instan-
taneous indication of the state of the market; one such value is the Dow Jones
Industrial Average. However, the Dow Jones average, by itself, offers almost no
insight into what the market might do romorrow. A more meaningful interpreta-
tion of what the market is doing? is obtained by observing a trend of the average.

2. As well as what it might be doing in the near future.

5.1 Financial Modeling 131

$
3000 - 1
2900 -]
i |
2800 [R . .
2700 W I i & L
2600 L ' l s
gl i Iv l
2500 _\\ | 1 i | Il Ll Il L l“ | | L L I | l 1] I "y Il 1 1 | 1 ! 1 L Il Il 1 | L I L 1_
N |Dec lan Feb Mar |Apr May Uun_ [Jul |Aug
89 Q20

Figure 5.1 This graph shows the daily high and low of the Dow Jones Industrial
Average from November 1989 through August 1990. In this chart, the vertical axis
represents the numerical value of the average, while the horizontal axis depicts the
passage of time. Each bar represents the range of the average during the day, while the tick
mark on the range indicates the closing average. Thus, we have quantized the dynamic
behavior of the market by taking a daily sample of the high, low, and closing points of the
average. When looking at this chart, do you see a series of discrete points, or do you see a
line moving from left to right, indicating the long-term behavior of the market?

However, a simple time series only conveys a sense of how a particular
market (in this case, the stock market) is changing over a fairly long period
of time. To gain an insight into the direction the market (or a particular stock)
may be going, a good financial analyst will also consider a number of other
mathematical indicators. There are many such indicators in common use. For our
purposes, we will consider only three of the most popular: a market-intensity
indicator called the ADX [11], which is used to provide a sense of whether
the market is trending; a moving-average convergence/divergence (MACD) [1]
analysis, which will indicate optimal buy and sell signals in a trending market;
and a slow stochastic analysis [6], which is typically used to complement the
MACD, because it works well in a nontrending market.

5.1.2 Average Directional Movement

To determine whether a market is trending, we can calculate an n-period ADX for
each discrete time sample. The ADX, as it was originally described by J. Welles
Wilder, is computed in a five-step process that begins with an assessment of the
basic directional movement of the market. Specifically, the high and low values
of the market at the current time are compared with the high and low values at

132 Business and Financial Applications

>

o
o
B
W —— >
W —
|

(@) ' (b) (© (d)

Figure 5.2 The computation of the market directional indicators is shown. (a) The value
of +DM is given by determining the absolute difference between the high point of the
average at the previous time interval and the high point of the average at the current time.
(b) The value of —DM is given by the absolute difference between the low points at the
two time samples. (c) When the trading at the current time is outside the trading range at
the previous time, the larger of +DM and —DM is used as DM. (d) When trading at the
current time is inside the trading range at the previous time, DM is zero. Source: From
The Average Directional Index (ADX), by Thom Hartle, Technical Analysis of STOCKs &
CommonbrTies, Vol. 9, No. 3, (Mar. 1991), p- 101. Copyright ©1991, Technical Analysis,
Inc. Used with permission.

the previous time. The difference values obtained indicate the plus directional
movement (+DM) and the minus directional movement (—DM), respectively.
Next, we must determine a single value that we will use to indicate the overall
directional movement (DM) for the current time period. Wilder defines this value
as a function of the range of the averages from the two time periods: If the trading
range at the current time is outside the range of trading at the previous time, then
the larger of +DM and —DM is used as DM. However, if the trading range at the
current time is inside the range of trading at the previous time, then the value of
DM is zero. Figure 5.2 illustrates the computation of these values.

Next, Wilder computes a directional indicator (DI) value, which is defined
as the percentage of the price range that is directional for the given time period.
Dl is obtained by dividing DM by the true-range (TR) value for the current time
period, where TR is the largest of

* The difference between the high and low value at the current time.

* The difference between the high at the current time and the closing value at
the previous time.

5.1 Financial Modeling 133

e The difference between the low at the current time and the closing value at
the previous time.

The value of DI can be either positive or negative, while all of the previously
calculated values are positive (or zero). To retain the positive notation scheme,
Wilder defines two separate indicators, +DI and —DI, where +DI simply indi-
cates a time period with a positive DI and —DI is the absolute value of the DI for
a time period with a negative DL

The average directional movement (ADX) indicator for a market is a
smoothed moving average of the DI values across an interval of n time peri-
ods. Thus, for an n period ADX, we initially compute the average DIs across the
n time periods. This calculation is given by

S +DM(r — i)

+DI, = 5.1
S, TR(t — i) &b
n—1 .
DI, = Zi=0 I_DM(’ — (5.2)
S TR(E — i)

where the subscript n is used to indicate the span of the average, and the terms
have been given a parenthetical index (t — i) to indicate how many time periods
prior to the current time period the value occurred (eg., —DM(r — 4) is used
to indicate the minus directional movement value four time periods prior to the
current time, and +DM(s — 0) indicates the plus directional movement at the
current time period).

Once the average DIs have been initially computed, they may be updated for
each new time period (1) by recomputing the three DM indicators (+DM, —DM,
and TR) according to the equation

X, (1) = X, (1 — 1)”}%1 +X(1) (5.3)

where X represents each movement indicator, and subsequently recomputing
+DI,, and —DI,, according to Egs. (5.1) and (5.2).

We next convert the average DIs to a directional movement index (DMI) to
indicate the magnitude of the trend on a scale of 0 to 100. The computation is
performed according to the equation

_ I +DM, — —DM,|
+DM, + -—-DM,

DMI

5.4

Finally, the ADX is computed as an n-period moving average of the DML
After the first 1 ADX values have been computed for a particular market, the
ADX can then be updated for each subsequent time period () according to the
equation

134 Business and Financial Applications

Phiy
v
I breeey 3
v
f [N

i
e ,T |
[L“T L.fr L‘Mr

rhe r[
P

Mmm*r
60 N
Wlh NAMTY NI me
HE et
50 lnuM\\\Jnnhndxmhm’wm\mm ;.fmJ\\uhm’\mhmhmluu'uullm’m\\uu\niuh||ﬂm|h|

L Tuul lAug Sep [Oct [Nov |Dec

%
60
50
30

20

ELJ_HH‘H”’\\\\‘HH‘HH‘HJ\JH|||||||'7H\“|||I\\H]HHJHH‘H”‘ ‘H‘HH'HH’HHMHJJH\\r\HJJ“HJHH'H”JIHM
[Jul ‘Aug |Sep 'Oct | Nov [Dec

Figure 5.3 These diagrams illustrate the relationship between market prices and the
adx. (a) This graph illustrates the discrete time behavior of a particular stock listed on the
New York Stock Exchange over a six-month period. Notice how the value of the stock
fluctuates on a daily basis, yet exhibits a long-term increase. (b) The ADX computed for
the same stock, over the same six-month period. Notice that the ADX peaks at the same
point in time as the stock growth trend diminishes. Source: From The Average Directional
Index (ADX), by Thom Hartle, Technical Analysis of STOCKS & COMMODITIES, Vol. 9,
No. 3, (Mar. 1991), p. 101. Copyright ©1991, Technical Analysis, Inc. Used with
permission.

—1
ADX, (1) = ADX, (1 — 1)~ + ADX (1) (5.5)
n

The primary benefit of the ADX is its ability to determine when the moni-
tored signal, or market, is in a trending state. For example, consider the graphs
illustrated in Figure 5.3. If we restrict our analysis to just the temporal sequence
of data, it is difficult to determine when the market really begins a long-term
trend. The ADX, however, rises rapidly at the onset of a trend, and levels off when
the market again begins normal fluctuations.

5.1.3 Stochastics

A stochastic oscillator; as it is referred to in the financial industry, is actually a
misnomer for a signal that is designed to anticipate sudden reversals in market
values. The oscillator® was originally developed by George C. Lane, as a method

3. The term oscillator is not exactly appropriate, either, in that it is taken from the appearance of the
computed signal, not from the fact that the signal is intended to oscillate. Nevertheless, we shall abide
by the language of the financial industry, to lessen the confusion when reading financial papers.

5.1 Financial Modeling 135

to anticipate when the stock market was about to reverse itself. Mr. Lane actu-
ally developed more than 50 separate indicators, but for our discussion we will
concern ourselves with only two: We shall refer to these signals as %D and %K,
because they were the fourth and eleventh signals developed by Lane.

The indicators achieve their desired function by taking advantage of a well-
known stock-market phenomenon—a market top, or high point for a particular
stock, is usually indicated by daily closing prices that tend to cluster around the
high value for the stock. Conversely, a market bottom is indicated when daily
closing prices cluster around the low value of the stock. Because stock prices tend
to reverse their trends during a top (or bottom) period, we can anticipate reversals
by detecting when a stock is at (or near) its limit. In a mathematical sense, we
can develop such an indicator by comparing the current closing price of a stock
with its highest high and lowest low values over a period of time. By assessing
the tendencies of the indicator with respect to the trend of the true market value,
we can interpret the derived signal as a market indicator that can portend sudden
changes in the value of a stock.

Lane’s indicators are simply a mathematical comparison, over some fixed
period of time (usually between five and 14 days) of the closing value of a stock
to its highest highs and lowest lows. Both signals are designed as percentage
indicators; hence both are limited to numerical values in the range of 0 to 100.
The two signals are also remarkably similar in their design: The %D indicator
is actually a three-day smoothed version of the %K indicator. Specifically, the
signals are calculated from the raw market data according to the equations

C(1) — LOW (1)
HIGH 4(r) — LOW 14(2)

%K = 100

(5.6)

Y2, C(t —i) — LOW 41 — i)

%D = 100—
S22 HIGH 4(r — i) — LOW 14(t — i)

(5.7

where C(¢) indicates the closing market value for time period 7, HIGH 4(f) in-
dicates the highest, high value for the market over each of the 13 time intervals
preceding, and the one including, interval 1, and the term LOW 4(r) indicates the
lowest, low value from the same interval.

As shown in Figure 5.4, the %D and %K indicators developed by Lane can
be interpreted in two different, but meaningful, ways. First, because the indicators
are actually calculations of the percentage difference between a stock’s closing
value and its low and high points over some time interval, a saturation of the
indicator can be thought of as an overage condition on the stock. Specifically, a
stock is considered overbought when the stochastic indicator goes above 80%.
Similarly, a stock is considered oversold when the indicator goes below 20%.
Second, by examining the tendencies of the indicator with respect to the true
market value of the stock over a period of time, the stochastic oscillator can be
used to indicate buy or sell signals.

136 Business and Financial Applications

$ 140

!
r,m'“[; m“f[tr
o = AT R
il ‘ Il i ottt
lr'”"H} N[HTUV an ,[l l;[“} (e
i [P b, |
b WU

AJHHIHIIJIHI‘IIHIHHIIHIJI]II‘IIIIIII‘ Jl‘l JHII‘IIIIIII|I|IIII1IIII|IIII|IIII|I III!I!IIIIII||III|IIIlIIH!lHH’HIIlIIH

Feb Mar [Apr [May lJun

(@ 120 "'[} o

100

% 100

IlIl'HH’HH'HH'HH'IHI'HH’\H\’H\‘l

1 \I\MJ’HH‘H\\IHHJIH!’H\\'HH’HH’JHI[HH’HHrHH’HHJHHJlIH;H\

Feb Mar [Apr [May ldun N

HIIHHlllllllllllllII‘IIII‘IIII'IIII'IIH||Il‘i‘ ! HllI|IIII|IIII|IIII|IIII|IIIl|IIII|IllllI\II|IIII|IIII|IIIIIHH|H!I|IIII

Feb Mar |Apr May lun

Figure 5.4 The relationship between the stochastic oscillator and a typical blue-chip
stock is shown. In each of these figures, the top graph depicts the daily closing price of
the stock, while the bottom graphs illustrate the plots of the stochastic signals. (a) In this
diagram, the stochastic indicates a sell period when the value of the indicators g0 over
80% and the direction of the indicators tend to diverge from the direction of the market
prices. (b) Similarly, a buy signal is indicated when the indicators g0 below 20% and the
stock value declines with respect to its stochastics. (c) The same market data is smoothed
with a slow stochastic oscillator. Source: From Stochastics, by Thom Hartle, Technical
Analysis of STocks & CoMMODITIES, Vol. 9, No. 3, (Mar. 1991), p. 103. Copyright ©199],
Technical Analysis, Inc. Used with permission.

Another variation of the stochastic oscillator uses a three-day moving aver-
age of the %D indicator instead of the %K indicator. This model is called the
slow stochastics oscillator, and is considered by many market analysts to be an
improvement over the stochastic oscillator, because the resulting analysis tends to
be less susceptible to transitory fluctuations in the input data.

5.1.4 Moving-Average Convergence/Divergence

The MACD indicator, developed by Gerald Appel [1], has gained popularity as a
stock-market indicator to measure the trend of a stock over a period of time. The
indicator is developed by comparing the difference between two exponentially

5.2 Market Prediction 137

smoothed price data (called the MACD line), and an exponentially smoothed
series of the difference (referred to as the signal line).

Exponential smoothing is a relatively intuitive method for computing an av-
erage of a dynamic indicator (such as a stock price) that accounts for the behavior
of the signal over an arbitrary period of time. In financial applications, it also has
the advantage of being able to rapidly respond to fluctuations in the price data.
The computation of an exponentially smoothed moving average (EMA) for any
time period ¢ over an arbitrarily long duration is given by the equation

EMA(t) = a(x(r) — EMA(t — 1)) + EMA(t — 1) (5.8)

where « is the smoothing constant, the term x(¢) represents the instantaneous
value of the indicator at time ¢, and EMA(r — 1) indicates the value of the EMA
at the previous time interval.

In this formulation, « is actually a weighting value designed to allow the
EMA to approximate a simple moving average across an arbitrary time period.
Thus, « can be approximated as

2
o =
n+1)

(5.9

where n is the number of discrete time periods over which the moving average
will be calculated. For example, for a nine-day EMA analysis, o would be ap-
proximated as g—il, or 0.20. y

Interpreting the MACD to anticipate market trends is also relatively simple.
As shown in Figure 5.5, a buy signal is indicated when the MACD line crosses
above the signal line, while a sell signal is generated when the MACD crosses be-
low the signal line. Moreover, because the MACD is a trend-following technique,
it also has the advantage of providing an early indication of market reversal.
As with the stochastic oscillator, market reversal is indicated by comparing the
MACD with the instantaneous indicator—in this case, the closing stock price—
over a period of time. When the MACD and instantaneous indicators begin to
diverge, a reversal is indicated.

5.2 MARKET PREDICTION

In the previous section, we examined several mathematical tools that a financial
analyst might use to predict the future of the stock market by examining several
key indicators. However, if predicting the stock market were simply a matter
of correlating three or four indicators, most people could develop a high-yield
portfolio without the assistance of a financial analyst. In truth, a good financial
analyst will often evaluate hundreds of indicators, some derived mathematically
from empirical market data, others simply subjective evaluations of the current
market situation. Compounding the problem is the depth of the historical data
that the analyst has available—the Dow Jones Industrial Averages, for example,

138 Business and Financial Applications

.
$ 60+ T et
T A I ' L,
r f b LH[[" or
[] H[
L Fhrkp e, Lo
50 rw,wr l r[' b }l, “,r'“ o
Lt ' Looons, ot
: l’mm,f
40_ J\‘\\H‘HHJIIH‘IHJJHHJHII'IIIlf\H Il "HH‘HH‘HHJHH‘HH‘\H\JIIHJIIIIJHHJHII'IIII'IH\‘IHI‘IKII[IIH
May [Jun [Jul 'Aug Sep |Oct \
Change
i S
2.0 E/}%
1.0 g
0 5 A
B
-1.0 B
S XS
-2'0 tl_l_LLJ_HIIlIIIIl\\H‘HH‘HH‘HH‘HM‘HHJJH J‘H‘ lJIHIllljl[IIlV“IIIlIIIIIHH‘HH‘HH‘IH\hH\‘HH‘HH'II"\‘H]JIQ‘
May Jun Jul |Aug 'Sep [Oct |

Figure 5.5 The use of the MACD to indicate market trends is shown. In these diagrams,
we employ appel’'s MACD calculations using a 12- and 26-day EMA to compute the
MACD line, and a nine-day EMA to compute the signal line. As before, the top graph
represents the closing price of the stock we are monitoring over a specific time period,
while the bottom graph illustrates the macd computed from that data. Buy signals

are indicated when the MACD line crosses above the signal line, while sell signals
are produced where the MACD line crosses below the signal line. Notice how the
buy signals tend to precede periods of increasing value in the stock price, while sell
signals tend to precede periods of declining stock price. Source: From Moving Average
Convergence/Divergence (MACD), by Thom Harile, Technical Analysis of STOCKS &
CoMMODITIES, Vol. 9, No. 3, (Mar. 1991), p. 104. Copyright ©1991, Technical Analysis,
Inc. Used with permission.

have been published (in their current form) daily since October 1928. If we are
to develop high-yield portfolios, we, as financial analysts, must first decide how
much of the available data is relevant to the current market.

To be successful in the capital-management business, it is essential to beat
the market; that is, to forecast what the market is going to do in the near future,
and trade accordingly. However, some market researchers have advocated the no-
tion that the market is chaotic [7], and therefore unpredictable. If that assertion is
true, it would be impossible to create a “crystal ball” that would accurately fore-
cast the future in the market. We will not dispute the validity of the random-walk
theory here. But, given the cyclical nature of the market, and the undisputed near-
term accuracy of the mathematical indicators available to assess current market
conditions, several researchers have developed computer applications using neu-
ral networks to help them make better financial decisions.

One such application was described in a series of articles published in a
stocks and commodities trade journal [4]. In the first of these articles, investiment

5.2 Market Prediction 139

managers Dean S. Barr and Walter J. Loick at LBS Capital Management, together
with Professor Mark B. Fishman of Eckard College, reported constructing a neu-
ral network to predict the U.S. equity market (the Standard & Poors (S&P) 500
Index) five days into the future. Moreover, they reported remarkable success us-
ing a relatively simple neural network trained with only six financial indicators
derived from the recent performance of the S&P 500. In their subsequent papers,
however, Barr and Loick reported that the complexity of the network increased
rapidly as additional indicators were incorporated into the training set, as several
other components were added to refine the analysis process.

Because this financial “crystal ball” provides LBS with an obvious com-
petitive advantage, the details reported become increasingly less specific as the
application becomes more refined. Nevertheless, the details of the first network
application are sufficient to illustrate how such a neural network could be con-
structed and trained. We shall therefore focus on the neural-network component
of that system in the ensuing discussion.

5.2.1 Network Architecture

In their original paper, Barr and Loick reported investigations using a variety of
network arrangements, although all of the networks were based on the backprop-
agation learning algorithm. The input layer in each network contained n inputs,
where n was cited as the number of market indicators used for the specific net-
work. We can therefore surmise that Barr and Loick use a 1:1 mapping between
the market indicators they have selected and the number of input units used to
represent those indicators. This also implies that they are normalizing the indi-
cator values prior to training, because the BPN requires that input values have
values in the range from zero to one, while the unnormalized values of the indi-
cators may vary drastically.

The number of layers in each network is not explicitly indicated. It seems
reasonable, however, to assume that most of their work was done using a typical
three-layer network architecture. However, Barr and Loick indicate that they had
their best results using a four-layer BPN, the fourth layer being an additional
hidden layer containing approximately 12% of the number of input units.

As shown in Figure 5.6, the output of the network was a single, linear unit,
the output of which is interpreted as a scaled prediction of the amount of change
in the S&P 500 average five days in the future. In this example, Barr and Loick
restrict their input to four derived market indicators and two raw data points for
each training exemplar.

Exercise 5.1: In their articles, Barr and Loick do not provide any specific guid-
ance with regard to selecting indicators (beyond the four described here) that
might improve the performance of the network, although they do indicate that
their best network contained a total of 26 indicators. From your understanding of
the BPN, describe the selection criteria you would apply to determine if a finan-
cial indicator could improve the performance of the network. m

140 Business and Financial Applications

Figure 5.6 The three-layer BPN architecture used at LBS Capital Management to
predict the S&P 500 average five days in the future is depicted. In this example network,
the indicators used are the slow %D and slow %K stochastic indicators, using n =9,
an 18-day ADX, and histogram (difference) MACD values. Also used as input to the
network are the current value of the S&P 500, as well as the net change in the S&P 500
value from five days prior. The output of the network is a continuously variable signal
that is interpreted as a scaled estimate of the change expected in the market five days
hence. Source: Adapted from Using neural networks in market analysis [4]. Used with
permission. Copyright ©1991, Technical Analysis, Inc.

5.2.2 Market-Prediction Exemplars

To train their neural network, Barr and Loick describe the development of the
training exemplars that will be presented to the network during the learning
phase. Obviously, the primary source of information will be the recent history
of the S&P 500. With respect to the network architecture they selected, the initial
training patterns will consist of a set of associated pattern vectors comprised of
six input components and a single output. From an application perspective, each
training pattern is essentially a snapshot of the market at a specific, discrete time
step, while the corresponding output is the difference between the current market
value and the value of the market five time steps ahead of the input data. Thus, the
training exemplars for the network can be developed from historical market data,
while the performance of the trained network can be evaluated by comparing ac-
tual market performance with the projections made by the network using current
market data.

5.2 Market Prediction 141

In the ensuing discussion, we shall reconstruct the network Barr and Loick
described in their original article by using data points consisting of the closing
value of the S&P 500 at 20 different discrete time intervals (in this case, days).
We shall refer to these values as a function of time, S(¢), with a value that is
simply the closing value of the S&P 500 at discrete time ¢. In this notation, we
shall refer to the most recent time period as #p, with ¢, representing any arbitrary
discrete time period. Further, we will let n be positive to indicate a future time
period, and negative to indicate a previous time period.

To construct the training exemplars for this network, we shall require a his-
tory of the S&P 500. The depth of information required will depend on the num-
ber of training exemplars we shall need to train the network. Barr and Loick
suggest that, contrary to the “popular wisdom” it was possible to “confuse” the
network by overwhelming it with too many training patterns.

Without knowing the specific details of the training set used to build this
application, it is impossible for us to know if Barr and Loick were truely over-
whelming the network with too much information, or if they were simply training
on conflicting patterns, as we described in Chapter 2. Based on a conversation that
I had with one of their researchers, I suspect that the problem was more likely the
latter than the former, although it is entirely possible to overwhelm a BPN with
too much data.

Nevertheless, we shall follow the example presented by LBS and limit our
initial training data to 20 exemplars. However, because four of the six inputs that
will be used to construct each input pattern require additional historical data to
compute,* the total amount of market data we will need will be determined by
the amount of information needed to construct the financial indicators for the 20
intervals of interest.

The indicators used by Barr and Loick to construct their training exemplars
were

e A slow %D stochastic using a nine-day observation window, denoted as
SD:9.

e A slow %K stochastic, also using a nine-day window (SK:9).
e An 18-day ADX.

e The histogram values for an 18- and 26-day MACD, where the histogram
values are determined as the difference between the MACD and signal lines
for the given data.

In addition to the derived indicators, Barr and Loick include the true value of the
market at each time step, as well as the change in the market value from five days
prior to the current time step. To determine the corresponding output value for
each input pattern, we will need to know the difference between the value of the
market at the current time step and its value five days in the future.

4. See the earlier discussions in Section 5.1, Financial Modeling.

142 Business and Financial Applications

Exemplar Input Output
Number SD:9 SK:9 ADX MACD S(1) S(r_s) S(15)

1 26.651 45.756 14 0.152 272.02 8.53 —0.87
2 47921 77.664 14 —-0.209 272.21 7.53 -2.23
3 72.664 92.885 14 —-0.423 272.06 6.87 —5.57
4 87.218 91.106 14 —0.597 272.98 10.48 —11.08
5 90.180 86.547 14 -0.617 271.93 5.91 -9.18
6 86.758 82.621 14 —0.553 271.15 —0.87 —8.60
7 80.678 72.867 14 —0.417 269.98 —2.23 —11.29
8 70953 57.370 14 —0.100 266.49 —5.57 —5.93
9 54.672 33.780 14 0379 26190 —11.08 —1.13
10 36.640 18.771 16 0.608 262.75 —9.18 -1.72
11 21.992 13.426 17 0.730 262.55 —8.60 —2.31
12 14.302 10.708 18 0.995 258.69 —-11.29 —1.71
13 11.864 11.458 19 0.992 260.56 —5.93 —-3.47
14 11.867 13.435 20 0.918 260.77 —1.13 0.36
15 15345 21.141 21 0.796 261.03 -1.72 —1.85
16 18.983 22.373 22 0.714 260.24 —2.31 —0.56
17 20.156 16.953 23 0.806 256.98 —1.71 5.35
18 16.994 11.654 24 0.799 257.09 —347 5.42
19 17.284 23.245 24 0493 261.13 0.36 0.39
20 25299 40.997 24 0373 259.18 —1.85 —0.83

Table 5.1 The market data used by Barr and Loick to construct the 20 exemplars used
to train the market-prediction neural network are shown.

Based on these requirements, we will need at least 51 days of the most recent
S&P 500 averages to construct the 20 exemplars needed to train this network.
In Table 5.1, we recreate the training data described by Barr and Loick in their
original article. As mentioned earlier, these data should be normalized according

- to the formula

RO /LG BV (5.10)
Y max{x;} — min{x;g)

where {T'} is the set of all training patterns and xi*j refers to the normalized value
of the i™M value in the j™ pattern, prior to training the network.

Once trained, new input patterns are created by simply continuing the data-
collection process. These new patterns are then presented to the neural network
for estimating the value of the S&P 500 five days in the future. Figure 5.7 il-
lustrates the performance achieved by the network we have just described for a
period of 17 days beyond the training date. The close correlation between the

5.3 Bond Rating 143

S&P 500
350

o Actual
340 ® Prediction

330 r

320 1

310 +

910 11121314151617 18 1920 21 22
Number of Days

_.
~ |
o |
o
o |
o 1
.
o |

Figure 5.7 The response of the market-prediction BPN after training is shown. As this
graph illustrates, the network has its lowest error in the earlier estimates, and tends to
diverge from actual market values as time goes on. Source: Adapted from Using neural
networks in market analysis [4]. Used with permission. Copyright ©1991, Technical
Analysis, Inc.

market value predicted by the neural network and the true value suggests that
such networks may indeed become very powerful tools in financial applications.
In support of this belief, the Suggested Readings section at the end of this chapter
contains references to several texts and many papers that describe other market
predicting applications of neural networks, indicating that the financial world has
become very interested in the potential of this technology.

Exercise 5.2: The graph in Figure 5.7 shows that the neural network tends to
become less accurate as the prediction date becomes more distant from the time
when the training data were collected. Suggest a strategy that could be employed
to reduce this error in the network’s response. Explain the advantages and disad-
vantages of your approach. m

5.3 BOND RATING

Debt financing is a method by which corporations and government organiza-
tions can raise capital for immediate needs by offering bonds to investors. These
bonds are guarantees by the offerer of repayment to the investor, over a period

144 Business and Financial Applications

of time, of the face value of the bond plus interest. To make the bonds attractive
to investors, bonds are often issued at a higher interest rate than can be attained
through normal investment opportunities. However, if an offerer ends up over-
extended financially and cannot repay the debt, investors are faced with legal
proceedings to recover their investment, or they can lose their investment entirely.

To help potential investors accurately assess risk associated with bonds and
securities, a bond-rating metric has been established by various independent fi-
nancial organizations; among them, Standard and Poors (S&P) and Moody’s In-
vestor Service. These ratings describe the bond’s potential for default, taking into
account a number of factors about the issuer, including the issuer’s ability and
willingness to repay, and any other protective provisions for an issue.

From the perspective of the offerer, the bond rating has a significant effect on
the yield of the issue—a lower bond rating means many fewer investors, which
in turn means a much lower capital influx. Therefore, it is in the offerer’s best
interest to maintain as high a bond rating as possible.

However, because bond ratings are made by organizations that do not ad-
vertise the system (if any) that they use to determine a specific bond rating, it
is difficult for a private investor or financial institution to independently assess
the default risk> of a bond investment. Further complicating matters is the belief
that different rating organizations use different criteria to measure the offerer’s
willingness to repay, making it extremely difficult to construct a precise mathe-
matical model that could be used to determine bond ratings with any degree of
consistency.

In the remainder of this section, we shall review two neural-network appli-
cations [3, 9] to predict bond ratings using a number of financial variables about
an offerer that can be easily determined by an independent investor. We shall also
show how the original authors compared the performance of their neural-network
solutions to traditional statistical analysis methods.

5.3.1 Bond-Rating Networks

Both of the bond-rating neural-network applications we shall examine are very
similar in their design. As shown in Figure 5.8, the primary differences between
them are the number of layers in the networks and the actual financial variables
used to determine the input training exemplars. The first application, originally
described by Soumitra Dutta and Shashi Shekhar in 1988 [3], used two- and
three-layer BPNs with six and ten input variables to perform its bond-rating func-
tion. The second application, described in a paper published by Alvin J. Surkan
and J. Clay Singleton in 1990 [9], used three- and four-layer BPNs, with the four-
layer networks varying in the number of processing elements per hidden layer,
and seven financial variables as input. In both of these applications, the output
from the network was interpreted as an indicator of the classification of the bond

5. The default risk of a bond is the likelihood that a promised coupon and par value will not be paid.

145

5.3 Bond Rating

Bond Rating

AAA Other

ure 5.8 The architectures of the networks used to perform bond rating are shown.

Fig

gned to classify bonds into one of the four major

(a) The Dutta network, which is desi

bond-rating categories (AAA, AA, A, BBB). (b) The Surkan network with four layers,

which is designed to classify bond offerers as either AAA or A. (¢) The reversed Surkan

network, which was developed only for experimental purposes.

146 Business and Financial Applications

rating that should be applied to an offerer having the financial data described by
the input pattern.

5.3.1.1 Three-Layer Network Application

The Dutta network, which predates the Surkan application by several years, was
developed to determine whether neural networks could be used to correctly cate-
gorize bond issuers into one of the four major bond classifications, as defined by
S&P. The degree to which the neural network classification agreed with the S&P
classification was used to determine the accuracy of the network.

For their application, Dutta and Shekhar first established which financial
variables were most appropriate for classifying bond ratings. Based on the results
of other researchers, they decided to use nine, easily obtainable financial mea-
sures and one subjective estimate of the health of the bond issuer. The variables
they selected were

1. Liability divided by (cash + assets).

2. Debt proportion.

3. Sales divided by net worth.

4. Profits divided by sales.

5. Financial strength.

6. Earnings divided by fixed costs.

7. Previous five-year revenue growth rate.

8. Projected next five-year revenue growth rate.
9. Working capital divided by sales.

10. Subjective prospect of the issuer.

Next, data from a total of 47 randomly selected industrial bond issuers were
gathered from a recent issue of the Valueline Index, and the corresponding bond
ratings for those issuers was obtained from the S&P Bond Guide. From those 47
data sets, 30 were again randomly selected as the training exemplars, while the
remaining 17 were set aside to be used as validation sets.

Each of the 47 data sets was then converted into a form usable by the neural
network. In the case of the input variables, each of the numerical inputs was
normalized to eliminate any bias in the pattern. Similarly, the single output value
was assigned according to the formula

_C
YT 3
where C is simply a numerical value assigned to the rating category (e.g., AAA
=4,AA=3,A=2,BBB=1).

The BPN was then constructed in software, using the sigmoidal activation

function for each of the hidden-layer units, and a linear activation function for

5.3 Bond Rating 147

the output unit. The resulting network was trained using the 30 training exem-
plars, and subsequently tested on the 17 validation exemplars. The output of .the
network was finally compared to the S&P rating assigned to those 17 issuers. For
reasons not completely described in their paper, Dutta and Shekhar limited their
analysis of the success rate to the ability of the network to correctly classify only
one of the bond-rating categories (AA). Their results indicate that the neural net-
work correctly classified AA offerers 82.6% of the time, with 8.3% classified as
false-negatives and 9.1% classified as false-positives.

Finally, to illustrate the robustness of their solution, Dutta and Shekhar re-
trained the network, this time using only the first six variables as the components
of the input pattern. Their results showed absolutely no difference between the
smaller network and the larger implementation with respect to successfully clas-
sifying bond issuers.

5.3.1.2 Four-Layer Network Application

The Surkan network is functionally identical to the network used by Dutta with
respect to its design and implementation. The only significant differences be-
tween these two applications are the number of layers used by Surkan (four, as
compared to the three used by Dutta), the selection of the data used to construct
the training exemplars for the application, and the interpretation of the output pro-
duced by the network.

As in the earlier application, Surkan and Singleton first selected a set of
- financial variables that would act as input patterns for the network. The variables
selected for their experiments were determined by independent research [8] based
on the bond ratings of the 18 Bell Telephone companies divested by American
Telephone and Telegraph in 1982. The selected variables are defined as

Leverage: Debt divided by total capital.

Coverage: Pre-tax interest expense divided by income.
ROE: Return on equity or income.

CV of ROE: Coefficient of Variation of ROE over five years.
TA: Logarithm of total assets.

Flow: Construction costs divided by cash inflow.

AL o A

Toll: Toll revenue ratio calculated as intradivided by inter-LATA.

Unfortunately, the authors do not provide the actual data that they used to
train and test the performance of their networks, so it is difficult for us to attempt
to assess the difficulty of the classification problem. However, they do provide a
table listing the statistical mean and sample size of their original data, which we
recreate in Table 5.2. Using these data, it is possible for the ambitious student to
construct a set of synthetic exemplars that have the same general characteristics
as the original training data. We encourage you to do so, and use that data to train
your own network.

148 Business and Financial Applications

Bond-Rating Symbol

Variable AAA AAl AA2 AA3 Al A2 A3

Leverage 0.39 0.41 0.39 0.36 0.36 0.39 0.39
Coverage 4.50 4.48 4.99 5.69 5.02 4.30 4.46
ROE 0.25 0.14 0.14 0.15 0.12 0.14 0.15
CV of ROE 0.10 0.10 0.08 0.10 0.14 0.09 0.07
TA 14.70 15.75 13.00 14.25 15.15 16.36 16.43
Flow 1.05 0.92 1.05 1.05 0.85 0.74 0.83
Toll 1.34 1.08 0.82 1.24 1.04 1.01 0.90

Frequency 30.00 23.00 20.00 27.00 10.00 11.00 5.00

Table 5.2 The statistical mean of each of the financial variables used to classify bonds
into one of seven different quality ratings. The last row in the table provides the size of the
sample for each classification.

5.3.2 Network Results vs. Statistics

In both of the bond-rating applications, the authors compared the performance of
the neural network to conventional, statistical methods to validate the network
performance. Dutta and Shekhar reported that their three-layer BPN correctly
classified bonds described in the training set 92.4% of the time, compared with
a 66.7% accuracy obtained using a multiple-regression analysis. When presented
with bond data from the 17 untrained exemplars, the neural network responded
correctly on 82.4% of the inputs, while the multiple-regression analysis yielded
only a 64.7% accuracy.

Surkan and Singleton reported a success rate of 90% using a four-layer BPN
arranged with seven inputs, 10 units on the first hidden layer, five units on the
second hidden layer, and two output units. When they reversed the arrangement
of the two hidden layers, the network accuracy dropped to 83%. In contrast,
a linear discriminant function that was estimated by using the seven financial
features as explanatory variables produced only a 39% success rate.

Based on these observations, the researchers in both of these applications
concluded that neural networks provide a powerful method for independently
determining bond ratings. Given the ready availability of representative train-
ing data, these applications also provide us with an easily reproducible model

illustrating the ability of the technology to address real-world financial appli-
cations.

5.4 PREDICTING COMMODITY FUTURES

As the name implies, commodities are raw materials, such as grains, meats, or
metals, that are used to create finished products for sale in the retail marketplace.
Buying and selling commodities is yet another way of investing money to (hope-

5.4 Predicting Commodity Futures 149

fully) realize financial gain. As in any other form of commerce, the objective is
to buy while the price is low, and sell when the price is high, thereby realizing a
profit. However, as we have seen in our previous examples, recognizing when a
commodity price has reached its low (or high) point is a fairly complex task, and
is often prone to error. We shall now review an application developed to assist
commodity traders that use a neural network trained with raw market data to rec-
ognize the buy and sell points for certain commodities before they occur. As we
shall see, successfully anticipating the market highs and lows can yield significant
financial returns over a relatively short period of time.

5.4.1 Market Variables

In an application originally described by Joseph E. Collard [2], a standard BPN
was trained on market data comprised of six key indicators® over a period of
one year. The indicators used were the opening price (OPEN), the closing price
(CLOSE), the lowest price for the commodity during a single business day
(LOW), the highest price during the day (HIGH), the open interest INTEREST)
for the commodity, and the trade volume (VOLUME), or the number of futures
actually exchanged during the day. Each of these indicators was obtained for a
single, unnamed commodity for each business day during the year 1988. Because
the commodities markets operate on a normal business week, 253 exemplars were
obtained to train the network.

In his first experiments with a neural network, Collard reports that he aug-
mented the training data by including 18 subjective variables, which he describes
as assessments of the weather (which plays an important role in determining the
future price of commodities that are influenced by prevailing weather conditions),
and other “seasonal indicators.” Additionally, because all of the training data
used were historical, one other variable was included in each training pattern—a
long/short indicator obtained by evaluating, in retrospect, whether the commod-
ity was overbought or oversold. After training and testing his network, Collard
decided to account for trend conditions in the training data by including his six
market indicators from each of the two business days immediately prior to the
day represented by the training pattern in the input pattern. Thus, in his final ap-
plication, each input pattern to the neural network consisted of 37 variables—the
six market indicators, 18 subjective indictors, and one long/short indicator for the
current business day, and six market indicators from each of the previous two
business days.

6. The use of the term indicators differs slightly from our previous usage of the word. Here. we
use the term to refer to specific price values, as opposed to derived measurements of performance.
We have altered our usage of the term only to remain consistent with the nomenclature used by the
original author of the paper.

150 Business and Financial Applications

Buy =1
Sell=0

Figure 5.9 This figure illustrates the architecture of the BPN used to predict commodity
futures. As described in the text, the input patterns are each scaled, analog indicators of
market state, and the output generated by the network is interpreted as a buy or sell signal
for the selected commodity. Once trained, the network was tested by presenting it with
data from selected periods in 1989, a year after the data were used to train the network.
The output produced by the network was then compared to the actual market performance
during the same interval, to assess the accuracy of the system.

5.4.2 Market Data Representation

Unfortunately, in the original paper describing the commodity-prediction net-
work application, Collard does not provide any real detail regarding either the
data-representation scheme used to construct his 37 inputs, or the source of the
subjective data. We can surmise from his description of the application, however,
that each indicator was represented by a single node in the network input, and that
the indicators were linearly scaled to values between zero and one prior to presen-
tation to the network. Even if this is not the case, this data representation scheme
will be sufficient for this application, because each of the inputs is essentially an
analog measurement of a single parameter.

As shown in Figure 5.9, the output generated by the network was a single,
binary signal that was interpreted as a buy or sell indicator for the commodity.
Collard indicates that several variations on this network structure were evaluated,
primarily with respect to the number of units on the hidden layer. As expected,

5.4 Predicting Commodity Futures 151

the network that achieved the lowest overall training error (1%) also produced
the largest expected profit when tested with new market data.

Exercise 5.3: In this discussion, we have assumed that the subjective variables
(e.g., prevailing weather conditions) can be represented as an analog measure-
ment. Using this technique, we might have several units dedicated to weather,
one of which might be called “precipitation.” We might then model the precip-
itation indicator such that drought conditions are represented by a value of zero
and flooding conditions with a value of one. Describe the limitations of this ap-
proach. Suggest an alternative method for representing the subjective variables,
and describe how your technique improves on the analog representation. m

5.4.3 Network Performance

Using historical data, it is a relatively straightforward process to evaluate how
well the trained network generalizes the training data, and successfully predicts
the future—we simply present the network with input taken from the market
in a time period after the training data were obtained, and compare the market
performance predicted by the network with the actual market activity. Collard
reported evaluating his trained network against actual market conditions using
input taken from the first 205 business days of 1989. As shown in Figure 5.10,
the BPN successfully anticipated changes in the selected commodity market. In
fact, according to Collard, the network did so well that, had it been used to make
buy and sell decisions during that same period, an investor would have realized a
$10,000 profit on an initial investment of $1,000 over nine months, or a 1,000%
return on the investment in less than one year.

Again, it is unfortunate (for educational, as well as financial reasons) that the
actual data used to train the network is not available for us to evaluate directly,
due to the competitive nature of the application. However, it is not impractical to
test the performance of such a network by creating a data base of financial indica-
tors, and to construct and test a market-prediction network similar to the one we
have just described. We encourage you to perform such tests on an application of
your own design.

A note of caution, however, before you begin investing money in commodi-
ties futures (or in any other market, for that matter) based on the recommendation
of a neural network. This network, like all of the other networks in the applica-
tions we have examined in this chapter, is only as good as the data used to train
it. Neural networks, and in particular, the BPN, are very good at interpolation
and finding relationships in complex data sets (generalization); however, no neu-
ral network yet defined can extrapolate information beyond the training domain.
Therefore, you would be well advised to collect your training data carefully, in-
vest your money cautiously, and make certain never to invest more than you can
afford to lose.

152 Business and Financial Applications

1.0¢
0.8L

0.6+

0.4-
0.2

0.0
1

(@)

30 60 90 120 150 180 210 240
Trading Days

$25000T
20000+

(b) 15000
10000+
5000[M

01 30 60 90 120 150 180 210 240

$25000/ Trading Days

200001
©) 15000

10000 y
50001 f
1 30 60 9 120 150 180 210 240
Trading Days

Figure 5.10 The graphs illustrating the performance of the commodity prediction
network are shown. (a) This graph shows the relationship between the recommendations
made by the neural network after training and the actual price curve for the selected
commodity. (b) This graph illustrates the profit that the trained network would have
realized if its recommendations had been followed, using the training data set as input.
(c) This graph depicts the profit performance of the trained neural network when presented
with out-year market data. Notice that in both profit graphs ((b) and (c)), the network
never loses money. Source: A B-P ANN Commodity Trader [2]. Copyright ©1991,
Morgan Kaufimann Publishers. Used with permission.

5.5 FINANCIAL-APPLICATIONS SUMMARY

In this chapter, we have investigated several different financial applications of
neural networks. We have seen how the standard set of financial tools (e.g., math-
ematical performance indicators) have been used as input parameters to a neural
network, and how the output from the network can be interpreted as an enhanced
indicator of market performance. We have seen how others have successfully ap-
plied the technology to anticipate market performance, to independently evaluate
the rating of bond offerings, and to forecast changes in commodity futures.
Undoubtedly, many readers will be disappointed that all of the applications
described in this chapter were based on the BPN. The reasons for the pervasive

suggested Readings 153

use of this network in the financial industry are probably not related to a special
characteristic of the BPN that makes it more appropriate for financial applica-
tions; rather, it is more likely due to the fact that the BPN is currently the most
commonly used, and, therefore, the most easily accessible neural network, due to
the commercial availability of BPN simulation software.

In the not-too-distant future, I expect that we will be reading about successful
financial applications that employ other networks, such as the Hopfield mem-
ory or the Boltzmann network. In the meantime, we should continue exploring
ways to use the information-fusing and pattern-recognition characteristics of neu-
ral networks to help anticipate market activity. Moreover, it is not unreasonable to
expect smaller financial firms, and, yes, even private investors, to continue tinker-
ing with the technology, uncovering new ways in which neural networks can be
successfully applied to the problems of everyday business.

SUGGESTED READINGS

The financial world is an extremely competitive environment, with investors
looking for any advantage that will enable them to increase earnings. With so
many investors having access to large sums of money, it stands to reason that
advanced technologies, such as neural networks, would be employed whenever
possible to help investors evaluate opportunities. Indeed, the last five years have
shown us that the financial-services industry has been the largest source of re-
search funding in neural-network technology in the United States, apart from the
federal government. Based on the number of recent papers published and articles
written, it seems that neural networks have found a secure niche in this area.

Readers interested in investigating the financial and business applications of
the technology further will be most interested in Neural Networks in Finance and
Investing [10], a compendium of papers describing many different applications of
neural networks in the financial industry.

The most current, and usually the most detailed, applications of advanced
technologies in financial matters are described in the trade journal Technical
Analysis of STocks & CoMMODITIES. This monthly publication provides an in-
depth analysis of the issues associated with trading stocks and bonds, and regu-
larly presents articles written by financial people describing how neural networks,
expert systems, fuzzy logic, and genetic algorithms have been successfully ap-
plied to financial issues.

Another good source of information describing financial applications of neu-
ral networks, as well as many other real applications of the technology, is the
proceedings of the annual Neural Information Processing Systems (NIPS) con-
ference. Unlike some of the other popular neural-network conferences, the NIPS
conference emphasizes applications of the technology. While some of the papers
published at this conference are highly technical, most address real-world appli-
cations that readers of this book would find most enlightening.

154 Business and Financial Applications

Finally, for those readers interested in understanding somie of the problems
associated with the traditional methods of understanding the dynamics of mar-
ket prediction, the best reference we can provide is Forecasting Economic Time
Series [5]. While highly mathematical, this book provides a solid foundation for
understanding the subtleties of market prediction.

BIBLIOGRAPHY

1. Gerald Appel. The Moving Average Convergence/Divergence Method. SIGNALERT
Corporation, 40 Middle Neck Road, Great Neck, NY, 1979.

2. Joseph E. Collard. A B-P ANN commodity trader. In Richard P. Lippman, John E.
Moody, and David S. Touretsky, editors. Advances in Neural Information Processing Sys-
tems 3. Morgan Kaufmann Publishers, San Mateo, CA., pp. 551-556, 1991.

3. Soumitra Dutta and Shashi Shekhar. Bond rating: A non-conservative application of
neural networks. In Proceedings of the IEEE International Conference on Neural Net-
works, San Diego, CA., pp. 11(443-450), 1990.

4. Mark B. Fishman, Dean S. Barr, and Walter J. Loick. Using neural nets in market
analysis. Technical Analysis of STocKs & COMMODITIES, 9(April):18-21, 1991.

5. C. W.J. Granger and Paul Newbold. Forecasting Economic Time Series, second edition,
Academic Press, Inc., 1986.

6. George C. Lane. Lane’s stochastics. Technical Analysis of STocks & COMMODITIES,
4(May/June), 1984.

7. B. G. Malkiel. A Random Walk Down Wall Street, New York: Norton, 1985.

8. J. W. Peavy, III, and J. A. Scott. The AT&T divestiture: Effects of rating changes on
bond returns. Journal of Economics and Business, 38:255-270, 1986.

9. Alvin J. Surkan and J. Clay Singleton. Neural networks for bond rating improved by

multiple hidden layers. In Proceedings of the IEEE International Conference on Neural
Networks, San Diego, CA., pp. II(163-168), 1990.

10. Robert R. Trippi and Efraim Turban, editors. Neural Nerworks in Finance and Invest-
ing: Using Artificial Intelligence to Improve Real-World Performance. Probos Publishing
Company, Chicago, IL, 1993.

11. J. Welles Wilder. New Concepts in Technical Trading Systems, Trend Research, 1978.

C H A P T E R

6=

Pattern Classification

Experience is that marvelous thing that enables you to recognize a mistake
when you make it again.

— F. P. Jones

In Chapter 4, we described applications of neural networks that perform a map-
ping from one multidimensional space to another. In that chapter, we called the
mapping process an associative memory function; that is, the neural-network be-
havior was such that it could associate a specific output pattern with a particular
input pattern, for all patterns in a training set. In this chapter, we shall investigate
a special type of associative-memory called pattern classifiers. As we shall show,
pattern classification differs from associative-memory applications primarily in
our interpretation of the network behavior. In associative-memory applications,
we interpreted the output state of the network as another multidimensional pat-
tern. In pattern classification, we shall interpret the final state of the network in a
manner that allows us to classify the input pattern as belonging to one of several
categories. In essence, we shall allow the network to associate categories with
the corresponding input patterns during training, then use the trained network to
classify new input patterns.

Applications of this type are very appropriate for solution by neural network.
As we have already seen, many neural networks adapt themselves to respond
to certain combinations of input patterns to produce the desired output. We can
conceptualize this behavior as feature detection within the network. In pattern-
classification problems, we will use the response of the network to a new input
pattern as an indication of the presence (or absence) of the feature combinations
that the network learned to recognize.

As with associative memories, the input pattern space is usually very large,
and there is no apparent mechanism for analytically determining the appropriate
category for the input. This is not to say that there does not exist an analytical
technique for classifying the input. Rather, the benefit of using a neural network

155

156 Pattern Classification

for pattern classification is that the application can usually be created and tested
without a significant investment in analysis of the problem domain.

In this chapter, we shall describe four pattern-classification applications of
neural networks. As a part of that discussion, we shall emphasize the interpreta-
tion of the network response as it applies to the classification problem. We shall
also show how the solution produced by the network provides a reasonable clas-
sification of the input.

6.1 NETTALK

The most famous example of a neural-network pattern classifier is the NETtalk
system developed by Terry Sejnowski and Charles Rosenberg [11]. As shown in
Figure 6.1, a BPN is trained to classify a character sequence as one of 26 possi-
ble phonemes! that are, in turn, used to generate synthetic speech. Obviously, the
practical uses of such an application are somewhat limited. However, the NETtalk
application is worthy of our study in that it demonstrates several subtle aspects of
neural-network pattern classification that a novice should consider when develop-
ing new applications. The most important of these are

* The NETtalk system demonstrates the generalization characteristics of the
BPN remarkably well. Specifically, once the network is trained to produce
the correct phonemes in the 5,000-word training set, it performs quite reason-
ably when presented with words that it was not explicitly taught to recognize.

* The data-representation scheme employed by Sejnowski and Rosenberg is
quite interesting. It allows a temporal pattern sequence to be represented
spatially, while simultaneously providing the network with a means of easily
extracting the important features of the input pattern.

We shall begin our investigation of the NETtalk application by first examin-
ing the data-representation scheme used by Sejnowski and Rosenberg. We shall
then describe how the data were collected and used to train the network. Finally,
we shall discuss some of the observations made by Sejnowski and Rosenberg
with respect to the network’s performance.

6.1.1 NETtalk Data Representation

It is acknowledged by many that English is among the most difficult languages
to read, simply because there is so much diversity in the language. Anyone who
has learned to read the English language knows that for every pronunciation rule,
there is an exception. For example, consider the English pronunciation of the
following words:

FIND FIEND FRIEND FEINT

1. Phonemes are a standard representation of the sounds made during speech.

6.1 NETtalk 157

Text Input Convert Text to

NETtalk Pattern

AALAARER

NETtalk Network

[X N]
\ Analog Signal Convert
, Phoneme
"Hello ... To
ki
" To Speaker Analog Signal

Figure 6.1 The system block diagram of the NETtalk application is shown. In this
architecture, a front-end process converts the scanned text into the pattern representation
for the BPN. The network, in turn, produces an output that is interpreted by a back-end
process as the phoneme to be generated. The output of the system is therefore a synthetic
pronunciation of written text.

While these four words are very similar in their form and structure, the pronunci-
ation of each is vastly different. In each case, the pronunciation of the vowel(s)
is dependent on a learned relationship between the vowel and its neighboring
characters. Mastering these learned relationships is what makes English a diffi-
cult language to learn.

Obviously, the process of generating the correct phoneme sequence to syn-
thetically pronounce these four words is much more complicated than simply
mapping a phoneme to each character in a text string. Moreover, this example
only touches on the complexities of the language. There are many other com-
plex interrelationships between written text and spoken English, and any system
constructed to perform this type of pattern classification must also be capable of
capturing and encoding these interdependencies.

The NETtalk system constructed by Sejnowski and Rosenberg does just
that—it captures the implicit relationship between text and sounds by using a
BPN to learn these relationships through experience. However, to teach the net-
work these relationships, Sejnowski and Rosenberg had to first develop a method

158 Pattern Classification

CONNECTION

b [l ¢ -
bt [[1][co

ty | | | [cloN

ty | ClONN

ty | Clo|NINE

ts | [CION|N[E|C]

te 'C/ONIN[E[CIT]

t, OIN|N[EICIT]I]

tg NINEC[T[I O
ty = |NEC[T[ION|

Figure 6.2 This diagram illustrates the sliding-window concept used to produce word
patterns for the neural network. Initially, the window is padded with blanks to produce the
silent phoneme. Characters from the word to be pronounced are then acquired by sliding
the window over the word, one character at a time. This process continues until all of the
characters in the word have passed by the focus position, with blank characters appended
to the word to signal termination.

for converting the textual representation of the word into a pattern that the net-
work could use, while preserving the positional influence of characters on each
other in the textual representation.

To accomplish that goal, Sejnowski and Rosenberg adopted a sliding-window
technique for representing words as spatial patterns. Essentially, the window is
nothing more than a fixed-width representation of characters that form the com-
plete input pattern for the network. The window “slides” across a word, from left
to right, each time capturing (and simultaneously losing) one additional charac-
ter. In order to allow both preceding and succeeding characters in each word to
exert influence on the current character, the character in the middle of the win-
dow is interpreted as the focus character, with characters to the left and right of
the center acting to influence the classification of the focus character. This process
is illustrated in Figure 6.2.

In their article, Sejnowski and Rosenberg used a window of seven characters,
with the third position designated as the focus character. This representation al-
lows each character in a word to be influenced by its three preceding and three
succeeding characters. According to the language studies performed prior to their
experiments, three characters were adequate to exert the proper influence on the
pronunciation of any one character in an English word.

6.1 NETtalk 159

One final transformation was necessary in order to cast the data in a form
usable by the BPN. Because the network requires inputs that are numerical and
continuous in the range of zero to one, it is necessary to convert each character
into a pattern vector composed of numerical values. Sejnowski and Rosenberg
chose to represent the input characters as pattern vectors composed of 29 binary
elements—one for each of the 26 upper-case English alphabet characters, and
one for each of the punctuation characters that influence pronunciation. Using
this scheme, only one element in each character vector was “on” at any given
time. This method of data representation also provided a side benefit for the
neural network, in that it simplified the network’s ability to distinguish different
characters.

To see how this simplification occurs, consider the fact that, by using the
data-representation scheme described above, the character pattern vectors are all
orthonormal, which maximizes the distance between pattern vectors in Euclid-
ian space. Because, as we described in Chapter 2, the BPN propagates signals
by computing the inner product between input pattern vectors and corresponding
connection-weight vectors, a natural extension of the processing performed by
a neural-network processing element is the computation of the distance between
these two vectors in Euclidian space. Thus, by ensuring pattern vectors are or-
thonormal, we enhance the ability of the neural network to distinguish important
features from similar, but unimportant pattern components.

6.1.2 NETtalk Training

The training data for the NETtalk application consist of 5,000 common English
words,? together with the corresponding phonetic sequence for each word. For
each exemplar, a set of n input patterns was defined such that each input pattern
contained one instance of the seven-character sliding window, with each character
represented as a 29-element vector, where n represents the number of characters
in the word. Using this scheme, the dimension of each input pattern was 203
elements (7 characters x 29 elements per character).

The output desired from the network for each input is an indication of the
phoneme that should be applied to pronounce the current character. Sejnowski
and Rosenberg chose to represent the output pattern as a 26-element vector, al-
locating one element for each phoneme classified by the network. The training
data for the NETtalk application therefore contains 30,000 exemplars (assum-
ing an average of six characters per word), with each exemplar composed of a
203-element input vector and a 26-element output vector. To perform the desired
classification, Sejnowski and Rosenberg used a three-layer BPN, with 80 sig-
moidal units on the hidden layer, completely interconnected with all elements on
the input and output layers. This network is depicted schematically in Figure 6.3.

2. Many derivations of the NETtalk system use a much smaller training set, to reduce the training
time.

160 Pattern Classification

26 Outputs

QCO@QQ wr O

s NN

OOOOOCOOCOO0 = OO

SANEEANN
QQ OO OO CO OO OO OO

O N N E C

Figure 6.3 This diagram illustrates the architecture of the BPN used to perform the
NETtalk application. The operation of the network is described in the text.

Exercise 6.1: Using the parameters given for the NETtalk application, estimate
the number of computations needed to perform one training epoch in a software
simulation of the network. Assume that the sigmoid activation function requires
30 calculations to perform, and that the momentum term («) is not used. m

6.1.3 NETtalk Results

Sejnowski and Rosenberg constructed the training exemplars for the NETtalk ap-
plication by first generating the input pattern vectors for the set of example words,
then, for each of the input patterns, manually associating the proper phoneme
with the focus character. The process was extremely tedious, and required sev-
eral weeks to produce the final training set. Training the NETtalk BPN from the
exemplar data was only marginally better, requiring 10 hours of computer time
on a VAX 11/780 class computer system.

While the network was training, Sejnowski periodically stopped the process
and allowed the network to simply produce whatever classifications it could,
given a partial set of the training words as input. The classification produced
by the network was then converted into the proper phoneme, and used to drive
a speech synthesizer to produce an audible “snapshot” of the networks training
state. The sounds produced by the network were recorded on audio tape. That
recording captures the essence of the network’s learning ability.

Before the training started, the network produced random sounds, freely mix-
ing consonants and vowel sounds. After 100 epochs, the network had begun to
separate words, recognizing the role of the blank character in text. After 500
epochs, the network was making clear distinctions between the consonant sounds

6.2 Radar-Signature Classifier 161

and the vowel sounds. After 1,000 epochs, the words that the network were classi-
fying had become distinguishable, although not phonetically correct. After 1,500
epochs, the network had clearly captured the phonetic rules, as the sounds pro-
duced by the BPN were nearly perfect, albeit somewhat mechanical. Training was
stopped after epoch 1,500, and the network state was frozen.

At that point, the NETtalk system was asked to pronounce 2,000 words that
it had not been explicitly trained to recognize. Using the relationships that the
network had found during training, the NETtalk system had only minor problems
“reading” these new words aloud. Virtually all of the words were recognizable
to the researchers, and are also easily recognized by people not familiar with
the system when they hear the audio tape recording. When the NETtalk system
produces a “glitch,” it is usually due to the existence of a phonetic relationship
that the network was not exposed to while learning, and therefore represents a
situation outside of the network’s ability to classify.

Sejnowski and Rosenberg reported that NETtalk can read English text with
an accuracy of “about 95%.” This indicates that the NETtalk BPN did not sim-
ply memorize a set of words and their corresponding pronunciations—rather, it
learned the general interrelations between English text and sounds, and can there-
fore apply those generalizations to read words it has never seen before.

At many of his public speaking engagements, Dr. Sejnowski replays portions
of the NETtalk audio tape for his audience. Having heard that tape personally,
I can attest to the fact that the NETtalk system has a very diverse vocabulary,
and does remarkably well when presented with new words. In fact, listening to
NETtalk learn to read is very much like listening to a child learning to read aloud.
Words are often pronounced correctly, and, when errors occur, they are almost
always due to very subtle structural differences between the misspoken word and
other common words.

6.2 RADAR-SIGNATURE CLASSIFIER

Pulse Doppler radar technology has existed, in essentially its current form, since
the 1940s. The primary application of pulse Doppler radar? is to detect an air-
borne target, and determine the range and velocity of the target relative to the
radar station. Pulse Doppler radar operates on two very simple principles of
physics: First, electromagnetic radiation (EMR) travels at a constant speed, and,
second, EMR waves reflected from a moving body are frequency shifted in the
direction of travel, much like sound waves are compressed in the direction of
travel when emitted from a moving noise source. We illustrate these concepts in
Figure 6.4.

Modern radar systems take advantage of these two principles to compute
the range and velocity of any target that comes within the effective range of the
radar transmitter. Usually, the radar system provides a digital readout of these

3. Traffic law enforcement notwithstanding.

162 Pattern Classification

Signal \

Figure 6.4 This diagram illustrates the basic principles that govern the operation of
pulse Doppler radar. A radar pulse, or chirp, is transmitted from the radar station. The
EMR burst travels outward from the transmitter at the speed of light. When an EMR-
reflective target is hit by the outgoing signal, some of the energy is reflected back to
the radar receiver, which then determines the range and velocity of the target based on
concepts described in the text.

parameters for each target acquired, leaving the chore of using the information
to the radar operator. However, it has long been apparent that skilled radar op-
erators are also able to ascertain the type of target acquired, even though the
radar itself has no capability of making that same determination.* They make this
determination based on the electronic signature of the radar return. Just as peo-
ple have their own, personalized technique for signing their names, each radar
target has its own, unique way of reflecting radar emissions. After observing
several thousand returns, a radar technician can learn to recognize these signa-
tures.

As we indicated previously, radar-signature recognition is currently a strictly
human phenomenon; there are no automatic means of identifying a target based
on its radar-signature incorporated in radar systems. Let us now investigate how
a neural network can be applied to the problem of automatic radar-signature
recognition, an application that I helped develop while employed by Loral Space
Information Systems. We shall begin with a brief discussion of the mathematics
governing the operation of pulse Doppler radar, in order to describe the meaning
of the electronic radar signature. We shall then show how different signatures
were captured, and classified by a neural network.

4. Transponders can identify aircraft type, but we are concerned here with only radar systems.

6.2 Radar-Signature Classifier 163

6.2.1 Pulse Doppler Radar Theory

As indicated earlier in this section, pulse Doppler radar systems are designed to
determine the distance, or range, and velocity of a target relative to a reference
point (the radar station). Complicating matters is the fact that, quite often, the
radar station is itself moving, as with on-board radar systems in airplanes, and
must therefore correct any errors that may be induced by the movement of the
platform.

On initial consideration of the problem of obtaining range and velocity of
an EMR reflective target, you might think that the most straightforward method
would be to use a fixed-frequency radar pulse, and then determine range as a
function of the delay between transmission and echo reception, and velocity as a
function of the phase shift in the return frequency. However, this simple technique
is not practical, because it does not take into consideration the power loss of an
EMR signal propagating through space.’ If a target is much more than several
hundred meters away, the returning echo will be lost in the EMR background
noise.

The process of determining range and velocity in a reflected radar signal
actually requires several steps, beginning with the transmission of the signal.
Because we are interested in finding radar targets at very great distances, we
must use a technique that will allow us to boost the signal-to-noise ratio (SNR)
in the returning signal so that we can extract it from the background noise and
analyze the echo. To help us boost the SNR in the echo, we begin by transmitting
a frequency-modulated chirp, instead of a fixed-frequency pulse, so that we can
correlate any returning signal with the original signal, and thus identify valid
returns. Figure 6.5 illustrates the general form of the chirp signal.

Any signal detected by the receiver is processed by a series of filters, each
designed to perform a special function for the radar system. For the sake of
brevity, we shall ignore the initial stages of platform-motion compensation and
stationary target removal. Instead, we shall focus on the process of extracting a
valid Doppler return from the ambient EMR noise, because this is the process
that produces the Doppler signature that we intend to classify.

A radar receiver is actually two separate receivers, one designed to detect
the in-phase component of any EMR in the desired frequency range, the other
to measure the quadrature, or phase-shift, component of the incoming signal. We
shall refer to these signals as the real and imaginary components of a complex re-
turn signal. After compensating for platform motion and removing any stationary
target information, both components of the incoming signal are fed to a matched
filter to eliminate false returns and boost the SNR of a valid return. The matched
filter is actually a three-step process, which we now describe and illustrate in
Figure 6.6.

S. Recall from basic physics that power in a transmitted signal drops by the square of the distance
traveled.

164

Pattern Classification

Signal
Power

time —®

Figure 6.5 This figure illustrates the general form of a radar chirp. Notice that the
frequency of the signal increases linearly with time. Since EMR waveforms of this type
are non-existent in the natural world, we can detect a valid signal return by correlating
the frequency of any return with the variable frequency of the original chirp, using the
techniques described in the text.

1.

The complex input signal from the receiver is sampled in discrete time, and
converted from the time domain to the frequency domain using a fast Fourier
transform (FFT). The size of the sample and the number of points used in the
FFT are determined by the application, but we shall consider 512 samples
and a 1,024 point FFT as nominal. To accommodate this processing, a single
pulse return interval (PRI), which is the time period between transmitter
chirps, is divided into separate sample periods, each comprised of 512 data
points. Each of these samples is converted by the FFT, producing n, 1,024
complex vectors (v;,i =1, ..., n), that collectively describe the PRI in the
frequency domain.

A vector multiplication between each v; and the complex conjugate, or time-
reversed form of the initial chirp is performed. Because multiplication in
the frequency domain is equivalent to convolution in the time domain, this
operation has the effect of squelching any noncorrelated spectra, allowing
only signals that are correctly correlated, and therefore valid echoes, to pass.
The resulting vectors, w;, are a filtered representation of the return in the
frequency domain.

The filtered return is converted back to the time domain by performing an
inverse FFT (IFFT) on each w;. The resulting complex vectors, X;, represent

6.2 Radar-Signature Classifier 165

Pulse Return Interval
N

(@) +

Ground Return
Clutter Signal

v

|
|

Figure 6.6 These graphs depict the waveforms during processing of a single PRI. The
time scales are uniform throughout, and we only show the real, or in-phase component
of the signal. (a) The spectra of the signal as measured at the radar receiver, prior to any
processing. (b) After correlating, clutter is eliminated and the target becomes apparent.

(b)

the n, 512 sample points in the time domain, after filtering. The entire PRI is
reconstructed by concatenating the n filtered vectors.® The resulting complex
vector pinpoints the target return in the PRI

As PRI data are processed, the radar system accumulates the results in a ma-
trix form, where each row consists of one PRI of processed data and each column
represents a discrete time interval, or range bin, within the PRI. After 32 suc-
cessive returns are processed, the Doppler frequency information is extracted by
filtering each return with a Blackman window, to minimize the effect of transient
frequencies caused by performing an FFT on a finite series, transposing the ma-
trix, and performing a 32-point FFT operation to extract the Doppler profile of
each range bin.

The result is a complex, n-row, 32-column matrix, where each row indicates
the magnitude of the Doppler shift occurring at the range represented by the row
position. Small Doppler-shift magnitudes indicate no movement at that range.
Large Doppler shifts indicate an EMR reflective target moving through the radar

6. This is actually a simplification of the actual process of recovering the signal. For more details.
refer to the Suggested Readings section of this chapter.

166 Pattern Classification
32
PRI 1 Range Cells n Blackman T M fe o x :-:k
Window 2 fofv o

2 P N P
3 NN eee o _/\ 5 Al e
: : : 6 ol fufyoee fy
32 NN N S ees o — 7l fofofoee
n2le o fo fo oo fo
@ N1l o e fooee o
fo o v fo oen o

(b)
N I

(©) (d)

Figure 6.7 The process of converting 32 successive PRI returns into a Doppler signature
is illustrated. (a) The PRI data are collected into a 32-row by n-column matrix, where each
column represents a discrete time interval in the PRI, and each row contains the processed
return data for the PRI. (b) The matrix is filtered and transposed to provide Blackman-
weighted return data by column. (c) A 32-point FFT is applied to the Blackman-weighted
matrix to obtain the Doppler profile of the return. (d) The Doppler matrix is concatenated
by rows to form the Doppler signature of the return.

scan. If we concatenate the n rows of the Doppler matrix into a single vector, we
produce the Doppler signature of the return. Figure 6.7 illustrates this process.

The Doppler signature of the return provides all of the information we need
to determine range and velocity of a detected target. By considering the amplitude
of the Doppler shift, and knowing that each bin represents a time slice of fixed
duration and a known offset from the beginning of the PRI, we can determine
the range of the target by simply interpolating between the two Doppler peaks.
Similarly, target velocity can be determined by evaluating the difference in range
between two successive returns.

6.2.2 Capturing the Radar Signature

All of the calculations described in the previous section are made automatically
within any Doppler radar system. However, inspection of the Doppler signature
reveals quite a bit more about the nature of the target. For instance, if the airframe
of the target has no moving blades (indicative of a jet aircraft), the Doppler sig-

6.2 Radar-Signature Classifier 167
(a) AAM/\/\/\M/’\AMM /(AHI\AMAAAAAA

(0) MmM M M MM/W
o A

Figure 6.8 These diagrams illustrate Doppler signatures produced by different kinds
of aircraft. (a) A jet (airframe only) produces a compact Doppler signature. (b) A two-
bladed helicopter causes a spread in the signature, with side lobes forming on both sides
of the peak, indicating rotation of the blades. (c) A four-bladed helicopter has a very
wide signature, because blades rotate through the radar signal twice as often as with the
two-bladed helicopter.

nature is fairly compact. If the target has blades rotating in the same plane as the
radar signal (as with a helicopter), the signature will spread considerably. Other
signatures will be obtained based on the type of aircraft, and any moving parts
that may cause Doppler shift in the return. Figure 6.8 presents a representative
sample of these different signatures.

Given that the radar system can produce these electronic signatures, we can
use a neural network to address the pattern-classification problem. Specifically,
we can train a network to mimic the pattern-recognition process performed by
the radar technician and automate the classification of these different signatures
as different types of aircraft. In order to do this, however, we must first decide on
the type of network we shall require to perform the classification, then determine
the best method for representing the electronic signatures and corresponding clas-
sifications for use by the neural network.

The most straightforward method for learning to classify these Doppler sig-
natures is to create a network that learns to produce the correct output category
for each signature. The BPN is the most logical choice for this type of appli-
cation, because this network can generalize the characteristics of the input that
lead to successful classification, and because it is designed to map input patterns
to corresponding outputs. Furthermore, inspection of the radar-signature wave-

168 Pattern Classification

AAAAAAAAAAAAA AAMMMMA

AAAAAA /\m»\/«AA/\/‘\/‘\AAA/J\/j\\}\/J\AA/’\AAAAAMMAAA,\,‘,\AAAAA

MMMAMMMAAMM AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAM/\A MMMMMMMMMMMMMMMMMMM /\/\/\/‘\/‘\/‘\/‘\A,\AAA

~@——— 1 Range Bin -

Figure 6.9 These graphs show how a Doppler signature shifts as a function of target
range. Beginning at the top, the sequence shows a target approaching the radar station,
with a corresponding left shift in the Doppler signature.

forms suggests an appropriate method for encoding the input patterns—we sim-
ply quantize each waveform, and scale the magnitude of each component of the
pattern to a value in the appropriate range for the BPN. Similarly, the output of
the network can be cast as m sigmoidal units, where each unit is considered to be
an indicator of a specific aircraft type.

However, selecting the BPN will complicate the application somewhat, due
to an easily overlooked detail in the input pattern representation scheme. From
our discussion of how the radar signature is produced, consider that the signature
will shift as the target moves through the range bins. As depicted in Figure 6.9,
the Doppler signature moves horizontally in the pattern, as a function of the
range of the target. If we simply train the BPN to recognize a single image of
the Doppler signature, the network will not be able to correctly classify shifted
signatures of the same target, due to the fact that the BPN is not a position-
invariant pattern classifier.’

To compensate for the pattern shift, we must train the network using exem-
plars that account for the pattern shift. For example, the Doppler signature for

7. The behavior of the BPN was described in detail in Chapter 2.

6.2 Radar-Signature Classifier 169

(a) MAMAMAMAMAMAMMMMAMA

1.0fF

(b) DDDgmnmﬂmnnﬂﬂﬂﬂﬂﬂﬂumBDDDDEDDD

1.0

(C) 4mmmﬂﬂﬂﬂﬂﬂﬂﬂuﬂﬂ_

(@) HﬂﬂﬂnmmmmmmmmhgmDDDDDDDDDDDUH

1.01

(e) DDDDDDDjﬂﬂﬂﬂugmmmmmmmm

Figure 6.10 This diagram illustrates the exemplar encoding scheme used to capture
the Doppler signature of various aircraft. (a) This diagram illustrates the general form
of the radar return after extracting the signature. (b) The quantized form of the Doppler
signature. (c) The quantized signature shifted right by ten range bins from the general
form. (d) The quantized signature shifted by fifteen range bins. (e) The quantized
signature shifted right by 26 range bins (or left by 6 range bins).

the airframe-only return, if quantized into 32 discrete samples, will become 32
training exemplars for the BPN—one for each possible shift of the input pattern.
Similarly, the signature for the twin-bladed helicopter will become 32 different
exemplars, each requiring a single output from the network unit that corresponds
to the two-bladed helicopter classification. This exemplar encoding scheme is il-
lustrated in Figure 6.10.

Exercise 6.2: As we shall describe, the BPN used in this application was able
to correctly classify all of the signatures we asked it to learn. However, the same
application developed using a feed-forward CPN failed miserably. Why? (Hint:
Consider the input representation as a vector in 32 space.) =

6.2.3 Classifying Radar Returns

As a demonstration of the ability of a neural network to classify radar returns, we
constructed a BPN in software on a multiprocessor neural-network accelerator
board, and trained it using Doppler signatures of three different aircraft types:
airframe only, a two-bladed helicopter with blades rotating at 300 RPM, and a
four-bladed helicopter with blades rotating at 300 RPM. For each class of aircraft,
a representative signature was computed using a radar signal-processing package
developed for the application.

170 Pattern Classification

The network used to classify the Doppler signatures was a three-layer BPN,
with 32 input units, eight units on a single, hidden layer, and three output units.
The processing elements on the hidden and output layers were sigmoidal, and
outputs were interpreted as a one-and-only-one indication of the class of the input
signature. The use of sigmoidal activation functions at the output of the network
had the effect of simplifying the classification process.

The exemplar data used to train the network consisted of 96 Doppler-
signature aircraft-classification vector pairs. Using a learning rate (1) of 0.5 and
a momentum term («) of 0.6, the network converged to a solution after 1,700
training epochs, stabilizing with an absolute error magnitude less than 0.01. After
training was completed, the configuration of the network (e.g., connection-weight
values, number of units, and number of layers) was written to a file on the com-
puter disk, to be used by an application that processed radar-return data in real
time. :

6.2.4 Radar Classification Results

In our test application, the radar signature of a target is extracted from synthetic
radar data produced by a mathematical model of the target object. To ensure that
we were evaluating the generalization capabilities of the BPN, the target model
used in the test application was a different implementation of the target model
used to generate the training data.

From the synthetic radar data, the Doppler signature of the object being mod-
eled was extracted using conventional digital signal-processing techniques, then
converted to a signature pattern for the network. The BPN was a software model
of the network constructed from the information saved after training, and invoked
by a simple function call from the top-level process. In this case, however, the
network was used in the forward-propagation mode only, producing outputs that
were interpreted as the class designation of the radar signature. Figure 6.11 illus-
trates a block diagram of the integrated-system architecture we used to evaluate
the performance of the neural-network classifier.

The integrated system was constructed as a demonstration program to illus-
trate the power of neural-network pattern classifiers. The front-end process (the
math model of the target) provided the radar data stream, which was filtered as
described in this section. The output of the radar signal processor was the Doppler
signature of the target, which was sent directly to the neural network for classifi-
cation.

Prior to using the BPN to classify the Doppler signature, the processed re-
turns were compared to the training signatures, to ensure that the target model
was producing a reasonably accurate radar profile. Moreover, to test the tolerance
of the classifier to “imperfect” signatures, the system allowed the user to interac-
tively add noise to the radar data stream, prior to input to the filter processes. Our
results indicate that, while the signatures produced by the math model, without
noise, were similar to the training patterns, there was as much as a 15% difference
between the signatures the network had learned to recognize and the signatures

6.3 Prostate-Cancer Detection 171

Synthétic — Motion Pulse
Radar Data Compensation/— 9 Com
. pressor
Generator —® Detection ‘l
Corner .' Range and | ® Velocity
Turn Velocity
Memory > Detector Range

R Neural |—® Airframe Only
—® Signature |— = 2-Bladed Helicopter
L gl Detector | 4.Bladed Helicopter

Figure 6.11 The block diagram of the integrated radar signal processor and
neural-network classifier is shown. The operation of the system is described in the text.

produced by the model. When Doppler noise was added (such as might be pro-
duced by a tail rotor on a helicopter), the signature could vary from the training
image by as much as 25%. Nevertheless, the BPN was able to correctly classify
100% of the radar signal returns produced by the model.

6.3 PROSTATE-CANCER DETECTION

Cancer of the prostate is a silent, but quite deadly disease that is rapidly be-
coming common in human males over the age of 45. In 1991, prostate cancer
was estimated to be the most commonly diagnosed form of the disease, with the
second-highest mortality rate of all forms of cancer in males [3]. If diagnosed
in its early stages, however, prostate cancer is quite curable [9]. Unfortunately,
early diagnosis is not always possible, because prostate cancer has no discernible
symptoms in its early stages. Complicating matters is the fact that accurate diag-
nosis® usually requires an invasive procedure, meaning that the disease cannot be
easily detected during routine health examinations.

Fortunately, public awareness concerning the nature of prostate cancer, and
the danger inherent in delaying the diagnosis, has caused many individuals to
have themselves proactively checked for prostate cancer. Also, recent advances
in diagnostic technology have greatly simplified the process of detecting prostate
cancer during its early stages.

8. At least in its early stages.

172 Pattern Classification

In this section, we shall examine one such diagnostic technology, made pos-
sible through the use of ultrasound inspection of the gland. In this application,
developed by one of my graduate students, Mssr. Jean-Baptiste Enombo [5], the
ultrasound image of the prostate is analyzed, texture features are extracted from
the image, and the feature combinations are classified by a neural-network trained
to recognize carcinoma in the ultrasound image. While this research is still very
preliminary, the results indicate that neural-network technology might offer a
very precise method for identifying prostate cancer using a safe, noninvasive de-
tection procedure.

6.3.1 Ultrasound Data Collection

Medical research has shown that ultrasound examination of the prostate may pro-
vide a relatively safe method for identifying patients with active carcinoma. As
with other ultrasound techniques, the patient is examined by passing an ultra-
sound transducer (in this case, a wand designed to be inserted into the rectum)
along the area to be examined. An extremely high-frequency sound is emanated
from the transducer into the body cavity, where the sound is absorbed (hyper-
echoic) or reflected (echoic) back to the transducer as a function of the viscosity
of the tissue and the frequency of the transmitted ultrasound.

The transducer detects the returning echo pattern, and, after further process-
ing, the pattern is electronically converted into a visual display of the surrounding
tissue. To aid in the interpretation of the display, different echo levels are dis-
played using a graduated gray scale, with lighter pixels indicating echoic tissue,
and darker pixels indicating hyperechoic tissue. Figure 6.12 illustrates a typical
prostate ultrasound image.

Prostate cancer is currently identified by visual interpretation of the ultra-
sound image. Studies [4, 10] have shown that cancerous lesions tend to be more
hyperechoic than normal glandular tissue. Unfortunately, hyperechoic tissue is
not, by itself, a precise indication of cancer. Other studies have shown that while
96% of all prostate cancer lesions are hyperechoic, only 40% to 50% of hyper-
echoic regions are cancerous [8, 1]. Examples of normal tissue structure that
exhibit hyperechoic echo patterns include muscle surrounding the prostatic ure-
thra, the ejaculatory ducts, atrophic glands, and benign hypertrophy [7].

There are also biological limitations in diagnosing cancerous tissue from ul-
trasound images, due primarily to noise in the resulting image and the limited
ability of the human visual system to distinguish subtle variations in gray lev-
els. As an illustration of these limitations, consider the image in Figure 6.13,
which is an ultrasound image of the prostate shown without clarification.® On
initial inspection, it is difficult to discern the boundary of the prostate from the
surrounding tissue, let alone identify possible cancerous tissue. Even when the

9. Figure 6.13 is, in fact, identical to the image shown in Figure 6.12, with only the clarification
details removed.

6.3 Prostate-Cancer Detection 173

Figure 6.12 This figure illustrates a typical ultrasound image of the prostate gland.
For clarity, we have indicated the perimeter of the gland in the image. The dark circle in
the center of the image is the rectum, and the surrounding tissue is illustrated in levels
of gray that indicate variations in tissue density. Notice the level of noise in the image.
Source: Feature analysis and neural network classificationof prostate ultrasound images
[5]. Copyright ©1994, by Jean-Baptiste Enombo. Used with permission.

prostate has been isolated visually, separating hyperechoic regions from the noise
is a challenging task.

6.3.2 Ultrasound Texture Analysis

In order to assist in the interpretation of ultrasound image analysis, the image
data can be enhanced through the use of spectral, textural, and contextual image-
processing techniques. These techniques are employed to filter the noisy data into
representations that more closely resemble the type of information the human
visual system is designed to process. In his investigation, Mssr. Enombo used a
textural analysis of the prostate ultrasound to extract information regarding the
structure of the gland in terms of its texture. Specifically, 13 textural features were
extracted for each resolvable point in the ultrasound image, and these features
were then used to construct the training exemplars for the classification network.

The textural features used by Mssr. Enombo, which were originally derived
by Robert Haralick et al. [6], assume that the image to be analyzed is represented
as a spatial-dependence matrix, P, where each point P;; is a normalized gray tone
with N, discrete gradations. To simplify the notation in the textural analysis, we
adopt the following four identity relations:

174 Pattern Classification

Figure 6.13 This figure illustrates a typical ultrasound image of the prostate and
surrounding tissue as a doctor or clinician might see the image during an examination. The
regularly occurring white dots are data dropouts, or holidays, and occur because of the
implementation of the transducer. Given this noisy image, how quickly can you find the
prostate, and identify the hyper-echoic, or potentially cancerous regions? Source: Feature
analysis and neural network classificationof prostate ultrasound images [5]. Copyright
©1994, by Jean-Baptiste Enombo. Used with permission.

Ng
Pi)=) P, (6.1)
j=1

Ny
Pi(j)=)_ P (6.2)

i=1

Nfs’ Ng
Py =) "> "P; (6.3)

i=1 j=1

Ny Ng

Pey(k) =3 Y Py (6.4)

i=1 j=1

where k =i + j in Eq. (6.3) and k = |i — j| in Eq. (6.4).

Prior to the experiment, four patients diagnosed with clinically organ-
confined prostate cancer were examined using the ultrasound equipment, and the
images were recorded on broadcast-quality videotapes. The patients then under-
went radical prostatectomy procedures, and the removed organs were subjected
to 4-mm whole-mount serial cross-sectioning, as shown in Figure 6.14. Pathol-

6.3 Prostate-Cancer Detection 175

Figure 6.14 This diagram illustrates the whole-mount cross-section pathology of the
prostate specimens. Initially, 1.0 to 1.5 cm of tissue at the apex and anterior portions of
the organ are excised. The remainder of the organ is sliced horizontally at 4 mm intervals,
and a thin slice from each cross section is mounted on a slide. These specimens are
then subjected to a microscopic examination by a pathologist to determine exact regions
of the gland containing the prostatic andenocarcinoma. Source: Feature analysis and
neural network classificationof prostate ultrasound images [5]. Copyright ©1994, by
Jean-Baptiste Enombo. Used with permission.

ogy reports were obtained for each specimen, so that the cancerous tissue could
be located as precisely as possible.

While the pathology investigation was being conducted, the video images
from the ultrasound examinations were digitized in color at the NASA Johnson
Space Center (JSC). The three bands of color were converted to hue, saturation,
and intensity images, and the intensity band was further transformed into a 512 x
512 pixel matrix in 64 gray shades. Thirteen textural features were then extracted
for every 9 x 9 pixel window in the vertical direction, using the texture analysis
algorithms developed by Haralick et al. For the reader’s convenience, we recreate
these algorithms as follows:

e The angular second moment, given by

=YY P} (6.5)
i

* Contrast between points, given by

176 Pattern Classification

Ng—1

2
2

n2 Pij (6.6)
n=0

i
-
i

e The correlation between points, given by

Y TP — ey
f3= Zz Z/ JEij Moxfy (6.7)

00y

where py, iy, ox, and o, are the mean and standard deviations of P, (i) and
Py(j).
e The variance between points, given as

fa=)) =Py (6.8)
i
¢ The inverse difference moment, given by
1
= ——P; 6.9
f5 Z;lﬁ-(l—j)z ij (6.9)
¢ The sum average of each point, given by
2N,
fo=_iPuyy(i) (6.10)
i=2

¢ The sum variance of each point, given as

2Ny

1= G = f8)*Pegy(i) (6.11)
=2

* The sum entropy of each point, given by

=) 2Ng Py (i) 10g(Pryy (i) (6.12)
i=2

¢ The entropy, given by

fo==2_3" Pyjlog(P;) (6.13)
J

i

6.3 Prostate-Cancer Detection 177

¢ The difference variance, given by

fro=Y (i = W Pe_y(i) (6.14)

e The difference entropy, given as

Ng—1

fri=—= " Pey(D)1og(Pey()) (6.15)
i=0

¢ The information measures of correlation, given by

£, HXY —HXY, 6.16)
2= max(HX, HY) '
fiz =1 — e 2HXV2—HXY (6.17)

where

HXY =— ZZ P;jlog(P;j)
i

i

HXY ==Y Pjlog(P(i) Py(j)
J

HXYy=—Y) Pu(i)Py(j)log(Pe(i) Py(}))
J

1

and HX and HY are entropies of P, (i) and Py(j), respectively.

In Figure 6.15, we illustrate several textural images of the prostate ultra-
sound, so that the reader may compare the information derived from the analysis
of the images with the original ultrasound image.

6.3.3 Cancer-Classification Exemplars

Mssr. Enombo computed the 13 texture features for each pixel in the digitized
ultrasound image of the prostate. The values obtained for each pixel were then
individually normalized, and concatenated into a 13-component pattern vector
that became the input exemplar for a BPN classifier. The desired output for each
pixel was the cancer/noncancer indication obtained by correlating the pathology
report for the specimen with the ultrasound image pixel position.

There were several difficulties that had to be overcome in order to construct
these training patterns. First, the pathology report could not be directly correlated
to the ultrasound image data for several reasons, including the following:

178 Pattern Classification

© (d)

Figure 6.15 These figures illustrate the information derived from a textural analysis
of the prostate ultrasound data. (a) The angular second moment of the image. (b) The
contrast in the image. (c) The variance of the image. (d) The inverse difference moment.
Source: Feature analysis and neural network classificationof prostate ultrasound images
[5]. Copyright ©1994, by Jean-Baptiste Enombo. Used with permission.

* The ultrasound-image data had been obtained from views of the prostate
within the body, taken at 2-mm vertical increments. The pathology, however,
had used 4-mm vertical increments in the dissection of the specimen. Be-
cause there was no guarantee that the pathologist had dissected the gland at
the same vertical points as the ultrasound images, there was a +2-mm margin
of error in the data.

* When the specimen was dissected and mounted for examination, tissue dis-
persal occurred horizontally, altering the view of the cross section. To correct
for this “squashing” effect, the ultrasound image was initially warped, or
stretched, to match the cross-section area of the pathology. However, digi-

6.3 Prostate-Cancer Detection 179

tally warping the image tended to distort the texture features of the images,
so the pathology report was warped to match the ultrasound image. Using
this technique, the pixels indicating cancerous cells in the ultrasound were
classified from the warped pathology data.

Furthermore, the ultrasound image of the prostate had data dropouts, or holi-
days, where the ultrasound echo was corrupted. These holidays occur at precisely
the same position in any display, and increase in frequency in images further from
the transducer. To minimize the effect of the holidays in the texture analysis, only
the ultrasound data from the peripheral region, closest to the probe, was consid-
ered. This was not judged to be a severe constraint on the application, because
most cancers begin in the peripheral zone, and spread to other locations in the
prostate.

Nevertheless, Mssr. Enombo developed more than 63,000 exemplars, using
visual inspection of the texture displays to locate the lesions. Once the cancerous
regions had been manually located, a computer program was used to construct
the exemplar data using the normalized texture features that had already been
extracted for the cross section. The corresponding cancer/noncancer designation
for that point was determined based on whether the pixel in question fell within
the region that had been designated as cancerous. In Figure 6.16, we illustrate the
form of the exemplar data, and how it was constructed for the application.

6.3.4 Cancer-Detection Results

Initially, a BPN containing 13 input units, eight units on a single hidden layer,
and two output units was trained to recognize textures that indicated a high like-
lihood of cancer. In this experiment, all 13 of the texture features were used as
input, and the output layer used sigmoidal activation functions to produce bi-
nary cancer/noncancer indications. After training was completed, tests were run
to evaluate the network’s ability to generalize. Initially, the network was asked
to classify the textural features of a different cross section within the same speci-
men. Then, the network was used to classify the ultrasound images from the three
patients that the network had not been trained to recognize. Several interesting
results were determined during this phase of the experiment.

First, using different ultrasound layers from the patient on which the network
was trained, the BPN successfully recognized noncancerous regions in the test
images 98.9% of the time. The network produced false-positive indications in
only 1.08% of the tests. Similarly, the network correctly classified texture features
as cancerous in 88.7% of the trials, and produced false-negative indications in the
other 11.3% of the tests. When the tests were conducted on patients other than
the one on whom the network had been trained, the results fell somewhat. While
noncancerous regions were correctly recognized in 98% of the tests, cancerous
regions were correctly identified in only 60% of the trials.

A more interesting result was obtained after examining the state of the
trained network, however. By looking at the feature combinations that the hidden

180 Pattern Classification

Visual /3
Inspection ~ -
v v
Cancer | @ | xy
Classification

Ab’ Neural Network (BPN)

Y Y

Cancer Non-Cancer

Figure 6.16 This diagram illustrates the process of developing exemplar patterns for the
prostate-cancer detection network. The texture features are extracted for each pixel in the
peripheral range of the image, normalized, and then associated with a cancer/noncancer
designator assigned by a program that determines whether the pixel falls within a region
designated as cancerous. Source: Feature analysis and neural network classificationof
prostate ultrasound images [5]. Copyright ©1994, by Jean-Baptiste Enombo. Used with
permission.

layer of the network responded to in order to produce the correct output indica-
tions, it was found that only five of the 13 texture features actively contributed
to a successful diagnosis of cancer. Based on this result, another network was
constructed and trained, this time having only the five input elements that had
previously been identified as being instrumental in successful recognition. After
training had been completed, the tests were performed as before. This time, how-
ever, the BPN improved its classification accuracy noticeably. Using different
ultrasound layers from the training specimen, the network accurately identified
cancer 94.8% of the time, and with data taken from the other patients, the net-
work accuracy improved to 75%. These results are summarized in Table 6.1.
Overall, the neural network did an excellent job of classifying prostate can-
cer from ultrasound-image textures. The one set of images that were the most
difficult to classify (Patient D) are explainable in that the image data for that pa-
tient were extremely noisy. Statistically, if we combine the performance of each
network across all four test suites, we find that, the neural-network classifier ex-

Suggested Readings 181

Non- False- False-
Test Network Cancer Cancer Positive Negative
Patient A 13-8-2 98.92 88.71 1.08 11.29
Patient A 5-7-2 98.87 94.80 1.08 5.20
Patient B 13-8-2 99.72 58.78 0.28 41.22
Patient B 5-7-2 99.78 71.92 0.28 28.08
Patient C 13-8-2 99.20 61.33 0.80 38.67
Patient C 5-7-2 99.18 77.27 0.82 22.73
Patient D 13-8-2 99.97 8.54 0.03 91.46
Patient D 5-7-2 99.97 51.34 0.03 48.66

Table 6.1 This table presents the statistical results of the BPN cancer classifier network.
Numerical entries in the table represent the percentage score of the network in each
category. False-positives are those instances where the network classified the pixel texture
as cancerous when the pathology indicated it was not. Likewise, false-negatives are those
instances where the network classified the texture pattern as noncancerous, which again
contradicts the pathology.

hibited a 98.3% accuracy rate in classifying pixel data. However, it must be stated
that these results are very preliminary, and that much work remains before neural
networks can be used to classify ultrasound images without additional interpreta-
tion by the physician.

6.4 PATTERN-CLASSIFICATION SUMMARY

In this chapter, we have examined applications of neural networks where the
network was used to classify an input pattern into one of several categories.
In one application, the categories were defined dynamically, while in others,
the categories were determined before the network was constructed. We have
examined a fairly diverse set of applications in this chapter, in order to convey to
the reader the idea that the power of the technology is not solely in the processing
of information, but rather in the representation of that information. As we have
seen, pattern-classification networks are fundamentally identical to associative-
memory (or other mapping) networks. We can surmise, then, that the pattern-
matching ability of the neural network can be a powerful tool when used to
extract meaningful relationships between (apparently) unrelated data elements, to
assist in the classification of those patterns.

SUGGESTED READINGS

There are many excellent texts describing the theoretical foundations of the basic
technologies addressed in this chapter. Readers interested in learning more about

182 Pattern Classification

radar from a rigorous mathematical perspective are referred to M. Skolnik’s clas-
sic work Introduction to Radar Systems [12]. For readers interested in a more
applications-oriented discussion of radar and its related technologies, Raymond
Berkowitz’s Modern Radar: Analysis, Evaluation, and System Design [2] pro-
vides a good, broad-based discussion of radar theory and practical applications of
the technology.

With regard to medical and diagnostic applications, there has been a plethora
of excellent papers published describing how neural networks have been success-
fully applied to recognizing and identifying medical problems. Many of these pa-
pers have been published in the proceedings of the Neural Information Processing
Systems (NIPS) conferences, held annually and sponsored by the International
Neural Network Society.

Finally, NASA sponsors more than a dozen excellent conferences on ad-
vanced automation technologies, with an emphasis on space-related applications,
and publishes proceedings from most of these meetings. Johnson Space Center
(JSC) and the Jet Propulsion Laboratory (JPL) are the two NASA facilities most
actively involved in advanced automation research. Specifically, the proceedings
of the Space Operations Automation Research (SOAR) conference, held annually
and sponsored by JSC provide a good overview of the research being conducted
in neural network applications with respect to aerospace and control systems.

BIBLIOGRAPHY

1. R. J. Babaian, H. Miyashita, R. B. Evans, A. C. von Eshenbach, and E. I. Ramirez.
Early detection program for prostate cancer: Results and identification of high-risk patient
population. Urology, 37(3):193-197, 1991.

2. Raymond S. Berkowitz, editor. Modern Radar- Analysis, Evaluation, and System De-
sign. John Wiley & Sons, New York, 1965.

3. C. C. Boring, T. S. Squires, and T. Tong. Cancer statistics. CA—A Cancer Journal for
Clinicians, 41(1), 19, 1991.

4. W. F. Dahnert, U. M. Hamper, and J. C. Eggleston. Prostatic evaluation by transrectal
sonography and prostate specific antigen in the search for prostate cancer. Journal of
Urology, 139:758-761, 1986.

5. Jean-Baptiste Enombo. Feature Analysis and Neural Network Classification of Prostate
Ultrasound Images, Master’s Thesis, The University of Houston—Clear Lake, Houston,
TX, 1994.

6. R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3(6), pp. 269-285,
1973.

7. A. Glen Houston, S. B. Premkumar, David E. Pitts, and R. J. Babaian. Staﬁstical in-
terpretation of texture for medical applications, Biomedical Image Processing and Three-
Dimensional Microscopy, 1660, pp. 576582, 1992.

8. R. P. Huben. The USA experience: Diagnosis and follow-up of prostate malignancy by
transrectal ultrasound. Progress in Clinical and Biological Research, 237:153-159, 1987.

Bibliography 183

9. F. Lee. Transrectal ultrasound in the diagnosis, staging, guided needle biopsy, and
screening for prostate cancer. Progress in Clinical and Biological Research, 237:73-109,
1987.

10. F. Lee, P. J. Littrup, and S. T. Torp-Pederson. Prostate cancer: Comparison of tran-
srectal ultrasound and digital rectal examination for screening. Radiology, 178:389-394,
1988.

11. Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pro-
nounce English text. Complex Systems, 1:145-168, 1987.

12. M. L. Skolnik. Introduction to Radar Systems, McGraw-Hill, New York, 1962.

C H A P T E R

Image Processing

Where is the screen upon which the eyes display the scenes of life?

— Source unknown

Image processing, as we shall use the term in this chapter, is any process that
extracts meaningful information from image data. Using this definition, we could
say that we have seen several examples of neural networks performing image-
processing application in previous chapters. For instance, consider the prostate-
cancer classification system, discussed in Chapter 6. The input to the classifier
was, in a sense, raw image data, and the output produced by the classifier was
information extracted from the image-texture analysis.

In this chapter, however, we shall concern ourselves with applications that
extract information in order to determine the scene content of an image, using
the entire picture matrix as input. To put this idea in perspective, consider how
a human perceives television. The screen image is really nothing more than a
collection of dots, each a different color, intensity, and brightness. Individually,
those dots are meaningless. Collectively, however, the arrangement of dots on
the screen provides enough information for the human viewer to recognize the
physical objects contained in the image data. The only problem is that we do
not completely understand how the brain is able to convert the image from a set
of discrete picture elements to an internal representation of an object that makes
sense in the context of the real world.

We do know, however, that people see images on a television screen because
when the visual imagery data is processed by the brain, the visual cortex! is
somehow able to extract information about the scene content, and then relate
the information to other, familiar objects that we have already internalized. This
process is commonly referred to as recognition, and has historically been one of
the most complicated aspects of image processing.

1. The visual cortex is the region in the brain where sight is implemented.

185

186 Image Processing

In this chapter, we shall explore the application of neural networks in
image-recognition tasks. We shall conduct this investigation in a manner that
is slightly different from the survey approach we have taken in previous chapters.
Specifically, we shall begin our discussion with an overview of a very special
neural-network paradigm that has been developed specifically to perform image-
recognition processes. We do so to illustrate how special-purpose networks can
be constructed to address niche-application areas. After completing this over-
view, we shall begin our discussion of image-processing applications of neural
networks.

7.1 IMAGE-PROCESSING NETWORKS

In this section, we shall briefly describe the operation of the neocognitron [6],
the model of selective attention, and the internal-representation [11] network
paradigms. We have deferred our discussion of these networks until now, be-
cause, unlike the more general network models described in Chapter 2, these
networks do not learn to perform an application through repeated exposure to
training exemplars. Rather, the networks are constructed specifically for an ap-
plication. Moreover, connection weights are determined through a special form
of unsupervised learning, and then shared by many processing elements.

7.1.1 The Neocognitron

As it was originally defined by Kunihiko Fukuschima in “A Neural Network for
Visual Pattern Recognition,” [5] the neocognitron was designed to perform a sin-
gle function: position independent, optical character recognition. The power of
the network comes from its architecture, which, as we indicated earlier, is con-
structed specifically for the application. This is not to say that the network is only
useful in this one application—actually, it could have many. However, modifying
the neocognitron to perform other applications usually involves modifying the
interconnections between processing elements, not in the sense that connection
weights are modified to learn new information, but in the physical sense, where
connections between units are implemented selectively. As we shall show in later
sections, however, there are exceptions to this rule. In fact, since its development
in 1983, the neocognitron has been improved in many ways to perform a variety
of image-processing functions, and, hence, is worthy of our study.

As shown in Figure 7.1, the neocognitron is a hierarchical structure of pro-
cessing layers, with internal layers organized as pairs of sublayers. Each sublayer
is composed of a series of two-dimensional (2D) processing planes, with each
plane containing an array of network processing elements. The behavior of each
processing element is defined in essentially the same manner as the processing el-
ements that we discussed in Chapter 1. However, we shall not concern ourselves
with the low-level operation of the units in this network, as we are primarily in-
terested in the conceptual processing that occurs at the level of the plane.

7.1 Image-Processing Networks 187

c
@
c
Q
c
[92)
\N
c
Q
n
c
[
\:
<
Q]
3

Y,
\!
il
x
]
0

(AT

\\
-
o

g

Figure 7.1 This diagram illustrates the architecture of the neocognitron as described by
its inventors. The input layer, designated here as Uy, is arranged in a 2D matrix and serves
to hold the image data for the rest of the network. Each internal layer is organized as a
collection of planes, or 2D matrices, that successively integrate abstract information from
the input layers that feed it. The output consists of a single layer of processing elements
that, in the character-recognition application, classify the input image as one of ten digits.

Fukushima and his colleagues developed this structure, in part to mimic the
observed behavior of the human visual cortex, but also to illustrate the ability of
a neural network to extract meaningful information from images. Although not
biologically accurate, the structure of the neocognitron lends itself to extracting
information contained in images through a process of successive integration of
features.

For the character-recognition application, the neocognitron is organized into
nine layers, alternating simple cell, or S-cell, layers with complex cell, or C-
cell layers. The S-cell layers are defined such that each S-cell is essentially a
feature detector, responding only to the presence of a specific feature” in the
input. Different S-cells in the same layer are sensitive to the same feature, at
different locations in the input space, with locations being determined by the
interconnection between the input and S-cell layer.

It is important to recognize that the neocognitron is not a fully connected net-
work, in the same sense that the BPN is fully connected between layers. Rather,
connections in the neocognitron are established selectively to define the receptive
field, or the region in the input to which the S-cell is responsive, for the plane.
This selective connectivity is the mechanism that enables the neocognitron to re-
spond to its predefined features, regardless of position.

Associated with each S-cell layer is a corresponding C-cell layer, although
the number of planes in the C-cell layer does not have to match the number of
planes on the corresponding S-cell layer. The C-cell planes integrate the response

2. For the character-recognition task. input features were defined as line segments at different orien-
tations on the retina.

188 Image Processing

Figure 7.2 This diagram illustrates the process of character recognition within the
neocognitron network. For clarity, we have omitted many of the planes on each layer,
and collapsed the network somewhat. The operation of the network is described in the
text. Source: Neocognitron: A neural network model for a mechanismof visual pattern
recognition [6]. Used with permission. Copyright ©1983 IEEE.

of the S-cell layers that feed them, responding if at least one of the S-cell input
planes has activated.

From an information-processing perspective, this structure allows the neo-
cognitron to recognize and respond to shapes in the input image that represent
abstract concepts at successively higher levels. Interestingly, this process of suc-
cessive abstraction led one researcher to compare the operation of the neocogni-
tron with biological models that advocate the existence of grandmother cells® in
the brain.

In Figure 7.2, we illustrate the ideas underlying the operation of the neocog-
nitron. Essentially, the input layer serves as a 2D retina, holding the image data
for propagation through the network. Each subsequent S-cell-C-cell layer com-
bination acts to detect and integrate the feature combinations from the receptive
field on the previous layer, until finally the network responds by classifying the
image as a specific character. At that point, we can say that the neocognitron has
recognized the input-character image.

We shall forego a detailed discussion of the internal operation of the neocog-
nitron, because, as we mentioned earlier, the implementation of the network is
specific to the character-recognition application. For our purposes, it is sufficient

3. The term grandmother cell is an allusion to a single neuron that will only activate when you see a
picture of your grandmother.

7.1 Image-Processing Networks 189

to convey an appreciation of how the network operates, not the specifics of its
implementation.

7.1.2 The Selective-Attention Model

The model of selective attention [4] is actually a network that is composed of
two identical neocognitrons, arranged so that the output of the first network feeds
the input of the second. Do not be misled, however. We have not reversed the
position of the second network. Rather, we allow information to propagate from
the higher layers down to the layer that was considered to be the input in the
original network. Bear in mind that we do not alter the connectivity of the original
network at all. The only modification we must make to the second neocognitron
is in the implementation of the processing that occurs in the processing element—
we must invert the behavior of the unit so that the information being sent down
from the higher layers is decomposed into its component parts before being sent
to the subsequent layer. Thus, when information is propagated from the top of
the network, the C-cell layers specify the abstract concept from the higher layers,
while the S-cells locate the position of the specific object in the subsequent layer.

This behavior is illustrated in Figure 7.3. As you can see, the bottom-up
neocognitron extracts the scene content from the input image data to produce
a “recognized” representation of the object in the image, while the fop-down
network acts to reconstruct the memory of the prototype, or ideal, image of the
object. This scheme of producing a “memorized” version of the object is mindful
of the operation of the ART networks, although the ART models use the recalled
pattern to reinforce the memory.

One significant advantage of the selective-attention model is that it locates
the position of the recognized object in the input image. This behavior can be
conceptualized as focused attention, because the top-down network produces an
output that appears to focus on the image of the recognized object in the scene. It
is this characteristic of the network that inspired Fukushima to name the network
as he did.

7.1.3 Internal-Representation Networks

In a paper published in 1989, Takashi Omori and Taku Nagase [11] described a
novel enhancement to the model of selective attention that allows the network to
recognize multiple objects in a single image. Their approach is based on an itera-
tive process, where each recognition cycle extracts a single object from the input
image and masks it out of the input. The resulting image is then repropagated
through the networks, which extract the next image, and so on.

The network model described by Omori and Nagase is illustrated in Fig-
ure 7.4. To illustrate the operation of this network, consider an application where
the selective-attention network had been constructed to recognize four geometric
shapes in the input image: a square, a triangle, an inverted triangle, and a dia-
mond. Initially, the network is in a quiescent state, and the mask layer is empty. If

190

Image Processing

Pattern

Inpu /'0

7) [

~

\o Soooo \

- Recognized
Output
N,
= /
Recollection
Recollection input

Output/

\o ocoddoo\

% A“Mﬁ@

V

Figure 7.3 This diagram illustrates the architecture of the model of selective attention.
As described in the text, the two networks operate concurrently, the bottom-up network
acting to recognize objects in the input image, and the top-down network serving to recall
an idealized image of the recognized object, and to locate the position of the recognized
object in the original image. Source: Adapted from Image understanding by neural
networks [11]. Used with permission. Copyright ©1989 IEEE.

we then apply an input image to the network that contains some combination of
the recognizable images, Omori and Nagase assert that:

1.

The network will extract the image of one of the objects by first propagating.
the input to the output of the bottom-up network. The result is a pattern that
classifies one of the objects.

The classified pattern is then propagated through the top-down network,
which reconstructs the image of the recognized object, and locates it in the
image.

The reconstructed image of the recognized object is then applied to the mask
layer, which holds the restored image.

The mask layer is connected to the first layer of S-cells in the bottom-up
network through inhibiting connections that mirror the connections to the
neocognitron retina. Thus, activation of the mask units eliminates the image
of the recognized object from the image applied to the selective-attention
network.

7.1 Image-Processing Networks 191

r

Pattern
Input

|

~

Ny
\o_ ocooboo\

Recognized
Output
Mask
Planes - | —
Recollection
input

/

| —
L
A

Figure 7.4 This diagram illustrates the structure of the internal representation of images
(IRI) network. The operation of the network is described in the text. Source: Adapted from
Image understanding by neural networks [11]. Used with permission. Copyright ©1989
IEEE.

Ny
\o ocodtoo\

\

5. The entire process then repeats, this time eliminating one of the remaining,
unrecognized objects from the image.

6. The process continues until all of the objects have been recognized. This
condition is indicated when the state of the mask layer duplicates the state of
the input image. In this situation, the input applied to the selective-attention
network is a null image.

In Figure 7.5 we illustrate a slightly more practical application of the in-
ternal representation of images (IRI) network. In this example, the network has
been constructed to recognize the common symbols used to represent electronic
components in a circuit diagram. Omori and Nagase assert that the IRI can
successfully identify each of the symbols in the image, and that the recogni-
tion of these symbols is the first step toward machine interpretation of similar
diagrams.

This concludes our (rather brief) discussion of the neocognitron and its
derivative networks. Readers interested in a more thorough discussion of the the-
ory of these paradigms are referred to the publications previously cited, or any of
the texts described in the Suggested Readings section of this chapter.

192 Image Processing

Mask Layers

Figure 7.5 This diagram illustrates how the IRI network could be used to “read” an
electronic schematic diagram. As each symbol is recognized, an external process could
establish the function represented by the symbol, and determine the behavior of the
resulting circuit. Source: Reprinted with permission from Image understanding by neuron
network. /n Proceedings of the International Joint Conference on Neural Networks, June
1989. Copyright ©1989 IEEE.

7.2 GENDER RECOGNITION FROM FACIAL IMAGES

The BPN is not commonly used for image-processing applications, because that
network tends to be overly sensitive to the position of the object in the image.
To illustrate this point, consider the operation of a BPN similar to the character-
recognition network described in Chapter 4. To successfully use a BPN in this
application, we must ensure that the character image is properly framed in the
input pattern vector prior to presentation to the network. If the image is off by
a single pixel in any direction, the pattern vector applied to the network will be
significantly different from the pattern vector that the network learned to recog-
nize, resulting in a likely misclassification of the character. This is illustrated in
Figure 7.6.

In a paper published in 1991, B. A. Golomb, et al. [7] described a novel
approach using multiple BPNs to determine a person’s gender based only on the
image of the face of that person. While it does not solve the pattern-framing issue
described above, it does illustrate how multiple BPNs can be used to perform
feature extraction from image data, a precursor to position-independent pattern
recognition. For that reason, we shall now investigate the implementation of that
system.

7.2 Gender Recognition from Facial Images 193

(@) BE

000000 001100 010010 010010 011110 010010 010010 000000

(b)

000000 011000 100100 100100 111100 100100 10010 0 000000

Figure 7.6 This figure shows why a BPN can be “confused” by an improperly framed
character image. In both examples, the character image is contained inside a larger
window. Notice the differences between the two patterns, and consider how a BPN trained
to recognize the first pattern might fail to recognize the second image. (a) This diagram
shows the form of the pattern vector for a properly framed A. (b) This diagram illustrates
an improperly framed A, offset from its “proper” position by a single horizontal pixel.

7.2.1 Multiple-Network Architecture

The scheme employed by Golomb et al. uses a standard three-layer BPN trained
to reproduce an output pattern identical to the input pattern as the means for
extracting the visual features from the facial image. The twist is that the hidden
layer contains significantly fewer processing elements than either the input or
output layers, and it is the activation pattern produced by the hidden layer that
represents the extracted feature vector for the input image. Once extracted from
the first BPN, the feature vector is then used as the input to another BPN that
learns to classify gender from the extracted features.

As shown in Figure 7.7, the first BPN compresses the image from 900 pixels
(representing the 30 x 30 pixel matrix) to 40 features. The compressed form of
the image is then used as input to another BPN, which classifies the gender of the
subject represented by the feature vector. Using the combination of BPNs in this
manner has two benefits in this application: First, the compression network serves
to reduce the dimension of the pattern to be classified from 900 to 40 (a reduction
of approximately 96%), thus simplifying the classification process; and, second,

194 Image Processing

Figure 7.7 This diagram shows the architecture of the multiple network system
developed to determine gender from facial images. The operation of the system is
described in the text. Source: SEXNET: A neural network identifies sex from human
faces [7]. Copyright ©1991, Morgan Kaufmann Publishers. Used with permission.

by training the compression network to reproduce the input at the output, we have
forced it to extract the features from the input that lead to successful restora-
tion of the image. In effect, the hidden layer in the image-compression BPN is
performing a principle component analysis [1] on the image data, encoding the
eigenvectors for the image patterns.

7.2.2 Facial-lmage Representation

To collect training information for the networks, photographs were taken of 45
male and 45 female subjects. In an attempt to remove visual cues or distrac-
tions from the images, the subjects were photographed with no apparent jewelry,
makeup, facial hair, or other visual indications of gender. Each subject was also
draped with cloth from the neck down, to ensure that the image data focused on
the facial features of each subject. Each subject was photographed from a full-
face perspective, although there was no attempt to ensure consistent head position
in all the photographs.

Once the training photographs had been obtained, the images were digitized
into 256 gray-shade images. Each image was then preprocessed, using conven-

7.2 Gender Recognition from Facial Images 195

tional image-processing techniques, to scale and translate each image to a uni-
form size, specifically 12 horizontal pixels between the center of the eyes, and
eight vertical pixels from the eyes to the mouth. If necessary, the image was then
rotated to move the head to the vertical. Finally, each image was adjusted us-
ing a pixel block-averaging technique to guarantee the same average brightness,
and cropped to a 30 x 30 pixel image to minimize any reference to hair or back-
ground.

After preprocessing, the resulting images were converted into a pattern vec-
tor form for use by the BPN by first concatenating each row of the pixel matrix
to form a 900-element vector. Next, each pixel in the vector was scaled into a
numerical value in the range from zero to one, using a simple linear technique
expressed by

/ Xi

X; = ﬁ (7.1)

where x; represents the integer gray value assigned to the pixel, and the denomi-
nator reflects the fact that the pixels can take on any one of 256 gray-shade values,
ranging between zero and 255, inclusive.

Finally, the researchers assigned a gender status to each image by correlating
the image to the subject. Thus, for the SexNer* application, the training exemplars
consisted of 90 image-gender patterns. Had this been a standard BPN applica-
tion, the network would have been trained using the conventional BPN training
algorithm on the exemplar set. As we indicated earlier, however, the SexNet re-
searchers went a step further in their application by using a BPN to extract the
important features of the image prior to classification. We shall now investigate
the implementation of that system.

7.2.3 SexNet Training

The first step in creating the SexNet application was to train the image-
compression network. This network was constructed as a standard, three-layer
BPN, with 900 inputs, 40 units on the hidden layer, and 900 outputs. The hidden
units used the sigmoidal activation function, arguably to improve the network’s
ability to compress the image data, while the output units were linear. Next, the
exemplar data constructed to train the SexNet application was separated into
input and output patterns. The input image patterns were then duplicated, and
organized into a set of 90 image-image exemplars. It was these data that were
then used to train the data-compression BPN.

Exercise 7.1: Describe why the linear activation function was the appropriate
choice for the output units in the compression network in the SexNet applica-
tion. m

4. SexNet was the name used in the original paper to describe this application.

196 Image Processing

The image-compression network was trained for 2,000 epochs, during which
time the network learned to generate an “adequate” reconstruction of the input
image. According to the original authors, “adequate” image reconstruction was a
subjective measure indicating that the 90 images produced by the network were
“distinct and discriminable, although not identical” to the original images. Un-
fortunately, no indication of the global error produced by the trained network is
provided in the original paper, so we must assume that the training was sufficient
to maximize the image reconstruction from the extracted features.

Once the image-compression network had completed training, the connec-
tion weights in that network were frozen, and the 90 images were then propa-
gated through the network, one at a time. After each pattern had been propagated
through the network, the activation of each of the units on the hidden layer was
recorded as a 40-element vector, producing 90, 40-element feature vectors. These
feature vectors were then paired with the gender classification for the image that
they represented, and these feature-gender pairings became the training set for the
gender-classification network.

The gender-classification network contained 40 input units, one sigmoidal
output unit, and different numbers of units on the hidden layer in different train-
ing trials. The output of the network was interpreted as an indication of “male”
if the single output unit had an output value greater than 0.5, and “female” other-
wise.

The reason for using different numbers of hidden-layer units was to deter-
mine the effect of the hidden-layer units on the successful classification of the
input-feature vector. Five different versions of the gender-classification network
were constructed and tested, using 2, 5, 10, 20, and 40 hidden-layer units as the
number of units in each trial. In each trial, training occurred normally, using 80
randomly selected feature-gender pairs of the 90 available as the training set. The
remaining 10 were held out until after training was completed, to determine how
well the gender-classification network had generalized its solution.

7.2.4 Gender-Recognition Results

The performance of the SexNet was evaluated, after training had been completed,
by asking the system to classify the gender of all 90 faces. Because, for any given
trial, the system had only learned 80 of the 90 possible faces, accurate results
were expected for 72% of the images (the training images) while the remaining
28% provided an indication of how successful the system had been at extracting
appropriate features from the image and classifying the feature patterns.

The results were then compared to the ability of five humans, who were
unfamiliar with the subjects, to correctly identify the gender of the people in
the images. In addition, each human was asked to provide a binary indication of
certainty for each of their gender classifications.

In their paper, Golomb et al. report that the SexNet with 10 units in the
gender-classification network correctly classified 77, 90, 72, 90, 81, 90, and 90
of the images in seven trials, each trial using a different subset of the 90 images

7.3 Imagery Feature Discovery 197

for training, for an overall accuracy of 93.7%. In comparison, the five human
subjects classified 82, 80, 78, 82, and 76 of the 90 images correctly, for an average
accuracy of 88.4%.

Interestingly, there were other correlations between the behavior of the
SexNet and the human subjects. In particular, one of the male images gave the
SexNet numerous problems, being misclassified as “female” when used as a test
image, and slowing the training of the gender-classification network when used
as a training pattern. The same image was misclassified as “Female,” “Sure” by
all five human subjects. In another instance, the SexNet repeatedly misclassified
one of the male images as female any time that image was not included in the
training set. Further analysis of the problem revealed that the error was not with
the operation of the SexNet—the image that was being misclassified was, in fact,
clearly a female that had been erroneously labeled a male in the exemplar set.

While these results suggest that, although not necessarily a biological model
for image processing, the BPN can correctly extract the attributes of an image that
lead to the correct classification of the object in the image. More significantly,
however, is the notion that the BPN can be used to determine the correct set
of attributes needed to encode the image with no a priori knowledge of the
characteristics of the image. As evidenced by the SexNet application, the process
of training a BPN can provide an automatic means of determining, and extracting,
the information contained in raw data.

7.3 IMAGERY FEATURE DISCOVERY

In the previous sections of this chapter, we have shown how the neocognitron and
its derivative networks have been used to identify, and locate, objects contained in
image data, and how multiple networks have been combined to solve a complex
problem in image processing. In this section, we shall investigate how a team
of researchers at Sandia National Laboratory combined both aspects of these
applications to identify the images of military targets in synthetic aperture radar
(SAR) imagery [2]. Specifically, the developers used a neocognitron network to
extract the information content from the SAR image data, and then allowed an
ART?2 network to classify the resulting feature pattern.

7.3.1 SAR Image Representation

Synthetic aperture radar is, quite simply, a process of mapping terrain, and any
manmade objects on the terrain, by applying knowledge about the reflectivity of
materials to an EMR signal return.’ Conceptually, SAR operates by assigning an
intensity value to each resolvable point in the electronic signal produced by an
EMR pulse bouncing off of terrestrial objects and returning to the SAR receiver.

5. Readers who have skipped chapters in this book may find it helpful to review the section on pulse
Doppler radar signature classification, in Chapter 6, before progressing further in this section.

198 Image Processing

Figure 7.8 This diagram depicts the SAR imagery of a tank. Notice how, even though
the image is obviously not representative of the appearance of the tanks in the human
visual spectrum, we are still able to discern the object in the SAR image. Source: Adapted
Jfrom Feature discovery via neural networks for object recognition in SAR imagery [2].
Used with permission. Copyright ©1992 IEEE.

The resulting image is therefore a representation of the electronic return after it
has been mapped into the visual spectrum. In Figure 7.8, we illustrate a typical
SAR return after it has been processed.

The primary benefit of using SAR instead of relying strictly on visual im-
agery is that manmade objects tend to reflect EMR signals more readily than
visible radiation, thus making those objects more difficult to disguise. A corollary
effect is that SAR imagery tends to reduce the disruptive effect of background
clutter in a scene. The problem, however, is that the human visual system has
evolved over the millennia so as to optimize the performance of that system in the
visible light frequencies. When we artificially map nonvisible EMR frequencies
into the visible spectrum, our biologically tuned system can become confused,
and we can easily overlook, or misclassify, objects in the SAR images.

However, we have already seen many examples of neural networks that have
been constructed to process information outside of the sensory range of humans.
We shall now investigate how the Sandia research team developed a neural archi-
tecture to identify objects in SAR imagery.

7.3.2 SAR Network Architectures

The scheme employed by Fogler and colleagues was to use a partially imple-
mented neocognitron to extract the important features from the SAR imagery, and
then allow a modified ART2 network to classify the resultant feature vector as a

7.3 Imagery Feature Discovery 199

2:1 S/C 2:1 S/C

\

32 Planes 32 Planes 2048 35
20 x 20 8x8 F 1 Units F2 Units

Figure 7.9 This figure illustrates the network combination used to process the SAR
imagery. The neocognitron has the effect of extracting the feature vector represented in
the SAR image data, while the ART2 network classifies the feature combination. In this
application, only one class of patterns was interesting, even though there may have been
many feature patterns that represented the interesting category. The technique used to
determine the classification of the pattern by the ART2 network is described in the text.

recognized target or a noninteresting object. As shown in Figure 7.9, the neocog-
nitron processes the SAR imagery as presented on the retina. The connections
between the retina and the first layer of S-cells consist of connections that are
adapted using the unsupervised learning technique described by Fukushima [5],
then shared by units on the other planes within the layer.

As described in Section 7.1, each successive layer in the neocognitron allows
the network to more narrowly classify the object in the input image. Rather than
extend the architecture of the neocognitron developed for this application to the
point that the network could perform the classification of the SAR imagery, the
investigators instead chose to use the neocognitron to extract the general feature
combinations of the input, then allow a modified ART2 network to complete the
classification process.

The advantage to this approach lies in the extensibility of the ART2 network
structure. To put this notion in perspective, recall that most of the classification
networks we have examined up to this point require the user to prespecify the total
number of categories into which the input pattern can be classified. While useful
in many applications, this fixed-class method of classification is not very practical
when we are considering a system that must account for an unknown number
of categories. Because we are interested in classifying military tanks in SAR
imagery, this is analogous to building a system that can only recognize a certain

200 Image Processing

Figure 7.10 This diagram illustrates how hyperspheres can be implemented in an ART
network in order to solve the one-class problem. Each hypersphere is located in n-space
by an eigenvector of the pattern class, and is sized by the radius of the hypersphere. In the
ART network, the eigenvector can be considered to be the memory pattern stored in the
top-down connections from the F, layer. The radius of the hypersphere is then determined
by the value of the vigilance parameter, which describes the maximum distance any
pattern vector can be from the characteristic vector, and still be associated with the
memory pattern.

number of tanks. What happens, then, if the opposition creates a new class of tank
that appears significantly different than any other class of tank previously known?
In a fixed-class system, the system (probably) fails by either misclassifying the
type of the tank, or by classifying it as a noninteresting target.

The twist in this application, however, is that, even though the number and
type of objects that have to be classified may change over time, we are still
only interested in a one-class determination: Is the object in the SAR image a
potential target, or is it not? One method for creating a system that can perform
one-class classification is to use a hyperspherical-distance classifier to separate
the classes. A hyperspherical-distance classifier is one that surrounds the member
elements of the target class with hyperspheres in the n-dimensional pattern space.
As illustrated in Figure 7.10, a member of the target class is any point that is
contained by the hyperspheres defined in the space. In theory, the ART network
provides this type of pattern classification as an inherent part of its structure. To
see how this happens, let us now consider the operation of the ART network in a
little more detail.

7.3 Imagery Feature Discovery 201

In the ART2 network, the F| layer acts as a pattern preprocessor that si-
multaneously performs noise elimination and contrast enhancement on the input
pattern. It also has the effect of normalizing the input pattern vector to allow the
competitive F; layer to compare the input pattern vector with the vectors stored in
the bottom-up connection weights in an inner-product sense. Thus, the first phase
of pattern propagation in the ART2 removes noise from the input, and finds the
best match of previously learned patterns to activate the memory.

Similarly, the F, layer serves to encode the memory of all of the input pat-
terns previously encountered. Another way to conceptualize this process is to
think of the stored memories in the top-down connection weights in the ART2
network as the set of target classes that the network can identify. If all of the target
classes stored in the network were, in fact, members of the one class the network
is being asked to classify, then membership in the one class is indicated by the
network’s acceptance of the current input. If the ART?2 recognizes the current in-
put pattern, it is considered to be a member of the target class.

7.3.3 SAR Exemplars

For the tank-recognition application, simulated SAR imagery data was developed
using a software package that allowed the Sandia researchers to model several
different tanks in a variety of backgrounds. For training purposes, one tank model
was used, with SAR imagery for each model being produced at 5-degree az-
imuthal rotations. This process produced 72 SAR images of the tank, of which 36
became the training set, and 36 were held out to test the tolerance of the system
to the image aspect.

Additionally, two other sets of image data were collected durmg this phase.
The first set, which represented a near-rarget class, consisted of 50 SAR images
of another tank class, which might be representative of nonhostile tank, at various
azimuthal rotations. The second set was comprised of 600 randomly selected
clutter images, taken from actual SAR returns.

Unfortunately, the original authors do not elaborate on the resolution of the
SAR image produced, nor do they mention the gray-scale scheme used to repre-
sent the image data. They do, however, mention that the retina in the neocognitron
was a 2D array organized as 48 x 48 processing elements. We can surmise, then,
that the SAR data mapped directly to this representation. Moreover, it does not
really matter how many gray-scale gradations were used to represent the SAR
imagery. We can apply Eq. (7.1) to scale any gray-scale representation by merely
substituting the maximum number of gradations in the imagery for the denomi-
nator. Thus, we now have a method for converting the SAR imagery data into a
form usable by the neural networks.

7.3.4 Training the SAR Networks

Training the networks to perform the SAR image target classification occurs in
two distinct steps. First, the neocognitron was repeatedly presented with all of

202 Image Processing

the SAR exemplars collected from the target class. During this time, the neocog-
nitron was allowed to self-adapt, but learning in the ART2 was disabled. Exem-
plars for the ART2 network were collected after training of the neocognitron was
completed. This delay was necessary, to allow the neocognitron to discover its
own method for representing the image features. Once the neocognitron had ade-
quately encoded the SAR image features,® learning was disabled, and the ART2
was allowed to learn the feature vectors produced by the neocognitron. These
feature vectors were produced by additional presentation of the SAR training
patterns to the neocognitron with learning disabled. The activity patterns on the
top layer were then presented directly to the ART2 for encoding, and the entire
process was repeated until the ART2 had learned to recognize all of the features
present in the training patterns.

After the ART2 had learned to classify all of the feature vectors produced by
the neocognitron, learning was turned off, and the system was tested to determine
if it could accurately distinguish targets from near-targets in noisy SAR images.
When operated in this mode, the neocognitron was presented with an arbitrary
SAR image, either from the set of 36 target images that had been withheld from
training, or from one of the other two image classes (near-target and clutter).
After it completed the process of extracting the feature components from the
input image, the resulting feature vector was given to the ART?2 for classification.
If the ART?2 found a matching pattern in its memory, the image was classified as
a target. Conversely, if the ART2 fails to recall the feature vector, a condition
indicated when the winning F» unit produces a memory that is less than the
vigilance parameter, the image is classified as a nontarget.

7.3.5 SAR Target-ldentification Results

The Sandia researchers found that the system they developed to classify SAR
imagery was, overall, very successful. In Figure 7.11, we present the results
of these experiments as they were reported in the original paper. Of particular
interest is the relationship between the value of the vigilance parameter used
in the ART2 network and the ability of the system to operate correctly. If the
vigilance parameter were set below 0.88, the system misclassifies some of the
near-target test set as targets. Conversely, when the vigilance parameter goes
above 0.94, the system begins to misclassify true targets, as it loses the ability
to generalize to the target aspect. The ideal value for the vigilance parameter was
found to be 0.91. At that value, the system correctly classified 34 of 36 targets and
misclassified 2 of 50 near-targets. In all cases, the system appears to do extremely
well when presented only with clutter.

6. The criteria for making this determination are described in [5].

7.4 Aircraft Tracking in Video Imagery 203

Clutter

100% 40 r

50% <

1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
0.86 0.88 0.90 0.92 0.94 0.86 0.88 0.90 0.92 0.94

(a) Vigilance (b) Vigilance

Figure 7.11 These graphs illustrate the results of the SAR image classification system.
(a) This graph depicts the relationship between the vigilance parameter in the ART2
network and the accuracy of the system. (b) This graph shows the relationship between the
number of F; layer units needed to completely classify the target class and the vigilance
parameter in the network. Source: Adapted from Feature discovery via neural networks for
object recognition in SAR imagery [2]. Used with permission. Copyright ©1992 IEEE.

7.4 AIRCRAFT TRACKING IN VIDEO IMAGERY

The final application we shall describe in this chapter is a relatively simple image-
processing application where the neural network is used to extract the image of
an aircraft from a 2D video image and locate the center of the aircraft in the im-
age. This application is interesting for several reasons: It shows how a standard
BPN architecture can be constructed to use time-dependent information to im-
prove the network’s tolerance to noise and background distractions; it shows how
neural networks can be quickly developed to solve problems that were previously
intractable or cost prohibitive; and it shows how neural networks can be success-
fully integrated (or retrofit) with other information-processing technologies.

7.4.1 Tracking-System Requirements

The U.S. Air Force (USAF) does routine ordnance testing to evaluate the perfor-
mance of its aircraft and munitions. Most of the tests are performed over specially
designated test areas on government-owned land. The test sites are typically ar-
ranged so that the target area is surrounded by cinetheolodites, which is nothing
more than a special-purpose video-tracking station. Each station is situated such
that an operator positioned inside the station can videotape the flight of the in-
coming test aircraft, and record the deployment of the ordnance under test.

204 Image Processing

X1)y1

X2,Y2

Figure 7.12 This diagram shows how the position of an aircraft can be determined by
triangulation. For clarity, we are only concerned here with terrestrial positioning. Each
video station has a fixed position, indicated by the latitude and longitude coordinates next
to each station. Further, the azimuthal rotation of the siting device (the video camera) is
known with respect to a horizontal reference angle. The position of the aircraft can then
be precisely determined by a simple trigonometric calculation to find the intersection of
the two siting lines.

Each video station has a fixed reference in its latitude, longitude, and altitude.
Furthermore, the videotape recorded at each station is electronically tagged with
the azimuthal orientation of the camera as the videotape is recorded, to reference
the physical position of the recording camera. However, the cameras are manually
aimed and controlled, meaning that, quite often, the image of the test aircraft
tends to move around in the recording. Because these recordings are used to
evaluate the performance of the deployed ordnance, it is imperative that the exact
position of the aircraft be known at the point of release, so that the flight of the
ordnance can be accurately measured.

The basic approach to locating the position of the aircraft is to use
triangulation—that is, to correlate the position and directional information as-
sociated with the recorded images from two (or more) video stations. In two
dimensions, this can be done by finding the intersection of the two lines formed
by the position of the recording stations and the azimuthal rotation of each camera
at the time the video was recorded. This process is illustrated in Figure 7.12.

Unfortunately, the process is complicated somewhat, because, as we men-
tioned earlier, the video cameras are manually aimed at the incoming aircraft.
As anyone who has used a hand-held video camera with a telephoto lens will
know,” even slight movements in the camera will cause the image of the target
to jitter. This jittering effect is actually the local manifestation of the positioning

7. This discussion precludes the use of automatic picture-stabilization controls.

7.4 Aircraft Tracking in Video Imagery 205

Videotape Player

Frame
Grabber

Digitized Video

Superimpose
Target on
Video Image

Figure 7.13 This block diagram illustrates the architecture of the system developed to
track aircraft images in an input video stream. In this application, the BPN was simulated
on the multiprocessor neural emulation tool (NET) computer system developed by the
author. The neural-network coprocessor provided an effective means of off-loading much
of the computation from the host processor. As a result, the system was able to process the
input video stream at near real-time rates.

problem—if the camera is not pointed directly at the aircraft, there is an error
in the rotation of the platform, which will induce a more significant error in the
positioning calculation.

To correct the jitter effect, the USAF has previously used enlisted personnel
to manually inspect each frame of video after a test to determine the offset of
the aircraft from the center of the image. That offset is then used to correct the
positioning calculation, which, in turn, is used to evaluate the performance of the
ordnance. As you can imagine, manual inspection of several videotapes after each
ordnance test is a very time-consuming, labor-intensive process.

7.4.2 Tracking-System Architecture

In an attempt to determine if a computer could be used to automate the video-
analysis process, we developed a system that used a BPN to locate the center of
mass of the airplane in the input imagery. Once we knew where the plane was in
each frame, it was a simple matter to correct the azimuthal rotation angle for that
video frame.

As shown in Figure 7.13, the architecture of the system we developed incor-
porated a number of subsystems besides the neural network. The playback from
the recorded video was initially digitized by running the video stream through a
video frame-grabber device. The output from the frame grabber was a 64 x 64

206 Image Processing

pixel matrix, with each pixel encoded in a 256 gray-shade integer format. The
video image was then converted into a form usable by the BPN, which had
learned to identify the image of an aircraft and provide, as output, the x and y
pixel coordinates of the center of the plane in the image. For demonstration pur-
poses, we then superimposed a cross-hair at the coordinates indicated by the BPN
on the digitized video, so that we could assess the accuracy of the network.

7.4.3 Tracking-Network Architecture

Initially, a standard BPN was used to try to locate the aircraft in the input image.
To train the network, a program was created that captured 250 randomly selected
digitized images from the recorded video. For each image, the pixel coordinates
(x, y) of the center of the airplane image were manually determined. The training
exemplars were then constructed by applying Eq. (7.1) to each pixel value in each
of the 250 digitized images. Similarly, the target x and y pixel coordinates were
scaled to values between zero and one.

The first network trained had 4,097 input units, organized such that one unit
was allocated to each input pixel, with an additional bias element. The hidden
layer contained 50 sigmoidal units, and the output consisted of 2 linear units.
This network gave good results, but had quite a bit of difficulty dealing with
background clutter. For instance, the network would track the aircraft through a
clear or overcast sky without difficulty, but when the plane dropped low enough
to include mountains in the background of the image, the network immediately
became confused. Apparently, the network had not learned to recognize airplanes
so much as it had learned to find the darkest section in the image. As a result,
the network would usually indicate a position halfway between the image of the
plane and the mountains as its targeting position.

To overcome this difficulty, another network was constructed that contained
8,193 input elements, 50 units on the hidden layer, and two linear outputs. As
shown in Figure 7.14, this network was trained with image data from the current
frame, together with the imagery from the preceding frame. This modification
had the effect of keeping the network from making drastic targeting changes
when there were multiple dark areas in the image simultaneously. This scheme
worked extremely well, keeping the aircraft correctly targeted in 95% of the
imagery. The other 5% were video frames that contained multiple distractions,
or occurred shortly after a sequence where the network had lost focus on the
airplane.

7.4.4 Tracking-System Issues

There are several aspects of this application that warrant further study. In this
section, we shall review some of these issues, to illustrate how they arise, and to
show how they may be overcome when creating applications of your own design.

First, there is the issue of performance. Because the targeting process in this
application occurred after the video information had been recorded, it was not

-

7.4 Aircraft Tracking in Video Imagery 207

Video Frame n-1 Video Frame n

Figure 7.14 This diagram illustrates the architecture of the BPN constructed to perform
the aircraft-tracking application. The first 4,096 input elements encoded the scaled,
digitized imagery from the current video frame, while the next 4,096 units encoded the
imagery from the previous video frame. This architecture allowed the BPN to track the
aircraft in the video frame, while simultaneously minimizing the effect of other objects in
the image.

necessary that the system had to be able to process the imagery in real time.
However, in many applications, especially in image processing, it is imperative
that the data be processed at, or very near to real-time rates.

To illustrate why this might pose a problem here, consider the computational
requirements necessary to perform this application. Each image must first be digi-
tized, then scaled, then propagated through the BPN before we have extracted the
required information from the image data. In this sequence of events, the prop-
agation through the neural network will be the most computationally expensive.
We can see why this is so if we analyze the process of simulating the BPN de-
scribed in this section.

The second network contains 404,950 connections, 100 between the hidden
layer and the output, and the remainder between the input layer and the hid-
den layer. To propagate a pattern through the network, each connection requires
two floating-point calculations: A multiply followed by an addition operation.
Furthermore, the sigmoid activation function is a transcendental computation, re-
quiring anywhere between 10 and 100 floating-point operations each time it is
computed, depending on the implementation of the function. Even if we assume
that only 10 calculations are required for the sigmoid, we are still faced with

208 Image Processing

performing 810,400 floating-point computations every time one image pattern is
propagated through the network.®

Because real-time video is nominally 30 image frames per second, we re-
quire a computer that can perform at least 24.3 million floating-point operations
every second just to simulate the network. Scaling each input image requires ad-
ditional CPU time, as does acquiring the digitized video image. Increasing the
image resolution quickly compounds the problem, especially if the network must
process the raw imagery. Obviously, performance can pose a significant con-
straint on any neural network application.

Another concern was the accuracy of the network. Because it was necessary
to ensure that the system was providing an accurate measure of how far the im-
age of the airplane was from the center of the image frame in order to exactly
locate the position of the aircraft, it was necessary (in this case) to postprocess
the output of the system to identify any images that had been incorrectly targeted.
However, the inclusion of the postprocess is not indicative of a failure of the BPN
to perform its function in this application. In this case, no other automatic solu-
tion existed, and the cost of developing a perfect system was deemed excessive.
Therefore, as in many other practical applications of neural-network technology,
it was decided that a reasonable solution was preferable to no solution.

7.5 IMAGE-PROCESSING SUMMARY

In this chapter, we have seen how neural networks have been used to identify ob-
jects contained in imagery data, in and outside of the visual spectrum. We have
investigated another neural-network architecture that is both powerful and useful
for performing rotational and translational invariant feature extraction. We have
also examined two applications that use a combination of neural networks, each
to perform a different aspect of information processing for the complete applica-
tion. While these applications exhibit only rudimentary skills when compared to
the processing that goes on in the human visual cortex, they nevertheless illustrate
the natural ability of the inherently parallel networks to process a great deal of
information in parallel, and fuse the image data into a meaningful interpretation.

SUGGESTED READINGS

The literature abounds with image-processing applications of neural networks. It
seems that the parallel architectures inherent in neural-network structures are par-
ticularly suited to processing the distributed representation of information in an
image. Readers interested in exploring a more detailed (albeit complex) treatment
of the biological implications of neural networks with respect to vision and image

8. During learning, this number can easily triple.

Bibliography 209

processing are referred to Visual Perceptions: The Neurophysiological Founda-
tions [12].

For a more complete description of the operation of the neocognitron, one
of the most thorough treatments is provided in Neural Networks: Algorithms, Ap-
plications, and Programming Techniques [3]. Furthermore, Kunihiko Fukushima
has published numerous papers describing the implementation of the neocogni-
tron, the model of selective attention [4], and other networks based on the neocog-
nitron processing model.

There are also several special-purpose networks that have been developed
specifically for image-processing applications. Many of these network paradigms
are based on Stephen Grossberg’s boundary contour system [8] or feature contour
system [9]. Still others use a spatiotemporal architecture to detect motion in a
preferred direction [10]. I have deliberately chosen to omit applications based on
these networks from this chapter, because it would not have been fair to the reader
to introduce a specialized network architecture for each application discussed,
although many would have been appropriate. Readers are encouraged, however,
to explore these network paradigms and their applications on their own.

BIBLIOGRAPHY

1. G. W. Cottrell, P. Munro, and D. Zipser. Image compression by back propagation:
An example of extensional programming. UCSD Institute for Cognitive Science Technical
Report 1CS-8702, 1987.

2. R. J. Fogler, M. W. Koch, M. M. Moya, L. D. Hostetler, and D. R. Hush. Feature
discovery via neural networks for object recognition in SAR imagery. Proceedings of the
International Joint Conference on Neural Networks, Baltimore, MD, pp. 1V(408-413),
1992.

3. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-
tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,
MA, 1991.

4. Kunihiko Fukushima. Neural network model for selective attention in visual pattern
recognition and associative recall. Applied Optics, 26(23):4985-4992, December 1987.

5. Kunihiko Fukushima. A neural network for visual pattern recognition. Computer,
21(3):65-75, March 1988.

6. Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-13(5)826-834, September—October 1983.

7. B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. SEXNET: A neural network
identifies sex from human faces. In Richard P. Lippman, John E. Moody, and David
S. Touretsky, editors, Advances in Neural Information Processing Systems 3, Morgan-
Kaufmann Publishers, Inc., San Mateo, CA, pp. 573-577, 1991.

8. S. Grossberg and E. Mingolla. Neural dynamics of form perception: Boundary comple-
tion, illusory figures, and neon color spreading. Psychological Review, 92:173-211, 1985.

210 Image Processing

9. S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Textures,
boundaries, and emergent segmentations. Perception and Psychophysics, 38:141-171,
1985.

10. Jim-Shih Liaw and Michael A. Arbib. A biologically inspired neural network model
for 3-D motion detection. Proceedings of the International Joint Conference on Neural
Networks, Seattle, WA, pp. 1(661-665), July 1991.

11. Takashi Omori and Taku Nagase. Image understanding by neuron network. Proceed-
ings of the International Joint Conference on Neural Networks, Washington DC, pP-
11(235-240), 1989.

12. L. Spillman and J. S. Werner, editors. Visual Perceptions: The Neurophysiological
Foundations, Academic Press, San Diego, CA, 1990.

C H A P T E R

Sis

Process Control and
Robotics

The dynamic principle of fantasy is play, which . . . appears to be inconsistent
with the principle of serious work. But without this playing with fantasy, no
creative work has ever yet come to birth.

— Carl Jung

Process control can be loosely defined as any activity performed to maintain a
dynamic system in a stable condition. In its most general sense, process control
is a function that we perform every minute of the day without even being aware
of the intricacies of the task. Virtually every action performed by a human be-
ing, or any other sentient creature, for that matter, requires some form of process
control. As an illustration, consider the simple act of eating: There is a process to
be performed (e.g., transporting the food to the mouth), and the plant, or system
that performs the process, cannot operate without guidance (e.g., the hand cannot
manipulate the eating implements, nor can it guide the food to the mouth without
receiving the proper control signals from the brain). Moreover, the system con-
troller (the brain) receives a constant stream of data from peripheral sensors (e.g.,
the eyes and the sense of body awareness) that allow it to interactively assess the
state of the system. Based on the sensory input, the controller is able to constantly
induce small corrective actions that keep the system under control at all times.

It is one thing for living creatures, with an innate sense of being and all of the
sensory systems provided by nature, to perform complex tasks; it is quite another
thing, however, to automate the performance of these tasks. Machines have no
sense of awareness, and no explicit memory of previous attempts to complete
an assigned task; nor do they have the memories of the failures associated with
those attempts. Without these memories, and without the capability of rational
thought, machines have no innate ability to alter their behavior, and are thus
doomed to forever repeat errors. Even machines designed to operate in dynamic
environments are unable to adapt beyond certain limits.

211

212 Process Control and Robotics

Robotics is a special form of process control, in that the system to be con-
trolled is a mechanical implementation of a biological process. Robotics also
provides us with an interesting application environment to study the application
of neural networks to tasks that are typically classified as “process-control” tasks,
because either the dynamics of the process are often not well understood or the
control mechanism needed to manage the process is computationally prohibitive.

In this chapter, we shall examine several applications of robotic process con-
trol, and show how these complex tasks were successfully addressed by using
a neural network as the process controller. We shall show how these networks
were able to learn the dynamics of the application, and, by extension, were able
to address problems that were deemed intractable when using more conventional
control methods.

We shall begin our discussion with a brief summary of classic control theory,
in order to illustrate the underlying principles of that discipline. Once we have es-
tablished this foundation, we shall then begin our investigation of neural-network
control applications, emphasizing the details of how the networks learned to per-
form the desired function, and illustrating how the applications were modeled
for the neural-network controller. Readers already comfortable with the theoret-
ical concepts of process control may skip directly to the applications discussion,
which begins in Section 8.2.

8.1 CONTROL THEORY

Control theory, the body of mathematics that describes the interactions between
a controllable process and the mechanisms used to monitor and correct errors in
the process, is one of the oldest disciplines in automation technology. In fact, one
of the earliest known applications of an automatic control system dates back to
ancient Greece. In 250 B.C. [7], a man named Philon developed a float-regulator
mechanism to maintain a constant level of fuel oil in an oil lamp. Philon’s system,
which is depicted in Figure 8.1 was fairly simple by today’s standards. Never-
theless, it illustrates some of the fundamental ideas of modern control theory,
including the notion of feedback, in which the actual system output is compared
to the desired response, and the difference between the two is used to alter the
input to the system.

In Figure 8.2, we illustrate block diagrams of the two basic types of auto-
matic control systems in common use today: These are referred to as open-loop
and closed-loop systems. The primary difference between the two is the use of
feedback signals in the closed-loop system. Feedback allows the controller to de-
termine if, and by how much, the output is in error. After assessing the state of the
system via the feedback signal(s), the controller can make corrective adjustments
at the input of the system, thus causing the output to stay within some predeter-
mined tolerance level.

Because open-loop systems are not nearly as interesting, or as sophisticated,
as their closed-loop counterparts, we will focus our attention on the implemen-

8.1 Control Theory 213

Float g%\
el = g
:"_‘! }r—__E ————+
=S=—=———:
==|= ———
__:! =
——d [=

I

I
nlnfnffn|s

=]

Figure 8.1 This diagram illustrates the operation of Philon’s fuel-regulation system. As
the oil in the lamp decreases, a float moves in proportion to the amount of fuel that had
been depleted. The movement of the float causes a valve to open, which allows additional
fuel oil to enter from a reservoir. With the influx of new oil, the float rises, causing the
valve to close. This system contains all of the aspects of a modern control system: There
is a process to be controlled (the level of the fuel in the lamp); a sensor (the float), which
provides feedback (control of the valve); and a cause-effect relationship between system
input and output (fuel input causes the amount of fuel in the lamp to increase). Because of
the process control, this dynamic system maintains equilibrium.

tation of closed-loop systems in the ensuing discussion. Bear in mind, however,
that many of the concepts we shall develop to describe closed-loop systems can
also be successfully applied to the analysis of open-loop systems.

8.1.1 Closed-Loop Systems

Many processes, ranging from the simple to the complex, have been success-
fully automated because there is a well-understood, causal relationship between
the process and the inputs to that process. Furthermore, if one of the inputs to
the system is actually a signal indicating an error at the output, and the sys-
tem operates in a manner that attempts to minimize the error signal, the system
is said to be closed-loop or self-adjusting. As a simple example, consider the
automatic fine tuning (AFT) circuitry incorporated into virtually every FM ra-
dio receiver built today. This circuitry satisfies the definition of a closed-loop
control system: It monitors the output of the primary tuning circuits in the re-
ceiver, detects when the tuning circuitry has drifted from the carrier frequency
of the incoming signal, and initiates a corrective action in the tuner circuits
to dynamically realign the tuner. The AFT system operates automatically, and,

214 Process Control and Robotics

Input — ! Controller ——| Process — Output
(a)

Comparison
Input Controller —->‘ Process Output

(b) Measurement|-eg—

Figure 8.2 These diagrams illustrate the structure of the two basic control system types.
(a) Open-loop systems are constructed such that the system controller has no direct access
to the output of the system, and hence has no direct mechanism for assessing the error of
the system. (b) Closed-loop systems incorporate a measurement subsystem that provides
the system controller with a direct indication of the output of the system, thereby allowing
the controller to determine the changes at the input to correct any error at the system
output.

perhaps more importantly, is able to correct signal drift errors that have been
induced by temperature changes within the receiver, to characteristic changes
in performance of circuit components due to aging, or to any of several other
factors.

The AFT example also serves to introduce the important concept of positive
and negative feedback control systems. In most control applications, feedback
is negative; that is, an error signal, which is usually the difference between the
actual output of the system and its desired response, is developed and has the
effect of altering the behavior of the system controller to reduce the output of
the system. There are, however, many applications requiring positive feedback,
where a feedback signal has the effect of increasing the output from the system.
In the AFT example, the feedback signal is actually dual purpose: A large positive
error has the effect of reducing the resonant frequency of the radio tuner, while a
large negative error has the opposite effect. Thus, the system behaves in a manner
that strives to keep a zero feedback error, thereby keeping the radio tuned to the
desired frequency.

Using the principles of feedback and correction, it is possible to construct
models of extremely complex processes. From these models, we can apply math-
ematical tools that enable us to understand the behavior of the models, and,
hence, the nature of the systems we are trying to control. In the sections that
follow, we shall briefly describe how control-system models can enable us to un-
derstand, and automate, a wide variety of tasks.

8.1 Control Theory 215

8.1.2 Mathematical Models

Because most of the applications of control systems involve complex interrela-
tionships between input and output, we must develop a set of mathematical tools .
that we can use to analyze the relationships between the outputs produced by a
system and the system variables, or the controllable parameters, of the system.
Moreover, most of the systems we will want to control are dynamic, meaning that
we must use differential equations to construct the system model.

In any real application, it is not practical, and certainly not possible, to know
everything about the system being considered. In many cases, we can greatly
simplify the task of constructing a system model by making some assumptions
about the nature of the system, and then linearizing the differential equations we
will use to model the system. In so doing, we are, in effect, reducing the scope
of the problem to that region of the variable space where the system response is
linear, thus simplifying the analysis of the system.

For example, consider the electrical system depicted in Figure 8.3. To under-
stand how this system will behave for different values of resistance, inductance,
capacitance, current, and voltage, we can construct a mathematical model of the
circuit and test its response for different values of R, L, C, i(¢), and v(t). One
method for constructing the mathematical model of this system is to use Kir-
choff’s current law, which states that the electrical current into any node in an
electrical circuit is exactly equal to the current out of the node at any time t!
Thus, the mathematical model for this system is given by the equation

v(t) dv(t) 1 [f .
R+C o7 +Z/0 v(t)dt =i(1) 8.1

where the parameters R, L, and C refer to the electrical resistance, inductance,
and capacitance of the component, respectively. Because we are dealing with a
system that exhibits a dynamic behavior through time, we use the terms v(t) and
i(t) to refer to the instantaneous voltage across, and current through, the circuit
at any time .

If we assume that the current through the given circuit is constant, that is
i(t) = I, we can determine the voltage in the circuit across all components as a
function of time by the equation

v(t) = %e”“’ cos(Bt +0) (8.2)

where L is again the electrical inductance of the circuit and the terms o, f,
and 6 are used to indicate the time constant of the circuit, the period of the
voltage oscillation, and the phase angle between the voltage and current signals.
Figure 8.4 illustrates the typical voltage curve for an underdamped RLC circuit.

1. Current through an electrical component can be expressed as a function of the instantaneous
voltage across the device, a technique we employ here.

216 Process Control and Robotics

i(t)’(D R L c_j: *

v(t)

|

L 4 " g O

Figure 8.3 A dynamic electrical system is shown. The equation describing the behavior
of this system is developed in the text.

v(t)

-Oxt

Time —

— 0 [— 2(nr/)

Figure 8.4 The voltage curve for an underdamped RLC circuit is shown. Notice the

relationship between the dynamics of the curve and the parameters «, 8, and 6, which are
described in the text.

Inspection of this graph indicates that the system undergoes a dynamic transition
period, beginning at time 9, which is the instant that current is first applied
to the circuit. The voltage (and, hence, current) dynamics tend to die out after
approximately five time periods (), leaving the system in its steady state.

8.1.3 Linear Approximations of Dynamic Systems

Most real-world dynamic systems are linear within some range of their variables.
If, however, we allow system variables to increase without limit, all systems will

8.1 Control Theory 217

eventually become nonlinear. In the RLC circuit example, if we were to allow the
input current to increase indefinitely, the components would eventually overheat
and fail, perhaps catastrophically.

Fortunately, we can limit our analysis of most systems to specific operat-
ing ranges of the input variables, within which, the response of most dynamic
systems can be modeled using a linear approximation technique. As we have al-
ready indicated, the benefit of linearizing a dynamic system is that the analysis
of a linear system is much less computationally taxing than the analysis of the
corresponding dynamic system.

A linear system is one in which two conditions are satisfied. First, it must
satisfy the principle of superposition, which states that, if the response of the
system to any stimulus, x,, (), is y,(¢), then the response of the system to multiple
excitations must be equal to the sum of the system responses to each of those
excitations. Second, it must satisfy the condition of homogeneity, which states
that the system must preserve any magnitude scale factor between input and
output. Stated more precisely, for excitation x,(¢) and response y,(t), a linear
system must satisfy the conditions

x1(t) + x2(0) = y1 (1) + y2(1) (8.3)
Bxi(t) = Byi(1) (8.4)

where Eq. (8.3) specifies the condition of superposition, and Eq. (8.4) describes
the condition of homogeneity.

By this definition, a system characterized by the equation y = x~ is not lin-
ear, because it does not satisfy the condition of superposition. Similarly, a system
characterized by the equation y = mx + b is not linear, as it does not satisfy the
condition of homogeneity. However, we could use this system to approximate a
linear system if we consider only small changes to x and y, which we shall call
Ax and Ay, about a specific operating point, (xg, yo). Thus,

2

yo+ Ay =mxo+mAx +b

from which we can conclude that Ay = m Ax. Given these constraints, the system
satisfies the homogeneity requirement.

The process of approximating a linear system from a more complex dynamic
system is merely an extension of this basic idea. If we consider a multivariable
system characterized by the relation

y=g(x1,x2, X3, ..., Xp) (8.5)

we can construct a linear approximation of the system using a Taylor series ex-
pansion about the operating point (xi,. X2,, X3, - - - » Xng). Neglecting the higher-
order terms, we can then write

218 Process Control and Robotics

Y =g(Xip X2 X3¢+ ..., Xng) (8.6)

a

+ —g (xl - xlo)
a"‘l .\'|=,\‘|0
)

+ _g (xZ - xZ())
a'xz 2=
0

+ _g (X_?, - X30)
dx3 ——

+ ..
0

+ _g (xn - xno)
axn Xn=Xn(

to construct the linear approximation of the system.

8.1.4 The Laplace Transform

The Laplace transform is a mathematical tool that enables us to convert differen-
tial equations in the time domain into much easier to solve algebraic equations
in the frequency domain. Once the system equations have been transformed, we
then merely solve for the variables of interest, and convert the system back into
the time domain by applying the inverse Laplace transform.

We can see how the Laplace transform works by considering the Laplace
operator, s. In the time domain, we let s be equivalent to the differential oper-
ator. Similarly, we let the inverse Laplace operator be equivalent to the integral
operator in the time domain. Specifically, let

d
s = d_t 8.7)
l t
= /0 ar 8.8)

The Laplace transform for a function of time, f(t), is defined as the function F(s)
by the equation

F(s)= /OO f(e 'dt (8.9)
0
=L(f() (8.10)

To find the Laplace transform for a function of time, we simply write the Laplace
function using the specific time-domain function in place of f(¢), and evaluate
the integral at its limits. For example, the Laplace transform of the function
f()=t,1>0is found by

8.1 Control Theory 219

o
F(s):/ e *tdt
0

e (=st = [T

= =)
1

=32

Exercise 8.1: Find the Laplace transform for the time-domain function f(t) =
cosawt, t > 0, where a is a constant value. =

It follows that the inverse Laplace transform can be used to convert a
frequency-domain function, F(s), into its time-domain equivalent form. The in-
verse Laplace transform is defined as

1 o+joo
f()y=-— / F(s)e''ds (8.11)
2nj o—joo

The Laplace transform exists for any linear differential system for which
the transformation integral converges. Fortunately, this requirement holds for any
physically realizable system, greatly simplifying the analysis of practical con-
trol systems. Also simplifying the situation is the fact that many common time-
domain functions have their corresponding Laplace transforms listed in tabular
form in reference publications, such as any of the CRC handbooks [9]. Thus, the
use of Laplace transforms is not restricted to mathematicians; indeed, mere mor-
tals regularly use Laplace transforms to analyze control-system performance.

As an illustration of the power of the Laplace transform, let us consider again
the electrical system described at the beginning of this section. The differential
equation describing the response of that system is given in the time domain by

d? 1d 1
v(t) v(t) L1

H=C —
x(®) dt? R dt L

v(t) 8.12)

We can transform Eq. (8.12) into the frequency domain by applying the
Laplace transform for each of the differential components of the system. The
transformed equation is thus

dy(0)

X(s)=C (szY(s) —sy(0) — -

1 1
) + 5 (Y6 = y(O0) + 7Y (5)8.13)

If we then let x(£) = 0, y(0T) = yo, and %
t

— =0, we can reduce Eq. (8.13) to

1 1 1
0=Cs%Y(s) — Csyo+ —=sY(s) — —yo+ — .
s7Y (s) syo + RS (s) R)0+ LY(S) (8.14)

Solving for Y(s) yields

220 Process Control and Robotics

1
V(o= SR (8.15)
CS" + ﬁs + Z
p(s)
=22 8.16
q(s) (8.16)

Equations (8.15) and (8.16) tell us quite a bit about the nature of this sys-
tem. If we set g(s) = 0, we will have determined the situations under which the
frequency response of the system is infinite. These situations are called the sin-
gularities of the system. Conversely, the roots of the polynomial p(s) are called
zeros of the system, because under the conditions that satisfy p(s) = 0, the re-
sponse of the system is also zero.

Exercise 8.2: Find the poles and zeros of the electrical system modeled by Eq.
»(8.15) when R =33 ohms, L =50 mH, and C = 10uF. =

Finally, in most control-system applications, it is desirable to know the final,
or steady-state response of the system to a specific stimulation. We can use the
Laplace transform to determine the steady-state response of such a system by
evaluating the relation

lim y(¢) = lim sY (s) 8.17)
t—00 s—0

where poles on the imaginary axis and in the right half-plane and higher-order
poles at the origin are not considered.

8.1.5 Transfer Functions

The transfer function of a linear system is defined as the ratio of the Laplace
transform of the output to the Laplace transform of the input variable, subject to
the condition that the initial state of the system is quiescent. It is useful to know
the transfer function of a system, because once that ratio has been determined,
the system may then be treated as a “black box,” which can be connected to other
“black boxes” to construct even more complex systems.

Again using the electrical circuit example, we can write the transfer function
of that system as

= = 8.18
X(s) Cs?+ L5+t ®1%)

We can then build models of larger systems using the building block we have
just created by using graphing techniques to represent the connectivity between
subsystems. By knowing the transfer function of every component (or subsystem)
in a system, we can determine the behavior of the complete system by evaluating
the response of each component to its respective input signal(s). We illustrate this
concept in Figure 8.5.

8.2 Cart/Pole Balancer 221

Disturbance

@ Ty(s)
Field Mot Speed
1 It otor T TL (s) Lo1ad o(s) pee Output
K 1
Ry +Lsg m Jg+f s [06
Ta(s)
(b) Armature ‘ Position
Va(s) + Km - v L :
d Rs+Ls[" | Js +f 5 a(s)
Kb

Figure 8.5 These diagrams illustrate the relationship between system-transfer functions
and the building-block model of complex systems. (a) This figure represents the RLC
circuit model we have been evaluating in this section. Using this diagramming scheme,
inputs to the system are shown by incoming arrows, outputs as outgoing arrows. The
label on each arc in the diagram represents the output of the system with respect to its
input. (b) A more complicated system model is shown, this time providing for external
perturbations in the system.

We could continue this discussion of control theory and analysis techniques
for several more chapters without even beginning to scratch the surface of the
topic. Rather than doing that, we shall now turn our attention to the neural-
network control applications that we earlier promised to address, and trust that
the reader can now better appreciate the capabilities of that technology to perform
complex control functions.

8.2 CART/POLE BALANCER

In the previous section, we examined some of the analysis techniques that a
control-systems engineer could use to model, and then analyze, the behavior of
a complex control system. However, throughout that discussion, we assumed that
the systems to be evaluated had easily derived mathematical models that could
be used as the basis for the system analysis. Beginning in this section, we shall
look at applications of control systems where the process to be controlled is
not apparent, thus making the application of the traditional control-theory tools
difficult.

The first of these control problems is referred to as the cart/pole-balancer
application. As the name suggests, the problem is to come up with an automatic

222 Process Control and Robotics

o(t)
A ta(t)
[~ —~] -
I \\ \\ I
1 1\
14 x(t) -

Figure 8.6 This diagram depicts the constraints on the cart/pole-balancer system. The
cart is free to move in only one plane, but it may move in either direction, and as quickly
or as slowly as is needed to maintain the position of the pole. The pole is mounted to
the cart on a hinge that allows 180 degrees of angular rotation in the same plane as the
cart movement. The goal is to develop a control system that can be used to maintain the
vertical position of the pole while keeping the cart as close to the center of the system as
possible.

means of controlling the back-and-forth movement of a cart in order to balance
a vertical pole attached at its base to the cart. To simplify the problem, we shall
consider the movement of the cart and the pole in only one plane. We can there-
fore assume that the cart runs on a rail, in order to prevent any lateral movement,
and that the pole is attached to the cart by a hinge that allows movement only in
the same plane as the movement of the cart.

We shall complicate the problem somewhat by insisting that the length of the
rail is finite, and that the cart may not move beyond the end of the rail in either
direction. Further, we shall require our control system to balance the pole, and
maintain the balanced state, with the cart ideally positioned as close to the center
of the track as possible. Figure 8.6 illustrates the physical arrangement of this
system.

8.2.1 Conventional Controller Design

For this application, we can denote the position of the cart as x(¢), where x =0
is assumed to be the position of the cart at the center of the track. Negative values
of x(¢) will indicate the cart is to the left of center, while positive values of x(¢)
position the cart to the right of center. A sensor provides a measurement of the
angular position of the pole with respect to the vertical, §(¢). Acting on the cart
is a force that controls its acceleration, denoted as f(¢), with positive values
indicating acceleration toward the right. Two other parameters of the system are
monitored: the time rate of change in the position of the cart, x (¢), and the angular
velocity of the falling pole, given by 6(¢).)

We can model the dynamics of this system by writing the equations that
describe the effect of the acceleration force on the position of the pole, and then

8.2 Cart/Pole Balancer 223

developing a control model to maintain the system such that 6(¢) and 8(r) are
zero. The dynamic equation that describes this system is given by

f©) =ax(t) + bx(t) + cO(t) + d (1) (8.19)

where the terms a, b, ¢, and d are constant coefficients that represent the physical
characteristics of the system, which are found empirically.

For the given system, the force needed to balance the pole can be assumed
to be constant and of fixed magnitude for each movement of the cart. Further,
because the cart can move in only two directions, we can surmise that the required
force will vary only in its sign, depending on the direction of the cart. We can
therefore rewrite Eq. (8.19) to account for the effects of the force on the position
of the pole as

f () = asgn (ax(t) + bi(1) + cO(t) + dO (1)) (8.20)

where « is used to represent the magnitude of the force applied.

Equation (8.20) embodies the dynamics of the system, but from a practical
point of view, creating a controller to maintain the desired stable state of the sys-
tem would be difficult due to the problem of obtaining accurate sensor measure-
ments for each of the four required parameters. We can overcome this difficulty
by rewriting Eq. (8.20) as a difference equation that approximates the required
balancing force by using state measurements taken at the current time, and at the
time step immediately prior to the current time. Thus,

F(6) = asgn((a+ b)x(t) —bx(t — 1) + (c +d)O(t) —d(r — 1)) (8.21)

This is as far as we can take the design of a conventional process controller,
because we have no a priori knowledge of the values of the coefficients a, b,
¢, and d. If we did, we could continue the design by solving the differential
equation using the techniques described in Section 8.1, and by constructing a
feedback control system to achieve the desired results. However, the design we
would create would be application specific; that is, we could not reuse the system
to solve a similar problem without again going through the analysis process.

Let us now investigate how a neural network can be used to solve this control
problem. In the process, we shall explore some of the advantages the neural-
network solution has over the conventional controller design.

8.2.2 Neurocontroller Design

The application of a neurocontroller to the problem of pole balancing was first
described by Professor Bernard Widrow, of Stanford University, in 1962 [11].
Professor Widrow revisited the problem in 1987, when, with graduate student
Viral Tolat, the problem was recast from a simply mechanical application to
one that relied on human visual perception to provide the necessary feedback to

224 Process Control and Robotics

a(t+1)

x(t) X(t) o(t) o(t)

Figure 8.7 The Adaline network used by Professor Widrow to control the cart/pole-
balancer system is shown. The adaline is essentially a single unit BPN. The inputs and
output of the device are described in the text.

control the cart. We shall begin with Professor Widrow’s original solution, and
then show how the application was revised to utilize the visual feedback.

Professor Widrow’s original approach was based on the use of an Adaline?
that took the four monitored signals (x(¢), x(t), 6, and é(t)) as input, and learned
to produce a signal indicating the required acceleration needed to maintain the
pole near the vertical. The architecture of this control network is illustrated in
Figure 8.7.

The exemplar data used to train the Adaline was collected from an opera-
tional, closed-loop proportional controller that was designed specifically for the
experiment.? For training purposes, all four sensor parameters were scaled prior
to presentation to the Adaline to values that ranged between —1 and 1. Simi-
larly, the force applied to the cart, which is the target output for the Adaline, was
recorded and scaled for each set of input parameters. Widrow reported that the
Adaline required less than 100 presentations of the 250 training exemplars col-
lected from the conventional controller to learn to keep the pole balanced.

In another discussion of the application, Robert Hecht-Nielsen [3] describes

2. An ADAptive LINear Element, which is essentially a single-unit network with connections
adapted using the LMS algorithm.

3. You may note the irony here, in that a classical controller had to be developed to train the
neurocontroller.

8.2 Cart/Pole Balancer 225

how the neurocontroller developed by Widrow is able to keep the cart in the cen-
ter of the track. In essence, a false bias signal, which is linearly dependent on the
position of the cart (x(t)), is added to the 6(¢) indicator supplied to the neurocon-
troller after training. Thus, the neurocontroller receives inputs that indicate that
the pole is leaning slightly toward the center of the track, and initiates the correc-
tive force needed to center the pole. As a side effect, the cart moves toward the
center of the track.

8.2.3 Vision-Based Neurocontroller

In a paper published in 1988, Viral Tolat and Professor Widrow [10] described an
experiment conducted to determine if it were possible to construct a neuro-pole
balancer that could be trained using subjective visual assessments of the situation,
rather than purely objective measurements. It is interesting that, while a child
can quite easily balance a broomstick in her hand, most people cannot balance
a two-dimensional broomstick if forced to rely only on vision. It seems that when
we manually balance a pole, we receive most of the information about the state
of the pole through our sense of touch.* Without tactile feedback, balancing the
computer-generated simulation of a pole attached to a cart is virtually impossible
for a human in real time.

Tolat and Widrow overcame this difficulty by slowing the simulation to
1/30% of real time, and by allowing the human trainer to compare two images of
the system side-by-side: one to represent the current state of the system, and, next
to it, the image representing the state of the system at the time step immediately
prior to the current time step.

As illustrated in Figure 8.8, the network used to perform this experiment was
again an Adaline, this time having 111 input connections instead of the four used
in the earlier experiment. The dimension of the input pattern was determined by
the pixel image used to represent the state of the pole (a 5 x 11 binary image),
which was doubled in order to allow simultaneous presentation of the current and
last state images. Tolat and Widrow also used a bias input to the Adaline, for
reasons described in Chapter 2. The concatenation of these two, 55 pixel image
patterns with the bias signal comprise the 111 input elements needed to represent
the state of the system.

The output of the Adaline is interpreted as a simple indicator of the direction
of the force needed to maintain the pole in an upright position. Because it was
assumed that the force applied to the cart would be a constant value, the linear
output of the Adaline was converted into a bipolar value by taking the sign of the
linear output and using that as the output value. This conversion is equivalent to
running the linear output of the Adaline through a binary threshold unit before
allowing the output to be used externally.

4. You can prove this to yourself by trying a simple experiment. Close your eyes and try to balance a
pole in your hand. Chances are that you will have no problem.

226 Process Control and Robotics

f(t)

Image at time t—1 1 Image at time ¢

Bias Unit

Figure 8.8 The architecture of the Adaline used to solve the cart/pole-balancing
problem using visual supervision is shown. The operation of this device is described in the
text. Source: Adapted from An adaptive ‘broom balancer’ with visual inputs [10]. Used
with permission. Copyright ©1988 IEEE.

The Adaline was trained by collecting all combinations of five cart positions
(far left, near left, center, near right, far right) with 13 different pole angles. These
65 images were then shown to a human trainer sequentially, with the computer
determining the next image to be shown based on the current state of the system
and the user’s response to the situation. As the images were presented, the com-
puter displayed for the user the current and last state images, and recorded these
displays as the input pattern for the exemplar. The output associated with the in-
put pattern was the user’s action: a —1 to indicate an application of the control
force to move the cart to the left, and a +1 to indicate the user’s desire to move to
the right.

Tolat and Widrow collected one training exemplar for each of the 4,225
possible situations (652 image combinations), and used this information to train
the Adaline. They found that the Adaline could solve the problem, maintaining
the pole in an upright position, after fewer than 50 complete training cycles.
Figure 8.9 illustrates the results of training as described by Tolat and Widrow.

5. A training cycle is the presentation of each input pattern in the training set, along with the update
cycle to adjust the connection weights after every pattern presentation. In most network simulations,
this is also referred to as a training epoch, a term derived from the geological analogy to the amount
of computer time needed to perform the training cycle.

8.2 Cart/Pole Balancer 227

100 -

80 -

60 T

% Incorrect

40 T

20

0 T | |
100 200 300

Training Epochs

Figure 8.9 This graph shows the error of the Adaline during training to learn the visual
pole-balancing application. In this diagram, the vertical axis represents the percentage
of errors made by the adaline during a training cycle, and the horizontal axis represents
the training cycle progression. Note that the final error of the network was not zero,
but was an acceptably low value for the number of patterns it was being asked to learn

(& = 0.094% error).

8.2.4 Conventional and Neurocontroller Comparison

Let us now compare the neural-network solution developed by Tolat and Widrow
with the conventional control solution. From inspection of Eq. (8.21), which we
present again for convenience, we can see remarkable similarity between the an-
alytical model represented by the difference equation model and the implementa-
tion of the Adaline network.

f(H= asgn((a +b)x(t) —bx(t — 1)+ (c+d)0(t) —dO(t — 1))

In each model, the output is a simple, bipolar indication of the direction of the
force needed to keep the pole balanced. If we let « = 1, Eq. (8.21) tells us that the
direction of the force needed to keep the pole balanced is dictated by the current
and previous states of the system, as indicated by the position of the cart (x(¢))
and the angular position of the pole (6(¢)).

Given that we can adequately describe all potential configurations of the sys-
tem in 4,225 current and last-state images, and represent each of the two state
images as a 111-element input pattern, the network solution is equivalent to a
best-fit solution to 4,225 simultaneous, linear equations having 111 unknowns.
Moreover, the Adaline finds a solution to the problem without having to know

228 Process Control and Robotics

in advance the empirical values of the difference equation coefficients. This ob-
servation suggests that the neural-network controller is readily modified to other,
similar applications without requiring a time-consuming analysis of the system, a
benefit not found in the conventional controller solution.

Another interesting aspect of this neurocontroller application is that the Ada-
line finds a solution to the problem without requiring any sensory input, other
than the image information representing the state of the system. This suggests
that the visual representation of the state of the system contains a wealth of infor-
mation that can be used to infer the explicit parameters required by a conventional
controller, such as the exact position of the cart and pole.

8.3 BIPEDAL-LOCOMOTION CONTROL

Another interesting application of neural-network control was developed by D.
M. A. Lee and Professor W. H. ElMaraghy [5] of the University of Western
Ontario, in Canada. In this application, Mssr. Lee and Dr. EIMaraghy created a
dynamic model of a bipedal walking device, and then developed a scheme to use
two BPNs to control the application of torque to the hip joints, thus enabling the
biped system to “walk.”

While the walking device described in their paper was never actually built,
Lee and ElMaraghy simulated the dynamic model of the walker on a computer.
Their results show how an adaptive neurocontroller can provide a more robust
control response than conventional control techniques. Indeed, the ability of the
neurocontroller to generate the control response needed to keep the system stable,
even when presented with situations that were not anticipated in the training
scenarios, is quite impressive.

8.3.1 Biped Dynamic Model

Modeling all of the dynamics associated with bipedal locomotion in three dimen-
sions is an awesome problem. Even a simple model must account for any roll,
pitch, or yaw induced in the body mass, the interaction between the application
of torque at the hip joint and the response of the legs at the knees and foot, the
interaction between the mass of the foot and contact with the ground, and the
weight transfer between the legs as the biped strides. To simplify the dynamics of
the model, and hence the control system for their experiment, Lee and ElMaraghy
limited their investigation to a biped walker constrained to the sagittal plane. They
further simplified their dynamic model by

¢ Considering the legs to be kneeless.

* Lumping the head, arms, and trunk of the walker into a single body mass.
¢ Considering the feet to be massless.

* Assuming instantaneous support exchange between the right and left legs.
¢ Traversing only level terrain.

8.3 Bipedal-Locomotion Control 229

(b) mpo, J2
[<> e E—
I2
@)
/
1 o /\
k3
ms, J3)

m1, J1

Figure 8.10 The bipedal walker model described in the text is illustrated in these
figures. (a) This figure shows the interpretation of the forces and angles utilized by the
model from a system perspective. (b) An exploded view of the model, illustrating the
details of each mass and the parameters used to construct the model. Source: Adapted
from A neural network solution for bipedalgait synthesis [5]. Used with permission.
Copyright ©1992 IEEE.

Mass Mass Moment of Inertia Length
1, =0.933m
my = 12.2kg J; =0.697kg - m? ki =0.546m
my =49.0kg Jr =2.350kg - m? I, =0.280m
m3=12.2kg J3 =0.697kg - m? I3=0.933m
k3 =0.546m

Table 8.1 This table contains the physical parameters used to model the biped walker.
The interpretation of these data is in the text.

The model of the walker used by Lee and ElMaraghy is depicted in Fig-
ure 8.10, and the values used to describe the physical characteristics of the model
are presented in Table 8.1. The equations describing the dynamics of the model
are derived in Mssr. Lee’s master’s thesis [4], which we shall not replicate here,
for brevity.

The biped walker described by this model propels itself forward by applying
a torque to the legs in alternating hip joints. The leg in contact with the ground
supports the weight of the walker while the other leg swings into position for
the next stride. When the swinging leg contacts the ground surface, two things
happen simultaneously: The velocity of the moving leg is instantly reduced to
zero, which induces a reactive force in the body mass, and the weight of the biped

230 Process Control and Robotics

is transferred from the rearward leg to the forward leg. After completing one
forward stride, control switches to the forward leg, allowing the biped to mirror
its actions, which results in another forward stride. The entire process repeats
indefinitely, halting only when the walker stumbles and falls.

8.3.2 Controlling the Biped

From the previous description of a bipedal walking device, let us now consider
the strategy employed by Lee and ElMaraghy to control the gait of the biped.
They assumed that the biped was initially provided with a “kick-start” impetus
to initiate its gait. Once started, the momentum from the previous step, coupled
with the torque provided by the system controller was used to sustain the gait
and balance of the biped. Using conventional linear control methods, a controller
was developed to generate the torques required to sustain a specific gait; however,
because the biped is an inherently unstable dynamic model and the controller was
designed using a linear approximation of the system, the conventional controller
could only sustain the gait for a few seconds.

At this point, Lee and ElMaraghy modified the architecture of the control
system to incorporate two BPN neural networks as adaptive control elements. As
shown in Figure 8.11, each network learned to control the application of torque to
a specific leg by observing the output of the linear controller and correlating that
output to the state of the system.

For training purposes, the system state was sampled at 10 millisecond inter-
vals. At each discrete time step, the state of the system was captured and repre-
sented as a six-element vector, x(¢), of the form

X(t) = 01(1), 61(1), 62(1), 62(2), 63(1), 63(1) (8.22)

where 0;(¢) represents the angle of the left leg with respect to the vertical, 6,(¢)
indicates the angle of the body mass, 63(¢) represents the angular position of the
right leg, and the time rate of change for each measurement is indicated by the
derivative notation. For each input state pattern, the corresponding output from
the two conventional controllers (N, N4) was captured and stored as the target
output vector.

8.3.3 Control-State Representation

In their paper, Lee and EIMaraghy do not discuss how they chose to represent the
state information for the neurocontroller. They allude to the use of one unit for
each parameter, but, as we shall now describe, that simple representation poses
a slight problem. Let us diverge from our architecture discussion for a moment,
then, and consider the problem of data representation for the neural network.
Please note that the scheme we suggest here is most likely different from the
technique employed by the original authors.

8.3 Bipedal-Locomotion Control 231

Linear | Initial
Controller 1 [Conditions
2
4 >~ Biped >
Left Leg
Leg Support
Exchanger
|
Right Le
g 9 \ Feedback Loop

Figure 8.11 The architecture developed to train the neural-network gait controllers is
shown. In this diagram, the output of the linear controller is used as the target output
for the neural network. The state of the system, indicated by the feedback loop, is
simultaneously fed to the linear controller and the neurocontrollers. Thus, the neural
networks “learned” to mimic the response of the linear controller for a variety of
situations. Source: Adapted from A neural network solution for bipedalgait synthesis [5].
Used with permission. Copyright ©1992 IEEE.

Because we have elected to represent the state of the biped as a set of specific
measurements, we must find a way of representing that information in a form
usable by the BPN we have selected. For this application, each parameter was
measured in degrees from the vertical, while the velocity parameters are indicated
in degrees per second. Thus, each measurement could legally take on a value
between zero and 359.

Practically, however, angles larger than 90 degrees are never encountered,
unless the biped toppled over. Because the vertical axis was chosen as the ref-
erence, we can use the scheme suggested by Lee and ElMaraghy, which is to
represent as positive those angles that are to the right of vertical, and as negative
those angles to the left of vertical.

To convert these data into a format suitable for use by the neural network, we
could simply scale the parameter to a value between zero and one. This approach
is complicated by the fact that we cannot know beforehand the maximum or min-
imum values for each parameter. For example, during normal operation, the angle
of the leg may vary between —20 degrees and +20 degrees. Using the by-now fa-
miliar scaling technique, we would call the positive 20-degree measurement the
+1 limit, and the negative 20-degree measurement the 0 limit.

232 Process Control and Robotics

\Nww/
58

902 20° -202¢° 20 - 90

o
Figure 8.12 This diagram illustrates the use of multiple input units to represent different
ranges of input values. Using this scheme, each input parameter (e.g., 6;(¢)) would be
represented by four input elements.

~

6 (t) =30°

However, when the biped stumbles, the angle of the leg may jump to 70 de-
grees or more. Using our scaled representation, that measurement would produce
a scaled input of +3.5. Because we must maintain input values between zero and
one, however, we must come up with another scheme.

One method for overcoming the scaling difficulty is to use multiple input
units to represent different ranges of input values, and scale the inputs to each of
these units between the minimum and maximum values of the ranges. This idea
is illustrated in Figure 8.12. Using this scheme, we could use four input units
to represent all possible values for the leg angle: The first unit would represent
angles between —90 degrees and —20 degrees; the second unit would encode
angles between —20 degrees and 0 degrees; the third unit would indicate angles
between O degrees and +20 degrees, and the fourth unit would indicate angles
between +20 degrees and +90 degrees. Note that there is no requirement that the
range of values represented by the four units be uniform.

8.3.4 Training the Neurocontroller

Lee and ElMaraghy reported collecting 7,584 training exemplars for each net-
work. At the sampling rate cited, this represents almost 76 seconds of data pro-
duced by the conventional controllers. From this, we can deduce that the training
data must have been collected over many simulations, as the authors indicate that
the conventional controller could not maintain the gait for more than two seconds
before the biped became unstable and fell.

The two neurocontrollers (again, one for each leg) were trained simulta-
neously on a Sun Sparcstation computer system. Training required 50 hours of
computer time for the networks to converge on a solution.

8.3 Bipedal-Locomotion Control 233

8.3.5 Results of the Experiment

Once trained, the neurocontrollers were enabled and the output from the con-
ventional controller was disabled. The biped simulation was then initiated by
applying the initial impetus vector,

xo(1) = 17.0°,70.2° /sec, 0°, 0°/sec, 17.6°, 75.8°/sec (8.23)

which corresponds to a leg stride of 0.544 meters and an average forward speed
of 0.853 meters/second.

The neurocontroller was able to sustain the gait consistently for more than
25 seconds. Even more fascinating is the observed response of the neurocon-
trollers in periods of high instability. Lee and ElMaraghy report that, approxi-
mately seven seconds into the simulation, the biped slows and the upper-body
mass begins to topple backward. However, the neurocontroller is able to avert the
unstable condition by applying the leg torque needed to compensate for the sit-
uation. As a result, the biped continues walking for another 19 seconds before it
fails.

In this simple experiment, the neurocontroller-based biped simulation con-
sistently outperformed the conventional controller by a wide margin. Figure 8.13

Right Leg Angle
I
o
o

|
T AN LA
WALVARAN

-20.0 |

2.0 10.0

Time (sec)

Figure 8.13 This graph illustrates the observed performance of the right leg controller
for the biped simulation. The heavy line represents the response of the leg to the
neurocontroller, and the thin line indicates the performance of the conventional
controller. Notice the stability of the neurocontroller and its ability to compensate in
an unstable situation. Source: Adapted from A neural network solution for bipedal gait
synthesis [5]. Used with permission. Copyright ©1992 IEEE.

234 Process Control and Robotics

illustrates the performance graphs for the neurocontroller and the conventional
controller for the first 10 seconds of the simulation.

Perhaps even more intriguing is the visible image of the walking biped.
Given the static nature of paper and ink, it is difficult to convey the subtleties of
the interaction between legs and body, each working together to maintain a stable
gait. However, watching such a simulation as it is running, when the image of the
biped appears on the video screen in animated form, is remarkably similar to the
experience of watching a child take its first steps.® In Figure 8.14 we illustrate the
dynamics of the walking biped.

8.4 ROBOTIC MANIPULATOR CONTROL

In the previous section, we saw how a neural network could be used to control
the application of a control force to a robotic device to maintain the stability
of the robot. We shall now investigate the use of a neurocontroller to solve the
inverse-kinematics problem in a simple robotic manipulator. We shall begin with
a description of the problem domain, describing the mathematical models of the
robotic system that we seek to control. Then, we shall describe how researchers
Jenhwa Guo and Vladimir Cherkassky [2] of the University of Minnesota devel-
oped a neurocontroller based on the Hopfield memory model to implement an
effective control strategy.

8.4.1 Kinematics Model

Kinematics is the study of the geometry of a manipulator arm as it relates to the
position of the arm with respect to the movement of the manipulator linkages, or
Joints. In most robotic arm models, the position and orientation of the manipu-
lator is directly controlled by the movement of the joints. Yet, a typical control
model for such a manipulator, such as the one illustrated in Figure 8.15, has no
means of assessing the position of the arm in space. Rather, the control is based
on movement commands provided to the controller in the form of desired velocity
parameters for the controllable joints.

To construct a controller of this type, we must begin by describing our refer-
ence points for the manipulator. First, let q be the n-dimensional vector describ-
ing the desired movement parameters for a controllable joint with n degrees of
freedom, and x be the m-dimensional vector describing the position of the ma-
nipulator in m space. The general form of the kinematics equation describing the
relationship between q and x is given by

x=f(q) (8.29)

6. I'know my daughter will forgive me for the comparison, but I think the biped is significantly more
stable than she was when she took her first few steps.

8.4 Robotic Manipulator Control 235

T

B time

b

Figure 8.14 This diagram illustrates the gait of the biped as it “learns” to walk. for
brevity, we have only illustrated the first five seconds of the simulation. Source: Adapted
from A neural network solution for bipedal gait synthesis [5]. Used with permission.
Copyright ©1992 IEEE.

Position

Command Motor Drive

Signals
9 -

Movement | g Motor
Computation Control

Motor -———————————
Response

Figure 8.15 A block diagram illustrating a typical control model for a robotic
manipulator system is shown. The response of the model is described in the text.

We assume here that the mapping function, f(q), is a continuous, nonlin-
ear function with a well-understood structure. The inverse-kinematics equation,
given by

q=f"'® (8.25)

is then simply the inverse mapping function from Cartesian space position to joint
movement command.

236 Process Control and Robotics

Figure 8.16 This diagram illustrates the inverse-kinematics problem in robotic arm
control. The joint shown in this diagram has three degrees of freedom. We want to move
the manipulator at the end of the arm from its current position in two-dimensional space
to point x. Because the arm has more degrees of freedom than the dimension of the
movement space, we have several alternative control vectors that we could use to cause
the arm to move to the desired position. This means that the proper control vector must
be determined numerically, because there is no closed-form method to determine the best
alternative.

Considering the nature of the problem, it is easy to see the difficulty in
determining the appropriate command vector q(r) needed to move an arm to
an arbitrary position, x: While the target position of the manipulator is fixed
in Cartesian space, there are cases where there are many different movement
commands that produce the desired end position. As shown in Figure 8.16, the
problem for the system controller is how to determine beforehand the command
vector that is going to produce the best results with minimal wasted motion.

For those cases where a closed-form solution to Eq. (8.24) does not exist,
Guo and Cherkessky suggest using a technique based on the differential motion
between the joint displacements and the target location. Specifically, they let

x=J(q)q (8.26)

where q and x are joint and Cartesian velocities, respectively, and J (q) is the
m x n Jacobian matrix determined by 3f/dq.

Using this formulation, for cases where J is square and nonsingular,’ the
actuator velocity vector, q, can be determined by

7. When the manipulator is nonredundant, meaning m = n, and the system has no closed-form solu-
tion, the Jacobian matrix will be square and nonsingular.

8.4 Robotic Manipulator Control 237

q=J"'x (8.27)

Similarly, when the manipulator is overcompensated,® Eq. (8.26) can be inverted
as

q=J"(q)x (8.28)

where J1 is the Moore-Penrose pseudo-inverse of the Jacobian matrix, and is
given by

JF=JTgIH! (8.29)

From these relationships, Guo and Cherkassky develop an energy equation
similar to Hopfield’s traveling salesperson energy equation. Specifically, they
begin by formulating an energy equation that minimizes least-mean squared error
in the Cartesian velocity vector, given as

(IO .2
E=3 ;(x;’ — %) (8.30)
where)'c,.d is the desired Cartesian velocity component. Then, from Eq. (8.26),
n
xi=Y_Jijg (8.31)
j=1

where J;; is a function of joint displacements. By combining Eqs. (8.30) and
(8.31), Guo and Cherkassky derive the energy function for the system as

1 ¢ .. 1. I
E:—EZ]}jqiqj—EZIjqj+§Zx (8.32)
J=1 j=1 i=
i=1
where
m
Tij=—ZJIiJ1j
=1
and

m

_z : 34

Ij— J,jx,»
i=1

8. An overcompensated manipulator is characterized by the conditions m < n and rank(J) = m.

238 Process Control and Robotics

Guo and Cherkassky then implement a novel version of the Hopfield memory
by defining a method of adapting the connection weights of the network over
time. They accomplish this feat by taking the derivative with respect to time of
Eq. (8.32) and simplifying, to produce a dynamic equation that can be used to
describe the temporal evolution of the network connection weight matrix. Specif-
ically, they define the energy function for the network as a function of time,
given by

dg < .
———Z TS Tgs+ 1 (8.33)
j=1

If we further assume that k; is an arbitrary, positive value, Guo and Cherkassky
assert that the equation governing the time evolution of each network unit is given
by the equation

dg;
q = ZT,jq,H (8.34)

Inspection of Eqs. (8.33) and (8.34) reveals that the energy function for
the system is always negative; hence, the energy in the system will always de-
crease as time progresses. This observation confirms that the mathematical con-
trol model suggested by Guo and Cherkassky can indeed by implemented as a
Hopfield memory. We shall now investigate this method of implementation.

8.4.2 Neurocontroller Design

As you recall from Chapter 2, the Hopfield memory is a neural-network structure
comprised of a single layer of processing elements with connections that feed
back into all other units in the network. External inputs are supplied, one to each
unit, and the network is then iterated until the units achieve a stable state. Once
stabilized, the output values from each unit are interpreted in a manner indicated
by the particular application.

To design a Hopfield model neurocontroller for the inverse-kinematics prob-
lem, we shall consider an arm that has n degrees of freedom; that is, the arm shall
contain n joints, each of which has the ability to rotate in at least one direction.
From the original statement of the problem, we know the desired end position
of the manipulator, and we need to know the command vector for the arm that
will produce the desired end position. Because we have chosen to cast the prob-
lem with respect to velocity parameters for each robotic joint, we shall model the
Hopfield memory such that the steady-state output from each unit in the network
is interpreted as the appropriate velocity indicator for a corresponding joint. This
neurocontrol model is illustrated in Figure 8.17.

From Eq. (8.34), we can see that the state of each Hopfield unit is determined
by the external input, /;, and the sum of the outputs from all units, ¢ j» through

8.4 Robotic Manipulator Control 239

vy (t) v2(t) v3(t) v (t) v, (t)
\ \] \ [\ I
\\ !\// I}\V/ N
\UTTA A TR

-

Iy Iy I3 14 I n

Figure 8.17 This diagram illustrates the use of a Hopfield memory to control an n-
degree-of-freedom robotic arm. The output from each unit in the network is interpreted as
the velocity parameter for its corresponding joint, after the network has achieved its stable
condition.

their corresponding connection weights, 7;;. From our earlier definition of Tjj,
we know that the connection weights in the network are determined by the Ja-
cobian matrix from the energy equation. Thus, at every discrete time step in the
simulation of the network, we simply update the connection weights and input pa-
rameters based on the state of the controller, and perform one signal propagation
through the network. We repeat this process for each time step until the network
stabilizes. At that point, the energy function, and hence the controller error, has
been minimized, and the output values from the processing elements can be used
to control the movement of the arm joints.

Guo and Cherkassky provide no indication of how input and output values
should be scaled to provide the appropriate control signal. However, this is not
a critical issue for our purposes, because the range of values needed to control
the arm will depend on the physical implementation of the controller. We need
only recognize that it may be necessary to scale input and output values to values
between —1 and +1, to limit the magnitude of the signals propagated through the
Hopfield network.

8.4.3 Neurocontroller Results

In order to understand the performance of the neurocontroller developed in the
previous section, Guo and Cherkassky compare the Hopfield formulation of the
control equations with the model of a closed-loop dynamic system. Specifically,
they rewrite Eq. (8.34) as

240 Process Control and Robotics

% =k(=JTJq + %9 (8.35)

=—kJT(x — x%)

by substituting the definitions for T;; and I; in Eq. (8.34) and simplifying. By then
substituting the formulation of Eq (8.35) into the energy equation for the system,
they obtain

% =—-x—xHTJKJT(x — x%) (8.36)

< —osrk|x — x9)? (8.37)

where o, is the minimum eigenvalue of JJ Tand A k 1s the minimum eigenvalue of
K. Inspection of Eq. (8.37) indicates that as A increases, network convergence
time decreases, thus producing a very rapid solution with the neurocontroller.

The operation of the controller was tested using a four-degree-of-freedom
(n = 4) robotic arm simulation moving in a planar environment (m = 2). For
K j = 10, the Hopfield network converged on a solution in 20 milliseconds, and,
for K; =20, a solution was achieved in 10 milliseconds. In both cases, the error
produced by the neurocontroller was less than 0.05 degrees/second. Also, as you
might expect, the solution obtained was independent of the degrees of freedom in
the arm, a distinct advantage over conventional numerical techniques.

8.5 CONTROL-APPLICATION SUMMARY

In this chapter, we have examined several process-control applications that use
neural networks in place of the conventional, analytical models. We have seen
how neural networks offer a means of rapidly developing applications that solve
the desired control functions without requiring a major investment in time and
effort, as would be required to develop the equivalent analytical system models.
Furthermore, we have shown how neural networks have been used successfully to
address control problems that were previously viewed as intractable, either from
an analytical perspective, or from an implementation point of view.

This is not to say that neurocontrollers will make all conventional control
applications obsolete. They will not. However, in many applications it is prudent
to develop models of a system that can be rapidly, and cost effectively, evaluated.
Under such circumstances, neurocontrollers may offer a good prototyping tool.

Even in those applications that require extensive analysis in order to develop
precision control systems, the use of neural networks to model an application
prior to analysis can provide insights to the system designer that might otherwise
be overlooked. Adaptive networks tend to find their own methods for encoding
relationships between system input and output during learning. If we invest a little
time and effort to “dissect” a trained network, we may discover that the internal
representation scheme developed by a trained network is not far removed from

Bibliography 241

the method that a detailed system analysis would indicate as the optimal method
for controlling a system. If so, the use of neural networks could save quite a bit of
time in the early stages of process-control system design.

SUGGESTED READINGS

The literature contains many papers describing control-systems applications of
neural networks. We have only touched on the topic in this chapter. Readers
interested in learning more about conventional control methods are referred to
two excellent texts on the subject: Industrial Process Control Systems, by Dale
R. Patrick and Stephen W. Fardo [8], presents a solid theoretical foundation of the
technology; and Understanding Electronic Control of Energy Systems, by Don L.
Cannon and Gerald Lueke [1], provides a thorough examination of the practical
issues of the technology.

Readers interested in investigating the fundamentals of robotics and robotic
control systems are referred to the text by Matthew T. Mason and J. Kenneth Sal-
isbury [6], which describes the foundations of robotic manipulators. With regard
to neurocontrol applications, the best texts currently available are the annual pro-
ceedings of the Neural Information Processing Systems, Natural and Synthetic
(NIPS) conferences sponsored by the IEEE. Each year, approximately one dozen
excellent papers are published in those proceedings describing practical applica-
tions of robotic neurocontrol. Another good source for technical papers pertaining
to robotic neurocontrol is the proceedings of the IEEE Conference on Neural Net-
works, published annually by the IEEE press.

BIBLIOGRAPHY

1. Don L. Cannon and Gerald Lueke. Understanding Electronic Control of Energy Sys-
tems, Charles W. Battle, editor. Texas Instruments, Dallas, TX, 1982.

2. Jenhwa Guo and Vladimir Cherkassky. A solution to the inverse kinematics problem
in robotics using neural network processing. In Proceedings of the International Joint
Conference on Neural Networks, Washington, DC, pp. 11(299-304), June 1989.

3. Robert Hecht-Nielsen. Neurocomputing, Addison-Wesley, Reading, MA, pp. 342-344,
1990.

4. D.M. A. Lee. A Neural Network Approach to Biped Locomotion and Postural Stability.
M.E.Sc. Thesis, The University of Western Ontario, London, Ontario, Canada, May 1991.
5. D. M. A. Lee and W. H. EIMaraghy. A neural network solution for bipedal gait synthe-
sis. In Proceedings of the International Joint Conference on Neural Networks, Baltimore,
MD, pp. II(763-768), July 1992.

6. Matthew T. Mason and J. Kenneth Salisbury, Jr. Robot Hands and the Mechanics of
Manipulation. MIT Press, Cambridge, MA, 1985.

7. O.Mayer. The Origins of Feedback Control. MIT Press, Cambridge, MA, 1970.

242 Process Control and Robotics

8. Dale R. Patrick and Stephen W. Fardo. Industrial Process Control Systems. H. W. Sams
Publishing Company, Indianapolis, IN, 1979.

9. Lennart Rade and Bertil Westergren. Beta Mathematics Handbook, second edition.
CRC Press, Boca Raton, FL, 1989.

10. Viral V. Tolat and Bernard Widrow. An adaptive ‘broom balancer’ with Visual Inputs.

In Proceedings of the International Conference on Neural Networks, IEEE Press, New
York, NY, pp. 11(641-647), July 1988.

11. Bernard Widrow. The original adaptive neural net broom balancer. In Proceedings of
the International Symposium on Circuits and Systems, pp. 351-357, May 1987.

C H A P T E R

==

Fuzzy Neural Systems

In this world, nothing is certain but death and taxes.

— Benjamin Franklin

Life is replete with ambiguity. We all make countless daily decisions that are
based on incomplete, or inexact information, unconsciously acknowledging the
fact that life experiences are rarely black or white, on or off, or yes or no. Often,
our judgment is influenced by our own situation. For example, if asked to de-
scribe my physical appearance, I would probably use any (or all) of the following
phrases:

Medium build, average height, dark hair.

From these phrases, you have likely constructed a mental image of my appear-
ance. But how does your imagined image compare to my true appearance? What,
exactly, constitutes average height? If you are an American, the phrase average
height probably means that I am somewhere between 170 and 180 centimeters
(cm) tall. If you are Japanese, however, average height probably means that I
stand somewhere between 160 and 170 cm tall. Because you (probably) do not
know my heritage, it is very likely that each reader will have a slightly different
impression of my appearance. This example only touches on the diversity of life
in the real world.

Yet, almost paradoxically, we have insisted on creating computing systems
that operate on binary information, systems that interpret and manipulate ob-
jects in the real world based on decisions that can only be cast as true or false.
Obviously, we have excluded, or at least complicated, the automatic process-
ing of many real-world applications, simply because the information is difficult
to represent in a binary form. This is not to say that computing systems cannot
be programmed to address these applications—many such systems have already
been created. However, when building any system, it always makes sense to use
the proper tool for the job.

243

244 Fuzzy Neural Systems

In previous chapters, we have shown how neural networks have provided an
alternative technology in many real-world applications. In several of the examples
we have studied, the neural network was used to perform a subfunction in the
overall system operation. The particular service performed by the network was
the piece of the application that was best suited to interpretation, in that the infor-
mation to be processed by the network was imprecise, incomplete, or otherwise
imperfect. In this chapter, we shall explore the integration of neural networks and
fuzzy logic, two complementary technologies that are designed to process non-
binary information. In so doing, we shall show how the combination of these
two technologies can provide system solutions that are much more appropriate
in many real world applications, and, hence, much less complex.

We shall begin with an overview of fuzzy logic, to introduce the concepts
underlying that discipline, and to show how fuzzy systems are constructed and
used in real applications. Following that, we shall begin our investigation into the
integration of fuzzy logic and neural networks, showing how the combination of
these technologies can produce synergistic results.

9.1 FUZZY LOGIC

How many grains constitute a pile of sand? One hundred? One thousand? From
another perspective, if we start with a pile of sand, how many individual grains
can we remove before it ceases to be a pile? Obviously, there is no exact answer
to any of these questions. This implies that there is no exact truth in the concept
of a pile of sand. There are, however, varying degrees of truth. A half-depleted
pile of sand is still a pile, just not as big as it was before we started removing
sand. This is the essence of fuzzy theory: All things are a matter of degree.

Fuzzy logic, however, is a mathematical technique for understanding, and
controlling, specific manifestations of fuzzy theory. It is based on the logical
manipulation of continuously variable truth values. As first described by Jan
Lukasiewicz [7] in the 1930s, the truth in any assertion can be indicated by a real
number in the range [0, 1]. More precisely,

t : {Assertions} — [0, 1] “.1)

where 7 : {x} is the function that indicates the truth of the assertion x [5].

In 1965, Lofti Zadeh [10] published a paper that formally developed the
multivalue set theory that has come to be known as fuzzy logic. In that paper,
Zadeh showed how the bivalent indicator function, I 4 of nonfuzzy subset A of
X, which is given by

1
Ih(x) = ifxeA

0 otherwise ©-2)

could be extended to the multivalued indicator function, w4 of fuzzy subset A of
X, given by

9.1 Fuzzy Logic 245

ualx): X — [0, 1]. 9.3)

The significance of the multivalued indicator function, which is also known
as the membership function for fuzzy sets, is that it allows us to combine fuzzy
sets using the standard logic operators, and to measure the degree to which any
fuzzy element x belongs to set A. For example,

mang(x) =min(J4(x), Ip(x)) 9.4)
paug(x) = max(la(x), Ip(x)) 9.5
uz(x) =1—palx) 9.6)
ACBIiff ua(x) <pp(x), VYxinX 9.7
ua(x) =Degree(x € A) 9.8)

9.1.1 A Fuzzy Example

The relationships described in Egs. (9.4 through 9.8) tell us how we can logically
manipulate objects contained in fuzzy sets to evaluate the certainty in any asser-
tion. Before we can apply any of these rules, we must establish a specific context
for the application. The context of the application defines the universe of dis-
course for the fuzzy set, which ensures that any meaning that we might assign
to the hedges, or fuzzy subsets, used in classifying the fuzzy set are consistent
throughout the analysis.

For example, consider the fuzzy set describing ambient temperature. The
hedges we shall use to develop a fuzzy set for this application are Low, Medium,
and High. As shown by the graph in Figure 9.1, these three fuzzy categories
overlap each other, such that, within certain ranges of temperature, a specific
temperature could simultaneously be considered Low and Medium, or Medium
and High.

9.1.2 Possibility Theory

In statistics, the probability of an event describes the likelihood that a specific
event will occur, all other factors being equal. It is an exact method, appropri-
ately applied when all possible situations that can occur in a given event can be
uniquely identified. For example, the probability that an evenly balanced coin
will turn up heads on any given coin toss is exactly 50%. Similarly, the proba-
bility that any specific play, denoted by x;, will win the Texas State Lotto, where
a player must match six different numbers between 1 and 50 with six numbers
from the same range selected randomly, in any order, is given by

6!
plx;) =

T (50!/441) ©9

246 Fuzzy Neural Systems

(@)
X)
high
(b)
0.0 Temperature
o X)
1.0 high
()
O;'io Temperature
1.0 H ?ﬁ%d
(d)
0.0 Temperature

Figure 9.1 These graphs show the relationship between ambient temperature values
and the fuzzy categories called Low, Medium, and High. In all of these graphs, notice the
relationship between the fuzzy set operators defined by Egs. (9.2 through 9.6) and the
membership curve as x varies. (a) This graph illustrates the temperature distributions with
respect to the fuzzy categories. (b) This graph shows the union, or logical disjunction,
between the Low and Medium fuzzy categories. (c) This graph shows the intersection, or
logical conjunction between the Medium and High fuzzy categories. (d) This graph shows
the negation, or logical complement, of the Medium category.

This equation says that there are exactly 15,890,700 different combinations of six
integers in the range from 1 to 50. The chance that one specific combination cho-
sen on a particular play will match the six randomly selected digits is therefore
exactly one in 15,890,700.

There are other constraints on probability theory, all grounded in statistics.
One such constraint is that the probabilities associated with each unique situation
in a random event must sum to one; otherwise, the event is not truly random. This
constraint also ensures a specific, and well-defined probability distribution for
that event.

However, possibility theory describes an elastic constraint on fuzzy vari-
ables. A possibility distribution differs from a probability distribution in that it is

9.1 Fuzzy Logic 247

nonstatistical. Moreover, a possibility distribution is usually derived empirically,
because it is often quite difficult to measure the truth content in any practical as-
sertion.

There are, however, relationships between probability and possibility. One
intuitive relationship is that impossibility implies improbability. Obviously, if
an event x; on the variable Y is impossible, then the probability of event x;
is zero. Another relationship is that a possibility distribution of a variable, Y,
forms an upper bound on the probability distribution of Y. These relationships
are embodied in the equations

my(xi) =0= py(x)) =0 (9.10)
py(xi) < my(x;) 9.11)

where the function my(x;) denotes the possibility of event x; on variable Y, and
the function py (x;) indicates the probability of event x; on variable Y.

Possibility theory also has its own set of constraints. As with probability,
where

Y G =1 (9.12)

possibility is constrained by the requirement that no value in the distribution can
ever be greater than one. In equation form,

max 7 (x;) <1 9.13)

An example will help clarify the distinction between these two concepts.
Suppose you sit down for breakfast one morning and find that eggs are being
served. Issues regarding health and cholesterol intake aside, the probability that
you will eat n eggs at that one meal is given by a Poisson distribution, as shown
in Figure 9.2(a). This graph says that it is quite likely that you will eat one egg,
and not very likely that you will eat more than three. Figure 9.2(b) illustrates the
possibility distribution for the same situation. This graph indicates, however, that
there is a very good possibility that you could eat as many as three eggs before
becoming sated. After that, the possibility quickly abates as it becomes physically
impossible to consume additional eggs.

In fuzzy systems, we use these possibility distributions on fuzzy variables,
which are also called measure of belief functions, to define the hedges in the
context of the fuzzy set. As an illustration, recall our earlier example of ambient
temperature. The three fuzzy hedges we had defined—Low, Medium, and High—
were actually the possibility distributions for each of these categories. If, for
example, the ambient temperature is 20° C, then, according to our hedges, there is
a 90% possibility that we would call the temperature Medium, a 60% possibility
that we would call the same temperature Hot, and a virtual impossibility that we
would call it Cold.

248 Fuzzy Neural Systems

(@)

0.0 - , : , ‘

0.0 , , . : : . ; <
1 2 3 4 5 6 7 8

Figure 9.2 These graphs illustrate the differences between probability and possibility.
(a) The probability distribution with respect to number of eggs consumed at one meal.
(b) The possibility distribution for the same scenario.

9.1.3 Fuzzy Reasoning

Fuzzy reasoning is usually performed in a three-step process. First, the crisp
variables, which are the precise measurements describing the current state of the
system, are acquired and fuzzified. Second, knowledge, usually in the form of
fuzzy rules, is applied to the fuzzified variables, in order to determine the proper
course of action. Finally, the outputs from the reasoning logic are defuzzified,
and are used to control the response of the system.

The reasoning logic, which is performed in the second step of the process
described above, is the heart of a fuzzy system. Because we are concerned with
systems that measure the truth of the situation as a matter of degree, we shall
apply a generalized form of the modus ponens [8, 9] reasoning to infer the rela-
tionships between the fuzzy variables and control the application of rules in our
fuzzy system.

The modus ponens rule of inference says that if we are given a truth relation-
ship between two facts and that one fact is known to be true, then we may deduce
the second fact. This rule is usually written as

Given A— B
A

Deduce B 9.14)

9.1 Fuzzy Logic 249

y
1.0 —

yl--—-————~——-__.__.__.

0.0

X X

Figure 9.3 This graph illustrates the process of determining the truth content in a fuzzy
assertion. The vertical axis on the graph represents the belief in the assertion, while the
horizontal axis indicates the values the assertion may take on. The possibility function is
shown as the curve on the graph. Given this possibility function, for the specific assertion
x;, the truth value is determined by evaluating the possibility function at x;. as shown in
the graph, the result is y;.

In fuzzy logic, we generalize the modus ponens rule of inference to allow us
to deal with continuously variable degrees of truth. Specifically,

Given A— B
Al

Deduce B’ 9.15)

where A’ is a fuzzy variable that partially matches A. In this case, if we know
that A is partially true, then we can infer that B is also partially true. But this
inference begs the question: How true is partially true?

The most common, and general-purpose, technique for determining the truth
content in a fuzzy inference is, quite simply, to use the possibility function for
each variable as the truth index for an assertion. Assuming that the possibility
function provides a reasonable approximation of the belief in an assertion, we
can quantify the truth value for a specific assertion by evaluating the possibility
function at the specified value. This process is illustrated in Figure 9.3.

Now that we have established the mechanism of inference in our fuzzy sys-
tem, let us consider how we might use that mechanism to implement a form
of fuzzy reasoning. As we indicated earlier, fuzzy rules embody the knowledge
that governs the action of the system. These rules are usually constructed as self-
contained IF-THEN modules, where the IF clause captures the conditions under

250 Fuzzy Neural Systems

which the rule is valid, while the statements following the THEN indicator con-
trol the resulting action. For example, consider the following fuzzy rules:

Rule I: Rule 2:
IF Temperature is High IF Temperature is High
AND Fan Speed is Slow OR Fan Speed is Fast
THEN Fan Speed = Medium THEN Fan Speed = Medium

What makes these rules useful in controlling a fuzzy system is that each rule
describes the course of action to be taken under a certain set of circumstances.
But how do we determine when the prescribed circumstances are satisfied? To do
so, we must have a means for combining fuzzy indicators to determine our belief
in the assertions that define each rule.

9.1.4 Combining Fuzzy Indicators

Inferring responses based on a single indicator, as described by the generalized
modus ponens rule of inference, is a very straightforward method of reasoning,
albeit very simplistic. The most significant problem with this approach is that it
does not allow for interrelationships between fuzzy indicators. We shall correct
that deficiency by taking advantage of the fuzzy-membership rules described by
Egs. (9.4 through 9.6). Before we can apply these rules, however, we must decide
how we shall determine the truth content in multiple fuzzy indicators. As shown
in Figure 9.4, there are three methods for accomplishing that goal:

* Max-Min inference clips the output of each of the membership functions at
the truth level of the assertion.

* Max-Av inference averages the level of membership with the belief level in
the assertion.

* Max-Dot inference scales the output memberships by the belief value for the
assertion.

In the ensuing discussion, we shall focus on the max-min technique, although
the processes that we shall develop would be appropriate for all three inference
methods.

To determine the truth value of Rule 1, the possibility functions for each
assertion are clipped at the value indicated by the crisp variable. The resulting
belief functions are then combined through application of the appropriate logic
rule. In this case, we apply Eq. (9.4) because of the conjunctive relationship
between the assertions. This process is illustrated in Figure 9.5.

9.1.5 Fuzzy Inference Across Multiple Rules

The technique just described for fuzzy inference is adequate when there is only
one rule in the system. To allow multiple rules to exist in a fuzzy environment, we
shall modify our inference technique slightly, to allow us to combine the belief

9.1 Fuzzy Logic 251

1.0 —L A
Ua(x) —

@ g — —f—

H4(x)

0.0

1.0 T
H3(x) \—
(b) Ho(X)
Hq(x)
0.0

1.0

H3(x)

© ppx)
Hq(x)

0.0

Figure 9.4 These diagrams illustrate the process of determining the truth content across
multiple fuzzy assertions. (a) The max-min technique clips the output of each membership
function. (b) The max-av method averages the membership values. (c) The max-dot
approach scales the membership values.

values obtained across multiple rules. Be aware, however, that a fuzzy system
may contain many rules dealing with different aspects of the system operation. In
this discussion, we are only concerned with combining rules that operate on the
same fuzzy output parameters.

The approach we shall take for combining fuzzy inferences is to geometri-
cally average the belief functions obtained from each inference. We perform the
averaging function by disjunctively combining the two-dimensional shapes of the
inferred belief functions, then by finding the centroid of the combined shape. The
centroid is then used to determine the crisp output of the inference, in a manner
identical to the process of defuzzifying the inferred output from a single fuzzy
rule, a process that we described in the previous section, and illustrate in Fig-
ure 9.6 for our two example fuzzy rules.

This concludes our review of fuzzy logic. Obviously, this discussion has been
rather cursory. Readers interested in learning more about the technology will find
some excellent sources cited in the Suggested Readings section of this chapter.
We shall now show how the combination of fuzzy logic with neural networks
can produce systems that are better able to deal with uncertainty in real-world
applications.

252 Fuzzy Neural Systems

28°c Temperature

85 % Humidity

07 K (x)

0 fast
u (28) n u (085 =07
Temp Humidity

100 RPM Fan Speed

Figure 9.5 This diagram illustrates the process of combining fuzzy assertions, from
crisp values. We start by determining the truth in the first assertion in the rule, which, in
this case, indicates the current temperature. The belief function indicating temperature
is then clipped, or cut off, at the indicated truth value. The process is repeated for the
second assertion. We then take the minimum value of the truth indications, which is the
application of the logic rule, and use that belief to infer the corresponding belief in the
fuzzy output category. The crisp output of the inference is then obtained by determining
the value of the output that corresponds to its possibility function at the designated belief
value.

9.2 IMPLEMENTATION OF A FUZZY NETWORK

A fuzzy network is a neural-processing structure that emulates the fuzzy-logic
functions described by Egs. (9.4 through 9.6). In this section, we shall examine
an implementation of a fuzzy network that was originally described by a team
of researchers from the National University of Singapore [3]. As we shall show,
this implementation is not a neural network in the sense that it adapts to learn
the fuzzy operators. Rather, like the neocognitron networks described in Chap-
ter 6, these fuzzy networks are constructed to perform the desired fuzzy-logic
functions. However, the fuzzy-network model described in this section provides
a foundation for combining the two technologies. For that reason, these networks
are worthy of our study.

9.2 Implementation of a Fuzzy Network 253

A ho(tx) !/ A hia()r? A‘f‘ag}
. ﬂ‘ -

(x \ U (X
ﬂzoo ulogv) uslo()vy
\
. 5
25% 35 %
Temperature Humidity Fan Speed

Rule 2

Rul

60 +
RPM
Centroid

Figure 9.6 This diagram illustrates the process of performing a max-min inference over
two fuzzy rules. The top graph illustrates the fuzzy inference performed by Rule 1, while
the bottom graph shows the fuzzy inference produced by Rule 2. The centroid of the
resulting shape, shown below the two graphs, is then used to determine the crisp output of
the inference.

9.2.1 Fuzzy-Signal Interpretation

As with the conventional fuzzy-logic model, the neural implementation assumes
that there are n fuzzy sets, denoted as

P=P,P,....P,.... Py 9.16)

and that each set is a subset of the universe of discourse, which we shall refer to
as U. Further, we shall restrict each of the fuzzy subsets such that they can only
exist if, for any given element x of U, the corresponding membership functions
are known. We shall denote these membership functions as

p(x) = p1(x), p2(x), ..., pi(x), ..., pn(x) 9.17)

where the subscripts establish the association between the fuzzy sets and the
membership functions.

To implement the fuzzy-membership rules in a neural-processing structure,
we must begin by defining how the information flowing through the network
will be interpreted. First, we shall assert that the output signal produced by each
processing element in the network is analogous to the value of the appropriate

254 Fuzzy Neural Systems

membership function evaluated at a crisp input. In this manner, the input layer of
processing elements will hold the values of the fuzzy inputs to the network, and
the output produced by the network will be equivalent to the fuzzy combination
of the inputs performed by the network.

Because fuzzy-belief functions are continuously variable values in the range
from zero to one, we shall have no difficulty preparing the inputs for propagation
in the neural-network structure. We shall simply allocate one unit for each truth
value to be processed, and apply the fuzzy pattern p(x) to the input of the net-
work. As with many of the other neural-network models we have studied in this
book, we shall use the linear-activation function in each unit on the input layer.
The input layer will behave as a fan-out layer, simply holding the set of truth
values for propagation through the rest of the network, as in the BPN.

However, the connection weights in the network structure will be used to
control the flow of information through the network, and, hence, will provide the
basis for implementing the desired fuzzy-logic function. To complement the op-
eration of the connection weights, we shall now define the processing algorithm
that will be used by each noninput unit in the network to convert its input stimu-
lation to its corresponding output.

9.2.2 Fuzzy-Signal Propagation

Each processing element in the fuzzy network, like its counterparts in the other
neural networks we have studied, operates by combining input signals, then trans-
forming the aggregate input to a corresponding output. In the fuzzy network, the
algorithm employed to perform this processing is defined to mimic the evaluation
of the fuzzy membership rules described earlier in this chapter.

We start with the first unit on the layer connected directly to the input layer.
For each unit on the layer, we then perform the following five-step algorithm:

1. Input signals are reordered, along with their corresponding connection-
weight values, such that they are arranged in order of increasing magnitude;

that is,
p'(x) = pi(x), py(x), ..., pi(x), ..., ph(x) 9.18)

wo=wi, wh, . W, W) 9.19)

where each p,f (x) refers to exactly one of the original p;(x) membership
functions, under the constraint that

pi(x) < ph(x) < ... < pl(x)

Similarly, each w; refers to the weight associated with the connection run-
ning from the i™" input to the current unit.

2. Compute the difference in activation between neighboring pairs of input
units, and call the resulting vector q. This computation is defined by

9.2 Implementation of a Fuzzy Network 255

qiz{p;(x) ifi=1

pi(x) — pi_,(x) ifi>1 (9.20)

3. Combine the reordered connection weights, W/, to create an aggregate weight
for each connection, according to the equation

n
vi=y w 921
j=i

fori=1,2,...,n.

4. Threshold the new connection-weight values to the unit, v, by

=10 omerwise 022
fori=1,2,...,n.
5. Compute the output-membership function for the unit by
n
0= qi; (9.23)
i=1

When the processing has been completed on the current layer, continue prop-
agating information through the network by using the newly-determined output
values from the current layer as input to the next layer. The process is then re-
peated until the output layer has been completed. Once the signal-propagation
process has been completed, the state of the network indicates the results of all of
the fuzzy computations performed from the original inputs.

9.2.3 Fuzzy-Conjunctive Network

We shall now demonstrate the operation of the fuzzy-propagation algorithm for
the three fuzzy-logic functions described in Egs. (9.4 through 9.6). We shall begin
with the operation of the fuzzy-conjunctive network, shown in Figure 9.7.

To implement a fuzzy-conjunctive network, we set the connection weights
to 1/n. As we shall now show, setting the weights in this manner has the effect
of enabling only the first connection weight, which, according to our signal-
propagation algorithm, will gate only the minimum membership value to the unit.

We begin by first performing the reordering of the input pattern and asso-
ciated weighting values, as described in step 1 of the algorithm. The reordered
patterns in this example are, therefore,

p'(x)=04,0.5,0.8
w' =0.33,0.33,0.33

256 Fuzzy Neural Systems

SN

Figure 9.7 This diagram illustrates the architecture of the fuzzy-conjunctive network.
The operation of the network is described in the text.

In step 2, we compute the difference in activation between neighboring units.
We begin this computation with the first of the reordered activation values, and
proceed toward the maximum value. Thus, for this example, the difference vector
is computed as

q(x) =0.4, (0.5-0.4), (0.8-0.5)
=04,0.1,0.3
In step 3, we combine reordered connection-weight values according to Eq.
(9.21). Again beginning with the connection to the minimum-value input unit, we

compute the combined connection weights by proceeding toward the unit with
the maximum membership value.

v =(0.334+0.33 + 0.33), (0.33 + 0.33), (0.33)
=1.00, 0.67, 0.33

Next, we threshold the combined weights according to Eq. (9.22). The
thresholded weight vector for this example is, therefore,

V/=1,0,0

Finally, we compute the output for the fuzzy-conjunctive unit according to
Eq. (9.23). The result is the membership function for the conjunctive combination
of the three fuzzy-input measures.

9.2 Implementation of a Fuzzy Network 257

0=0.4(1) + 0.1(0) + 0.2(0)
=04

Evaluating Eq. (9.4) with original fuzzy-membership terms for this example,
we find that

P1n2n3(x) = min(0.5, 0.4, 0.8)
=04

which confirms the operation of the fuzzy-conjunctive network in this example.
Moreover, because we have reordered the original inputs such that the minimum
value always occurs first, we can see that any fuzzy network implemented with
connection values set to 1/n will always perform a fuzzy conjunction, because
the minimum value will be the only value allowed to pass.

9.2.4 Fuzzy-Disjunctive Network

The fuzzy-disjunctive network is almost identical to the configuration of the
fuzzy-conjunctive network. In fact, the only difference between the two networks
is the initial value of the connection weights we set in the network. To implement
a fuzzy OR, we must allow the network to compute the maximum of the member-
ship functions applied to the unit. As we shall now show, our fuzzy propagation
algorithm allows the network structure to perform this computation directly.

Recall from our previous discussion of the fuzzy-propagation algorithm that
each unit has, as its input, the difference vector of input-membership values.
Because the original inputs to the network are reordered in increasing-magnitude
sequence prior to computing the difference vector, we are, in effect, creating a
sequence of values that express the algebraic difference in magnitude between
the maximum value and zero.

To illustrate this idea, consider the sequence

X=x1,%X2,...,%p

where each value of x; increases (or stays the same) as the previous value. In
computing the difference between adjacent elements, we are creating a sequence
of difference values between zero and one, as indicated by

X' '=(x1 = 0), (x2 = x1), (x3 = x2), ..., (Xpn — Xp—1)

If we then algebraically sum the differences, as Eq. (9.21) requires us to do,
we obtain the maximum value from the original set. This can be shown by

258 Fuzzy Neural Systems

b

Figure 9.8 This drawing illustrates the architecture of the fuzzy-disjunctive network.
The operation of this network is left to the reader as an exercise.

=@ =0+ 2—x)+ (3 —x2) 4+ ...+ (X — x5-1)
=x,—0

=X,

Thus, to implement a fuzzy-disjunctive network using our fuzzy-propagation al-
gorithm, all that is required is to ensure that every element of the input is included
in the final computation of the membership function for the unit. In order to
achieve that goal, we must guarantee that every connection weight has a value
that will exceed the threshold value of one after combining weights, as required
by Eq. (9.21). The only way that we can guarantee that all combined connec-
tion weights exceed the threshold value is to ensure that, initially, the weight
value associated with each connection in the fuzzy-disjunctive network is set to
one. Thus, the fuzzy-disjunctive network will always take the form indicated in
Figure 9.8.

Exercise 9.1: Using the same input values as given for the fuzzy-conjunctive net-
work example in the previous section, work through the fuzzy-propagation algo-
rithm for the fuzzy-disjunctive network. Show all of your intermediate results. m

9.2 Implementation of a Fuzzy Network 259

Py (x)

Figure 9.9 This figure illustrates the architecture of the fuzzy-complement network.
Notice that the right-most input unit is analogous to the bias unit used in other network
structures, in that it always has an output value of one. After performing the fuzzy
propagation through this unit, the output produced is equal to the fuzzy complement of
the variable input, indicated here as p;(x).

9.2.5 Fuzzy-Complement Network

The implementation of the fuzzy-complement network assumes that only one
fuzzy-membership value is to be converted at any given time. To implement the
fuzzy-complement in a neural network structure, we simply construct the network
shown in Figure 9.9. Then, according to our fuzzy-propagation algorithm, the
computation of the membership function performed by the complement unit is
given by

n
!
0= E qiV;

i1
=(p1x)0+ (1 = p1(x)1
=1-pi(x)

which is identical to Eq. (9.6), satisfying the fuzzy-complement requirement.

Exercise 9.2: For an arbitrary input to the fuzzy-complement network, called
simply p(x), show that the network computes the correct value for the fuzzy
complement by stepping through the fuzzy-propagation algorithm. Show all in-
termediate values computed. =

260 Fuzzy Neural Systems

9.2.6 Fuzzy-Network Summary

In this section, we have shown how original authors construct perceptronlike net-
works that can perform the basic operations of fuzzy logic. In the examples we
have presented, we have shown how three of the most fundamental elements
of fuzzy logic are implemented in a neural-processing structure. We have also
shown how the general signal-propagation algorithm developed for these net-
works, in conjunction with the connection weights used to construct the network,
combine to give the network its behavior, an aspect very similar to traditional
neural-network processing. However, these networks are not adaptive, and each
must be constructed specifically for its intended application. While this is a some-
what limiting aspect of the architecture, it nevertheless provides a good starting
point for understanding how neural networks can be combined with fuzzy logic
to perform functions that operate on uncertainty.

Exercise 9.3: Construct a fuzzy network to perform the following fuzzy compu-
tations:

01 =(h; OR h3) AND hy
02 =h1 AND (h; OR h3 OR hy)
hy =NOT p;(x)
hy = p1(x) AND ps(x)
h3 = p1(x) OR py(x)
h4 = NOT pa(x)
Assume that the inputs to the network are p;(x) and that all other computed

values are outputs of some noninput unit. Draw a schematic representation of

your network, and show the values associated with each unit and connection in
the network. m

9.3 FUZZY NEURAL INFERENCE

In the previous section, we described a neural architecture capable of performing
the basic fuzzy-logic operations. We shall now investigate another neural archi-
tecture that performs in ways that are analogous to the fuzzy-inference methods
described in Section 9.1. In addition, we shall describe how the original devel-
opers of this architecture implement self-adaptive methods to create the network
from empirical behaviorial examples, in a manner similar to the process used by
a BPN as it learns to perform an application.

9.3.1 Fuzzy-Inference Network Architecture

To show how the fuzzy-inference network performs its desired application, let
us digress for a moment and quickly review the fuzzy-inference process. Values

9.3 Fuzzy Neural Inference 261

are obtained for the crisp, independent variables that measure the operation of the
fuzzy system. These crisp variables are then fuzzified by evaluating a membership
Jfunction that computes the measure of belief in the fuzzy indicator. Once all of the
inputs have been fuzzified, the inference system combines the fuzzy indicators in
ways described by the fuzzy rules in the system. Each fuzzy rule then produces
an output value that indicates the measure of certainty in the inferred value. For
all rules that produce outputs that relate to the same measure, the centroid of
the clipped, fuzzy-membership functions is determined and used to defuzzify the
output. This process occurs for all outputs generated by the system.

In a paper published in 1992, two researchers at the California Institute of
Technology (CalTech) described how a multilayer perceptronlike network could
be created to mimic the entire process of fuzzy inference [2]. As shown in Fig-
ure 9.10, the network structure is very similar to the architecture of the BPN. The
only significant difference between the two is the interconnection strategy used
between layers. In the BPN, each unit is completely interconnected between lay-
ers, with each connection containing a specific weight that modulates the output
signal from the transmitting unit. Conversely, the fuzzy-inference network is con-
nected only between elements that require connections to combine elements for
each rule.

An additional difference between the two networks is that the connections
in the fuzzy-inference network have no weighting values associated with them.!
Rather, these connections are implemented simply to transfer information be-
tween processing elements without altering that information, much like a con-
ductor transfers electrical signals. As we shall now show, the bulk of the work
performed by the fuzzy-inference network occurs in the processing elements.

9.3.2 Fuzzy-Inference Signal Propagation

The network accepts the crisp indicator variables as inputs. The first layer of
processing elements performs the fuzzification of these indicators, by evaluating
a membership function associated with each unit using the value provided as
input to the unit. Specifically, the output of the i™h fuzzifier unit is given by

ol = fixi) 9.24)

where the superscript is used to denote that the output of the unit is a fuzzified
output value. Also, notice that the form of Eq. (9.24) allows each unit to use a
different activation function, a fact indicated by the subscript on the function.
This processing separation is necessary in order to allow each of the fuzzifying
units to evaluate the crisp input according to the specific membership function
associated with that unit. Moreover, as each input variable is (usually) classified
in terms of different hedges (e.g., small, medium, and big), the structure of the

1. We could. however, cast the connections in the fuzzy-inference network as traditional neural
connections with weighting values set to one.

262 Fuzzy Neural Systems

Defuzzifier Layer O oo e

Fuzzy -Rule
Layer

Fuzzifiers

Figure 9.10 This diagram illustrates the architecture of the fuzzy-inference network.
The operation of the network is described in the text. Source: Adapted from Fuzzy
neural-logic system [3]. Used with permission. Copyright ©1992 IEEE.

network allows a single input to be fed to different fuzzifier units. Thus, the
function f;(x;) is the membership function that describes one of the hedges for
the given input variable, x;.

The outputs produced by the fuzzy-membership units are then sent to the
next layer of processing elements. These units combine the fuzzy indicators con-
junctively, in a manner analogous to combining fuzzy-logic indicators. That is,

each unit on the fuzzy-rule layer computes, as its input stimulation, a value given
by

net) =min{o}, Vi in X, (9.25)

where X; is the connection set associated with the j™ fuzzy-rule element. Each
fuzzy-rule unit maintains its own connection set, to implement the partial connec-
tivity between layers in this network. Specifically, the connection set associated
with each fuzzy-rule unit contains the indices of the fuzzifier units that are con-
nected to this unit. For example, in the network illustrated in Figure 9.10, X5
would be the connection set associated with fuzzy-rule unit 2, containing ele-

9.3 Fuzzy Neural Inference 263

ments (1,4), while X), would be the connection set associated with fuzzy-rule unit
4, and will contain the elements (2,3).

The fuzzy-rule units each produce an output signal, which is analogous to
the belief in the inferred result. This is simply the conjunctive combination of all
the input indicators, which is exactly the input stimulation computed by the unit.
Thus, the activation function employed by the units on the fuzzy-rule layer in this
network is the same linear-activation function that we have used extensively in
other neural-network models. In mathematical terms,

0; = net; (9.26)

The outputs produced by the fuzzy-rule layer are fed selectively into another
layer that collects the conclusions produced by all of the rule units that affect a
specific output category. Because these units are selectively connected to the rule
units, the input computation performed on this layer must reflect that sparse input
connectivity. Furthermore, because the total belief in any one assertion can be no
higher than the minimum belief in that assertion, we use the same computation
that is employed by the fuzzy-rule layer to compute the input stimulation and
produce the appropriate output for each of the units on this layer. Specifically,

nety = min{o;}, Vj in X}, 9.27)
o}, = netj, (9.28)

where, as before, X{ refers to the connection set associated with the k™ unit on
the conclusion layer.

Finally, we require a layer to combine the fuzzy conclusions and produce
a crisp output for each of the fuzzy conclusions, a process that is analogous to
computing the geometric shape of the output membership functions and defuzzi-
fying the result. Bart Kosko describes an appropriate method of fuzzy centroid
defuzzification in Chapter 8 of his seminal work on fuzzy neural systems [5].
The algorithm essentially normalizes the input values and weights them with the
geometric centers of the output-membership functions to calculate the crisp out-
put. Specifically,

Yo yina(y))

A=T5
ZJ':)MA(,Yj)

9.29)

where the term A is used to indicate the fuzzy centroid, the term y; is used to
indicate the center of the fuzzy-membership function, and the function pa(y;)
describes the membership (or belief measure) of the inferred value in the j
fuzzy subset in the universe of discourse, ¥ = {y1, y2,.... yp}. We shall demon-
strate an application of Eq. (9.29) in the next section of this chapter.

264 Fuzzy Neural Systems

9.3.3 Learning Fuzzy Rules

In their original paper, Higgins and Goodman [2] describe a method for extract-
ing fuzzy rules from empirical data. Their method is derived from a process of
generalizing specific rules obtained directly from the data using an information-
theoretic measure to estimate the appropriateness of a rule with respect to a given
example set. The measure used to evaltuate the fit of each rule is called the J-
measure and is defined as a function of probabilities by

p(x|y) — pEly)
J=p) {p(xly)10g2< o0)+p(x|y) log2< G)} (9.30)

where x refers to the consequent and y refers to the antecedent in a rule of the
form if y then x. In the case of a fuzzy system, the antecedent can be thought
of as a conjunction of the input variables. Similarly, x can be cast as an output
variable.

To use this measure to construct a rule set from empirical data, we begin
by developing a set of specific rules, each of the form if y then x. The most
straightforward method for doing this is to start by writing one such rule for
every exemplar contained in the data, then generalizing the rules to eliminate
redundancies. For example, if our data set is of the form

X1 = Y11, Y125 Y135 -+« VIn

X2 = Y21, Y22, Y23, - - -4 Y2n
X3 = Y31, ¥32, Y33, ..., Y3
Xm = Ymls Ym2, Ym3s -+« Ymn

we can construct m specific rules to describe these relationships. These rules
would all take the general form

IF input; =y},
AND inputy =y,

AND input, = y;,
THEN output =x;

Once all such rules have been developed, we can then apply the J-measure, as
defined by Eq. (9.30), to each of the specific rules, using the relative frequencies
counted in the given discrete sample set to estimate the probabilities. Further, to
allow for fuzzy conditions on the variables, we use the fuzzy category with the
greatest membership in each input variable. For example, if input; is more small
than medium or big, we should then use the membership function for the small
fuzzy set instead of y;; when computing the J-measure.

9.3 Fuzzy Neural Inference 265

After completing this process, we will have established the nominal measure
of each rule. We then generalize each rule slightly, by removing a single-input
variable from the antecedent in each rule. If we then repeat the process of com-
puting J-measures using the more-general version of each rule, we obtain a new
score for each rule. We can then conclude that the rule with the higher J-measure
is a better form of the rule, and eliminate the less-effective form of the rule. If we
ever encounter a situation where two rules have the same specific relationship,
we eliminate the redundant rule and continue generalizing. This process contin-
ues until no more-general rule with a higher J-measure exists. At that point, the
remaining rules define the minimal rule set needed to describe the data, and these
rules can be codified to predict an output from a new set of input parameters.

9.3.4 Codifying Fuzzy Neural Rules

As we described in Section 9.2, the fuzzy-rule units in the neural-network struc-
ture encode the fuzzy rules that we have just derived. In order to implement these
rules in our network structure, we must assign functions to each of the units in the
network, and establish the connectivity needed to perform the desired processing.
The process of constructing the fuzzy-inference network from the derived fuzzy
rules, as described here, is analogous to learning in conventional neural-network
paradigms.

We begin by inspecting our rules. Every unique fuzzy category used in the
minimal-rule set requires an associated unit in the input-membership function
layer. Likewise, there will be one fuzzy-rule unit for each rule in the minimal
set. Rules that have onlty one fuzzy variable as input are connected directly to
the appropriate input-membership unit. Rules that require conjunctions between
antecedent variables are similarly connected to the corresponding membership
units. Different rules that have an effect on the same output variable are con-
nected to the same output-membership unit. There will therefore be one output-
membership unit for each fuzzy-output category. Finally, all output-membership
units are connected to all output-defuzzifier units, to produce the necessary crisp
output values.

Once constructed, information is propagated through the network structure
using the algorithm described in Section 9.2. The outputs produced by the net-
work are interpreted as indicators of the inferences made by the fuzzy rules en-
coded in the network structure, thus satisfying our objectives for the network.

9.3.5 Fuzzy Neural-Inference Results

Higgins and Goodman reported using the fuzzy-inference system described
in this section for two different applications, one a rather trivial function-
approximation problem and the other a more complicated control application.
The function-approximation experiment was conducted to demonstrate the abil-
ity of the system to learn a two-dimensional pyramid function. In Figure 9.11,

266 Fuzzy Neural Systems

1.0
Low High
(a) Med
0.0
0 40 80 x coordinate
1.0
Low High
(b) Med
0.0
0 50 100 y coordinate
1.0
Low High
() g
0.0
0 80 f(xy)

Figure 9.11 These diagrams illustrate the membership functions used to construct the
function-approximation fuzzy inference network. (a) The membership function for the
x-coordinate system. (b) The membership function for the y-coordinate system. (c) The
membership function showing the desired response for the function f(x,¥). Source:

Adapted from Fuzzy neural-logic system [3]. Used with permission. Copyright ©1992
IEEFE.

we reproduce the membership functions used in that experiment, while in Fig-
ure 9.12 we illustrate the comparison between the optimal response of the system
and the learned response.

The control application described by Higgins and Goodman was constructed
to control the acceleration of a radio-controlled toy vehicle, to keep the speed of
the car constant. To simplify the experiment, the car was set to run in a circle on
a flat surface, with no obstacles to avoid.

Figure 9.13 illustrates the membership functions used to construct the speed
controller for the radio-controlled vehicle. The data describing the application
was acquired by monitoring the velocity and acceleration of the car, and the
corresponding output from a conventional control system that was used to start
the vehicle and maintain the speed for a short time. The rules derived from the
data using the technique described in this section are shown in Table 9.1.

In Figure 9.14, we illustrate the graph of the control response for the
radio-controlled speed-control application. It should be apparent from this graph
that the fuzzy-inference network did an adequate job of controlling the radio-

9.4 Fuzzy Control of BPN Learning 267

Figure 9.12 These plots illustrate (a) the desired response from the function-
approximation system and (b) the actual response from the fuzzy-inference network.
Source: Adapted from Fuzzy neural-logic system [3]. Used with permission. Copyright
©1992 IEEE.

controlled car, even though the speed error tended to oscillate. The original
authors attribute this error to the limited training data that were used to develop
the rules. Because only one training run was used to capture the training data from
the conventional controller, the amount of data that described the controller’s re-
sponse to acceleration was less than desired. Higgins and Goodman contend that
the problem could be overcome by collecting substantially more data, and repeat-
ing the exercise to more completety cover the control space.

9.4 FUZZY CONTROL OF BPN LEARNING

We have studied how neural networks can be made to emulate fuzzy-logic opera-
tions, with the goal of implementing systems that will benefit from the integration
of the two technologies. In this section, we shall investigate a different approach
to combining the technologies. Essentially, we shall show how a fuzzy controller
can be used to dynamically alter the learning rate in a BPN during training. The
benefit to this approach is that the fuzzy-logic controller can be generally applied
to any BPN application, thus removing the burden of heuristically selecting the
learning rate for the application from the developer.

268

Fuzzy Neural Systems

1.0

@) Too Slow Too Fast
o0 20 velocity
1.0

(b) Decelerate Accelerate
0.0

-5 Acceleration

1.0

©
0.0

-0.01

Voltage 0-3

Figure 9.13 These diagrams illustrate the membership functions used to encode the
fuzzy rules in the radio-controlled control application. (a) The membership function
for velocity. (b) The membership function for acceleration of the car. (c) The output-
membership function for the control of the motor voltage on the radio-controlled
vehicle. Source: Adapted from Learning fuzzy rule-based neuralnetworks for function
approximation [2]. Used with permission. Copyright ©1992 IEEE.

IF v = too slow THEN out = sm pos
IF v = too slow AND a = decel THEN out = sm pos
IF v = too fast AND a = accel THEN .out = sm neg
IF v = too fast AND a = decel THEN out = sm neg
IF a = accel THEN out = sm neg
IF a = decel THEN out = sm pos
Table 9.1 The six rules derived from the empirical control data for the radio-controlled

vehicle speed-control application.

during training, according to the equation

Wiyt +1)= wxy(t) + 775;0.\‘ + O(way(t -D

As described in Chapter 2, the connection weights in the BPN are updated

9.31)

9.4 Fuzzy Control of BPN Learning 269

30 /,,OJJLM 30 /_\Oglaut\
20 20
10 10
0 0
-10 -10
_50 Error 20 Error
-30 -30
0 10 20 30 40 50 0 10 20 30, 40 50
seconds seconds
(@) (b)

Figure 9.14 These graphs illustrate the performance of the two controllers in the radio-
controlled vehicle speed-control application. (a) The response and error of the handcrafted
controller used to provide the initial training data for the experiment. (b) The response

. and error of the fuzzy-inference network on the same application. Source: Adapted from
Learning fuzzy rule—based neuralnetworks for function approximation [2]. Used with
permission. Copyright ©1992 IEEE.

where 1 is a small, real value in the range from zero to one that controls the
learning rate in the network, and « performs a similar function for controlling
the momentum of the change.” Inspection of Eq. (9.31) tells us how the value of n
influences the learning in the BPN: As 7 approaches one, the network’s ability to
converge to a global solution diminishes, as the network oscillates between states
that minimize the error for each pattern presentation; conversely, as the value of n
approaches zero, the ability of the network to converge increases at the expense of
training time, as the number of training passes required to complete the learning
process also increase.

Thus, selecting an ideal value for the learning-rate parameter is crucial for
creating a successful BPN application. Unfortunately, there are no definitive
guidelines for determining the proper value for n a priori. Bart Kosko [6] and
others have suggested that the learning rate ought to vary as training proceeds.
However, they offer no clear guidelines for how to select the initial value of n, or
for determining the frequency of variation as training occurs.

In an attempt to address these issues, David Hertz and Qing Hu [1], of the
University of Miami, developed an architecture that allows the learning rate in a
BPN to be varied dynamically, controlling the instantaneous value of 1 used by
the BPN through the use of fuzzy logic. In the remainder of this section, we shall
describe the architecture of that system, and show how the original developers

2. Momentum. as it is described here. is an optional computation in the BPN paradigm. If used.
it serves to keep weight changes on every connection moving in the same general direction from
learning pass to learning pass.)

270 Fuzzy Neural Systems

evaluated the performance of the fuzzy-controlled neural network (FCNN). As
we shall discover, this integration of technologies offers a means of minimizing
the training times during a typical BPN development, without adversely affecting
the ability of the network to learn the application.

9.4.1 Fuzzy-Controller Design

The fuzzy controller developed for this architecture is based on the conventional
design of a fuzzy-logic system; that is, the crisp inputs are first fuzzified, in-
ferences are then made to determine the corresponding output, and the result is
defuzzified into a crisp control value. In this application, we want to control the
modulation of n in a standard BPN model. Therefore, we can conclude that the
output of the fuzzy controller will be a new value of n for the BPN. The only
question left unresolved is: Should the new value of 1 be globally applied (used
by every unit in the network), or should we use a specific value for each unit?
Equation (9.31) tells us that n has a direct influence on each connection in the
network. Therefore, Hertz and Hu decided to control the learning-rate parameter
at each unit in the network structure.

In order to construct such a controller, we must next select input values that
are somehow related to the desired output. Unfortunately, in the case of the BPN,
it is difficult to say precisely which values ought to be used to determine the
appropriate learning-rate value. Intuitively, the error signal, given by 8, in Eq.
(9.31), should provide a reasonable indicator of learning rate: A high-magnitude
error signal at the unit should indicate a larger corrective action, while a unit
with a low-magnitude error should require only a minor correction during each
training pass.

Unfortunately, this relationship between error signals and learning rates cre-
ates a complication. As we know from our discussion of the BPN in Chapter 2,
the determination of the error signal on the output layer is simply

87 =(d] — o) f'(nety) 9.32)

where d/ is the desired output from unit k for input pattern p, and o/ is the actual
output from the unit. The determination of the error signal at any nonoutput unit
is not as straightforward, however, because we have no a priori knowledge of the
output that should have been generated by the unit. This is why we recursively
backpropagate error signals in the BPN network. Unlike the error signals on the
output layer, however, the backpropagated error signals tend to be rather small.
For this reason, and others that we shall describe in the next section, Hertz and
Hu assert that the learning rate cannot be computed on nonoutput layers in the
same manner that it is determined for the output layer.

As shown in Figure 9.15, Hertz and Hu decided to use a fuzzy controller
to infer the new learning rate for the output layer of the BPN, then simply use
the largest value of 7 on the output layer as the learning-rate parameter at every

9.4 Fuzzy Control of BPN Learning 271

Fuzzy Controller \

Figure 9.15 This diagram shows the architecture of the FCNN developed to adaptively
modulate the learning rate in a BPN structure. Notice that the fuzzy controller is only
applied to the output layer in the network. For reasons described in the text, the largest
value of 7 computed by the controller is passed down to every nonoutput unit.

nonoutput unit. The next step in the implementation of this system is the devel-
opment of the fuzzy rules, which we shall now discuss.

9.4.2 Fuzzy-Rule Development

Hertz and Hu developed seven fuzzy rules to control the determination of the
learning rate for a unit, given the error signal at that unit. These rules are illus-
trated in Table 9.2, and are interpreted as follows:

IF error is X THEN setn; ToY

where X is one of the fuzzy subsets in the universe of discourse, denoted as
negative large (NL), negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PM), and positive large (PL). Similarly, ¥
is one of the fuzzy-output sets, denoted by zero (ZE), small (S), medium (M), and
big (B).

As shown in Figure 9.16, triangular membership functions for both the input
and output fuzzy subsets were selected by Hertz and Hu. The triangular shape was

272 Fuzzy Neural Systems

X NL NM NS ZE PS PM PL
Y B M S ZE S M B

Table 9.2 The fuzzy-rule set for controlling the learning-rate parameter in a BPN

selected to simplify the computation of the fuzzy-membership function, given for
each subset? by

1 if x = x§
if x§ <x f)c;‘L
ma(x) =

9.33)

M - c
if x <x<xy

otherwise

where the term x is used to denote the lower bound of the variable x in fuzzy
set'A, x;*F indicates the upper bound of x in A, and x4 denotes the center of the
membership function, which is determined by

+ —
XA —Xa
2

C—
Xq =

+x; (9.34)

9.4.3 An FCNN Example

Using the fuzzy rules and membership functions indicated above, we shall now
describe an example to illustrate the operation of the fuzzy controller. For this
example, we shall assume that the network we are training has three output units,
and that, for the current exemplar, the error values computed at the output of the
network are 0.27, 0.53, and —0.47, respectively.

We begin by computing the fuzzy membership of the error terms in the input
universe of discourse. The error term §; is a member of the two fuzzy input
sets PS and PM. The membership value of §; in each of these two fuzzy sets is
computed as

5= 035027
m =— "
P = 035 —0.20)
=0.533
027 -025
) = oL =92
mem (1) = oo 0.25)
—0.133.

3. Note that Egs. (9.33 and 9.34) apply only to triangular membership functions, such as those
described here.

9.4 Fuzzy Control of BPN Learning 273

‘o NL NM NS ZE PS PM PL
(a)
0.0
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0 ZE PS PM PL
(b)
0.0

0.2 0.4 0.6 0.8 1.0

Figure 9.16 These diagrams illustrate the membership functions selected for the fcnn
application. (a) The membership functions for the error signal input. (b) The membership
functions of the output learning-rate parameter. Source: Adapted from Fuzzy controller
for backpropagation networks [1]. Used with permission. Copyright ©1992 Society for
Computer Simulation International.

Similarly, the 8, error value produces membership values in PM and PL of
(0.133,0.533), and &3 produces membership values NL and NM of (0.867,
0.467).

We then apply Kosko’s centroid defuzzification function, defined in Eq.
(9.29), to determine the crisp values of the learning rate for the output units in
this network. For the first unit, the output value is computed as

Y1 XjxjA

21 XjAj
(03)(0.533)A1 + (0.7)(0.133) 42
(0.533A; + 0.133A7)

_0.160 4 0.093
= (0.533+0.133)

=0.379

F=

where we have simplified the computation by allowing the area of each member-
ship function, indicated by A}, to be approximated as one. This approximation

274 Fuzzy Neural Systems

abides by the model developed by Hertz and Hu, which they assert is adequate
for the system, because the learning rate does not have to be very precise.

Similarly, the crisp learning-rate values for output units 2 and 3 are computed
as above, producing values of 0.939 and 0.897, respectively. Relating these val-
ues back to the original error terms, we see that the fuzzy controller has produced
fairly large values for n; for those units where the error was large, and smaller
learning-rate values for those units where the error was fairly small, just as we
had planned.

For the hidden layer of units, the learning-rate value we will send down will
be the maximum value of 7, from the output layer, in this case 0.939. Note that
all of these values are recomputed every time a new exemplar is presented to the
network for training, thus allowing the individual units to adaptively control the
learning rate needed to encode each pattern.

9.4.4 FCNN Results and Conclusions

The graphs shown in Figure 9.17 illustrate a performance comparison between
the FCNN and a standard BPN (without momentum) in learning two associative-
memory applications: An autoassociative memory where the BPN is asked to
map a pixel character map to itself, and a heteroassociative memory where the
BPN is asked to learn the mapping from a pixel character map to the ASCII code
associated with the character image. As you can see from these graphs, the results
reported by Hertz and Hu indicate that the FCNN learns the training set to the
same degree of accuracy as the standard BPN in 36% fewer training epochs, on
average.

Another important result of this study was that the FCNN structure is exten-
sible to any application suited to a BPN. Because the initial learning-rate parame-
ters are randomly assigned, instead of predefined, and then controllably modified
after every pattern presentation, Hertz and Hu assert that there is no longer any
need to “play” with the learning-rate values to get the network to converge. Thus,
a working FCNN application can be constructed in much less time than its BPN
counterpart.

The integration of fuzzy logic and neural-network technology bodes well
for the future, as there are many other fuzzy opportunities for controlling the
state of a network. Such opportunities include intelligently pruning neurons in a
network structure, selectively eliminating certain connections in a network, and
even deciding how to determine the proper learning rate at a nonoutput unit.
Many of these problems have eluded solution by other means, or have been only
partially solved. If other network architectures can be developed along the lines
of the FCNN to address these issues, the integration of neural networks and fuzzy
logic holds a great deal of promise for future applications.

9.5 Fuzzy Neural-System Summary 275

5 1.0
L
]
n
o 0.4
(@)
()
o 0.2—
<
00 ! T T T T T T T
10 20 30 40 50 60 70 80
Training Cycles
§ 1.0
w 0.8
193] .
D 0.4
&
5 0.2
>
<00 — :

40 80 120 160 200 240 280 320
Training Cycles

Figure 9.17 The graphs illustrating the performance of the FCNN are shown. (a) This
graph compares the operation of the BPN and FCNN on the autoassociative character-to-
character image-mapping application. (b) This graph compares the two networks in the
heteroassociative-memory character-to-ASCII application. Source: Adapted from Fuzzy
controller for backpropagation networks [1]. Used with permission. Copyright ©1992
Society for Computer Simulation International.

9.5 FUZZY NEURAL-SYSTEM SUMMARY

In this chapter, we have seen how fuzzy logic and neural networks have been
combined to form systems that provide a more robust environment for develop-
ing real-world applications. The combination of these two technologies is such an
exciting area of research that the IEEE has combined its annual conferences on
neural networks and fuzzy logic into a single gathering, attracting more partici-
pants at this one event than both conferences were able to attract independently.
At this writing, there are so many practical applications of the two technologies,
and of their integration, that we could have filled another book. Unfortunately,
space constraints simply do not allow us to elaborate on these applications. We
hope, however, that the (gentle) introduction to neural-network and fuzzy-logic
integration we have just completed provides the reader with the incentive to ex-
plore the synthesis of these two technologies independently.

276 Fuzzy Neural Systems

SUGGESTED READINGS

Currently, the most complete treatment of neural networks and fuzzy logic is Bart
Kosko’s seminal work, Neural Networks and Fuzzy Systems: A Dynamical Sys-
tems Approach to Machine Intelligence [5]. It was written by an engineer, for
engineers, and thus provides a fairly rigorous exploration of the two technolo-
gies. For a more in-depth analysis of fuzzy logic as it applies to information
processing and situation assessment, the most comprehensive work I reviewed
prior to writing this chapter was Fuzzy Sets, Uncertainty, and Information [4].
Of course, readers interested in obtaining a detailed understanding of the foun-
dations of fuzzy logic are referred to Lofti Zadeh’s seminal work, titled simply
“Fuzzy Sets,” which originally appeared in the journal Information and Con-
trol [10].

As we indicated earlier in this text, the combination of fuzzy logic and neural
networks has only recently achieved a great deal of attention. In this regard, there
has been a flurry of excellent technical papers published recently that describe
the practical applications of the two technologies. Readers interested in the more
practical aspects of the combined technologies will find the papers published in
the Proceedings of the IEEE Fuzzy Logic and Neural Network conferences the
most enlightening. Another good source of practical-application papers can be
found in Neural Information Processing Systems: Natural and Synthetic, pub-
lished annually by Morgan-Kaufmann as the edited proceedings of the conference
and workshop of the same name.

BIBLIOGRAPHY

1. David B. Hertz and Qing Hu. Fuzzy-neuro controller for backpropagation networks. In
Proceedings of the Simulation Technology and Workshop on Neural Networks Conference,
Houston, TX, pp. 570-574, 1992.

2. C. M. Higgins and R. M. Goodman. Learning fuzzy rule-based neural networks for
function approximation. In Proceedings of the International Joint Conference on Neural
Networks, Baltimore, MD, pp. 1(251-256), 1992.

3. L.S.Hsu,H. H. Teh, P. Z. Wang, S. C. Chan, and K. E. Loe. Fuzzy neural-logic system.
In Proceedings of the International Joint Conference on Neural Networks, Baltimore, MD,
pp- 1(245-250), 1992.

4. G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

S. Bart Kosko. Neural Networks and F uzzy Systems: A Dynamical Systems Approach to
Machine Intelligence. Prentice-Hall, Englewood Cliffs, NJ , 1992,

6. Bart Kosko and S. Kong. Adaptive Fuzzy Systems for Backing Up a Truck-and-Trailer,
in [EEE Transactions on Neural Networks, Vol. 3, No. 2, pages 211-223, 1992.

7. N. Rescher. Many-Valued Logic. McGraw-Hill, New York, 1969.

Bibliography 277

8. Steven L. Tanimoto. The Elements of Artificial Intelligence. Computer Science Press,
Rockville, MD, 1987.

9. Patrick Henry Winston. Artificial Intelligence, Third Edition, Addison-Wesley, Read-
ing, MA, 1992.

10. Lofti A. Zadeh. Fuzzy Sets. Information and Control, Vol. 8, pp. 335-353, 1965.

ANSWERS TO SELECTED EXERCISES

Chapter 2

2.1 Linear units (on the output layer) tend to train more rapidly than sigmoidal, because
the derivative of the linear function does not minimize the amount of change in a saturated
unit.

2.2 Sigmoidal units (or at least non-linear units) are needed on the hidden layer of a BPN
to allow the network to linearly-separate pattern vectors that are linear combinations of
each other.

2.3 As described above, linear units on the hidden layer of a BPN would learn all lin-
ear combinations of input pattern vectors. In many applications, exemplars have inputs
patterns that, while they are linear combinations of each other, produce distinctly different
outputs. To allow for this separation of patterns, a non-linearity (e.g., the sigmoidal logistic
function) must be introduced.

2.4 For the parity application, input patterns must be separated into two classes (even and
odd parity) based on the number of “ones” contained in the pattern. Thus, input patterns
that differ by only a single bit will fall into different categories. The CPN matches input
patterns by comparing the input vector to all the weight vectors stored in the connections
to the instar layer in direction only. Therefore, in order to correctly match an arbitrary input
pattern correctly, an instar must be allocated to detect every possible input pattern. If not, it
would be possible to misclassify an input, simply because the winning instar was “closest”
to the input in Euclidean space. This behavior makes the CPN inappropriate for the parity
application.

2.5 The BPN retains no specific memory of input patterns. Rather, it encodes the char-
acteristics of a given input which lead to the successful generation of the desired output.
After a BPN has learned an exemplar set, training it with new exemplars without reinforc-
ing the previously learned exemplars will cause it to adjust itself to produce only the new
exemplars, thus “forgetting” the earlier exemplar set.

Chapter 3

3.1 Let the attributes of the input pattern (x) be: sofa, coffee table, floor lamp, oven, re-
fridgerator (freezer), table, bed, dresser, shelves, desk, book case, work table, and tools.
Let the rooms that we want to classify (y) be: living room, kitchen, bed room, den, and
garage. Using the attribute sequence defined above, one possible encoding for the exem-
plars for this application is:

279

280 Answers to Selected Exercises

x; = 1110000000000, y1 = 10000

x2 = 0001110000000, y2 = 01000

x3 = 0000001101000, ~ y3 =00100

x4 = 0000000000100, y4 = 00010

x5 = 0000000010011, ys5 = 00001
3.2 Using the same attribute list as above, but allowing for overlap, one possible encod-
ing for the exemplars for this application is:

x; = 1110000010000, y1 = 10000

x; = 0001110000000, y2 = 01000

x3 = 0010001111000, y3 = 00100

x4 = 1010000011110, y4 = 00010

X5 = 0000100010011, ys5 = 00001
3.3 To scale any component of x properly, we first squash the given value to the range
between 0 and 1 by subtracting the bias from the value, and dividing by the range of values.

We then scale the result back to the range between L and U, and add in the new bias value.
Mathematically, this process is described by the equation

Y= Lm(x) x(U—L)+L

max (x) — min (Xx)
3.4 An ART network could be used, if altered to allow it to generate an output that differs
from the memory of the matched input pattern. For an example of this modification, see the
tic-tac-toe application described in Section 4.3.

3.5 Solution left to the reader.
3.6 Solution left to the reader.

3.7 The network contains 8,862 connections (207 inputs connected to 42 hidden units,
plus 42 hidden units connected to 4 outputs). Each connection requires 2 computations for
the feed-forward propagation, and 6 computations for the backward propagation. The 42
units on the hidden layer are all sigmoidal, so each requires 10 computations to determine
its output during the forward propagation. We have 8,759 exemplars that must be presented
to the network during each epoch, and training requires 100 epochs. The amount of time
needed to perform one training cycle on our 1 MFLOP machine is therefore:

((8862(2) + 8862(6) + 42(10))8759) 100
1,000,000

Tsec =
= 62,465 seconds
= 17 hours, 21 minutes

To complete the hold-one-out test, we must repeat this process 8,760 times, requiring
17.35 years, with no time off for holidays, weekends, or good behavior.

Answers to Selected Exercises 281

3.8 Solution left to the reader.

Chapter 4

4.1 The output layer will consist of seven sigmoidal units. The encoding will be one unit
for each bit in the ASCII code. For example, the ASCII code for the letter “A” is 41¢. The
target output pattern for the character “A” input would then be 1000001.

4.2 The CPN would be a good choice for this application, since the output patterns are
accreted. In this case, each time the given input pattern is presented, the same competitive
unit would win the competition. As training progresses, the output vector associated with
the winning unit would become the combination of all of the outputs associated with the
given input.

4.3 Solution left to the reader.

4.4 The following solution assumes that the second place unit in the competition is the
unit associated with the 150° image. It could just as easily be the unit associated with the
90° image.

s =0.5sin(120°) + 0.5sin(150°)
=0.4334+0.25
=0.683

¢ =0.5c0s(120°) + 0.5 cos(150°)
= —0.683

4.4 Adjust the activation function for the competitive layer such that when a unit wins the
competition with an activation of 1.0 (an exact match), only one unit produces an output.
If the activation of the winning unit is less than 1.0, use the top two units to interpolate the
output as before.

Chapter 5

5.1 The only requirement would be that the candidate indicator must have some (perhaps
implicit) relationship to the desired output, in this case, the S&P 500. If, for example, you
felt that the skiing conditions at Vale, Colorado indicated whether business people were
doing their jobs or were on the slopes relaxing, you might include this indicator in your
pattern set since it might indicate the strength of the market. Be warned, however, that the
network has no innate understanding of the value of the indicators that you provide, and
will therefore attempt to find a correlation between the indicator and the desired output,
even if it does not exist.

5.2 Retrain the network periodically with fresh data. You can either combine the new
patterns with the old and completely retrain the network, or you could retrain just on the
new data. If you choose the latter approach, be certain that the data set is complete enough
to provide adequate coverage of the domain, and retrain the network from scratch.

5.3 Solution left to the reader.
Chapter 6

6.1 Solution left to the reader. See Exercise 3.7 as an example.

282 Answers to Selected Exercises

6.2 Solution left to the reader. See Exercise 2.4 as an example.

Chapter 7

7.1 The compression network was mapping 256 gray-shaded pixels to themselves. Thus,
both the input and output patterns were comprised of components that could take on one
of 256 different values, a task better suited to linear units than to sigmoidal units.

Chapter 8

8.1 Feor— s
g T2 4w

8.2 The poles and zeros are determined by finding the roots of the equations

10755 +0.035 + 20 =0
1075 +0.03=0
Thus, the pole is at —1000, and the zero is at —3000.
Chapter 9

9.1 For the fuzzy disjunctive network, the weights must all be set to one. After reorder-
ing. the input and weights are:

p(x)=04,05.08
w' =1.0,10.1.0

We then compute the difference in activation between neighboring units as
q(x) =0.4.0.1,0.3
Next, we combine reordered connection weight values.
v=3,2,1
After thresholding, v’ becomes
V=111

Finally, the output membership for the fuzzy disjunctive network is computed as
0=0.4(1) +0.1(1) + 0.3(1)
=0.8
9.2 Solution left to the reader. See Exercise 9.1 as an example.

9.3 Solution left to the reader.

activation, 7
activation function, 10
binary threshold, 12, 225
competitive, 16-19, 42
instar, 16
gaussian, 19-21, 41
linear, 11, 42
outstar, 16
saturation of, 33, 68
sigmoidal, 13-15, 33
activation value, 9
adaptive linear element (Adaline), 225-
228
adaptive resonance theory (ART), 46-52
ARTI, 46, 47-49, 115-116
operation of, 47-49
resonant state, 49
structure, 47
ART?2, 46, 49-52, 197-202
contrast enhancement, 50
equations, 50
operation of, 49-52
gain control, 47
orienting subsystem, 47
two-thirds rule, 47
vigilence parameter, 202-203
analog
output device, 11
signal processing, 6
Appel, Gerald, 136
ART, See adaptive resonance theory
ASCII characters, 105, 274
associative memory, 99
autoassociative memory, 100, 122, 274
herteroassociative memory, 100, 120,
274
interpolative associative memory, 53,
100
autoassociative memory, See associative
memory
automatic fine tuning (AFT), 213, 214
average directional index (ADX), 131-134
ADX, See average directional index

backpropagation network (BPN), 29-42,
90, 100, 125
equations, 32
forgetting patterns, 46, 113
learning, 31-34
learning rate, 32, 81, 96, 109, 170, 269
momentum, 109, 170, 269
related networks, 3742
production mode, 36-37
structure, 30-31
training issues, 34-36
Barr, Dean S., 139-143
Bayesian decision strategy, 41
bias unit, 31, 225
bidirectional associative memory (BAM),
53-55, 100, 125
equations, 53
operation, 53-55
structure, 53
binary threshold units, See activation
function
bipedal locomotion, 228-233
bipolar, 67, 115, 225
bivalent indicator function, 244
Boltzmann completion network, 124
boundary contour system, 52
byte, 3

California Institute of Technology
(CalTech), 261

Carpenter, Gail, 46
cart/pole balancer, 221-228
Cherkassky, Vladimir, 233-240
Collard, Joseph E., 149-152
competitive units, See activation function
connections, 6

bidirectional, 54

bottom-up, 48

effect of on network, 2

excitatory, 8

feed-forward, 7, 30

inhibitory, 8

initialization, 52, 62-63

283

284

connections (cont.)
lateral inhibiting, 47
weight values, 2
contrast enhancement, See adapative
resonance theory
control theory, 212-221
closed-loop, 212-214
open-loop, 212
counterpropagation network (CPN), 42-46,
90, 100, 120
equations, 43-44
learning, 42-44
pattern recall, 45-46
structure, 43
crisp variables, 248

data representations
analog, 66
discrete, 66
digitized video, 4, 76, 118, 120, 175, 193,
203, 206
discrete time sampling, 130
doppler radar signatures, 161-171
Dutta, Soumitra, 144—147

electromagnetic radiation (EMR), 161,
197, 198

elman network, 38-39
ElMaraghy, W. H., 228-233
Enombo, Jean-Baptiste, 172-181
error

global, 96

least-mean squared, 237

signal, hidden layer(s) of BPN, 34

signal, output layer of BPN, 33
Euclidean space

distance measures, 44-45, 106, 159
exclusive-or (XOR)

network, 21-23
exemplars

analysis, 77-85

consistency checking, 80-82

definition, 30

ensuring coverage, 78-80

selection of, 94, 113, 14647

fan-out units, See layer

fast-Fourier transform (FFT), 164

feature detectors, 22, 90, 107, 155

feedback, 212

Fogler, R. J., 198

Freeman, James A., 52, 117

Fukushima, Kunihiko, 186, 187,209

functional link network, 40
expansion model, 40

Index

tensor model, 40

fuzzy
control of learning, 267-275
logic, 244-251

centroid defuzzification, 248, 263, 273
defuzzifying, 248
fuzzifying, 248, 261
hedges, 245
indicators, 250
max-av inference, 250
max-dot inference, 250
max-min inference, 250
measure of belief functions, 247
membership functions, 245, 263, 272
possibility theory, 245
reasoning, 248-250
rules, 248-251, 261, 272
sets, 244, 245
universe of discourse, 245
variables, 246
network, 252-260
complement network, 259
conjunctive network, 255-257
disjunctive network, 257-258
signal propagation through, 254-255
neural inference, 260-267
architecture of network, 260-262
learning fuzzy rules, 264-265
signal propagation through, 261-263

gain control, See adaptive resonance theory
gaussian units, See activation function
gender recognition, 192-197

generalized delta rule, 30

Golomb, B. A., 192

Goodman, R. M., 265

gradient-descent, 30

Grossberg, Stephen, 46, 209

Guo, Jenhwa, 233-240

Hagiwara, Masifuma, 55
hamming distance, 106, 115, 125
Haralick, Robert, 173
Hecht-Nielsen, Robert, 42, 224
Hertz, David, 269-271
heteroassociative memory, See associative
memory
Higgins, C. M., 265
Hinton, Geoffrey, 88
hinton diagrams, 88
homogeniety, 212
Hopfield, John J., 56, 237
hopfield memory, 55-63, 238
adaptation of, 238
electrical model, 62

Index

initialization of, 62-63
structure, 59
Hu, Qing, 269-271
hyperspherical distance, 200

image compression, 193, 196

information fusing, 129

instar units, See activation function

interconnects, See connections

internal representation of images network,
181-192

interpolative associative memory, See
associative memory

intractable, 3

inverse fast-Fourier transform (IFFT), 164

inverse kinematics, 233

jacobian matrix, 236
jordan network, 39, 114

Kosko, Bart, 263, 269, 273

Lane, George C., 134
Laplace transform, 218-220
layer

competitive, 42

definition, 6

F1 (ART), 47

F2 (ART), 47

fan-out, 40, 42

feature-identification, 108

hidden, 30, 109

input, 30

output, 20, 42

structure, 6
learning, See network
Lee, D. M. A, 228-233
linear

approximation of dynamic systems,

216-217

combiner, 11

interpolation, 18, 120

unit, See activation function
Loick, Walter J., 139-143
Luckasiewicz, Jan, 244
Lyapunov function, 54, 55

mapping

function, 235

networks, See network
McCullogh-Pitts model, 8
memory

long-term (LTM), 47

pattern, 17

short-term (STM), 47, 48
minimax, 110

285

Minsky, Marvin, 1

modus ponens rule of inference, 248

motion detection network, 52

moving average convergence/divergence
(MACD), 136-137

multidirectional associative memory
(MAM), 52, 55, 100

multilayer perceptron, See backpropagation
network

multiplexor, See pattern

NASA
Jet Propulsion Laboratory, 182
Johnson Space Center, 175, 182
Nagase, Taku, 189-192
neocognitron, 186-189, 198-202
complex cells (C-cells), 187
grandmother cells, 188
receptive field, 187
simple cells (S-cells) 187, 199
structure, 187
NETtalk, 37, 156-161
network
bidirectional mapping, 42
effectiveness testing, 86—89
computations, 21-23
general structure, 5
mapping, 30, 38, 53, 90
learning, 2, 29, 212, 264
paradigms, 29-64
pruning, 274
recurrent, 55, 57-61
simulation, 23-25, 95, 118
neural network technology, 2
neurons, 3
non-linear mapping, 34
non-polynomial, 2

Omori, Takashi, 189-192

orienting subsystem , See adaptive
resonance theory

outstar units, See activation function

Pappert, Seymour, 1
Parallel Distributed Processing (PDP), 1
parallel processing, 4, 5
pattern, See also exemplars, vectors
analog, 73-75
binary, 71
classification, 72, 78, 155, 199
combining, 83
conflicting, 38, 80, 114
context, 39
eliminating, 83
external, 7

286

pattern (cont.)
extrapolation, 86, 151
features, 66, 155
integration, 46
interpolation, 18-19, 86, 119, 151
interpretation, 68-71
internal representation, 30, 34
memory, 18, 90
multiplexor, 18, 46
n-ary, 73
null, 78
propagation, 23
temporal, 39, 76-77, 80
tertiary, 72-73
perceptrons, 1
Philon, 212
picture elements (pixels), 3, 102-105, 117,
193, 195, 206
Poisson distribution, 247
probability
distribution, 246
theory, 245-246
probabilistic neural network, 4142
processing element, See units
pruning, See network

quadrature, 163

random walk theory, 138
recurrent networks, See network
Rosenberg, Charles, 156
Rumelhart, David, 1

Sandia National Laboratory, 197, 201
scaling, 75
Sejnowski, Terrence J., 37, 157
seletive attention model, 189
Shekhar, Shashi, 144-148
sigmoidal units, See also activation
function
derivative, 33
BPN training issues, 35
equations, 36
role in the BPN, 34
signal modulation, 8
signal-to-noise ratio (SNR), 163
simulation, See also network simulation
issues
memory consumption, 24, 76
compute time, 24, 73, 76, 95
methods
integrated circuits (silicon), 23
optical, 23

Index

software, 24
Singleton, J. Clay, 147-148
Skapura, David M., 52, 116
slab, See layer
sliding window technique, 158
spacecraft orientation demonstration,
117-121
stability-plasticity dilemma, 46
Standard and Poors (S&P), 139-142, 144
state transitions, 60
state units, See unit
stochastic oscillator, 134-136
superposition, 217
Surkan, Alvin J., 147-148
synthetic aperture radar (SAR), 197-203

texture analysis, 175-177
tic-tac-toe, 73, 74-75
application, 110-117
pattern representation, 111-112
state-space search, 110
Tolat, Viral, 223, 224, 225

ultrasound, 172
unit
analog processing, 6
context, 38
fan-out, 11
state, 39

vector-matrix multiplication, 57
vectors
averaging, 45
feature, 202
inner (dot)-product, 9, 44, 70, 200
normalized, 48, 50, 142
orthogonal, 10, 73
orthonormal, 159
pattern, 9
projection of one onto another, 9, 10, 48
weight, 9
video, See digitized video
vigilence parameter, See adaptive
resonance theory
visual cortex, 185, 208
Von-Neumann architecture, 3

Werbos, Paul, 1
Widrow, Bernard, 223, 224, 225
Wilder, J. Welles, 131

XOR, See exclusive-or

Zadeh, Lofti, 244

RELATED TITLES FROM ADDISON-WESLEY

Neural Networks
Algorithms, Applications, and Programming Techniques
James A. Freeman and David M. Skapura

Providing useful background for Building Neural Networks, this introductory book explains in greater
detail the basic concepts and technology underlying common neural network models. Each chapter
surveys a successful architecture—Adaline and Madaline, backpropagation, associative memory, sim-
ulated annealing, the counterpropagation network, self-organizing maps, adaptive resonance theory,
spatiotemporal pattern classification, and the neocognitron. For each architecture, the authors discuss
relevant algorithms, applications, and programming techniques. ISBN 0-201-51376-5

Simulating Neural Networks with Mathematica
James A. Freeman

This book introduces neural networks, their operation and their application, in the context of Marh-
ematica, a mathematical programming language. Readers will learn how to simulate neural network
operations using Mathematica, and will see how Mathematica can be employed to assess neural net-
work behavior and performance. ISBN 0-201-56629-X

OntoC On to C++
Patrick Henry Winston Patrick Henry Winston

A best-selling author has written two books of interest if you already know how to program and want
quickly to add C or C++ to your programming-language repertoire. Designed to be brief—about 300
pp each—the books nevertheless contain everything you need to know to get up and running in one or
both of these languages. ISBN 0-201-58042-X; ISBN 0-201-58043-8

BUGS in Writing
Lyn Dupré

If you are a scientist, engineer, or other person who writes and who works with computers, Dupré’s
BUGS in Writing will show you how to rid your prose of the most common problems that writers face.
With simple principles for lucid writing conveyed by numerous, intriguing, and frequently hilarious
examples, BUGS may also be the first book on English grammar that you will read for sheer fun.
Whether you have a paper, proposal, research study, thesis, software manual, conference talk, business
report, or any other document to prepare, if you want to communicate your ideas effectively, first
browse through a copy of BUGS. ISBN 0-201-60019-6

Up-to-date information about Addison-Wesley books is available from our Internet site, World Wide
Web address http://www.aw.com. For Gopher access. type gopher aw.com. You will find these
books wherever technical books are sold, or you may call Addison-Wesley at 1-800-822-6339.

