
LEE LUAU
Brightware Corporation This practical introduction describes the kindsofrrez

otorand Joint

topic-oriented chapters on specific applications of neural-network systems. These applications”

include networksthat perform:

¢ Pattern matching, storage, and recall

Business andfinancial systems

Data extraction from images

Mechanical process control systems

New neural networks that combine pattern matching with fuzzy logic

The book includes application-oriented exercises that further help you see how a neural network

solves a problem,and that reinforce your understanding of modeling techniques. Source code

(in C) for the network simulations described in the bookis available electronically from
Addison-Wesley (see preface).

About the Author: David M. Skapurais the coauthor, with James A. Freeman, of Neural
Networks: Algorithms, Applications, and Programming Techniques. He is currently employed by

_ Brightware Corporation (a spin-off of Inference Corporation), where he worksas an applications
ctconsultant, developing customized knowledge-based systems and applications. Heis also the
ples and president of Scient Computing, a small Houston consulting firm specializing in

iral-network applications and research. Previously at Loral Space Information Systems,
jura investigated the applicability of neural networks to NASA’s advanced automation

ents. He is an adjunctinstructor at the University of Houston at Clear Lake.

7 test information about Addison-Wesley
| internet gophersite or visit our World | 90000

1

r aw.com

ly ww.aw.com/cseng/

9 "780201"539219

Building Neural Networks

Building Neural Networks

David M. Skapura

Brightware Corporation

and

Adjunct Faculty, School of Natural and Applied Sciences

University of Houston at Clear Lake

ACM Press

New York, New York

A
vv

Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California « New York

Don Mills, Ontario «* Wokingham, England + Amsterdam + Bonn

Sydney * Singapore «+ Tokyo + Madrid *« San Juan *« Milan « Paris

Excerpt from STAR TREK © 1995 by ParamountPictures.

All rights reserved. Reprinted with permission.

Quotation from Arthur C. Clarke excerpted from Profiles of the Future and Inquiry Into the Limits of

the Possible, published in 1962 by Harper and Row Publishers, copyright 1962 by Arthur C. Clarke.

Used with permission of the Scovil Chichak Galen Literary AgencyInc.

Sponsoring Editor: Peter S. Gordon

Associate Editor: Helen M. Goldstein

Production Supervisor: Nancy Fenton

Cover Designer: Diana C. Coe

Senior Manufacturing Supervisor: Roy E. Logan

Composition: Windfall Software (Paul C. Anagnostopoulos, Jacqueline Scarlott), using ZzTpX

Project Manager: Diane B.Freed

This book is published as part of ACM Press Books—a collaboration between the Association for

Computing Machinery and Addison-Wesley Publishing Company. ACM is the oldest and largest

educational andscientific society in the information technology field. Through its high-quality

publications and services, ACM is a major force in advancing the skills and knowledge of IT

professionals throughout the world. For further information about ACM,contact:

ACM MemberServices ACM EuropeanService Center

1515 Broadway, 17th Floor Avenue Marcel Thiry 204

New York, NY 10036-5701 1200 Brussels, Belgium

Phone: 1-212-626-0500 Phone: 32-2-774-9602

Fax: 1-212-944-1318 Fax: 32-2-774-9690

E-mail: ACMHELP@ACM_org E-mail: ACM_Europe@ACM.org

Library of Congress Cataloging-in-Publication Data

Skapura, David M.

Building neural networks / David M. Skapura.

p. cm.
Includes bibliographical references and index.

ISBN 0-201-53921-7

1. Neural networks (Computerscience) I. Title.

QA76.87.S615 1996

006.3——dc20 94-39062

CIP

Manyof the designations used by manufacturers andsellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a

trademark claim, the designations have beenprintedin initial caps orall caps.

Accessthe latest information about Addison-Wesley books from our Internet gophersite or from our

World Wide Webpage:

gopher aw.com

http://www.aw.com/

Copyright © 1996 by the ACM Press,a division of the Association for Computing Machinery (ACM).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means,electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

123456789 10-MA~-99 98 97 96 95

The need for a book such as this one became apparent to meas a result of teach-

ing neural-network theory to computer science graduate students at the University

of Houston—Clear Lake and of advising practicing programmers.Aspart of that

ongoing experience, I found that most people were able to grasp the concepts un-

derlying the operation of the different networks in fairly short order, but whenI

asked them to apply the networksthey had learned about toward solving a prob-

lem of their own choice, most of them had a great deal of difficulty constructing

the application. The reason for this difficulty, I discovered, was that the network

theory alone offered the student verylittle insight into what kind of applications

the network could address, or how to go about formatting the application data for

use by the network.

I then began a search for a book that would complementthe theoretical

presentation of neural-network operation with material describing the application

of the networks to real-world problems. To my dismay, I could not find one

that adequately described the process of building neural-network applications. —

It seems that those of us who earn ourlivelihood investigating neural networks

and developing applicationsthat utilize the technology have taken for granted the

developmentprocess for new applications. We read about a network architecture

or learning algorithm, and almost without consciously thinking about it, we see

ways to apply the network to some problem wehavenot yet solved.

However, for the student or practitioner who doesnotyet have the benefit of

_ experience working with connectionist models, the process of constructing an ap-

plication is typically the most confusing part of utilizing a neural network. Even

after a semester or two of studying the theory, most students do not fully compre-

hendthe potential of a network, nor do they completely understandthe limitations

of each of the network models. For the working professional, who may not have

time to attend formal classes in the theory underlying neural networks, the prob-

lem is even more profound.

Thus, anyoneinterested in learning aboutthe practical applicationsof neural-

network technologyis faced with a quandary: The theory governing the operation

of neural networks can be learned by studying any of the currently available

textbooks, yet learning to successfully apply the technology is usually a trial-

and-error process. It is to the resolution of this quandary that I have dedicated

this book. My own experience teaching neural networks indicates that people

learn best when shown numerous examples of how other people have applied the

technology. If they can relate how a similar problem wassolved using a neural

network, the approach for the problem at hand becomesself-evident. The key,

Vv

Vi Preface

then, is to give readers plenty of examples, each in sufficient detail so that the

student can assimilate the information and use the accumulated experience of

others to create his or her own applications.

For this reason, I have written this book as a survey of many different neural-

network applications as described in the literature. While researchers on the cut-

ting edge of neural-network technology will likely find the examples described

in this book simplistic, I have nevertheless deliberately restricted the applications

to those that are easily understandable and recreatable by the novice practitioner.

In almost every case, I have also elaborated on the details of the applications as

they were originally described. I have doneso in an attemptto illustrate why the

original authors selected the network they did, to show how the application data
were collected and formatted for the network, and to describe the interpretation
of the output of the network. In some cases, I have described possible alternative
approaches to the same application, to allow the reader to compare and contrast
the different approaches.

This book is organized to allow the reader to examine application areas,
without regard to specific network architectures or learning algorithms. I feel that
this is probably the best method for allowing readers to compare the operation
of the different network architectures, although it does force a certain amount of
overlap in the content of the book. Hopefully, it will also convey an understanding
of why certain networks are better suited to certain kinds of problems than oth-
ers. To accommodate the wide variety of readers I anticipate for this book, I have
divided the text into nine chapters; an introductory chapter to establish the prin-
ciples of neural information processing, a review chapter in which I summarize
the operation of the most popular neural network processing models, a chap-
ter dedicated to the practical issues of application design, and six topic-oriented
chapters. I have attempted to organize the book into a sequence where the in-
formation presented becomesprogressively more difficult. However, each of the
last six chapters is devoted to a specific topic thatis relatively independent ofthe
other five topic chapters. Thus, an instructor can tailor the material to suit the
needs of a specific class. Entire chapters may be skipped without fear of missing
backgroundinformation on whichlater chapters depend.

For readers who may be unfamiliar with the different application areas de-
scribed by the chaptertitles, I offer the following chapter synopses:

¢ Chapter | is an introduction to information processing using neural net-
works. This chapter is intended to provide the reader with the information
necessary to appreciate the operation of the various neural-network models.

Beginning neural-network practitioners should read this chapter withoutfail,

because much of the background for the remainder of the text is established
here.

e Chapter 2 provides a review of the most popular neural network models, with

an emphasis on the practical aspects of the technology.In this chapter, I have

also attempted to show how the various models compare with each other,

Preface vii

because many times the success of an application can be determined based

on the selection of an appropriate neural-network model.

e Chapter 3 describes the process of engineering a neural-network application.

In this chapter, I have provided a detailed overview of the critical issues of

data formatting, network training, and performance evaluation. This chapter

concludes with a detailed example of a practical neural-network application.

Readers already comfortable with neural-network theory, but not the prac-

tical issues of application development, should therefore begin their studies

here.

¢ Chapter 4 beginsthe discussion ofreal applications of the technology.In this

chapter, I focus on networks that perform simple pattern matching,storage,

and recall. Networks that exhibit these characteristics are typically used for

applications where the input patterns (those that are presented after training)

are noisy or incomplete.

e Chapter 5 contains a survey of business- and finance-related applications,

where neural networks have been used for a variety of purposes, from fore-

casting stocks and bonds future values to performing credit risk assessment.

¢ Chapter 6 presents a survey of applications where the neural network is used

to classify the input pattern presented to the network into one of several

useful categories. Also covered in this chapter are the concepts of static and

dynamic categorization, with example applications of each type.

¢ Chapter 7 describes applications of the technology where a neural network

is used to extract meaningful information from image data to identify (and in

some cases classify) familiar objects in the images. Mostof the applications

described in this chapter also illustrate how multiple networks can be linked

together to perform different aspects of the image-recognition process.

¢ Chapter 8 focuses on applications where the neural networkis used to control

a mechanical process, with special attention paid to issues in robotic control.

Also contained in this chapter is a brief review of process-control theory,

for readers that may not be familiar with the traditional methods of system

control.

¢ Chapter 9 describes a new type of neural network, combining the pattern-

matching abilities of neural networks with the inexact reasoning power of

fuzzy logic. After a brief introduction to the concepts underlying the oper-

ation of fuzzy-logic systems, this chapter describes the implementation of

networksthat may portend the future of neural-network technology.

I expect that the readers of this book will be primarily practicing engineers

in industry who are interested in exploring the practical aspects of this exciting

technology, or upper-level undergraduate or first year graduate students in an

engineering or computer science discipline. Because of the emphasis on practical

applications, this book can be used aspart of a self-study program.In that regard,

Vili Preface

a strong background in mathematicsis not essential to gain the maximum benefit

from this book, although a good understanding of vector and matrix mathematics

should be considered essential when dealing with neural networks.

Readers who are already familiar with the general concepts underlying

neural-network theory can expect to use this book as a guide to developing suc-

cessful applications of the technology. Readers with little or no understanding of

neural networks should seriously consider augmenting the review material con-

tained in Chapter 2 with a more theoretical text book. I highly recommend Neural

Networks: Algorithms, Applications, and Programming Techniques, which I co-

authored with Dr. James Freeman in 1991, because many of the ideas contained

in this book originated, in part, from applications built by my students using our
original text.

Because the emphasis of this book is on the practical application of neural-

network technology, I have included a numberof application-oriented exercises
interspersed throughout the text. These exercises are designed to encourage the
reader to consider the different aspects of the neural network that contribute to
the successful solution of a problem in the application being described, or to
reinforce the understanding of a technique used to model the application data
for use by the network. In somecases, the solution to the exercises can only be
found through a correct understanding of the operation of the network. For these
problems, I have included an appendix to the book that describes the solution
and how it can be found. In other cases, the solution is a matter of individual
creativity, and a single correct solution does not exist. I must therefore rely on
the class instructor to determine the correctness (or perhaps more correctly, the
appropriateness) of the student’s solution to these exercises.

For those readers interested in the application of neural networks, but
not necesarily in the implementation of the code needed to simulate them,
Addison-Wesley has graciously agreed to provide the reader with access to
source code, written in C, needed to simulate most of the networks described
in this book. Readers may obtain the source code for programsin this book at
http: //www.aw.com/cseng/. The reader need only download the code (and,
for example problems, the application data files), compile it using anyof the C
compilers available commercially, and execute the program. The availability of
these simulators provides another learning tool for the student, in that many of
the applications described in the text can be recreated, verified, and tested by
the reader, simply by providing the network simulator with the appropriate ap-
plication data file. The network simulators also allow readers to quickly begin
creating and testing applications of their own design by allowing them to concen-
trate on the appropriateness of the network solution, without having to concern
themselves with the correctness of the simulator code.

Finally, there are many measuresof success in the publishing industry. Many
people judge the success of a book on the numberof sales it produces. Others
have a more qualitative assessment of success—such as how well the material

is presented, or how closely the subject matter maps to a particular curriculum.

Acknowledgments ix

Personally, I will consider this book a success if my readers come awayfrom this

book with a new insight into how neural-network applications can be successfully

developed. I hope that my enthusiasm for the technology carries over to you,

and that some day I will get the chance to read about the successful applications

created by myreaders.

ACKNOWLEDGMENTS

This book exists because of the selfless efforts of many people—far too many to

name here. The many students whoacted as unwitting guinea pigs when exercises

weretried in class, or those students who workedoutthe solutionsto the in-class

problem sessions contributed more to the quality of this text than they will ever

know. However, there are a few people whose efforts went far beyond the call

of duty, and I would like to formally thank those individuals for their help and

cooperation.
First of all, there are a few of my students whose work was so superlative

that their class projects or thesis work was incorporated as one of the applications

in this text. Jean-Baptiste Enombo developed the concept and the working proto-

type for the prostate cancer recognition application described in Chapter6 as his

masters thesis research project. Pratibha Rao Boloor and Libin Wu developed the

computer diagnostic application described in Chapter 4 as their in-class project,

and Ms. Boloor wenton to incorporate the core ofthat application as part of her

masters thesis research project.
Next, I owe a great debt to Dr. James Freeman, quite possibly one that I

will never be able to repay. In many ways, Jim’s efforts as mentor, counsel,

friend, and critic contributed significantly to the quality of this text. He taught me

almost everything I know about neural network technology, and, in ways he will

probably never recognize, he pushed meto be better than I thought I was. It was

through mycollaboration with him on ourfirst book that I recognized that I really

could write professionally, and that I had something to contribute technically.

Thenthere are the people responsible for the actual publication of this book:

Peter Gordon and Helen Goldstein, both with Addison-Wesley, decided to take a

chance on an obscure author, and allowed meto solo on this project; Diane Freed,

whoseattention to detail makes reading this finished bookeasy, acted as publica-

tion manager during the production efforts on the project; Nancy Fenton, with

Addison-Wesley, managed the coordination of several different tasks (e.g., the

cover design and the manuscript revisions); Paul C. Anagnostopoulos oversaw

the composition of the book, and Jacqui Scarlott generated the page makeup from

my original LaTeX source files and artwork; my copyeditor, Kathy McQueen,

who no doubt tired of my use of the word “data” instead of “datum,” converted

my prose into proper English; and Diana C. Coe, who producedthe outstanding

cover art from my disorganized concept. Thank youall.

Xx Preface

Finally, to Darlene, Danielle, and Devin, my wife and children, and my

parents, Michael and Dorothy Skapura, I only hope that you know how much

your love, support, and patience has meant to me while this book was being

written. Words alone can never completely express my gratitude.

D.M.S.

Houston, Texas

Chapter1

C O N T E N T

Foundations /

1.7

1.2

1.3

1.4

1.5

1.6

Chapter 2

Motivation 3

Neural-Network Fundamentals 6
Single Neuron Computations 8

Network Computations 21

Network Simulation 23

Foundations Summary 26

Suggested Readings 26
Bibliography 27

Paradigms 29
2.1

2.2

2.3

2.4

2.9

2.6

Chapter3

The Backpropagation Network 29

The Counterpropagation Network 42

Adaptive Resonance Theory 46

The Multidirectional Associative Memory 52

The Hopfield Memory 55

Network-Learning Summary 63

Suggested Readings 63

Bibliography 64

Application Design 65
3.1

3.2

3.3

3.4

3.5

3.6

Developing a Data Representation 66

Pattern Representation Methods 71

Exemplar Analysis 77
Training and Performance Evaluation 85

A Practical Example 89

Application-Design Summary 97

Suggested Readings 97

Bibliography 98

Xi

Xi Contents

Chapter 4

Associative Memories 99

4.]

4.2

4.3

4.4

4.5

4.6

Associative-Memory Definitions 100

Character Recognition 101
State-Space Search 110

Image Interpolation 117

Diagnostic Aids 122

Associative-Memory Summary 125

Suggested Readings 126

Bibliography 126

Chapter 5

Business and Financial Applications 129
5.1

5.2

5.3

5.4

5.5

Financial Modeling 130

Market Prediction 137

Bond Rating 143

Predicting Commodity Futures 148

Financial-Applications Summary 152

Suggested Readings 153

Bibliography 154

Chapter 6

Pattern Classification 7155

6.1

6.2

6.3

6.4

Chapter 7

NETtalk 156
Radar-Signature Classifier 161
Prostate-Cancer Detection 171

Pattern-Classification Summary 181

Suggested Readings 181

Bibliography 182

Image Processing 185
71

/2

/.3

/4

7.2

Image-Processing Networks 186

Gender Recognition from Facial Images 192

Imagery Feature Discovery 197

Aircraft Tracking in Video Imagery 203

Image-Processing Summary 208

Suggested Readings 208

Bibliography 209

Contents xii

Chapter8

Process Control and Robotics 271

8.1

8.2

8.3

8.4

8.5

Chapter 9

Control Theory 212

Cart/Pole Balancer 221 |
Bipedal-Locomotion Control 228

Robotic Manipulator Control 234

Control-Application Summary 240

Suggested Readings 241

Bibliography 241

Fuzzy Neural Systems 243
9.1

9.2

9.3

9.4

9.5

Fuzzy Logic 244

Implementation of a Fuzzy Network 252
Fuzzy Neural Inference 260

Fuzzy Control of BPN Learning 267
Fuzzy Neural-System Summary 275

Suggested Readings 276
Bibliography 276

Answersto Selected Exercises 279

Index 283

C

Foundations

Any sufficiently advanced technology is indistinguishable from magic.

— Arthur C. Clarke

The publication of the three-volumeset titled Parallel Distributed Processing

(PDP) [6] in 1986 marked the beginning of the renaissance in neural-network

technology. Originally a field that predated the digital computer by a decade, and

one that received an enormous amountof attention in the 1960s, neural-network

research dwindled to almost nothing after the publication of Perceptrons [5] in

1969 by Professors Marvin Minsky and SeymourPapert of the Massachusetts In-

stitute of Technology (MIT). In their dissertation, Minsky and Papert analyzed

the operation of the simple two-layer perceptron in great detail. Their analysis

revealed many fundamental limitations of the two-layer, linear-threshold percep-

tron, and they further suggested that these limitations would naturally carry over

into the more complex multilayer perceptron architectures.

In Volume I of PDP. Stanford University’s David Rumelhart and his col-

leagues popularized a mathematically sound technique (originally described by

Paul Werbos [7]) showing that multilayer perceptrons could indeed overcome the

limitations Minsky and Papert had found with the two-layer perceptron. More-

over, they popularized the notion that there were other, perhaps more viable

network architectures that could be successfully used to address complex pattern-

recognition applications. The renewedinterest in neural networks generated by

the publication of PDP convinced government and independentresearch organi-

zations to begin again their investigations into the potential of the connectionist

networks. Subsequently, many research papers and textbooks were published de-

_ scribing a multitude of variations on the basic connectionist ideas popularized in

PDP. Conferences were organized, and, by 1989, there were at least two profes-

sional societies chartered to act as a forum for neural-network researchers.

By 1991, neural networks had received such an enormous amountofatten-

tion that even people outside the research and development (R&D) community

understood the significance of computers that could /earn new things without

|

2 Foundations

having to be explicitly reprogrammed. As proofof this popular recognition, con-
sider the fact that the main character in the most popular motion picture of 1991
spoke a line of dialogue indicatingthathis

“CPUis a neural net processor—a learning computer”

—and almost everyone whosaw the film understood the technological signifi-
cance of that comment. Currently, the character called “Data” in Star Trek: The
Next Generationis portrayed as an android with the ability to learn via his “neural
net” circuitry.

Yet, with all of the attention that neural networks have received in the last
decade,there are still only a handful of commercially successful applications of
the technology. Many people have heard of neural networks, yet relatively few,
computer professionals and laypersonsalike, have any concept of what they are
or how to successfully apply them. Even university students, after having studied
the theory of the technology for a semester or two, usually fail miserably in their
first (several) attempts to build a neural-network application. 7

Why, then, are people so enthralled with neural-network technology? One
of the primary reasons whyneural networks are exciting is because the technol-
ogy offers the promise of computer systems that can dynamically adapt to new
situations. In every other form of programming,all the actions to be performed
by the computing system, and thedata structures that define the world modelfor
the computer, must be explicitly and procedurally declared by a human program-
mer prior to execution on the computer. The programmeris therefore ultimately
responsible for every aspect of the application.If something does not workas ex-
pected (or desired), it is the human programmer that must make the necessary
changesto the application.

In contrast, neural networks only require that an application developer
specify the appropriate network learning algorithm, define an interpretation for
the signals that will be propagated through the network, and provide a set of
application-specific data patterns that collectively represent the desired behavior
of the network. The details of how an input pattern is transformed into an ap-
propriate output pattern are determined by the networkitself, which provides an
information-processing architecture that is, by its nature, adaptive. The network
learns the application data patterns by modifying

a

set of weight values contained
in its internal structure. With each alteration, the knowledge containedbythe net-
work is modified. In some networks, a weight modification represents an increase
in knowledge; in others, it represents a modification ofthe entire knowledgebase.
In either case, the ability to adapt to better accommodate new circumstancesis
what makesneural-network technologysointriguing.

Unfortunately, this approach to information processing is so radically differ-
ent from the mainstream approach to computer programmingthat relatively few
people understand the concepts underlying the operation of the neural-network
paradigmsthat have thus far been defined. Even fewer have a deep understanding
of the operation of the networks, a knowledge that must be considered essential

1.1. Motivation 3

if we are to create successful applications of the technology, andtransition it into

widespread, commercial use.

In subsequent chapters, we will review several of the most popular algo-

rithms that govern the operation ofthe different network paradigms. Weshall also

explore how neural networks have been successfully applied to a variety of real-

world problems. However, before we plunge into the details of the networks and

their applications,let us first review some of the reasons why weshould consider

the use of neural networks as an information-processing technology, and how we

might go about successfully building neural networks.

1.1 MOTIVATION

Computers are everywhere. It is nowvirtually impossible to function in modern

society without interacting, in some manner, with a computer-controlled system.

Computers perform most of our banking and financial transactions, they control

the performance of most of our automobiles, they even control the operation of

many of our household appliances. Computer technology is so pervasive that we

have cometo accept computersas an integral part of our everydaylives, perhaps

without even realizing the extent of our dependence on them.

Why have computers had such a profound effect on our lives? From a prac-

tical perspective, the answerto this questionlies in the old “biggest bang for the

buck” adage. Modern computer technologyis inexpensive, reliable, and, from our

humanperspective, extremely fast. Today, for example, an 8-bit microcontroller

containing 16,384 bytes of memory (16 KB), that can execute upwards of half

a million instructions every second, can be had for less than $5 each (in quan-

tity). Given such a low cost for so much general-purpose capability, it should be

no surprise to anyone that computers are now integrated into almost every new

electronic control system devised.

However, for all the performance offered by these modern, electronic won-

ders, there remain many types of automation problems that conventional com-

puter systems simply cannot address. These problemscanbeclassified in several

different ways; someare referred to as nonpolynomial (NP) problems, because

the amountof time needed to solve such a problem, when implemented ona se-

quential processor, increases at a rate that cannot be expressed as a polynomial

function of the size of the problem. Others are called intractable, meaning that

the problems, by their nature, are extremely difficult to cast in terms of the con-

ventional, Von-Neumann computer architecture. Examples of such problemsin-

clude weather forecasting; vision and imageinterpretation; speaker-independent,

connected-speech understanding; and cursive, handwritten character recognition.

It is interesting to note that, with the possible exception of weather forecast-

ing, all of the example application areas cited are things that people do extremely

well. So well, in fact, that, most of the time, we perform these difficult tasks with-

out even being consciously aware that we are solving the problems. Moreover, we

4
Foundations

Figure 1.1. This diagram illustrates the use of video equipment to capture imagesfor
processing by a computer. Visible light is captured by the video camera, which converts
the image into an analog, electrical signal that is transmitted to the video-acquisition
subsystem. This raster signal is then subjected to an analog-to-digital conversion process

_ that translates each resolvable point in the image into a binary numberthatindicates the
luminescence (and color mapping,if appropriate) of the pixel. The matrix of digitized
pixels is finally transferred to the computerfor further processing.

solve these problemsthrough the use of chemical-based switching components—
‘neurons—thatturn on andoff at a maximum rate of about 1,000 times per second.
Computers, however, are composed ofelectronic devices that can switch in ex-
cess of a billion times per second. So, whyisit that people can instantaneously
solve these difficult problems if computers that operate a million times faster
cannot?

The answerto this question probably lies in the architectural differences be-
tween the humanbrain and the computer. The brain, while limited to operations
measured in milliseconds, appears to be able to process a vast amountofinfor-
mationin parallel, while a computer, though muchfaster, usually processesall of
its information sequentially. To put these differences in perspective, consider the
process a serial computer must perform to simulate humanvision.

Because a computer has no peripheral devices that can sense information in
the visible spectrum of electromagnetic radiation, we can synthesize the operation
of the human eyes through the use of video equipment. Visible light can be
acquired by a video camera, digitized into a binary form, and arranged into a
matrix of dots (also knownaspicture elements, or simply pixels) that a computer
can process. Figure 1.1 illustrates just such an arrangement.

However, when the computer processes the digitized image information, it
must, by the inherent structure of the machine, access the image data onepixel

at a time. In order to make any sense of the image data, the computer must

execute a program that somehow attempts to correlate the state of each pixel to

1.1. Motivation . 5

the state of many surrounding pixels. The specific algorithm employed to analyze

the image data, while not necessarily the same as the one wepropose here, begins

by scanning the entire image for edges, or areas of high contrast. Having found

all discernible edges, the next step might be to eliminate those edges that do

not abide by certain real-world constraints. Then, after all of the objects in the

image have been outlined, the computer must attempt to fill in the objects by

determining texture or simply identifying which objects might be opaque, which

are translucent, and whichare transparent. Finally, after the entire image has been

processed, the computer can then attempt to classify the objects in the image to

categories that are meaningful to the vision application.

Comparethat process with how a neural network mightprocess the same im-

age. As depicted in Figure 1.2, a network composed ofseveral layers of simple,

analog processing elementsreceives the entire imagein parallel at the inputlayer,

after the image has been collected from the image-acquisition subsystem.' The

image data are then distributed to other layers of processing elements by trans-

mitting the information, again in parallel, through a set of weighted connections

that modulate the imagepattern. The receiving elements integrate the modulated

input pattern, and respond with a single output signal that indicates the magni-

tude of the input stimulation received by each unit. The output from each unit on

the layer is then propagated forward to the next layer in the same manner. This

process repeats, layer by layer, until the final layer in the network has produced

an output. Ultimately, it is this output layer that the vision-application program

will interpret as the identification of the objects contained in the imagedata.

Note that, unlike the sequential approach we described for the conventional

computer, a neural network can exploit the parallelism inherent in the video

image. By its very nature, the amount of time needed to completely analyze all

of the pixels in an image pattern is equivalent to the amount of time needed

by a single processing element to generate an output from a steady-state input

pattern, multiplied by the numberof layers in the network. The time required to

process an image does not vary with the numberof objects in the image, nor

does it change as a result of fluctuations in the ambient lighting. Rather, it is

predetermined by the size and physical implementation of the network. Because

our emphasis in this text is the practical implementation of applications based on

these networks, let us now turn ourattention to the computations performed by

the network, to better understand how to go about successfully implementing our

applications.

1. Neurobiology tells us that biological neural systems operate primarily in the frequency domain,

with neural cells being stimulated by repetitive activation of neighboring cells. Our models, however.

operate primarily (although not exclusively) as spatial-pattern classifiers, with patterns being repre-

sented by signal amplitude.

6 Foundations

Figure 1.2 This diagram illustrates how a layered neural-network structure could
be used to process a video-image pattern. In this diagram, each node in the network
represents a single processing element, and each arc represents a weighted connection. In
this example, each pixel from the display imageis interpreted as an input signal to one
processing element onthe input layer. Signals from the input layer are then propagated
to all the elements on the subsequentlayer through the weighted connections between
the elements. The arrowhead on eacharc is used to indicate the normaldirection of
information flow through the network.

1.2) NEURAL-NETWORK FUNDAMENTALS

In general, a neural networkis a collection of simple, analog signal processors,
connected throughlinks called interconnects, or simply connections. Schemat-
ically, a neural network is represented in the form of a directed graph, wherethe
nodes represent the processing elements, the arcs represent the modulating con-
nections, and arrowheadsonthe arcs indicate the normaldirection of signal flow.
As shownin Figure 1.3, the processing elements are usually grouped together into
a layered structure knownasa slab, or layer, where each processing element on

1.2. Neural-Network Fundamentals 7

O, Oo O35 On

Figure 1.3. The general structure of a layered, feed-forward neural network is shown.

In this diagram, the signals representing the input pattern vector are applied to the

input connections on the bottom layer. Similarly, output signals from the network are

transmitted to the outside world through the connections from the top layer. Forclarity,

wewill henceforth omit the input and output connections to the network, because these

connections do notalter the signals applied to them.

each layer performs an analog integration of its inputs to determineits activation

value.

Processing begins with the entire network in a quiescent state. An external

pattern, comprised of a set of signals to be processed by the network, is then

applied to the input layer, where each signal stimulates one of the processing

elements on the input layer. Each processing element on the input layer generates

a single output signal, with a magnitudethatis a function ofthe total stimulation

received by the unit. Collectively, the outputs produced by all of the processing

elements on the layer are then passed on as the input pattern to the subsequent

layer of processing elements. This process is repeated, until the final layer of

processing elements has produced an outputfor the current input-pattern vector.

While there are many variations on this general neural network processing

model, it is easy to see that the macroscopic behavior of the network is deter-

mined by the microscopic behavior of the individual processing elements. For

that reason, let us now focusourattention on the operation of the processing ele-

ment.

8 - Foundations

f (net,)

/

net j

Wii Wjo Wj3 Wi4Wi5Wi6 W j
ar A en NN

Figure 1.4 typical processing element is shown. Notice that each input connectionto

the unit has a weighting value associated with it, and that the unit produces single output

that is transmitted to many other processing elements.

1.3. SINGLE NEURON COMPUTATIONS

Figure 1.4 illustrates the “typical” model of a neural-network processing element
(also known interchangeably as a node, or unit). At its input, the unit behaves
like an analog integrator, where modulated input signals are combined to form an
aggregate input signal to the unit. An important aspect of our typical unit is the
notion that both the magnitude andthe polarity of the input signals contribute to
the net input received by anetworkunit. In this manner, we provide a mechanism
whereby input signals can have relatively large or small, excitatory or inhibitory
effect on the unit.

In some neural-network paradigms,like the early McCulloch-Pitts [4] model,
units are defined such that a single inhibitory input signal is sufficient to squelch
the output from the unit, independentof the total excitatory input. Because most
of the current neural-network models forego that approach, we will focus our
attention on units that combinetheir inputs in direct proportionto the stimulation
signal driving the connection.

In a truly analog system, each unit would operate continuously onits inputs.
However, in order to facilitate the simulation of these networks on a digital com-
puter system, we shall model the behavior of the unit as though it operates in
discrete time. As we havealready indicated, each unit receives input stimulation
from a variety of other units, with the notable exceptionof the input layer, which
receives inputs from only one source. In either case, the computation performed
by the unit to determine its input stimulation is almost always the same: Thesig-
nal driving each connection is modulated (multiplied) by the weighting value
of the connection, and each modulated input is then integrated (algebraically
summed) by the unit to produce the stimulation signal to the unit.

1.3. Single Neuron Computations 9

The calculations needed to perform the input computation described above

for each unit / in the networkat time ¢ are given by the equation

net;(t) =)° wij(t)o;(t) (1.1)
j=l

wherethe term net;(t) represents the net input signal to the i" unit in the network,

o;(t) represents the output from the jh unit in the network, the term wj;(t)

represents the weighting value associated with the connection that runs from the

jh unit to the iunit, and the value n represents the number of other units

connectedto the inputof the i" unit.
Using this model, we can see the similarity between the input computation

performed by the network unit and a vector inner-product computation. Specif-

ically, if we consider the set of input signals to a unit as a vector, 0, having

dimension n, and we consider the input connection weight values to the unit i

as another vector, w;, also of dimension n, then the input calculation performed

by the unit is analogousto the equation

net; = 0- W; (1.2)

= |/o|| || w; || cos(@) (1.3)

where @ represents the angle between the two vectors in n-dimensional Euclidian

space.

At this point in our discussion,it is useful to recall the mathematical implica-

tions of the inner product. As shown in Figure 1.5, the inner product between two

vectors in n-dimensional hyperspace is a measure of the projection of one vec-

tor onto the other. In many of the neural-network applications we will discussin

subsequent chapters, we will find this vector analogy useful in understanding the

behavior of the network. We shall therefore consider patterns of signal activity

within a network as pattern vectors, and connection weight values to individual

units as weight vectors.

1.3.1. Neuron Activation

Referring again to Figure 1.4, the next step after determining the input stimulation

received by the unit is to convert the input value to an activation value(or simply,

activation). The activation of a unit is analogousto the degree of excitation of the

unit. The stronger the activation, the more likely the unit is to excite (or inhibit)

other units in the network. Typically, a unit determinesits activation directly from

its input stimulation, according to the general equation

aj(t) = Fi(aj(t — 1), net;(t)) (1.4)

This formulation allows us to account for the fact that the activation of the

unit is always an explicit function of the net input to the unit at the current time

10 Foundations

ab

(b) (C)

Figure 1.5 The projection of one vector onto another is shown.(a) The projection of

vector a onto b in v-space. (b) Orthogonal vectors have an inner product equalto zero,

meaningthat no part of one vector projects onto the other. (c) Parallel vectors produce an

inner productthat equals the product of the magnitude of the two vectors.

(net;(t)), while also allowing us to account for the fact that it may also depend

on the activation of the unit at the previous time step, as denoted by the a;(t — 1)

term.

In most cases, the activation of the unit is equivalent to the current input;

thatis,

aj(t) = net; (t) (1.5)

1.3.2 Activation Functions

Oncethe activation of the unit is known,the unit produces an outputsignal that is

related to its activation by a transfer function knownasthe activation function.

Expressed mathematically,

oi(t) = filai(t)) (1.6)

= fi(net;(r)) (1.7)

where Eq. (1.7) is a more intuitive formulation of Eq. (1.6), but is only valid when

Eq. (1.5) holds.

1.3 Single Neuron Computations 11

The specific form of the activation function used by a unit is dependent on

several factors, including

¢ The type of network containing the unit.

e The function being performedby the unit.

e The external interpretation of the output of the network.

The networks that form the basis of the applications we will study in all

subsequent chapters share many general characteristics, yet each is also unique in

terms of how it behaves with respect to certain kinds of applications. Because our

objective in this chapter is to establish a strong foundation for the applications-

oriented studies we will pursue in later chapters, we shall begin by focusing on

the basics of neural-network operation.

Because of the important role played by activation functions in the various

neural-network paradigms, we shall now describe the details of the most popular

(and versatile) activation functions.

1.3.2.1. The Linear Unit

The linear unit is a very straightforward processing element—basically, the sum

of everything that comesin to the unit is what goes out. Expressed mathemati-

cally

f;(net; (t)) = net; (t) (1.8)

where the superscript / is used here to indicate the linear activation function.

Units exhibiting this kind of response play several importantroles in neural-

network applications, including use as

e Fan-out units, where a single input signal must be distributed unaltered to

many other processing elements. The application of such a device can be

seen in the input layer of the general network structure described earlier in

this chapter.

¢ A linear combiner, where manyinput signals must be integrated in a coherent

manner. Applications of this device include linear pattern interpolation and

pattern multiplexing.

¢ An analog output device, where the signal produced by the unit is to be

interpreted by either another network unit or by the outside world as a con-

tinuously variable indicator.

Because of its versatility, the linear function is one of the most often used

neural-networkactivation functions. We will see many applications of the linear

unit in subsequent chapters, where these units are usedin all three of the capaci-

ties described above.

12 Foundations

f(net ;)

1.0 +

Q net,

Figure 1.6 The response of a binary-threshold unitis shown.In this diagram, the output

from the unit can be in one of two possible states. The transition region, which is shown

here as the vertical line between the twostates, is depicted only to indicate the transition

point betweenstates.

1.3.2.2 Binary-Threshold Units

A binary-threshold unit, as its name implies, is a unit that has two stable states—

essentially active or inactive. The activation function used to impart this behavior

to a unit is given by the equation

1 if net;(t) > 6
1.9

Q otherwise (1.9)
fe" neti()) = |

wherethe term @ is used here to represent the point of transition between the two

states. In many neural-network paradigms, 6 is set to zero, in which case the unit

becomesa polarity detector. If the input activation is positive (greater than zero)

the unit fires, and producesan active output. In any other case, the output from the

unit is inhibited (set to zero), indicating the absence of sufficient stimulation in

the input to overcomethe threshold. In Figure 1.6, we have graphed the response

of this activation function with respect to the input stimulation received by the i"

unit.

Neural-network units that exhibit this behavior are typically used to detect

the presence (or absence) of features in the input pattern presented to the unit.

For example, consider the binary-threshold unit illustrated in Figure 1.7. Looking

at the weighting values associated with each of the input connections, you can

see that the unit will only respond with a positive output when input signals two

and four are active simultaneously, while input signal three is not active. We can

1.3. Single Neuron Computations 13

0.0 0.3 -0.2 0.2

So / \ \
Figure 1.7 This diagram illustrates how a binary-threshold unit can act as a feature
detector. The operation of the unit is described in the text.

therefore interpret a positive response from this unit as an indication that features

two andfourare present in the input pattern, while feature three is absent.

1.3.2.3. Sigmoidal Units

Sigmoidal units operate in a manner similar to the binary-threshold units de-

scribed in the previous section. Like the binary-threshold units, sigmoidal units

produce an output signal that has twostable states and a transition region. The dif-

ference between sigmoidal and binary-threshold units is that sigmoidal units are

mathematically continuous, and therefore differentiable. There are many func-

tions that can be used to model a sigmoidal response curve: The two most com-

monly used formulations are given by the equations

|
1 + en (net)()—-6)/t
 Ff? (net; (t)) = (1.10)

and

Sk |
f; (met; (t)) =5 + tanh(Anet;(t)) (1.11)

Eq. (1.10) is the most general formulation for the sigmoidal function, be-

cause we can control both the point of transition and the shape of the curve by

varying the values of 6 andT. It also has the benefit of being computationally less

expensive than the formulation of Eq. (1.11). However, Eq. (1.11) also allows us

14 Foundations

f (net;)

1.0 +

0.5

net;

Figure 1.8 The response of a sigmoidal unit is shown. Notice the smooth S shape of the

curve. The continuous response exhibited by this activation function makesit a natural

choice for networksthat employ the use of derivatives to minimizeerror.

to control the shape of the curve by varying the independent gain parameter, i.

This function is used in somespecialized networks where the gain required must

be determined empirically for the application.

In either case, the response of a unit that utilizes the sigmoidal activation

function is illustrated in Figure 1.8. Notice the similarity between the sigmoidal

function and the binary-threshold function shownearlier in Figure 1.6:

¢ Both activation functions have two regions wheresignificant variations in

input do notdrastically alter the output produced bythe unit.

e The width of the transition region in both functions is negligible when com-

pared to the width ofthe stable regions.

e In both functions, the transition region tends to exist around zero activa-

tion, although it can be shifted left or right by modifying the value of 6 in

Eq. (1.10).

As in the case of the binary-threshold unit, sigmoidal nodes are typically

used as feature detectors and for purposes of pattern classification. In these ap-

plications, the output from a sigmoidal unit is interpreted in the same manneras

an output from the binary-threshold unit: An active outputis interpreted as an in-

dication of the presence of a specific combination of features in the inputpattern,

while an inactive output usually indicates the absence of those features.

However, do not make the mistake of assuming that a sigmoidal unit is

merely a differentiable form of a binary-threshold unit. The continuous nature

of the sigmoidal function also creates a situation that can cause confusion about

whatthe unit is actually classifying. To illustrate this point, recall our previous

1.3. Single Neuron Computations 15

0.5 F-

net;

Figure 1.9 The graph of the sigmoid function for different values of t is shown.

Notice that as tT approaches zero, the sigmoid becomesdeterministic, because there is no

stochastic elementto the function value.

discussion of the binary-threshold unit, where we indicated that there were two

valid states for the output signal: an active and inactive state that we could in-

terpret as an indication of the presence or absence of some set of features in the

input pattern. With the sigmoidal activation function, we are allowing a third pos-

sible state for the output of a unit—an undefined state somewhere betweenactive

and inactive.

To clarify this concept, consider again the response curveillustrated in Fig-

ure 1.8. Notice that because the sigmoidal function is continuous, a unit that uses

the sigmoid-activation function can generate any real output value between its

minimum (0.0) and maximum (1.0) limits. Because our objective is to classify the

input into one of twovalid states, we shall interpret an output from the sigmoidal

unit that has a value greater than 0.8 as an active output, while we consider an

output value less than 0.2 as an inactive output. Output values that fall between

0.2 and 0.8 will be consideredin transition.

Now, consider the output produced by the sigmoidal unit when the entire

input pattern is inactive (numerically zero). Zero stimulation, modulated by any

weighting value, produces zero activation. Yet, zero activation to a sigmoidal unit

produces an output of 0.5, halfway between our valid output states. This kind

of response is counterintuitive, because most of the time we would expect the

absence of a// features in the inputto result in an inactive output from the unit.

As we mentionedearlier, we can changethe effect of the transition region on

the behavior of the sigmoidal unit by changing the value of t. Figure 1.9 shows

the effect of tT on the sigmoidal function.

16 Foundations

Wewill explore the ramifications of this behavior further in Chapter 2, when

we begin our discussions of network paradigms. For now, we shall continue our

analysis of activation functions with a discussion of competitive units.

1.3.2.4 Competitive Units

The outstar [3] is a dynamical unit that, in most network simulations, behaves

like a unique form of the binary-threshold unit. Like the binary-threshold unit,

it typically has only two stable states*>—active (which we represent numerically

with a value of one) and inactive (indicated by a value of zero). When active,

the outstar transmits a memorypattern, described by the weight values stored in

the output connections from the unit, to the subsequentlayer of units. Similarly,

wheninactive, the outstar contributes nothing to the next layer.

Byitself, the behavior of the outstar is interesting, but it is not very useful.

A unit that can produce memorypatterns has little practical value unless we can

somehow incorporate theability to selectively activate multiple outstars. We ac-

complish this selectivity by combining the outstar function with another neural

device called, appropriately enough, the instar. The instar complementsthe out-

Star, in that instars are excited only by specific input patterns. Moreover, units on

a layer of instars can compete among themselves whenevera new input pattern 1s

present. The competition can be thoughtof as a selection process. By associating

a specific outstar with each instar, and then allowing each instar to excite its cor-

responding outstar only upon winning the competition, we will have constructed

a network capable of storing, and selectively recalling, output memory patterns

that are associated with specific input patterns.

As you can probably tell from this discussion, the process of determining the

winner of the competition occurs locally during the input-activation calculation.

If we were concerned with designing truly analog neural networks, the design of

the network would have to account for the competition amongunits as part of the

activation of each competitive unit. For the purpose of describing applications,°

however, we can account for any conceptual differences between competitive

instars and the general unit through the implementation of the activation function

of the outstar. Also, rather than trying to continue distinguishing the function of

the instars and the associated outstars, we will henceforth simplify our discussion

by referring to the combined function as a competitive unit.

The general form of the activation function used by the competitive unit is

given by the equation

c . _ fl ifnet;(t) = max{net;(t)}, l<jy<n
Fj (neti(1)) = Lo otherwise (1.12)

2. Being a dynamical unit, the behavior of the outstar is governed by a difference equation that

describes not only the continuously variable output from the unit but the dynamic learning law as

well. We have simplified the discussion of the unit here to illustrate its practical value as a memory

device once training has been completed.

3. Applications that will be, at least initially, simulated on digital computers.

1.3. Single Neuron Computations | 17

Veerree
(

VOY O Se @

QO QQOO0C
(b)

DOO GH
Figure 1.10 The process of accessing memory patterns is shown. (a) Unit 1 wins the

competition, and sends its memorypattern to the output layer. (b) When unit i wins the

competition, the output from the network becomes the memorypattern stored in the

connections between unit 7 and the outputlayer.

Inspection of Eq. (1.12) tells us that, for all n units on a competitive layer,

only competitive unit i (the one with the largest activation, and therefore the

winner of the competition) will fire, while all the other units on the layer will

remain inactive. By itself, this behavior meansthat for any input pattern applied

to a layer of competitive units, one unit* will dominate the others andit alone will

generate an active output.

To see how this behavior might be used to perform a useful function, con-

sider the network structure depicted in Figure 1.10. As illustrated in the diagram,

we have allowed a layer of competitive units to feed a layer of linear units. Now

recall the operation of a linear unit: The output produced by the unit is the sum

of all the modulated inputs it receives. If only one competitive unit activates for

any input pattern applied tothe layer, the linear units are each receiving only one

active input signal—the one connected to the winning unit on the layer of com-

petitive units—while receiving no activation from any of the other competitive

4. Usually, but not always, a different unit for each different input pattern.

18 Foundations

units. Thus, the layer of linear units has become a pattern multiplexer, produc-

ing an output pattern that is exactly equal to the pattern stored in the connection

weights betweenthe linear layer and the winning competitive unit.

Viewed from this perspective, the connections between the competitive layer

and the linear layer become a pattern memory, each connection storing one

componentof one pattern. Using this kind of network structure, with a layer of

n competitive units feeding a layer of m linear units, we havethe ability to store

and recall n, m-dimensional pattern memories, each one accessed by activating

one and only one of the competitive units. In several of the applications we

will discuss in subsequent chapters, this type of pattern storage is critical to the

successful operation of the network.

There is, however, anotherinteresting facet to the operation of the competi-

tive unit; namely, linear interpolation. Suppose we were to modify the activation

function of the competitive unit to allow two or more units to win the competition

and generate an output. Suppose,further, that we modified the activation function

for competitive units to make the output from each winning unit proportional to

the activation of the unit with respect to the activation received by all winning

units.

Specifically,let

X = {X;|X; eR, 1 <i <n}

and

Y ={Y;|Y; = max{X — Y},1 <i<w,w <n}

where we will interpret X as the set of activations in the competitive layer of n

units, and Y as the subset of X containing the largest w values from X. These

equations, while somewhat confusing in their form, are actually quite simple in

their function: We are simply recursively extracting the largest w values from

X and placing them in subset Y by first eliminating the values already extracted

from X, then finding the largest value in what remains, and adding that value to

the subset Y.

Thus, to achieve the desired interpolation response from the competitive

layer, we merely changethe activation function of the competitive units to

tj (t) : :

fi (net; (t)) = | nets,©neti(t) € Y (1.13)
Q otherwise

where

W

netrw(t)=)_ Y;
j=l

1.3. Single Neuron Computations 19

Figure 1.11 Interpolation by competitive units is shown.In this example, units 2 and 5

have won the competition with almost identical activations. The linear units act as pattern

integrators, combining the two pattern vectors being sent from the competitive layer into a

linear interpolation between the patterns.

To illustrate how the interpolation function works, consider the two-layer

network structure illustrated in Figure 1.11. Here, as in Figure 1.10, the layer

of linear units acts as a pattern integrator. The difference in this example is that

now there are multiple competitive units sending pattern memoriesto the output.

Moreover, each pattern memoryis being attenuated by an output signal that has

been diminished by an activation relative to the total activation from all other
winning units.

In this example, the output produced by the linear units will be a linear
interpolation among the patterns stored in the connection weights that run from
the winning competitive units to the linear units. If the pattern memories stored
in the network represent a continuous mathematical function, the integration of
the patterns represents a linear interpolation among the memorypatterns.

We can also view the pattern interpolation as a vector average. As shown
in Figure 1.12, the linear units combine the pattern vectors sent from the com-
petitive layer into a resultant vector that represents the average pattern from the
competitive units. This kind of behavior is very useful when performing best-
approximation applications, whereit is desirable to produce an outputpattern that
is interpolated between the r output patterns associated with the r input patterns
that most closely match the current input pattern.

1.3.2.5 Gaussian Units

Units that employ a Gaussian activation function are used primarily in applica-
tions whereit is desirable to classify input patterns into one of several predefined
classes. Like the other network units that we have already investigated, Gaussian

20 Foundations

Figure 1.12 The interpolation process amongpattern vectors is shown.In this diagram,

vectors x; and x; represent the two pattern vectors stored in the output connections from

winning outstars 7 and /. If unit i wins the competition with a total activation of 0.9, and

unit 7 finished second with an activation of 0.7, the resultant vector x is

(0.9) 0.7
————— x; + ——_ x0.9+0.7 0.9+0.7

units convert their input activation into an output signal by applying an activa-

tion function to the input. Unlike the other types of units that we have studied,

Gaussian units are not necessarily output limited.

Let us now considerthe form of a typical Gaussian activation function

net; —1

Oofi (net;) =e °° (1.14)

where, as before, net; represents the net input to the unit, and the term o is a

smoothing parameter. The form ofthis function is shownin Figure 1.13 for values

of net; in the range between —1 and 1.

We can observe from the graph of the Gaussian activation function that there

is a very narrow range of input values that will allow the unit to generate an

active output. In this case, any input value from approximately 0.5 to —oo will be

quickly squelched, while inputs above 0.5 will cause the unit to quickly saturate.

In this manner, the Gaussian unit acts like a filter, allowing only input patterns

that produce activations within a very narrow range to pass, while effectively

cancelling all other inputs.

Consider the behaviorof this unit in a neural network. Because each unit ona

layer is typically excited by a numberof connections coming from anotherlayer,

1.4 Network Computations 2

1.0 T

 I L 1 i i | iL

0.5 1.0

1 L il

-1.0 -Q.5 0.0

Figure 1.13 This graph showsthe form of a Gaussian activation function. Because this
1s an exponential function, the output is limited only by the value of the input. Units that

employ this activation function must therefore be designed to ensurethat their input value

never exceedsone.

the pattern contained in the input connections to the unit act as a tuner. When

the layer feeding the Gaussian unit produces an output pattern that matches the

pattern contained in the input connections to the Gaussian (in an inner-product

sense), the Gaussian detects the match and generates a signal indicating that

the match occurred. Conversely, when the output pattern from the layer feeding

the Gaussian is significantly different from the pattern contained in the input

connection weights, the Gaussian produces no output, indicating the input was
not successfully matched.

1.4 NETWORK COMPUTATIONS

In the previous section, we saw how each unit in the network behaves. Now,
let us turn our attention to the macroscopic behavior of a network consisting of
these processing elements. In the brief summary that follows, we shall see how,
collectively, a network can perform computations that are beyond the capability
of any single processing element.

As an illustration of network computation, consider the network shown in
Figure 1.14. For the sake of clarity, we shall assume that prior to any pattern
presentation, the network is quiescent. Further, we assumethat each processing
element in this example network operates according to the following two-step
algorithm:

1. When aninput signal is present, the i" unit computes its activation, aj(t),
using Eqs. (1.1) and (1.5). Specifically,

22 Foundations

0.6 -0.8

Figure 1.14 This diagram shows how a neural network can be made to perform complex

pattern transformations. The details of this process are describedin the text.

a(t) =net;(t)=)— wij(t)o;(t) (1.15)
j=!

2. When theactivation, a;(t), is known, the unit produces an output according

to the activation function

1 ifa;(t)>0.5

Q otherwise
filai() = |

If we examinethe configuration of the network based on the weighting val-

ues of the connections, we now observeseveral interesting facts about the behav-

ior of the network. For example,

e Ifthe input signals are assumedto be binary (0 or 1 only), the units on the

input layer act as noise filters for the input signals. Only input signals that

are above the 0.5 threshold point are admitted. Signals below the threshold

point are eliminated.

¢ The middle, or hidden, layer of units act as feature detectors, activating

only in response to certain conditions at the output of the inputlayer. In this

example, unit H, detects the condition that either input unitis active, while

unit Hz responds only whenboth input units are active simultaneously.

¢ The output layer, which, in this case, consists of only one unit, is performing

a logical conjunction betweenthe features detected by the hidden-layerunits.

Based on these observations, we can expressthe output of the networkin this

example as a Boolean function of the input signals to the network. Namely,

1.5 Network Simulation 23

o(t) = (a(t — 2) + bt — 2)) - (a(t — 2) - b(t — 2))

=a(t —2) bit — 2)

where the notation o(f) is used to represent the output signal from unit o at time

t. Similarly, a(t — 2) and b(t — 2) are used to represent the input signals to the

network, a and b twotimesteps earlier. Assuming that we interpret the input and

output signals from this network as binary patterns, we can see that the network

is performing a logical exclusive-or (XOR)operation on its inputs.

Perhaps more importantly, this example illustrates how we can use a neural

network to perform complex functionsin parallel. In the XOR network of Figure

1.14, the hidden-layer units are acting as feature detectors. If each processing

element in the network is, in fact, a discrete processor, we can see that the two

units on the hidden layer are operating on the same data? at the same time.

Hence, the amountof time required to detect two features in the input pattern is

equivalent to the amountoftimeit takes one of the units to compute its activation

and generate an output.

We can extend this notion of parallelism indefinitely. For example, imagine

another network designed to perform a function similar to, but significantly more

complex than the XORfunction. Supposethe input pattern vector in this new ap-

plication contains 10,000 input elements, rather than just two. By understanding

the process of pattern propagation through the simple XOR network, wecansur-

mise that a larger network could operate fundamentally the same way. The only

difference between these two example networksis in the complexity of their re-

spective tasks: Rather than detecting the occurrence of only two features in the

input pattern, the larger network can detect thousands of features in the inputpat-

tern. Moreover, if each processing element on each layer operatesin parallel with

every other unit on the same layer, the time required to detect all pertinent fea-

tures in any pattern is reduced to the propagation time of just one unit.

1.5 NETWORK SIMULATION

If we were to construct networks of analog processors that had variable intercon-

nection weights to communicate information among themselves, the amount of

time needed to completely propagate patterns through the network would be very

short—essentially unit time. In fact, several such devices exist. Some use opti-

cal methods for implementing the interconnections, while others use conventional

electronic schemes. No matter which approachis taken, though, such implemen-

tations are almost always application specific. By committing the interconnection
schemeto silicon (or to volume holograms), the structure of the networkitself be-
comesfixed. Often, such restriction is not an issue once an application has been
completed. In the early stages of application design, however, when the network

5. The output pattern vector from the input layer of nodes.

24 Foundations

is learning the desired behavior, it is almost always necessary to modify (or com-

pletely redesign) a network to achieve better results. Thus, in the early stages of

application development,it is preferable to have a soft network architecture, one

that can be changed rapidly in both network size and learning method.

This desire for flexibility can be accommodated by network simulators—

programs that run on conventional computers that cause the computer to mimic

the behavior of the simple, analog processors that comprise the network. In soft-

ware, the network structure is modeled in memory, allowing easy alteration. The

network paradigm—the algorithm that governs the operation of the processingel-

ements within the network and, ultimately, the behavior of the network itself—is

simply a computer program that is performedrepetitiously.

As an illustration of how a software simulator works, consider the generic

neural-network structure depicted in Figure 1.15, and the algorithm needed to

simulate that network structure on a conventional computer:

Locate the input layer structure in memory.

Copy the input pattern into the output of the input layer.

For each layer from the first non-input layer to the output,

For each unit on the current layer,

Set the accumulated input value for this unit to zero.

For each input connection to this unit,

Compute the modulated input across this connection.

Add the modulated input to the accumulated input.

End loop.

Convert the accumulated input to its corresponding output.

Store the output value for the unit in the layer structure.

End loop.

End loop.

Return the output values from the top-most layer structure.

A software simulatorfor a neural network allows an application developer to

rapidly construct different neural networks, andtest the behavior of each network

on specific problems. However, there are also two significant issues that must be

addressed when relying on software for simulating these networks. These issues

are

e Memory consumption. Each connection in the network is usually modeled as

one or more floating-point numbersin the simulation program. At ten bytes

of memory per 80 bit floating-point number, and as manyasthree floating-

point variables that must be allocated per connection in the network, the

amount of memory needed to construct a neural-network simulation grows

geometrically with the number of processing elements in the network.

e Simulation time. The input to each processing element in the network is nor-

mally computed by performing a floating-point multiply and a floating-point

addition for each input connection attached to the unit. Given the combina-

torial relationship between connections and processing elements, the amount

1.5 Network Simulation 25

Figure 1.15 Thestructure of a multilayer, feed-forward network is illustrated. Notice

that the number of connections needed to construct this network grows geometrically

with the numberof processing elements in the network. To simulate this structure on a

computer, each connection weight must be stored in computer memory, as must the output

signal produced by each processing elementin the network. The algorithm that must be

executed by a computer to simulate the signal flow through the network is described in the

text.

of computer time needed to simulate even rather small networks (networks

containing fewer than 10,000 connections) can rapidly overwhelm the host

processor.

While these issues present a problem for simulating large neural networks,

they are usually not insurmountable—one merely finds a higher-performance

computer on whichto run the simulatorif the network growstoo large. Moreover,

from an application-development perspective, the flexibility attainable through

the use of software usually more than compensates for the problem of finding

a host computer with enough powerand online memoryto simulate the network.

When anapplication is completed to the point where no additional “tweaks”

need to be madeto the network, the network can be deployedin either its software

form or by migrating the network to one of the previously mentioned neural-

network devices. As a software implementation, the network has the advantage of

being transportable between compatible machines. However, if simulation timeis

important in the application, and the network is fairly large, a dedicated neural-

network device, which has the dual benefits of being much faster than software

and lowercost (in large quantities), should be considered.

26 Foundations

1.6 FOUNDATIONS SUMMARY

In this chapter, we have presented an overview of what neural networksare and

how they work. We havediscussed little of how neural networks can help us

solve “difficult” computer automation problems, and shownhowthearchitecture

of the network lends itself naturally to problems that are inherently parallel. We

have seen how the microscopic operation of the individual processing elements in

the network influence the operation of the entire network. We have also explored

some of the practical issues associated with the development of neural-network

applications, including the issues associated with simulation of the network. We

have touched on the concepts of data representation and shown how different

types of neural-network units can be used to implementthose representations.

In short, we now have a solid understanding of the fundamentals of neural net-

works.

The only fundamental issues we have not addressedin this chapter are those

related to the algorithms governing the operation of the various network mod-

els. In the next chapter, we shall overcome this deficiency by reviewing sev-

eral of the most popular network paradigms, in order to provide the background

to determine the kinds of problems for which each network paradigm is best

Suited.

SUGGESTED READINGS

There are now many excellent books available describing the many different

aspects of neural networks. The PDP set [6] continues to be the “bible” of

neural-network technology. It contains an excellent description of several dif-

ferent neural-network paradigms, and in the process shows how the study of

biological intelligence has led to the development of these neural models.It is

also an excellent resource for the novice practitioner, with software to simulate

several of the network models described in the text provided in VolumeIII of the

series.

Researchersinterested in a comprehensive presentation of the most common

neural-network paradigms, from the perspective of an application developer, are

referred to Neural Networks: Algorithms, Applications, and Programming Tech-

niques [2] by James A. Freeman and David M. Skapura. Another excellent text

describing the theoretical operation of neural networks is Jacek Zurada’s Intro-

duction to Artificial Neural Systems [8]. Finally, for those readers interested in

exploring the subtle details of neural-network operation, and understanding the

behavior of the different networks from a mathematical point of view, James A.

Freeman’s Simulating Neural Networks with Mathematica [1] 1s an outstanding

work that also provides easy-to-use source code for interactively experimenting

with neural networks from within the Mathematica environment.

Bibliography 27

BIBLIOGRAPHY

1. James A. Freeman. Simulating Neural Networks with Mathematica. Addison-Wesley,

Reading, MA, 1993.

2. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applications,

and Programming Techniques. Addison-Wesley, Reading, MA, 1991.

3. Stephen Grossberg. Studies of Mind and Brain. Reidel Publishing Company, Boston,

MA,pp. 79-88, 1988.

4. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervousactivity. Bulletin ofMathematical Biophysics, 5:115—133, 1943.

5. Marvin L. Minsky and SeymourJ. Papert. Perceptrons, Expanded Edition. MIT Press,

Cambridge, MA, 1988.

6. David Rumelhart, James McClelland, and the PDP Research Group. Parallel Dis-

tributed Processing, Vols. I-III. MIT Press, Cambridge, MA, 1986.

7. Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard University, November 1974.

8. Jacek Zurada. Introduction to Artificial Neural Systems. West, St. Paul, MN, 1992.

C H A P T E R

Paradigms

I’m attempting to build a mnemonic memorydevice using stone knives and bear skins.

— Mr. Spockin Star Trek: City on the Edge of Forever

In Chapter 1, we described the process of propagating pattern vectors through

a general network structure. Throughout that discussion, we assumed that the

networks had been previously configured with the appropriate connection-weight

values to make the network perform the desired input-to-output pattern transfor-

mation. Now that we understand the process of propagating information through

a neural network,the next logical question is How do we configure these networks

with the appropriate connection weightsfor a given application?

In most cases, the answer is—we do not. It is the network that finds the

appropriate set of connection-weight values to solve the problem.! In so doing,

the network is said to be /earning to reproducethe desired transformation.

In this chapter, we shall present an overview of several of the most common

neural-network architectures and learning mechanisms. The material covered in

this chapter is by no means comprehensive; readers interested in a more formal

treatment of the theory underlying these networks are referred to the books de-

scribed in the Suggested Readings section at the end of this chapter. Instead, our

intent here is to summarize the learning methods employed by the most popu-

lar network models in order to convey an understanding of the types of problems

each network is best suited to solve.

2.1 THE BACKPROPAGATION NETWORK

The backpropagation network (BPN), which is also sometimesreferred to as a

multilayer perceptron (MLP), is currently the most general-purpose, and (not

1. The Multidirectional Associative Memory and Hopfield Memory being the notable exceptions.

29

30 | Paradigms

X

Figure 2.1 This diagram illustrates the process of minimizing the error of a function

through a set of empirical data points. In this graph, the horizontal axis represents the

independentvariable, x, while the vertical axis represents the dependentvariable, y. The

curve plotted through the graph represents the value of a function f(x), such that the

distance between the value of y for any x and the computed value of f(x) is minimal.

coincidentally) commonly used neural-network paradigm. The BPN achievesits

generality because of the gradient-descent technique usedto train the network.

Gradient descent is analogousto an error-minimization process. Error mini-

mization, aS the term implies, is an attempt to fit a closed-form solution to a set

of empirical data points, such that the solution deviates from the exact value by a

minimal amount. Figure 2.1 illustrates the error-minimization concept.

The BPN learns to generate a mapping from the input pattern space to the

output pattern space by minimizing the error between the actual output produced

by the network and the desiredoutput across a set of pattern vector pairs, or

exemplars. The learning process begins with the presentation of an input pattern

to the BPN. That input pattern is propagated through the entire network, until

an output pattern is produced. The BPN then makes use of whatis called the

generalized delta rule to determinethe error for the current pattern contributed by

every unit in the network. Finally, each unit modifies its input connection weights

slightly in a direction that reduces its error signal, and the process is repeated for

the next pattern.

As shownin Figure 2.2, the BPN is a layered, feed-forward network, com-

prised of one input layer, one or more middle, or hidden, layers and one output

layer. Processing elements are usually connected only between layers, and then

only to layers immediately above or below any given layer. The numberof pro-

cessing elements on eachlayer will differ from application to application, as will

the number of hidden layers. Usually, however, there is only one hidden layer,

because the availability of such a layer is sufficient to allow the BPN to form

intermediate representations ofthe training inputs, which, in turn, allow the net-

2.1. The Backpropagation Network 31

Figure 2.2 The typical structure of the BPN is shown.In this diagram, weillustrate the

use of a bias unit on each layer. The bias unit is a processing element with an output that

is alwaysactive (1). In such an architecture, the connection weight between the bias unit

and each unit on the subsequent layer forms an activation that must be overcome by the

remainderof the inputs to each unit—thereby preconditioning the activation of each unit.

workto reproduce the set of desired output patterns for all of the training vector

pairs.

2.1.1 Learning in the BPN

A BPNapplication begins by creating a BPN structure with a pseudorandom

internal configuration. The network is initially randomized to avoid imposing any

of our own prejudices about an application on the network. Next, we collect a

set of training patterns that are representative of the application we will ask the

BPNto learn. These training patterns can be thoughtof as a set of ordered vector

pairs {(X|, y1), (X2, Y2),..., (Xp, yp)} where each x; represents an input pattern

vector and each y; represents the output pattern vector associated with the input

vector X;.

The process of training the network then proceeds according to the following

algorithm, which is derived as a natural result of finding the gradient of the

error surface (in weight-space) of the actual output produced by the network with

respect to the desired result:

1. Select the first training vector pair from the set of training vector pairs. Call

this the vector pair (Xx, y).

2. Use the input vector, x, as the output from the input layer of processing

elements.

3. Using Eq. (1.1), compute the activation to each unit on the subsequentlayer.

4. Apply the appropriate activation function, which we denote as f(net”) for

the hidden layer and as f(net’) for the output layer, to each unit on the

32

10.

11.

Paradigms

subsequent layer. Here, appropriate refers to the one activation function that

is best suited to the function to be performed by this layer of units. The

selection of this function will vary by layer and application.

Repeat steps 3 and 4 for each layer in the network.
OCompute the error, 6pk

using the formula:
for this pattern p across all K output layer units by

8. = (yk — on)f(net) (2.1)

Computethe error, 5ip for all J hidden layer units by using the recursive
formula

K

BRS(net)Y 8°we; (2.2)
k=]

Update the connection-weight values to the hidden layer by using the equa-
tion

wyi(t +1) = wilt) + 8pxi (2.3)

where 7 is a small value used to limit the amount of change allowed to any
connection during a single-pattern training cycle.

Update the connection-weight values to the output layer by using the equa-
tion

walt + 1) = wey (t) + 8%,f (net) (2.4)

Repeat steps 2 through 9 forall vector pairsin the training set. Call this one
training epoch.

Repeat steps | through 10 for as many epochsasit takes to reduce the sum-
squared error to a minimal value. The calculation of the sum-squared error
is performed for the output-layer units only, across all P training patterns,
according to the formula

p
E=)°S°(6°,)? (2.5)

p=|lk=1

Examination of the algorithm just described reveals that the BPN is learning
to recognize features in the input patterns, and convert the detection of those
features into the desired output pattern, by slowly altering the network connection
weights to minimize the error acrossall of the training patterns. We can see this

2.1. The Backpropagation Network 33

f (net;)

1.0 + f' (net)= 0.01
0.5

f' (net) = 0.25

f' (net) = 0.01 |
net;

Figure 2.3 Thesigmoidal activation function, showing how the magnitudeofits

derivative changes with the amountof saturation,is illustrated.

behavior in the form of the equations that define the error signal at each layer: In

this case, Eq. (2.1) determinesthe error signal, Ook for the output layer and Eq.

(2.2) computes the error signal, 8? for the hidden layer. We shall first examine

Eg. (2.1).

In computing a value for o,» we are first taking the difference between the

actual output produced by each unit (o,) and the desired output from the unit

(y;,). That muchis intuitive; error should include some measure ofthe difference

between the actual and the desired results. However, the role of the derivative

of the activation function is somewhat mysterious. Other than the fact that the

derivative is required as part of the differentiation of the sum-squared pattern

error with respect to the activation of the unit, it also controls the amount of

change allowed at this unit, and, through Eq. (2.2), to units that provide input

to this unit.

To illustrate this concept, ‘consider the sigmoidal activation function, as

graphed in Figure 2.3. Here, we can see that the derivative of the sigmoid has

its largest value (slope) in the transition region. Once the unit has been saturated,

either positively or negatively, the derivative of the sigmoid is almost zero. Hence,

by Eq. (2.1), the derivative is used to control when units are allowed to makerela-

tively large changesto their input connections, because it governs the magnitude

of the error signal at each output unit. Output units that are saturated are very

slow to change, while output units that have inputs that have not yet saturated

them can be strongly influenced byanerrorsignal.

34 Paradigms

Exercise 2.1: Determine the effect of the linear activation function on learning
in a BPN. Will linear units train more rapidly, or more slowly, than sigmoidal
units?

With respect to hidden-layer units, Eq. (2.2) says that the error signal to a
hidden unit, SFp is the product of the derivative of the activation function of the
unit and the weighted sum ofthe errors at units to which the particular hidden unit
contributed. We have already seen how the derivative plays a role in determining
error; let us now consider the role played by the weighted sum-of-errors in the
computation of the hidden-layererror.

We mustfirst note that, unlike for the output-layer units, we have no a priori
knowledge about what state hidden-layer units should be in to producethecorrect
output from the network. Therefore, an error measure with respect to a desired
value has no meaning for a hidden-layer unit. However, we do know what the
error at each output-layer unit is, and we also know that the actual output from
the network is a functionof the inputstimulation received from the top-mostlayer

of hidden units. We can therefore infer* a relationship between the error measure

at the first hidden layer and the contribution (through the connection weight) of

each hidden unitto the error at the output layer.

Finally, if we combine the error computation with the weight update equation

for the hidden layer, we see that only connectionsto active input units are allowed

to be modified significantly. The net effect of the entire process, as we have

illustrated in Figure 2.4, is to reduce the negative effect from active inputs while

increasing the positive effect of units that lead to lower error signals. Thus, the

units in a BPN layer tend to organize themselves in ways that allow them to

recognize features in an input pattern that leads toward the correct output, while

ignoring features that tend to misclassify the pattern.

Exercise 2.2: In all practical applications of the BPN,the hidden layer units use

the sigmoidal activation function, never a linear function. Whyis this true? =

2.1.2 BPN Training Issues

In spite of its generality, there are a fewissues that any good application devel-

Oper must consider when training the BPN. Thefirst is the role that the hidden

layer plays when the networkis learning. In most cases, the hidden layeris learn-

ing an internal representation of the input patterns that will enable it to perform

a nonlinear mapping from the input space to the output space. For that reason,

the sigmoid function described in Chapter | is employed almost exclusively as

the activation function for a BPN hiddenlayer.

Exercise 2.3: Consider the operation of a three-layer BPN that uses the linear

activation function for the hidden layer units. Such a network will be unable to

2. And mathematically derive.

2.1 The Backpropagation Network 35

(a) 84 es
25 O1/° -1.5) 0.2

cee
SO

Figure 2.4 The process of changing connection weights to reduce error values is shown.

(a) The initial state of this simple, two-layer network showsinput | actively contributing

to a large and small error, unit 2 passively contributing to the errors, unit 3 contributing to

a reduction in the errors, and unit 4 passively contributing to a reduction in theerrors. (b)

After applying Eq. (2.18), the connection weights have been modified to reduce the error

and reinforce the correct state from the active units, while only minimal changes occurto

the connections from the passive units.

a
e

\

(b) 3.

2. o
n

learn training sets that contain exemplars that are linear combinations of other

exemplars, unless the output patterns associated with each are also linear combi-

nations. Why?

The second most common problem encountered by a novice whentraining

a BPN is the issue of dealing with binary outputs when training a BPN with

sigmoidal output units. Specifically, the application designer should ensure that

the network is trained to produce output values of {0.1, 0.9} instead of the desired

response values of {0, 1}. Also, we should interpret output values generated by a

sigmoidal unit in the BPN in excess of 0.8 as active (1) and values less than 0.2

as inactive (Q) after training has been completed.

The reason for these constraints can be seen with a simple analysis of the

equations governing the behavior of the BPN. In Chapter 1, we described the

function used to compute the sigmoidal response to an arbitrary input value,

36 Paradigms

which werepeat here for reference.°

1
tt) =———f(net) = = ;chet (2.6)

As we discussedearlier in this section, the derivative of the sigmoid function
with respect to the input to the unit is needed to compute the error signal at the
k" output unit. Specifically,

f(nety) =ce (2.7)
net;

= ox(1 — ox), (2.8)

where the term 0, is used to represent the output signal from the k"" outputunit.

Inspection of Eq. (2.7) tells us that the derivative of the sigmoid will approach

zero as the output from the sigmoidal unit saturates.

Considering then Eq. (2.1), which governs the computation of the error sig-

nal at the output layer on the BPN, we cansee that sigmoidal units that have

saturated always have a very small error signal, even if the actual output (0;) is

opposite the desired output (y,). Thus, saturated sigmoidal units in a BPNadapt
very slowly.

We can decrease the training time for such a network by simply limiting
the target value for output patterns to {0.1, 0.9}, thus preventing saturation and
allowing the output units to continue to adapt. Likewise, we can improve the
network’s ability to classify new inputpatternsafter training has been completed
by allowing a margin of error around the actual output. We can interpret output
signals in excess of 0.8 as “close enough”to the target value of 0.9 in sigmoidal
units, because the output value 0.8 is just above the knee of the sigmoidal curve,
as Shownin Figure2.5. |

2.1.3. BPN Production Mode

Once the BPN hassuccessfully learnedto replicate all the training output vectors
given any of the input patterns, learning stops, and the connection-weight values
are frozen. To access the information stored in a trained network, weselect an

input pattern vector typical of the patterns in the training set, and repeat steps 2

through 5 of the learning algorithm. Essentially, we simply propagate the new in-

_ put pattern throughto the output. If the input were identically equal to one of the

training input patterns, the BPN will produce the output pattern that was associ-

ated with that input pattern during training, within some small margin oferror. If

the input pattern is slightly different from any of the training input patterns, the

3. We have simplified the analysis here by assuming an instantaneouspattern, p, is being propagated

through the network.

2.1. The Backpropagation Network 37

 15-10 -05 0.0 05 1.0 1.5 net,

Figure 2.5 This graph showsthe relationship between the sigmoidal activation function

and its derivative. Notice that the transition region of the sigmoid is centered at zero, with

the highest rate of change between output values of 0.2 and 0.8. This is why wetend to

classify outputs from a sigmoidal unit below 0.2 as zero and values above 0.8 as one.

BPN will respond with an output pattern that resembles one of the training out-

puts, to a degree that the numberoffeatures in the current input pattern match the

features the BPN learned to recognize duringtraining.

Whenis this kind of behavior desirable? Practically speaking, the BPN is

most useful when you have an application that requires a generalization ofthe in-

put training patternsinto different classifications, or categories. For example, con-

sider the problem of converting written text into phonemesfor speech synthesis.

In 1986, Dr. Terrence Sejnowski and his associates showed how a MLP network

could be trained to categorize a sliding window of seven alphabetcharacters into

a single phonemein discrete time using an explicit training set containing 2,000

words.’ They further showed that the same BPN,after training, could be used to

process words the network had never seen before [9]. This application, like many

of the other applications discussed at length in this book, succeeds becauseof the

ability of the BPN to identify features in input patterns and produce meaningful

outputs based on the detection (or observed absence) of those features in a new

pattern.

2.1.4 BPN Variants

As we mentioned earlier, the BPN is perhaps the most commonly used neural-

network model, due to its generality: There are, however, numerous variations

4. The NETtalk application mentioned here is described in detail in Chapter6.

38 Paradigms

Output Pattern

A
! } C) eee)

Sa

Context Units Input Pattern

Figure 2.6 The structure of the Elman network is shown. The operation of the network
is described in the text. Source: Simulating Neural Networks with Mathematica[3].

Copyright ©1994, Addison-Wesley. Used with permission.

on the standard BPN model, each offering a slightly different, if not better, pro-

cessing model for information storage. While space precludes us from a detailed

description of each of these variations, we shall now briefly summarize several

popular BPN variants, describing the strengths and weaknesses of each model

from an application perspective. Readers interested in an in-depth description of

the operation of the following networks are referred to Simulating Neural Net-

works with Mathematica [3].

2.1.4.1 The Elman Network

The Elman network 1s essentially a standard, three-layer BPN, except that a

number of context units are added to the input layer. As shown in Figure 2.6,

the context units do nothing more than duplicate the activity of the hidden layer,

at the previous time step, at the input of the network. This variation allows the

Elman network to deal with what weshall refer to as conflicting patterns in the

next chapter.

For our purposeshere, weshall consider pattern conflicts to be simply a one-

to-many mapping;that is, multiple outputs generated from a single input pattern.

Such a condition will confound a standard BPN. The Elman network, however,

deals with such a situation by augmenting the input pattern with the condition of

hidden layer at the previous time step. Thus, the feedback units are essentially

2.1. The Backpropagation Network 39

Output Pattern
A

State Units Plan Units

Figure 2.7 The architecture of the Jordan network is shown. Notice that the feedback
in this network is not only from the output layer to the state units on the input layer but

also between the state units themselves. The operation of the network is described in

the text. Source: Simulating Neural Networks with Mathematica [3]. Copyright ©1994,

Addison-Wesley. Used with permission.

establishing a context for the current input, allowing the network to discriminate

between “identical” input patterns that occurat different times.

2.1.4.2. The Jordan Network

The Jordan network is essentially a modified Elman network, in that both net-

works extend the input pattern with feedback todistinguish between similar input

patterns. However, as shown in Figure 2.7, the Jordan network obtains its feed-

back from the output layer, instead of the hidden layer. Also, unlike the Elman

network or the BPN, the Jordan network provides interconnections between state

units on the inputlayer.

The Jordan network is designed to learn sequences of patterns, in that the

feedback from the output layer not only serves to set the context for the input

pattern but also establishes the output of the networkat the previous timestep as

part of the input. In this manner, the Jordan networkis quite useful in applications

where the pattern vectors that must be learned are related to each other in a

specific time sequence.

40 Paradigms

F (X41), F 4X)F(X) Fy (Xm), FAX od. Fin (Xm)

Functional Links

X 1 X m

Figure 2.8 The input layer of the FLN is shown.In this diagram, each element of

the input pattern, x, passes through a functional link before it is distributed to the next

layer in the network.In this model, all n components of the modified input are received

by each unit on the subsequentlayer. In effect, this version of the FLN increases the

dimension of the input pattern by a factor of n, which increasesthe likelihood of having

unique patternsat the hidden layer, thereby allowing the FLN to moreeasily discriminate

between similar exemplars. Source: Simulating Neural Networks with Mathematica[3].

Copyright ©1994, Addison-Wesley. Used with permission.

2.1.4.3. The Functional-Link Network

The functional-link network (FLN) is almost identical in form and operation to

the BPN. The only difference between the two paradigmsis in the operation of

the input layer. In the BPN, and most of its derivative networks, the input pattern

is distributed unaltered through the input layer. In effect, the input layer in the

BPNis nothing more than a fan-out layer. In the FLN model, the operation of

the input layer is modified to include a functional link, which allows the input

layer to modify the input pattern before distributing it to the hidden layer of the

network. Figure 2.8 shows the conceptual model of the input layer in the FLN

paradigm.

There are two types of modifications that the functional links can perform

in the FLN architecture: the functional-expansion model, which produces mul-

tiple data elements from a single input through the application of a set of pre-

defined functions, and the tensor model, which multiplies certain components

of the input pattern together. The primary benefit to the FLN 1s that the number

of processing units needed to learn the application is significantly reduced over

the equivalent BPN model. In fact, it is often possible for an FLN to learn an

2.1 The Backpropagation Network | 41

Output Units

men
Figure 2.9 A typical PNN architecture is shown.In this network, the numberof

pattern units always equals the number of exemplars in the training set, while the

number of summation units equals the number of groups into which the input pattern

can beclassified. Notice the selectivity of the connections between the pattern layer

and the summation layer. The operation of the network is described in the text. Source:

Simulating Neural Networks with Mathematica [3]. Copyright ©1994, Addison-Wesley.

Used with permission.

applicationwithout a hidden layer, which is needed to encode intermediate repre-

sentations in the BPN.

2.1.4.4 The Probabilistic Neural Network

The probabilistic neural network (PNN)is related to the BPN primarily in struc-

ture. As shownin Figure 2.9, the structure of the PNN is a layered, feed-forward

network, just like the BPN. The primary difference between the PNN and the

BPNis in the operation of the units in the network. In the PNN, we implement

a Bayesian decision strategy for classifying input vectors. This behavioris pro-

vided by using a Gaussian activation function on the pattern layer, combined with

the operation of the summation units. The pattern units operate by computing the
inner productof the input pattern vector and weight vectorto each unit, just as in
the BPN. Here, however, we must ensure that the input vector has been normal-
ized prior to presentation to the network.

In essence, the network operates by summing the outputs from all pattern
units, which, because of the Gaussian activation function, serve to classify the
input patterns into classes. Thus, the PNN is actually computing the a posteriori

42 Paradigms

probability distribution function for a single class, evaluated at the point defined

by the input pattern. This behavior is useful in classification applications, where

we wantto estimate the likelihood that a new pattern is a memberof any of our

predefined classes.

2.2 THE COUNTERPROPAGATION NETWORK

The counterpropagation network (CPN), as originally defined by Robert Hecht-

Nielsen [7] is a network that learns a bidirectional mapping in hyperdimensional

space; in other words,it learns both a forwardmapping (from n-space to m-space)

and, if it exists, the inverse mapping (from m-space back to n-space) for a set of

pattern vectors. Interestingly, the complete CPN learns both of these mappings

simultaneously. In mostpractical applications, however, we are only concerned

with the forward-mapping operation. We will therefore restrict our discussion of

the CPN to the forward mapping half of the network, and henceforth use the term

CPNto refer to the feed-forward half of the complete network.

The architecture of the CPN isillustrated in Figure 2.10. Notice that, unlike

the general neural-network architecture we have already seen, the CPN has ex-

actly three layers: an input layer composed of a number of (primarily) fan-out

units; one hidden layer, containing a set of competitive units; and a linear-output

layer. In the discussion that follows, we shall deliberately ignore the dimension

of all three layers in the network, because the number of units needed will vary

from application to application. What will not vary is the learning process used

by the CPNto store pattern vectors, which weshall now describe.

2.2.1 The CPN Learning Process

Initially, a CPN constructed to perform a specific application will know nothing

about the application: The connection weights in the network will be in an ini-

tialized state. We start the learning process by collecting a set of exemplars, or

training patterns, that collectively define the entire application. Because we want

the CPN to perform a vector-mapping function, we define our training patterns

to be an ordered set of vector pairs, {(X1, y1), (X2, Y2),.--, (Xp, Yp)}. The CPN

then learns to produce y; given x; by adapting itself according to the following

algorithm:

1. Randomly select any training pair, (x;,y;), from the training set. Call these

vectors the current training vector pair, (xX,y).

2. Normalize the input vector, x, by dividing every component of x by the

magnitude of the vector, where we compute the magnitude by

5. The exact state of the connections can be precisely definedat initialization. A good explanation for

how the initial connection weights are determined for a CPN can be foundin several of the texts listed

in the Suggested Readings section of this chapter.

2.2 The Counterpropagation Network 43

Figure 2.10 The architecture of the CPN is shown.In this diagram, we have unwrapped

the five layers of the network to show the signal flow as a feed-forward network.

The details of the operation of this network are described in the text. Source: Neural

Networks: Algorithms, Applications, and Programming Techniques [2]. Copyright

©199], Addison-Wesley. Used with permission.

(2.9)

3. Using the normalized input vector as the output from the input layer in the

CPN, compute the activation to each unit on the competitive hidden layer by

using Eq. (1.1).

4, Determine the winning unit on the competitive layer by selecting the unit

with the largest activation. Call this unit W.

5. Adjust the connection weights between the winning unit andall n input-layer

units according to the equation

Wwalt + 1) = Wwrlt) + aX — Wwn(t)) (2.10)

where the term q@ is a small constant used to limit the amount of change to
the connections.

6. Repeat steps 1 through 5 until all p input patterns have been processed once.

7. Repeat step 6 until each input pattern is consistently associated with the
same competitive unit. Note that some input patterns may be exclusively

44 Paradigms

associated with one competitive unit, and sometimes several patterns will

cause the same unit to win.

8. Select the first vector pair in the training set. Call it the currentpattern.

9. Repeat steps 2 through 4 for the current training pattern.

10. Adjust the connection weights between the winning unit and all M output-

layer units according to the equation

Wmw(t + 1) =Wmw(t) + BOm — Wnw(t)) (2.11)

where the term £ is used to limit the amount of change to the output connec-

tions.

11. Repeat steps 9 and 10 for each vectorpair in the trainingset.

12. Repeat steps 8 through 11 until the difference between the desired output,y;,

and the weight vector W,,w is reduced to an acceptably small value.®

Now that we know the mechanics of learning in the CPN, let us consider

the qualitative aspects of the learning algorithm. First, from inspection of the

algorithm, we observe that input vectors to the network are normalized prior to

propagation to the hidden layer. The reason for the normalization is not intuitive,

until you consider the process of computing activation in a competitive unit. Re-

call that each competitive unit computes an input value, net;, using a processthat

is analogous to computing an inner product between vectors. We have already

ensured that the input vector to the competitive layer, x;, is normalized. If we

further ensure that the input weight vectors to each hidden layer unit, w;,, are

normalized,’ Eq. (1.3) tells us that each competitive unit will receive an input

stimulation that exactly corresponds to the cosine of the angle between these two

vectors in Euclidian space. Thus, in the CPN, hidden-layer units compete for the

right to adapt their connection weights (and later produce an output) based on

how closely their input-weight vectors match the current input vector in direction

only. This processis illustrated in Figure 2.11.

The output connections from the hidden layer in the CPN are adjusted in a

mannersimilar to the adjustment madeto the input connections. However, notice

that the competitive training occursfirst in the algorithm. The reason for this sep-

aration is to ensure that all of the input training patterns have successfully been

categorized by the competitive units. Once all of the input patterns are correctly

classified (by being associated with a particular, competitive unit), training the

network to produce the correct output is simply a matter of adjusting the connec-

tion weights from the appropriate winning unit such that

6. Here, as with most neural-network models, the definition of the term acceptably small is applica-

tion specific, and must be determined by the developer.

7. Input-weight vectors are normalized to the competitive layer. The process by which this normal-

ization occurs is a function of the interaction betweenthe initialization of the connection weights and

the adaptation process, described by Eq. (2.10).

2.2 The Counterpropagation Network 45

Figure 2.11 The process of matching patterns in Euclidian space is shown.In this

diagram,the vector x represents the current input to the network, while vectors w; and

Ww? each represent a weight vector to two competitive units in a CPN. Becauseall vectors

are normalized, unit 2 wins the competition because x is closer to W2 in an inner-product

sense than it is to w;. the new value of w2 is the vector w5, which has been adjusted

toward x.

¢ If the winning unit is uniquely associated with a single input pattern, the

output pattern associated with that input pattern is exactly encoded into the

output connectionsto the linear layer.

e If the winning unit is associated with more than oneinputpattern, the output

pattern encoded into the connectionsto the linear layeris the vector average

of the output patterns associated with the inputs categorized by that compet-
itive unit.

2.2.2 CPN Pattern Recall

After all of the training patterns have been successfully encoded in the CPN,

learning stops and the networkis then used exclusively in its production mode.In

this mode, new inputpatterns are applied to the network, and the CPNis expected

to return an appropriate output pattern vector. In the case of the CPN, appropriate

meansthat the network should produce the exact pattern (y;) associated with the

input pattern (x;) that most closely resembles the current input pattern.

The process by which the CPN performsthis function is through the inter-

action between the competitive units and the linear-output units; when the CPN

is learning, a new inputpattern is normalized and propagatedto the hiddenlayer.

46 Paradigms

The hidden-layer units compete for the right to fire, based on how closely the
normalized input pattern matches the pattern vectors stored in the input connec-
tions to each competitive unit. The one unit with the strongest activation® wins
the competition, andit stimulates the memorypattern stored in its output connec-
tions. The linear units serve to either multiplex the outputs from the competitive
outstars or integrate the outputs from multiple, winning outstars, depending on
the behavioral mode of the network.

Exercise 2.4: Consider the use of a CPN in an application to determine the
parity bit of an eight-bit binary input pattern. Is the CPN the best choice for such
an application? Justify your answerbyrelating the behavior of the CPN to the
behavior of a BPNtrained to perform the sameapplication. =

Because of this behavior, the CPN excels in applications that require exact

(or interpolated) output patterns from noisy inputpatterns.

2.3 ADAPTIVE RESONANCE THEORY

The adaptive resonance theory (ART) networks, and mostof the networks derived

from the basic ART architecture, were developed by Stephen Grossberg, Gail

Carpenter, and colleagues at Boston University as part of an attempt to resolve

what they called the stability-plasticity dilemma [5] common in most neural-

network paradigms.

As an example of this dilemma, consider how a BPN is used when con-

structing a neural-network application. After collecting pattern data about the

application domain, the BPN is placed in a learning mode wherethe training

vectors are encoded by the network. Once the network has converged to a so-

lution, training stops and the BPNis usedin its production mode to perform the

application. If new application data patterns are later acquired, the BPN must be

completely retrained using the expandedtraining set, because attempting to re-

train the BPN using only the new patterns will result in the network forgetting

previously learned patterns.

Exercise 2.5: Why does the BPN forget previously encoded patterns whenre-

trained only on new exemplars? gs

Grossberg and his colleagues set out to develop a network that could adapt

itself to store new information whenpresented with previously unseen patterns,

yet remain stable enoughto retain previously learned patterns without corrupting

them. Additionally, they wanted to show how a neural network could solve such

a problem,and remain biologically plausible. The resulting network architectures

were called ART1 and ART2. The only real difference between them,aside from

8. Whichis also the unit that has an input-weight vector most closely aligned in Euclidian direction

to the current input vector.

2.3 Adaptive Resonance Theory 47

the relative increase in complexity in the structure of the ART2 inputlayer,is that

ART1is restricted to binary input patterns while ART2 can handle continuously

variable inputs.

Before we begin our discussion of the ART networks, however, you should

be aware that these networks are fairly complex dynamic systems. Grossberg

has developed a set of equations for the networks that simultaneously endow

them with the desired behavior and effectively replicate functions observed in

biological systems. For our review, however, we shall simplify the discussion

by presenting a qualitative overview of the operation of the networks. Readers

interested in the theoretical details governing the operation of the ART networks

are referred to the Suggested Readingssection at the end of this chapter.

2.3.1 ART1 Operation

The ART 1 network consists of two layers of processing elements, labeled F; and

Fy, each fully interconnected with the other. The units in layer F> also havelateral

inhibiting connections, so that competition can be accommodated.Asillustrated

in Figure 2.12, ART1 also requires two additional functional elements called the

gain control and orienting subsystem. The purpose of these elements is to guide

the network toward an appropriate solution to the pattern-matching problem.

A concept fundamental to the operation of ART1 is the notion of memory.

In the ART! network, memory can take two forms: Short-term memory (STM)is

the term used by Professor Grossberg to refer to the activation patterns in each
layer, while long-term memory (LTM)refers to the information stored in the
connections betweenlayers.

With this background in mind, let us now consider how information is pro-

cessed in the ART]! network. As in the case of the BPN, the networkisinitially
stimulated by the application of some pattern vector from the outside world.
Unlike the BPN,where input-layer units are simply fan-out units, ART1 prepro-
cesses the inputvector, i, to compensate for the bias from the gain control.’ This
processing, which is performed automatically by the activation function of the F;
layer units, amounts to a prescaling that ensures that the outputs produced by the
F\ units remain binary, even though theyalso receive input from the gain-control
unit.

After preprocessing, the F\-layer units produce an output vector (x) that
simultaneously stimulates the F2-layer units and the orienting subsystem (r).
At this point, the stimulation on r is such that i and x both cancel each other,
effectively inhibiting the reset function produced by r. The units on layer F> then
compute their activation using the by-now familiar sum-of-products calculation
described by Eq. (1.14). As with the hidden layer in the CPN, the F) layer in the
ARTI networkis competitive.

9. All units in the ART1 network are constructed such that activation can only occurif any twoofthe
three possible inputs are active. This restriction is referred to as the two-thirds rule.

48 Paradigms

F

Gain Orienting
Control Subsystem

G
L

F,

Figure 2.12 An example of an ARTI networkstructure is shown.In this diagram,solid
lines represent excitatory connections and dashed lines represent inhibitory connections.

Source: A connectionist approachto heuristically pruninglarge search trees [5]. Copyright

©1990, by David M. Skapura. Used with permission.

At this point, we should note that the competition performed in the ART] F2

layeris slightly different from the competition implementedin the hidden layerin

the CPN. Whereasthe competitive layer in the CPN used normalized pattern vec-

tors, the ART1 F> layer uses the full magnitude of the pattern vectors to compute

their activations. Hence, we can see that the F>-layer units are competing with

each other usingthe entire projection!® of the input pattern on their connection-

weight vectors as the basis for their competition.

If we further note that the patterns stored in the bottom-up connectionsthat

run from layer F; to layer F> are memories of STM patterns seen previously by

the F>-layer units, it then becomes evident that the F-layer units are performing

a coarse pattern match between the current STM pattern, x, and the long-term

memories of patterns previously seen. Thus, during each pattern propagation

cycle, the F>-layer units are competing with each other based on the degree of

match between the current STM pattern at F; and the LTM pattern stored in the

bottom-up connection weights to the F-layer units.

10. As comparedto just the direction of the vectors, as in the CPN.

2.3 Adaptive Resonance Theory 49

For now, we shall assume that the F> unit with the largest activation is the

unit that has learned to recognize the specific input pattern vector (although, as

we shall see, that is not always the case). That unit is declared the winner, and

activity on all other F> units is inhibited. We accomplish this by applying the

competitive activation function, given by Eq. (1.12), to all F>-layer units.

Having found a candidate match, the F layer can now be viewed as a com-

petitive layer, in that the winning unit activates a memory pattern stored in its

connections back to the F; layer. The units on the F; layer then begin process-

ing the feedback pattern from F2, comparing the memory pattern (which weshall

call x") with the activity pattern, x, generated by F\. If the two patterns match,

the reset signal is again inhibited and the networkenters its resonant state where

the F2 memoryreinforces the input.

If, however, the memory pattern sent back from F> does not match the x

template, the new activity pattern on F; will cause the orienting subsystem to

activate, sending a reset signal back to the F> layer. This has the effect of forc-

ing any currently active F, unit into a long-term inhibition state, thus preventing

the unit from again matching the x template on the next iteration (note that it

has no effect on any inactive unit). With all F2 units off (due to a memory mis-

match), the entire process is repeated until a matching pattern is found orall F>

units are reset, in which case a new F» unit is encoded with the pattern to be
stored (x).

Notice that in the scenario just described there is no separation between
learning and production modes. The ART1 network processes information in the
same way any time a new external stimulation is provided. If the external pattern
is one that the network hasalready learned,it will quickly recall and reinforce that
pattern. If the input represents a previously unseen pattern, the ART1 network
will extend itself to encode that new information by adding a unit to the Fy layer
and encoding the new information in the connections between this new unit and
all F; layer units. Thus, ART 1 behaveslike an extensible pattern memory,starting
out knowing nothing about the world, and rapidly expandingasit learns aboutits
application environment.

2.3.2 ART2 Operation

Macroscopically, ART2 is virtually identical to the ART1 network in the wayit
operates. The only real difference between the two networksis in the operation
of the F) layer. Thestructure of the F, layer in ART2 is composed of seven sub-
layers, each with units that directly connect to corresponding units on other sub-
layers. The purpose of these sublayers is to allow the ART2 network to process
analog, continuously variable inputs. The network accomplishesthis goal by im-
plementing the behavior described by the following equations for each sublayer:

50 Paradigms

w; =1, + au; (2.12)

“ (2.13)x; = ————_ :
e+ ||w|

vi = f(x) + Of (qi) (2.14)

“ (2.15)uj;= .

e+ |v

Pi=uit+ do B(ypzij (2.16)
j

Pi
qi = (2.17)

e+ |lpl|

Uj + CDi
r= (2.18)

Jul] + |lcp]|

where the term e is used to represent a small constant value to prevent division

by zero. While these equations may make the operation of the ART2 F, layer

clear to the reader with a strong mathematical background,it is equally important

that weillustrate the operation of the layer from a practical standpoint, because

many readers will likely want to employ the use of the ART2 network for some

application.

First, you should note the various feedback paths providedin the structure of

the F; layer, as shown in Figure 2.13. Specifically, feedback exists between the

u and w sublayers, and between sublayers q and v. This feedback structure in-

dicates that signals must propagate completely through the F| sublayer structure

at least twice in orderto ensure that the layer is operating as it is intended: once

when the input pattern is first applied, while all of the sublayers are quiescent,

then again to allow the sublayers that receive feedback to process the feedback

signals.

Nowlet us consider the function of each sublayer in ART2. We shall begin

by stepping through the pattern propagation processin the F) layer structure as

though the network were processing a new input pattern. We therefore assume

that the initial state of each sublayer in F) is inactive, and that there is no active

pattern being propagated downward from layer F.

From Eq. (2.12), we can see that each unit on w produces an outputsignal

that is, initially, just the input received by the unit from the external source. Sub-

layer x then normalizes the input vector received from w, as shown byEq.(2.13).

Next, sublayer v performs a contrast enhancementon the normalized input vec-

tor, effectively filtering out any pattern component that does not significantly

affect the direction of the pattern vector. This behavior is shown in Eq. (2.14),

where the term f(x;) performsthefiltering function. The contrast-enhanced, nor-

malized pattern is then propagated to sublayer u, where it is re-normalized and

buffered for presentation to sublayers p and r.

2.3 Adaptive Resonance Theory 51

Resetto F, Output to F,

“ww” ye
CO) cee C) Memories from F

r QC CCC) g
SSEeSSa

O)

OA
tellae

a? oy u/

C) ©) CeO) Ww

Input Pattern

Figure 2.13 This diagram illustrates a typical structure for the ART2 F; layer. In this

structure, the seven sublayers that comprise the ART2 F; layer act to buffer the input

pattern (w), normalize it (x), contrast enhance it with feedback from the output of the

layer (v), normalize the enhancedinput pattern and hold it for comparison with the LTM

pattern sent back from F>2 (u), buffer the output of the F; layer and hold the LTM pattern

from F (p), and normalize the output pattern prior to feeding it back into the contrast

enhancer (q). The sublayer r replaces the single unit in the orienting subsystem of the

ARTnetwork, allowing the internalpattern at the u sublevel to be compared component

by component with the LTM pattern sent back from F>, seen at p, which becomesthe

equivalent of x*.

Now things start to get interesting. Sublayer p buffers the output pattern

vector from sublayer u for propagation to layer F> and sublayer q, and simul-
taneously provides a comparison pattern for sublayer r, which controls the re-
set function for the network. Sublayer q then normalizes the output pattern, and
buffers it for feedback to sublayer v. At this point, all sublayers on F; are active.
Because the patterns received by sublayer r from sublayers u and p are identical,
reset is inhibited. In a real network structure, the output from sublayer p would
then be propagated forward to layer Fy. Simultaneously, the F; layer woulditself
be changingits state, due to the introduction of the feedback signals.

Because this networkis currently implementedin software only, we can sim-
plify the signal propagation process by ignoring the pattern propagation to F)
until the F; layer has stabilized. Thus, we now begin the second pass of signal
propagation through the Fj-layer structure. Sublayer w produces a new output

52 Paradigms

pattern, based on the feedback it receives from sublayer u, which is the contrast-

enhanced form of the input. The feedback loop from u to w then serves to am-

plify the significant components of the true input pattern, while squelching the

componentsthat were filtered out during the first phase of pattern enhancement.

Similarly, sublayer v receives feedback from sublayer q, which serves to enhance

the components ofthe internal pattern that are actually propagated to layer F.

We should also observe that, as described by Freeman and Skapura[4], the

form of the function f(g;) controls the contrast enhancement performed by sub-

layer v, with logistic functions (such as the sigmoid, or other rapidly transition-

ing functions) providing a very sharp pattern enhancement. Likewise, a linear,

or other gradual activation function, on sublayer q will provide a soft contrast

enhancementin the F; layer. In any case, after the second phase of pattern en-

hancement has completed, the output from the p sublayer can be propagated to

the F> layer to stimulate a memoryretrieval competition, as we described in the

ARTI network.

Once F> produces an output, the memory stimulated by the winning F> unit

is fed back into the F, layer for pattern comparison. We can see this behavior

in Eq. (2.16), where the function g(yj;) is nothing more than the output from

the competitive F> layer. Thus, the final output produced by sublayer p is the

combination of the normalized output vector (whichis still buffered as the output

from sublayer u and the memory stored in the top-down connections betweenthe

winning F> unit and the Flayer.

When F» activates its memory pattern, sublayer r is provided with two pat-

tern vectors for comparison: the normalized output pattern from the F] layer, as

represented by the output from sublayer u, and the memory stimulated by the

propagation of the input pattern to the F> layer, as provided by the modified out-

put of the p sublayer. If these two patterns compare favorably, reset is inhibited,

and the network enters its resonant state. If the two patterns do not compare, the

reset signal is activated by the r sublayer, and the pattern propagation process

Starts anew, just as in ART1.

Applications of this network include systems that must perform complexpat-

tern classification and recognition. The ART networks also form the basis of sev-

eral other networks designed to perform visual pattern recognition: A network to

detect boundaries in computer vision applications (the boundary-contour system

[5]) and a motion-detection network, also applicable to computer-vision applica-

tions [1].

2.4 THE MULTIDIRECTIONAL ASSOCIATIVE
MEMORY

All of the networks described to this point share the attribute of /earning about

an application through repetitive exposure to example patterns taken from the

application domain. In this section, we shall consider a network paradigm that

performs complex, multidimensional pattern transformations after being initial-

ized with connection weights that are computed ahead of time for the desired

2.4 The Multidirectional Associative Memory 53

application. To simplify the discussion, we shall first consider the operation of the

bidirectional associative memory (BAM), [8] which performs a two-way map-

ping between pattern spaces. We then extend the discussion to include networks

that perform a mapping function among multiple pattern spaces.

2.4.1. The Bidirectional Associative Memory

As in our previous discussions, we begin our examination of the BAM with a

description of the type of function we desire the network to perform. The BAM is

designed to perform a simultaneous mapping between two vector spaces, which

we will refer to as x and y. Specifically, let our training!! data consist of a set of L

ordered vectorpairs, {(X1, y1), (X2, y2),.--, (Xz, yz)}, with x; € R”, andy; € R”.

Then, we can describe the desired behavior for the BAM in the following manner:

Given any pattern vector from the training set, x;, the BAM will produce the

corresponding y; as output and, conversely, will produce the appropriate x; from
its associatedy;.

If we makethe furtherrestriction that all x; vectors form an orthonormalset,

we can construct an interpolative associative memory by defining the weight

matrix, W,for the interconnections from the x layerto the y layeras

L

W=)_yix; (2.19)
i=]

Similarly, the connection weights from the y layer back to the x layer are simply

the transpose of W.

In this context, an interpolative associative memory is a device that performs

a mapping, ®, from x to y such that ®(x;) =y; if x; 1s a memberofthe training

set, and, if presented with an arbitrary x, ®(x) = y; if x is closer!” to x; thanitis

to any other x;, 7 =1,2,...,L.

The network architecture needed to perform this type of function is shown

in Figure 2.14. Here, as with the ART networks, the BAM consists of two layers

of units, with the output from each layer fully interconnected with the units on

the other layer. Activation patterns, x and y, are accessed through the external

connectionsto the network.

By combining the standard computation for the activation of units given by

Eq. (1.4) with an activation function for units in the BAM given by

+1 aj(t) > 0
Fai) =) a(t—1) a(t) =0 (2.20)

—| aj(t) < 0

11. The word training is used here only to indicate that the application data embody the desired

mapping. As mentioned previously, no iterative /earning occursin this network.

12. The concept of closeness is relative to how patterns are compared by the network. In the BAM,

closeness is measured in terms of Hammingdistance.

54 Paradigms

A

OOOO CO 9 ©
a \> 4,

Ray
PEs
DISS

) Nene
y Nx

WEEO7

Figure 2.14 This diagram illustrates the structure of the BAM.Notice that the
connections between layers are shownas bidirectional connections, indicating that the

units on each layer communicate directly with all units on the other layer.

we will have constructed a processing model that behaveslike the interpolative

associative memory, described previously. To illustrate the operation of the net-

work, considerthe following algorithm:

1. After initialization of the weight matrices, apply an initial input vector to

either (or both) the x and y layers in the BAM. Use a —1to represent the

inactive state, and a +1 to indicate the active state of the units.

2. Propagate the input pattern to the otherlayer (or, in the case when both inputs

are present, select either x or y as the initial source) using Eq. (1.1).

3. Compute the new activation pattern at the destination layer by applying

Eq. (2.20).

4. Propagate the new activation pattern back to the source layer, again using

Eq. (1.1).

5. Update the activation onthefirst layer by applying Eq. (2.20).

Repeat steps 2 through 5 until the activation patterns stop changing in both

layers.

In my earlier text [4], we provide a detailed mathematical analysis of the

operation of the BAM, and show why it will always converge to a stable con-

figuration. Without going into that level of detail here, we can conceptualize the

operation of the BAM by drawing an analogy betweenthe iteration of activation

patterns between layers in the network, and the process of minimizing an energy

(or Lyapunov) function in a dynamical system. Using this analogy, we can de-

2.5 The Hopfield Memory 55

scribe the configuration of the network (given by the connection-weight matrix)

as an energy landscape. Theinitial state of the system, specified by the input pat-

tern vector(s), describes a point on the energy landscape. If the input vector(s)

match one (or both) of the training vectors, the starting point is one of the energy

minima. If, however, the input vector(s) differ from the patterns in the training

set, the starting point is a point of higher potential on the energy landscape.

Successively iterating the new pattern between layers lowers the energy in

the system, and, eventually, the network settles into a state where the activation

in each layer of units represents either the best match inputpattern andits associ-

ated output, or the complement ofthose patterns. Because the connection weights

in the BAM remain unchangedafter initialization, we can now see that pattern

matching and associative memory recall is accomplished in the BAM by mini-

mizing the Lyapunov function defined by its connection-weight matrix, starting

from a point on the energy landscape determined by the input pattern vector.

2.4.2 Extending the BAM

Using the BAM architecture as a starting point, Masifuma Hagiwara [6] of Keio

University described a straightforward method for extending that architecture into

a multidirectional associative memory (MAM). Figure 2.15 depicts several pos-

sible configurations of such a network, with the interconnection-weight matrices

defined between each combination of two layers in the same manneras they were

defined for the BAM.

The algorithm for accessing the information stored in such a networkis the

same as for the BAM,with the addition of the extra steps necessary to account

for all of the layers in the MAM.Onebenefit of extending the architecture to

allow MAM mappingsis to improve the performance of such a system in the

face of noisy input patterns. In the BAM, for example,it is possible to settle in

a minimum energystate that recalls the complementof the training patterns. That

possibility is reduced by the addition of the extra layers, because each additional

layer provides a feedback mechanism to every other layer. Figure 2.16 illustrates

this performance enhancement by comparing the ability of a BAM and three-

way MAM toaccepta noisy input and convert it into the appropriate pattern.

2.9 THE HOPFIELD MEMORY

A recurrent networkis one in which feedback connections are implemented be-
tween layers. In its simplest form, a recurrent network has feedback connections
only from the output layer directly back to the input layer. The BAM is an exam-
ple of such a network. However, there are multilayer recurrent-network models
that allow feedback betweenall layers; that is, a hidden layer will provide feed-
back to the input layer, and the output will provide feedback to the hidden layer.
The common denominatorin all multilayer recurrent networks is the function of

56 Paradigms

Figure 2.15 Several possible configurations for the MAM are shown.In each case, the

connection-weight matrix between layers is defined in exactly the same manneras the

connection-weight matrix was defined for the BAM.(a) A three-way associative memory.

(b) A four-way associative memory.

the feedback connections—theyare used as a state indicator, endowingthe net-

work with the ability to anticipate its next state from its current state. Figure 2.17

illustrates the general form of a multilayer recurrent network.

The Hopfield memory (namedforits inventor, Professor John Hopfield) is a

unique implementation of a recurrent network. Unlike the BAM and multilayer

networks that we have already studied, the Hopfield memoryis constructed with

only a single layer of units. In this arrangement, each unit receives a direct input

signal from an external source, and feedback from every other unit in the network.

A typical Hopfield networkis illustrated in Figure 2.18.

Inspection of the architecture of the Hopfield memory suggests the behavior

of such a network: An external pattern is provided as an initial input, which the

network then iterates (in discrete time) until it stabilizes in a particular state. At

each time step, the activation of each Hopfield unit is dependent on the initial

input and the feedback received from all other units.

2.5 The Hopfield Memory

MAM Layers BAM Layers

X Y Z X Y
OoggO08 Coooo0 cogso)UOCOOmmos Ooooo
SOSOU8 DoOcooO cosO s§0m8O0Os Coooo
Ooooos OoOoDD Ooso) Doooom Coooo
BSOOS8OO0 Doooo oOoOso s0oOmsoo0 ooooco

(4) ogooms OOooo Ooso osCOms Coooco
SEOB8OO Coooo coOso gwosoo ooococo
g800o0o0 ooooo ggOocoo oocoo
sOsooo gosocoo

Ooogo0o0 goooo ooso) OUOOmmoo ooocoo
OOgOg80 OoOD00 OoOso 6COm8omo Ooooo
OSOC0O8 DooOsO OOsO s§0cCocoOs Cosmo

(b) OROOOS O8MBO OOsO) 86900000 OmooE
OSBSEE BOOBO COsO S888CO omocoo
OSOCDO8 BOOBO COsO ws0coCOos Oscos
OSCOOs OegSeoOOS OsDCOgO0 Oomeo
omgocoog Osm8oOo

57

Figure 2.16 The ability of a MAM and a BAMtorecall patterns stored in their internal

connection-weight matrices is shown.(a) Theinitial input, shownas the activation pattern

on layer x, is intended to represent the bit map of the character “A,” corrupted with an

error probability of 44%. (b) The three-layer MAMsettles into a steady-state solution

that showsthe correct pattern, while the BAM convergesinto a false recollection state.

Source: Multi-directional associative memory [6]. Copyright ©1990, Lawrence Erlbaum

Associates, Inc. Used with permission.

2.5.1

Before we consider the operation of the Hopfield memory, let us first investi-

gate the process of recurrence in neural networks. We shall begin by looking

at the propagation of signals through a single layer, feed-forward network. As

illustrated in Figure 2.19, such a network takes an input pattern vector, 1, and

produces an output pattern vector o by propagating i through its internal con-

nections and transforming the resulting activations through the application of an

activation function. The process of computing the output pattern is analogous to

a vector-matrix multiplication. We can represent the computation performed by

this simple network mathematically as

Recurrent Signal Propagation

o(t) = T[Wi(t)] (2.21)

where I°[-] represents the application of the activation function to each compo-

nent of the vector produced by the vector-matrix multiplication between the input

pattern i(t) and the weight matrix W.

Specifically, let

58 Paradigms

Figure 2.17 This diagram illustrates the architecture of one type of recurrent network.
In this diagram, we have borrowed the z~! notation from mathematics to denotea discrete
time-step delay. The operation of this network is similar to the operation of the BPN,
except that connections from the feedback units in the output layer are provided directly
to the respective input units in the network. Notice that feedback connections are matched
1:1 between input and outputunits, not fully interconnected like the normal units on each
layer.

Wi] Wi2 +7: Win

W2} W220 Wap
w= (2.22)

Wm! Wm2 '** Wmn

Now,given an input vector i(t), the function performed by the operator I'[-] is de-
scribed by a vector-matrix multiply, followed by the application of the activation
function to each componentofthe resulting activation vector.

Equation (2.21) describes the general process of computing an output from

an input performedby a layer of network units. However, because we are now

dealing with recurrence, we must consider the operation of the network in dis-

crete time. At every timestep, f, the input received by a unit is the combination

of the original input vector, i(t), and the output produced by the layer at an ear-

lier time, as seen through the feedback connectionsto the unit, o(¢ — 1) W. For

the purpose of simplifying our analysis, we shall consider the delay to be equiv-

alent to a single time step, which is also the amountof time required by each
unit to compute an output from the current input. Such a network is depicted in
Figure 2.20.

2.5 The Hopfield Memory 59

| | |
| | H

7

[| | | | |
LE] Fh \ ff ly

losin*
TN \\

Figure 2.18 The architecture of the Hopfield memory is shown.In this diagram, we

have eliminated any feedback connections from each unitto itself. The operation ofthis

network is described in the text. Source: Neural Networks: Algorithms, Applications, and

Programming Techniques [2]. Copyright ©1991], Addison-Wesley. Used with permission.

0 ,(t)0,(t)0,(t) 0, (t)o,(t) On (t) = o(t)

Pye
OOOO0O::O

Figure 2.19 A neural-network modelillustrating the analogy between network

computation and a vector-matrix multiplication. The details of this computation are

described in the text.

x(t —1)

We assumethat, prior to receiving any external input, all units on the layer

are quiescent. When the first input pattern arrives at time fo, the total input re-

ceived by a unit1s restricted to the external input, i; (fo), because

60 Paradigms

O,(t) 0,(t) 0,(t) o,(t)

W;, Wo W3 W4 Wj

=X X;

ba
L(t) [{t-1) I{t-1) |Am

Figure 2.20 A recurrent neural network illustrating the delay required by the feedback

from the outputis shown. To distinguish between the external input, i(r), and the net input

received by each unit(including the feedback signals), we will refer to the net input as
X(t).

I[x (to)] = T'[i(to) + WY] (2.23)

= T[i(to)]

Using this model, we can describe the processing performed bya recurrent

networkas a series of state transitions. At time fo, the output from the network

is determined only by the input pattern. Feedback from the output is delayed until

the next time step. At each subsequenttime step, the output from the networkis
given by

o(t) = T[Wx(t — 1)] (2.24)

where the input vector is the recurrent function of all previous time steps. The

dependence of the network ontheinitial input becomes evident if we expand Eq.

(2.21) to an arbitrary timestep f,

o(t)) = T[Wx(to)]

0(f2) = P[WI[x(to) J]

o(t) = PEW... CP [Wx(to)].. .]] (2.25)

where, according to Eq. (2.23), x(to) = i(to).

2.5 The Hopfield Memory 61

This processing model summarizes the operations performed in an iterative

recurrent-network, such as the Hopfield memory, but obviously is not appropri-

ate for all recurrent-network models. In fact, the Elman and Jordan networks

described earlier in this chapter do not operate iteratively at all; rather, these re-

current networksrely on the fact that the feedback units are in a stable state prior

to any forward pattern propagation. That being said, let us now consider the op-

_ eration of the Hopfield memory.

2.5.2 Signal Propagation in the Hopfield Memory

To put the operation of the Hopfield memoryin practical terms, we should note

the similarity between this network and an analogelectrical circuit with feedback.

As shownin Figure 2.21, the Hopfield memory can be implemented asa series of

sigmoidal amplifiers providing feedback to each other throughresistive elements.

The inputs to the amplifier are not perfect: Each hasa resistive-capacitive (RC)

component that must be considered. Inspection of the electrical model indicates

that every unit in the network receives an input that is the combination of the

external input and the feedback signals from all other units, minus the leakage

that must occur across the input resistor. Thus, we can write the computation

performed by each unit in the Hopfield network at each time step as

n .

Au; = Yo wijdj — = +i; At (2.26)

j=]

where the term v; represents the output from the j'” unit at the previous timestep,

and t is the system time constant.!°
The Hopfield memoryis similar in structure to the single-layer network we

examined in the previous section, with only the interconnections between each

unit and itself eliminated. Thus, the weight matrix (W) for the Hopfield memory

is described by

O wi2 +: Win
Ww? O see W2n

w=| : (2.27)

Wml Wm2 +:: O

By substituting this new matrix for W in Eq. (2.23), we can see the similarity

between the computation performed by the Hopfield memory, as described in Eq.

(2.24), and the computation performed by a general recurrent network. In the

Hopfield memory, the activation at each time step for every unit in the network

is determined by the external input to the unit (ij) and the weighted sum of the

feedback to the unit from all other units. Moreover, the feedback in the Hopfield

memory, and hence the output at any time f > 0 is a recurrent function of the

13. From the analogy to the analog RC electrical circuit indicated earlier.

62 Paradigms

 To other

amplifiers

J
l
d
d
e
l

l
v
e

y From other

amplifiers e
e

G
O

Figure 2.21 Theelectrical modelillustrating the structure of the Hopfield memory
_is shown.In this diagram,the solid dots represent weighted connections, as shown in
detail in the exploded view. Becauseresistors always have positive values, we instead use
inverting amplifiers to model the inhibitory connections. Note that there is no feedback
between any unitanditself in this arrangement. Source: Neural Networks: Algorithms,
Applications, and Programming Techniques [2]. Copyright ©1991], Addison-Wesley. Used
with permission.

original input. Given this processing model, there are only two outcomesthat can
be reasonably expected: The network will either oscillate between output states
forever, or will eventually settle into a stable pattern that is reinforced by the
feedback in the network. Obviously, the desirable situation is to have the network
stabilize. But how can we guaranteethatit will?

The answerto that question is in the form of the connection-weight matrix.
Mathematically, if the weight matrix is symmetric, convergence is guaranteed.
The issue, then, becomes one of ensuring that the connection weights in the
Hopfield memoryare configured appropriately for the specific application.

2.5.3 Connection-Weight Initialization

The Hopfield network, like the BAM and MAM networks described earlier, is
initialized to perform a specific application, rather than adapting its connection
weights during a learning period. Unlike the BAM and MAMnetworks, however,
the connections in the Hopfield networkareinitialized to values that numerically
describe an energy function that is defined specifically for the application. The

Suggested Readings 63

classic example of the Hopfield network is the “Traveling Salesperson” (TSP)

problem, whichis described at length in [13] and [4].

In essence, the connection weights in the Hopfield networkare selectively set

to ensure that only certain units are active at any given time. This is accomplished

by setting the feedback connections between each unit andits neighboring units

such that an active output from one unit tends to inhibit its neighbors. Because

feedback is provided between all units in the network, and all other units, we

can guarantee that the weight matrix is symmetrical by simply ensuringthat the

feedback connection weight between any two units, which we shall arbitrarily

refer to as A and B,is the same as the feedback connection between B and A.

Thus, by initializing the network connection weights, instead of allowing

the network to find its own weighting values, we ensure that the network will

converge to a solution. In Chapter 8, we shall investigate an interesting variation

on the Hopfield memory, which allows the connection weights to be adapted to

improve the performanceof the network over time.

2.6 NETWORK-LEARNING SUMMARY

In the previous sections, we have described several different methods for deter-

mining the connection-weight values needed to produce a neural network that

will solve a particular problem. In so doing, we have (hopefully) conveyed the

idea that each network paradigm has its own quirks and foibles, determined by

the structure of the particular network, the learning process employedbythe net-

work, and the method by which units compute their activation values. The point

of this discussion was to show that there are many different kinds of neural net-

works, and that each has a very particular kind of problem that it is designed to

solve. The misuse of a neural-network paradigm is very often the reason whyap-

plications fail. Now that we are armed with an understanding of the internals of

the various neural-network paradigms, we can begin to better determine which

networks are most appropriate for a particular problem.

SUGGESTED READINGS

There are a numberof excellent textbooks that describe the detailed operation

of the various networks we have discussed in this chapter. For those interested

in the underlying algorithms, as well as understanding how to go about writ-

ing programs to implementthe simulations of these networks on conventional

computers, an excellent text is Neural Networks: Algorithms, Applications, and

Programming Techniques by James A. Freeman and David M. Skapura [4]. An-

other excellent book describing the operation of these and various other network

paradigms, as well as many applications of the technologyis /ntroduction to Arti-

ficial Neural Systems by Jacek Zurada [14]. For those interested in exploring the

variety of data representation schemesused to address specific applications, the

series of books edited by Branko Soucek and The IRIS Group [15-17] presents

64
Paradigms

an outstanding compilation of papers describing the implementation of neural-
network applications on a variety of computer platforms. Of course, the pro-
ceedings of any of the major conferences on neural networks, such as the IEEE
Conference on Neural Networks or the INNS World Congress on Neural Net-
works, always contain an excellent cross section of the theory and application of
the technology.

BIBLIOGRAPHY

1. Gail A. Carpenter and Stephen Grossberg. Invariant pattern recognition and recall by
an attentive self-organizing ARTarchitecture in a nonstationary world. In Maureen Caudill
and Charles Butler, editors, Proceedings of the IEEE International Conference on Neural
Networks. San Diego, CA,pp. II(727-735), June 1987.

2. Gail A. Carpenter, Stephen Grossberg, and Courosh Mehanian.Invariant recognition of
cluttered scenes by a self-organizing ART architecture: CORT-X boundary segmentation.
Neural Networks, 2(3):169-181, 1989,

3. James A. Freeman. Simulating Neural Networks with Mathematica. Addison-Wesley
Publishing Company, Reading, MA, 1994.

4. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-
tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,
MA,1991.

5. Stephen Grossberg. A neural model ofattention, reinforcement, and discrimination
learning. International Review ofNeurobiology, 18:263—327, 1975.

6. Masifuma Hagiwara. Multi-directional associative memories. In Proceedings of the
International Joint Conference on Neural Networks, pp. II(3—9), Washington, DC, January
1990.

7. Robert Hecht-Nielsen. Counterpropagation networks. In Maureen Caudill and Charles
Butler, editors, Proceedings of the IEEE International Conference on Neural Networks.
San Diego, CA, June 1987.

8. Bart Kosko. Bidirectional associative memories. IEEE Transactions on Systems, Man
and Cybernetics, 18(1):49-60, January-February 1988.

9. Terrence J. Sejnowski and C. R. Rosenberg. Parallel networksthat learn to pronounce
english text. Complex Systems, (1):145—168, 1987.

10. Branko Soucek, editor. Fast Learning and Invariant Object Recognition. John Wiley,
New York, 1992.

11. Branko Soucek, editor. Fuzzy, Holographic and Parallel Intelligence. John Wiley,
New York, 1992.

12. Branko Soucek, editor. Neural and Massively Parallel Computers. John Wiley, New
York, 1988.

13. David W. Tank and John J. Hopfield. Collective computation in neuronlikecircuits.
Scientific American, 257(6):104—114, December 1987.

14. Jacek Zurada. Introduction to Artificial Neural Systems. West Publishing Company,
St. Paul, MN, 1992.

C H A P T E R

Application Design

The journey of a thousand miles begins with oneStep.

— Lao-Tsze

In the first twochapters of this book, we discussed how neural networks operate

microscopically and macroscopically. We have seen howall neural-network mod-

els share certain operational characteristics, such as the distribution of knowledge

throughout the network structure, and the massively parallel operation of the sys-

tem. The most important characteristic shared by all of these networks, however,

is that they all perform some useful information-processing function that can be

exploited to solve other problems.

However, simply knowing how these neural-network models behave is quite

often only half of the problem in creating practical applications. The other aspect

of building successful neural-network applicationsis the process of acquiring and

modeling the application data, selecting the most appropriate network model for

the application, and training the network to perform the application. In this chap-

ter, we shall focus on the process of application-data modeling, showingtheinter-

relationship between the chosen data representation schemeand the operation of

the neural-network processing model.

We shall begin our study of neural-network application design by first de-

scribing some of the issues that an application developer will likely encounter

when building a neural-network application. We shall then tie together the con-

cepts of data representation and network paradigm selection, showing why the

behavior of the network model must be considered when developing an applica-

tion. We conclude this chapter by describing, in detail, a specific example of a

viable neural-network application, illustrating the process of collecting and refin-

ing the training data for the network.

65

66 Application Design

3.1 DEVELOPING A DATA REPRESENTATION
From ourdiscussion of neural-network operational characteristics in the first two
chapters of this book, we knowthat all of the popular neural-network paradigms
process information in the form of input pattern vectors. We also know that all of
the neural models produce an outputpattern that must be interpreted by a higher-
level process, although the actual form of the output will vary depending on the |
specific network model. For example, the BPN produces an output pattern that
is completely independent of the input pattern; that is, the output produced by
the network is generated by a different set of processing elements than those that
accept the inputpattern. In contrast, the Hopfield memory produces an output
pattern that is actually an altered form of the original inputpattern.

In all cases, the pattern vectors propagated through the network modelal-
ways comprise one of two types of signal! components: analog, or continuously
variable, signals; and discrete, or quantized, signals. In Figure 3.1, weillustrate
the different types of informational signals used in neural-network models. No-
tice that both types of signals share one commontrait: Both are finite-amplitude
signals, varying in amplitude between their minimum and maximum values,al-
though the range of the variance may differ dramatically from signalto signal.

As we already know, most of our neural-network models are designed to
detect, and respondto, the presence offeatures in an input pattern vector that is
presented asa static pattern to the network. Here, then, is the crux of the dilemma
that we face as application developers: How can we capture a myriad of time-
varying signals and represent them so that a neural-network model can process
them as spatial pattern vectors? |

Because our job as applications designersis to create a network that performs
the correct input-to-output transformation across a wide variety of different input
patterns, we must consider how our choice of pattern representation will interact
with the network model when information is propagating through the network.
In essence, we must design the data representation scheme for the application
to maximize the ability of the selected network model to detect, and respond
to, any features that may exist in the input pattern that will enable the network
to produce the correct output pattern. Here, we must concern ourselves with the
issues of deciding how to capture the application data, and properly formatit prior
to presentation to the network.

Then, too, we must consider the representation of the output pattern that we
will ask the network to produce, and balance that against the intrinsic ability of
the network model to produce the desired output. All too often, novice applica-

1. In the ensuing discussion, we shall describe the operation of the neural models as though the

network exists as a physical entity. Because most network modelsare (at least, initially) implemented

as software simulations, the idea of “signals propagating through connections”is clearly an abstract

concept.

3.1 Developing a Data Representation 67

Max

(a)

Min

(b)

Figure 3.1. This diagram depicts the two different types of information-bearing signals

that can be used by a neural model. Notice that the signals do not need to be periodic, nor

does the time base need to be consistent between different signals. (a) Analog signals vary

in amplitude smoothly,allowing the signal to take on any value between its minimum and

maximum amplitude. (b) A discrete signal behaves as a step function. A signal of this

type can take on only one of two values: its minimum and maximum amplitudes. Values

between the minimum and maximumare nevervalid.

tion developers select a “natural” representation for the output, only to find after

hours? of training time that the network cannot producethe desired output.

In the remainderof this section, we shall consider these issues in depth, and

provide a set of guidelines that can be used to maximize the success rate of an

application using neural-network models. We begin this discussion by addressing

the issue of scalinginput signals prior to presentation to a neural-network model.

3.1.1 Internal Representation Issues

All of the neural models described in Chapter 2 of this book, and all of the

paradigms used to construct the applications described in subsequent chapters,

are defined to processpatterns that are composedof signals that are limited in am-

plitude. Typically, these signals are held in the range of zero and one.* We impose

these limits on the pattern signals to allow the network to use its interconnection

weights to encode the representation of the application pattern vectors.

If we did not limit the amplitude of signals in the network, pattern com-

ponents with very large amplitude swings would dominate the behavior of the

network. This is true because, as we described in Chapter 1, the instantaneous |

2. Or perhaps weeks.

3. Some network models require that signal values vary in range between —1 and 1. We will hence-

forth use the term bipolar to distinguish these networks from their binary counterparts.

68 Application Design

behavior of each processing elementin the network is governedbythe total stim-
ulation received by the unit, which we have defined as the algebraic sum ofall of
the weighted input signals to the unit. Recall from Chapter1,

A

net; =Y

>

oj wji (3.1)

i=]

where net; is the activation of the j" unit in the network, which is determined
by gating the output of the i" unit (0,) through the modulating interconnection
between the units (w;;), for all input signals.

Inspection of Eq. (3.1) tells us that, to allow the network connection-weight
values to control the activation of each unit, we must ensurethat the output signal
from each unit (or external input) be limited in amplitudeto a fairly narrow range,
typically between zero and one. Otherwise, signals with very large amplitudes
will saturate the activation function of the unit during training, and diminish
the effective range of the interconnection weights in the network. This issue is
particularly relevant when weconsiderthat most of the activation functions used
in neural-network models are designed to switch betweenthe active and inactive
States at approximately zero activation. Moreover, signals propagating through a
network structure are transient, generated in responseto the instantaneous input
to the network. Therefore, if we were to allow signals of significantly different
amplitudes to propagate through a given network, the network would have no
way of determining whichunits were activated in response to large, instantaneous
signals, and which were activated because a connection weight(or set of weights)
was Set to amplify a specific, but low-amplitude, signal.

In contrast, by limiting the amplitude of the signals propagating through
the network to the range between zero and one, we give the network a much
greater effective range for connection-weight values. As shown in Figure 3.2,
large, positive connection weights will enhance a unit’s response to a signal,
while large, negative connection weights will suppress a unit’s response. Also,
we can effectively disconnect an inputto a unitby setting the connection-weight
value for that input to zero. In this manner, the network can encode information
by selectively varying the values of the weights in each of the interconnections.

3.1.2 External Interpretation Issues

Another important concept to consider when developing an application using
neural networks is how the output from each layer in the network is to be in-
terpreted. From an application perspective, we shall be primarily concerned with
the interpretation of the input and output patterns, because the behavior of the
network will, for the most part, govern the internal representation of information
in the network.

In this regard, it is important to recognize that, individually, the processing
elements within a network havelittle or no understanding of the application the

network is being asked to learn. The only thing the processing elements know

3.1 Developing a Data Representation 69

U

Figure 3.2 This diagram illustrates how very large input signals can dominate the

behavior of a neural network. Using line thicknessto depict the effective range of values

for each connection weight, this diagram showsthat the interconnections from the unit

with the large amplitude signal have a narrow effective range, between —1 and +1,

because values outside this range will only amplify the magnitude of the inputsignal.

However, by limiting the magnitude of the input signal, the connection weight has a

much larger effective range, and thus can be used to amplify, attenuate, or squelch the

input signal. It is this characteristic of selectively enhancing or diminishing certain input

components that enables a neural network to perform complex pattern matching.It is also

the reason why we mustlimit the magnitudeof the signals within the network.

how to do is to compute an input stimulation and produce a corresponding output

signal. Similarly, the patterns that are propagated through a neural network con-

sist of a set of componentsignals that, individually, reveal very little about the

entire pattern.

Even when viewedcollectively, the patterns often do not take on a meaning

until we define how the informationis to be interpreted externally. As an illustra-

tion, consider the binary patterns

x = 00010001011111000100011001011001001

y = 10000100001000010000100001000011110

Withoutan interpretation, all we can say aboutx andy is that these two pat-

terns are significantly different from each other. But how different are they? There

are many methods we could use to analyze the degree of difference between

them. For example, we could choose to interpret x and y as binary numbers. We

70 Application Design

JOB Bo
JLI®C/g _
EEE Bu
LILIMLI i
IL BOUL
fn6a _
JL Jf ERE

Figure 3.3. This diagram illustrates how the character L can be represented as a bit-
mapped vector. We interpret the pattern vectors by first chopping each 35-element vector
into a 7 row x 5 column matrix. Then, by replacing each 1 in the resulting matrix with
an opaque dot, and each O with a transparent dot, we obtain a pattern that resembles the
symbol “L”as might be written (a) cursively, and (b) in block form.

could then say that the difference between x and y is the mathematical differ-
ence, given by x — y. Anotherinterpretation might cause us to consider x and y as
pattern vectors, with significance in both magnitude and direction in hyperspace.
Using such a scheme,each bit position in the pattern vector would be interpreted
as an indicationof the status of the individual componentsin the pattern. To an-
alyze the difference* between patterns, we might employ a vector inner-product
calculation to determinethe projection of x onto y.

In both of these examples, every bit position in each pattern has significance.
We cannot change the state of a single bit anywhere in either pattern without
(perhaps significantly) altering the interpretation of the pattern. Fixed pattern rep-
resentations, such as those just described, are common in computerapplications

because modern digital computers are designed to efficiently perform explicit

comparisons. However, many applications that are now considered “difficult” on

conventional computers involve the analysis of patterns that do not have an ex-

plicit representation. Quite often in problemsofthis kind, significantly different

patterns must be associated together in order to produce the sameresults. Such is

the case with the patterns contained in x and y.

Surprisingly, as different as x and y appear oninitial inspection, there is at

least one easily observed interpretation that produces two different representa-

tions of the same thing: The imageofthe letter “L.” Figure 3.3 illustrates how we

producethis interpretation.

Given this new interpretation scheme,it is easy to see how andy arere-

lated. Prior to having that interpretation, however, comprehending the informa-

tion in the patterns was difficult. By extension, we cannot expect our neural-

4. Or, perhaps more importantly, the similarity.

3.2 Pattern Representation Methods 71

network models to have any inherent understanding of an application, we must

provide that interpretation outside the network.

3.2 PATTERN REPRESENTATION METHODS

There are a variety of techniques that can be used to represent an external pa-

rameter for a neural-network model. The selection of an appropriate technique,

however, is often complicated by a numberof application-specific factors, includ-

ing

e The nature of the data source. Specifically, is the parameter being modeled a

continuously variable signal, or is it a discrete value?

e The range ofthe parameter. Because we want to compressthe effective range

of all external signals to values between zero and one, we must consider the

entire range of values for the parameter across the entire training set.

e Any interrelationship between parameters. Often, an application will use a

numberof parameters from different, but related, data sources. In such cases,

it often (but not always) makessense to treat these parameters in a similar

fashion.

e Any interrelationship between patterns. The most common mistake made by

novices is to assumethat there is no duplication of information in any of

the training patterns they have collected, when,in fact, they have introduced

duplications by their selection of data-formatting schemes.

Unfortunately, there are no hard andfast rules that can be used to determine

how each parameter in an application data set should be represented. Often, the

determination of the best technique comes from an innate understanding of the

application. For the novice neural-network practitioner, however, the choice of an

appropriate representation schemefor the application data also requires somein-

sight into how the network will treat the data internally. For that reason, we shall

now explore several commontechniques for neural-network application-data for-

matting, emphasizing the interaction between the data-representation scheme and

the network operation.

Obviously, the following review is not meant to be an exhaustive summary

of all possible techniques for data formatting. Quite often, the application de-

signer must be creative when developing a suitable representation scheme for a

specific application. The following summary is, however, a good synopsis of the

most common, andpractical, techniques used to format data for neural-network

applications.

3.2.1. Binary Patterns

As we now know, neural-network processing elements produce output signals

that vary in magnitude, usually in the range from zero to one. We have also

72 Application Design

assumed throughoutour discussions that input and output patterns are comprised
of a set of numerical values in the range of the output signals produced by the
units in the network. It is therefore not very difficult to understand why binary
patterns are the easiest patterns to represent for a network: they provide a very
direct method of representing an input pattern. We simply list the features of the
input that we deem important to distinguish the pattern, associate each feature
with a bit position in a pattern vector, and use the binary digits {0, 1} to indicate
the presence or absenceof the features in each pattern instance. Usually, because
of the way information is propagated through a neural network, we choose 1 as
the representation of an active pattern element, and

0

to indicate the absence of a
feature.

With regard to output patterns, most applications that utilize a binary-data
format can be thought of as performing a classification function; that is, the
outputs produced by such a networkareinterpreted as an indication that the input
pattern belongs to a particular class of patterns seen during training that share
commonattributes. Sometimes, the classifications are exclusive. In such cases,
only one output unit is active for any given input pattern, and the active outputis
interpreted as an indication of the category to which the input pattern belongs. In
othercases, the classifications are more general, and multiple output units can be
active simultaneously.

In all cases, however, whenevera binary representation is chosenfor a partic-
ular application, any processing element that must produce binary output signals
will employ some form of nonlinear function as its activation function, such as
the sigmoid. The reason for choosing a nonlinear function can be found by relat-
ing the binary nature of the data representation to the activation responseof the
function. In order to classify patterns into one of two states, the network units
must utilize an activation function with a bistable response.

Exercise 3.1: Consider a neural-network application to map a Set of attributes
to a room designation. For example, in a house, a living room normally contains
a sofa, a coffee table, and a floor lamp, while a kitchen contains an oven, a re-
frigerator, and a table. Devise a data representation for a network that will accept
an attribute pattern vector and produce a corresponding room designation for five
different rooms. Generate a set of training patterns, consisting of a number of
attribute-designation vector pairs, to show how your data representation solves
the problem. m

3.2.2 Tertiary and n-ary Patterns

The binary representation scheme mapsnicelyinto all neural-network paradigms.
In fact, it can be used in any situation where patterns are composed of elements
that are either present or absent, such as in video displays, where luminescentdots
are used to produce monochromatic images, or in diagnostic applications, where
the presence or absence of symptomscan be used to deduce problems. Unfortu-
nately, not all applications can be modeled using a simple binary representation.

3.2 Pattern Representation Methods 73

In manysituations, pattern elements are not always simply present or absent—

sometimes, they are also in an intermediate, or a don't care,state.

A good example ofthis kind of situation can be found in the representation of

the state patterns for a gamesuchastic-tac-toe. In tic-tac-toe, each board position

can have three states: It can be occupied by the “X” token, occupied by the “O”

token, or vacant. If we attempt to model the game situation by using a binary

representation of the current board state, we quickly find that it is not possible

to map three conditions into two indicators. To resolve problemsof this type, we

shall now consider an extended form of binary representation.

Many successful neural-network applications overcome the n-ary represen-

tation problem by using multiple binary inputs (or outputs) to represent non-

binary states. The most straightforward approach is to consider each feature in

the pattern as an individual subpattern. Then, for each subpattern, choose a data

representation that allocates as many positions in the pattern vector as there are

possible states for the feature. Finally, concatenate the multiple subpatterns into

one long pattern vector. Figure 3.4 illustrates this concept for the tic-tac-toe ex-

ample.

Exercise 3.2: Modify your data representation scheme from Exercise 3.1 to in-

clude attributes that are commonto more than one room. For example, afireplace

could be an attribute of a living room and a game room. Show how your modified

representation scheme deals with shared attributes whenthe attribute is unknown

foracertainroom. m

A significant benefit of this representation schemeis that it lends itself to

many neural-network applications where the network must discriminate between

similar patterns. This data-representation scheme supports that behaviorin a net-

work by insisting that different subpattern vectors are orthogonal to each other.

Because most network units compute their input stimulation using an inner-

product calculation, orthogonal vectors are easily detected by the network.

There are drawbacksto this approach, as well. The most significant is the

issue of network size. As we have seen previously, the addition of a single unit in

a layered network structure increases the number of connections that have to be

modeled by the number of input units plus the numberof output units connected

to the new unit. Because most neural networks are simulated in software (at least

initially), each connection in the network consumes memory, and requires CPU

time to process. Therefore, by using a very large numberof input units to model

n categories, we have geometrically increased the amount of memory needed

to model the network and the amount of time needed to propagate information

through the network structure.

3.2.3 Analog Patterns

Another method for representing n-ary data in a neural networkis to use a single

unit to represent each feature, but, rather than simply indicating the presence

or absence of the feature with binary numbers, we scale the value to indicate

74 Application Design

1 2 3
X = 100

4 O=010(a) 5 6

_ = 001
7 8 9

X O

1 2 3 4 5 6 7 8 9Q

(b) O X O = 100 010 001 010 100 010 001 100 001

X O O X O X

X
Figure 3.4 A schemefor representingthetertiary tic-tac-toe gamesituation is shown.In

this example, each board positionis allocated three pattern elements, one to indicate that

the position is occupied by the “X” token, oneto indicate that the position is occupied by

the “O”token, and oneto indicate the position is vacant. The entire data gamesituationis

then the concatenation of the nine subpattern representations, wherethefirst three pattern

elements indicate the state of the first board position, the second three indicate the state of

the second position, and so on.

the degree to which a feature exists in a particular pattern. As before, when a

feature is present in a pattern, we denote that fact by representing the feature

with a | at the corresponding position in the pattern vector. Likewise, when the

feature is absent, we indicate that condition by setting the corresponding pattern

componentto 0. To indicate that a featureis in a third (or n"state, we use a value

proportional to the state of the unit, scaled between 0 and 1. If, for example, a

feature can take on three states, we might representthe third state with a value of

0.5. It is important to recognize, however, that the values chosen to represent the

different states oughtto reflect the magnitude of the changein the feature.

In the tic-tac-toe game representation problem, for example, ourfirst attempt

at assigning valuesto the different position states might naturally cause us to use

a 0 to indicate an unoccupiedposition, a 0.5 to indicate the ““O” token occupies

the position, and a | to indicate the “X” token ownsthe position. However, using

this representation schemeis an error, in that asking a network unit to learn to

produce an intermediate output (the target value 0.5) is significantly more difficult

3.2 Pattern Representation Methods 75

than expecting a binary unit to learn to saturate one way or the other under certain

conditions. A much better representation for this example would be to let a O

indicate that the ‘“O” token ownsthe position, a | indicate that the “X” token

ownsthe position, and the 0.5 to indicate the unoccupiedstate.

The samesituation exists when using large-scale, continuously variable, or

analog, signals in pattern vectors. Suppose, for example, that one component of

an input pattern vector that we might need is a measurement taken from some

data-acquisition device that provides an analog signal in the range of 0.0 to

1000.0. Suppose, further, that the signal that we wantto model for the network

normally varies in the range from 900 to 950. We can incorporate that signal

into our pattern vector by simply scaling the signal to fit within the range cor-

responding to output signals produced by the neural-network units. In this case,

we simply take the analog value provided by the instrument, subtract out the bias

value (900), andscale it down by dividing by the valid range of the signal (50).

However, care must be taken when choosing to represent an output pattern

componentin this manner. Theactivation function chosen for the output layer of

network units must allow the unit to produce a continuous outputin the desired

range. Alternatively, the network unit could produce a scaled-down output, which

we would then convert to its true value by postprocessing the output. In either

case, be certain that you have selected an activation function for the unit thatis

linear, or very nearly linear, in the range of the expected outputs.”

Also, we must be wary of the fact that a continuously variable network out-

put unit that is expected to produce a very precise signalis being restricted to

a very precise input stimulation value. Any network used to perform this func-

tion must be able to set its connection weights very precisely. In practice, it 1s

extremely difficult to create a network that performs a complex transformation

across a varietyof patterns andstill generates very precise output values, unless

the network incorporates sometype of pattern memory°®as part ofits structure.

Thus, we must be careful to avoid using the wrong network paradigm when we

expect the network to produce very precise outputsignals.

Exercise 3.3: Develop a general equation to scale a single component(x;) to a

value between two variable limits, which we will denote as L for the lower limit

and U as the upper limit. You may assume that you have access to a function

called max(x) that extracts the largest value from a set of values, x, and another

called min(x), which returns the smallest value. Note that negative numbersare

legal.

5. Many times. I have seen students carelessly attempt to use sigmoidal units to produce analog

outputs. and then wonder whythe network could never produce an accurate solution.

6. Such as the competitive unit, as described in Chapter 2.

76
Application Design

3.2.4 Temporal Patterns

One of the most confusing aspects of creating a data-formatting schemefor an
application is the question of how to model parameters in the time domain for
presentation to a spatial pattern network. Fortunately, not all applications require
temporal patterns. However, some do, and mest of the networks that are now in
common use are not designed to process time-dependent data patterns. Instead,
most network models respond to instantaneous pattern vectors that persist at least
until the network has completely propagatedthe pattern throughits internal struc-
ture. That being the case, we must devise a method for representing patternsthat
have a temporalrelationship as spatial patterns for our networks.

The most natural, and commonly used method for accomplishing this task is
to simply concatenate multiple, discrete time patterns into a single pattern vector.
In this manner, the network will learn to distinguish the relationships between the
different temporal patterns exactly asit learns to identify relationshipsin spatial
patterns. For example, if we were to build a network that could recognize the
differences between two monochromatic photographs of the same scene, taken
a few secondsapart, our approach to formatting the image data would consist of
the followingsteps:

1. Digitize the photographs to produce two matrices of pixels, each describing
one photograph.

2. Scale each pixel to a value between zero and one. Notice that because the
pixels all come from the same image source, we can use the same scale factor
for all pixels.

3. Create an image vector for each photograph by concatenating the rowsin
each matrix. This produces two image vectors.

4. Create a pattern vector for the network by concatenating the two image vec-
tors.

In Figure 3.5, we illustrate the process of concatenating temporal patterns.
The primary benefit of this approach to representing temporal data is that it

maps cleanly into most real-world applications. For example, while comparing
digitized photographic imagesis not usually considered a task for automation,
comparing millions of sequential video frames is considered extremely difficult,
even for people. Even for a neural network, such a task would prove impossible.
Fortunately, most applications only require two orthree frames of data to be com-
pared during any given analysis. In this case, the network simply performs the
same analysis repeatedly, shifting sequential video frames through a multiframe
window. |

Obviously, the drawback to this approach is the same as the problem asso-
ciated with n-ary data patterns—the additional memory and CPU time needed
to create and process a network that can accept twice (or three times) as much
inputdata as is required for a single imageis daunting. Another problem associ-
ated with this schemeis that, sometimes,it is not possible to capture the temporal

3.3. Exemplar Analysis 77

00000001**-000000011°::0

Image(t) Image(t+1)

Figure 3.5 This diagram illustrates how temporal data can be encoded asa spatial

pattern for examination by a neural network. Even though we show the pixel values as

binary here, they could just as easily be analog values representing gray-scale intensity, or

even color hue. The details of the pattern-generation process are describedin thetext.

aspect of the pattern data by simply concatenating discrete time pattern vectors.

Fortunately, these situations are rarely encountered by the novice application de-

veloper.

3.3 EXEMPLAR ANALYSIS

The next step in building a successful neural network after collecting the applica-

tion data that will be used to train the neural network and formatting that data for

presentation to the network is to perform an analysis of the data. As part of the

analysis process, we must ensurethat

e The data collected provides an accurate representation of the application

problem space;

e There are no inconsistencies in the data that the network will not be able to

resolve; and

e Any problems uncovered as part of the analysis can be corrected without

compromising the effectiveness of the network.

In the remainder of this section, we shall describe a methodology for per-

forming such an analysis. For simplicity, we have assumedthat the application

uses a BPN model, although the concepts discussed could be easily adapted to

other network models. We shall begin with an approachto ensuring that the train-

ing data provide a complete representation of the problem space. We shall then

investigate some techniques for verifying that there are no anomaliesin the data

78 Application Design

that would prevent the network from learning the desired transformation, and dis-
cuss methodsfor correcting such anomalies. We then conclude the discussion of
our analysis strategy with some general suggestions for correcting the deficien-
cies that we might discoverin our training set.

3.3.1 Ensuring Coverage

In any neural-network application,it is imperative to ensurethat the data patterns
used to train the network provide a complete representation of the problem space.
If we do not, the network may learn how to perform the requested transformation
on ourtrainingset, as well as everyinput pattern presented to it. Whenthis situa-
tion occurs, wefind that the network has learned only how to producethe desired
outputs—not howto identify the features of the input pattern that characterize
the desired outputs, which is the real reason for building the application in the
first place. To ensure that the network can perform the desired transformation in
production mode, we mustprovideit with example patterns during training that
not only represent the desired output but also are contra-indicative of the desired
output.

Ideally, the mix of patterns in an application where the network is being used
to classify input patterns into an appropriate output pattern should be aboutone-
to-one; that is, approximately half of the training patterns should represent the
desired input-to-output pattern classification, while the other half of the exem-
plars should represent what weshall refer to as null patterns, which are simply
patterns that do not indicate the desired output. However, caution is required
when creating an application in this manner. After training such a network, the
application developer must ensure that the network not only can perform the de-
sired classification on valid input patterns but also can correctly identify all null
patterns. :

There are also exceptions to the 1:1 coverage rule. Specifically, we can
forego the 1:1 pattern-mix requirement on any application where we can guar-
antee that the network will never be used to classify an input (after training) that
can notbeclassified. In cases such as this, we assumethat the process that runsto
collect and formatthe data prior to propagation through the network also ensures
that the data collected representa viable pattern for classification.

For example, consider an application similar to the one described earlier in
this chapter, where a neural network was to be used to classify an input image
pattern consisting of monochromatic video pixels into a corresponding character
representation. In this case, we could train a network to perform two simultane-
ous classifications: one indicating the character represented by the input image
pattern, and anotherindicating the type of character represented by the image.In
Figure 3.6, we illustrate a typical structure for a network designed to perform this
character classification function.

By inspection of the output layer in this network structure, we can conclude
that this network will always try to classify the input as one of the predefined
character set, even if the input pattern is garbage. Because we have provided no

3.3. Exemplar Analysis
79

Upper Lower Arabic

Figure 3.6 This diagramillustrates how a three-layer BPN could be constructed to

classify a pixel image of a character into its corresponding type and identification.

As shown onthe outputlayer, we train the network to perform two simultaneous

classifications, with a subsetof the output units indicating the type of the character image,

and the remainderidentifying the characteritself. |

direct mechanism for the network to indicate that an input pattern is not one

of the desired outputs, we must either ensure that the network is never asked

to classify an invalid input, or we must use an indirect method to recognize an

invalid pattern.

Unfortunately, there are drawbacks to both methods. If we attemptto filter

out all possible illegal input patterns prior to propagating the pattern through the

neural network, we will have effectively nullified the function of the network.Put

another way, if we can identify all of the legal input patterns before we use the

network to classify them, have we not already classified the input? If so, what

purpose doesthe neural network serve? Moreover, by filtering the input patterns,

we will have eliminated the benefit of using a network to classify noisy inputs.

However, we might be tempted to add another output unit to the network,

which we would train to activate whenever the input pattern does not contain a

valid character representation. Then, we must concern ourselves with collecting a

representative sampling of null patterns that we could use as part of the training

set. The problem we face with this approach is the definition of a null pattern

for this application. What are the characteristics of an input pattern that does

not contain a valid character image, and how shall we collect a representative

sampling of those patterns?

The most practical approach to resolving dilemmassuchas these is to com-

bine the neural network with a data-collection routine that performs a coarse

80
Application Design

filtering of the patterns passed on to the network. This is not to say that we have
to verify that the image pattern contains one of the characters used to train thenetwork, because that would be defeating the purpose of the network. Rather, we
need only ensure that the image pattern that we will ask the network to Classify
contains some nonblankpixels, that the imageof the characteris properly framed,
and that the image contains only one character. Thesetests are easily performed
using conventional programmingtools, and patterns that Pass can then beclassi-
fied by a neural network without compromising the effectiveness of the network.
Finally, we can employ anindirect analysis of the output of the network to deter-
mineif the input were successfully classified.

3.3.2 Exemplar Consistency Checking
One of the most commonerrors made by novice application developers is the
“presumption of innocence” mistake made when collecting training data. Unlike
the criminal justice system in the United States, where an individualis presumed
innocentuntil proven guilty, we cannot assume that, just because we havecol-
lected a set of empirical data that faithfully represents the desired function of the
neural network, there will not be errors in the training set that will prevent the
network from learning the application. The sources for errors in data collection
are many: Temporal inconsistencies, data formatting errors, and conflicting ex-
emplars are just a few of the commonerrorsthat can be inadvertently introduced
into a pristine trainingset. :

From a training perspective, the most difficult problem to recognize is the
issue of conflicting exemplars. A conflict occurs when two or more identical (or
very similar) input patterns are associated with different outputs. To see why this
is a problem, consider the behavior of the BPN , which is designed to transform
a given inputinto a specific output pattern. For this example, let us suppose that
we have collected a set of exemplars containing two instances of input pattern
A, which weshallrefer to as A, and A. Weshall further suppose that pattern
A, 1s associated with output pattern B, and pattern Az is associated with output
pattern C. Finally, we shall assert that pattern B is different, by at least a single
component, from pattern C.

Duringtraining, the BPN learns to reproducethe input-to-output transforma-
tion by sequentially propagating a given input through to the output, then mod-
ifying its connection weights to produce a better approximation of the desired
output. So, when pattern A, is applied to the network, the network adjusts itself
to produce a better version of pattern B at the output. Later, pattern A> is applied
to the network. This time, however, the desired output pattern is C, whichis dif-
ferent from B. When the network adjustsitself to produce a better approximation
of C, it is effectively unlearning its representation of B. Similarly, when pattern
A 18 again presented to the network during the next epoch, the network unlearns
its encoding of output C in favor of B, which is the output associated with input
A,. However, A; and A>are identical, creating a situation in which the network

3.3 Exemplar Analysis
81

+s faced with an unresolvable conflict: It cannot produce both B and C from a

single output layer when presented with A, because B and C are different. Thus,

a conflict represents a situation that prevents the network from ever learning the

application.

Fortunately, conflicts can usually be corrected by adjusting the data represen-

tation scheme for the exemplars. Unfortunately, an adjustment usually cannot be

madeuntil the conflict is identified. Because a training set may contain hundreds,

or even thousands, of exemplars that have beencollected and formatted for use by

the neural network, identifying the specific exemplars that are causing the con-

flict can be a very tedious task. Becauseof the large numberof patterns involved,

and the combinatorial nature of the problem, it is impractical for a developer to

manually inspect each pattern to ensure that it does not represent a conflict with

another pattern in the training set. There are, however, training techniquesthat a

savvy application developer can employ to assist in the identification of exemplar

conflicts. |

One simple technique is to perform a binary search of the exemplar set to

identify conflicting patterns. Whentraining a BPN,the global error begins to drop

quickly after a few (relatively speaking) training epochs, and eventually “flattens”

out as the numberof errors generated by the network decreases. This fact is eas-

ily observable by plotting the global error during training versus training epoch,

which weillustrate for a typical BPN application in Figure 3.7. However, the

number of epochsthat constitute a “few” depends on a number of application-

specific factors, including the topology ofthe network, the number of exemplars

in the training set, the specific learning rate (7) and momentum (a) values used,

and the number of componentsin the input and output patterns. For purposes of

this discussion, we shall assumethat 30 epochsis sufficient to lowerthe globaler-

ror of the network to a value around 0.2, which is usually low enoughto indicate

that the network will learn all the exemplars in the training set. However, read-

ers should note that the actual number of epochs neededto lowerthe global error

for any given application may be as high as 10,000, oras low as two orthree,

depending on the application and the network.

Wecan exploit this characteristic drop in global error during training when

attempting to identify exemplar conflicts by breaking the entire training set into

successively smaller subsets and using each subset to train the network for a

“few” epochs. For example, if we suspect an exemplar conflict exists in a given

training set, we canfirst train the network for 30 epochs on the complete train-

ing set and note the global error. We then split the training set in half, and train

another network using just the first subset. If the error after 30 epochsis signifi-

cantly lowerthan the error after the previous test, we can assume that the conflict

exists between somepattern in the first subset and another pattern in the second

subset. If not, we simply halve the training set again, and repeat the process until

we find a subset that produces an acceptably low global error after the required

30 epochs.

82
Application Design

1.0-

 0.0

Training Epochs

Figure 3.7 This graph showsthe typical reduction of the global error as training
progress in a BPN application, assumingthatthere are no conflicts in the data. Notice that
the changein the erroris initially very small, followed by a period of rapid improvement.
During this rapid drop, the network has found a configuration that encodes most of the
training exemplars, and is merely reinforcing that configuration. However, there are
always a few patterns (or pattern components) that do notfit into theinitial encoding
scheme, and must be individually corrected by the network. This is the phase following
the knee of the curve, when the global error is reduced very slowly.

Wecan then identify the specific pattern(s) causing the conflict by gradually
adding patterns from the second subset back to the first, and retraining the net-
work for 30 epochs. Whenthe error jumps back up, we will have included the
conflicting pattern in the training set. We then repeat the process, using succes-
sively smaller groupings, until the specific conflict has been identified.

Once all of the conflicts have been identified and corrected, training can
proceed in the normal manner. The primary disadvantageofthis approach is the
amountof time involved in identifying the conflict. Because most neural-network
applicationsare initially prototyped in software, it can take hours, days, or even
weeksto perform all of the training needed to identify, and correct, all of the
conflicts.

3.3.3 Resolving Inconsistencies
In the previoussection, we alluded to the process of correcting exemplars without
providing a description of how to perform thatcorrection. We shall now describe
some approaches for resolving inconsistencies in the training data. We cannot,
however, recommenda specific technique from theset of techniques that we shall
presenthere, because each approachhasits own benefits and drawbacks. Weshall
therefore summarize each approach, describing the advantages and disadvantages

3.3. Exemplar Analysis 83

of each, andtrust that the reader can make his or her own determination aboutthe

appropriateness of each with respectto the application.

3.3.3.1 Eliminating Patterns

The most intuitive method for eliminating conflicts in training data 1s to simply

exclude the patterns causing the conflicts. The benefit of this approachis that it

is simple and easy to implement. The disadvantage is, of course, that by discard-

ing a training pattern, we have reduced the effectiveness of the neural-network

solution.

More often than not, a pattern conflict can be corrected by other means,

and eliminating valid training exemplars is not required. There are, however, a

few, rare, occasions whenit is more appropriate to discard a training exemplar

rather than trying to force it to fit into an application. For example, whenit

can be determined that a specific, conflicting exemplar represents an invalid, or

inaccurate, data pointin the trainingset, it is better to throw out the conflict than

to try to massageit to fit the application requirements. Such a conflict might occur

whenthe training data were collected with a noisy, or uncalibrated, sensor.

Another case where eliminating an exemplar would be considered a viable

option is when it can be determined that the exemplar in question represents

a situation that, while possible, is not likely to occur in practice. For example,

while it is possible for a snowstorm to occur in Houston in August,’ it is certainly

not likely. We could therefore discount such an exemplar if we were building a

weather-prediction application for southeastern Texas, and the encoding of such

an exemplar were causing a conflict in our data-representation scheme.

3.3.3.2 Combining Patterns

Often, conflicting patterns in a training set occur because the application data

were collected over some period of time, during which the input situation was

duplicated, but the resulting output situation differed. Thus, our empirically ob-

tained training set will contain conflicting exemplarsthat will prevent the network

from ever learning the application.

One methodfor countering this situation is to combine similar patterns; that

is, associate an output pattern thatis the union ofall of the output patterns associ-

ated with the exemplars that have duplicate input patterns. For example, consider

the three binary exemplars

x; =O010110, y,; = 10000

x7 =010110, y2=00100

x3 = 010110, y3 = 00001

7. For those readers unfamiliar with weather patterns in Houston, temperatures in August rarely drop

below 20° C, and often exceed 35° C.

84 Application Design

Obviously, if we were to try to build a network to learn just these exemplars,
the network would never be able to produce a solution, no matter how long we
trained it. If, however, we combine the three conflicting patterns into one, we
eliminate the conflict and create a training set that the network can learn.In this
example, the three conflicting exemplars reduce to

x’=010110. y’ = 10101.

While this technique is guaranteed to eliminate conflicts in the training set,
we must advise caution on the part of the developer. Depending on the appli-
cation, it may not make sense to combine the output patterns. If, for example,
the outputs from the network were expected to be mutually exclusive, combining
output patterns in this manner would defeat the entire purposeof the network. In
cases suchasthis, the developer must either revise the data representation scheme
for the input pattern in orderto differentiate “identical” inputs, or alter the inter-
pretation of the output pattern to allow combination.

3.3.3.3 Altering the Representation Scheme

Another effective technique for eliminating conflicts in a training set is to simply
change the way in which the exemplars are encodedfor the network. As we men-
tioned in the previoussection, a one-to-many conflict is usually the result of data
collected over someperiod of time, without providing a meansofindicating the
sample time aspart of the pattern encoding. Therefore, one of the most Straight-
forward techniques for resolving such a conflict is to simply encode a unique
indicatoras part of the patternitself.

If the three patterns described in the previous section were actual data sam-
ples taken from a set of sensors from a piece of equipmentthat we were monitor-
ing at different time periods, we could simply add a few additional components
to the pattern to distinguish them for the network. For example,

X| = 001010110, yi = 10000

X2 = 010010110, y2=00100

x3 = 100010110, y3=00001

where we have simply appended the x; pattern to a three-bit code indicating the
discrete time of the sample.

This approach hasseveral benefits, not all of which are obvious. For exam-
ple, while it may seem as though we have nowrendered the significance of the
former pattern irrelevent (because we might assume that the output can be di-
rectly determined from the time stamp), most applications that we are likely to
create will contain many other patterns that the network will have to learn. By
adding these three bits to each input pattern, we have guaranteed that we have
eliminated a conflict without inadvertantly introducing another conflict, as it is

3.4 Training and Performance Evaluation 85

impossible to create a “new”conflict by appending information to a pattern, un-

less the original patterns were conflicting anyway. |

Moreover, this technique can be used to resolve nontemporal pattern con-

flicts. If, for example, conflicting patterns occured because the data were col-

lected from differentlocations, the conflict could be easily resolved by appending

location bits, instead of time codes.

3.4 TRAINING AND PERFORMANCEEVALUATION

The final step in creating a neural-network application is training and testing the

network. Most of the time, training is an operation that occurs before the net-

work is tested, although some network models (the ART networks, or Hopfield

memory, for example) do not have two separate phases of operation. In this sec-

tion, we shall summarize some of the commonly accepted guidelines for train-

ing a network that has separate learning and production phases. We shall also

describe several techniques that allow an application developer to evaluate the

performanceofa trained networkafter training has been completed.

While these techniques are obviously slanted toward the network modelsthat

are trained prior to use, many of the guidelines presented in the remainderofthis

section can be adjusted for those paradigmsthat do notfit the mold.

3.4.1. Training Guidelines

In all of the network models that we have described, there is a measurement

defined that will allow us to evaluate how well the network has encoded the

patterns in the training set. For the BPN,that measure is the global error, while,

for the ART networks, the measureis indicated by the numberofresets that occur

in the orienting subsystem. In every case, however, we must address the issue of

determining what constitutes an “acceptable” error for the network.

For the ART networks, an acceptable error is a situation in which noresets

occur after we have presented the network with all ofthe patterns that we expect

it to learn. Such a condition almost always requires that we expose the network

to all of the exemplars at least twice: once to allow the network to encode the

patterns, and a second time to evaluate whetherall of the patterns were learned

(recall the issue of supersets and subsets, described in Chapter2).

Determining an acceptable error for the BPN, however, is a much more com-

plicated process, because the global-error parameter computed during training 1S

a functionof not only the state of the network butalso the specific training set the

network is being asked to learn. Therefore, a minimal error for one application

may be rather high (0.1), while, for another, the network may easily achieve a

very small global error (0.01).

Practically speaking, a BPN should alwaysbe able to obtain a global error of

0.2, if there are no conflicts in the training set. The guideline for the BPN,then,

is to train the network until the global error falls below 0.2. When that occurs,

86
Application Design

note the training epoch, and save the state of the network for archival purposes.
Then continue training until the error falls below 0.1. If the numberof additional
training epochsrequired to achievethaterror is fewer than 30% of the numberof
epochsrequiredto obtain theoriginal error (0.2), repeat the process and shootfor
an error of 0.05.

Continue this process, successively halving the target error value, until the
numberof additional epochs exceeds the 30% guideline, then stop. Anytraining
performed beyond that point will not significantly improve the performance of
the network; indeed,it is possible to overtrain a BPN.In such cases, the network
becomespredisposed to favor the desired output patterns, and tends to organize
itself to produce those outputpatterns, even when the input pattern is outside the
training domain.

3.4.2 Partial-Set Training

After training is complete, we must evaluate the effectiveness of the training by
testing the operation of the network. In so doing, weare not only evaluating how
well the network has learned the application but also how complete our training
set was for the application. As we shall now describe, it is entirely possible to
create a network that can successfully learn a specific training set, but still not
perform adequately in an application because the training set was incomplete.

Typically, network effectiveness is measured by presenting the trained net-
work with patterns that were not part of the training set, and evaluating how
well the networkinterprets those new inputs. Depending on the network (and the
application), we would expect the trained network to be able to produce output
patterns that correspond favorably with outputs that we would expect the network
to produce, assuming that our data-representation schemeis consistent with the
scheme that we employed during training.

For example, if we were to train a BPN to recognize the imagepatterns of a
set of handwritten English characters, we would evaluate the effectiveness of the
trained network by presenting it with a set of new (and slightly different) input
patterns, then comparing the actual output of the network with the output that we
expected. If the training were sufficient, and the new input is not outside of the
range of characteristics that the network learned to recognize, it should be able to
correctly identify the new characterpattern. If, however, the new input pattern is
sufficiently different from the training set, we should not expect the network to
perform any reasonableclassification. In other words, while it is entirely reason-
able to expect the network to interpolate patterns, we should never expect it to
be able to extrapolate patterns.

To be able to evaluate the effectiveness of the trained network, we must be
able to present the network with a set of control patterns that were not used
during training, but which are similar to the training patterns. There are a number
of techniques that we might employ to obtain the required control patterns for
our evaluation. The easiest, and most common technique is to simply withhold

3.4 Training and Performance Evaluation 87

a numberof patterns randomly extracted from the original training set, then use

those withheld patterns to determine the effectivenessof the training.

This technique is quite viable, and is almost always sufficient to measure the

effectiveness of the training for a neural network. However, you should be aware

that there are somepotential failings with this approach that can cause misleading

results. The most commonproblem encounteredis the sequencing of the training

set during networktraining. Essentially, it is possible for the networkto learn that

somepatterns always precede others, and therefore become predisposed.

This situation is often only found when the application developer deliber-

ately changes the sequenceof the pattern presentation during training. In fact, a

colleague of mine reported that during one application-developmenteffort, a BPN

that learneda training set in onetrial failed to learn the same training set when the

sequence of pattern presentation during training was changed, even though the

initial configuration of the network wasthe same.® Thus, the problem with sim-

ply withholding a portion of the training set as a control set to measure network

effectiveness is that complete coverage of the application domain is not guaran-

teed.

3.4.3. Hold-One-Out Training

Anothertechnique used to measurethe effectiveness of network trainingis called,

appropriately enough, the hold-one-out technique. In this approach whichis de-

scribed in detail in Computers That Learn, [2], one exemplaris extracted from the

training set, the networkis trained using the partial training set, and the withheld

pattern is used to determinethe effectiveness of the training. However, unlike the

partial-set training approach, this process is repeated for every exemplar in the

training set. Thus, for a training set containing n exemplars, the network must be

trained n times.

The benefit of this approach is that, once we have obtained a network that

can successfully recognize the withheld exemplar on all trials, we have ensured

that the training set is complete, and that the network will be able to recognize

the similarities in any new input pattern. The problem with the approach, unfor-

tunately, is time. As we havealready discussed, training a networkto correctly

recognize an entire training set once is a time-consuming process. Repeating the

entire training process n times, where n is the number of exemplarsin the training

set, will often make this approach untenable.

3.4.4 Pathology Analysis

The final approach weshall describe for evaluating the effectiveness of network

training is perhaps the mostdifficult of the three techniques described in this sec-

tion for the novice practitioner to implement. However, actually performing the

analysis is often a very enlightening experience. In essence, what this technique

8. Kenneth Marko, speaking at IJCNN ’90.

88 Application Design

Figure 3.8 A Hinton diagram illustrating the activity of a layer of units in a neural
network is shown.In this diagram, each indicator is assigned to a specific unit in the
network, and behaveslike an analog “thermometer,” visually indicating the amplitude
of the output of the unit. When viewed collectively, the Hinton diagram cantell us, at a
glance, which units are strongly active, which units are off, and which are indeterminate.

ascribes is to dissect the network after training, examining the configuration of
the connection weights and identifying the features of the input pattern that the
network configureditself to recognize.

The easiest method for accomplishing this analysis is to use a graphical tool
called the Hinton diagram [1], named forits originator, Geoffrey Hinton. As
shownin Figure 3.8, the Hinton diagram allowsthe developer to view the activity
of each unit in the network, and to visualize the relative importance of each
componentof an input pattern to each unit in the network.

Using the Hinton diagram to visualize activity in the network, the application
developer can identify the units in the network that respond to different pattern
components. This analysis can be performed using the exemplars from thetrain-
ing set, or can be used only when specific pattern components are tested. For
example, consider an input pattern containing components representing several
independent parameters. During training, the network learns to recognizethe in-
puts and to produce the corresponding outputs. After training, however, we can
selectively activate just the individual unit(s) on the input that represent one, or
any combination of the external input parameters. Then, using the Hinton dia-
gram to visualize the activity in the network, we can identify those units that
respond moststrongly to the individual inputs.

Similarly, we can use the Hinton diagram to visualize the input connection
weights to each unit in the network. In this manner, we can identify the features,
or combinationsof features, in the input pattern that excited each unit. Likewise,
we can easily identify connections that inhibit the activation of each unit. By
performing such an inspection after training a network, we can determine the
characteristics of the input that the network deemed important to successfully

3.5 A Practical Example 89

recognizing the exemplars. In practice, we often find that a trained network has

found the underlying relationships in the data. We can then use that knowledge

to further refine the training set, usually by eliminating input componentsthat the

network did not use during training.

3.5 A PRACTICAL EXAMPLE

Now weshall try an exercise to reinforce the concepts we have studied in this

chapter. Let us suppose that we are given the task of developing an automated

system to predict the weatherin a certain region of the country. Because this task

inherently requires a good bit of speculation and guesstimation, we have decided

to use a neural network to provide the prediction. We know that we have access

to a plethora of empirical data describing current conditions and surrounding

weather patterns, so all that remains to complete the forecasting system is the

task of building and training the neural network.”

3.5.1. Defining the Data Sources

Webegin the developmentof our neural-network weather-forecasting system by

first defining the data sources we haveavailable for the network to use as a basis

for its forecasts. These are

e The current temperature, measured in degrees Celsius.

¢ The current atmospheric pressure, in inches of mercury.

e The current relative humidity, as a percentage.

e The current wind speed, in kilometers per hour (KPH).

e The current winddirection, in compass direction (N, NE, E,..., W, NW).

e The current cloud cover, in a decimal scale from zero to nine, where zero

indicates clear skies and nine indicates total overcast.

¢« A subjective indication of the current weather condition (e.g., rain, thunder-

storms, snow,sleet, hail, sun, fog, windy, and mild).

Moreover, we shall assume that we have access to the same information from

several surrounding weatherstations. For this exercise, we shall assumethat there

are eight other weather stations with which we share information, each located

100 kilometers from our position. Furthermore, we shall assume that each remote

Station is situated so thatit lies in one of the primary compassdirections from our

position, as depicted in Figure 3.9.

9. Actually. we would also have to define and implementall of the preprocessing and postprocess-

ing functions needed to collect the current data. coerce it for the network, and interpret the output

producedby the network. For clarity, we have omitted those tasks in this discussion.

90 Application Design

Figure 3.9 A map showingtheposition of the nine weather stations described in the
text 1s shown.

3.5.2 Selecting a Network

Once we have defined the data that we will use to train the network, the next
step in developing the network application is to decide on an appropriate network
paradigm. Wedo thisby first identifying the characteristics of the application that
will influence the paradigm selection, then selecting a network paradigm that can
accountfor the application requirements.

For our example application, we know that the network must produce an
output that is different from its input. Specifically, we shall require this network
to produce a forecast of the weather for the next day, given the current situation
and recent weather conditions. We also know that the network will be required
to find general relationships in the input patterns presented to it, to produce the
corresponding output, as opposedto recalling the patterns that it has learned. We
can therefore conclude that we will need one of the mapping networksforthis
application.

From our discussions in Chapter 2, we know that the BPN,or possibly the
forward-mapping CPN,could be usedto satisfy the mapping requirementforthis
application. However, we can probably eliminate the CPN from consideration
due to the requirement to produce a generalized mapping between the input and
the output patterns. The CPN will not satisfy this requirement due to the way
that it processes input patterns. Asan illustration of why this is so, recall from

our discussions in Chapter 2 that the instar layer in the CPN attempts to match

inputs by measuring the distance between pattern vectors in Euclidian space.

While this pattern-matching characteristic is useful in some applications, it is

more appropriate as a pattern memory than as a feature detector, which is the

essence of this application. Thus, we should select the BPN as the best network

3.5 A Practical Example 91

modelfor this application, although we may decideto try another paradigmlater,

if, after training, the BPN provesineffective.

Exercise 3.4: Would an ART network also be appropriate for this application?

Explain your answerin termsof the internal operation of the network.

3.5.3 Defining the Input Pattern

Now that we have selected a network model, we can define a data formatting

scheme that will allow us to represent the input parameters that the BPN will

learn. We know that the BPN requires input patterns to be represented as vectors

composed of elements that range in magnitude between zero and one. Therefore,

we must find a way to translate each of the data elements that will comprise

the input pattern into a value (or set of values) such that no pattern component

exceeds the range between zero and one.

We begin by examining the form of the raw data that will be used as the

input to the network. Inspection of the data sourcestells us that there are only

two different types of inputs that we will have to consider: Scaled, continuously

variable values (in somearbitrary, but practical, range), and n-ary representations

of category values. The data parameters that can be scaled include

e Temperature, which will vary between —10° C and 40° C.

e Atmospheric pressure, which will vary between 26 and 34 inches of mercury.

e Relative humidity, which will vary between 0 and 100 percent.

e Wind speed, which will vary between 0 and 250 KPH.

e Cloud cover, which will vary from 0 to 9.

If we scale each of these inputs between zero and one, using the range identified

for each parameter, we will be able to represent each of these parameters as a

single componentof an input pattern for our BPN.Practically speaking, however,

we also observe that wind speeds will normally vary between 0 and 40 KPH.

By scaling wind speed in the range of 0 to 250 KPH, we have accounted forall

possible variations in the parameter, but we have also diminished the influence

of the parameter on the weatherprediction for all but the most extreme weather

conditions. Therefore, we shall now refine our representation for wind speed to

better reflect the normal variations in the parameter.

Rather than scaling wind speed as a single value in the range of 0 to 250

KPH, we shall henceforth consider wind speed on two different scales: normal

wind speed, which will range from 0 to 40 KPH inclusive, and windstormspeeds,

which will encode wind speeds above 40 KPH. Both of these parameters will

be scaled in their respective ranges, and thus, the wind-speed indicator for the

network will consist of two scaled parameters in the input pattern vector.

Finally, we define a representation for the two remaining parametersthat will

be monitored.

92 Application Design

QODOwe =O
\ /

Our Station North NorthWest

Station TPHCW,W,NSEWNE SESWNWRTSSSIHSUFWM

N TPHCW.WNSEWNE SE SWNWRTSSSIHSUFWM

NE TPHCWW,NSEWNE SE SWNWRTSSSIHSUFWM
E TPHCWW,NSEWNESE SWNWRTSSSIHSUFWM

SE TPHCWW,NSEWNE SE SWNWRTSSSIHSUF WM

S TPHCWW,NSEWNE SE SWNWRTSSSIHSUF WM

SW TPHCW,W,NSEWNE SESWNWRTSSSIHSUFWM

Ww TPHCW,WNSEWNESESWNWRTSSSIHSUFWM

NW TPHCW,WNSEWNE SESWNWRTSSSIHSUFWM

Figure 3.10 This diagram illustrates the encoding ofthe current weathersituation as a
pattern vector for presentation to the BPN describedin thetext.

¢ Wind direction can be represented by eight different categories. Thus, wind
direction can be encoded by an eight-componentvector, where only one(or
possibly two adjacent) elements are active for any given pattern.

¢ The current weather condition can be represented by a nine-component vec-
tor, with at least one but possibly several elements active simultaneously.

Using this encoding scheme, we can represent the seven data parametersthat
describe the current conditions as a vector with 23 components: one for each of
the four scaled parameters, two for wind speed, eight for wind direction, and nine
for subjective assessment. Because we have eight other stations from which we

can obtain data, we can encode the parameters from each of those stations in

a similar fashion, and represent the entire weather picture as a 207-component

vector, as Shown in Figure 3.10.

3.5.4 Defining the Output

Nowthat we have an idea of what the inputpatterns will look like for the example

application, we shall next consider the format for the output pattern that we will

expect the network to produce. Thefirst step in this processis to decide exactly

what we wantthe networkto tell us whenit is presented with a new input.

We have already decided that the network should provide us with a forecast

of what the weather will be 24 hours from now. What we have not yet decided

3.5. A Practical Example | 93

on is a definition of the indicators that the network must produce that we can

interpret as a weather forecast. To define these indicators, we can call on our

experience with the local meteorologist on the evening news, and decide that an

acceptable forecast contains(at least) the following information:

e A temperature prediction.

¢ A prediction of the chance of precipitation occuring.

e An indication of the expected cloud cover.

e A storm indicator, to signal a potential for extreme weather conditions.

Notice that, while we could have chosen to ask the network to produce a

more comprehensive forecast by including specific indicators for rain, snow, and

sleet, we have chosen instead to limit the network to a generic precipitation

forecast. We have done sofor the following tworeasons:

1. The weather characteristics that point to a chance of precipitation are more

general, and therefore easier for the network to learn to recognize, than are

the specific indicators for rain, snow, andsleet.

2. Normally, the temperature indicator will allow usto infer the type of precip-

itation that will occur. For example, if the temperature is forecast to be —4°

C; we should expect any precipitation that occursto fall as snow.

Having defined the expected outputs from the network, all that remains to

complete the encoding of the output pattern is to define a representation for each

expected output. There are several ways in which this can be accomplished, and

no one techniqueis necessarily better than any other. As a learning aid, we leave

the specification of the output encoding for this application to the reader as an

exercise.

Exercise 3.5: Define a suitable data-representation scheme for the output of the

weather-forecasting network application. As part of your answer, be sure to define

the activation function that will be used by each output unit in the network. m

Exercise 3.6: Having completed Exercise 3.5, describe how the output layer on

this BPN will be trained. Keep in mind the BPNtraining algorithm we discussed

in Chapter 2. Note any issues that you feel will have to be addressed during the

training process. m

3.5.5 Collecting the Training Exemplars

Having defined the format of the input and outputpatterns that we will expect the

BPNto learn for this application, we must next determine how wewill collect

the data that we will use to train the network. To accomplish this goal, we must

consider how the network will be expected to operate after training has been

completed.

In production mode, we will present the network with a pattern vector

formed by the encoding of the current weather conditions as collected from the

94 Application Design

nine weatherstations. This pattern vector will then be propagated through the
networkstructure, and the output produced by the network will be interpreted as
the forecast for tomorrow’s weather conditions. In other words, the training set
for this application must consist of a set of exemplars that associate the known
weather conditions at a specific point in time with the conditions that preceded
the current situation by 24 hours. In order to successfully train our network, we
must therefore have collected a set of historical exemplars where we know the
correct output for every input.

There are two methods we can employ to collect the necessary data: The
first assumesthat we have nohistorical information available, and must therefore
begin tracking the weather for some period of time; the second assumesthat
we have an extensive collection of data records, and merely need to extract the
required information. For discussion purposes, we shall assume that we already
have available all of the required information.

There remain two questionsthat we haveto resolveto build ourtrainingset.
First, How far back in time do we have to go to have a completetraining set?
Second, What granularity do we need to have to develop an accurate forecast?
The answers to these questions will determine size of the training set we must

create, and, to a large extent, the amount of time neededto train the network.!°

To answerthe first question, we must decide how muchtimeis required to obtain
an accurate picture of the weather.

If we are going to forecast the weather in Honolulu, Hawaii, we probably

only need a few month’s worth of data, because the variation in the weather in

Honolulu is very slight. If we are going to forecast the weather in Pittsburgh,

Pennsylvania, however, we probably needat least a year’s worth of data because

the weather changes dramatically with each of the four seasons. In either case, we

need to go back far enough in time to ensure that we can accurately capture the
entire domain of the problem.

The answerto the second question is not quite as easy to obtain. The natural

choice is probably to limit the granularity to a daily sample, because weare only

expecting the network to provide us with a forecast for the next day’s weather.

However, if we limit the granularity to a daily sample, we will likely omit a great

deal of pertinent information, simply because the weather can change quite dra-

matically in a very short period of time, certainly much faster than once a day.

However, if we reduce the sample time to once an hour, we introducethe possi-

bility of developing an error-riddled training set, because we are associating an

instantaneous snapshot of the current weather conditions with an instantaneous

snapshot of the weather conditions 24 hours hence. Using this scheme,it is very

likely that we would encode manyconflicting exemplars—one exemplarindicat-

ing rain today at noon means sunny conditions tomorrow at noon, while another

exemplar indicates that rain at noon today means rain tomorrow at noon—which

would have to be resolved before we could successfully train the network.

10. Assuming, of course, that the initial network is developed using a software simulator.

3.5 A Practical Example 95

Weshall therefore compromise on this question, and refine our definition of

the output pattern. We will collect input data on an hourly basis, but the corre-

sponding output pattern will be the average of the instantaneous patterns over

a 12-hour period. By using this refined scheme, we have significantly reduced

the possibility of conflicts in the training set while simultaneously increasing the

amountof information that the network will have available to makeits forecast.

3.5.6 Training the Network

After gathering and formatting the 8,760 exemplars that comprise ourtraining set,

we can construct the network andstart the training process. We begin by defining

the numberof hidden layers we will need for this network (normally one), and

‘the numberof units that we will implement on each layer(the prevailing wisdom

amongresearchers suggests that we should start with approximately one-fifth of

the number of input elements on the hidden layer, then gradually increase or

decrease that number based on how well the network trains). Because the number

of units on the input and output layers is fixed by the specification of the input

and output patterns for this network, we need only define the number of hidden-

layer units we shall require. For this application, we shall begin with 42 sigmoidal

units on a single hidden layer.

As weindicated earlier in this chapter (in Section 3.4.3), the most compre-

hensive methodfor ensuring that the network has learned the desired mappingis

to train it with the hold-one-out technique. Unfortunately, this methodis not very

practical for our application. If we were to employthis training method, we would

have to perform 8,760 different training sessions, holding one exemplar out dur-

ing each training session, then test the network using the withheld exemplar.

Given that our network contains approximately 9,000 connections, and as-

suming that we are training the network using a software simulator, we can expect

such an exhaustive test to consume months of developmenttime.

Exercise 3.7: Compute the amount of time needed to perform the hold-one-out

training method for the weather-forecasting application. Assume that the BPN

simulator is running on a serial machine rated at 1 MFLOPS (million floating-

point operations per second); that each connection requires two floating-point

calculations for the feed-forward computation, six floating-point calculations for

the backpropagation computation, and 10 floating-point calculations for the sig-

moid; and that 100 epochs are needed to determine if the network is going to

converge.

A much morepractical technique for training this networkis to randomly se-

lect a portion of the training set, and withhold those randomly selected exemplars

as a control group. Then, train the network with the remaining exemplars until

the global error has loweredsufficiently, and test the operation of the network

with the control exemplars. If the training set provides the necessary coverage,

the network should produce outputs that closely match (but are not necessarily

identical to) the outputs associated with each of the control patterns.

96 Application Design

3.5.7 Completing the Application

Normally, the first network created by a developer to address a new application
can be expected to have a number of problemsassociated with it. It may not
converge during training, or, after converging, may not do well predicting the
output whenpresented with a new input.

There are a numberofthings that an application developer could, and proba-
bly should, do to improve the effectiveness of the network. Herewith, we provide
a brief summary of some of the more commonly accepted techniques for improv-
ing the effectiveness of the network.

* Monitor the progress of the training by plotting the global error of the net-
work versusthe training epoch. Globalerror should always decrease, evenif
only slightly, from epoch to epoch. When theerror beginsto oscillate, note
the training epoch, and proceed with the followingtests, training the network
in each caseto the point wheretheoscillation originally began.

¢ If the network does not converge during training, try reducing the size of
the training set. If the network converges with the smaller training set, a
conflict may exist in the data that prevents the network from learning the
entire application.

¢ If the network does not learn the reducedtraining set, continue the process
of pruning the training set until a network does converge. Thenstart adding
training exemplars back gradually, retraining a new network after each addi-
tion. When you obtain

a

training set that again does not converge, examine
the training set for conflicts.

¢ If no conflicts are found and the networkstill does not converge, examine
the state of the network connections to see if any of the hidden-layer units
have becomesaturated. If saturated units are found (they are indicated by
input connections that are predominately very positive, or very negative, in
their weighting values), add a few more (approximately 20% of the number
of units already on the layer) and repeatthe training process.

¢ If no saturated units are found, but the network does not converge, try low-
ering the learning rate parameter (7) and training longer. A lower learning
rate will slow the amount by which connections are adjusted, thereby allow-
ing the network to moreeasily find a minimal error location on the weight
surface.

e If the network converges but does not produce accurate outputs, evaluate the
coverage of the training set. It could be that the network has learned a subset

of the problem domain very well, but the control set consists of patternsthat

are outside of the application domain described bythetrainingset.

e If the network converges but does not produce accurate outputs, and you

have determined that the training set provides adequate coverage, consider

refining the pattern representation to include additional indicators (in this

Suggested Readings 97

example, consider adding a season indicatorto the input) to help the network

discriminate between similar inputs that produce very different outputs.

Readers should note that these suggestions are primarily for applications that

use the BPN. Other network paradigms require other techniques, although those

methodsare notstrategically much different from the ones outlined here. Rather,

the other techniquesare tailored to the operation of the different network models,

just as these are specific to the operation of the BPN.

Exercise 3.8: Build the weather-forecasting network described in this section.

Collect your own data using daily weather reports obtained from local newspa-

pers (whichare usually archivedby libraries). Train the network, and evaluate its

effectivenessafter training. m

3.6 APPLICATION-DESIGN SUMMARY

In this chapter, we have examinedthe details of designing a neural-network ap-

plication, and shown howtheselection of a data-representation scheme can in-

fluence the success of the application. We have also taken ourfirst steps toward

developing applications of our own design, by working through a detailed exam-

ple of a viable neural-network application.

With these foundations well established, we are now ready to begin a detailed

investigation of the other successful applications of the technology. In subsequent

chapters, we will draw heavily from the concepts presented in this chapter as we

describe how each application was constructed, and show how otherresearchers

have overcome many obstacles to produce successful applications.

SUGGESTED READINGS

At this writing, there are not very many good textbooks available that address

the idea of application design and data preparation; hence, this book was writ-

ten in an attempt tofill that void. However, there are a number of conferences

held annually that sponsor an applications track, where researchers describe suc-
cessful applications of the technology. The interested reader will find a variety
of data modeling techniques described in the technical papers in the proceedings
of those conferences. The best source for applications papers can be foundin the
proceedings of the annual Neural Information Processing Systems: Natural and
Synthetic conference and workshop, the IEEE Conference on Fuzzy Logic and
Neural Networks, and the World Congress on Neural Networks, sponsored by the
International Neural Network Society.

98 Application Design

BIBLIOGRAPHY

1. G. E. Hinton and T. J. Sejnowski. Parallel Distributed Processing. MIT Press, Cam-

bridge, MA,p. 301, 1986.

2. S. M. Weiss and C. A. Kulikowski. Computers That Learn, Morgan-Kaufmann Pub-

lishers, Inc., San Mateo, CA, 1991.

C H A P T E R

Associative Memories

Anideais a feat of association.

— Robert Frost

Anassociative memory is, quite simply, any device that associates a set of prede-

fined output patterns with specific input patterns. A computer-memorychip is an

excellent example of a simple associative memory:It produces a single output da-

tum from a set of predefined data patterns when presented with a specific address

as input (along with the appropriate control signals). An important characteristic

of the memoryis that there is no requirementfor a specific mapping from thein-

put to the output; that is, the output produced can take on any legal value for any

given input, so long as each output pattern wasstored at a specific location in the

memory at someearlier time.

However, to say that a computer-memorychip is equivalent to an associative

memory is somewhat misleading. The behavior of a computer memory resembles

the behavior of an associative memory only as long as the input patterns to the

device are membersof the set of addresses that wereinitialized with a desired

output pattern. Moreover, we must also have some guarantee that the address

patterns sent to the memory are accurate. If the input address to the memory

deviates from the desired pattern by a single bit, the output pattern produced by
the memory will either be the wrong oneorbe correct only through happenstance.

In this chapter, we shall explore the applications of associative-memorynet-
works. In the process, we shall show howthestructure of the network endowsthe
applications with a robustness that is not found when other techniques are em-
ployed. We shall begin this discussion with a brief review of associative-memory
definitions,to illustrate the different types of behavior obtainable with an associa-
tive memory. We then discuss the implementation of several applications of the
technology, showing how the associative-memory network provided a solution
for each application that could not have been easily obtained using conventional
methods.

99

100 Associative Memories

4.1 ASSOCIATIVE-MEMORY DEFINITIONS

Compare the behavior of the computer memorydescribed earlier with that of nat-

ural memory. When wesee the face of another person that we know,it makes no

difference to us whether that person’s appearance has changed slightly. We con-

tinue to recognize that person even if he or she has changed hairstyle, has grown

a beard, or is wearing sunglasses. We will almost certainly note the differences,

but unless the changes have been manyandsignificant, we will recognize the face

nonetheless. From this example, we can see that the behavior of biological mem-

ory is significantly more robust than the behavior of the computer memory.

In manyapplications, the robustness of the biological memoryis a desirable

quality. There are many situations where we wouldfind it desirable for a com-

puter system to do something intelligent (but predictable) when presented with

a situation that differs slightly from anything we may have anticipated prior to

deploying the system. Intelligence in the face of noisy or incomplete input in-

formation is especially desirable. Thus, we pose the following question: How can

we endow a computerwith the ability to mimic the robustness foundin biological

memories?

The most intuitive answer to this question is to construct memory devices

that operate in a mannersimilar to the biological-memory systems. In Chapter2,

we described the operation of several different neural-network structures. In ret-

rospect, we can see that the behavior of many of these networks is remarkably

similar to the behavior we expect from an associative-memory device. Yet, with

so many different networks to choose from, how can webesure that the network

we select for an application is the most appropriate? To assess the applicability

of these networks to the kinds of automation problems weintend to address, we

mustfirst define a set of categories that describe certain predictable behaviors. We

can then distinguish the network paradigmsbased on these categories. One such

classification for associative memories is as follows:

¢ A heteroassociative memoryis a device that produces an output pattern that

was stored as one of a set of output patterns. The specific pattern generated

is the one associated with the input that is most similar to the current input.

e An interpolative associative memory generates an output pattern that dif-

fers from the predefined output associated with the input closest to the cur-

rent input by an amountthat correspondsto the difference between the cur-

rent input andthe closesttraining input.

e An autoassociative memory converts a corrupted input pattern into the pat-

tern that most closely resembles the current input. Notice that, in this defini-

tion, the output from the network is equivalentto the input.

After the connection weights have been configured for an application, the

BPN, CPN, BAM, and MAMcanall operate as heteroassociative and autoas-

sociative memories, although each can also be used in distinctly different ways.

Similarly, the CPN with more than one winning competitive unit illustrates the

behavior of an interpolative associative memory. In the remainder of this chap-

4.2 Character Recognition 101

i. MM oc”
AR A A

AAA A
Figure 4.1 All of these images represent the same character. Notice the variety of

shapes, and considerthat there are 25 other letters (not to mention the ten digit characters,

the 26 lower-case letters, and punctuation marks) that can take on the samevariety in their

representations.

ter, we shall investigate how these networks can be used to address associative-

memory applications.

4.2 CHARACTER RECOGNITION

As we described in the beginning of this chapter, the process of associating a

meaningful interpretation with a visual image is quite often a complex task, es-

pecially when the form of the images to be processed can vary significantly. For

example, consider the imagesof the charactersillustrated in Figure 4.1. While we

easily recognizethat all of these images represent the same character, the process

of programming a computer to perform the same task is daunting. Moreover, if

we were to add to this set of characters another form, one that was similar to, but

not exactly the same as one wehad seen previously, we would likely recognize

the character, but our computer program may not.

As wehavealready alluded, a neural-network can quite easily be constructed

that will perform the character-recognition function. However, as we saw in

Chapter 2, there are many different neural-network paradigms, with many dif-

ferent types of behavior. Several of those paradigms can be used to successfully

solve this problem, and at least one cannot. Of those that can be used, two net-

works are very appropriate for this problem, and the others will merely suffice.

102 Associative Memories

The issue that we must address, then, is how do weselect the proper network for
the given application?

To construct a network that will perform the character-recognition task,
we mustfirst define the data-representation scheme we will use to model the
problem. This is an important point, and unfortunately, one thatis commonly ne-
glected by a novice neural-network application developer. As we shall describe in
this section, the choice of the data-representation scheme for an application will
quite often imply the use of certain neural-network paradigms.

Let us begin, then, by defining a suitable data representation for our neural-
network character recognizer. Referring again to Figure 4.1, you should first
notice that each image is approximately the samesize asall the other images,
both horizontally and vertically. We shall therefore assume that the network that
we will construct to recognize these imageswill not have to deal with differently
sized characters,! and restrict our network design to the recognition of differently
shaped images.

4.2.1. Input Pattern Definition

To build a neural network that can associate character images with character
meaning, we mustfirst determine the meansof image acquisition for the applica-
tion. The most common method of acquiring image information(in the sense that
a computer processes information) is through the use of raster video techniques.
As shownin Figure 4.2, a video image can be thought of as a two-dimensional

matrix of pixels. A monochromatic pixel, in its simplest form, is a binary indi-

cator of the illumination status of the pixel: a logic “1” is usually interpreted as.

a white (or illuminated) pixel, while a logic “0” is typically used to indicate a

black (or nonilluminated) pixel. For images more complex than simple text char-

acters, a gray-shade(or color) pixel representation is often used, but that requires

additional information about each pixel. For this application, binary information

will be sufficient to construct imagesof all the characters the system will ever
process.

Using the video pixel matrix as the basis for our character-image represen-

tation, we must next select the resolution that we will need to adequately model

the character image for the neural network. Because ourapplication is to build

a networkthat will correctly recognize a variety of different character shapes as

a limited number of characters, we will require a character matrix that provides

only a moderate resolution—say, eight pixels horizontally and ten pixels verti-

cally. However, if our application required that the network be able to discrim-

inate between characters that have only subtle differences, a higher resolution

image would be necessary, because each additional pixel in the image would give

the associative memory a corresponding increase in information that it can use to

differentiate characters.

1. If we cannot guaranteethat the images will be approximately the same size, we could prescale the

character images before asking the neural networkto classify them.

4.2 Character Recognition 103

SREBRees

See|_|mLjl Somg0ccocs/
OOSSCOOOUU

Sg0o0m agesOO@M@OOUU
OOSSOLDOUUSS

JgoCm Saccoae
=eee
Se a a a | BRRReese

Figure 4.2 A variety of video-matrix representations for the character D are shown.

Notice the difference in the resolution of the character as the number of pixels in the

image matrix varies—morepixels provide a higher-quality, easier-to-distinguish image

while fewer pixels result in a character imagethat is jagged looking.

By concatenating the ten row vectors of eight pixels that comprise the char-

acter matrix into a single, 80-element vector, we will have formed a pattern that

is suitable for input to an associative-memory neural network. Moreover, by con-

sidering the input image as a vector, with both magnitude and direction in n-

dimensional hyperspace, we have provided the network with the inherent ability

to compare images of new characters with images of characters it has already

learned to recognize.

4.2.2 Output Pattern Definition

The next step in constructing the data representation for the application is to

define the form of output that we will interpret as the meaning of the input image.

There are several schemeswecanuseto define the form of the output pattern. The

most straightforward approachis to use a classification scheme in which one, and

only one, output element is active for any given input pattern. The position of

the active output element will determine the corresponding character. A neural-

network implementation of this scheme is depicted in Figure 4.3. Using this

strategy has the advantage of simplicity: It is relatively easy to construct a layer

of processing elements in a neural network that will produce a one-and-only-one

output acrossthe layer. It is also very easy for the external application to interpret

the output from the network: It need only determine which outputunit is active,

and then use the character associated with the active unit.

Unfortunately, the classification scheme we are using at the output also has

some implicit disadvantages. For instance, it requires that we must be able to

completely specify beforehand the numberof different characters that the mem-

ory must recognize. If, at some later time, we should need to add another charac-

ter to the set of recognized characters, the output must be extended to accommo-

date the new character.

While this simple extension may not seem devastating from a system per-

spective, rememberthat we are using interconnected processing elements to rep-

resent each pattern element. Thus, the addition of a single output unit to an

associative memory network addsa relatively large numberof interconnections

104 Associative Memories

\ 1 /

DO OG
fy

® o

j
r

1
2
6

UUReo
USSCORBD
BECUOOOCRS
BUOOOOCOOS
BUUOOOO0G
BUOOOOCOS
BOUOOCOOO8
SE UCOSREE
LISSOORRO
UOeos

Figure 4.3 A neural-network structure arranged to identify characters using a video
pixel input pattern and an outputclassification schemeis shown.In this diagram,the input
image pattern becomesthe output from the inputlayer of units. After propagatingthis

input pattern throughthe internal network structure (shownin this diagram in a simplified

form), each unit on the output layer of units produces an output signal based on the

stimulation it has received from the rest of the network. If the network has been trained

appropriately, only one unit on the output layer will produce an active output—in this

case, the unit associated with the character Q.

(along with the corresponding time to process the new connections), and forces

us to completely retrain the network. Retraining will be necessarybecauseit is

unlikely that the newly created input connections to the new unit will have any

a priori understanding of the application.

2. The need to retrain the network will vary with the network paradigm being used. See Chapter 2 for

more information onthis topic.

4.2 Character Recognition 105

2

[
|
S
P
s

[
|
I
I
L
I
e

E
e
U
U
L
I
L
I
e

e
e
e

e
e
e

|
]
e
e
e

a
|
|

J
a
a
a

J
S
R

L
I
C
L

f
n

B
O
O
O
U
U
U
e

B
O
O
O
U
U
I
U
U
L
U
e

B
e
e

d|
hU

LU
IW
LL
Ld
e

I
m
e

nf
U
R
E

00111100 01100110 ... 01100110 00111100

(6) 00111100 01100110 ... 01100110 00111101

(c) 1001111 = O
1010001 = Q

Figure 4.4 This diagram illustrates how small differences in the input to an associative-

memory network canresult in substantially different outputs from the network. (a) The

raster images ofthe characters O and Q.(b) The input vectors of the two images in binary

form. (c) The ASCII codes for the two characters, also in binary form. Note the number

of bit differences between these two outputpatterns.

Another data-representation scheme we might use to interpret the output

from the network is to use some predefined code, such as an ASCII represen-

tation, to indicate the meaning of the image pattern. This scheme has the advan-

tage of fewer processing elements on the layer (seven, to represent 128 different

characters versus 62 to represent the 26 upper-case, 26 lower-case, and ten digit

characters), a significant consideration with regard to simulation time and net-

work storage requirements. Unfortunately, it also has the disadvantage of being

more difficult to train. Subtle differences in the images of two similar characters

will often result in significantly different output responses from the network. An

example of this situation is shownin Figure4.4.

4.2.3. Network Specification

Recall from our previous discussion the objective of this application: to correctly

recognize the images of characters that will often have very great differences in

shape, even betweenidenticalletters, due to differences in style. The fact that we

want the associative memory to produce an exact output, even though the input

pattern used maybe slightly different from any of the images the network has

106 Associative Memories

learned to recognize, suggests that we should usea classification scheme (e.g.,
allowing each output unit to uniquely represent exactly one of the desired output
classes) for generating outputs, because this approach provides us with a greater
Separation between output patterns, and thus improvesthe ability of the network
to successfully categorize new input patterns.

Next, let us consider the comparison process that a neural network will per-
form when processing new input images. Recall from Chapter | that each pro-
cessing element in a neural network produces an output signal that is derived
from the aggregate stimulation the unit receives from all of it inputs. Because
there are many different types of comparisons that can be performed by such a
processing element(e.g., Euclidian distance metric, Hammingdistance, and fea-
ture extraction), we must decide which is best suited to the application at hand.
We have already decided the form of the input pattern to the network forthis
application—imagedata in the formofa binary vector containing 80 pattern ele-
ments. If we consider each input pattern as a vector in Euclidian space, we could
use a competitive layer of elements to process the input, with the winningunit be-
ing designated as the unit that has been encoded with the training imagethat best
matches the current input image. Such a comparisonis illustrated in Figure 4.5.

However, a simple Euclidian comparison such as the one performed by a
competitive layer has two significant problems with respectto this application:

¢ The numberofpatterns that can be distinguished will be limited to the num-
ber of units on the competitive layer.

¢ Spatial comparisons cannot easily distinguish subtle differences between
similar, but different, patterns.

Referring again to Figure 4.5, notice that a competitive layer can only perform
comparisons betweenthe currentinput pattern and those patterns associated with
each unit on the competitive layer.*> Thus, a competitive layer is restricted to
comparisons between the current input and a fixed numberof prestored patterns.
If, at some later time, we wish to extend the application to include recognition
of some characters that were not part of the original training, we would have to
reconstruct the entire application with a network containing a similar number of
additional competitive units, one for each new characterto be recognized.

Now considerthe characters shownin Figure 4.6. Two of these are the lower-
case letters g and q, and twoare different images of the decimal character 9. If
we were to use a competitive network, three different units would be needed to
distinguish the g, the g, and the 9. But, with only three units to recognize these
four characters, and with each unit using a Euclidian distance comparison, how
can we guarantee that the appropriate unit wins the competition? Specifically,
which unit would win the competition if the input pattern were the distorted
image of the 9? If the image vector of the g is closer to the image vector of the
distorted 9 than is the image vectorof the 9, how can weprevent the network from

3. As defined by the weight values in the input connections to each unit.

4.2 Character Recognition 107

 W4

Ws5 W9

Figure 4.5 The comparison of pattern vectors in Euclidian space is shown.In this

diagram, each of the vectors labeled w; represent image vectors of characters the

competitive layer has learned to recognize. The current input image vector, labeledi, is

closest in Euclidian distance to vector w3. Unit 3 will therefore win the competition, and

generate the output that was associated with this unit during the training process.

misclassifying the distorted 9 as a g? The answerto these questions, if we are

using a competitive layer to compare vectors in Euclidian space, is that we must

again add more units to the layer, to ensure that each subtle nuance in character

imagesis captured within the network.

Practically speaking, however, building a neural network that will contain a

distinct unit to detect each unique variation of each possible character image is no

solution at all. A network cannotcontain an infinite numberofunits, nor canit be

realistically expected to exactly recognize each of an infinite numberof possible

input patterns. A much better approach for this application would be to use a

network that can recognize the features of the input that tend to correctly classify

the image patterns. The BPN,also described in Chapter 2, does an excellent job

of categorizing outputs based on generalizing input patterns into their feature

components.

108 Associative Memories

“Gg »G ag

Figure 4.6 Four similar character images are shown. (a) A lower-case g. (b) A lower-
case q. (c) The digit 9. (d) A distorted 9. The details of the comparison amongthese
image patterns is describedin the text.

(A) (B) (Cc
Oe& Oy ~)

aN
SR

YOR

Keefe

 RASKKK ASS

ZLELPSSP
Rd
Y

SSSA ZAP ISO PEre. \)

VAIOMIOYOT
Figure 4.7 The BPNstructure neededto solve the character recognition application. The
operation of the network is described in the text. Source: Neural Networks: Algorithms,
Applications, and Programming Techniques[2]. Copyright ©1991, Addison-Wesley. Used
with permission.

Weshall therefore specify the network for our character-recognition appli-
cation as a three-layer BPN, similar to the network illustrated in Figure 4.7. In
this approach, the first layer will act as a fan-out layer that will simply hold
the input image pattern for the rest of the network, the second layer will act as
a feature-identification layer, with each unit responding to the presence (or ab-
sence) of features that tend to classify the input, with an output layer consisting
of n units, where n is the numberof characters to be recognized. Using this en-
coding scheme, weshall expect the output of the network to produceonly a single
active unit for each input pattern presented, and weshall interpret the position of
the active output unitas the indicator of the characteritself.

4.2 Character Recognition 109

Because the output units in this application are essentially binary, we shall

employ the sigmoidalactivation function on both the hidden and outputlayers for

this network. The hidden-layer units will require the nonlinearity in the activation

function to help the network distinguish between nonlinearly separable patterns.

The outputlayer units will use the sigmoid function to relax the restrictions on the

range of input signals each unit mustreceive to produce a specific output, while

creating a situation where it will be relatively easy for the units to produce either

strongly active or inactive outputsignals.

Using the input and output data-representation schemes described previ-

ously, we know that there must be 80 input units and 62 output units (one for

each upper- and lower-case letter character, and one for each of the ten digit char-

acters). All that remains to complete the network specification is to determine the

numberof hidden-layer units for the application; select a learning-rate parameter

(n) and, if required, a momentum term (@); and to train the network.

Unfortunately, there is no hard-and-fast rule that can be used to precisely de-

termine any of these parameters for every application. As a general rule, however,

a learning rate of 0.5 and momentum value of 0.2 should be aboutright fora first

trial. We select these values for the following reasons:

¢ As the learning rate approaches unity, learning in the BPN becomes deter-

ministic. This means that connection-weight changes are madeto eliminate

the instantaneouspattern error every time the network adapts. Unfortunately,

the network must be able to learn more than one pattern, which it cannot do

under these circumstances, because changes to completely eliminate the er-

ror in one pattern almost alwaysresult in the introduction of errors in other

patterns.

¢ Conversely, as the learning rate approacheszero, learning in the BPN slows

equivalently. While slower learning increases the ability of the network to

encode patterns, it also increases the likelihood of entrapping the BPNin

a local minimum on the error surface during learning, creating a situation

where the network never converges to an acceptable solution.

¢ Choose a fairly small, but nonzero, value for the momentum parameter to

reduce the ability of a single outlyer in the training set from adversely affect-

ing the direction of the weight update during training. If momentum is too

high, any outlyer patterns can overwhelm the connection-weight update on

the next pattern, thus preventing the network from encoding thatpattern.

The guideline for specifying the number of hidden-layer units in the BPNis

as follows: Start with a fraction of the number of input units, train the network,

and adjust the numberof units based on how well the network trained. Generally,

for a BPN that contains more inputs than outputs (as do most BPN applications),

a good place to start is with one-quarter to one-third as many hidden units as input

units. Then, after training has been completed, the number can be adjusted up or

down, based on whether the network learned the application (if not, adjust up),

110
Associative Memories

or if many hidden-layer units never activate for any of the input patterns (adjust
down).

Exercise 4.1: Specify a neural-network solution for a character-recognition ap-
plication, this time using the ASCII representation of each character as the de-
sired output. Indicate the type of network used, the numberof units on each layer,
and the activation function for each layer of units, and describe any potential is-
sues that must be addressed in order to make the application successful. =

4.3 STATE-SPACE SEARCH
We haveall played gamesthat require us to perform pattern-matchingandstate-
space searches. For example, when we playedtic-tac-toe as children, we quickly
learned which strategies offered us the best prospects for winning, and which
Strategies tendedto result in ties or losses. We probably learned to recognize the
gamesituations that produced those results without consciously realizing that we
were, from a computational viewpoint, performing a rapid search of a relatively
large state-space. To put this notion in perspective, consider that in the simple
gameoftic-tac-toe, there are precisely 362,880 (9!) different ways that the game
board can be completely filled. To befair, however, the numberof possible situ-
ations that can be encountered in a typical gameis significantly smaller, because
we usually do not continue after one player has won.

If we were to model this game so that a computer could play against a
human opponent, we would likely begin by defining a state-space for the game
that the computer could search and evaluate. We would probably use a graph to
model the state-space for the computer, representing each legal gamesituation
by a node, and using the arcs between nodes to represent the move made to
transition betweenthe legalsituations. Finally, we would program the computer
to construct and search partial gamestate-graphs, with each search beginning at
the node representing the current game situation, and proceeding forward using
an algorithm like the minimax to determine the best movefor the computer, given
the current situation.

Let us separate ourselves from the classical perspective of modeling situa-
tions for computer processing for a moment, and consider the process whereby
we learned to play the game. Usually, ourfirst experience with tic-tac-toe comes
as a child, and involvesa series of trial-and-error attempts to learn the strategies
of the game. After being told the rules and objectives, we begin by making moves
randomly, eventually winning or, more likely, losing as a result of luck and our
opponents skill. After manytrials, we learn to associate desirable next-state sit-
uations with current-state patterns. Eventually, after much practice, we achieve a
level of competence that virtually guarantees that any future game weplay will
be either won or drawn, simply because we have progressed to a point where we
quickly recognize any situation that we will likely encounter, and have associated
the proper response with that situation.

4.3 State-Space Search 111

This process of associating patterns is the essence of a heteroassociative

memory. Therefore, it seems reasonable to assume that we could teach an asso-

ciative memory networkto play tic-tac-toe against a human opponent. The only

question that remains is: How?

4.3.1 Input-Output Specification

From an application perspective, it is clear that the neural network we wantto

build will use the current gamesituation as input, and will output a recommen-

dation of the proper move based on the current situation. Using this scenario,let

us first consider how to unambiguously model the current game situation for an

associative-memory network.

We know, from our experience, that any position on the tic-tac-toe game

board can legally exist in three distinct states: unoccupied (or blank), occupied

by the X token, and occupied by the O token, which we will henceforth denote

as b, X, and O. We also know that input pattern elements to a neural network

are usually binary values, although they can be continuously variable in the range

between their limits. We therefore have a situation where we are attempting to

describe three distinct states using network-processing elementsthat are designed

to operate on primarily binary values. We can address this issue in one of the

following two ways:

e We could map one input pattern element to each legal board space, and let

each pattern element have three legal values, say {0.5, 1.0, 0.0}, to represent

{b, X, O}, respectively.

© Wecould map multiple input pattern elements to each legal board space, and

then use combinations of binary patterns to represent the three legal game

states.

Weshall select the second of these two options for the reasons described in

Chapter 3.4 We will further specify the use of three inputs for each of the nine

board positions, one to represent each of the possible position states (b, X, O)

using a one-and-only-one representation technique. Thus, we will require a total

of 27 inputs to the network, only nine of which will be active for any valid input

State.

To produce the desired output from the network, we will need only nine

units, one for each of the nine board positions. We shall expect the network to

activate units on the output layer when presented with the current gamesituation

at the input layer. The units activated by the network will be interpreted as the

position on the game board where the next token should be placed. As before,

the internal configuration of the network(i.e., the number of hidden-layer units,

if any) will depend on the network paradigm selected to implement this memory.

Figure 4.8 illustrates the general form of the network needed to play tic-tac-toe.

4. See Section 3.2.2, Tertiary and n-ary Patterns. for the details on this issue.

112
Associative Memories

Figure 4.8 Thestructure of a neural network designed to learn to play tic-tac-toe
is illustrated. Notice that the network is used only to assess the current situation and
recommend the next move. External software (or possibly even hardware) will be
necessary to sensethe state of the game, to convert that information into the form needed
by the network, andfinally to implement the recommended move.

4.3.2 Exemplar Acquisition

In this application, there are several issues associated with acquiring the exemplar
data that we did not encounter in the character-recognition application. These
issues are

e A lack of immediate feedback with regard to the quality of a particular move.
Usually, the results of a move madeearly in the game do not become appar-
ent until the gameis almost over.

¢ Temporal constraints on the exemplars acquired across multiple games, pos-
sibly creating a situation where the network might never learn the application
due to conflicts in the training exemplars.

¢ Rotational duplication oftraining patterns, resulting in many exemplars that
are functionally redundant, but necessary, depending on the network para-
digm selected for the application.

To illustrate why these issues are a concern, we must take into account the
process by which a neural network learns to reproduce a target output from cer-
tain input patterns. Depending on the network, training is usually implemented
from instantaneous exemplars; that is, a network learns to reproduce a set of

4.3 State-Space Search | 113

exemplars by slowly adjusting its internal connection weights based on the pre-

sentation of a single input and a desired output. Training continues by repetitively

showing the network the sameset of exemplars, until the network can accurately

reproduce all of the target outputs whenpresented with the corresponding input

patterns, one at a time. This learning process meansthat the network being trained

has no specific memory of patterns previously seen, nor does it have any fore-

knowledgeof patterns that have not yet been seen.

With those constraints in mind, consider the process of collecting the training

data that we will need to construct our exemplars for this application. Because

the neural network is intended to be an opponent for a human player, we might

expect the game to be played interactively; that is, players would be expected

to alternate turns. However, we have no wayoftelling the network whether the

first move it makes, be it defensive or offensive, is good or bad until the game

is almost over. This time lag between action and feedback, coupled with the lack

of explicit pattern memory in the network, will make it impossible to train the

network interactively. Therefore, we shall back off from our interactive training

requirement, and create a situation that will allow the network to observe and

learn from other players before ever making a move.

We can create such a situation by playing several gameseither against our-

selves or against another human player, and recording each move made as a

situation-move orderedpair. Then,after recording the evolution of many different

games, we can transcribe the sequence of moves into exemplars for the network.

The network can then betrained normally. Onceit has learned the exemplars, we

can then test the memory by allowingit to effect its own moves interactively. If

training has been sufficient, the network should be able to play the game as well

as the user. If not, additional exemplars should be addedto the original training

set, and the networkretrained.

The scenario just described addresses the issue of dealing with a lack of im-

mediate feedback. The other two issues are also significant concerns, especially

when using certain networks. For example, consider what might happen if we

simply used the training data acquired as previously described to teach a BPN the

tic-tac-toe application. The BPN is a spatial mapping network, meaning thatit

will alwaystry to find a way of producing a given output when presented with a

given input. It has no mechanism built into it to allow it to learn many different

outputs that are associated with one input, which, unfortunately, is quite likely the

case in this application.

For example, if we have collected our exemplars by playing many different

games and recording each andevery situation-move pair as a separate exemplar,

we will have multiple exemplars that have exactly the same input pattern—say,

the empty game board—with different associated outputs. This situation, which

is illustrated in Figure 4.9, presents a problem for the BPN because it has no

explicit memory of any exemplars, other than the one that it is attempting to learn.

Thus, every time a conflicting exemplar is presented to the BPN, the network

will attempt to learn the new target output by unlearning any conflicting output

114
Associative Memories

(b) 100 100 100 100 100 100 100 100 100 100 000 000
100 100 100 100 100 100 100 100 100 000 010 000

Figure 4.9 This diagram illustrates how conflicting training information might be
acquired for the tic-tac-toe example. (a) The initial game-board situation commonly
results in one of two next-state situations. (b) The two exemplars resulting from situation
(a). Notice that both have the same input pattern, but the output patterns are significantly
different. We refer to exemplars that exhibit this quality as conflicting.

pattern it may havealready seen, creating a situation where the network will never
converge to a global solution.

Wecould solve this problem by choosing to use one of the BPN-variant
networks—for example, the Jordan network—as the basis for this application.
The Jordan network allows us to deal with the one-to-many mapping problem
by virtue of the feedback provided from the output layer to the input layer. In a
sense, the state units provide a discrimination pattern that the Jordan network can
use to separate the duplicate patterns.

Exercise 4.2: We have just described why conflicting exemplars presenta train-
ing problem for the BPN.Identify another network paradigm, different from the
BPNandits variants, that will not have a problem with conflicting exemplars. Ex-
plain whythe selected network can deal with a one-to-many pattern mapping. m

With regard to the rotational issue, we can offer no easy solution, other than
to say that it is a common problem in neural-network applications, and must
be dealt with on an application basis. For this particular application, the best

4.3 State-Space Search | 115

solution might be to ensure that the training exemplars include several instances

of every possible variation, with the frequency of the various instances mirroring

the occurrence of the situations.

Exercise 4.3: Based on the previous discussion and your knowledge of the dif-

ferent neural-network paradigms,define the architecture of a neural networkthat

could learn the tic-tac-toe application. Specify the network-learning paradigm,

the numberof layers needed, and the number of units and activation function for

each layer in the network. @

4.3.3. Network Specification

Now that we have defined the input and output data representations for the net-

work, we can complete the application by selecting the appropriate network-

learning paradigm, and by constructing the network from the specifications. To

select an appropriate network paradigm, we shall first review what we already

know aboutthe tic-tac-toe application, because the requirements of the applica-

tion will influence the selection of the proper network paradigm.

© The form of the input and output patterns in each exemplar will be binary

vectors. If the selected network prefers the use of continuous or bipolar?

patterns, we must convert the exemplar format accordingly.

© Whenthe network receives an input pattern after training has been com-

pleted, the output produced by the network should be the pattern that most

closely resembles the current situation, as indicated by the input pattern

vector. The best technique for accomplishing this comparison is via the

Hamming-distance measure.

e It would be preferable to have the memorylearn the application interactively,

if possible. If not, we must be able to collect a representative sampling of

exemplars to train the networkoffline.

© The network selected must be able to deal with a one-to-many (1:M) map-

ping of inputs to outputs, in order to learn different strategies for similar

situations. If the selected network cannot handle 1:M pattern associations,

then we must preprocess the exemplars to eliminate conflicting exemplars.

¢ Rotational duplication of situations cannot be dealt with easily within the

network without some preprocessing of the input patterns. The most straight-

forward approachfor resolving this issue is to simply ensure that the training

set includes many examplesof rotated situations.

There is no one network paradigm thatwill satisfy all of these constraints.

Instead, we shall compromise, and select a modified ART1 network as the best

choice forthis application. The network, as shownin Figure 4.10,is functionally

5. In this text, we reserve the term binaryto refer to elements from theset {0, 1}. Similarly, the term

bipolar is reserved for patterns containing elements from the set {—1, I}.

116
Associative Memories

Linear Outputs

Figure 4.10 The ART] network, modified with the addition of an outstar layer from F>to the linear-outputlayer, is shown. Recall that the Fy layer is a competitive layer in theart model, meaning that after the network achieves resonance (whenit has either matchedor stored the input pattern), the associated output pattern can be stored in the connectionweights between the winning Fy-layer unit and the linear-output layer. © David M.
Skapura, 1990. Reprintedfrom A Connectionist Approachto Heuristically Pruning Large
Search Trees. Used with permission.

identical to the ART1 network described in Chapter 2, with the exception of the
outstar layer that we have combinedwith the Fy layer, and thelinear-output units
that will serve to identify the next move position. Why do we need this modi-
fication to the ART network? Quite simply, ARTI acts as a constantly learning
pattern memory, butit has no built-in provision for storing patterns to be asso-
ciated with the memory patterns. The addition of the outstars, which are merely
a logical extension of the existing F-layer units, provide the network with the
ability to store the associated pattern memories. The linear-output layer acts as
a pattern multiplexer, providing a common output location for all of the patterns
that can be produced bythe Fy-layer units. More importantly, though, the outstar

4.4 Image Interpolation
117

learning law allows the outstar to learn the average of all of the pattern vectors

associated with the unit, thereby solving the 1:M pattern issue.

4.4 IMAGE INTERPOLATION

Earlier in this section we saw how video imagery could be used as an input to

an associative memory designed to recognize text characters in the image. We

shall now investigate a variation of that application, this time showing how an

interpolative associative memory can be used to produce meaningful responses

when an input pattern varies from the training exemplars. For this application,

first described by James Freeman [1, 2], the input to the memory is the two-

dimensional (2D) image of a modelof the space shuttle that can be rotated about

a single axis. The output from the memory is then expected to be the angle of

orientation of the shuttle model with respectto a fixed reference position.

The purpose of this application, as described in the original paper, was to

show how a neural network could be used to perform the rudimentary functions

associated with image understanding. The original experiment was conducted as

a precursor to the more complicated problem of stereoscopic computer vision,

where the third dimension (depth) becomes a concern.

4.4.1. Input Pattern Specification

As we saw in the character-recognition application, computer image processing

usually begins with some form of video camera being used to acquire the image

information. The video data, in the form ofraster pixels,is then digitized® and

collected togetheras aframe of imagery. Each frame ofdata represents a snapshot

of the scene, essentially a momentfrozen in time, that can be used to perform a

static analysis of the image.

In the character-recognition application, the image processing was fairly

straightforward—the application expected the image data to contain a recogniz-

able character, and the character image was expected to be well behaved(1.e., po-

sitioned and oriented in a particular manner within the character matrix). Because

we were only concerned with the identification of monochromatic text images,

the pixels in the character image could be represented as binary values.

For the spacecraft orientation system, monochromatic video was also used

to provide the input image for the system.In this case, however, each pixel was

digitized into one of 256 gray shades, rather than simply on or off. While not

necessary to the success of the application, the gray shading was used to assess

the ability of a neural network to handle complex image data. Because gray

shades allow for shadows on the image, and provide softer transitions at areas

6. A quantizing process. where each pixel is assigned an integer value indicating its luminescence.

and. if appropriate, its color.

118
Associative Memories

of high contrast, it was felt that gray shading provided a more comprehensivetestof the associative memorythan if the input image were simply binary.
The original image obtained from the video input system was a 256 x 256pixel matrix, with the image of the shuttle model positioned at the center ofthe frame. Using conventional pixel compression techniques, the video imagewas then reduced to a 32 x 32 pixel image in order to reduce the computational

complexity to a size that was manageable in a neural-network simulation.’ The
1,024 pixels from the compressed image werethen eachscaled to a value between
zero and one, by translating each pixel according to the equation

ip=— f= 1... 1004 (4.1)max{p;}

where i; represents the value of the j‘h pixel in the input pattern (i), and Pi
represents the value of the i'" pixel in the Image pattern (p). The resulting values
were thresholded into binary pattern elements, and concatenated into a pattern
vector comprised of 1,024 binary elements, each representing a gray-shade pixel
from the compressed imageofthe shuttle model. Figure 4.11 illustrates the form
of the input pattern, and shows howit correspondsto the original, digitized image
of the shuttle.

4.4.2 Output Pattern Specification
For this application, the associative memory was expected to provide an inter-
polated estimate of the orientation of the space-shuttle model from the image of
the model. Because the model had only one axis of rotation, the neural network
had merely to provide an indication of the rotational orientation of the model
given the input image. To see how that was accomplished, let us now consider
the method used bythe application developers for representing the rotationalori-
entation in a manner that can be reproduced by a neural network.

First, given that the model had only one degree of freedom, we can conclude
that the orientation, while continuously variable, can always be expressed by an
angular difference between the current position and somepredefined reference
position. For this application, the nose-up orientation wasselected as the refer-
ence position.

Next, we must determine how weshould model outputs from the network so
that we mightinterpret the network response as an indication of the angulardif-
ference between the current input image andthe reference position. One method
for satisfying this requirementis to specify the output value from the network as
an indication of the sine (or cosine) of the angle between the two positions. Us-

7. In this application, as in most of the applications described in this text, the neural network was
implemented as a software program running on a conventional computer system. Simulators tend to
be extremely slow when running large networks: hence, smaller networksare preferred.

4.4 Image Interpolation 119

Figure 4.11 This diagram illustrates how the input pattern vector was formed from

the digitized image of the space shuttle. The image of the shuttle has already been

preprocessed to compress the image to 1,024 pixels. Source: Adapted from Neural

networks for machine vision: the Spacecraft Orientation Demonstration [1]. Copyright

©1988. Used with permission of the author.

ing this interpretation, we can guarantee that the output from the network will

be limited to values in the range of —1...1 (because the sine and cosine func-

tions have those minimum and maximum values). This representation scheme

also maps well into the kind of output that can be easily produced by a neural

processing element; in this case, as a continuousbipolar output.

Finally, because in this application we expect the output to be interpolated

between specific training points, we can improve the ability of the network to

resolve points if we ask it to provide both the sine and cosine valuesfor the input

orientation. By so doing, when the network interpolates an output, we will have

an external measure of how accurate the interpolation was by having two different

indications of the interpolated value. If the interpolation produces an exact (or

very near exact) response, the difference of the angles that produce the resulting

sine and cosine values will be very small. However, the interpolation is somewhat

less accurate, we should expect differences in the angles indicated by the sine

and cosine outputs. When this occurs, we can choose to externally refine the

approximation provided by the network by averaging the two angles indicated.

Such a situation is illustrated in Figure 4.12.

120
Associative Memories

(a) (b)

Figure 4.12 This figure depicts the use of two interpolated Output signals as a measure
of the confidencein the interpolation process. (a) Whenthe angles indicated by both
outputs agree, confidence in the interpolation processis very high, and no external
averaging is required. (b) Whenthe output angles differ, confidencein the interpolationis
diminished, but externally averaging the output angles can producebetterresults.

4.4.3 Network Specification

Having completed the specification of the input and output patterns for the asso-
Clative memory, we are now able to complete the application by selecting an ap-
propriate neural-network paradigm. To choose the most appropriate neural model,
let us first review the two primary requirementsofthe memory for this applica-
tion:

* The memory must be able to accept digitized video images as input. The
outputs to be produced by the network will be the numeric value of the
sine and cosine of the angle between the reference position and the current
position of the shuttle model, as contained in the input imagepattern.

e The network must be able to recall exact matches to input patterns, or to
interpolate between training examples when the current input differs from
one ofthe training inputs.

Based on these requirements, the developer ofthis application selected the
forward half of the CPN as the most appropriate network paradigm. The forward
half of the CPN is a logical choice for this application, due to the fact that the
CPN can produce outputs that are analogousto linearly interpolated, continuous
mathematical functions. Specifically, by constructing a CPN containing 1,024
inputs, 12 hidden units, and 2 outputs, and training the network to recognize
12 different images of the shuttle model, each rotated by 30 degrees from its
neighboring image, the network became a heteroassociative memory for the 12
images.

After training was completed, the behavior of the network wasaltered to
allow two hidden units to win the competition for any new input pattern. This

4.4 Image Interpolation 121

modification allowed the CPN to perform a linear interpolation between the an-

gles associated with the images that most closely correspond (in Euclidian space)

to the current input image. Thus, if the input imageindicated that the shuttle was

at an orientation of 41 degrees, the competitive units that learned to recognize the

imageat 30 degrees and 60 degrees would win the competition, with the first hav-

ing a slightly higher activation than the second. When these two units then sent

their respective angle information to the output layer, the linear units at the output

of the CPN integrated the responses from the two winning units, and provided a

linear interpolation between them.

There were, however, two problems with this particular implementation:

First, the CPN offered no method for internally detecting when an input pattern

exactly matched one of the training patterns, and, thus, an interpolation between

two units was performed even when the input was one of the training inputs.

Second, the method of interpolation was a problem; linear interpolation between

angles is at best a crude method of approximating an angle. Wecanillustrate this

concept with an example.

Using the scenario described above, let the current input image representthe

shuttle at 45 degrees, halfway between twotraining points. After propagating that

imagepattern to the hidden layer, the units associated with the input image at 30

degrees and 60 degrees will win the competition, with identical activation values.

The values propagated to the linear output units are then given by the equations

s = 0.5 sin(30°) + 0.5 sin(60°)

= 0.25 + 0.433

= 0.683

and

c = 0.5co0s(30°) + 0.5 cos(60°)

= 0.683

because each of the two winning units contributes an equal share of its output

pattern to the total output. Now,by taking the inverse sine and cosineof the values

produced by s and c, wefind that the angle indicated by unit s is 43.08 degrees

and that the angle indicated by unit c is 46.92 degrees. Only by averaging the

results provided by the network can we compensate for the error introduced by

the linear interpolation process.

Exercise 4.4: Determine the output from the interpolative CPN if the input pat-

tern were 120 degrees. Assume that, as before, two units win the competition

whenthe input pattern is propagated forward. m

Exercise 4.5: Describe the modifications you might make to the CPN to detect

when an input pattern exactly matches one of the training inputs. Be sure that

your solution does not rely on any external information beyond the input pattern

being provided to the network. mg

122
Associative Memories

4.5 DIAGNOSTIC AIDS

The last example of an associative-memoryapplication that we will study is based
on an unpublished application developed by one of my students. The objective
of the project was to determine if an associative-memory neural network could
be used to assist in the diagnosis of equipmentfailures in large, complex com-
puter systems. Specifically, an autoassociative memory wastrained to recognize
patterns that consisted of a variety of symptomsthat, in specific combinations,
indicated certain failure modes in the equipment. After training the network, the
memory was used to match a partial list of symptoms against the complete pat-
terns stored in the memory. The output pattern produced by the network was
comparedto the partial pattern to determineif the operator may have overlooked
certain symptoms during the diagnostic process that, if present, could help pin-
point the source of the problem.

This application was found to be very useful in practice, because, as with
most fairly complicated systems, many failure modestend to produce identical
symptoms: For example, a blank cathode-ray tube (CRT) screen in a desktop
computer system can be indicative of a power-supply problem, a bad graphics
card, incorrectly connected cables, or a defective power switch. Only by look-
ing at the complete list of symptoms can we identify the source ofthe failure
(e.g., if the CRT is blank, the light over the switch is on, the cables are all con-
nected correctly, and the computer produces an abnormally long beep during
the bootstrap process, we can identify the source of the problem as the graphics
card).

Compoundingthe problem,the diagnosis of equipmentfailures is often com-
plicated by the fact that certain failures sometimes induce otherfailures that, in
turn, produce a whole newset of symptoms. The symptomsof the induced prob-
lem can ultimately mask the symptomsof the original problem, complicating
the diagnosis. Often, the only method that exists for identifying and correcting
these kinds of problems is to have specialized technicians perform an analysis
of the failure. The problem with this solution, however, is the loss of generality
with the technicians—if a technician becomesso specialized that he or she can
only diagnose problemsin certain kinds of equipment, the diagnostic skills of
the technician cannot be reapplied to another system without significant retrain-
ing.

A possible solution to this dilemmalies in the ability of an autoassociative
neural network to match partial input patterns, producing as Output the training
patterns that most closely resemblethepartial input. In this manner, the autoasso-
clative memory can be usedto capture the specialized symptom knowledgeavail-
able from a system designer, which can then be integrated into a field-diagnostic
system. By automating the diagnostic process, equipmentfailures can be rapidly,
and accurately, diagnosed by technicians who require fewer equipment-specific
diagnostic skills, thus lowering the cost of maintenance to the end user of the
systems.

4.5 Diagnostic Aids 123

4.5.1 Symptom Representation

To illustrate the method used to represent symptom patterns for an autoassociative

memory, we will select a fairly common application as an example. Specifically,

we will focus on the diagnosis of the failures that may occur in a desktop com-

puter system. We mustbegin by identifying all possible problem symptoms’that

are recognizable without specialized test equipment. Examples of such symptoms

might include the following:

e There is no fan noise (indicating the fan is not turning).

e The CRT screen is blank.

e The cursor is present on the CRT screen.

e The computer sounds two quick beeps during boot.

¢ The computer sounds one long beep, followed by two quick beeps during

boot.

e Anerror message appears on the CRT during boot.

e The computer does not respond to keyboard inputs.

e The disk light does not turn on during boot.

e The stepper motorin the diskette makes no noise whenthe disk light is on.

Inspection of this symptom list reveals that there are interdependenciesin the

Symptoms, meaningthat the presence of one symptom may imply the absence of

another. For example, if the CRT screen is blank, we can infer that no error mes-

sage appeared on the CRT screen during the boot process; if one had appeared,

it would have persisted until the computer was rebooted. Such interdependen-

cies are common in diagnostic applications, and will not present a problem for

an autoassociative network. However, the fact that there are interdependenciesin

the symptoms meansthat the application developer must ensure that there are no

conflicts in the diagnostic exemplars prior to training the network. Otherwise, the

network will learn incorrect diagnosis patterns, and, in production, will reproduce

the same faulty patterns.

Having completed the list of symptoms that we will use to diagnose the

failures in our desktop computer system, we must now determine an appropriate

representation scheme for processing by a neural network. As in all previous

applications, it is preferable to cast each componentof the training pattern into

a binary form to makeit compatible with the form of the output signals produced

by neural processing elements. However, there are at least three states that we

must be able to represent for most of the symptoms(e.g., present, absent, and

unknown). This means that our pattern representation scheme mustallow us to

accommodatetertiary patterns.

8. For brevity, we will not identify all possible problem symptoms. Rather, we shall identify a subset

of typical symptoms. and expectthat the reader can extrapolate from those examples.

124 Associative Memories

>
present absent unknown
\ /

(Y

Symptom X

Figure 4.13 This diagram illustrates the use of three binary units to represent one of

three possible states for each symptom in the pattern. Notice that, by using this scheme,

only one of the three units can be active at any given time.

We have already seen one example of how to represent three states using

binary pattern components in our discussion of the tic-tac-toe application. We

will utilize the same schemehere, assigning one unit for each of the three possible

States we can assign to a symptom. Then, for each symptom wehave identified,

we will set the output of the unit correspondingto the state of the symptom to the

active mode, leaving the other two units associated with that symptom inactive.

An example of this schemeis shown in Figure 4.13.

The input pattern to the autoassociative network can therefore be defined as

the concatenation ofall of the symptomsidentified for the application, with the

three units associated with each symptomsetto the properstates. Units associated

with symptomsthat are unknownorirrelevantare set to the unknownstate prior to

propagating the complete pattern through the network. With respectto the output,

we knowthat the network is going to be expected to produce the pattern from the

training set that best matches somepartial input pattern. Thus, we knowthat the

output layer from the network must have exactly the same number of elements as

the input layer, and must be interpreted in exactly the same manneras the input

pattern, even if the input and output layers are not physically the samelayer in

the networkstructure.

4.5.2 Network Specification

There are three network paradigms that lend themselves to performing the kind

of pattern matching required by this autoassociative application: the Boltzmann-

4.6 Associative-Memory Summary 125

completion network[2, 3], the BPN, and the BAM.? The Boltzmann networkis

probably the best suited of the three for this application, but, because of signifi-

cant processing constraints, was eliminated from consideration.

Of the two remaining networks, both can be specified in the same manner,

with respect to the input-output layers. The numberof units on both layers will

be exactly the same, and that number can be determined by multiplying thetotal

number of symptomsthat define the application by three, because each symptom

requires three units. Furthermore, as the input and output patterns are composed

of binary elements, we can use the sigmoidal activation function for the units in

the BPN, and the BAM activation function if the BAM is selected. !°

Whichof these two networkswill provide a better solution? A cursory analy-

sis of the processing required by the application tends to indicate the BAM, due

to its use of Hamming distance to compare patterns. For this application, the

Hamming-distance measure seemsto be indicated because weare interested in

matching patterns that may differ from training exemplars by only a few symp-

toms. However, because weare using a tertiary pattern representation, the BAM

(and its MAM counterparts) maysettle into invalid output states (e.g., one where

more than one unitis active for a single symptom)if the partial input pattern used

to start the pattern-matching processis relatively sparse.

For that reason, we selected a three-layer BPN for this application, and

achieved excellent results. The BPN learned to recognize the combination of

symptomsthat distinguished the different pattern vectors, and was able to rec-

ognize and reconstruct complete symptom patterns from partial patterns contain-

ing only 50% of the total information needed to uniquely identify the pattern.

Moreover, when presented with partial inputs that tended to indicate multiple ex-

emplars, theBPN produced reduced outputs from the ambiguous units that, if

known, would uniquely distinguish the patterns. Thus, the BPN provided us with

a meansof identifying which of the unknown symptomshadyetto be positively

determined, something that the BAM could not have done.

4.6 ASSOCIATIVE-MEMORY SUMMARY

In this chapter, we have investigated the application of associative memories to

several real-world problems. We have defined the three basic types of associa-

tive memories(hetero-, interpolative, and autoassociative) and shown how each

of the three has been successfully applied. We have seen how someofthe neu-

ral processing models described in Chapter 2 can be used to construct associative

' memories, and investigated the issues associated with acquiring and formatting

the application data for use by the neural-network. While the applications de-

scribed in this chapter are somewhat simplistic, they nevertheless illustrate the

9. The BPN and BAMarchitectures are discussed at length in Chapter 2.

10. If the BAM is selected, bipolar outputs must be substituted for the binary format.

126 Associative Memories

basic concepts associated with building neural-network applications, and provide
the first examples of the process of engineering practical applications. In later
chapters, we will build on these foundations, as we develop more sophisticated

applications of neural-network technology.

SUGGESTED READINGS

Although there are precise mathematical definitions for each of the three
associative-memory models described in thefirst part of this chapter, space pre-
cludes us from providing the details of those definitions in this text. The reader
interested in exploring these definitions further is referred instead to [2] for de-
tails.

With respect to associative-memoryapplications, the literature abounds with
applicationsthat utilize neural networksas their base technology. The best source
of technical papers describing applications of associative-memory networksis
in the proceedings of the International Joint Conference on Neural Networks
(IJCNN), a conference sponsored by the Institute of Electrical and Electronic
Engineers (IEEE) and the International Neural Network Society (INNS). The

IJCNN conferences were held annually from 1987 through 1992 (with one mid-

year conference held in 1990), and proceedings are available from the IEEE.

Another good source of applications papers is the Advances in Neural Informa-

tion Processing Systems (NIPS) conference proceedings, published annually by

Morgan Kaufmann Publishing Company.

The tic-tac-toe application described in this chapter was taken from a more

complete assessmentof the ability of neural networks to perform parallel state-

space searches, the results of which were published in 1990 as my master’s

thesis at the University of Houston—Clear Lake [5]. Likewise, the spacecraft-

orientation application described in this chapter was based on a research project

conducted by an associate of mine, Dr. James Freeman, while under contract to

the NASA/Johnson Space Center Artificial Intelligence Section [1].

Readers interested in a more formal mathematical treatment of associative

memories are referred to Foundations ofNeural Networks [4] by Tarun Khanna.

Finally, for a formal investigation into the theoretical limits of several different

associative-memory network models, readers are referred to Chapter 6 of Intro-

duction to Artificial Neural Systems [6] by Jacek Zurada.

BIBLIOGRAPHY

1. James A. Freeman. Neural networks for machine vision: the spacecraft orientation

demonstration, e*ponent, The Ford Aerospace Technical Journal, Fall 1988, pp. 16-20.

2. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-

tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,

MA,1991.

Bibliography 127

3. G. E. Hinton andT. J. Sejnowski. Parallel Distributed Processing, Vol. I. MIT Press,

Cambridge, MA,pp. 282-317, 1986.

4. Tarun Khanna. Foundations of Neural Networks. Addison-Wesley Publishing Com-

pany, Reading, MA, 1990.

5. David M. Skapura. A Connectionist Approach to Heuristically Pruning Large Search

Trees. Master’s thesis, University of Houston—Clear Lake, 1990.

6. Jacek Zurada. Introduction to Artificial Neural Systems. West Publishing Company,St.

Paul, MN,pp. 313-388, 1992.

C H A P T E R

Business and Financial
Applications

All our knowledge hasits origins in our perceptions.

— Leonardo da Vinci

In the business world, success is measured by the financial bottom line—anor-

ganization that makes moneyflourishes, while an organization that loses money

(or merely breaks even) flounders. Often, the most profitable organizations are

the ones that do the best job anticipating the marketplace. Because crystal balls

have not yet been perfected, businesspeople often attempt to anticipate the mar-

ket by interpreting innumerable external parameters, such as prevailing economic

indicators, public opinion, and even the current political climate. Many larger

businesses currently employ full-time statisticians to construct models of a spe-

cific market, then evaluate individual business opportunities based on the model.

Recently, however, many smaller businesses have found success using neural net-

works,instead ofstatistical models, to anticipate changes in the marketplace.

In this chapter, we shall investigate a diverse set of neural-network applica-

tions that businesses and financial institutions! have employed to help makebetter

predictions about investment opportunities. In several of the applications weshall

study, the neural network is used to analyze trendsin large quantities of empirical

data. In others, the network performs an information-fusing function—that1s,

from manypieces of (apparently) unrelated data, the network learns to produce

abstractions that imply more about the problem domain than is discernible from

the componentpieces. In all cases, the neural network adds value to the appli-

cation by learning to recognize the general characteristics of a specific financial

model, and then provides a mechanism for using the learned generalities to pre-

dict the success of an investment at some future time.

1. Not to mention individual investors.

129

130 Business and Financial Applications

We shall begin our investigation of the business and financial applications
of neural networksbyfirst examining some of the general issues associated with
modeling a financial application for use by a neural network. We then presenta
survey of several successful applications of the technology, showing how each
application was constructed, and illustrating the role of the neural network in the
final system implementation.

3.1 FINANCIAL MODELING

Time is always the underlying componentin any financial-analysis model. De-
pending on the application, we maybeinterestedin understanding the history of
how a market has responded to someexternal stimuli, or we may simply be eval-
uating the personal credit history of a loan applicant. Unfortunately, most neural-
network paradigmsarefairly limited with respectto temporal pattern recognition
andclassification. If we are to successfully apply the current generation of neural
networksto financial applications, we must first develop a Strategy for convert-
ing a temporal sequence of indicators into a spatial pattern that the network can
process. We can accomplish this goal through the use of several popularfinancial-
analysis techniques, which weshall now describe in detail for readers who are not
experts in market analysis. Readers already comfortable with financial-modeling
techniques may skip the remainderof this section without fear of missing any-
thing important with regard to the neural-network applications that we shall de-
scribe. :

5.1.1. Discrete Time Sampling

In general, the technique that provides the most general approach for converting
temporal sequencesinto spatial patterns is the process of discrete time sampling.
As the name suggests, discrete time sampling is the process of quantizing a
continuously variable signal by samplingit at regular time intervals. A sequence
of n samples can be concatenated to form a single pattern that encapsulates a
quantized signature of the signal.

To illustrate this concept, consider an application to analyze the performance
of the stock market over a period of time. As indicated by the bar chart depicted
in Figure 5.1, the stock market is a prime exampleofa financial modelthat varies
(sometimes drastically) with the passage of time. On any given business day, a
single value can be computed from a set of key stocks that provides an instan-
taneous indication of the state of the market; one such value is the Dow Jones
Industrial Average. However, the Dow Jones average, by itself, offers almost no
insight into what the market might do tomorrow. A more meaningful interpreta-
tion of what the market is doing? is obtained by observing a trend of the average.

2. As well as what it might be doingin the near future.

5.1. Financial Modeling
131

$

3000

2900
|

2800 H+ Tut ,

2700 fe Hh, ath |

2600 | | : | ae
ls LH .

2500 Fi ccsteseed cess Huspat essed eafesesbpaloslessofssabesestiual | cs l | bolasLeet | | | bobotcd | I | | |

N (Dec Wan [Feb (Mar Apr May Jun [Jul [Aug

89 90
Figure 5.1 This graph showsthe daily high and low of the Dow Jones Industrial

Average from November 1989 through August 1990.In this chart, the vertical axis

represents the numerical value of the average, while the horizontal axis depicts the

passage of time. Eachbar representsthe range of the average during the day, while the tick

mark on the range indicates the closing average. Thus, we have quantized the dynamic

behaviorof the market by taking a daily sample ofthe high, low,andclosing points of the

average. Whenlooking at this chart, do yousee a series of discrete points, or do you see a

line moving from left to right, indicating the long-term behavior of the market?

However, a simple time series only conveys a sense of how

a

particular

market (in this case, the stock market) is changing over a fairly long period

of time. To gain an insight into the direction the market (or a particular stock)

may be going, a good financial analyst will also consider a number of other

mathematical indicators. There are many such indicators in commonuse. For our

purposes, we will consider only three of the most popular: a market-intensity

indicator called theADX [11], which is used to provide a sense of whether

the market is trending; a moving-average convergence/divergence (MACD)[1]

analysis, which will indicate optimal buy andsell signals in a trending market,

and a slow stochastic analysis [6], which is typically used to complement the

MACD,because it works well in a nontrending market.

5.1.2 Average Directional Movement

To determine whether a marketis trending, we can calculate an n-period ADX for

each discrete time sample. The ADX,asit was originally described by J. Welles

Wilder, is computed in a five-step process that begins with an assessmentof the

basic directional movement of the market. Specifically, the high and low values

of the market at the current time are compared with the high and low valuesat

132 Business and Financial Applications

CC
a A A

A | +DM C 4 +DM C

D | B

| B

Figure 5.2 The computation of the market directional indicators is shown. (a) The value
of +DMis given by determining the absolute difference between the high point of the
average at the previoustimeinterval and the high point of the averageat the current time.
(b) The value of —DMisgiven by the absolute difference between the low points at the
two time samples. (c) Whenthe trading at the currenttime is outside the trading range at
the previous time, the larger of +DM and —DMis used as DM. (d) Whentrading at the
current time is inside the trading range atthe previous time, DM is zero. Source: From
The Average Directional Index (ADX), by Thom Hartle, Technical Analysis of STOCKS &
COMMODITIES, Vol. 9, No. 3, (Mar. 1991), p. 101. Copyright ©1991, Technical Analysis,
Inc. Used with permission.

the previous time. The difference values obtained indicate the plus directional
movement (+DM) and the minus directional movement (—DM), respectively.
Next, we must determine a single value that we will use to indicate the overall
directional movement (DM)forthe current time period. Wilder defines this value
as a functionof the range of the averages from the twotimeperiods:If the trading
range at the current time is outside the rangeof trading at the previous time, then
the larger of +DM and —DMis used as DM. However, if the trading rangeat the
current time is inside the range of trading at the previous time, then the value of
DMis zero. Figure 5.2 illustrates the computation of these values.

Next, Wilder computes a directional indicator (D1) value, which is defined
as the percentage of the price range that is directional for the given time period.
DI is obtained by dividing DM bythetrue-range (TR) value for the current time
period, where TRis the largest of

e The difference between the high and low valueat the currenttime.

e The difference between the high at the current time and the closing value at
the previoustime.

5.1 Financial Modeling
133

° The difference between the low at the current time and the closing value at

the previoustime.

The value of DI can be either positive or negative, while all of the previously

calculated values are positive (or zero). To retain the positive notation scheme,

Wilder defines two separate indicators, +DI and —DI, where +DI simply indi-

cates a time period with a positive DI and —DIis the absolute value of the DI for

a time period with a negative DI.

The average directional movement (ADX) indicator for a market is a

smoothed moving average of the DI values across an interval of n time peri-

ods. Thus, for an n period ADX,weinitially compute the average DIs across the

n time periods. This calculation is given by

—5 +DM(t — 1)

+DI, = =e (5.1)
rol TRO=i)
on 3

_pi, = Xi=2. DM=?) (5.2)
yr TRE i)

where the subscript n is used to indicate the span of the average, and the terms

have been given a parenthetical index (t — 7) to indicate how many time periods

prior to the current time period the value occurred (eg., —DM(t — 4) is used

to indicate the minus directional movement value four time periods prior to the

current time, and +DM(t — 0) indicates the plus directional movement at the

current time period).

Oncethe average DIs have beeninitially computed, they may be updated for

each new time period (rt) by recomputing the three DM indicators (+DM, —DM,

and TR) according to the equation

X,(t) =Xp(ty— + X(t) (5.3)

where X represents each movement indicator, and subsequently recomputing

+DI, and —DI,, according to Eqs. (5.1) and (5.2).

We next convert the average DIs to a directional movement index (DMI) to

indicate the magnitude of the trend on a scale of 0 to 100. The computation is

performed accordingto the equation

DM, — —DMoy. LE DM» =—DMnl
+DM, + —DM,
 (5.4)

Finally, the ADX is computed as an n-period moving average of the DMI.

After the first n ADX values have been computed for a particular market, the

ADXcan then be updated for each subsequent time period (1) according to the

equation

134 Business and Financial Applications

|
heey he80 rrP ty phat) wt rh a

ery {ot
itt rtt

seerteet| HM

perry . , . copeep terre dt

[pee RT Re bre

re Preyer iPebree
f Hr bE Lehre

tht

%

60

50

30

20
|

i Jul Aug Sep ‘OctINov [De

Figure 5.3. These diagramsillustrate the relationship between market prices and the
adx. (a) This graphillustrates the discrete time behaviorof a particular stock listed on the
New York Stock Exchange over a six-month period. Notice how the value of the stock
fluctuates on a daily basis, yet exhibits a long-term increase. (b) The ADX computed for
the same stock, over the same six-month period. Notice that the ADX peaksat the same
point in time as the stock growth trend diminishes. Source: From The Average Directional
Index (ADX), by Thom Hartle, Technical Analysis of STOCKS & COMMODITIES, Vol. 9,
No. 3, (Mar. 1991), p. 101. Copyright ©1991, Technical Analysis, Inc. Used with
permission.

ADX,(t) = ADX,(¢ —1) + ADX(1) (5.5)
fh

The primary benefit of the ADX isits ability to determine when the moni-
tored signal, or market, is in a trending state. For example, consider the graphs
illustrated in Figure 5.3. If we restrict our analysis to just the temporal sequence
of data, it is difficult to determine when the market really begins a long-term
trend. The ADX, however,rises rapidly at the onset of a trend, and levels off when
the market again begins normal fluctuations.

5.1.3 Stochastics

A stochastic oscillator, as it is referred to in the financial industry, is actually a
misnomerfor a signal that is designed to anticipate sudden reversals in market
values. The oscillator? was originally developed by George C. Lane, as a method

3. The term oscillator is not exactly appropriate, either, in that it is taken from the appearanceof the
computed signal, not from thefact that the signal is intendedto oscillate. Nevertheless, we shall abide
by the language ofthe financial industry, to lessen the confusion when reading financial papers.

5.1 Financial Modeling
135

to anticipate when the stock market was about to reverse itself. Mr. Lane actu-

ally developed more than 50 separate indicators, but for our discussion we will

concern ourselves with only two: Weshall refer to these signals as %D and %Kk,

because they were the fourth and eleventh signals developed by Lane.

The indicators achieve their desired function by taking advantage of a well-

known stock-market phenomenon—a market top, or high point for a particular

stock, is usually indicated by daily closing prices that tend to cluster around the

high value for the stock. Conversely, a market bottom is indicated when daily

closing prices cluster around the low value of the stock. Because stock prices tend

to reverse their trends during a top (or bottom) period, we can anticipate reversals

by detecting when

a

stockis at (or near) its limit. In a mathematical sense, we

can develop such an indicator by comparing the current closing price of a stock

with its highest high and lowest low values over a period of time. By assessing

the tendencies of the indicator with respect to the trend of the true market value,

we can interpret the derived signal as a market indicator that can portend sudden

changesin the value of a stock.

Lane’s indicators are simply a mathematical comparison, over some fixed

period oftime (usually betweenfive and 14 days) ofthe closing value of a stock

to its highest highs and lowest lows. Both signals are designed as percentage

indicators; hence both are limited to numerical values in the range of 0 to 100.

The two signals are also remarkably similar in their design: The %D indicator

is actually a three-day smoothed version of the %K indicator. Specifically, the

signals are calculated from the raw market data according to the equations

C(t) — LOWa(t)
HIGH 4(t) — LOW \4(t)

TK = 100 (5.6)

y37) C(t — i) — LOWj4(t — 1)

7) HIGH a(t — 1) — LOW 4(t — i)
 %D = 100 (5.7)

where C(t) indicates the closing market value for time period t, HIGH)4(t) in-

dicates the highest, high value for the market over each of the 13 time intervals

preceding, and the one including, interval r, and the term LOW ;4(f) indicates the

lowest, low value from the sameinterval.

As shownin Figure 5.4, the %D and %K indicators developed by Lane can

be interpreted in two different, but meaningful, ways. First, because the indicators

are actually calculations of the percentage difference between a stock's closing

value and its low and high points over some time interval, a saturation of the

indicator can be thought of as an overage condition on the stock. Specifically, a

stock is considered overbought when the stochastic indicator goes above 80%.

Similarly, a stock is considered oversold when the indicator goes below 20%.

Second, by examining the tendencies of the indicator with respect to the true

market value of the stock over a period of time, the stochastic oscillator can be

used to indicate buy or sell signals.

136 Business and Financial Applications

$ 140

ret] It he(a) 120 ; ‘ (lr treet rer "Hh pth
th [

hal
Leer’ ee

100 fui,bibbbHittite bile tetris

 itilbbttilehs

[Feb (Mar [Apr [May Sun

Hildb

Feb [Mar \Apr [May Jun
pede bti

Figure 5.4 The relationship between the stochastic oscillator and a typical blue-chip
stock is shown. In eachofthesefigures, the top graph depicts the daily closing price of
the stock, while the bottom graphsillustrate the plots of the stochastic signals. (a) In this
diagram, the stochastic indicates a sell period when the value of the indicators go over
80% and the direction ofthe indicators tend to diverge from the direction of the market
prices. (b) Similarly, a buysignal is indicated when the indicators go below 20% and the
stock value declines with respect to its stochastics. (c) The same market data is smoothed
with a slow stochastic oscillator. Source: From Stochastics, by Thom Hartle, Technical
Analysis ofSTOCKS & COMMODITIES, Vol. 9, No. 3, (Mar. 1991), p. 103. Copyright ©1991,
Technical Analysis, Inc. Used with permission.

Another variation of the stochastic oscillator uses a three-day moving aver-
age of the %D indicator instead of the %K indicator. This model is called the
slow stochastics oscillator, and is considered by many market analysts to be an
improvementoverthe stochastic oscillator, because the resulting analysis tends to
be less susceptible to transitory fluctuations in the input data.

5.1.4 Moving-Average Convergence/Divergence

The MACDindicator, developed by Gerald Appel [1], has gained popularity as a
stock-marketindicator to measurethe trend of a stock overa period oftime. The
indicator is developed by comparing the difference between two exponentially

5.2 Market Prediction 137

smoothed price data (called the MACD line), and an exponentially smoothed

series of the difference (referred to as the signal line).

Exponential smoothingis a relatively intuitive method for computing an av-

erage of a dynamic indicator (such as a stock price) that accounts for the behavior

of the signal over an arbitrary period of time. In financial applications,it also has

the advantage of being able to rapidly respond to fluctuations in the price data.

The computation of an exponentially smoothed moving average (EMA) for any

time period ¢ over an arbitrarily long duration is given by the equation

EMA(t) = a(x(t) — EMA(t — 1)) + EMA(t — 1) (5.8)

where @ is the smoothing constant, the term x(t) represents the instantaneous

value of the indicator at time t, and EMA(t — 1) indicates the value of the EMA

at the previoustime interval.

In this formulation, @ is actually a weighting value designed to allow the

EMAto approximate a simple moving average across an arbitrary time period.

Thus, a can be approximated as

2
a=

(n + 1)
 (3.9)

where n is the number of discrete time periods over which the moving average

will be calculated. For example, for a nine-day EMA analysis, a would be ap-

proximated as xT: or 0.20. |

Interpreting the MACDto anticipate markettrends is also relatively simple.

As shownin Figure 5.5, a buysignal is indicated when the MACDline crosses

above the signal line, while a se// signal 1s generated when the MACDcrosses be-

low the signal line. Moreover, because the MACD1s a trend-following technique,

it also has the advantage of providing an early indication of market reversal.

As with the stochastic oscillator, market reversal is indicated by comparing the

MACDwith the instantaneous indicator—inthis case, the closing stock price—

over a period of time. When the MACDandinstantaneous indicators begin to

diverge, a reversalis indicated.

5.2 MARKET PREDICTION

In the previous section, we examined several mathematical tools that a financial

analyst might use to predict the future of the stock market by examining several

key indicators. However, if predicting the stock market were simply a matter

of correlating three or four indicators, most people could develop a high-yield

portfolio without the assistance of a financial analyst. In truth, a good financial

analyst will often evaluate hundreds of indicators, some derived mathematically

from empirical market data, others simply subjective evaluations of the current

market situation. Compounding the problem is the depth of the historical data

that the analyst has available—the Dow Jones Industrial Averages, for example,

138 Business and Financial Applications

$ 60 | phe cere tel Th

ro gbrh [pees Fo rtTl
setae tl c ™! phar |

reREL reRR, :50 pre!
i a i‘ awe La

f if Lets, ve

tel
40 philtb sollbbb

May [Jun Jul Aug Sep lOct

Change
| S

2.0 ee

1.0 i B

0 g Lo
B-1.0 B 7OSS

-2.0 Hebbelbette Llideeli

_May Jun Jul Aug Sep |Oct |

Figure 5.5 The use of the MACDto indicate markettrends is shown.In these diagrams,
we employ appel’s MACDcalculations using a 12- and 26-day EMA to compute the
MACDline, and a nine-day EMA to computethe signal line. As before, the top graph
represents the closing price of the stock we are monitoring overa specific time period,
while the bottom graphillustrates the macd computed from that data. Buysignals

are indicated when the MACDline crosses above the signal line, while se// signals

are produced where the MACDline crosses below the signal line. Notice how the

buysignals tend to precede periods of increasing value in the stock price, while se//

signals tend to precede periods of declining stock price. Source: From Moving Average

Convergence/Divergence (MACD), by Thom Hartle, Technical Analysis of Stocks &

ComMMODITIES, Vol. 9, No. 3, (Mar. 1991), p. 104. Copyright ©1991, Technical Analysis,
Inc. Used with permission.

have been published (in their current form) daily since October 1928. If we are

to develop high-yield portfolios, we, as financial analysts, must first decide how

muchofthe available data is relevant to the current market.

To be successful in the capital-managementbusiness, it is essential to beat

the market; that is, to forecast what the market is going to do in the near future,

and trade accordingly. However, some market researchers have advocated the no-

tion that the marketis chaotic [7], and therefore unpredictable. If that assertion is

true, it would be impossible to create a “crystal ball” that would accurately fore-

cast the future in the market. We will not dispute the validity of the random-walk

theory here. But, given the cyclical nature of the market, and the undisputed near-

term accuracy of the mathematical indicators available to assess current market

conditions, several researchers have developed computer applications using neu-

ral networksto help them makebetter financial decisions.

One such application was described in a series of articles published in a

stocks and commodities trade journal [4]. In the first of these articles, investment

5.2 Market Prediction 139

managers DeanS. Barr and Walter J. Loick at LBS Capital Management, together
with Professor Mark B. Fishman of Eckard College, reported constructing a neu-
ral network to predict the U.S. equity market (the Standard & Poors (S&P) 500
Index) five days into the future. Moreover, they reported remarkable success us-
ing a relatively simple neural network trained with only six financial indicators
derived from the recent performance of the S&P 500.In their subsequentpapers,
however, Barr and Loick reported that the complexity of the network increased
rapidly as additional indicators were incorporated into the training set, as several
other components were addedto refine the analysis process.

Because this financial “crystal ball” provides LBS with an obvious com-
petitive advantage, the details reported becomeincreasingly less specific as the
application becomes more refined. Nevertheless, the details of the first network
application are sufficient to illustrate how such a neural network could be con-
structed and trained. Weshall therefore focus on the neural-network component
of that system in the ensuing discussion.

5.2.1 Network Architecture

In their original paper, Barr and Loick reported investigations using a variety of
network arrangements, althoughall of the networks were based on the backprop-
agation learning algorithm. The input layer in each network contained n inputs,
where n wascited as the number of market indicators used for the specific net-
work. We can therefore surmise that Barr and Loick use a 1:1 mapping between
the market indicators they have selected and the number of input units used to
represent those indicators. This also implies that they are normalizing the indi-
cator values prior to training, because the BPN requires that input values have
values in the range from zero to one, while the unnormalized values of the indi-
cators may vary drastically.

The number of layers in each network is not explicitly indicated. It seems
reasonable, however, to assume that most of their work was done using typical
three-layer network architecture. However, Barr and Loickindicate that they had
their best results using a four-layer BPN, the fourth layer being an additional
hidden layer containing approximately 12% of the numberof inputunits.

As shownin Figure 5.6, the output of the network wasa single,linear unit,
the output of whichis interpreted as a scaled prediction of the amountof change
in the S&P 500 average five days in the future. In this example, Barr and Loick
restrict their input to four derived market indicators and two raw data points for
each training exemplar.

Exercise 5.1: In their articles, Barr and Loick do not provide any specific guid-
ance with regard to selecting indicators (beyond the four described here) that
might improve the performance of the network, although they do indicate that
their best network containeda total of 26 indicators. From your understanding of
the BPN,describe the selection criteria you would apply to determine if a finan-
cial indicator could improve the performance of the network. =

140 Business and Financial Applications

SD:9 Nay co S&P500 S&P-5D

Figure 5.6 The three-layer BPN architecture used at LBS Capital Management to

predict the S&P 500 average five days in the future is depicted.In this example network,

the indicators used are the slow %D and slow %Kstochastic indicators, using n = 9,

an 18-day ADX, and histogram (difference) MACD values. Also used as input to the

network are the current value of the S&P 500, as well as the net change in the S&P 500

value from five days prior. The output of the network is a continuously variable signal

that is interpreted as a scaled estimate of the change expected in the market five days

hence. Source: Adapted from Using neural networks in marketanalysis [4]. Used with

permission. Copyright ©1991, Technical Analysis, Inc.

5.2.2 Market-Prediction Exemplars

To train their neural network, Barr and Loick describe the development of the

training exemplars that will be presented to the network during the learning

phase. Obviously, the primary source of information will be the recent history

of the S&P 500. With respect to the network architecture they selected, the initial

training patterns will consist of a set of associated pattern vectors comprised of

six input components and a single output. From an application perspective, each

training pattern is essentially a snapshot of the market at a specific, discrete time

step, while the corresponding outputis the difference between the current market

value and the value of the market five time steps ahead of the input data. Thus, the

training exemplars for the network can be developed from historical marketdata,

while the performanceofthe trained network can be evaluated by comparing ac-

tual market performance with the projections made by the network using current

marketdata.

5.2. Market Prediction 141

In the ensuing discussion, weshall reconstruct the network Barr and Loick

described in their original article by using data points consisting of the closing

value of the S&P 500 at 20 different discrete time intervals (in this case, days).

We shall refer to these values as a function of time, S(t), with a value that is

simply the closing value of the S&P 500 at discrete time ¢. In this notation, we

shall refer to the most recent time period as tg, with ¢, representing any arbitrary

discrete time period. Further, we will let n be positive to indicate a future time

period, and negative to indicate a previous time period.

To construct the training exemplars for this network, we shall require a his-

tory of the S&P 500. The depth of information required will depend on the num-

ber of training exemplars we shall need to train the network. Barr and Loick

suggest that, contrary to the “popular wisdom”it was possible to “confuse” the

network by overwhelming it with too manytraining patterns.

Without knowing the specific details of the training set used to build this

application, it is impossible for us to know if Barr and Loick weretruely over-

whelming the network with too much information,or if they were simply training

on conflicting patterns, as we described in Chapter 2. Based on a conversation that

I had with one of their researchers, I suspect that the problem was morelikely the

latter than the former, althoughit is entirely possible to overwhelm a BPN with

too muchdata.
Nevertheless, we shall follow the example presented by LBS and limit our

initial training data to 20 exemplars. However, because fourof the six inputs that

will be used to construct each input pattern require additional historical data to

compute,* the total amount of market data we will need will be determined by

the amount of information needed to construct the financial indicators for the 20

intervals of interest.

The indicators used by Barr and Loick to construct their training exemplars

were

e <A slow %Dstochastic using a nine-day observation window, denoted as

SD:9.

e A-slow %Kstochastic, also using a nine-day window (SK:9).

e An 18-day ADX.

e The histogram values for an 18- and 26-day MACD, where the histogram

values are determined asthe difference between the MACD andsignal lines

for the given data.

In addition to the derived indicators, Barr and Loick include the true value of the

market at each timestep, as well as the change in the market value from five days

prior to the current time step. To determine the corresponding output value for

each input pattern, we will need to know the difference between the value of the

marketat the current timestep andits value five days in the future.

4. See the earlier discussions in Section 5.1, Financial Modeling.

142 Business and Financial Applications

Exemplar Input Output

Number SD:9 = SK:9 ADX MACD S(t) S(t_s) S(ts)

| 26.651 45.756 14 0.152 272.02 8.53 —0.87

2 47.921 77.664 14 —0.209 272.21 7.53 —2.23

3 72.664 92.885 14 —0.423 272.06 6.87 —5.57

4 87.218 91.106 14 —0.597 272.98 10.48 —11.08

5 90.180 86.547 14 —0.617 271.93 5.9] —9.18

6 86.758 82.621 14 —0.553 271.15 —0.87 —8.60

7 80.678 72.867 14 —0.417 269.98 —2.23 —11.29

8 70.953 57.370 14 —0.100 266.49 —5.57 —5.93

9 54.672 33.780 14 0.379 261.90 —11.08 —1.13

10 36.640 18.771 16 0.608 262.75 —9.18 —1.72
1] 21.992 13.426 17 0.730 262.55 —8.60 —2.31
12 14.302 10.708 18 0.995 258.69 —11.29 —1.7]

13 11.864 11.458 19 0.992 260.56 —5.93 —3.47
14 11.867 13.435 20 0.918 260.77 —1.13 0.36
15 15.345

=

21.141 21 0.796 261.03 —1.72 —1.85
16 18.983 22.373 22 0.714 260.24 —2.3] —0.56

17 20.156 16.953 23 0.806 256.98 —1.7]1 5.35
18 16.994 11.654 24 0.799 257.09 —3.47 5.42
19 17.284 =23,245 24 0.493 261.13 0.36 0.39
20 25.299 40.997 24 0.373 259.18 —1.85 —0.83

Table 5.1. The market data used by Barr and Loick to construct the 20 exemplars used
to train the market-prediction neural network are shown.

Based on these requirements, we will need at least 51 days of the most recent
S&P 500 averages to construct the 20 exemplars needed to train this network.
In Table 5.1, we recreate the training data described by Barr and Loick in their
original article. As mentionedearlier, these data should be normalized according

- to the formula

Xjj min{x;x}xe =
Vmax {xig} — min{x;,]}
 Vk € {T} (5.10)

where {7} is the setofall training patterns and Xi refers to the normalized value

of the i" value in the j" pattern, prior to training the network.
Once trained, new input patterns are created by simply continuing the data-

collection process. These new patterns are then presented to the neural network
for estimating the value of the S&P 500 five days in the future. Figure 5.7 il-
lustrates the performance achieved by the network we have just described for a
period of 17 days beyond the training date. The close correlation between the

5.3 BondRating 143

S&P 500

350
o Actual

340 # Prediction

330 |

320 |

310 |

123 45 67 8 9101112131415 1617 18 19 20 21 22

Numberof Days

Figure 5.7 The responseofthe market-prediction BPN after training is shown.Asthis

graph illustrates, the network hasits lowest error in the earlier estimates, and tends to

diverge from actual market values as time goes on. Source: Adaptedfrom Using neural

networks in market analysis [4]. Used with permission. Copyright ©1991, Technical

Analysis, Inc.

market value predicted by the neural network and the true value suggests that

such networks may indeed become very powerful tools in financial applications.

In supportofthis belief, the Suggested Readings sectionat the end of this chapter

contains references to several texts and many papers that describe other market

predicting applications of neural networks, indicating that the financial world has

becomeveryinterested in the potential of this technology.

Exercise 5.2: The graph in Figure 5.7 shows that the neural network tends to

becomeless accurate as the prediction date becomes moredistant from the time

whenthetraining data were collected. Suggest a strategy that could be employed

to reducethis error in the network’s response. Explain the advantages and disad-

vantages of your approach. m

5.3. BOND RATING

Debt financing is a method by which corporations and government organiza-

tions can raise capital for immediate needs by offering bonds to investors. These

bonds are guarantees by the offerer of repaymentto the investor, over a period

144 Business and Financial Applications

of time, of the face value of the bond plusinterest. To make the bondsattractive

to investors, bonds are often issued at a higher interest rate than can be attained

through normal investment opportunities. However, if an offerer ends up over-

extended financially and cannot repay the debt, investors are faced with legal

proceedings to recovertheir investment.or they can losetheir investmententirely.
To help potential investors accurately assess risk associated with bonds and

securities, a bond-rating metric has been established by various independentfi-
nancial organizations; among them, Standard and Poors (S&P) and Moody’sIn-
vestor Service. Theseratings describe the bond’s potential for default, taking into
account a number of factors about the issuer, including the issuer’s ability and
willingness to repay, and any otherprotective provisions for an issue.

From the perspective of the offerer, the bondrating has a significanteffect on
the yield of the issue—a lower bond rating means many fewerinvestors, which
in turn means a much lowercapital influx. Therefore, it is in the offerer’s best
interest to maintain as high a bondrating aspossible.

However, because bond ratings are made by organizations that do not ad-
vertise the system (if any) that they use to determine a specific bond rating, it
is difficult for a private investor or financial institution to independently assess
the default risk? of a bond investment. Further complicating matters is the belief
that different rating organizations use different criteria to measure the offerer’s
willingness to repay, making it extremely difficult to construct a precise mathe-
matical model that could be used to determine bond ratings with any degree of
consistency.

In the remainder of this section, we shall review two neural-network appli-
cations [3, 9] to predict bond ratings using a numberoffinancial variables about
an offerer that can be easily determined by an independentinvestor. Weshall also
show how the original authors compared the performanceoftheir neural-network
solutionsto traditionalstatistical analysis methods.

5.3.1 Bond-Rating Networks

Both of the bond-rating neural-network applications we shall examine are very
similar in their design. As shownin Figure 5.8, the primary differences between
them are the numberoflayers in the networks and the actual financial variables
used to determine the input training exemplars. The first application, originally
described by Soumitra Dutta and Shashi Shekhar in 1988 [3], used two- and
three-layer BPNswith six and ten input variables to perform its bond-rating func-
tion. The second application, described in a paper published by Alvin J. Surkan
and J. Clay Singleton in 1990 [9], used three- and four-layer BPNs, with the four-
layer networks varying in the number of processing elements per hiddenlayer,
and seven financial variables as input. In both of these applications, the output
from the network wasinterpreted as anindicatorof the classification of the bond

5. The default risk of a bondis the likelihood that a promised couponand parvalue will not be paid.

Fig

(a) The Dutta network, which is designed to classify

AAA Other

network, which was developed only for experimental purposes.
which is designed to classify bond offerers as either AAA or A.(c) The reversed Surkan

bond-rating categories (AAA, AA. A, BBB). (b) The Surkan network with four layers,

ure 5.8 The architectures of the networks used to perform bondrating are shown.

bonds into one of the four major

K
x

a
(
O
n
g

\\
,
A
C

\
W
y

C
i
a
o
Y

V
a

W
i
i
s

P
g

C
O

L
V
S
N
e

Y
sa

X
i
e
O
S

S
S
Z
A

i
a

m
e

i
i

K
Y

e
S
Li
f}

i

if

O
S

I
)

R
a

y

f |f

<)

5.3 Bond Rating

Bond Rating

145

146 Business and Financial Applications

rating that should be applied to an offerer having the financial data described by
the input pattern.

5.3.1.1 Three-Layer Network Application

The Dutta network, which predates the Surkan application by several years, was
developed to determine whether neural networks could be used to correctly cate-
gorize bondissuers into one of the four major bondclassifications, as defined by
S&P. The degree to which the neural networkclassification agreed with the S&P
classification was used to determine the accuracy of the network.

For their application, Dutta and Shekhar first established which financial
variables were most appropriate for classifying bondratings. Based ontheresults
of other researchers, they decided to use nine, easily obtainable financial mea-
sures and one subjective estimate of the health of the bond issuer. The variables
they selected were

1. Liability divided by (cash + assets).

2. Debt proportion.

3. Sales divided by net worth.

4. Profits divided by sales.

5. Financial strength.

6. Earnings divided byfixed costs.

7. Previous five-year revenue growthrate.

8. Projected next five-year revenue growthrate.

9. Working capital divided by sales.

10. Subjective prospect of the issuer.

Next, data from a total of 47 randomly selected industrial bond issuers were
gathered from

a

recent issue of the Valueline Index, and the corresponding bond
ratings for those issuers was obtained from the S&P Bond Guide. From those 47
data sets, 30 were again randomly selected as the training exemplars, while the
remaining 17 wereset aside to be used as validationsets.

Each of the 47 data sets was then converted into a form usable by the neural
network. In the case of the input variables, each of the numerical inputs was
normalizedto eliminate any biasin the pattern. Similarly, the single output value
was assigned according to the formula

C

4
where C is simply a numerical value assigned to the rating category (e.g., AAA
= 4, AA=3, A = 2, BBB = 1).

The BPN wasthen constructed in software, using the sigmoidal activation
function for each of the hidden-layer units, and a linear activation function for

5.3 BondRating 147

the output unit. The resulting network wastrained using the 30 training exem-

plars, and subsequently tested on the 17 validation exemplars. The outputof .the

network wasfinally compared to the S&P rating assigned to those 17 issuers. For

reasons not completely described in their paper, Dutta and Shekharlimited their

analysis of the successrate to the ability of the network to correctly classify only

one of the bond-rating categories (AA). Their results indicate that the neural net-

workcorrectly classified AA offerers 82.6% of the time, with 8.3% classified as

false-negatives and 9.1% classified as false-positives.

Finally, to illustrate the robustness of their solution, Dutta and Shekharre-

trained the network,this time using only the first six variables as the components

of the input pattern. Their results showed absolutely no difference between the

smaller network andthe larger implementation with respect to successfully clas-

sifying bondissuers. :

5.3.1.2 Four-Layer Network Application

The Surkan network is functionally identical to the network used by Dutta with

respect to its design and implementation. The only significant differences be-

tween these two applications are the number of layers used by Surkan (four, as

compared to the three used by Dutta), the selection of the data used to construct

the training exemplars for the application, andthe interpretation of the output pro-

duced by the network.

As in the earlier application, Surkan and Singleton first selected a set of

- financial variables that would act as input patterns for the network. The variables

selected for their experiments were determined by independentresearch[8] based

on the bond ratings of the 18 Bell Telephone companies divested by American

Telephone and Telegraph in 1982. The selected variables are defined as

Leverage: Debt divided bytotal capital.

Coverage: Pre-tax interest expense divided by income.

ROE:Return on equity or income.

CVofROE: Coefficient of Variation of ROE overfive years.

TA: Logarithm oftotal assets.

Flow: Construction costs divided by cash inflow.

I
A
M
P
Y
D
Y

Toll: Toll revenue ratio calculated as intradivided by inter-LATA.

Unfortunately, the authors do not provide the actual data that they used to

train andtest the performanceof their networks,soit is difficult for us to attempt

to assess the difficulty of the classification problem. However, they do provide a

table listing the statistical mean and sample size of their original data, which we

recreate in Table 5.2. Using these data, it is possible for the ambitious studentto

construct a set of synthetic exemplars that have the same general characteristics

as the original training data. We encourage youto do so, anduse that data to train

your own network.

148 Business and Financial Applications

Bond-Rating Symbol

Variable AAA AA1 AA2 AA3 Al A2 A3

Leverage 0.39 0.41 0.39 0.36 0.36 0.39 0.39
Coverage 4.50 4.48 4.99 5.69 5.02 4.30 4.46
ROE 0.25 0.14 0.14 0.15 0.12 0.14 0.15
CV of ROE 0.10 0.10 0.08 0.10 0.14 0.09 0.07
TA 14.70 15.75 13.00 14.25 15.15 16.36 16.43
Flow 1.05 0.92 1.05 1.05 0.85 0.74 0.83
Toll 1.34 1.08 0.82 1.24 1.04 1.01 0.90
Frequency 30.00 23.00 20.00 27.00 10.00 11.00 5.00

Table 5.2 The statistical mean of each ofthe financial variables used to classify bonds
into one of seven different quality ratings. The last row in the table providesthe size of the
sample for each classification.

5.3.2 Network Results vs. Statistics

In both of the bond-rating applications, the authors compared the performance of
the neural network to conventional, statistical methods to validate the network
performance. Dutta and Shekhar reported that their three-layer BPN correctly
classified bonds described in the training set 92.4% of the time, compared with
a 66.7% accuracy obtained using a multiple-regression analysis. When presented
with bond data from the 17 untrained exemplars, the neural network responded
correctly on 82.4% of the inputs, while the multiple-regression analysis yielded
only a 64.7% accuracy.

Surkan and Singleton reported a success rate of 90% using a four-layer BPN
arranged with seven inputs, 10 units on the first hidden layer, five units on the
second hidden layer, and two output units. When they reversed the arrangement
of the two hidden layers, the network accuracy dropped to 83%. In contrast,
a linear discriminant function that was estimated by using the seven financial
features as explanatory variables produced only a 39% successrate.

Based on these observations, the researchers in both of these applications
concluded that neural networks provide a powerful method for independently
determining bond ratings. Given the ready availability of representative train-
ing data, these applications also provide us with an easily reproducible model
illustrating the ability of the technology to address real-world financial appli-
cations.

3.4 PREDICTING COMMODITY FUTURES
As the name implies, commodities are raw materials, such as grains, meats, or
metals, that are used to create finished products for sale in the retail marketplace.
Buying and selling commodities is yet another wayof investing money to (hope-

5.4 Predicting Commodity Futures 149

fully) realize financial gain. As in any other form of commerce, the objective is

to buy while the price is low, and sell when the price is high, thereby realizing a

profit. However, as we have seen in our previous examples, recognizing when a

commodity price has reachedits low (or high) pointis a fairly complex task, and

_ is often prone to error. We shall now review an application developed to assist

commodity traders that use a neural network trained with raw marketdata to rec-

ognize the buy and sell points for certain commodities before they occur. As we

shall see, successfully anticipating the market highs and lowscanyield significant

financial returns over a relatively short period of time.

5.4.1. Market Variables

In an application originally described by Joseph E. Collard [2], a standard BPN

was trained on market data comprised of six key indicators® over a period of

one year. The indicators used were the opening price (OPEN), the closing price

(CLOSE), the lowest price for the commodity during a single business day

(LOW), the highest price during the day (HIGH), the open interest (INTEREST)

for the commodity, and the trade volume (VOLUME), or the numberof futures

actually exchanged during the day. Each of these indicators was obtained for a

single, unnamed commodity for each business day during the year 1988. Because

the commodities markets operate on a normalbusiness week, 253 exemplars were

obtainedto train the network.

In his first experiments with a neural network, Collard reports that he aug-

mentedthe training data by including 18 subjective variables, which he describes

as assessments of the weather (which plays an importantrole in determining the

future price of commoditiesthat are influenced by prevailing weather conditions),

and other “seasonal indicators.” Additionally, because all of the training data

used were historical, one other variable was includedin eachtraining pattern—a

long/short indicator obtained by evaluating, in retrospect, whether the commod-

ity was overboughtor oversold. After training and testing his network, Collard

decided to account for trend conditions in the training data by including his six

market indicators from each of the two business days immediately prior to the

day represented by thetraining pattern in the input pattern. Thus, in his final ap-

plication, each input pattern to the neural network consisted of 37 variables—the

six market indicators, 18 subjective indictors, and one long/short indicatorfor the

current business day, and six market indicators from each of the previous two

business days.

6. The use of the term indicators differs slightly from our previous usage of the word. Here. we

use the term to refer to specific price values, as opposed to derived measurements of performance.

Wehave altered our usage of the term only to remain consistent with the nomenclature used by the

original authorof the paper.

150 Business and Financial Applications

Buy = 1

Sell = 0

Figure 5.9 Thisfigureillustrates the architecture of the BPN usedto predict commodity
futures. As describedin thetext, the input patterns are each scaled, analog indicators of
market state, and the output generated by the network is interpreted as a buyorsell signal
for the selected commodity. Once trained, the network was tested by presenting it with
data from selected periods in 1989, a year after the data were used to train the network.
The output produced by the network wasthen compared to the actual market performance
during the sameinterval, to assess the accuracy of the system.

3.4.2 Market Data Representation

Unfortunately, in the original paper describing the commodity-prediction net-
work application, Collard does not provide any real detail regarding either the
data-representation scheme used to construct his 37 inputs, or the source of the
subjective data. We can surmise from his description of the application, however,
that each indicator was represented by a single node in the network input, and that
the indicators were linearly scaled to values between zero and one prior to presen-
tation to the network. Evenif this is not the case, this data representation scheme
will be sufficient for this application, because each ofthe inputs is essentially an
analog measurementof a single parameter.

As shownin Figure 5.9, the output generated by the network wasa single,
binary signal that was interpreted as a buy or sell indicator for the commodity.
Collard indicates that several variations on this network structure were evaluated,
primarily with respect to the number of units on the hidden layer. As expected,

5.4 Predicting Commodity Futures 151

the network that achieved the lowest overall training error (1%) also produced

the largest expected profit when tested with new marketdata.

Exercise 5.3: In this discussion, we have assumedthat the subjective variables

(e.g., prevailing weather conditions) can be represented as an analog measure-

ment. Using this technique, we might have several units dedicated to weather,

one of which might be called “precipitation.” We might then model the precip-

itation indicator such that drought conditions are represented by a value of zero

and flooding conditions with a value of one. Describe the limitations of this ap-

proach. Suggest an alternative method for representing the subjective variables,

and describe how your technique improveson the analog representation. m

5.4.3 Network Performance

Using historical data, it is a relatively straightforward process to evaluate how

well the trained network generalizes the training data, and successfully predicts

the future—we simply present the network with input taken from the market

in a time period after the training data were obtained, and compare the market

performance predicted by the network with the actual market activity. Collard

reported evaluating his trained network against actual market conditions using

input taken from the first 205 business days of 1989. As shown in Figure 5.10,

the BPN successfully anticipated changes in the selected commodity market. In

fact, according to Collard, the network did so well that, had it been used to make

buy andsell decisions during that same period, an investor would have realized a

$10,000 profit on an initial investment of $1,000 over nine months, or a 1,000%

return on the investmentin less than one year.

Again,it is unfortunate (for educational, as well as financial reasons) that the

actual data used to train the network is not available for us to evaluate directly,

due to the competitive nature of the application. However,it is not impracticalto

test the performanceof such a network by creating a data base of financial indica-

tors, and to construct and test a market-prediction network similar to the one we

have just described. We encourage you to perform suchtests on an application of

your owndesign.

A note of caution, however, before you begin investing money in commodi-

ties futures (or in any other market, for that matter) based on the recommendation

of a neural network. This network,like all of the other networks in the applica-

tions we have examinedin this chapter, is only as good as the data usedto train

it. Neural networks, and in particular, the BPN, are very good at interpolation

and finding relationships in complex data sets (generalization); however, no neu-

ral network yet defined can extrapolate information beyondthe training domain.

Therefore, you would be well advised to collect your training data carefully, in-

vest your money cautiously, and make certain never to invest more than you can

afford to lose.

152 Business and Financial Applications

1.05

0.81 | ' I

(ay O8 \
0.4 + ! |

0.2 A,
0.0 :

1 30 §@60 90 120 150 180 210 240
Trading Days

 i 1 1 L

$25000}

20000;

(b) 15000)

10000; |

“er :_

0 1 i

1 30 860 90 120 150 180 210 240
Trading Days

$25000
20000

(c) 15000
10000 /
5000 nn

0 7; | | | |
1 30 60 90 120 150 180 210 240

Trading Days

1

Figure 5.10 The graphs illustrating the performanceof the commodity prediction
network are shown.(a) This graph showsthe relationship between the recommendations
made by the neural network after training and the actual price curve for the selected
commodity. (b) This graphillustrates the profit that the trained network would have
realized if its recommendations had been followed, using the training dataset as input.
(c) This graph depicts the profit performance ofthe trained neural network when presented
with out-year market data. Notice that in both profit graphs ((b) and (c)), the network
never loses money. Source: A B-P ANN Commodity Trader [2]. Copyright ©1991,
Morgan Kaufmann Publishers. Used with permission.

39.5 FINANCIAL-APPLICATIONS SUMMARY
In this chapter, we have investigated several different financial applications of
neural networks. We have seen howthe standard setoffinancial tools (e.g., math-
ematical performanceindicators) have been used as input parameters to a neural
network, and how the output from the network can be interpreted as an enhanced
indicator of market performance. We have seen how others have successfully ap-
plied the technologyto anticipate market performance,to independently evaluate
the rating of bond offerings, and to forecast changesin commodity futures.

Undoubtedly, many readers will be disappointed that all of the applications
described in this chapter were based on the BPN. Thereasonsfor the pervasive

suggested Readings 153

use of this network in the financial industry are probably not related to a special

characteristic of the BPN that makes it more appropriate for financial applica-

tions; rather, it is more likely due to the fact that the BPN is currently the most

commonly used, and, therefore, the most easily accessible neural network, due to

the commercial availability of BPN simulation software.

In the not-too-distant future, I expect that we will be reading about successful

financial applications that employ other networks, such as the Hopfield mem-

ory or the Boltzmann network. In the meantime, we should continue exploring

waysto use the information-fusing and pattern-recognition characteristics of neu-

ral networksto help anticipate marketactivity. Moreover, it is not unreasonable to

expect smallerfinancial firms, and, yes, even private investors, to continue tinker-

ing with the technology, uncovering new ways in which neural networks can be

successfully applied to the problems of everyday business.

SUGGESTED READINGS

The financial world is an extremely competitive environment, with investors

looking for any advantage that will enable them to increase earnings. With so

many investors having access to large sums of money,it stands to reason that

advanced technologies, such as neural networks, would be employed whenever

possible to help investors evaluate opportunities. Indeed, the last five years have

shown us that the financial-services industry has been the largest source of re-

search funding in neural-network technology in the United States, apart from the

federal government. Based on the numberofrecent papers published and articles

written, it seems that neural networks have found a secure niche in this area.

Readers interested in investigating the financial and business applications of

the technology further will be most interested in Neural Networks in Finance and

Investing [10], a compendium ofpapers describing many different applications of

neural networksin the financial industry.

The most current, and usually the most detailed, applications of advanced

technologies in financial matters are described in the trade journal Technical

Analysis of Stocks & Commopities. This monthly publication provides an in-

depth analysis of the issues associated with trading stocks and bonds, and regu-

larly presents articles written by financial people describing how neural networks,

expert systems, fuzzy logic, and genetic algorithms have been successfully ap-

plied to financial issues.

Another good source of information describing financial applications of neu-

ral networks, as well as many other real applications of the technology, is the

proceedings of the annual Neural Information Processing Systems (NIPS) con-

ference. Unlike some of the other popular neural-network conferences, the NIPS

conference emphasizes applications of the technology. While someof the papers

published at this conference are highly technical, most address real-world appli-

cations that readers of this book would find most enlightening.

154 Business and Financial Applications

Finally, for those readers interested in understanding somie of the problems

associated with the traditional methods of understanding the dynamics of mar-
ket prediction, the best reference we can provide is Forecasting Economic Time
Series [5]. While highly mathematical, this book provides a solid foundation for
understanding the subtleties of market prediction.

BIBLIOGRAPHY

1. Gerald Appel. The Moving Average Convergence/Divergence Method. SIGNALERT
Corporation, 40 Middle Neck Road, Great Neck, NY, 1979.

2. Joseph E. Collard. A B-P ANN commodity trader. In Richard P. Lippman, John E.
Moody, and DavidS. Touretsky, editors. Advances in Neural Information Processing Sys-
tems 3. Morgan Kaufmann Publishers, San Mateo, CA., pp. 551-556, 1991.

3. Soumitra Dutta and Shashi Shekhar. Bond rating: A non-conservative application of
neural networks. In Proceedings of the IEEE International Conference on Neural Net-
works, San Diego, CA., pp. I1(443-450), 1990.

4. Mark B. Fishman, Dean S. Barr, and Walter J. Loick. Using neural nets in market
analysis. Technical Analysis of STOCKS & COMMODITIES, 9(April):18—21, 1991,

5. C. W. J. Granger and Paul Newbold. Forecasting Economic Time Series, second edition,
AcademicPress,Inc., 1986.

6. George C. Lane. Lane’s stochastics. Technical Analysis of STOCKS & COMMODITIES,
4(May/June), 1984.

7. B.G. Malkiel. A Random Walk Down Wall Street, New York: Norton, 1985.

8. J. W. Peavy, III, and J. A. Scott. The AT&T divestiture: Effects of rating changes on
bond returns. Journal ofEconomics and Business, 38:255-270, 1986.

9. Alvin J. Surkan and J. Clay Singleton. Neural networks for bond rating improved by
multiple hidden layers. In Proceedings of the IEEE International Conference on Neural
Networks, San Diego, CA., pp. II(163-168), 1990.

10. Robert R. Trippi and Efraim Turban, editors. Neural Networks in Finance and Invest-
ing: Using Artificial Intelligence to Improve Real-World Performance. Probos Publishing
Company, Chicago,IL, 1993.

11. J. Welles Wilder. New Concepts in Technical Trading Systems, Trend Research, 1978.

C H A P T E R

Pattern Classification

Experience is that marvelous thing that enables you to recognize a mistake

when you make it again.

—F: P. Jones

In Chapter 4, we described applications of neural networks that perform a map-

ping from one multidimensional space to another. In that chapter, we called the

mapping process an associative memoryfunction; that is, the neural-network be-

havior was such that it could associate a specific output pattern with a particular

input pattern,for all patterns in a training set. In this chapter, we shall investigate

a special type of associative-memory called pattern classifiers. As we shall show,

pattern classification differs from associative-memory applications primarily in

our interpretation of the network behavior. In associative-memory applications,

weinterpreted the output state of the network as another multidimensional pat-

tern. In pattern classification, we shall interpret the final state of the network in a

mannerthat allowsus to classify the input pattern as belonging to oneof several

categories. In essence, weshall allow the network to associate categories with

the corresponding input patterns during training, then use the trained network to

classify new input patterns.

Applications of this type are very appropriate for solution by neural network.

As we have already seen, many neural networks adapt themselves to respond

to certain combinations of input patterns to produce the desired output. We can

conceptualize this behavior as feature detection within the network. In pattern-

classification problems, we will use the response of the network to a new input

pattern as an indication of the presence (or absence) of the feature combinations

that the network learned to recognize. |

As with associative memories, the input pattern space is usually very large,

and there is no apparent mechanism for analytically determining the appropriate

category for the input. This is not to say that there does not exist an analytical

technique for classifying the input. Rather, the benefit of using a neural network

155

156 Pattern Classification

for pattern classification is that the application can usually be created and tested

without a significant investment in analysis of the problem domain.

In this chapter, we shall describe four pattern-classification applications of

neural networks. As a part of that discussion, we shall emphasize the interpreta-

tion of the network responseas it applies to the classification problem. Weshall

also show how the solution produced by the network provides a reasonable clas-

sification of the input.

6.1 NETTALK

The most famous example of a neural-network pattern classifier is the NETtalk

system developed by Terry Sejnowski and Charles Rosenberg [11]. As shown in

Figure 6.1, a BPN is trained to classify a character sequence as one of 26 possi-

ble phonemes! thatare, in turn, used to generate synthetic speech. Obviously, the

practical uses of such an application are somewhatlimited. However, the NETtalk

application is worthy of our study in that it demonstrates several subtle aspects of

neural-networkpattern classification that a novice should consider when develop-

ing new applications. The most important of these are

¢ The NETtalk system demonstrates the generalization characteristics of the

BPN remarkably well. Specifically, once the network is trained to produce

the correct phonemesin the 5,000-wordtrainingset, it performs quite reason-

ably when presented with wordsthatit was not explicitly taught to recognize.

¢ The data-representation scheme employed by Sejnowski and Rosenberg is
quite interesting. It allows a temporal pattern sequence to be represented
spatially, while simultaneously providing the network with a means ofeasily
extracting the important features of the input pattern.

Weshall begin our investigation of the NETtalk application by first examin-
ing the data-representation scheme used by Sejnowski and Rosenberg. We shall
then describe how the data were collected and usedto train the network.Finally,
we shall discuss some of the observations made by Sejnowski and Rosenberg
with respect to the network’s performance.

6.1.1 NETtalk Data Representation

It is acknowledged by many that English is among the mostdifficult languages
to read, simply because there is so much diversity in the language. Anyone who
has learned to read the English language knowsthat for every pronunciationrule,
there is an exception. For example, consider the English pronunciation of the
following words:

FIND FIEND FRIEND FEINT

1. Phonemesare a standard representation of the sounds made during speech.

6.1. NETtalk 157

Text Input Convert Text to
NETtalk Pattern

WVVVYY ey
NETtalk Network

e@e0

Convert
Analog Signal

\ ns g vig Phoneme

"Hello ... TO
T k

" 0 Speaker Analog Signal

Figure 6.1. The system block diagram of the NETtalk application is shown.In this

architecture, a front-end process converts the scannedtext into the pattern representation

for the BPN. The network, in turn, produces an output that is interpreted by a back-end

process as the phonemeto be generated. The output of the system is therefore a synthetic

pronunciation of written text.

While these four words are very similar in their form and structure, the pronunci-

ation of each is vastly different. In each case, the pronunciation of the vowel(s)

is dependent on a learned relationship between the vowel andits neighboring

characters. Mastering these learned relationships is what makes English a diffi-

cult languageto learn.
Obviously, the process of generating the correct phoneme sequence to syn-

thetically pronounce these four words is much more complicated than simply

mapping a phonemeto each character in a text string. Moreover, this example

only touches on the complexities of the language. There are many other com-

plex interrelationships between written text and spoken English, and any system

constructed to perform this type of pattern classification must also be capable of

capturing and encoding these interdependencies.

The NETtalk system constructed by Sejnowski and Rosenberg does just

that—it captures the implicit relationship between text and sounds by using a

BPNto learn these relationships through experience. However, to teach the net-

work these relationships, Sejnowski and Rosenberg hadtofirst develop a method

158 Pattern Classification

CONNECTION

eee ~
fh Fd} dL icio
tt || | | IClolN
tg _| | CONN
ty _| CONNE
t, | CO NNIE|C
tg COIN|N/E|C|T
t, OININ|EIC]T| 1
tg NIN|E|CT) I/O
ty —~> NIEIC|T)I/OIN

Figure 6.2 This diagram illustrates the sliding-window concept used to produce word

_ patterns for the neural network.Initially, the window is padded with blanks to producethe

silent phoneme. Characters from the word to be pronouncedare then acquiredbysliding

the window overthe word, one character at a time. This process continuesuntil all of the

characters in the word have passed by the focus position, with blank characters appended

to the word to signal termination.

for converting the textual representation of the word into a pattern that the net-
work could use, while preserving the positional influence of characters on each
other in the textual representation.

To accomplish that goal, Sejnowski and Rosenberg adopteda sliding-window
technique for representing wordsas spatial patterns. Essentially, the window is
nothing more than a fixed-width representation of characters that form the com-
plete input pattern for the network. The window “slides” across a word, from left
to right, each time capturing (and simultaneously losing) one additional charac-
ter. In order to allow both preceding and succeeding characters in each word to
exert influence on the current character, the character in the middle of the win-
dow is interpreted as the focus character, with characters to the left and right of
the center acting to influencetheclassification of the focus character. This process
is illustrated in Figure 6.2.

In their article, Sejnowski and Rosenberg used a window of seven characters,
with the third position designated as the focus character. This representation al-

lows each character in a word to be influenced byits three preceding and three

succeeding characters. According to the language studies performedpriorto their
experiments, three characters were adequate to exert the proper influence on the
pronunciation of any one character in an English word.

6.1 NETtalk 159

Onefinal transformation was necessary in order to cast the data in a form

usable by the BPN. Because the network requires inputs that are numerical and

continuous in the range of zero to one, it is necessary to convert each character

into a pattern vector composed of numerical values. Sejnowski and Rosenberg

chose to represent the input characters as pattern vectors composed of 29 binary

elements—one for each of the 26 upper-case English alphabet characters, and

one for each of the punctuation characters that influence pronunciation. Using

this scheme, only one element in each character vector was ‘“‘on” at any given

time. This method of data representation also provided a side benefit for the

neural network, in that it simplified the network’s ability to distinguish different

characters.

To see how this simplification occurs, consider the fact that, by using the

data-representation scheme described above, the character pattern vectors are all

orthonormal, which maximizes the distance between pattern vectors 1n Euclid-

ian space. Because, as we described in Chapter 2, the BPN propagates signals

by computing the inner product between input pattern vectors and corresponding

connection-weight vectors, a natural extension of the processing performed by

a neural-network processing elementis the computation of the distance between

these two vectors in Euclidian space. Thus, by ensuring pattern vectors are or-

thonormal, we enhancethe ability of the neural network to distinguish important

features from similar, but unimportant pattern components.

6.1.2 NETtalk Training

The training data for the NETtalk application consist of 5,000 common English

words,” together with the corresponding phonetic sequence for each word. For

each exemplar, a set of n input patterns was defined such that each input pattern

contained one instance of the seven-character sliding window, with each character

represented as a 29-elementvector, where n represents the numberof characters

in the word. Using this scheme, the dimension of each input pattern was 203

elements (7 characters x 29 elements per character).

The output desired from the network for each input is an indication of the

phonemethat should be applied to pronounce the current character. Sejnowski

and Rosenberg chose to represent the output pattern as a 26-element vector, al-

locating one element for each phonemeclassified by the network. The training

data for the NETtalk application therefore contains 30,000 exemplars (assum-

ing an average of six characters per word), with each exemplar composed of a

203-element input vector and a 26-element output vector. To perform the desired

classification, Sejnowski and Rosenberg used a three-layer BPN, with 80 sig-

moidal units on the hidden layer, completely interconnected with all elements on

the input and output layers. This network is depicted schematically in Figure 6.3.

2. Many derivations of the NETtalk system use a much smaller training set, to reduce the training

time.

160 Pattern Classification

26meus

vs coda oe

voy PENS
OOOO: **"=* OO

SP PEXNS
WO OD CO CO 00 OO OC

O N N E C

Figure 6.3 This diagram illustrates the architecture of the BPN used to perform the
NETtalk application. The operation of the networkis described in the text.

Exercise 6.1: Using the parameters given for the NETtalk application, estimate
the number of computations needed to perform onetraining epoch in a software
simulation of the network. Assumethat the sigmoid activation function requires
30 calculations to perform, and that the momentum term (@) is not used. m

6.1.3 NETtalk Results

Sejnowski and Rosenberg constructedthe training exemplars for the NETtalk ap-
plication by first generating the input pattern vectors for the set of example words,
then, for each of the input patterns, manually associating the proper phoneme
with the focus character. The process was extremely tedious, and required sev-
eral weeks to producethefinal training set. Training the NETtalk BPN from the
exemplar data was only marginally better, requiring 10 hours of computer time
ona VAX 11/780 class computer system.

While the network wastraining, Sejnowski periodically stopped the process
and allowed the network to simply produce whateverclassifications it could,
given a partial set of the training words as input. The classification produced
by the network was then converted into the proper phoneme,andusedto drive

a speech synthesizer to produce an audible “snapshot” of the networkstraining

state. The sounds produced by the network were recorded on audio tape. That

recording captures the essence of the network’s learning ability.

Before the training started, the network produced random sounds, freely mix-

ing consonants and vowel sounds. After 100 epochs, the network had begun to

separate words, recognizing the role of the blank character in text. After 500

epochs, the network was makingclear distinctions between the consonant sounds

6.2 Radar-Signature Classifier 161

and the vowel sounds. After 1,000 epochs, the wordsthat the network wereclassi-
fying had becomedistinguishable, although not phonetically correct. After 1,500
epochs, the network had clearly captured the phonetic rules, as the sounds pro-
duced by the BPN were nearly perfect, albeit somewhat mechanical. Training was
stopped after epoch 1,500, and the network state was frozen.

At that point, the NETtalk system was asked to pronounce 2,000 wordsthat

it had not been explicitly trained to recognize. Using the relationships that the

network had found during training, the NETtalk system had only minor problems

“reading” these new wordsaloud. Virtually all of the words were recognizable

to the researchers, and are also easily recognized by people not familiar with

the system when they hear the audio tape recording. When the NETtalk system

producesa “glitch,” it is usually due to the existence of a phonetic relationship

that the network was not exposed to while learning, and therefore represents a

situation outside of the network’sability to classify.

Sejnowski and Rosenberg reported that NETtalk can read English text with

an accuracy of “about 95%.” This indicates that the NETtalk BPN did not sim-

ply memorize a set of words and their corresponding pronunciations—rather,it

learned the general interrelations between English text and sounds, and can there-

fore apply those generalizations to read wordsit has never seen before.

At manyof his public speaking engagements, Dr. Sejnowski replays portions

of the NETtalk audio tape for his audience. Having heard that tape personally,

I can attest to the fact that the NETtalk system has a very diverse vocabulary,

and does remarkably well when presented with new words.In fact, listening to

NETtalk learn to read is very muchlike listening to a child learning to read aloud.

Words are often pronounced correctly, and, when errors occur, they are almost

always dueto very subtle structural differences between the misspoken word and

other common words.

6.2 RADAR-SIGNATURECLASSIFIER

Pulse Doppler radar technologyhas existed, in essentially its current form, since

the 1940s. The primary application of pulse Doppler radar? is to detect an air-

borne target, and determine the range and velocity of the target relative to the

radar station. Pulse Doppler radar operates on two very simple principles of

physics: First, electromagnetic radiation (EMR) travels at a constant speed, and,

second, EMR wavesreflected from a moving body are frequency shifted in the

direction of travel, much like sound waves are compressed in the direction of

travel when emitted from a moving noise source. We illustrate these concepts in

Figure 6.4.

Modern radar systems take advantage of these two principles to compute

the range and velocity of any target that comes within the effective range of the

radar transmitter. Usually, the radar system provides a digital readout of these

3. Traffic law enforcement notwithstanding.

162 Pattern Classification

Transmitted

a
Frequency Shifted

Echo

Figure 6.4 This diagram illustrates the basic principles that govern the operation of

pulse Doppler radar. A radar pulse, or chirp, is transmitted from the radar station. The

EMRburst travels outward from the transmitter at the speed of light. When an EMR-

reflective target is hit by the outgoing signal, some of the energyis reflected back to

the radar receiver, which then determines the range and velocity of the target based on

concepts described in the text.

parameters for each target acquired, leaving the chore of using the information

to the radar operator. However, it has long been apparent that skilled radar op-

erators are also able to ascertain the type of target acquired, even though the

radaritself has no capability of making that same determination.* They makethis

determination based onthe electronic signature of the radar return. Just as peo-
ple have their own, personalized technique for signing their names, each radar
target has its own, unique way of reflecting radar emissions. After observing

several thousand returns, a radar technician can learn to recognize these signa-
tures.

As weindicated previously, radar-signature recognition is currently a strictly
human phenomenon; there are no automatic meansof identifying a target based
on its radar-signature incorporated in radar systems. Let us now investigate how

a neural network can be applied to the problem of automatic radar-signature

recognition, an application that I helped develop while employed by Loral Space

Information Systems. We shall begin with a brief discussion of the mathematics

governing the operation of pulse Doppler radar, in order to describe the meaning

of the electronic radar signature. We shall then show how different signatures

were captured, and classified by a neural network.

4. Transponders can identify aircraft type, but we are concerned here with only radar systems.

6.2 Radar-Signature Classifier 163

6.2.1 Pulse Doppler Radar Theory

As indicated earlier in this section, pulse Doppler radar systems are designed to
determine the distance, or range, and velocity of a target relative to a reference
point (the radar station). Complicating matters is the fact that, quite often, the

radar station is itself moving, as with on-board radar systems in airplanes, and

must therefore correct any errors that may be induced by the movementof the
platform.

Oninitial consideration of the problem of obtaining range and velocity of

an EMRreflective target, you might think that the most straightforward method

would be to use a fixed-frequency radar pulse, and then determine range as a

function of the delay between transmission and echo reception, and velocity as a

function of the phase shift in the return frequency. However, this simple technique

is not practical, because it does not take into consideration the powerloss of an

EMRsignal propagating through space.” If a target is much more than several

hundred meters away, the returning echo will be lost in the EMR background

noise.

The process of determining range and velocity in a reflected radar signal

actually requires several steps, beginning with the transmission of the signal.

Because we are interested in finding radar targets at very great distances, we

must use a technique that will allow us to boost the signal-to-noise ratio (SNR)

in the returningsignal so that we can extract it from the background noise and

analyze the echo. To help us boost the SNR in the echo, we begin by transmitting

a frequency-modulated chirp, instead of a fixed-frequency pulse, so that we can

correlate any returning signal with the original signal, and thus identify valid

returns. Figure 6.5 illustrates the general form of the chirp signal.

Any signal detected by the receiver is processed by series offilters, each

designed to perform a special function for the radar system. For the sake of

brevity, we shall ignore the initial stages of platform-motion compensation and

stationary target removal. Instead, we shall focus on the process of extracting a

valid Doppler return from the ambient EMR noise, because this is the process

that produces the Doppler signature that we intend to classify.

A radar receiver is actually two separate receivers, one designed to detect

the in-phase component of any EMRin the desired frequency range, the other

to measure the quadrature, or phase-shift, componentof the incoming signal. We

shall refer to these signals as the real and imaginary components of a complexre-

turn signal. After compensating for platform motion and removing any stationary

target information, both componentsof the incomingsignal are fed to a matched

filter to eliminate false returns and boost the SNR ofa valid return. The matched

filter is actually a three-step process, which we now describe andillustrate in

Figure 6.6.

5. Recall from basic physics that powerin a transmitted signal drops by the square of the distance

traveled. .

164 Pattern Classification

Signal
Power

tine>

Figure 6.5 This figure illustrates the general form of a radar chirp. Notice that the

frequency of the signal increases linearly with time. Since EMR waveformsofthis type

are non-existent in the natural world, we can detect a valid signal return by correlating

the frequency of any return with the variable frequency of the original chirp, using the

techniques describedin thetext.

The complex input signal from the receiver is sampled in discrete time, and
converted from the time domain to the frequency domain using a fast Fourier
transform (FFT). The size of the sample and the numberofpoints used in the
FFT are determined by the application, but we shall consider 512 samples
and a 1,024 point FFT as nominal. To accommodatethis processing,a single
pulse return interval (PRI), which is the time period between transmitter
chirps, is divided into separate sample periods, each comprised of 512 data
points. Each of these samples is converted by the FFT, producing n, 1,024
complex vectors (v;,i = 1,...,”), that collectively describe the PRI in the
frequency domain.

A vector multiplication between each v; and the complex conjugate,or time-
reversed form of the initial chirp is performed. Because multiplication in
the frequency domain is equivalent to convolution in the time domain, this
operation has the effect of squelching any noncorrelated spectra, allowing
only signals that are correctly correlated, and therefore valid echoes,to pass.
The resulting vectors, w;, are a filtered representation of the return in the
frequency domain.

The filtered return is converted back to the time domain by performing an

inverse FFT (IFFT) on each w;. The resulting complex vectors, x;, represent

6.2 Radar-Signature Classifier 165

Pulse Return Interval
EY

 (a) ‘
Ground Return

Clutter Signal

Y

Figure 6.6 These graphs depict the waveforms during processing of a single PRI. The

time scales are uniform throughout, and we only showthereal, or in-phase component

of the signal. (a) The spectra of the signal as measured at the radarreceiver, prior to any

processing. (b) After correlating, clutter 1s eliminated and the target becomes apparent.

(b)

the n, 512 sample points in the time domain,after filtering. The entire PRI is

reconstructed by concatenating the n filtered vectors.° The resulting complex

vector pinpoints the target return in the PRI.

AsPRIdata are processed, the radar system accumulates the results in a ma-

trix form, where each row consists of one PRI of processed data and each column

represents a discrete time interval, or range bin, within the PRI. After 32 suc-

cessive returns are processed, the Doppler frequency information is extracted by

filtering each return with a Blackman window,to minimizethe effect of transient

frequencies caused by performing an FFT ona finite series, transposing the ma-

trix, and performing a 32-point FFT operation to extract the Doppler profile of

each range bin.

The result is a complex, n-row, 32-column matrix, where each rowindicates

the magnitude of the Doppler shift occurring at the range represented by the row

position. Small Doppler-shift magnitudes indicate no movementat that range.

Large Doppler shifts indicate an EMRreflective target moving through the radar

6. This is actually a simplification of the actual process of recovering the signal. For more details,

refer to the Suggested Readingssection of this chapter.

166 Pattern Classification

32

PRI 1 Range Cells n Blackman yee

- 4 WN Mer li3 MehbihheWi \ ENEiB
: : 6NMNN eee fh

382 NANNANNA eeeA — 7 NMA Meee

none N
9) n-1N NNN ee

NNMNM ewe

(b)

FFT

AAA
(c) (d)

Figure 6.7 The process of converting 32 successive PRI returns into a Doppler signature

is illustrated. (a) The PRI data are collected into a 32-row by n-column matrix, where each

columnrepresents a discrete time interval in the PRI, and each row contains the processed

return data for the PRI. (b) The matrixis filtered and transposed to provide Blackman-

weighted return data by column.(c) A 32-point FFT is applied to the Blackman-weighted

matrix to obtain the Dopplerprofile of the return. (d) The Doppler matrix is concatenated

by rowsto form the Doppler signature of the return.

scan. If we concatenate the n rows of the Doppler matrix into a single vector, we
produce the Doppler signature of the return. Figure 6.7 illustrates this process.

The Doppler signature of the return providesall of the information we need
to determine range and velocity of a detected target.By considering the amplitude
of the Doppler shift, and knowing that each bin represents a time slice of fixed
duration and a knownoffset from the beginning of the PRI, we can determine
the range of the target by simply interpolating between the two Doppler peaks.
Similarly, target velocity can be determined by evaluating the difference in range
between twosuccessive returns.

6.2.2 Capturing the Radar Signature

All of the calculations described in the previous section are made automatically

within any Doppler radar system. However, inspection of the Doppler signature

reveals quite a bit more aboutthe nature of the target. For instance,if the airframe

of the target has no movingblades(indicative of a jet aircraft), the Dopplersig-

6.2 Radar-Signature Classifier 167

(a) -ceceanndl Mereec

(b) scant Ay ly Hane.

oatALAM
Figure 6.8 These diagramsillustrate Doppler signatures produced by different kinds

of aircraft. (a) A jet (airframe only) produces a compact Dopplersignature. (b) A two-

~ bladed helicopter causes a spread in the signature, with side lobes forming on both sides

of the peak, indicating rotation of the blades. (c) A four-bladed helicopter has a very

wide signature, because bladesrotate through the radar signal twice as often as with the

two-bladed helicopter.

nature is fairly compact. If the target has blades rotating in the same planeas the

radar signal (as with a helicopter), the signature will spread considerably. Other

signatures will be obtained based on the type of aircraft, and any movingparts

that may cause Doppler shift in the return. Figure 6.8 presents a representative

sample of these different signatures.

Given that the radar system can producethese electronic signatures, we can

use a neural network to address the pattern-classification problem. Specifically,

we can train a network to mimic the pattern-recognition process performed by

the radar technician and automatethe classification of these different signatures

as different types of aircraft. In order to do this, however, we mustfirst decide on

the type of network weshall require to perform theclassification, then determine

the best method for representing the electronic signatures and correspondingclas-

sifications for use by the neural network.

The most straightforward method for learning to classify these Dopplersig-

natures is to create a network that learns to produce the correct output category

for each signature. The BPN is the most logical choice for this type of appli-

cation, because this network can generalize the characteristics of the input that

lead to successful classification, and because it is designed to map input patterns

to corresponding outputs. Furthermore, inspection of the radar-signature wave-

168 Pattern Classification

DRA RRR RRR RRMAallHh

AARTTLLLTTeee

al Ha ARR RRR RMR RRR RARER RAaa

| Wha PARRRRcana dl

<< 1 Range Bin a
Figure 6.9 These graphs show how a Dopplersignature shifts as a functionoftarget

range. Beginning at the top, the sequence showsa target approachingthe radarstation,

with a correspondingleft shift in the Doppler signature.

forms suggests an appropriate method for encoding the input patterns—wesim-
ply quantize each waveform, and scale the magnitude of each componentof the
pattern to a value in the appropriate range for the BPN. Similarly, the output of
the network can be cast as m sigmoidal units, where each unit is considered to be
an indicator of a specific aircraft type.

However, selecting the BPN will complicate the application somewhat, due
to an easily overlooked detail in the input pattern representation scheme. From
our discussion of how the radar signature is produced, considerthat the signature
will shift as the target moves through the range bins. As depicted in Figure 6.9,
the Doppler signature moves horizontally in the pattern, as a function of the
range of the target. If we simply train the BPN to recognize a single image of

the Doppler signature, the network will not be able to correctly classify shifted

signatures of the sametarget, due to the fact that the BPN is not a position-

invariant patternclassifier. ’

To compensate for the pattern shift, we must train the network using exem-

plars that account for the pattern shift. For example, the Doppler signature for

7. The behavior of the BPN wasdescribed in detail in Chapter2.

6.2 Radar-Signature Classifier 169

(a) eT||ee

1.0-

eo ccocnnonotilll[Uepeceereene

© —eaaeenernenecell

(d) [Mineoecneeencocosntll

©) _lenvetill[ieecoceenneneecne

Figure 6.10 This diagram illustrates the exemplar encoding scheme usedto capture

the Doppler signature of various aircraft. (a) This diagram illustrates the general form

of the radar return after extracting the signature. (b) The quantized form of the Doppler

signature. (c) The quantized signature shifted right by ten range bins from the general

form. (d) The quantized signature shifted by fifteen range bins. (e) The quantized

signature shifted right by 26 range bins(or left by 6 range bins).

the airframe-only return, if quantized into 32 discrete samples, will become 32

training exemplars for the BPN—onefor each possible shift of the input pattern.

Similarly, the signature for the twin-bladed helicopter will become 32 different

exemplars, each requiring a single output from the network unit that corresponds

to the two-bladed helicopter classification. This exemplar encoding schemeis il-

lustrated in Figure 6.10.

Exercise 6.2: As we shall describe, the BPN usedin this application was able

to correctly classify all of the signatures we asked it to learn. However, the same

application developed using a feed-forward CPN failed miserably. Why? (Hint:

Consider the input representation as a vector in 32 space.) J

6.2.3 Classifying Radar Returns

As a demonstration of the ability of a neural network to classify radar returns, we

constructed a BPN in software on a multiprocessor neural-network accelerator

board, and trained it using Doppler signatures of three different aircraft types:

airframe only, a two-bladed helicopter with blades rotating at 300 RPM,and a

four-bladed helicopter with blades rotating at 300 RPM.Foreachclassofaircraft,

a representative signature was computedusing a radar signal-processing package

developed for the application.

170 Pattern Classification

The network used to classify the Doppler signatures was a three-layer BPN,

with 32 input units, eight units on a single, hidden layer, and three output units.

The processing elements on the hidden and output layers were sigmoidal, and

outputs were interpreted as a one-and-only-oneindication of the class of the input

signature. The use of sigmoidal activation functions at the output of the network

had the effect of simplifying the classification process.

The exemplar data used to train the network consisted of 96 Doppler-

signature aircraft-classification vector pairs. Using a learning rate (7) of 0.5 and

a momentum term (q@) of 0.6, the network converged to a solution after 1,700

training epochs, stabilizing with an absolute error magnitudeless than 0.01. After

training was completed, the configuration of the network (e.g., connection-weight

values, numberof units, and numberof layers) was written to a file on the com-

puter disk, to be used by an application that processed radar-return data in real

time. :

6.2.4 Radar Classification Results

In our test application, the radar signature of a target is extracted from synthetic
radar data produced by a mathematical modelof the target object. To ensure that
we were evaluating the generalization capabilities of the BPN, the target model
used in the test application was a different implementation of the target model
used to generate the training data.

From the synthetic radar data, the Dopplersignature of the object being mod-
eled was extracted using conventional digital signal-processing techniques, then
converted to a signature pattern for the network. The BPN wasa software model
of the network constructed from the information saved after training, and invoked
by a simple function call from the top-level process. In this case, however, the
network wasused in the forward-propagation modeonly, producing outputs that
wereinterpretedasthe class designation of the radar signature. Figure 6.11 illus-
trates a block diagram of the integrated-system architecture we used to evaluate
the performanceof the neural-networkclassifier.

The integrated system was constructed as a demonstration program to illus-
trate the power of neural-network pattern classifiers. The front-end process(the
math modelof the target) provided the radar data stream, which wasfiltered as
describedin this section. The outputof the radar signal processor was the Doppler
signature of the target, which wassent directly to the neural networkfor classifi-
cation.

Prior to using the BPN to classify the Doppler signature, the processed re-
turns were compared to the training signatures, to ensure that the target model
was producing a reasonably accurate radar profile. Moreover,to test the tolerance
of the classifier to “imperfect” signatures, the system allowed the userto interac-
tively add noise to the radardata stream,prior to inputto thefilter processes. Our
results indicate that, while the signatures produced by the math model, without
noise, were similar to the training patterns, there was as much as a 15% difference
between the signatures the network had learned to recognize and the signatures

6.3. Prostate-Cancer Detection | 171

Synthetic > Motion Pulse
Compensation/__

Radar Data ; Compressor
Generator —— __s=ODetection

Corner . Range and pe Velocity
Turn | Velocity
Memory > Detector Range

 Lm Neural > Airframe Only

————| Signature |——t 2-Bladed Helicopter

py Petector —p 4-Bladed Helicopter

Figure 6.11 The block diagram of the integrated radar signal processor and

neural-network classifier is shown. The operation of the system is describedin the text.

produced by the model. When Doppler noise was added (such as might be pro-

duced bya tail rotor on a helicopter), the signature could vary from thetraining

image by as much as 25%. Nevertheless, the BPN was able to correctly classify

100% ofthe radar signal returns producedby the model.

6.3. PROSTATE-CANCER DETECTION

Cancer of the prostate is a silent, but quite deadly disease that is rapidly be-

coming common in human males over the age of 45. In 1991, prostate cancer

was estimated to be the most commonly diagnosed form of the disease, with the

second-highest mortality rate of all forms of cancer in males [3]. If diagnosed

in its early stages, however, prostate cancer is quite curable [9]. Unfortunately,

early diagnosis is not always possible, because prostate cancer has no discernible

symptomsin its early stages. Complicating matters is the fact that accurate diag-

nosis® usually requires an invasive procedure, meaning that the disease cannot be

easily detected during routine health examinations.

Fortunately, public awareness concerning the nature of prostate cancer, and

the danger inherent in delaying the diagnosis, has caused manyindividuals to

have themselves proactively checked for prostate cancer. Also, recent advances

in diagnostic technology have greatly simplified the process of detecting prostate

cancer duringits early stages.

8. At least in its early stages.

172 Pattern Classification

In this section, we shall examine one such diagnostic technology, made pos-

sible through the use of ultrasound inspection of the gland. In this application,

developed by one of my graduate students, Mssr. Jean-Baptiste Enombo[5], the

ultrasound image of the prostate is analyzed, texture features are extracted from

the image,and the feature combinationsare classified by a neural-network trained

to recognize carcinomain the ultrasound image. While this researchis still very

preliminary, the results indicate that neural-network technology might offer a

very precise method for identifying prostate cancer using a safe, noninvasive de-

tection procedure.

6.3.1 Ultrasound Data Collection

Medical research has shownthat ultrasound examination of the prostate may pro-

vide a relatively safe method for identifying patients with active carcinoma. As

with other ultrasound techniques, the patient is examined by passing an ultra-

sound transducer (in this case, a wand designed to be inserted into the rectum)

along the area to be examined. An extremely high-frequency sound is emanated

from the transducer into the body cavity, where the sound is absorbed (hyper-

echoic) or reflected (echoic) back to the transduceras a function of the viscosity

of the tissue and the frequency of the transmitted ultrasound.

The transducerdetects the returning echo pattern, and, after further process-
ing, the pattern is electronically converted into a visual display of the surrounding
tissue. To aid in the interpretation of the display, different echo levels are dis-
played using a graduated gray scale, with lighter pixels indicating echoic tissue,
and darker pixels indicating hyperechoic tissue. Figure 6.12 illustrates a typical
prostate ultrasound image.

Prostate cancer is currently identified by visual interpretation of the ultra-
sound image. Studies [4, 10] have shownthat cancerouslesions tend to be more
hyperechoic than normal glandular tissue. Unfortunately, hyperechoic tissue is
not, by itself, a precise indication of cancer. Other studies have shownthat while
96% of all prostate cancer lesions are hyperechoic, only 40% to 50% of hyper-
echoic regions are cancerous [8, 1].Examples of normal tissue structure that
exhibit hyperechoic echo patterns include muscle surrounding the prostatic ure-
thra, the ejaculatory ducts, atrophic glands, and benign hypertrophy[7].

There are also biological limitations in diagnosing canceroustissue from ul-
trasound images, due primarily to noise in the resulting image and the limited
ability of the human visual system to distinguish subtle variations in gray lev-
els. As an illustration of these limitations, consider the image in Figure 6.13,
which is an ultrasound image of the prostate shown withoutclarification.? On
initial inspection, it is difficult to discern the boundary of the prostate from the
surrounding tissue, let alone identify possible cancerous tissue. Even when the

9. Figure 6.13 is, in fact, identical to the image shown in Figure 6.12, with only the clarification
details removed.

6.3 Prostate-Cancer Detection 173

‘iiiaANASIOSRRRATEEEEEIAA

Figure 6.12 This figure illustrates a typical ultrasound imageof the prostate gland.

For clarity, we have indicated the perimeter of the gland in the image. The dark circle in

the center of the image is the rectum, and the surroundingtissueis illustrated in levels

of gray that indicate variations in tissue density. Notice the level of noise in the image.

Source: Feature analysis and neural networkclassificationof prostate ultrasound images

[5]. Copyright ©1994, by Jean-Baptiste Enombo. Used with permission.

prostate has been isolated visually, separating hyperechoic regions from the noise

is a challenging task.

6.3.2 Ultrasound Texture Analysis

In order to assist in the interpretation of ultrasound image analysis, the image

data can be enhancedthroughtheuseof spectral, textural, and contextual image-

processing techniques. These techniques are employedtofilter the noisy data into

representations that more closely resemble the type of information the human

visual system is designed to process. In his investigation, Mssr. Enomboused a

textural analysis of the prostate ultrasound to extract information regarding the

structure of the gland in termsofits texture. Specifically, 13 textural features were

extracted for each resolvable point in the ultrasound image, and these features

were then used to construct the training exemplars for the classification network.

The textural features used by Mssr. Enombo, which were originally derived

by Robert Haralicket al. [6], assume that the image to be analyzedis represented

as a spatial-dependence matrix, P, where each point P;; is a normalized gray tone

with N, discrete gradations. To simplify the notation in the textural analysis, we

adopt the following fouridentity relations:

174 PatternClassification

Figure 6.13 This figure illustrates a typical ultrasound imageof the prostate and

surrounding tissue as a doctororclinician might see the image during an examination. The

regularly occurring white dots are data dropouts, or holidays, and occur because of the
implementation of the transducer. Given this noisy image, how quickly can you find the
prostate, and identify the hyper-echoic, or potentially cancerous regions? Source: Feature
analysis and neural networkclassificationof prostate ultrasound images [5]. Copyright
©1994, by Jean-Baptiste Enombo. Used with permission.

Ng

Pri) = DPij (6.1)
j=! |

Neg

Py(j)=)> Pi (6.2)
i=]

Ne Ne

Priy(k) =3 >° Pj (6.3)
i=l j=l

Ng Ng

Py-y(k) =YO Bij (6.4)
i=1 j=l

where k =i + j in Eq. (6.3) and k = |i — j| in Eq.(6.4).

Prior to the experiment, four patients diagnosed with clinically organ-
confined prostate cancer were examined using the ultrasound equipment, and the
images were recorded on broadcast-quality videotapes. The patients then under-
went radical prostatectomy procedures, and the removed organs were subjected
to 4-mm whole-mountserial cross-sectioning, as shown in Figure 6.14. Pathol-

6.3. Prostate-Cancer Detection 175

Figure 6.14 This diagram illustrates the whole-mount cross-section pathology ofthe

prostate specimens.Initially, 1.0 to 1.5 cm of tissue at the apex and anterior portions of

the organ are excised. The remainderof the organis sliced horizontally at 4 mm intervals,

and a thin slice from each cross section is mounted on a slide. These specimens are

then subjected to a microscopic examination by a pathologist to determine exact regions

of the gland containing the prostatic andenocarcinoma. Source: Feature analysis and

neural network classificationof prostate ultrasound images [5]. Copyright ©1994, by

Jean-Baptiste Enombo. Used with permission. :

ogy reports were obtained for each specimen,so that the canceroustissue could

be located as precisely as possible.

While the pathology investigation was being conducted, the video images

from the ultrasound examinations were digitized in color at the NASA Johnson

Space Center (JSC). The three bands of color were converted to hue, saturation,

and intensity images, and theintensity band was further transformedinto a 512 x

512 pixel matrix in 64 gray shades. Thirteen textural features were then extracted

for every 9 x 9 pixel windowin thevertical direction, using the texture analysis

algorithms developed by Haralick et al. For the reader’s convenience, we recreate

these algorithms as follows:

e¢ The angular second moment, given by

fi=S o> PZ (6.5)
Ji

¢ Contrast between points, given by

176 Pattern Classification

Nel g Neg

h=>d wy> P; (6.6)
n=0 i=l j=l

e The correlation between points, given by

1) Pij — bx ypai eil j

—

Bxby) (6.7)

0x01;

where [1x, (4, Ox, and o, are the mean and standard deviations of P,(i) and

Py(j).
¢ The variance between points, given as

fa=dG —WP (6.8)
|

e The inverse difference moment, given by

fs =YLaaejy Pi; (6.9)

e The sum averageof each point, given by

2Ng

fo= iPry(i) (6.10)
i=2

e The sum variance of each point, given as

2Ne

fi= OG = fr)Pray (6.11)
1=2

e The sum entropy of each point, given by

—5 2N¢ Pry (i) log(Prsy(i)) (6.12)
i=2

¢ The entropy, given by

fo=— >>> Pi log(P;;) (6.13)
JI

6.3 Prostate-Cancer Detection 177

e The difference variance, given by

fio=>— wyPy-y(i) (6.14)

e The difference entropy, given as

Ne-!

fir=— >> Pr_y@log(Pr_y@) (6.15)
i=0

e The information measures of correlation, given by

; _ HXY — HXY, 6.16)
12 ‘max(HX, HY)

fis = V1 — e724XY“HX (6.17)

where

HXY =-Xd P;jlog(Pij)

HXY\=“a Pij log(Px i) Py(j))

HXY.=—)_)_ Pri) Py(J) log(Px) PyG))
ar)

and HX and HYare entropies of P,(i) and P,(j), respectively.

In Figure 6.15, we illustrate several textural images of the prostate ultra-

sound, so that the reader may compare the information derived from the analysis

of the images with the original ultrasound image.

6.3.3. Cancer-Classification Exemplars

Mssr. Enombo computed the 13 texture features for each pixel in the digitized

ultrasound image of the prostate. The values obtained for each pixel were then

individually normalized, and concatenated into a 13-component pattern vector

that became the input exemplar for a BPN classifier. The desired output for each

pixel was the cancer/noncancerindication obtained by correlating the pathology

report for the specimen with the ultrasound imagepixelposition.

There were several difficulties that had to be overcome in order to construct

these training patterns. First, the pathology report could notbe directly correlated

to the ultrasound image data for several reasons, including the following:

178 Pattern Classification

 (a)
Figure 6.15 These figuresillustrate the information derived from

a

textural analysis
of the prostate ultrasound data. (a) The angular second momentof the image. (b) The
contrast in the image. (c) The variance of the image. (d) The inverse difference moment.
Source: Feature analysis and neural networkclassificationof prostate ultrasound images
[5]. Copyright ©1994, by Jean-Baptiste Enombo. Used with permission.

e The ultrasound-image data had been obtained from views of the prostate
within the body, taken at 2-mm vertical increments. The pathology, however,
had used 4-mm vertical increments in the dissection of the specimen. Be-
cause there was no guarantee that the pathologist had dissected the gland at
the samevertical pointsas the ultrasound images, there was a +2-mm margin
of error in the data.

¢ When the specimen wasdissected and mounted for examination, tissue dis-
persal occurred horizontally, altering the view ofthe cross section. To correct
for this “squashing” effect, the ultrasound image was initially warped, or
stretched, to match the cross-section area of the pathology. However, digi-

6.3. Prostate-Cancer Detection 179

tally warping the image tendedto distort the texture features of the images,

so the pathology report was warped to match the ultrasound image. Using

this technique, the pixels indicating cancerous cells in the ultrasound were

classified from the warpedpathology data.

Furthermore, the ultrasound imageof the prostate had data dropouts, or holi-

days, where the ultrasound echo wascorrupted. These holidays occurat precisely

the sameposition in any display, and increase in frequency in imagesfurther from

the transducer. To minimize the effect of the holidays in the texture analysis, only

the ultrasound data from the peripheral region, closest to the probe, was consid-

ered. This was not judged to be a severe constraint on the application, because

most cancers begin in the peripheral zone, and spread to other locations in the

prostate.

Nevertheless, Mssr. Enombo developed more than 63,000 exemplars, using

visual inspection of the texture displays to locate the lesions. Once the cancerous

regions had been manually located, a computer program was used to construct

the exemplar data using the normalized texture features that had already been

extracted for the cross section. The corresponding cancer/noncancer designation

for that point was determined based on whetherthe pixel in question fell within

the region that had been designated as cancerous.In Figure 6.16, we illustrate the

form of the exemplar data, and how it was constructed for the application.

6.3.4 Cancer-Detection Results

Initially, a BPN containing 13 input units, eight units on a single hidden layer,

and two output units wastrained to recognize textures that indicated a high like-

lihood of cancer. In this experiment, all 13 of the texture features were used as

input, and the output layer used sigmoidal activation functions to produce bi-

nary cancer/noncancerindications. After training was completed, tests were run

to evaluate the network’s ability to generalize. Initially, the network was asked

to classify the textural features of a different cross section within the same speci-

men. Then, the network wasusedto classify the ultrasound imagesfrom the three

patients that the network had not been trained to recognize. Several interesting

results were determined during this phase of the experiment.

First, using different ultrasound layers from the patient on which the network

was trained, the BPN successfully recognized noncancerous regionsin the test

images 98.9% of the time. The network produced false-positive indications in

only 1.08% ofthe tests. Similarly, the network correctly classified texture features

as cancerousin 88.7% of the trials, and produced false-negative indicationsin the

other 11.3% of the tests. When the tests were conducted on patients other than

the one on whom the network had beentrained, the results fell somewhat. While

noncancerous regions were correctly recognized in 98% of the tests, cancerous

regions were correctly identified in only 60% of thetrials.

A more interesting result was obtained after examining the state of the

trained network, however. By looking at the feature combinationsthat the hidden

180 Pattern Classification

Visual \

Inspection — eS

’ Y
Cancer

Classification

Hh tp fg) fg eee hy

y
— Neural Network (BPN)

y v
Cancer Non-Cancer

Figure 6.16 This diagram illustrates the process of developing exemplarpatterns for the
prostate-cancer detection network. The texture features are extracted for each pixel in the
peripheral range of the image, normalized, and then associated with a cancer/noncancer
designator assigned by a program that determines whether the pixel falls within a region
designated as cancerous. Source: Feature analysis and neural network classificationof
prostate ultrasound images [5]. Copyright ©/994, by Jean-Baptiste Enombo. Used with
permission.

layer of the network respondedto in orderto produce the correct output indica-
tions, it was found that only five of the 13 texture features actively contributed
to a successful diagnosis of cancer. Based on this result, another network was
constructed and trained, this time having only the five input elements that had
previously been identified as being instrumental in successful recognition. After
training had been completed,the tests were performedas before. This time, how-
ever, the BPN improvedits classification accuracy noticeably. Using different
ultrasound layers from the training specimen, the network accurately identified
cancer 94.8% of the time, and with data taken from the other patients, the net-
work accuracy improved to 75%. These results are summarized in Table 6.1.

Overall, the neural network did an excellent job of classifying prostate can-
cer from ultrasound-image textures. The one set of images that were the most
difficult to classify (Patient D) are explainable in that the imagedata for that pa-
tient were extremely noisy. Statistically, if we combine the performanceof each
network acrossall four test suites, we find that, the neural-network classifier ex-

Suggested Readings 181

Non- False- False-
Test Network Cancer Cancer Positive Negative

Patient A 13-8-2 98.92 88.71 1.08 11.29

Patient A 5-7-2 98.87 94.80 1.08 5.20

Patient B 13-8-2 99.72 58.78 0.28 41.22

Patient B 5-7-2 99.78 71.92 0.28 28.08

Patient C 13-8-2 99.20 61.33 0.80 38.67

Patient C 5-7-2 99.18 77.27 0.82 22.73

Patient D 13-8-2 99.97 8.54 0.03 91.46

Patient D 5-7-2 99.97 51.34 0.03 48.66

Table 6.1 This table presents the statistical results of the BPN cancerclassifier network.

Numerical entries in the table represent the percentage score of the network in each

category. False-positives are those instances where the networkclassified the pixel texture

as cancerous whenthe pathology indicated it was not. Likewise, false-negatives are those

instances where the networkclassified the texture pattern as noncancerous, which again

contradicts the pathology.

hibited a 98.3% accuracyrate in classifying pixel data. However, it must be stated

that these results are very preliminary, and that much work remains before neural

networks can beusedto classify ultrasound images without additional interpreta-

tion by the physician.

6.4 PATTERN-CLASSIFICATION SUMMARY

In this chapter, we have examined applications of neural networks where the

network was used to classify an input pattern into one of several categories.

In one application, the categories were defined dynamically, while in others,

the categories were determined before the network was constructed. We have

examineda fairly diverse set of applications in this chapter, in order to convey to

the readerthe idea that the powerof the technologyis not solely in the processing

of information, but rather in the representation of that information. As we have

seen, pattern-classification networks are fundamentally identical to associative-

memory (or other mapping) networks. We can surmise, then, that the pattern-

matching ability of the neural network can be a powerful tool when used to

extract meaningful relationships between (apparently) unrelated data elements,to

assist in the classification of those patterns.

SUGGESTED READINGS

There are many excellent texts describing the theoretical foundations ofthe basic

technologies addressed in this chapter. Readers interested in learning more about

182 Pattern Classification

radar from a rigorous mathematical perspective are referred to M. Skolnik’s clas-

sic work Introduction to Radar Systems [12]. For readers interested in a more

applications-oriented discussion of radar and its related technologies, Raymond

Berkowitz’s Modern Radar: Analysis, Evaluation, and System Design [2] pro-

vides a good, broad-based discussion of radar theory andpractical applications of
the technology.

With regard to medical and diagnostic applications, there has been a plethora

of excellent papers published describing how neural networks have been success-

fully applied to recognizing and identifying medical problems. Manyofthese pa-
pers have been publishedin the proceedings of the Neural Information Processing
Systems (NIPS) conferences, held annually and sponsored by the International
Neural NetworkSociety.

Finally, NASA sponsors more than a dozen excellent conferences on ad-
vanced automation technologies, with an emphasis on space-related applications,
and publishes proceedings from most of these meetings. Johnson Space Center
(JSC) and the Jet Propulsion Laboratory (JPL) are the two NASAfacilities most
actively involved in advanced automation research. Specifically, the proceedings
of the Space Operations Automation Research (SOAR) conference, held annually
and sponsored by JSC provide a good overview of the research being conducted
in neural network applications with respect to aerospace and control systems.

BIBLIOGRAPHY

1. R. J. Babaian, H. Miyashita, R. B. Evans, A. C. von Eshenbach,and E. I. Ramirez.
Early detection program for prostate cancer: Results and identification of high-risk patient
population. Urology, 37(3):193-197, 1991.

2. RaymondS. Berkowitz, editor. Modern Radar: Analysis, Evaluation, and System De-
sign. John Wiley & Sons, New York, 1965.

3. C. C. Boring, T. S. Squires, and T. Tong. Cancerstatistics. CA—A Cancer Journal for
Clinicians, 41(1), 19, 1991. |

4. W. F. Dahnert, U. M. Hamper,and J. C. Eggleston. Prostatic evaluation by transrectal
sonography andprostate specific antigen in the search for prostate cancer. Journal of
Urology, 139:758-761, 1986.

5. Jean-Baptiste Enombo. Feature Analysis and Neural Network Classification ofProstate
Ultrasound Images, Master’s Thesis, The University of Houston—Clear Lake, Houston,
TX, 1994.

6. R. M.Haralick, K. Shanmugam,and I. Dinstein. Textural features for imageclassifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3(6), pp. 269-285,
1973,

7. A. Glen Houston, S. B. Premkumar, David E.Pitts, and R. J. Babaian. Statistical in-
terpretation of texture for medical applications, Biomedical Image Processing and Three-
Dimensional Microscopy, 1660, pp. 576-582, 1992.

8. R. P. Huben. The USA experience: Diagnosis and follow-up of prostate malignancy by
transrectal ultrasound. Progress in Clinical and Biological Research, 237: 153-159, 1987.

Bibliography - 183

9. F Lee. Transrectal ultrasound in the diagnosis, staging, guided needle biopsy, and

screening for prostate cancer. Progress in Clinical and Biological Research, 237:73-109,

1987. 7

10. F. Lee, P. J. Littrup, and S. T. Torp-Pederson. Prostate cancer: Comparison of tran-

srectal ultrasound and digital rectal examination for screening. Radiology, 178:389-394,

1988.

11. Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pro-

nounce English text. Complex Systems, 1:145—168, 1987.

12. M.I. Skolnik. Introduction to Radar Systems, McGraw-Hill, New York, 1962.

C H A P T E R

Image Processing

Where is the screen upon which the eyes display the scenesof life?

— Source unknown

Image processing, as we shall use the term in this chapter, is any process that

extracts meaningful information from image data. Usingthis definition, we could

say that we have seen several examples of neural networks performing image-

processing application in previous chapters. For instance, consider the prostate-

cancerclassification system, discussed in Chapter 6. The inputto the classifier

was, in a sense, raw image data, and the output produced by the classifier was

information extracted from the image-texture analysis.

In this chapter, however, we shall concern ourselves with applications that

extract information in order to determine the scene content of an image, using

the entire picture matrix as input. To put this idea in perspective, consider how

a human perceives television. The screen image is really nothing more than a

collection of dots, each a different color, intensity, and brightness. Individually,

those dots are meaningless. Collectively, however, the arrangement of dots on

the screen provides enough information for the human viewer to recognize the

physical objects contained in the image data. The only problem is that we do

not completely understand how the brain is able to convert the image from set

of discrete picture elements to an internal representation of an object that makes

sense in the context of the real world.

Wedo know, however, that people see images on a television screen because

when the visual imagery data is processed by the brain, the visual cortex! is

somehow able to extract information about the scene content, and then relate

the information to other, familiar objects that we have already internalized. This

process is commonly referred to as recognition, and hashistorically been one of

the most complicated aspects of image processing.

1. The visual cortex is the region in the brain where sight is implemented.

185

186 Image Processing

In this chapter, we shall explore the application of neural networks in

image-recognition tasks. We shall conduct this investigation in a manner that

is slightly different from the survey approach we have taken in previous chapters.

Specifically, we shall begin our discussion with an overview of a very special

neural-network paradigm that has been developed specifically to perform image-

recognition processes. We do so to illustrate how special-purpose networks can

be constructed to address niche-application areas. After completing this over-

view, we shall begin our discussion of image-processing applications of neural

networks.

7.1 IMAGE-PROCESSING NETWORKS

In this section, we shall briefly describe the operation of the neocognitron [6],

the model of selective attention, and the internal-representation [11] network

paradigms. We have deferred our discussion of these networks until now, be-

cause, unlike the more general network models described in Chapter 2, these

networks do not learn to perform an application through repeated exposure to
training exemplars. Rather, the networks are constructed specifically for an ap-
plication. Moreover, connection weights are determined through a special form
of unsupervised learning, and then shared by many processing elements.

7.1.1 The Neocognitron

Asit wasoriginally defined by Kunihiko Fukuschimain “A Neural Network for
Visual Pattern Recognition,” [5] the neocognitron was designed to perform a sin-
gle function: position independent, optical character recognition. The power of
the network comes from its architecture, which, as we indicated earlier, 1S con-
structed specifically for the application. This is not to say that the networkis only
useful in this one application—actually, it could have many. However, modifying
the neocognitron to perform other applications usually involves modifying the
interconnections between processing elements, not in the sense that connection
weights are modified to learn new information, but in the physical sense, where
connections between units are implementedselectively. As we shall show in later
sections, however, there are exceptionsto this rule. In fact, since its development
in 1983, the neocognitron has been improved in many ways to perform a variety
of image-processing functions, and, hence, is worthy of our study.

As shownin Figure 7.1, the neocognitron is a hierarchical structure of pro-
cessing layers, with internal layers organizedas pairs of sublayers. Each sublayer
is composed of a series of two-dimensional (2D) processing planes, with each
plane containing an array of network processing elements. The behavior of each
processing elementis defined in essentially the same manneras the processingel-
ements that we discussed in Chapter 1. However, we shall not concern ourselves
with the low-level operation of the units in this network, as we are primarily in-
terested in the conceptual processing that occursat the level of the plane.

7.1 Image-Processing Networks 187

Cc % Cc Q

Cc WY nS Cc © NS

Cc
“) 3

 w
u

W
a
E
M

 w
w

\ w
e

Figure 7.1 This diagram illustrates the architecture of the neocognitron as described by

its inventors. The input layer, designated here as Up, is arranged in a 2D matrix and serves

to hold the imagedata for the rest of the network. Each internal layer is organized as a

collection of planes, or 2D matrices, that successively integrate abstract information from

the input layers that feed it. The output consists of a single layer of processing elements

that, in the character-recognition application, classify the input image as oneoften digits.

Fukushimaandhis colleagues developed this structure, in part to mimic the

observed behavior of the human visual cortex, but also to illustrate the ability of

a neural network to extract meaningful information from images. Although not

biologically accurate, the structure of the neocognitron lendsitself to extracting

information contained in images through a process of successive integration of

features.

For the character-recognition application, the neocognitron is organized into

nine layers, alternating simple cell, or S-cell, layers with complex cell, or C-

cell layers. The S-cell layers are defined such that each S-cell is essentially a

feature detector, responding only to the presence of a specific feature* in the

input. Different S-cells in the same layer are sensitive to the same feature, at

different locations in the input space, with locations being determined bythe

interconnection between the input and S-cell layer.

It is important to recognize that the neocognitronis not a fully connected net-

work, in the samesense that the BPN is fully connected between layers. Rather,

connectionsin the neocognitron are established selectively to define the receptive

field, or the region in the input to which the S-cell is responsive, for the plane.

This selective connectivity is the mechanism that enables the neocognitronto re-

spondto its predefined features, regardless of position.

Associated with each S-cell layer is a corresponding C-cell layer, although

the numberof planes in the C-cell layer does not have to match the numberof

planes on the corresponding S-cell layer. The C-cell planes integrate the response

2. For the character-recognition task, input features were defined as line segments at different orien-

tations on theretina.

188 Image Processing

Figure 7.2 This diagram illustrates the process of character recognition within the

neocognitron network.For clarity, we have omitted many of the planes on each layer,

and collapsed the network somewhat. The operation of the network is described in the

text. Source: Neocognitron: A neural network model for a mechanismofvisual pattern

recognition [6]. Used with permission. Copyright ©1983 IEEE.

of the S-cell layers that feed them, respondingif at least one of the S-cell input
planes has activated.

From an information-processing perspective, this structure allows the neo-
cognitron to recognize and respond to shapes in the input image that represent
abstract concepts at successively higherlevels. Interestingly, this process of suc-
cessive abstraction led one researcher to compare the operation of the neocogni-
tron with biological models that advocate the existence of grandmothercells? in
the brain.

In Figure 7.2, weillustrate the ideas underlying the operation of the neocog-
nitron. Essentially, the input layer serves as a 2D retina, holding the image data
for propagation through the network. Each subsequent S-cell—C-cell layer com-
bination acts to detect and integrate the feature combinations from the receptive
field on the previous layer, until finally the network responds by classifying the
image as a specific character. At that point, we can say that the neocognitron has
recognized the input-character image.

Weshall forego a detailed discussion ofthe internal operation of the neocog-
nitron, because, as we mentioned earlier, the implementation of the network is
specific to the character-recognition application. For our purposes,it is sufficient

3. The term grandmothercellis an allusion to a single neuronthat will only activate when you see a

picture of your grandmother.

7.1 Image-Processing Networks 189

to convey an appreciation of how the network operates, not the specifics ofits

implementation.

7.1.2 The Selective-Attention Model

The model of selective attention [4] is actually a network that is composed of

two identical neocognitrons, arranged so that the outputofthe first network feeds

the input of the second. Do not be misled, however. We have not reversed the

position of the second network. Rather, we allow information to propagate from

the higher layers downto the layer that was considered to be the input in the

original network. Bear in mindthat we do notalter the connectivity of the original

networkat all. The only modification we must make to the second neocognitron

is in the implementation of the processing that occurs in the processing element—

we must invert the behavior of the unit so that the information being sent down

from the higher layers is decomposed into its componentparts before being sent

to the subsequent layer. Thus, when information is propagated from the top of

the network, the C-cell layers specify the abstract concept from the higherlayers,

while the S-cells locate the position of the specific object in the subsequentlayer.

This behavior is illustrated in Figure 7.3. As you can see, the bottom-up

neocognitron extracts the scene content from the input image data to produce

a “recognized” representation of the object in the image, while the top-down

network acts to reconstruct the memory of the prototype, or ideal, image of the

object. This scheme of producing a “memorized”version of the object is mindful

of the operation of the ART networks, although the ART models use the recalled

pattern to reinforce the memory.

One significant advantage of the selective-attention modelis that it locates

the position of the recognized object in the input image. This behavior can be

conceptualized as focused attention, because the top-down network produces an

output that appears to focus on the image of the recognized object in the scene.It

is this characteristic of the network that inspired Fukushima to name the network

as he did.

7.1.3 Internal-Representation Networks

In a paper published in 1989, Takashi Omori and Taku Nagase [11] described a

novel enhancementto the modelof selective attention that allows the network to

recognize multiple objects in a single image. Their approachis basedonanitera-

tive process, where each recognition cycle extracts a single object from the input

image and masks it out of the input. The resulting image is then repropagated

through the networks, which extract the next image, and so on.

The network model described by Omori and Nagase is illustrated in Fig-

ure 7.4. To illustrate the operation of this network, consider an application where

the selective-attention network had been constructed to recognize four geometric

shapes in the input image: a square, a triangle, an inverted triangle, and a dia-

mond.Initially, the network is in a quiescentstate, and the masklayer is empty.If

190 Image Processing

\
Recognized

Output

\
o

S
O
O
N
S
S
\

Recollection

Input

 \o
o
c
o
d
d
S
c
o
\

Figure 7.3. This diagram illustrates the architecture of the modelof selective attention.
As described in the text, the two networksoperate concurrently, the bottom-up network

acting to recognize objects in the input image, and the top-down networkservingto recall

an idealized imageof the recognized object, and to locate the position of the recognized

object in the original image. Source: Adapted from Image understanding by neural

networks[11]. Used with permission. Copyright ©1989 IEEE.

we then apply an input imageto the network that contains some combination of

the recognizable images, Omori and Nagaseassertthat:

1. The network will extract the image of one of the objects by first propagating.

the input to the output of the bottom-up network. Theresult is a pattern that

classifies one of the objects.

2. The classified pattern is then propagated through the top-down network, |

which reconstructs the image of the recognized object, and locates it in the
image.

3. The reconstructed image of the recognized object is then applied to the mask

layer, which holds the restored image.

4. The mask layer is connected to the first layer of S-cells in the bottom-up

network through inhibiting connections that mirror the connections to the

neocognitron retina. Thus, activation of the mask units eliminates the image

of the recognized object from the image applied to the selective-attention
network.

7.1 Image-Processing Networks 191

Pattern

A 2

of
Kf O} Recognized

0 Output
LL

Mask

Planes

Recollection

Input

 \o
o
c
o
d
S
o
c
o
\

Figure 7.4 This diagram illustrates the structure of the internal representation of images

(IRI) network. The operation of the network is described in the text. Source: Adaptedfrom

Image understanding by neural networks [11]. Used with permission. Copyright ©1989

IEEE.

5. The entire process then repeats, this time eliminating one of the remaining,

unrecognized objects from the image.

6. The process continues until all of the objects have been recognized. This

condition is indicated whenthe state of the mask layer duplicates the state of

the input image. In this situation, the input applied to the selective-attention

networkis a null image.

In Figure 7.5 weillustrate a slightly more practical application of the in-

ternal representation of images (IRI) network. In this example, the network has

been constructed to recognize the common symbols usedto represent electronic

components in a circuit diagram. Omori and Nagase assert that the IRI can

successfully identify each of the symbols in the image, and that the recogni-

tion of these symbols is the first step toward machine interpretation of similar

diagrams.
This concludes our (rather brief) discussion of the neocognitron and its

derivative networks. Readers interested in a more thoroughdiscussion ofthe the-

ory of these paradigmsare referred to the publications previously cited, or any of

the texts described in the Suggested Readingssection of this chapter.

192 Image Processing

Mask Layers

Figure 7.5 This diagram illustrates how the IRI network could be usedto “read” an
electronic schematic diagram. As each symbol is recognized, an external process could

establish the function represented by the symbol, and determine the behaviorof the

resulting circuit. Source: Reprinted with permission from Image understanding by neuron

network. Jn Proceedings of the International Joint Conference on Neural Networks, June

1989. Copyright ©1989 IEEE.

7.2 GENDER RECOGNITION FROM FACIAL IMAGES

The BPNis not commonly used for image-processing applications, because that

network tends to be overly sensitive to the position of the object in the image.

To illustrate this point, consider the operation of a BPN similar to the character-

recognition network described in Chapter 4. To successfully use a BPN in this

application, we must ensure that the character image is properly framed in the

input pattern vector prior to presentation to the network. If the image is off by

a single pixel in any direction, the pattern vector applied to the network will be

significantly different from the pattern vector that the network learned to recog-

nize, resulting in a likely misclassification of the character. This is illustrated in

Figure 7.6.

In a paper published in 1991, B. A. Golomb,et al. [7] described a novel

approach using multiple BPNsto determine a person’s gender based only on the

image of the face of that person. While it does not solve the pattern-framing issue

described above, it does illustrate how multiple BPNs can be usedto perform

feature extraction from image data, a precursor to position-independent pattern

recognition. For that reason, we shall now investigate the implementation of that

system.

7.2 GenderRecognition from Facial Images | 193

(a)

000000 001100 010010 010010 011110 010010 010010 0o00000

(b)

000000 011000 100100 100100 111100 100100 100100 000000

Figure 7.6 This figure shows why a BPN can be “confused” by an improperly framed

character image. In both examples, the character image is contained inside a larger

window. Notice the differences between the twopatterns, and consider how a BPNtrained

to recognize the first pattern might fail to recognize the second image. (a) This diagram

showsthe form of the pattern vector for a properly framed A. (b) This diagram illustrates

an improperly framed A,offset from its “proper” position by a single horizontal pixel.

7.2.1 Multiple-Network Architecture

The scheme employed by Golombetal. uses a standard three-layer BPN trained

to reproduce an output pattern identical to the input pattern as the means for

extracting the visual features from the facial image. The twist is that the hidden

layer contains significantly fewer processing elements than either the input or

output layers, and it is the activation pattern produced by the hidden layer that

represents the extracted feature vector for the input image. Once extracted from

the first BPN, the feature vector is then used as the input to another BPN that

learns to classify gender from the extracted features.

As shownin Figure 7.7, the first BPN compresses the image from 900 pixels

(representing the 30 x 30 pixel matrix) to 40 features. The compressed form of

the image is then used as input to another BPN, whichclassifies the genderof the

subject represented by the feature vector. Using the combination of BPNsinthis

mannerhas two benefits in this application: First, the compression network serves

to reduce the dimensionofthe pattern to be classified from 900 to 40 (a reduction

of approximately 96%), thus simplifying the classification process; and, second,

194 Image Processing

1) (2) (8) (4) (8) 9% G08

Figure 7.7 This diagram showsthe architecture of the multiple network system

developed to determine gender from facial images. The operation of the system is

described in the text. Source: SEXNET: A neural network identifies sex from human

faces [7]. Copyright ©1991, Morgan Kaufmann Publishers. Used with permission.

by training the compression network to reproducethe inputat the output, we have

forced it to extract the features from the input that lead to successful restora-

tion of the image. In effect, the hidden layer in the image-compression BPN is

performing a principle componentanalysis [1] on the image data, encoding the

eigenvectors for the imagepatterns.

7.2.2 Facial-lmage Representation

To collect training information for the networks, photographs were taken of 45

male and 45 female subjects. In an attempt to remove visual cues or distrac-

tions from the images, the subjects were photographed with no apparent jewelry,

makeup,facial hair, or other visual indications of gender. Each subject was also

draped with cloth from the neck down, to ensure that the image data focused on

the facial features of each subject. Each subject was photographed from full-

face perspective, although there was no attemptto ensure consistent head position

in all the photographs.

Once the training photographs had been obtained, the imageswere digitized

into 256 gray-shade images. Each image wasthen preprocessed, using conven-

7.2 Gender Recognition from Facial Images 195

tional image-processing techniques, to scale and translate each imageto a uni-

form size, specifically 12 horizontal pixels between the center of the eyes, and

eight vertical pixels from the eyes to the mouth. If necessary, the image was then

rotated to move the head to the vertical. Finally, each image was adjusted us-

ing a pixel block-averaging technique to guarantee the same averagebrightness,

and cropped to a 30 x 30 pixel image to minimize anyreferenceto hair or back-

ground.

After preprocessing, the resulting images were converted into a pattern vec-

tor form for use by the BPN byfirst concatenating each row of the pixel matrix

to form a 900-element vector. Next, each pixel in the vector was scaled into a

numerical value in the range from zero to one, using a simple linear technique

expressed by

/ Xj
Xi = 955 (7.1)

where x; represents the integer gray value assignedto the pixel, and the denomi-

nator reflects the fact that the pixels can take on any one of 256 gray-shadevalues,

ranging between zero and 255, inclusive.

Finally, the researchers assigned a gender status to each imageby correlating

the image to the subject. Thus, for the SexNet* application, the training exemplars

consisted of 90 image-gender patterns. Had this been a standard BPN applica-

tion, the network would have been trained using the conventional BPN training

algorithm on the exemplar set. As we indicated earlier, however, the SexNetre-

searchers went a step further in their application by using a BPNto extract the

important features of the image priorto classification. We shall now investigate

the implementation of that system.

7.2.3 SexNetTraining

The first step in creating the SexNet application was to train the image-

compression network. This network was constructed as a standard, three-layer

BPN,with 900 inputs, 40 units on the hidden layer, and 900 outputs. The hidden

units used the sigmoidal activation function, arguably to improve the network’s

ability to compress the image data, while the output units were linear. Next, the

exemplar data constructed to train the SexNet application was separated into

input and output patterns. The input image patterns were then duplicated, and

organized into a set of 90 image-image exemplars. It was these data that were

then used to train the data-compression BPN.

Exercise 7.1: Describe why the linear activation function was the appropriate

choice for the output units in the compression network in the SexNet applica-

tion.

4. SexNet was the nameused in the original paperto describe this application.

196 Image Processing

The image-compression network wastrained for 2,000 epochs, during which

time the network learned to generate an “adequate” reconstruction of the input

image. Accordingto the original authors, “adequate” image reconstruction was a

subjective measure indicating that the 90 images produced by the network were

‘distinct and discriminable, although not identical” to the original images. Un-

fortunately, no indication of the global error produced by the trained network is

provided in the original paper, so we must assumethatthe training wassufficient

to maximize the image reconstruction from the extracted features.

Once the image-compression network had completed training, the connec-

tion weights in that network were frozen, and the 90 images were then propa-

gated through the network, one at a time. After each pattern had been propagated

through the network,the activation of each of the units on the hidden layer was

recorded as a 40-element vector, producing 90, 40-elementfeature vectors. These

feature vectors were then paired with the genderclassification for the image that

they represented, and these feature-gender pairings becamethetraining set for the

gender-classification network.

The gender-classification network contained 40 input units, one sigmoidal

output unit, and different numbers of units on the hidden layerin different train-

ing trials. The output of the network wasinterpreted as an indication of “male”

if the single output unit had an output value greater than 0.5, and ‘“‘female”’ other-
wise.

The reason for using different numbers of hidden-layer units was to deter-

mine the effect of the hidden-layer units on the successful classification of the

input-feature vector. Five different versions of the gender-classification network

were constructed and tested, using 2, 5, 10, 20, and 40 hidden-layer units as the

numberof units in eachtrial. In eachtrial, training occurred normally, using 80
randomly selected feature-genderpairs of the 90 availableas the training set. The
remaining 10 were held out until after training was completed, to determine how
well the gender-classification network had generalizedits solution.

7.2.4 Gender-Recognition Results

The performanceof the SexNet wasevaluated, after training had been completed,
by asking the system to classify the gender ofall 90 faces. Because, for any given
trial, the system had only learned 80 of the 90 possible faces, accurate results
were expected for 72% of the images(the training images) while the remaining
28% provided an indication of how successful the system had beenat extracting
appropriate features from the imageandclassifying the feature patterns.

The results were then comparedto the ability of five humans, who were
unfamiliar with the subjects, to correctly identify the gender of the people in
the images. In addition, each human wasaskedto provide a binary indication of
certainty for each of their genderclassifications.

In their paper, Golombet al. report that the SexNet with 10 units in the

gender-classification network correctly classified 77, 90, 72, 90, 81, 90, and 90

of the imagesin seventrials, each trial using a different subset of the 90 images

7.3 Imagery Feature Discovery 197

for training, for an overall accuracy of 93.7%. In comparison, the five human

subjects classified 82, 80, 78, 82, and 76 of the 90 imagescorrectly, for an average

accuracy of 88.4%.

Interestingly, there were other correlations between the behavior of the

SexNet and the human subjects. In particular, one of the male images gave the

SexNet numerous problems, being misclassified as “female” when used asa test

image, and slowing the training of the gender-classification network when used

as a training pattern. The same image was misclassified as “Female,” “Sure” by

all five human subjects. In another instance, the SexNet repeatedly misclassified

one of the male images as female any time that image was notincluded in the

training set. Further analysis of the problem revealed that the error was not with

the operation of the SexNet—the imagethat was being misclassified was,in fact,

clearly a female that had been erroneously labeled a male in the exemplarset.

While these results suggest that, although not necessarily a biological model

for image processing, the BPN can correctly extract the attributes of an image that

lead to the correct classification of the object in the image. Moresignificantly,

however, is the notion that the BPN can be used to determine the correct set

of attributes needed to encode the image with no a priori knowledge of the

characteristics of the image. As evidenced by the SexNetapplication, the process

of training a BPN can provide an automatic meansof determining, and extracting,

the information contained in raw data.

7.3 IMAGERY FEATURE DISCOVERY

In the previous sections of this chapter, we have shownhow the neocognitron and

its derivative networks have been used to identify, and locate, objects contained in

imagedata, and how multiple networks have been combined to solve a complex

problem in image processing. In this section, we shall investigate how a team

of researchers at Sandia National Laboratory combined both aspects of these

applications to identify the images of military targets in synthetic aperture radar

(SAR) imagery [2]. Specifically, the developers used a neocognitron network to

extract the information content from the SAR image data, and then allowed an

ART2 networkto classify the resulting feature pattern.

7.3.1 SAR Image Representation

Synthetic aperture radar is, quite simply, a process of mapping terrain, and any

manmade objects on the terrain, by applying knowledge aboutthe reflectivity of

materials to an EMRsignal return.” Conceptually, SAR operates by assigning an

intensity value to each resolvable point in the electronic signal produced by an

EMRpulse bouncing off of terrestrial objects and returning to the SAR receiver.

5. Readers who have skipped chapters in this book mayfind it helpful to review the section on pulse

Doppler radar signature classification, in Chapter 6, before progressing further in this section.

198 Image Processing

Figure 7.8 This diagram depicts the SAR imagery of a tank. Notice how, even though

the imageis obviously not representative of the appearance of the tanks in the human

visual spectrum, wearestill able to discern the object in the SAR image. Source: Adapted

from Feature discovery via neural networks for object recognition in SAR imagery [2].

Used with permission. Copyright ©1992 IEEE.

The resulting image is therefore a representation of the electronic return after it
has been mappedinto the visual spectrum. In Figure 7.8, weillustrate a typical
SARreturn after it has been processed.

The primary benefit of using SAR instead of relying strictly on visual im-
agery is that manmade objects tend to reflect EMR signals more readily than
visible radiation, thus making those objects more difficult to disguise. A corollary
effect is that SAR imagery tends to reduce the disruptive effect of background
clutter in a scene. The problem, however, is that the human visual system has
evolved over the millennia so as to optimize the performanceof that system in the
visible light frequencies. When weartificially map nonvisible EMR frequencies
into the visible spectrum, our biologically tuned system can become confused,
and we can easily overlook, or misclassify, objects in the SAR images.

However, we have already seen many examples of neural networks that have
been constructed to process information outside of the sensory range of humans.
Weshall now investigate how the Sandia research team developed a neuralarchi-
tecture to identify objects in SAR imagery.

7.3.2 SAR Network Architectures

The scheme employed by Fogler and colleagues was to use a partially imple-
mented neocognitron to extract the important features from the SAR imagery, and
then allow a modified ART2 network to classify the resultant feature vector as a

7.3 Imagery Feature Discovery 199

2:1 S/C 2:1 S/C
an N |

2 2pNSE
= BS N's
eS 0} S 7 \a=
Lt L— RO .SE OR
Pie : FO NOR
vo yWV :Bol oF Fete
32 Planes 32 Planes 2048 35
20 x 20 8x8 F 4 Units Fo Units

Figure 7.9 This figure illustrates the network combination used to process the SAR
imagery. The neocognitron hasthe effect of extracting the feature vector represented in

the SAR image data, while the ART2 networkclassifies the feature combination. In this

application, only one class of patterns was interesting, even though there may have been

many feature patterns that represented the interesting category. The technique used to

determinethe classification of the pattern by the ART2 network is described in thetext.

recognized target or a noninteresting object. As shownin Figure 7.9, the neocog-

nitron processes the SAR imagery as presented on the retina. The connections

between the retina and thefirst layer of S-cells consist of connections that are

adapted using the unsupervised learning technique described by Fukushima[5],

then shared by units on the other planes within the layer.

As described in Section 7.1, each successive layer in the neocognitron allows

the network to more narrowly classify the object in the input image. Rather than

extend the architecture of the neocognitron developed for this application to the

point that the network could perform the classification of the SAR imagery, the

investigators instead chose to use the neocognitron to extract the general feature

combinations of the input, then allow a modified ART2 network to complete the

classification process.

The advantageto this approachlies in the extensibility of the ART2 network

structure. To put this notion in perspective, recall that most of the classification

networks we have examined upto this point require the user to prespecify the total

number of categories into which the input pattern can be classified. While useful

in many applications, this fixed-class methodofclassification is not very practical

when we are considering a system that must account for an unknown number

of categories. Because we are interested in classifying military tanks in SAR

imagery, this is analogous to building a system that can only recognize a certain

200 Image Processing

Figure 7.10 This diagram illustrates how hyperspheres can be implemented in an ART

network in order to solve the one-class problem. Each hypersphereis located in n-space

by an eigenvector ofthe pattern class, and is sized by the radius of the hypersphere.In the
ARTnetwork, the eigenvector can be considered to be the memory pattern stored in the
top-down connections from the F2 layer. The radius of the hypersphere is then determined
by the value of the vigilance parameter, which describes the maximum distance any
pattern vector can be from the characteristic vector, and still be associated with the
memorypattern.

numberof tanks. What happens,then,if the opposition creates a new class of tank
that appears significantly different than any otherclass of tank previously known?
In a fixed-class system, the system (probably) fails by either misclassifying the
type of the tank, or by classifying it as a noninteresting target.

The twist in this application, however, is that, even though the number and
type of objects that have to be classified may change over time, wearestill
only interested in a one-class determination: Is the object in the SAR image a
potential target, or is it not? One method for creating a system that can perform
one-class classification is to use a hyperspherical-distance classifier to separate
the classes. A hyperspherical-distanceclassifier is one that surrounds the member
elements of the target class with hyperspheres in the n-dimensionalpattern space.
As illustrated in Figure 7.10, a memberof the target class is any point that is
contained by the hyperspheres defined in the space. In theory, the ART network
provides this type of pattern classification as an inherentpart of its structure. To
see how this happens,let us now considerthe operation of the ART network in a
little more detail.

7.3 Imagery Feature Discovery — 201

In the ART2 network, the F| layer acts as a pattern preprocessor thatsi-

multaneously performs noise elimination and contrast enhancementon the input

pattern. It also has the effect of normalizing the input pattern vector to allow the

competitive F> layer to comparethe input pattern vector with the vectors stored in

the bottom-up connection weights in an inner-product sense. Thus,the first phase

of pattern propagation in the ART2 removes noise from the input, and finds the

best match of previously learned patterns to activate the memory.

Similarly, the F> layer serves to encode the memory ofall of the input pat-

terns previously encountered. Another way to conceptualize this process is to

think of the stored memories in the top-down connection weights in the ART2

network as the set of target classes that the network can identify.If all of the target

classes stored in the network were, in fact, members of the one class the network

is being asked to classify, then membership in the one class is indicated by the

network’s acceptance of the current input. If the ART2 recognizes the currentin-

put pattern, it is considered to be a memberofthe targetclass.

7.3.3 SAR Exemplars

For the tank-recognition application, simulated SAR imagery data was developed

using a software package that allowed the Sandia researchers to model several

different tanks in a variety of backgrounds.Fortraining purposes, one tank model

was used, with SAR imagery for each model being produced at 5-degree az-

imuthal rotations. This process produced 72 SAR imagesof the tank, of which 36

becamethe training set, and 36 were held out to test the tolerance of the system

to the image aspect.
Additionally, two other sets of image data were collected during this phase.

Thefirst set, which represented a near-target class, consisted of 50 SAR images

of another tank class, which might be representative of nonhostile tank,at various

azimuthal rotations. The second set was comprised of 600 randomly selected

clutter images, taken from actual SAR returns.

Unfortunately, the original authors do not elaborate on the resolution of the

SAR image produced, nor do they mention the gray-scale schemeusedto repre-

sent the image data. They do, however, mentionthat the retina in the neocognitron

was a 2D array organized as 48 x 48 processing elements. We can surmise, then,

that the SAR data mappeddirectly to this representation. Moreover, it does not

really matter how many gray-scale gradations were used to represent the SAR

imagery. We can apply Eq.(7.1) to scale any gray-scale representation by merely

substituting the maximum numberof gradationsin the imagery for the denomi-

nator. Thus, we now have a method for converting the SAR imagery data into a

form usable by the neural networks.

7.3.4 Training the SAR Networks

Training the networks to perform the SAR image target classification occurs in

two distinct steps. First, the neocognitron was repeatedly presented with all of

202 Image Processing

the SAR exemplars collected from the target class. During this time, the neocog-

nitron was allowed to self-adapt, but learning in the ART2 wasdisabled. Exem-

plars for the ART2 network werecollected after training of the neocognitron was

completed. This delay was necessary, to allow the neocognitron to discoverits

own methodfor representing the image features. Once the neocognitron had ade-

quately encoded the SAR imagefeatures,° learning was disabled, and the ART2

was allowed to learn the feature vectors produced by the neocognitron. These

feature vectors were produced by additional presentation of the SAR training

patterns to the neocognitron with learning disabled. The activity patterns on the

top layer were then presented directly to the ART2 for encoding, and the entire

process was repeated until the ART2 had learned to recognize all of the features

presentin the training patterns.

After the ART2 had learnedto classify all of the feature vectors produced by

the neocognitron, learning was turnedoff, and the system wastested to determine

if it could accurately distinguish targets from near-targets in noisy SAR images.

When operated in this mode, the neocognitron was presented with an arbitrary

SAR image, either from the set of 36 target images that had been withheld from

training, or from one of the other two image classes (near-target and clutter).

After it completed the process of extracting the feature components from the

input image, the resulting feature vector was given to the ART2forclassification.
If the ART2 found a matching pattern in its memory, the image wasclassified as
a target. Conversely, if the ART2 fails to recall the feature vector, a condition
indicated when the winning F> unit produces a memorythat is less than the
vigilance parameter, the imageis classified as a nontarget.

7.3.5 SARTarget-Identification Results

The Sandia researchers found that the system they developed to classify SAR
imagery was, overall, very successful. In Figure 7.11, we present the results
of these experiments as they were reported in the original paper. Of particular
interest is the relationship between the value of the vigilance parameter used
in the ART2 network and the ability of the system to operate correctly. If the
vigilance parameter were set below 0.88, the system misclassifies some of the
near-target test set as targets. Conversely, when the vigilance parameter goes
above 0.94, the system begins to misclassify true targets, as it loses the ability
to generalize to the target aspect. The ideal value for the vigilance parameter was
found to be 0.91. At that value, the system correctly classified 34 of 36 targets and
misclassified 2 of 50 near-targets. In all cases, the system appears to do extremely
well when presented only with clutter.

6. Thecriteria for making this determination are described in [5].

7.4 Aircraft Tracking in Video Imagery 203

Clutter
100% 40 r

50% <

 i. l l]] | j |] | I | j | l |

0.86 0.88 0.90 0.92 0.94 0.86 0.88 0.90 0.92 0.94

(a) Vigilance (b) Vigilance

Figure 7.11. These graphsillustrate the results of the SAR imageclassification system.

(a) This graph depicts the relationship between the vigilance parameter in the ART2

network and the accuracy of the system. (b) This graph showsthe relationship betweenthe

numberof F> layer units needed to completely classify the target class and the vigilance

parameterin the network. Source: Adaptedfrom Feature discovery via neural networksfor

object recognition in SAR imagery [2]. Used with permission. Copyright ©1992 IEEE.

7.4 AIRCRAFT TRACKING IN VIDEO IMAGERY

Thefinal application weshall describe in this chapteris a relatively simple image-

processing application where the neural network is used to extract the image of

an aircraft from a 2D video imageandlocate the center of the aircraft in the im-

age. This application is interesting for several reasons: It shows how standard

BPNarchitecture can be constructed to use time-dependent information to im-

prove the network’s tolerance to noise and background distractions; it shows how

neural networks can be quickly developed to solve problemsthat were previously

intractable or cost prohibitive; and it shows how neural networks can be success-

fully integrated (or retrofit) with other information-processing technologies.

7.4.1. Tracking-System Requirements

The U.S. Air Force (USAF) does routine ordnancetesting to evaluate the perfor-

manceofits aircraft and munitions. Most of the tests are performed over specially

designated test areas on government-ownedland. Thetest sites are typically ar-

ranged so that the target area is surrounded by cinetheolodites, which is nothing

more than a special-purpose video-tracking station. Eachstation is situated such

that an operator positioned inside the station can videotape the flight of the in-

comingtest aircraft, and record the deployment of the ordnance undertest.

204 Image Processing

x4 V4

 Xo ,Y¥2

Figure 7.12 This diagram showshowtheposition of an aircraft can be determined by

triangulation. For clarity, we are only concernedhere with terrestrial positioning. Each

video station hasa fixed position, indicated by the latitude and longitude coordinates next

to each station. Further, the azimuthal rotation of the siting device (the video camera)is

known with respect to a horizontal reference angle. The position of the aircraft can then

be precisely determined by a simple trigonometric calculation to find the intersection of

the twositing lines.

Each videostation hasa fixed referencein its latitude, longitude, andaltitude.

Furthermore, the videotape recordedat eachstation is electronically tagged with

the azimuthal orientation of the camera as the videotape is recorded, to reference

the physical position of the recording camera. However, the cameras are manually
aimed and controlled, meaning that, quite often, the image of thetest aircraft
tends to move around in the recording. Because these recordings are used to
evaluate the performanceof the deployed ordnance,it is imperative that the exact
position ofthe aircraft be knownat the point of release, so that the flight of the
ordnancecan be accurately measured.

The basic approach to locating the position of the aircraft is to use
triangulation—that is, to correlate the position and directional information as-
sociated with the recorded images from two (or more) video stations. In two
dimensions,this can be donebyfinding the intersection of the two lines formed
by the position of the recording stations and the azimuthal rotation of each camera

at the time the video wasrecorded. This processis illustrated in Figure 7.12.

Unfortunately, the process is complicated somewhat, because, as we men-

tioned earlier, the video cameras are manually aimed at the incomingaircraft.

As anyone whohasused a hand-held video camera with a telephoto lens will

know,’ even slight movements in the camera will cause the image of the target

to jitter. This jittering effect is actually the local manifestation of the positioning

7. This discussion precludes the use of automatic picture-stabilization controls.

7.4 Aircraft Tracking in Video Imagery 205

 Videotape Player
E Video

Frame

Grabber

Disiized Vio DY

ee

 ©

ow
Superimpose
Target on

Video Image

Figure 7.13 This block diagram illustrates the architecture of the system developed to

track aircraft images in an input video stream. In this application, the BPN wassimulated

on the multiprocessor neural emulation tool (NET) computer system developed by the

author. The neural-network coprocessor provided an effective meansof off-loading much

of the computation from the host processor. As a result, the system was able to process the

input video stream at near real-timerates.

problem—if the camera is not pointed directly at the aircraft, there is an error

in the rotation of the platform, which will induce a moresignificant error in the

positioning calculation.

To correct the jitter effect, the USAFhas previously used enlisted personnel

to manually inspect each frame of video after a test to determine the offset of

the aircraft from the center of the image. That offset is then used to correct the

positioning calculation, which,in turn, is used to evaluate the performance of the

ordnance. As you can imagine, manual inspection of several videotapes after each

ordnancetest is a very time-consuming, labor-intensive process.

7.4.2 Tracking-System Architecture

In an attempt to determine if a computer could be used to automate the video-

analysis process, we developed a system that used a BPN to locate the center of

massofthe airplane in the input imagery. Once we knew wherethe plane was in

each frame, it was a simple matter to correct the azimuthal rotation angle for that

video frame.

As shownin Figure 7.13, the architecture of the system we developedincor-

porated a numberof subsystems besides the neural network. The playback from

the recorded video wasinitially digitized by running the video stream through a

video frame-grabber device. The output from the frame grabber was a 64 x 64

206 Image Processing

pixel matrix, with each pixel encoded in a 256 gray-shade integer format. The

video image was then converted into a form usable by the BPN, which had

learned to identify the image of an aircraft and provide, as output, the x and y

pixel coordinates of the center of the plane in the image. For demonstration pur-

poses, we then superimposeda cross-hair at the coordinates indicated by the BPN

on the digitized video, so that we could assess the accuracy of the network.

7.4.3 Tracking-Network Architecture

Initially, a standard BPN wasusedtotry to locate the aircraft in the input image.

To train the network, a program wascreated that captured 250 randomlyselected

digitized images from the recorded video. For each image, the pixel coordinates

(x, y) of the center of the airplane image were manually determined. Thetraining

exemplars were then constructed by applying Eq. (7.1) to each pixel value in each

of the 250 digitized images. Similarly, the target x and y pixel coordinates were

scaled to values between zero and one.

The first network trained had 4,097 input units, organized such that one unit
was allocated to each input pixel, with an additional bias element. The hidden
layer contained 50 sigmoidal units, and the output consisted of 2 linear units.
This network gave good results, but had quite a bit of difficulty dealing with
background clutter. For instance, the network would track the aircraft through a
clear or overcast sky without.difficulty, but when the plane dropped low enough

_ to include mountains in the background of the image, the network immediately
became confused. Apparently, the network had not learned to recognize airplanes
so much as it had learned to find the darkest section in the image. Asa result,
the network would usually indicate a position halfway between the image of the
plane and the mountainsasits targeting position.

To overcomethis difficulty, another network was constructed that contained
8,193 input elements, 50 units on the hidden layer, and two linear outputs. As
shown in Figure 7.14, this network was trained with image data from the current
frame, together with the imagery from the preceding frame. This modification
had the effect of keeping the network from making drastic targeting changes
when there were multiple dark areas in the image simultaneously. This scheme
worked extremely well, keeping the aircraft correctly targeted in 95% of the
imagery. The other 5% were video frames that contained multiple distractions,
or occurred shortly after a sequence where the network had lost focus on the
airplane.

7.4.4 Tracking-System Issues

There are several aspects of this application that warrantfurther study. In this
section, we shall review someofthese issues, to illustrate how they arise, and to
show how they may be overcome whencreating applications of your owndesign.

First, there is the issue of performance. Because the targeting processin this
application occurred after the video information had been recorded, it was not

7.4 Aircraft Tracking in Video Imagery 207

Video Frame n-7 Video Frame n

Figure 7.14 This diagram illustrates the architecture of the BPN constructed to perform
the aircraft-tracking application. The first 4,096 input elements encodedthe scaled,

digitized imagery from the current video frame, while the next 4,096 units encoded the

imagery from the previous video frame. This architecture allowed the BPNto track the

aircraft in the video frame, while simultaneously minimizing the effect of other objects in

the image.

necessary that the system had to be able to process the imagery in real time.

However, in many applications, especially in image processing, it is imperative

that the data be processedat, or very nearto real-timerates.

To illustrate why this might pose a problem here, consider the computational

requirements necessary to perform this application. Each image mustfirst be digi-

tized, then scaled, then propagated through the BPN before we have extracted the

required information from the image data. In this sequence of events, the prop-

agation through the neural network will be the most computationally expensive.

We can see whythis is so if we analyze the process of simulating the BPN de-

scribed in this section.

The second network contains 404,950 connections, 100 between the hidden

layer and the output, and the remainder between the input layer and the hid-

den layer. To propagate a pattern through the network, each connection requires

two floating-point calculations: A multiply followed by an addition operation.

Furthermore, the sigmoid activation function is a transcendental computation,re-

quiring anywhere between 10 and 100 floating-point operations each time it is

computed, depending on the implementation of the function. Even if we assume

that only 10 calculations are required for the sigmoid, weare still faced with

208 Image Processing

performing 810,400 floating-point computations every time one imagepatternis
propagated through the network.®

Because real-time video is nominally 30 image frames per second, were-
quire a computerthat can perform at least 24.3 million floating-point operations
every secondjust to simulate the network. Scaling each input image requires ad-
ditional CPU time, as does acquiring the digitized video image. Increasing the
image resolution quickly compoundsthe problem,especially if the network must
process the raw imagery. Obviously, performance can pose a significant con-
straint on any neural network application. |

Another concern wasthe accuracy of the network. Because it was necessary
to ensure that the system was providing an accurate measure of how far the im-
age of the airplane was from the center of the image frame in order to exactly
locate the position of the aircraft, it was necessary (in this case) to postprocess
the output of the system to identify any imagesthat had been incorrectly targeted.
However,the inclusion of the postprocessis not indicative of a failure of the BPN
to perform its function in this application. In this case, no other automatic solu-
tion existed, and the cost of developing a perfect system was deemedexcessive.
Therefore, as in many otherpractical applications of neural-network technology,
it was decidedthat a reasonable solution waspreferable to no solution.

7.9 IMAGE-PROCESSING SUMMARY

In this chapter, we have seen how neural networks have been usedto identify ob-
jects contained in imagery data, in and outside of the visual spectrum. We have
investigated another neural-network architecture that is both powerful and useful
for performing rotational and translational invariant feature extraction. We have
also examined two applications that use a combination of neural networks, each
to perform a different aspect of information processing for the complete applica-
tion. While these applications exhibit only rudimentary skills when compared to
the processing that goes on in the humanvisualcortex, they neverthelessillustrate
the natural ability of the inherently parallel networks to process a great deal of
information in parallel, and fuse the image data into a meaningful interpretation.

SUGGESTED READINGS

The literature abounds with image-processing applications of neural networks.It
seemsthat the parallel architectures inherent in neural-network structures are par-
ticularly suited to processing the distributed representation of information in an
image. Readersinterested in exploring a more detailed (albeit complex) treatment
of the biological implicationsof neural networks with respect to vision and image

8. During learning, this numbercaneasily triple.

Bibliography 209

processing are referred to Visual Perceptions: The Neurophysiological Founda-

tions [12]. |

For a more complete description of the operation of the neocognitron, one

of the most thorough treatments is provided in Neural Networks: Algorithms, Ap-

plications, and Programming Techniques (3]. Furthermore, Kunihiko Fukushima

has published numerous papers describing the implementation of the neocogni-

tron, the modelof selective attention [4], and other networksbased on the neocog-

nitron processing model.
There are also several special-purpose networks that have been developed

specifically for image-processing applications. Many of these network paradigms

are based on Stephen Grossberg’s boundary contour system [8] or feature contour

system [9]. Still others use a spatiotemporal architecture to detect motion in a

preferred direction [10]. I have deliberately chosen to omit applications based on

these networks from this chapter, because it would not have beenfair to the reader

to introduce a specialized network architecture for each application discussed,

although many would have been appropriate. Readers are encouraged, however,

to explore these network paradigmsandtheir applications on their own.

BIBLIOGRAPHY

1. G. W. Cottrell, P. Munro, and D. Zipser. Image compression by back propagation:

An example of extensional programming. UCSD Institute for Cognitive Science Technical

Report ICS-8702, 1987.

2. R. J. Fogler, M. W. Koch, M. M. Moya, L. D. Hostetler, and D. R. Hush. Feature

discovery via neural networks for object recognition in SAR imagery. Proceedings of the

International Joint Conference on Neural Networks, Baltimore, MD,pp. IV(408—413),

1992.

3. James A. Freeman and David M. Skapura. Neural Networks: Algorithms, Applica-

tions, and Programming Techniques. Addison-Wesley Publishing Company, Reading,

MA,1991.

4. Kunihiko Fukushima. Neural network model for selective attention in visual pattern

recognition and associative recall. Applied Optics, 26(23):4985-4992, December 1987.

§. Kunihiko Fukushima. A neural network for visual pattern recognition. Computer,

21(3):65-75, March 1988.

6. Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural network

model for a mechanism ofvisual pattern recognition. JEEE Transactions on Systems, Man,

and Cybernetics, SMC-13(5)826-834, September—October 1983.

7. B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. SEXNET: A neural network

identifies sex from human faces. In Richard P. Lippman, John E. Moody, and David

S. Touretsky, editors, Advances in Neural Information Processing Systems 3, Morgan-

Kaufmann Publishers, Inc., San Mateo, CA, pp. 573-577, 1991.

8. S. Grossberg and E. Mingolla. Neural dynamics of form perception: Boundary comple-

tion,illusory figures, and neon color spreading. Psychological Review, 92:173-211, 1985.

210 Image Processing

9. S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Textures,
boundaries, and emergent segmentations. Perception and Psychophysics, 38:141-171,
1985.

10. Jim-Shih Liaw and Michael A. Arbib. A biologically inspired neural network model
for 3-D motion detection. Proceedings of the International Joint Conference on Neural
Networks, Seattle, WA, pp. 1(661-665), July 1991.

11. Takashi Omori and Taku Nagase. Image understanding by neuron network. Proceed-
ings of the International Joint Conference on Neural Networks, Washington DC, pp.
II(235-240), 1989.

12. L. Spillman and J. S. Werner, editors. Visual Perceptions: The Neurophysiological
Foundations, Academic Press, San Diego, CA, 1990.

C H A P T E R

Process Control and
Robotics

The dynamic principle offantasyis play, which . . . appears to be inconsistent

with the principle of serious work. But withoutthis playing with fantasy, no

creative work has ever yet come to birth.

— Carl Jung

Process control can be loosely defined as any activity performed to maintain a

dynamic system in a stable condition. In its most general sense, process control

is a function that we perform every minute of the day without even being aware

of the intricacies of the task. Virtually every action performed by a human be-

ing, or any othersentient creature, for that matter, requires some form of process

control. As an illustration, consider the simple act of eating: There is a process to

be performed(e.g., transporting the food to the mouth), and the plant, or system

that performs the process, cannot operate without guidance(e.g., the hand cannot

manipulate the eating implements, nor can it guide the foodto the mouth without

receiving the proper control signals from the brain). Moreover, the system con-

troller (the brain) receives a constant stream of data from peripheral sensors(e.g.,

the eyes and the sense of body awareness) that allow it to interactively assess the

state of the system. Based onthe sensoryinput, the controller is able to constantly

induce small corrective actions that keep the system undercontrolat all times.

It is one thing for living creatures, with an innate sense of being and all ofthe

sensory systems provided by nature, to perform complex tasks; it is quite another

thing, however, to automate the performance of these tasks. Machines have no

sense of awareness, and no explicit memory of previous attempts to complete

an assigned task; nor do they have the memories of the failures associated with

those attempts. Without these memories, and without the capability of rational

thought, machines have no innate ability to alter their behavior, and are thus

doomedto forever repeat errors. Even machines designed to operate in dynamic

environments are unable to adapt beyondcertain limits.

211

212 Process Control and Robotics

Robotics is a special form of process control, in that the system to be con-
trolled is a mechanical implementation of a biological process. Robotics also
provides us with an interesting application environmentto study the application
of neural networksto tasksthat are typically classified as ‘“‘process-control”tasks,
because either the dynamics of the process are often not well understood or the
control mechanism needed to managethe processis computationally prohibitive.

In this chapter, we shall examineseveral applications of robotic process con-
trol, and show how these complex tasks were successfully addressed by using
a neural network as the process controller. We shall show how these networks
were able to /earn the dynamics of the application, and, by extension, were able
to address problems that were deemed intractable when using more conventional
control methods.

Weshall begin our discussion with a brief summaryofclassic control theory,
in orderto illustrate the underlying principlesof that discipline. Once we have es-
tablished this foundation, weshall then begin our investigation of neural-network
control applications, emphasizing the details of how the networkslearned to per-
form the desired function, and illustrating how the applications were modeled
for the neural-network controller. Readers already comfortable with the theoret-
ical concepts of process control mayskip directly to the applications discussion,
which beginsin Section 8.2.

8.1 CONTROL THEORY

Control theory, the body of mathematics that describes the interactions between
a controllable process and the mechanismsused to monitor and correcterrors in
the process, is one of the oldest disciplines in automation technology. In fact, one
of the earliest known applications of an automatic control system dates back to
ancient Greece. In 250 B.C.[7], a man namedPhilon developed a float-regulator
mechanism to maintain a constantlevelof fuel oil in an oil lamp. Philon’s system,
which is depicted in Figure 8.1 wasfairly simple by today’s standards. Never-
theless, it illustrates some of the fundamental ideas of modern control theory,
including the notion offeedback, in which the actual system output is compared
to the desired response, and the difference between the twois usedto alter the
input to the system.

In Figure 8.2, weillustrate block diagrams of the two basic types of auto-
matic control systems in commonuse today: These are referred to as open-loop
and closed-loop systems. The primary difference between the twois the use of
feedback signals in the closed-loop system. Feedback allowsthe controller to de-
termine if, and by how much,the outputis in error. After assessing the state of the
system via the feedback signal(s), the controller can make corrective adjustments
at the input of the system, thus causing the output to stay within some predeter-
mined tolerancelevel.

Because open-loop systemsare not nearly as interesting, or as sophisticated,
as their closed-loop counterparts, we will focus our attention on the implemen-

8.1 Control Theory 213

Reservoir

Figure 8.1 This diagram illustrates the operation of Philon’s fuel-regulation system. As

the oil in the lamp decreases, a float moves in proportion to the amount of fuel that had

been depleted. The movementofthe float causes a valve to open, which allows additional

fuel oil to enter from a reservoir. With the influx of new oil, the float rises, causing the

valve to close. This system containsall of the aspects of a modern control system: There

is a process to be controlled (the level of the fuel in the lamp); a sensor(the float), which

provides feedback (control of the valve); and a cause-effect relationship between system

input and output(fuel input causes the amountoffuel in the lamp to increase). Because of

the process control, this dynamic system maintains equilibrium.

tation of closed-loop systems in the ensuing discussion. Bear in mind, however,

that many of the concepts weshall develop to describe closed-loop systems can

also be successfully applied to the analysis of open-loop systems.

8.1.1. Closed-Loop Systems

Manyprocesses, ranging from the simple to the complex, have been success-

fully automated because there is a well-understood, causal relationship between

the process and the inputs to that process. Furthermore, if one of the inputs to

the system is actually a signal indicating an error at the output, and the sys-

tem operates in a mannerthat attempts to minimizethe error signal, the system

is said to be closed-loop or self-adjusting. As a simple example, consider the

automatic fine tuning (AFT) circuitry incorporated into virtually every FM ra-

dio receiver built today. This circuitry satisfies the definition of a closed-loop

control system: It monitors the output of the primary tuning circuits in the re-

ceiver, detects when the tuning circuitry has drifted from the carrier frequency

of the incoming signal, and initiates a corrective action in the tuner circuits

to dynamically realign the tuner. The AFT system operates automatically, and,

214 Process Control and Robotics

Input ———! Controller+} Process /— Output

(a)

Comparison

Input Controller Process Output

 (b) Measurementl—._|—

Figure 8.2 These diagramsillustrate the structure of the two basic control system types.
(a) Open-loop systemsare constructed such that the system controller has no direct access
to the output of the system, and hence has no direct mechanism for assessing the error of
the system. (b) Closed-loop systems incorporate a measurement subsystem that provides
the system controller with a direct indication of the output of the system, thereby allowing
the controller to determine the changes atthe input to correct any error at the system
output.

perhaps more importantly, is able to correct signal drift errors that have been
induced by temperature changes within the receiver, to characteristic changes
in performance of circuit components due to aging, or to any of several other
factors.

The AFT example also serves to introduce the important conceptof positive
and negative feedback control systems. In most control applications, feedback
is negative; that is, an error signal, which is usually the difference between the
actual output of the system andits desired response, is developed and has the
effect of altering the behavior of the system controller to reduce the output of
the system. There are, however, many applications requiring positive feedback,
where a feedback signal has the effect of increasing the output from the system.
In the AFT example, the feedbacksignalis actually dual purpose:A large positive
error has the effect of reducing the resonant frequency of theradio tuner, while a
large negative error has the opposite effect. Thus, the system behaves in a manner
that strives to keep a zero feedbackerror, thereby keeping the radio tuned to the
desired frequency.

Using the principles of feedback and correction, it is possible to construct
models of extremely complex processes. From these models, we can apply math-
ematical tools that enable us to understand the behavior of the models, and,
hence, the nature of the systems we are trying to control. In the sections that
follow, we shall briefly describe how control-system models can enable us to un-
derstand, and automate, a wide variety of tasks.

8.1 Control Theory 215

8.1.2 Mathematical Models

Because most of the applications of control systems involve complex interrela-

tionships between input and output, we must develop a set of mathematical tools .

that we can useto analyze the relationships between the outputs produced by a

system and the system variables, or the controllable parameters, of the system.

Moreover, mostof the systems we will wantto control are dynamic, meaning that

we must use differential equations to construct the system model.

In any real application, it is not practical, and certainly not possible, to know

everything about the system being considered. In many cases, we can greatly

simplify the task of constructing a system model by making some assumptions

about the nature of the system, and then linearizing the differential equations we

will use to model the system. In so doing, we are, in effect, reducing the scope

of the problem to that region of the variable space where the system response1s

linear, thus simplifying the analysis of the system.

For example, considerthe electrical system depicted in Figure 8.3. To under-

stand how this system will behave for different values of resistance, inductance,

capacitance, current, and voltage, we can construct a mathematical model of the

circuit and test its response for different values of R, L, C, i(t), and v(t). One

method for constructing the mathematical model of this system is to use Kur-

choff’s current law, which states that the electrical current into any node in an

electrical circuit is exactly equal to the current out of the node at any time t.|

Thus, the mathematical modelfor this system is given by the equation

v(t) du(t) 1 f' _,
7 C 7 +7 f vod aie) (8.1)

where the parameters R, L, and C referto the electrical resistance, inductance,

and capacitance of the component, respectively. Because we are dealing with a

system that exhibits a dynamic behavior through time, we use the terms v(t) and

i(t) to refer to the instantaneous voltage across, and current through, the circuit

at any timef.

If we assumethat the current through the given circuit is constant, that 1s

i(t) = 1, we can determine the voltage in the circuit across all components as a

function of time by the equation

v(t) = ae cos(Bt + 8) (8.2)

where L is again the electrical inductance of the circuit and the terms a, f,

and @ are used to indicate the time constant of the circuit, the period of the

voltage oscillation, and the phase angle between the voltage and current signals.

Figure 8.4 illustrates the typical voltage curve for an underdamped RLC circuit.

1. Current through an electrical component can be expressed as a function of the instantaneous

voltage across the device, a technique we employhere.

216 Process Control and Robotics

® ®@ ® -O

‘
i(t) R LL C= v(t)

y
e e@ O

Figure 8.3 A dynamicelectrical system is shown. The equation describing the behavior

of this system is developedin thetext.

v(t)

“Ay t

Tine ——?>>

 | 0= 2(n/ B=)>
Figure 8.4 The voltage curve for an underdamped RLCcircuit is shown. Notice the
relationship between the dynamicsof the curve and the parameters a, 8, and 6, whichare
described in the text.

Inspection of this graph indicates that the system undergoes a dynamictransition
period, beginning at time fo, which is the instant that current is first applied
to the circuit. The voltage (and, hence, current) dynamicstend to die out after
approximately five time periods (8), leaving the system in its Steadystate.

8.1.3 Linear Approximations of Dynamic Systems
Most real-world dynamic systemsare linear within some range oftheir variables.
If, however, we allow system variables to increase without limit, all systemswill

8.1. Control Theory 217

eventually becomenonlinear. In the RLC circuit example, if we were to allow the

input current to increase indefinitely, the components would eventually overheat

and fail, perhaps catastrophically.

Fortunately, we can limit our analysis of most systems to specific operat-

ing ranges of the input variables, within which, the response of most dynamic

systems can be modeled using a linear approximation technique. As wehaveal-

ready indicated, the benefit of linearizing a dynamic system is that the analysis

of a linear system is much less computationally taxing than the analysis of the

corresponding dynamic system.

A linear system is one in which two conditions are satisfied. First, it must

satisfy the principle of superposition, which states that, if the response of the

system to any stimulus, x,,(t), 1s y,(t), then the response of the system to multiple

excitations must be equal to the sum of the system responses to each of those

excitations. Second, it must satisfy the condition of homogeneity, which states

that the system must preserve any magnitude scale factor between input and

output. Stated more precisely, for excitation x,(f) and response y,(t), a linear

system mustsatisfy the conditions

x(t) +.x2(t) > yi(t) + yo) (8.3)

Bxi(t) > Byi(t) (8.4)

where Eq.(8.3) specifies the condition of superposition, and Eq. (8.4) describes

the condition of homogeneity.

By this definition, a system characterized by the equation y = x* is not lin-

ear, because it does not satisfy the condition ofsuperposition. Similarly, a system

characterized by the equation y = mx + b is notlinear, as it does notsatisfy the

condition of homogeneity. However, we could use this system to approximate a

linear system if we consider only small changes to x and y, which weshall call

Ax and Ay, about a specific operating point, (xo, yo). Thus,

2

yo + Ay =mxp + mAx +b

from which we can conclude that Ay = m Ax. Giventhese constraints, the system

satisfies the homogeneity requirement.

The process of approximating a linear system from a more complex dynamic

system is merely an extension of this basic idea. If we consider a multivariable

system characterized bythe relation

y = Q(X], X2, X3,..-, Xn) (8.5)

we can construct a linear approximation of the system using a Taylor series ex-

pansion about the operating point (x1,. X29. X39. --++Xno)- Neglecting the higher-

order terms, we can then write

218 Process Control and Robotics

y — 2(X 19. X29. X30: cry Xno) (8.6)

0
+ (x) — X19)

Ox] X=Xp

0
+ (x2 — X29)

Ox2 XI=X29

0
$= (X3 — X39)

0X3 =x,

+...

0
+= (Xn — Xing)

OX) n=Xng

to construct the linear approximation of the system.

8.1.4 The Laplace Transform

The Laplace transform is a mathematical tool that enables us to convert differen-
tial equations in the time domain into mucheasier to solve algebraic equations
in the frequency domain. Once the system equations have been transformed, we
then merely solve for the variables of interest, and convert the system back into
the time domain by applying the inverse Laplace transform.

We can see how the Laplace transform works by considering the Laplace
operator, s. In the time domain, welet s be equivalent to the differential oper-
ator. Similarly, we let the inverse Laplace operator be equivalent to the integral
operator in the time domain.Specifically,let

d
s= ah (8.7)

] t

. = I. dt (8.8)
0

The Laplace transform for a function of time, f(t), is defined as the function F(s)
by the equation

Fis)= f f(te"dt (8.9)
0

=L(fi(t)) (8.10)

To find the Laplace transform fora function of time, we simply write the Laplace
function using the specific time-domain function in place of f(t), and evaluate
the integral at its limits. For example, the Laplace transform of the function
f(t) =t,t > 0 is found by

8.1 Control Theory 219

CO

F(s)= | e'tdt
0

e~*'(—st — 1)|°°
= 3

1
=5

Exercise 8.1: Find the Laplace transform for the time-domain function f(t) =

cosawt, t > 0, where a is aconstant value. m

It follows that the inverse Laplace transform can be used to convert a

frequency-domain function, F(s), into its time-domain equivalent form. The in-

verse Laplace transform is defined as

l a+joo

fit)=—— / F(s)e"'ds (8.11)
27j O—Jo

The Laplace transform exists for any linear differential system for which

the transformation integral converges. Fortunately, this requirement holds for any

physically realizable system, greatly simplifying the analysis of practical con-

trol systems. Also simplifying the situation is the fact that many commontime-

domain functions have their corresponding Laplace transformslisted in tabular

form in reference publications, such as any of the CRC handbooks [9]. Thus, the

use of Laplace transformsis not restricted to mathematicians; indeed, mere mor-

tals regularly use Laplace transforms to analyze control-system performance.

Asan illustration of the powerof the Laplace transform,let us consider again

the electrical system described at the beginning of this section. The differential

equation describing the response of that system is given in the time domain by

d*v(t) 1dv(t) 1
x(t) =CT R dt + Teo (8.12)

We can transform Eq. (8.12) into the frequency domain by applying the

Laplace transform for each of the differential components of the system. The
transformed equationis thus

X(s)=C (270) — sy(0*) —| + —(s¥(s) — y(OT)) + “Y(s)(8 13)dt R » L

) dyIf we then let x(t) = 0, y(OT) = yo, and ar

0 = 0, we can reduce Eq. (8.13) to

| l 1
0=Cs?¥(s) —Csyo + Btls) = prot Tle) (8.14)

Solving for Y(s) yields

220 Process Control and Robotics

1
¥(s) =SF (8.15)

Cs- + RS + L

p(s)— 8.16
q(s) (°-10)

Equations (8.15) and (8.16) tell us quite a bit about the nature of this sys-

tem. If we set g(s) = 0, we will have determined the situations under which the

frequency response of the system is infinite. These situations are called the sin-

gularities of the system. Conversely, the roots of the polynomial p(s) are called

zeros of the system, because under the conditions that satisfy p(s) = 0, the re-

sponse of the system is also zero.

Exercise 8.2: Find the poles and zeros of the electrical system modeled by Eq.

(8.15) when R = 33 ohms, L =50mH,andC=10uF. om

Finally, in most control-system applications,it is desirable to know thefinal,

or steady-state response of the system to a specific stimulation. We can use the

Laplace transform to determine the steady-state response of such a system by

evaluating the relation

lim y(t) = lim sY(s) (8.17)
fo s—>O

where poles on the imaginary axis and in the right half-plane and higher-order

poles at the origin are not considered.

8.1.5 Transfer Functions

The transfer function of a linear system is defined as the ratio of the Laplace

transform of the output to the Laplace transform of the input variable, subject to

the condition that the initial state of the system is quiescent. It is useful to know

the transfer function of a system, because once that ratio has been determined,

the system may then betreated as a “black box,” which can be connected to other

‘“‘black boxes” to construct even more complex systems.

Again using the electrical circuit example, we can write the transfer function

of that system as

(8.18)

We can then build models of larger systems using the building block we have

just created by using graphing techniques to represent the connectivity between

subsystems. By knowingthe transfer function of every component(or subsystem)

in a system, we can determine the behavior of the complete system by evaluating

the response of each componenttoits respective input signal(s). We illustrate this

concept in Figure 8.5.

8.2 Cart/Pole Balancer 221

Disturbance

(2) Tq(S)
Field Moto _ Speed Output— Its "Tm Ws) see «o(S) = mee

Rr tLfc Km Je +f S 6(s)

Tq(s)
(b) Armature Position

Va(S) + Km _ 7] 2(S)—G :
. Rs+Ls|~ 4 Js +f Ss A(s)

Kp

Figure 8.5 These diagramsillustrate the relationship between system-transfer functions

and the building-block model of complex systems.(a) This figure represents the RLC

circuit model we have beenevaluating in this section. Using this diagramming scheme,

inputs to the system are shown by incoming arrows, outputs as outgoing arrows. The

label on each arc in the diagram represents the output of the system with respectto its

input. (b) A more complicated system model is shown,this time providing for external

perturbationsin the system.

We could continue this discussion of control theory and analysis techniques

for several more chapters without even beginning to scratch the surface of the

topic. Rather than doing that, we shall now turn ourattention to the neural-

network control applications that we earlier promised to address, andtrust that

the reader can now better appreciate the capabilities of that technology to perform

complex control functions.

8.2 CART/POLE BALANCER

In the previous section, we examined some of the analysis techniques that a

control-systems engineer could use to model, and then analyze, the behavior of

a complex control system. However, throughoutthat discussion, we assumed that

the systems to be evaluated had easily derived mathematical models that could

be used as the basis for the system analysis. Beginning in this section, weshall

look at applications of control systems where the process to be controlled is

not apparent, thus making the application of the traditional control-theory tools

difficult.

The first of these control problems is referred to as the cart/pole-balancer

application. As the name suggests, the problem is to come up with an automatic

222 Process Control and Robotics

—
—

— —
_

x(t)

Figure 8.6 This diagram depicts the constraints on the cart/pole-balancer system. The

cart is free to move in only oneplane, but it may movein either direction, and as quickly

or as Slowly as is needed to maintain the position of the pole. The pole is mounted to

the cart on a hinge that allows 180 degrees of angular rotation in the same plane as the

cart movement. The goal is to develop a control system that can be used to maintain the

vertical position of the pole while keeping the cart as close to the center of the system as

possible.

means of controlling the back-and-forth movement of a cart in order to balance

a vertical pole attached at its base to the cart. To simplify the problem, we shall

consider the movementofthe cart and the pole in only one plane. We can there-

fore assumethatthe cart runs on rail, in order to prevent any lateral movement,

and that the pole is attached to the cart by a hinge that allows movementonly in

the same plane as the movementofthecart.

Weshall complicate the problem somewhatby insisting that the length ofthe
rail is finite, and that the cart may not move beyondthe endofthe rail in either
direction. Further, we shall require our control system to balance the pole, and
maintain the balancedstate, with the cart ideally positioned as close to the center
of the track as possible. Figure 8.6 illustrates the physical arrangement ofthis
system.

8.2.1 Conventional Controller Design

For this application, we can denote the position of the cart as x(t), where x = 0
_ 1s assumed to bethe position ofthe cart at the center of the track. Negative values
of x(t) will indicate the cart is to the left of center, while positive values of x(t)
position the cart to the right of center. A sensor provides a measurementof the
angular position of the pole with respect to the vertical, 6(t). Acting on the cart
is a force that controls its acceleration, denoted as f(t), with positive values
indicating acceleration toward the right. Two other parameters of the system are
monitored: the time rate of changein the positionofthe cart, x(t), and the angular
velocity of the falling pole, given by A(t).

We can model the dynamics of this system by writing the equations that

describe the effect of the acceleration force on the position of the pole, and then

8.2 Cart/Pole Balancer 223

developing a control model to maintain the system such that 6(t) and A(t) are

zero. The dynamic equation that describes this system is given by

f(t) =ax(t) + bx(t) + cO(t) + dO(t) (8.19)

where the termsa, b, c, and d are constantcoefficients that represent the physical

characteristics of the system, which are found empirically.

For the given system, the force needed to balance the pole can be assumed

to be constant and of fixed magnitude for each movement of the cart. Further,

because the cart can movein only two directions, we can surmisethat the required

force will vary only in its sign, depending on the direction of the cart. We can

therefore rewrite Eq. (8.19) to account for the effects of the force on the position

of the pole as

f(t) = asgn (ax(t) + bx(t) + cO(t) + dO(t)) (8.20)

where @ is used to represent the magnitudeof the force applied.

Equation (8.20) embodies the dynamics of the system, but from a practical

point of view, creating a controller to maintain the desired stablestate of the sys-

tem would be difficult due to the problem of obtaining accurate sensor measure-

ments for each of the four required parameters. We can overcomethis difficulty

by rewriting Eq. (8.20) as a difference equation that approximates the required

balancing force by using state measurements taken at the current time, andat the

time step immediately prior to the current time. Thus,

fM= asgn((a + b)x(t) — bx(t — 1) + (c+ d)O(t) — d6(t — 1)) (8.21)

This is as far as we can take the design of a conventional processcontroller,

because we have no a priori knowledge of the values of the coefficients a, D,

c, and d. If we did, we could continue the design by solving the differential

equation using the techniques described in Section 8.1, and by constructing a

feedback control system to achieve the desired results. However, the design we

would create would be application specific; that is, we could not reuse the system

to solve a similar problem without again going through the analysis process.

Let us now investigate how a neural network can be usedto solvethis control

problem. In the process, we shall explore some of the advantages the neural-

network solution has over the conventional controller design.

8.2.2 Neurocontroller Design

The application of a neurocontroller to the problem of pole balancing wasfirst

described by Professor Bernard Widrow, of Stanford University, in 1962 [11].

Professor Widrow revisited the problem in 1987, when, with graduate student

Viral Tolat, the problem was recast from a simply mechanical application to

one that relied on humanvisual perception to provide the necessary feedback to

224 Process Control and Robotics

a(t+1)

x(t) x(t) 0(t) 6(t)

Figure 8.7 The Adaline network used by Professor Widrow to control the cart/pole-

balancer system is shown. The adaline is essentially a single unit BPN. The inputs and

output of the device are describedin the text.

control the cart. We shall begin with Professor Widrow’s original solution, and

then show howthe application wasrevisedto utilize the visual feedback.

Professor Widrow’s original approach was based on the use of an Adaline?

that took the four monitored signals (x(t), x(t), 6, and 4(t)) as input, and learned

to produce a signal indicating the required acceleration needed to maintain the
pole near the vertical. The architecture of this control network is illustrated in
Figure 8.7.

The exemplar data used to train the Adaline was collected from an opera-
tional, closed-loop proportional controller that was designed specifically for the
experiment.” For training purposes,all four sensor parameters were scaled prior
to presentation to the Adaline to values that ranged between —1 and 1. Simi-
larly, the force applied to the cart, whichis the target output for the Adaline, was
recorded and scaled for each set of input parameters. Widrow reported that the

Adaline required less than 100 presentations of the 250 training exemplarscol-

lected from the conventional controller to learn to keep the pole balanced.

In another discussion of the application, Robert Hecht-Nielsen [3] describes

2. An ADAptive LINear Element, which is essentially a single-unit network with connections

adapted using the LMSalgorithm.

3. You may note the irony here, in that a classical controller had to be developed to train the

neurocontroller.

8.2 Cart/Pole Balancer 225

how the neurocontroller developed by Widrowis able to keepthecart in the cen-
ter of the track. In essence,a false bias signal, whichis linearly dependent onthe
position of the cart (x(t)), is added to the @(t) indicator supplied to the neurocon-
troller after training. Thus, the neurocontroller receives inputs that indicate that
the pole is leaning slightly toward the centerof the track, andinitiates the correc-
tive force neededto center the pole. As a side effect, the cart moves toward the
center of the track.

8.2.3 Vision-Based Neurocontroller

In a paper published in 1988, Viral Tolat and Professor Widrow [10] described an

experiment conducted to determineif it were possible to construct a neuro-pole

balancerthat could be trained using subjective visual assessments ofthe situation,

rather than purely objective measurements. It is interesting that, while a child

can quite easily balance a broomstick in her hand, most people cannot balance

a two-dimensional broomstick if forced to rely only on vision. It seems that when

we manually balance a pole, we receive most of the information about the state

of the pole through our sense of touch.* Withouttactile feedback, balancing the

computer-generated simulation of a pole attached to a cart is virtually impossible

for a humanin real time.

Tolat and Widrow overcame this difficulty by slowing the simulation to

1/30" of real time, and by allowing the humantrainer to compare two imagesof

the system side-by-side: one to represent the currentstate of the system, and, next

to it, the image representing the state of the system at the time step immediately

prior to the current timestep.

Asillustrated in Figure 8.8, the network used to perform this experiment was

again an Adaline, this time having 111 input connectionsinstead of the four used

in the earlier experiment. The dimension of the input pattern was determined by

the pixel image used to represent the state of the pole (a5 x 11 binary image),

which was doubled in order to allow simultaneous presentation of the current and

last state images. Tolat and Widrow also used a bias input to the Adaline, for

reasons described in Chapter 2. The concatenation of these two, 55 pixel image

patterns with the bias signal comprise the 111 input elements needed to represent

the state of the system.

The output of the Adaline is interpreted as a simple indicator of the direction

of the force needed to maintain the pole in an upright position. Because it was

assumedthat the force applied to the cart would be a constant value, the linear

output of the Adaline was converted into a bipolar value by taking the sign of the

linear output and using that as the output value. This conversion is equivalent to

running the linear output of the Adaline through a binary threshold unit before

allowing the output to be used externally.

4. You can prove this to yourself by trying a simple experiment. Close your eyes andtry to balance a

pole in your hand. Chancesare that you will have no problem.

226 Process Control and Robotics

f(t)

Image at time t—1 1 Imageat time t

Bias Unit

Figure 8.8 The architecture of the Adaline used to solve the cart/pole-balancing

problem using visual supervision is shown. The operation of this device is described in the

text. Source: Adaptedfrom An adaptive ‘broom balancer’ with visual inputs [10]. Used

with permission. Copyright ©1988 IEEE.

The Adaline wastrained by collecting all combinations offive cart positions
(far left, near left, center, near right, far right) with 13 different pole angles. These
65 images were then shown to a humantrainer sequentially, with the computer
determining the next image to be shown basedonthecurrentstate of the system
and the user’s responseto thesituation. As the images were presented, the com-
puter displayed for the user the current andlast state images, and recorded these
displays as the input pattern for the exemplar. The output associated with the in-
put pattern wasthe user’s action: a —1 to indicate an application of the control
force to movethe cartto the left, and a +1 to indicate the user’s desire to move to
the right.

Tolat and Widrow collected one training exemplar for each of the 4,225
possible situations (65* image combinations), and used this informationto train
the Adaline. They found that the Adaline could solve the problem, maintaining
the pole in an upright position, after fewer than 50 complete training cycles.°
Figure 8.9 illustrates the results of training as described by Tolat and Widrow.

5. A training cycle is the presentation of each inputpattern in the training set, along with the update

cycle to adjust the connection weights after every pattern presentation. In most network simulations,

this is also referred to as a training epoch, a term derived from the geological analogy to the amount

of computer time needed to perform thetraining cycle.

8.2 Cart/Pole Balancer 227

100 7

80 -

60 7

%
I
n
c
o
r
r
e
c
t

40 -

20 -

0 |
100 © 200 300

Training Epochs

Figure 8.9 This graph showsthe error of the Adaline during training to learn the visual

pole-balancing application. In this diagram,the vertical axis represents the percentage

of errors made by the adaline during a training cycle, and the horizontal axis represents

the training cycle progression. Note that the final error of the network wasnotzero,

but was an acceptably low value for the numberof patterns it was being asked to learn

(s355 = ().094% error).

8.2.4 Conventional and Neurocontroller Comparison

Let us now compare the neural-network solution developed by Tolat and Widrow

with the conventional control solution. From inspection of Eq. (8.21), which we

present again for convenience, we can see remarkable similarity between the an-

alytical model represented by the difference equation model and the implementa-

tion of the Adaline network.

f(t) Zasgn((a + b)x(t) — bx(t — 1) + (c +.d)0(t) — dot — 1)

In each model, the output is a simple, bipolar indication of the direction of the

force neededto keep the pole balanced. Ifwe let a = 1, Eq. (8.21) tells us that the

direction of the force needed to keep the pole balanced is dictated by the current

and previous states of the system, as indicated by the position of the cart (x(t))

and the angular position of the pole (6(t)).

Given that we can adequately describe all potential configurations of the sys-

tem in 4,225 current and last-state images, and represent each of the two state

images as a 111-element input pattern, the network solution is equivalent to a

best-fit solution to 4,225 simultaneous, linear equations having 111 unknowns.

Moreover, the Adaline finds a solution to the problem without having to know

228 Process Control and Robotics

in advance the empirical values of the difference equation coefficients. This ob-

servation suggests that the neural-network controller is readily modified to other,

similar applications without requiring a time-consuminganalysis of the system, a

benefit not found in the conventional controller solution.

Anotherinteresting aspect of this neurocontroller application is that the Ada-

line finds a solution to the problem without requiring any sensory input, other

than the image information representing the state of the system. This suggests

that the visual representation of the state of the system contains a wealth of infor-

mation that can be usedto infer the explicit parameters required by a conventional

controller, such as the exact position of the cart and pole.

8.3. BIPEDAL-LOCOMOTION CONTROL

Another interesting application of neural-network control was developed by D.

M. A. Lee and Professor W. H. ElMaraghy [5] of the University of Western

Ontario, in Canada. In this application, Mssr. Lee and Dr. ElMaraghycreated a

dynamic model of a bipedal walking device, and then developed a schemeto use

two BPNsto control the application of torque to the hip joints, thus enabling the

biped system to “walk.”

While the walking device described in their paper was neveractually built,

Lee and ElMaraghy simulated the dynamic model of the walker on a computer.

Their results show how an adaptive neurocontroller can provide a more robust
control response than conventional control techniques. Indeed, the ability of the
neurocontroller to generate the control response neededto keep the system stable,
even when presented with situations that were not anticipated in the training
scenarios, 1S quite impressive.

8.3.1. Biped Dynamic Model

Modeling all of the dynamicsassociated with bipedal locomotion in three dimen-
sions is an awesome problem. Even a simple model must account for any roll,
pitch, or yaw induced in the body mass, the interaction between the application
of torque at the hip joint and the response of the legs at the knees and foot, the
interaction between the mass of the foot and contact with the ground, and the
weighttransfer betweenthe legsas the bipedstrides. To simplify the dynamics of
the model, and hencethe control system for their experiment, Lee and ElMaraghy
limited their investigation to a biped walker constrainedto thesagittal plane. They
further simplified their dynamic model by

¢ Considering the legs to be kneeless.

¢ Lumpingthe head, arms, and trunk of the walker into a single body mass.

¢ Considering the feet to be massless.

e Assuming instantaneous support exchange betweentheright andleft legs.

e Traversing only level terrain.

8.3 Bipedal-Locomotion Control 229

(a) 92 (b) Mo, Jo

Figure 8.10 The bipedal walker model described in the text is illustrated in these
figures. (a) This figure showsthe interpretation of the forces and angles utilized by the

model from a system perspective. (b) An exploded view of the model, illustrating the

details of each mass and the parameters used to construct the model. Source: Adapted

from A neural network solution for bipedalgait synthesis [5]. Used with permission.

Copyright ©1992 IEEE.

Mass Mass Momentof Inertia Length

1, = 0.933 m

m, = 12.2kg J, = 0.697 kg - m? ky = 0.546m

m7 = 49.0kg Jy = 2.350 kg - m? ln = 0.280m

m3 = 12.2kg J3 = 0.697 kg - m? 13 = 0.933 m
k3 = 0.546m

Table 8.1 This table contains the physical parameters used to model the biped walker.
Theinterpretation of these data is in the text.

The model of the walker used by Lee and ElMaraghy is depicted in Fig-

ure 8.10, and the values used to describe the physical characteristics of the model

are presented in Table 8.1. The equations describing the dynamics of the model

are derived in Mssr. Lee’s master’s thesis [4], which we shall not replicate here,

for brevity.

The biped walker described by this model propels itself forward by applying

a torque to the legs in alternating hip joints. The leg in contact with the ground

supports the weight of the walker while the other leg swings into position for

the next stride. When the swinging leg contacts the ground surface, two things

happen simultaneously: The velocity of the moving leg is instantly reduced to

zero, which inducesa reactive force in the body mass, and the weight of the biped

230 Process Control and Robotics

is transferred from the rearward leg to the forward leg. After completing one

forward stride, control switches to the forward leg, allowing the biped to mirror

its actions, which results in another forward stride. The entire process repeats

indefinitely, halting only when the walker stumblesandfalls.

8.3.2 Controlling the Biped

From the previous description of a bipedal walking device, let us now consider

the strategy employed by Lee and ElMaraghyto control the gait of the biped.

They assumed that the biped wasinitially provided with a “kick-start” impetus

to initiate its gait. Once started, the momentum from the previous step, coupled

with the torque provided by the system controller was used to sustain the gait

and balance of the biped. Using conventionallinear control methods, a controller

was developedto generate the torques requiredto sustain a specific gait; however,

because the biped is an inherently unstable dynamic model andthe controller was

designed using a linear approximation of the system, the conventional controller

could only sustain the gait for a few seconds.

At this point, Lee and ElMaraghy modified the architecture of the control

system to incorporate two BPN neural networksas adaptive control elements. As

shownin Figure 8.11, each network learnedto control the application of torque to

a specific leg by observing the outputof the linear controller and correlating that

output to the state of the system.

_ Fortraining purposes, the system state was sampled at 10 millisecondinter-
vals. At each discrete time step, the state of the system was captured andrepre-
sented as a six-elementvector, x(t), of the form

x(t) = O\(t), O1(t), 62(t), 62(t), 03(t), 43(t) (8.22)

where 6)(t) represents the angle of the left leg with respect to the vertical, 0>(t)
indicates the angle of the body mass, 63(t) represents the angular position of the
right leg, and the time rate of change for each measurementis indicated by the
derivative notation. For each input state pattern, the corresponding output from
the two conventional controllers (Nz, N4) was captured and stored as the target
output vector.

8.3.3. Control-State Representation

In their paper, Lee and ElMaraghydonot discuss how they chose to representthe
state information for the neurocontroller. They allude to the use of one unit for
each parameter, but, as we shall now describe, that simple representation poses
a slight problem. Let us diverge from our architecture discussion for a moment,
then, and consider the problem of data representation for the neural network.
Please note that the scheme we suggest here is most likely different from the

technique employed bythe original authors.

8.3. Bipedal-Locomotion Control | 231

a

Linear A Initial
Controller 1 O ~ Conditions

+ . Biped a

Left Leg

Leg Support
Exchanger

i

Right Le
9 9 \ . Feedback Loop

Figure 8.11 The architecture developed to train the neural-network gait controllers is
shown. In this diagram, the output of the linear controller is used as the target output

for the neural network. The state of the system, indicated by the feedback loop,is

simultaneously fed to the linear controller and the neurocontrollers. Thus, the neural

networks “learned” to mimic the response of the linear controller for a variety of

situations. Source: Adaptedfrom A neural networksolution for bipedalgait synthesis [5].

Used with permission. Copyright ©1992 IEEE.

Because wehaveelected to representthe state of the bipedas set of specific

measurements, we must find a way of representing that information in a form

usable by the BPN wehaveselected. For this application, each parameter was

measuredin degrees from the vertical, while the velocity parameters are indicated

in degrees per second. Thus, each measurement could legally take on a value

between zero and 359. |

Practically, however, angles larger than 90 degrees are never encountered,

unless the biped toppled over. Because the vertical axis was chosenasthe ref-

erence, we can use the scheme suggested by Lee and ElMaraghy, whichis to

represent as positive those angles that are to the right of vertical, and as negative

those anglesto the left of vertical.

To convert these data into a format suitable for use by the neural network, we

could simply scale the parameter to a value between zero and one. This approach

is complicated by the fact that we cannot know beforehand the maximum or min-

imum values for each parameter. For example, during normal operation, the angle

of the leg may vary between —20 degrees and +20 degrees. Using the by-now fa-

miliar scaling technique, we would call the positive 20-degree measurementthe

+1 limit, and the negative 20-degree measurementthe 0 limit.

232 Process Control and Robotics

bY
5 ¢

-90 = -20 -20— oO” 20 — 90

NO

Figure 8.12 This diagram illustrates the use of multiple input units to represent different

ranges of input values. Using this scheme, each input parameter(e.g., 6;(t)) would be

represented by four input elements.

\7

6, (t) = 30°

However, whenthe biped stumbles, the angle of the leg may jump to 70 de-

grees or more. Using our scaled representation, that measurement would produce

a scaled input of +3.5. Because we must maintain input values betweenzero and

one, however, we must come up with another scheme.
One method for overcoming the scaling difficulty is to use multiple input

units to representdifferent ranges of input values, and scale the inputs to each of
these units between the minimum and maximum valuesofthe ranges. This idea
is illustrated in Figure 8.12. Using this scheme, we could use four input units
to representall possible values for the leg angle: The first unit would represent
angles between —90 degrees and —20 degrees; the second unit would encode
angles between —20 degrees and 0 degrees; the third unit would indicate angles
between 0 degrees and +20 degrees, and the fourth unit would indicate angles
between +20 degrees and +90 degrees. Note that there is no requirementthat the
range of values represented by the four units be uniform.

8.3.4 Training the Neurocontroller

Lee and ElMaraghy reported collecting 7,584 training exemplars for each net-
work. At the samplingrate cited, this represents almost 76 seconds of data pro-
duced by the conventional controllers. From this, we can deducethat the training
data must have been collected over many simulations, as the authors indicate that
the conventional controller could not maintain the gait for more than two seconds
before the biped became unstable andfell.

The two neurocontrollers (again, one for each leg) were trained simulta-
neously on a Sun Sparcstation computer system. Training required 50 hours of
computer time for the networks to converge on a solution.

8.3 Bipedal-Locomotion Control 233

8.3.5 Results of the Experiment

Once trained, the neurocontrollers were enabled and the output from the con-

ventional controller was disabled. The biped simulation was then initiated by

applying the initial impetus vector,

xo(t) = 17.0°, 70.2°/sec, 0°, 0°/sec, 17.6°, 75.8°/sec (8.23)

which correspondsto a leg stride of 0.544 meters and an average forward speed

of 0.853 meters/second.

The neurocontroller was able to sustain the gait consistently for more than

25 seconds. Even more fascinating is the observed response of the neurocon-

trollers in periods of high instability. Lee and ElMaraghy report that, approxi-

mately seven seconds into the simulation, the biped slows and the upper-body

mass begins to topple backward. However, the neurocontroller is able to avert the

unstable condition by applying the leg torque needed to compensate forthesit-

uation. As a result, the biped continues walking for another 19 seconds beforeit

fails. :

In this simple experiment, the neurocontroller-based biped simulation con-

sistently outperformed the conventional controller by a wide margin. Figure 8.13

Ri
gh

t
L
e
g
A
n
g
l
e

& © ©

|

“MANNA
VV

—20.0 |

2.0 4.0 6.0 8.0 10.0

Time (sec)

Figure 8.13 This graph illustrates the observed performanceofthe right leg controller

for the biped simulation. The heavy line represents the response ofthe leg to the

neurocontroller, and the thin line indicates the performance of the conventional

controller. Notice the stability of the neurocontroller and its ability to compensate in

an unstable situation. Source: Adaptedfrom A neural network solution for bipedal gait

synthesis [5]. Used with permission. Copyright ©1992 IEEE.

234 Process Control and Robotics

illustrates the performance graphs for the neurocontroller and the conventional

controller for the first 10 seconds of the simulation.

Perhaps even more intriguing is the visible image of the walking biped.

Given the static nature of paper and ink,it is difficult to convey thesubtleties of

the interaction betweenlegs and body, each working together to maintain a stable

gait. However, watching such a simulation as it is running, when the image ofthe

biped appears on the video screen 1n animated form,is remarkably similar to the

experience of watching a child takeits first steps.° In Figure 8.14 weillustrate the

dynamics of the walking biped.

8.4 ROBOTIC MANIPULATOR CONTROL

In the previous section, we saw how a neural network could be used to control

the application of a control force to a robotic device to maintain the stability

of the robot. We shall now investigate the use of a neurocontroller to solve the

inverse-kinematics problem in a simple robotic manipulator. We shall begin with

a description of the problem domain, describing the mathematical models of the

robotic system that we seek to control. Then, we shall describe how researchers

Jenhwa Guoand Vladimir Cherkassky [2] of the University of Minnesota devel-
oped a neurocontroller based on the Hopfield memory model to implement an
effective control strategy.

8.4.1 Kinematics Model

Kinematics is the study of the geometry of a manipulator arm asit relates to the
position of the arm with respect to the movementof the manipulator linkages, or
joints. In most robotic arm models, the position and orientation of the manipu-
lator is directly controlled by the movementofthe joints. Yet, a typical control
model for such a manipulator, such as the oneillustrated in Figure 8.15, has no
meansof assessing the position of the arm in space. Rather, the control is based
on movement commandsprovidedto the controller in the form of desired velocity
parameters for the controllable joints.

To construct a controller of this type, we must begin by describing ourrefer-
ence points for the manipulator. First, let q be the n-dimensional vector describ-
ing the desired movement parameters for a controllable joint with n degrees of
freedom, and x be the m-dimensional vector describing the position of the ma-
nipulator in m space. The general form of the kinematics equation describing the
relationship between q andx is given by

x= f(q) (8.24)

6. [know my daughterwill forgive me for the comparison,butI think the biped is significantly more
stable than she was whenshetookherfirst few steps.

8.4 Robotic Manipulator Control 235

 Bw time

0

Figure 8.14 This diagram illustrates the gait of the biped as it “learns” to walk. for

brevity, we have onlyillustrated the first five seconds of the simulation. Source: Adapted

from A neural network solution for bipedal gait synthesis [5]. Used with permission.

Copyright ©1992 IEEE.

Position

Command Motor Drive

Signals
J tea

 Movement |p| Motor
Computation Control

 Motor <<

Response

Figure 8.15 A block diagram illustrating a typical control model for a robotic

manipulator system is shown. The response of the modelis describedin thetext.

We assume here that the mapping function, f(q), is a continuous, nonlin-

ear function with a well-understood structure. The inverse-kinematics equation,

given by

q= f—'(x) (8.25)

is then simply the inverse mapping function from Cartesian space position to joint

movement command.

236 Process Control and Robotics

Figure 8.16 This diagram illustrates the inverse-kinematics problem in robotic arm

control. The joint shownin this diagram has three degrees of freedom. We want to move
the manipulatorat the end of the arm from its current position in two-dimensional space
to point x. Because the arm has more degrees of freedom than the dimension of the
movement space, we haveseveral alternative control vectors that we could use to cause
the arm to move to the desired position. This means that the proper control vector must
be determined numerically, because there is no closed-form method to determine the best
alternative.

Considering the nature of the problem, it is easy to see the difficulty in
determining the appropriate command vector q(t) needed to move an arm to
an arbitrary position, x: While the target position of the manipulator is fixed
in Cartesian space, there are cases where there are many different movement
commands that produce the desired end position. As shown in Figure 8.16, the
problem for the system controller is how to determine beforehand the command
vectorthat is going to producethe best results with minimal wasted motion.

For those cases where a closed-form solution to Eq. (8.24) does not exist,
Guo and Cherkessky suggest using a technique based on the differential motion
between the joint displacements andthetarget location. Specifically, they let

x= J(q)q (8.26)

where q and x are joint and Cartesian velocities, respectively, and J(q) is the
m x n Jacobian matrix determined by df/dq.

Using this formulation, for cases where J is square and nonsingular,’ the
actuator velocity vector, q, can be determined by

7. When the manipulator is nonredundant, meaning m = n, and the system has no closed-form solu-
tion, the Jacobian matrix will be square and nonsingular.

8.4 Robotic Manipulator Control - 237

q=J' x (8.27)

Similarly, when the manipulator is overcompensated,® Eq. (8.26) can be inverted

as

q=J"(q)x (8.28)

where J* is the Moore-Penrose pseudo-inverse of the Jacobian matrix, and is

given by

FHS’)! (8.29)

From these relationships, Guo and Cherkassky develop an energy equation

similar to Hopfield’s traveling salesperson energy equation. Specifically, they

begin by formulating an energy equation that minimizes least-mean squared error

in the Cartesian velocity vector, given as

l m

E=5 Sot = ki) (8.30)
i=l

where if is the desired Cartesian velocity component. Then, from Eq.(8.26),

A

t=0 Sid) (8.31)
j=!

where Jj; is a function of joint displacements. By combining Eqs. (8.30) and

(8.31), Guo and Cherkassky derive the energy function for the system as

B=-571/44j — Pha3>, (8.32)

j=l
i=]

where

=—2 Jj Si;

and

3

=2dist

8. An overcompensated manipulator is characterized by the conditions m <n and rank(J) = m.

238 Process Control and Robotics

Guo and Cherkassky then implement a novel version of the Hopfield memory

by defining a method of adapting the connection weights of the network over

time. They accomplish this feat by taking the derivative with respect to time of

Eq. (8.32) and simplifying, to produce a dynamic equation that can be used to

describe the temporal evolution of the network connection weight matrix. Specif-

ically, they define the energy function for the network as a function of time,

given by

=--4 S14) +h (8.33)
j=l

If we further assumethat k; is an arbitrary, positive value, Guo and Cherkassky

assert that the equation governingthe time evolution of each network unit is given

by the equation

dq;= WL Tq) +1; (8.34)

Inspection of Eqs. (8.33) and (8.34) reveals that the energy function for
the system is always negative; hence, the energy in the system will always de-
crease as time progresses. This observation confirms that the mathematical con-
trol model suggested by Guo and Cherkassky can indeed by implemented as a
Hopfield memory. Weshall now investigate this method of implementation.

8.4.2 Neurocontroller Design ©

As yourecall from Chapter 2, the Hopfield memory is a neural-network structure
comprised of a single layer of processing elements with connections that feed
back into all other units in the network. External inputs are supplied, one to each
unit, and the network is then iterated until the units achieve a stable state. Once
stabilized, the output values from each unit are interpreted in a manner indicated
by the particular application.

To design a Hopfield model neurocontroller for the inverse-kinematics prob-
lem, weshall consider an arm that has n degrees of freedom;that is, the arm shall
contain n joints, each of which hasthe ability to rotate in at least one direction.
From the original statement of the problem, we know the desired end position
of the manipulator, and we need to know the commandvector for the arm that
will produce the desired end position. Because we have chosento cast the prob-
lem with respect to velocity parameters for each robotic joint, we shall model the
Hopfield memory suchthat the steady-state output from each unit in the network
is interpreted as the appropriate velocity indicator for a corresponding joint. This
neurocontrol modelis illustrated in Figure 8.17.

From Eq.(8.34), we can see that the state of each Hopfield unit is determined
by the external input, /;, and the sum of the outputs from all units, gj» through

8.4 Robotic Manipulator Control 239

V, (t) vol) v(1) v(t) vy, \

\ f \ J
Vt My KT]

5 SWrh +r

| ‘, I ; lh

Figure 8.17 This diagram illustrates the use of a Hopfield memory to control an n-

degree-of-freedom robotic arm. The output from each unit in the networkis interpreted as

the velocity parameterfor its corresponding joint, after the network has achievedits stable

condition.

their corresponding connection weights, 7;;. From our earlier definition of 7;;,

we know that the connection weights in the network are determined by the Ja-

cobian matrix from the energy equation. Thus, at every discrete time step in the

simulation of the network, we simply update the connection weights and inputpa-

rameters based on thestate of the controller, and perform one signal propagation

through the network. We repeat this process for each time step until the network

stabilizes. At that point, the energy function, and hence the controller error, has

been minimized, and the output values from the processing elements can be used

to control the movementof the arm joints.

Guo and Cherkassky provide no indication of how input and output values

should be scaled to provide the appropriate control signal. However, this is not

a critical issue for our purposes, because the range of values needed to control

the arm will depend on the physical implementation of the controller. We need

only recognize that it may be necessary to scale input and output values to values

between —1 and +1, to limit the magnitude of the signals propagated through the

Hopfield network.

8.4.3 Neurocontroller Results.

In order to understand the performance of the neurocontroller developed in the

previous section, Guo and Cherkassky compare the Hopfield formulation of the

control equations with the model of a closed-loop dynamic system. Specifically,

they rewrite Eq. (8.34) as

240 Process Control and Robotics

“ =k(-J'Jq t+ J'x®) (8.35)

= -kJ" (x — x“)
by substituting the definitions for 7;; and J; in Eq. (8.34) and simplifying. By then

substituting the formulation of Eq (8.35) into the energy equation for the system,

they obtain

dE
dt

< —oyAK |x — x4 |? (8.37)

—(x — x2)TIKI (x —x (8.36)

where oy is the minimum eigenvalue of JJ! and AK is the minimum eigenvalue of
K.Inspection of Eq. (8.37) indicates that as Ax increases, network convergence
time decreases, thus producing a very rapid solution with the neurocontroller.

The operation of the controller was tested using a four-degree-of-freedom
(n = 4) robotic arm simulation moving in a planar environment (m = 2). For
K; = 10, the Hopfield network converged on a solution in 20 milliseconds, and,
for K; = 20, a solution was achieved in 10 milliseconds. In both cases, the error
produced by the neurocontroller was less than 0.05 degrees/second. Also, as you
might expect, the solution obtained was independentof the degrees of freedom in
the arm,a distinct advantage over conventional numerical techniques.

8.5 CONTROL-APPLICATION SUMMARY
In this chapter, we have examined several process-control applications that use
neural networksin place of the conventional, analytical models. We have seen
how neural networks offer a means of rapidly developing applications that solve
the desired control functions without requiring a major investment in time and

_ effort, as would be required to develop the equivalent analytical system models.
Furthermore, we have shown how neural networks have been used successfully to
address control problems that were previously viewedasintractable, either from
an analytical perspective, or from an implementation point of view.

This is not to say that neurocontrollers will make all conventional control
applications obsolete. They will not. However,in many applicationsit is prudent
to develop models of a system that can be rapidly, and cost effectively, evaluated.
Undersuch circumstances, neurocontrollers mayoffer a good prototypingtool.

Evenin those applications that require extensive analysis in order to develop
precision control systems, the use of neural networks to model an application
prior to analysis can provide insights to the system designer that might otherwise
be overlooked. Adaptive networkstend to find their own methods for encoding
relationships between system input and output during learning.If we invest a little
time andeffort to “dissect” a trained network, we may discoverthat the internal
representation scheme developed by a trained network is not far removed from

Bibliography 241

the method that a detailed system analysis would indicate as the optimal method

for controlling a system.If so, the use of neural networks could save quite a bit of

time in the early stages of process-control system design.

SUGGESTED READINGS

The literature contains many papers describing control-systems applications of

neural networks. We have only touched on the topic in this chapter. Readers

interested in learning more about conventional control methods are referred to

two excellent texts on the subject: Industrial Process Control Systems, by Dale

R. Patrick and Stephen W. Fardo [8], presents a solid theoretical foundation of the

technology; and Understanding Electronic Control ofEnergy Systems, by Don L.

Cannon and Gerald Lueke [1], provides a thorough examination of the practical

issues of the technology.

Readers interested in investigating the fundamentals of robotics and robotic

control systemsare referred to the text by Matthew T. Mason and J. Kenneth Sal-

isbury [6], which describes the foundations of robotic manipulators. With regard

to neurocontrol applications, the best texts currently available are the annual pro-

ceedings of the Neural Information Processing Systems, Natural and Synthetic

(NIPS) conferences sponsored by the IEEE. Each year, approximately one dozen

excellent papers are published in those proceedings describing practical applica-

tions of robotic neurocontrol. Another good source for technical papers pertaining

to robotic neurocontrolis the proceedings of the IEEE Conference on Neural Net-

works, published annually by the IEEE press.

BIBLIOGRAPHY

1. Don L. Cannon and Gerald Lueke. Understanding Electronic Control of Energy Sys-

tems, Charles W. Battle, editor. Texas Instruments, Dallas, TX, 1982.

2. Jenhwa Guo and Vladimir Cherkassky. A solution to the inverse kinematics problem

in robotics using neural network processing. In Proceedings of the International Joint

Conference on Neural Networks, Washington, DC,pp. I(299-304), June 1989.

3. Robert Hecht-Nielsen. Neurocomputing, Addison-Wesley, Reading, MA,pp. 342-344,

1990.

4. D.M. A. Lee. A Neural Network Approach to Biped Locomotion and Postural Stability.

M.E.Sc. Thesis, The University of Western Ontario, London, Ontario, Canada, May 1991.

5. D. M.A. Lee and W.H. ElMaraghy. A neural network solution for bipedal gait synthe-

sis. In Proceedings of the International Joint Conference on Neural Networks, Baltimore,

MD,pp. II(763—768), July 1992.

6. Matthew T. Mason and J. Kenneth Salisbury, Jr. Robot Hands and the Mechanics of

Manipulation. MIT Press, Cambridge, MA,1985.

7. O. Mayer. The Origins of Feedback Control. MIT Press, Cambridge, MA,1970.

242 Process Control and Robotics

8. Dale R. Patrick and Stephen W. Fardo. Industrial Process Control Systems. H. W. Sams

Publishing Company, Indianapolis, IN, 1979.

9. Lennart Rade and Bertil Westergren. Beta Mathematics Handbook, second edition.

CRC Press, Boca Raton, FL, 1989.

10. Viral V. Tolat and Bernard Widrow. An adaptive ‘broom balancer’ with Visual Inputs.

In Proceedings of the International Conference on Neural Networks, IEEE Press, New ~

York, NY, pp. I1(641-647), July 1988.

11. Bernard Widrow. The original adaptive neural net broom balancer. In Proceedings of

the International Symposium on Circuits and Systems, pp. 351-357, May 1987.

C H A P T E R

Fuzzy Neural Systems

In this world, nothing is certain but death and taxes.

— Benjamin Franklin

Life is replete with ambiguity. We all make countless daily decisions that are

based on incomplete, or inexact information, unconsciously acknowledging the

fact that life experiences are rarely black or white, on or off, or yes or no. Often,

our judgment is influenced by our ownsituation. For example, if asked to de-

scribe my physical appearance, I would probablyuseany(orall) of the following

phrases:

Medium build, average height, dark hair.

From these phrases, you have likely constructed a mental image of my appear-

ance. But how does your imagined image compare to my true appearance’? What,

exactly, constitutes average height? If you are an American, the phrase average

height probably means that I am somewhere between 170 and 180 centimeters

(cm)tall. If you are Japanese, however, average height probably meansthat I

stand somewhere between 160 and 170 cm tall. Because you (probably) do not

know myheritage, it is very likely that each reader will have

a

slightly different

impression of my appearance. This example only touches on the diversity of life

in the real world.

Yet, almost paradoxically, we have insisted on creating computing systems

that operate on binary information, systems that interpret and manipulate ob-

jects in the real world based on decisions that can only be cast as true orfalse.

Obviously, we have excluded, or at least complicated, the automatic process-

ing of many real-world applications, simply because the informationis difficult

to represent in a binary form. This is not to say that computing systems cannot

be programmedto address these applications—many such systems have already

been created. However, when building any system, it always makes sense to use

the proper tool for the job.

243

244 Fuzzy Neural Systems

In previous chapters, we have shown how neural networks have provided an

alternative technology in many real-world applications. In several of the examples

we have studied, the neural network was used to perform a subfunction in the

overall system operation. The particular service performed by the network was
the piece of the application that was best suited to interpretation, in that the infor-
mation to be processed by the network was imprecise, incomplete, or otherwise
imperfect. In this chapter, we shall explore the integration of neural networks and
fuzzy logic, two complementary technologies that are designed to process non-
binary information. In so doing, we shall show how the combination of these
two technologies can provide system solutions that are much more appropriate
in many real world applications, and, hence, much less complex.

Weshall begin with an overview of fuzzy logic, to introduce the concepts
underlying that discipline, and to show how fuzzy systems are constructed and
used in real applications. Following that, we shall begin our investigation into the
integration of fuzzy logic and neural networks, showing how the combination of
these technologies can producesynergistic results.

9.1 FUZZY LOGIC

How manygrainsconstitute a pile of sand? One hundred? One thousand? From
another perspective, if we start with a pile of sand, how many individual grains
can we removebeforeit ceases to be a pile? Obviously, there is no exact answer
to any of these questions. This implies that there is no exact truth in the concept
of a pile of sand. There are, however, varying degrees of truth. A half-depleted
pile of sandisstill a pile, just not as big as it was before we started removing
sand. This is the essence of fuzzy theory: All things are a matter of degree.

Fuzzy logic, however, is a mathematical technique for understanding, and
controlling, specific manifestations of fuzzy theory. It is based on the logical
manipulation of continuously variable truth values. As first described by Jan
Lukasiewicz [7] in the 1930s, the truth in any assertion can be indicated by a real
numberin the range [0, 1]. More precisely,

t : {Assertions} —> [0, 1] (9.1)

where f : {x} is the function that indicates the truth ofthe assertion x [5].
In 1965, Lofti Zadeh [10] published a paper that formally developed the

multivalue set theory that has come to be known as fuzzy logic. In that paper,
Zadeh showed how the bivalent indicator function, I, of nonfuzzy subset A of
X, whichis given by

1 ifxeAI(x) = 9,
A) Q otherwise (9.2)

could be extended to the multivalued indicatorfunction, ia Of fuzzy subset A of
X, given by

9.1 Fuzzy Logic 245

a(x): X —> [0, 1]. (9.3)

The significance of the multivalued indicator function, which is also known

as the membership function for fuzzy sets, is that it allows us to combine fuzzy

sets using the standard logic operators, and to measure the degree to which any

fuzzy element x belongs to set A. For example,

Mans(x) = min(/4(x), [p(x)) (9.4)

/AuB(x) = max(/4(x), Ip(x)) (9.5)

py(x) = 1— pa(x) (9.6)

ACB iff wa(x) < wp(x), VxinXx (9.7)

a(x) = Degree(x € A) (9.8)

9.1.1. A Fuzzy Example

Therelationships described in Eqs. (9.4 through 9.8) tell us how wecanlogically

manipulate objects contained in fuzzy sets to evaluate the certainty in any asser-

tion. Before we can apply any of these rules, we mustestablish a specific context

for the application. The context of the application defines the universe of dis-

course for the fuzzy set, which ensures that any meaning that we might assign

to the hedges, or fuzzy subsets, used in classifying the fuzzy set are consistent

throughoutthe analysis.

For example, consider the fuzzy set describing ambient temperature. The

hedges weshall use to develop a fuzzyset for this application are Low, Medium,

and High. As shown by the graph in Figure 9.1, these three fuzzy categories

overlap each other, such that, within certain ranges of temperature, a specific

temperature could simultaneously be considered Low and Medium, or Medium

and High.

9.1.2 Possibility Theory

In statistics, the probability of an event describes the likelihood that a specific

event will occur, all other factors being equal. It is an exact method, appropri-

ately applied when all possible situations that can occur in a given event can be

uniquely identified. For example, the probability that an evenly balanced com

will turn up heads on any given cointoss is exactly 50%. Similarly, the proba-

bility that any specific play, denoted by x;, will win the Texas State Lotto, where

a player must match six different numbers between | and 50 with six numbers

from the same range selected randomly,in any order, is given by

6!

P(x) == Go1/44)y 0)

246 Fuzzy Neural Systems

(a)

H X)1.0 high

(b)

0.0 - Temperature
Lu

x)1.0 high

(C)

an ; 7 Temperature

1.0 M|

(d)

0.0 Temperature

Figure 9.1. These graphs show the relationship between ambient temperature values
and the fuzzy categories called Low, Medium, and High. In all of these graphs, notice the
relationship betweenthe fuzzyset operators defined by Eqs. (9.2 through 9.6) and the
membership curve as x varies. (a) This graphillustrates the temperature distributions with
respectto the fuzzy categories. (b) This graph showsthe union, or logical disjunction,
between the Low and Medium fuzzycategories. (c) This graph showsthe intersection, or
logical conjunction between the Medium and High tuzzy categories. (d) This graph shows
the negation, or logical complement, of the Medium category.

This equationsays that there are exactly 15,890,700 different combinations ofsix
integers in the range from 1 to 50. The chancethat one specific combination cho-
sen on a particular play will match the six randomly selected digits is therefore
exactly one in 15,890,700.

There are other constraints on probability theory, all groundedin statistics.
One such constraintis that the probabilities associated with each unique situation
in a random event must sum to one; otherwise, the eventis not truly random. This
constraint also ensures a specific, and well-defined probability distribution for
that event.

However, possibility theory describes an elastic constraint on fuzzy vari-
ables. A possibility distribution differs from a probability distribution in that it is

9.1 Fuzzy Logic 247

nonstatistical. Moreover, a possibility distribution is usually derived empirically,

because it is often quite difficult to measure the truth content in any practical as-

sertion.

There are, however, relationships between probability and possibility. One

intuitive relationship is that impossibility implies improbability. Obviously, if

an event x; on the variable Y is impossible, then the probability of event x;

- is zero. Another relationship is that a possibility distribution of a variable, Y,

forms an upper bound onthe probability distribution of Y. These relationships

are embodiedin the equations

Ty (xij) =O => py(xi) =0 (9.10)

Py (xi) < my (%) (9.11)

where the function zy(x;) denotes the possibility of event x; on variable Y, and

the function py (x;) indicates the probability of event x; on variable Y.

Possibility theory also has its own set of constraints. As with probability,

where

YS p(xi) = 1 (9.12)

possibility is constrained by the requirementthat no value in the distribution can

ever be greater than one. In equation form,

max 1(x;) < 1 (9.13)

An example will help clarify the distinction between these two concepts.

Suppose you sit down for breakfast one morning andfind that eggs are being

served. Issues regarding health and cholesterol intake aside, the probability that

you will eat n eggs at that one mealis given by a Poisson distribution, as shown

in Figure 9.2(a). This graph saysthat it is quite likely that you will eat one egg,

and not very likely that you will eat more than three. Figure 9.2(b) illustrates the

possibility distribution for the same situation. This graph indicates, however, that

there is a very good possibility that you could eat as many as three eggs before

becomingsated. After that, the possibility quickly abatesas it becomes physically

impossible to consumeadditional eggs.

In fuzzy systems, we use these possibility distributions on fuzzy variables,

which are also called measure of belief functions, to define the hedges in the

context of the fuzzy set. Asan illustration, recall our earlier example of ambient

temperature. The three fuzzy hedges we had defined—Low, Medium, and High—

were actually the possibility distributions for each of these categories. If, for

example, the ambient temperature is 20° C, then, according to our hedges,thereis

a 90% possibility that we would call the temperature Medium, a 60% possibility

that we would call the same temperature Hot, and a virtual impossibility that we

would call it Cold.

248 Fuzzy Neural Systems

 0.0

1.0 —

 0.0 : : : !) : :

1 2 3 4 5 6 7 8

Figure 9.2. Thesegraphsillustrate the differences between probability and possibility.
(a) The probability distribution with respect to number of eggs consumedat one meal.
(b) The possibility distribution for the same scenario.

9.1.3 Fuzzy Reasoning

Fuzzy reasoning is usually performed in a three-step process. First, the crisp
variables, which are the precise measurements describing the currentstate of the
system, are acquired and fuzzified. Second, knowledge, usually in the form of
fuzzy rules, is applied to the fuzzified variables, in order to determine the proper
course of action. Finally, the outputs from the reasoning logic are defuzzified,
and are used to controlthe response of the system.

The reasoning logic, which is performed in the second step of the process
described above, is the heart of a fuzzy system. Because we are concerned with
systems that measure the truth of the situation as a matter of degree, we shall
apply a generalized form of the modus ponens[8, 9] reasoningto infer the rela-
tionships between the fuzzy variables and control the application of rules in our
fuzzy system.

The modus ponensrule of inference says that if we are given a truth relation-
ship between twofacts and that one fact is knownto be true, then we may deduce
the secondfact. This rule is usually written as

Given A—-B

A

Deduce B (9.14)

9.1. Fuzzy Logic 249

y

1.0

yj

 0.0
j X

Figure 9.3 This graph illustrates the process of determining the truth contentin a fuzzy

assertion. The vertical axis on the graph represents the belief in the assertion, while the

horizontal axis indicates the values the assertion may take on. The possibility function is

shownas the curve on the graph. Giventhis possibility function, for the specific assertion

x;, the truth value is determined byevaluating the possibility function at x;. as shown in

the graph,the result is y;.

In fuzzy logic, we generalize the modus ponensruleofinferenceto allow us

to deal with continuously variable degrees of truth. Specifically,

Given A-B
A’

Deduce B' (9.15)

where A’ is a fuzzy variable that partially matches A. In this case, if we know

that A is partially true, then we can infer that B is also partially true. Butthis

inference begs the question: Howtrue is partially true?

The most common,and general-purpose, technique for determining the truth

content in a fuzzy inference is, quite simply, to use the possibility function for

each variable as the truth index for an assertion. Assuming that the possibility

function provides a reasonable approximation of the belief in an assertion, we

can quantify the truth value for a specific assertion by evaluating the possibility

function at the specified value. This processis illustrated in Figure 9.3.

Now that we haveestablished the mechanism of inference in our fuzzy sys-

tem, let us consider how we might use that mechanism to implement a form

of fuzzy reasoning. As weindicated earlier, fuzzy rules embody the knowledge

that governs the action of the system. These rules are usually constructed as self-

contained JF-THEN modules, where the /F clause captures the conditions under

250 Fuzzy Neural Systems

which the rule is valid, while the statements following the THEN indicator con-

trol the resulting action. For example, consider the following fuzzyrules:

Rule 1: Rule 2:

IF Temperature is High IF Temperature is High

AND Fan Speedis Slow OR Fan Speedis Fast

THEN Fan Speed = Medium THEN Fan Speed = Medium

What makesthese rules useful in controlling a fuzzy system is that each rule

describes the course of action to be taken undera certain set of circumstances.

But how do we determine whenthe prescribed circumstancesare satisfied? To do

sO, we must have a meansfor combining fuzzy indicators to determine our belief

in the assertions that define eachrule.

9.1.4 Combining FuzzyIndicators

Inferring responses based on a single indicator, as described by the generalized
modus ponens rule of inference, is a very straightforward method of reasoning,
albeit very simplistic. The mostsignificant problem with this approachis thatit
does not allow for interrelationships between fuzzy indicators. We shall correct
that deficiency by taking advantage of the fuzzy-membership rules described by
Eqs. (9.4 through 9.6). Before we can apply these rules, however, we must decide
how weshall determine the truth content in multiple fuzzy indicators. As shown
in Figure 9.4, there are three methods for accomplishing that goal:

e Max-Mininference clips the output of each of the membership functions at
the truth level of the assertion.

¢ Max-Avinference averages the level of membership with the belief level in
the assertion.

¢ Max-Dotinference scales the output membershipsby the belief value for the
assertion.

In the ensuing discussion, we shall focus on the max-min technique, although
the processes that we shall develop would be appropriate for all three inference
methods.

To determine the truth value of Rule 1, the possibility functions for each
assertion are clipped at the value indicated by the crisp variable. The resulting
belief functions are then combined through application of the appropriate logic
rule. In this case, we apply Eq. (9.4) because of the conjunctive relationship
betweentheassertions. This processis illustrated in Figure 9.5.

9.1.5 Fuzzy Inference Across Multiple Rules

The technique just described for fuzzy inference is adequate when there is only
one rule in the system. To allow multiple rules to exist in a fuzzy environment, we
shall modify our inference technique slightly, to allow us to combinethe belief

9.1 Fuzzy Logic 251

1.0
U3(x)

(a) U(X)
LL 4(X)
0.0

1.0
U3(x)

(b) U(X)

[4 (x)

0.0

1.0
U3(X)

(C) ox)
M4 (x)

0.0

Figure 9.4 These diagramsillustrate the process of determining the truth content across

multiple fuzzy assertions. (a) The max-min technique clips the output of each membership

function. (b) The max-av method averages the membership values. (c) The max-dot

approachscales the membership values.

values obtained across multiple rules. Be aware, however, that a fuzzy system

may contain manyrules dealing with different aspects of the system operation.In

this discussion, we are only concerned with combining rules that operate on the

same fuzzy output parameters.

The approach weshall take for combining fuzzy inferences is to geometri-

cally average the belief functions obtained from each inference. We perform the

averaging functionby disjunctively combining the two-dimensionalshapesofthe

inferred belief functions, then by finding the centroid of the combined shape. The

centroid is then used to determine the crisp output of the inference, in a manner

identical to the process of defuzzifying the inferred output from a single fuzzy

rule, a process that we described in the previous section, and illustrate in Fig-

ure 9.6 for our two example fuzzyrules.

This concludesour review of fuzzy logic. Obviously, this discussion has been

rather cursory. Readers interested in learning more aboutthe technologywill find

some excellent sources cited in the Suggested Readingssection of this chapter.

We shall now show how the combination of fuzzy logic with neural networks

can produce systems that are better able to deal with uncertainty in real-world

applications.

252 Fuzzy Neural Systems

98°C Temperature

1.0/7
0.9

0.0

85 % Humidity

0.7 ML (x)
O fast

Lt (28) © uw (0.85) = 0.7
Temp Humidity

100 RPM Fan Speed

Figure 9.5 This diagram illustrates the process of combining fuzzy assertions, from
crisp values. Westart by determining thetruth in the first assertion in the rule, which,in
this case, indicates the current temperature. The belief function indicating temperature
is then clipped, or cut off, at the indicated truth value. The processis repeated for the
second assertion. We then take the minimum valueof the truth indications, whichis the
application of the logic rule, and usethat belief to infer the corresponding beliefin the
fuzzy output category. The crisp output of the inference is then obtained by determining
the value of the output that correspondstoits possibility function at the designatedbelief
value.

9.2 IMPLEMENTATION OF A FUZZY NETWORK

A fuzzy network is a neural-processing structure that emulates the fuzzy-logic
functions described by Eqs. (9.4 through 9.6). In this section, we shall examine
an implementation of a fuzzy network that was originally described by a team
of researchers from the National University of Singapore [3]. As we shall show,
this implementation is not a neural network in the sense that it adapts to learn
the fuzzy operators. Rather, like the neocognitron networks described in Chap-
ter 6, these fuzzy networks are constructed to perform the desired fuzzy-logic
functions. However, the fuzzy-network model described in this section provides
a foundation for combining the two technologies. For that reason, these networks
are worthy of ourstudy.

9.2 Implementation of a Fuzzy Network 253

—
_
T
NUl

|

hat y thigh [\Hab?

uu (x) \ , (x)
cool low

25°C 35 %
Temperature Humidity Fan Speed

Rule 2

60 A
RPM

Centroid

Figure 9.6 This diagram illustrates the process of performing a max-min inference over

two fuzzy rules. The top graphillustrates the fuzzy inference performed by Rule 1, while

the bottom graph showsthe fuzzy inference produced by Rule 2. The centroid of the

resulting shape, shown below the two graphs,is then used to determinethe crisp output of

the inference.

9.2.1 Fuzzy-Signal Interpretation

Aswith the conventional fuzzy-logic model, the neural implementation assumes

that there are n fuzzy sets, denoted as

P= Py, Po,..., Pi,..., Ph (9.16)

and that each set is a subset of the universe of discourse, which weshall refer to

as U. Further, we shall restrict each of the fuzzy subsets such that they can only

exist if, for any given element x of U, the corresponding membership functions

are known. Weshall denote these membership functions as

p(x) = pi(x), pax), «+ +s Di(X), ++ Pn(X) (9.17)

where the subscripts establish the association between the fuzzy sets and the

membership functions.
To implement the fuzzy-membershiprules in a neural-processing structure,

we must begin by defining how the information flowing through the network

will be interpreted. First, we shall assert that the output signal produced by each

processing element in the network is analogous to the value of the appropriate

254 Fuzzy Neural Systems

membership function evaluated at a crisp input. In this manner, the input layer of

processing elements will hold the values of the fuzzy inputs to the network, and

the output produced by the network will be equivalent to the fuzzy combination

of the inputs performed by the network.

Because fuzzy-belief functions are continuously variable values in the range

from zero to one, weshall have no difficulty preparing the inputs for propagation

in the neural-network structure. We shall simply allocate one unit for each truth

value to be processed, and apply the fuzzy pattern p(x) to the input of the net-

work. As with many of the other neural-network models we have studied in this

book, we shall use the linear-activation function in each unit on the inputlayer.

The input layer will behave as a fan-out layer, simply holding the set of truth

values for propagation throughthe rest of the network, as in the BPN.

However, the connection weights in the network structure will be used to

control the flow of information through the network, and, hence, will provide the

basis for implementing the desired fuzzy-logic function. To complementthe op-

eration of the connection weights, we shall now define the processing algorithm

that will be used by each noninput unit in the network to convert its input stimu-

lation to its corresponding output.

9.2.2 Fuzzy-Signal Propagation

Each processing element in the fuzzy network,like its counterparts in the other

neural networks we havestudied, operates by combining inputsignals, then trans-

forming the aggregate input to a corresponding output. In the fuzzy network, the

algorithm employed to perform this processing is defined to mimic the evaluation

of the fuzzy membershiprules described earlier in this chapter.

Westart with the first unit on the layer connected directly to the input layer.

For each unit on the layer, we then perform the following five-step algorithm:

1. Input signals are reordered, along with their corresponding connection-

weight values, such that they are arranged in orderof increasing magnitude;
that is,

p(x) = pi (x), ps(x),..., D(x), .. pi (x) (9.18)

W = W),W5,...,W;,..., Wy (9.19)

where each p,(x) refers to exactly one of the original p;(x) membership

functions, under the constraint that

P(x) S pa(x) S$... S p(x)

Similarly, each w, refers to the weight associated with the connection run-

ning from the i'" input to the currentunit.

2. Compute the difference in activation between neighboring pairs of input

units, and call the resulting vector q. This computation is defined by

9.2 Implementation of a Fuzzy Network 255

"(x ifi=10=O if i
pi(x) — pi_,(x) ifi>1 (9.20)

3. Combine the reordered connection weights, w’, to create an aggregate weight

for each connection, according to the equation

n

vi => wu} (9.21)
j=i

fori =1,2,...,n.

4. Threshold the new connection-weight valuesto the unit, v, by

= 10. Gtherwise 9.22)
for? =1,2,...,n.

5. Compute the output-membershipfunction for the unit by

n

o=> id; (9.23)

i=]

Whenthe processing has been completed on the current layer, continue prop-

agating information through the network by using the newly-determined output

values from the current layer as input to the next layer. The process is then re-

peated until the output layer has been completed. Once the signal-propagation

process has been completed,the state of the network indicates theresults of all of

the fuzzy computations performed from the original inputs.

9.2.3. Fuzzy-Conjunctive Network

Weshall now demonstrate the operation of the fuzzy-propagation algorithm for

the three fuzzy-logic functions described in Eqs. (9.4 through 9.6). Weshall begin

with the operation of the fuzzy-conjunctive network, shown in Figure 9.7.

To implement a fuzzy-conjunctive network, we set the connection weights

to 1/n. As we shall now show,setting the weights in this mannerhas the effect

of enabling only the first connection weight, which, according to our signal-

propagation algorithm, will gate only the minimum membership value to the unit.

Webegin by first performing the reordering of the input pattern and asso-

ciated weighting values, as described in step | of the algorithm. The reordered

patterns in this example are, therefore,

p(x) = 0.4, 0.5, 0.8

w’ = 0.33, 0.33, 0.33

256 Fuzzy Neural Systems

Figure 9.7 This diagram illustrates the architecture of the fuzzy-conjunctive network.

The operation of the networkis described in the text.

In step 2, we compute the difference in activation between neighboring units.

We begin this computation with the first of the reordered activation values, and

proceed toward the maximum value. Thus, for this example, the difference vector
is computed as

q(x) = 0.4, (0.5-0.4), (0.8-0.5)

= 0.4, 0.1, 0.3

In step 3, we combine reordered connection-weight values. according to Eq.
(9.21). Again beginning with the connection to the minimum-valueinputunit, we
compute the combined connection weights by proceeding toward the unit with
the maximum membership value.

Vv = (0.33 + 0.33 + 0.33), (0.33 + 0.33), (0.33)

= 1.00, 0.67, 0.33

Next, we threshold the combined weights according to Eq. (9.22). The

thresholded weight vector for this example is, therefore,

v =1,0,0

Finally, we compute the output for the fuzzy-conjunctive unit according to

Eq. (9.23). The result is the membership function for the conjunctive combination

of the three fuzzy-input measures.

9.2 Implementation of a Fuzzy Network 257

o =0.4(1) + 0.1(0) + 0.2(0)

= 0.4

Evaluating Eq. (9.4) with original fuzzy-membership termsforthis example,
wefind that

Pin2n3(x) = min(0.5, 0.4, 0.8)

= 0.4

which confirms the operation of the fuzzy-conjunctive network in this example.

Moreover, because we havereorderedthe original inputs such that the minimum

value always occursfirst, we can see that any fuzzy network implemented with

connection values set to 1/n will always perform a fuzzy conjunction, because

the minimum value will be the only value allowedto pass. |

9.2.4 Fuzzy-Disjunctive Network

The fuzzy-disjunctive network is almost identical to the configuration of the

fuzzy-conjunctive network. In fact, the only difference between the two networks

is the initial value of the connection weights weset in the network. To implement

a fuzzy OR, we must allow the network to compute the maximum of the member-

ship functions applied to the unit. As we shall now show,our fuzzy propagation

algorithm allows the network structure to perform this computation directly.

Recall from our previous discussion of the fuzzy-propagation algorithm that

each unit has, as its input, the difference vector of input-membership values.

Because the original inputs to the network are reordered in increasing-magnitude

sequence prior to computing the difference vector, we are, in effect, creating a

sequence of values that express the algebraic difference in magnitude between

the maximumvalue andzero.

To illustrate this idea, consider the sequence

X = X1,X2,...,Xy

where each value of x; increases (or stays the same) as the previous value. In

computing the difference between adjacent elements, weare creating a sequence

of difference values between zero and one, as indicated by

X! = (x; — 0), (x2 — x1), (13 — x2), ---, (Xn — Xn-1)

If we then algebraically sum the differences, as Eq. (9.21) requires us to do,

we obtain the maximum value from the original set. This can be shown by

258 Fuzzy Neural Systems

 baw&
Figure 9.8 This drawing illustrates the architecture of the fuzzy-disjunctive network.

The operation of this networkis left to the reader as an exercise.

= (x; — O) + (x2 — x1) + (3 — x2) +... + (Xn — Xp_1)

=x, —0

= Xn

Thus, to implement a fuzzy-disjunctive network using our fuzzy-propagational-
gorithm,all that is required is to ensure that every elementof the input is included
in the final computation of the membership function for the unit. In order to
achieve that goal, we must guarantee that every connection weight has a value
that will exceed the threshold value of one after combining weights, as required
by Eq. (9.21). The only way that we can guarantee that all combined connec-
tion weights exceed the threshold value is to ensure that, initially, the weight
value associated with each connection in the fuzzy-disjunctive network is set to
one. Thus, the fuzzy-disjunctive network will always take the form indicated in
Figure 9.8.

Exercise 9.1: Using the sameinputvaluesas given for the fuzzy-conjunctive net-

work example in the previous section, work through the fuzzy-propagation algo-

rithm for the fuzzy-disjunctive network. Show all of your intermediate results. =

9.2 Implementation of a Fuzzy Network | 259

P, (x)

Figure 9.9 This figure illustrates the architecture of the fuzzy-complement network.

Notice that the right-most input unit is analogousto the bias unit used in other network

structures, in that it always has an output value of one. After performing the fuzzy

propagation throughthis unit, the output producedis equal to the fuzzy complementof

the variable input, indicated here as p(x).

9.2.5 Fuzzy-Complement Network

The implementation of the fuzzy-complement network assumesthat only one

fuzzy-membership value is to be converted at any given time. To implementthe

fuzzy-complementin a neural networkstructure, we simply construct the network

shown in Figure 9.9. Then, according to our fuzzy-propagation algorithm, the

computation of the membership function performed by the complement unit is

given by

Oo=S air}

= (pi(x))0+ CU — pi(x))1

=1-— p(x)

whichis identical to Eq. (9.6), satisfying the fuzzy-complement requirement.

Exercise 9.2: For an arbitrary input to the fuzzy-complement network, called

simply p(x), show that the network computes the correct value for the fuzzy

complementby stepping through the fuzzy-propagation algorithm. Show all in-

termediate values computed.

260 Fuzzy Neural Systems

9.2.6 Fuzzy-Network Summary

In this section, we have shown howoriginal authors construct perceptronlike net-

works that can perform the basic operations of fuzzy logic. In the examples we

have presented, we have shown how three of the most fundamental elements

of fuzzy logic are implemented in a neural-processing structure. We have also

shown how the general signal-propagation algorithm developed for these net-

works, in conjunction with the connection weights used to construct the network,

combine to give the network its behavior, an aspect very similar to traditional

neural-network processing. However, these networks are not adaptive, and each

must be constructed specifically for its intended application. While this is a some-

whatlimiting aspect of the architecture, it nevertheless provides a goodstarting

point for understanding how neural networks can be combined with fuzzy logic

to perform functions that operate on uncertainty.

Exercise 9.3: Construct a fuzzy network to perform the following fuzzy compu-

tations:

0; = (hi OR h3) AND hg

02 = h, AND (h2 OR h3 OR ha)

h; = NOTp(x)

hz = pi(x) AND p2(x)

h3 = pi(x) OR po(x)

h4 = NOT p2(x)

Assume that the inputs to the network are p;(x) and that all other computed
values are outputs of some noninput unit. Draw a schematic representation of
your network, and show the values associated with each unit and connection in
the network. m

9.3. FUZZY NEURAL INFERENCE

In the previous section, we described a neural architecture capable of performing
the basic fuzzy-logic operations. We shall now investigate another neural archi-
tecture that performs in waysthat are analogousto the fuzzy-inference methods

described in Section 9.1. In addition, we shall describe how the original devel-

opers of this architecture implement self-adaptive methodsto create the network

from empirical behaviorial examples, in a mannersimilar to the process used by

a BPNasit learns to perform an application.

9.3.1 Fuzzy-Inference Network Architecture

To show how the fuzzy-inference network performsits desired application, let

us digress for a momentand quickly review the fuzzy-inference process. Values

9.3. Fuzzy Neural Inference 261

are obtained for the crisp, independent variables that measure the operation of the
fuzzy system. These crisp variables are thenfuzzified by evaluating a membership
function that computes the measure ofbeliefin the fuzzy indicator. Onceall of the
inputs have been fuzzified, the inference system combinesthe fuzzy indicators in
ways described by the fuzzy rules in the system. Each fuzzy rule then produces
an output value that indicates the measure of certainty in the inferred value. For
all rules that produce outputs that relate to the same measure, the centroid of
the clipped, fuzzy-membership functions is determined and used to defuzzify the
output. This process occursfor all outputs generated by the system.

In a paper published in 1992, two researchers at the California Institute of

Technology (CalTech) described how a multilayer perceptronlike network could

be created to mimic the entire process of fuzzy inference [2]. As shown in Fig-

ure 9.10, the networkstructure is very similar to the architecture of the BPN. The

only significant difference between the two is the interconnection strategy used

betweenlayers. In the BPN, each unit is completely interconnected between lay-

ers, with each connection containing a specific weight that modulates the output

signal from the transmitting unit. Conversely, the fuzzy-inference network is con-

nected only between elements that require connections to combine elements for

each rule.

An additional difference between the two networks is that the connections

in the fuzzy-inference network have no weighting values associated with them.!

Rather, these connections are implemented simply to transfer information be-

tween processing elements without altering that information, much like a con-

ductor transfers electrical signals. As we shall now show, the bulk of the work

performed by the fuzzy-inference network occurs in the processing elements.

9.3.2 Fuzzy-Inference Signal Propagation

The network accepts the crisp indicator variables as inputs. The first layer of

processing elements performsthe fuzzification of these indicators, by evaluating

a membership function associated with each unit using the value provided as

inputto the unit. Specifically, the output of the i” fuzzifier unit is given by

of = filxi) (9.24)

where the superscript is used to denote that the output of the unit is a fuzzified

output value. Also, notice that the form of Eq. (9.24) allows each unit to use a

different activation function, a fact indicated by the subscript on the function.

This processing separation is necessary in orderto allow each of the fuzzifying

units to evaluate the crisp input according to the specific membership function

associated with that unit. Moreover, as each input variable is (usually) classified

in terms of different hedges (e.g., small, medium, and big), the structure of the

1. We could, however, cast the connections in the fuzzy-inference network astraditional neural

connections with weighting valuesset to one.

262 Fuzzy Neural Systems

Defuzzifier Layer

Fuzzy -Rule
Layer

Fuzzifiers

Figure 9.10 This diagram illustrates the architecture of the fuzzy-inference network.
The operation of the network is described in the text. Source: Adapted from Fuzzy

neural—logic system [3]. Used with permission. Copyright ©1992 IEEE.

network allows a single input to be fed to different fuzzifier units. Thus, the

function f;(x;) 1s the membership function that describes one of the hedges for

the given input variable, x;.

The outputs produced by the fuzzy-membership units are then sent to the

next layer of processing elements. These units combine the fuzzy indicators con-

junctively, in a manner analogous to combining fuzzy-logic indicators. Thatis,

each unit on the fuzzy-rule layer computes,asits input stimulation, a value given

by

net, = min{o/}, Vi in X’, (9.25)

where xX’, is the connection set associated with the j'" fuzzy-rule element. Each

fuzzy-rule unit maintains its own connectionset, to implementthe partial connec-

tivity between layers in this network. Specifically, the connection set associated

with each fuzzy-rule unit contains the indices of the fuzzifier units that are con-

nected to this unit. For example, in the network illustrated in Figure 9.10, X}

would be the connection set associated with fuzzy-rule unit 2, containing ele-

9.3 Fuzzy Neural Inference 263

ments (1,4), while X4 would be the connection set associated with fuzzy-rule unit

4, and will contain the elements (2,3).

The fuzzy-rule units each produce an output signal, which is analogous to

the belief in the inferred result. This is simply the conjunctive combinationofall

the input indicators, whichis exactly the input stimulation computed bythe unit.

Thus, the activation function employedby the units on the fuzzy-rule layerin this

network is the same linear-activation function that we have used extensively in

other neural-network models. In mathematical terms,

o, = net’ (9.26)

The outputs produced by the fuzzy-rule layer are fed selectively into another

layer that collects the conclusions produced byall of the rule units that affect a

specific output category. Becausethese units are selectively connectedto the rule

units, the input computation performedon this layer mustreflect that sparse input

connectivity. Furthermore, because thetotal belief in any one assertion can be no

higher than the minimum belief in that assertion, we use the same computation

that is employed by the fuzzy-rule layer to compute the input stimulation and

produce the appropriate output for each of the units on this layer. Specifically,

net; =min{o’}, Vj in Xi. | (9.27)

oO; = net), (9.28)

where, as before, X; refers to the connection set associated with the k unit on

the conclusion layer.

Finally, we require a layer to combine the fuzzy conclusions and produce

a crisp output for each of the fuzzy conclusions, a process that is analogous to

computing the geometric shape of the output membership functions and defuzzi-

fying the result. Bart Kosko describes an appropriate method of fuzzy centroid

defuzzification in Chapter 8 of his seminal work on fuzzy neural systems [5].

The algorithm essentially normalizes the input values and weights them with the

geometric centers of the output-membership functions to calculate the crisp out-

put. Specifically,

ya ViHAQ)
A=

Din La(yj)

 (9.29)

where the term A is used to indicate the fuzzy centroid, the term y; is used to

indicate the center of the fuzzy-membership function, and the function 4(y;)

describes the membership (or belief measure) of the inferred value in the jh

fuzzy subset in the universe of discourse, Y = {y1, y2,---.p}. We shall demon-

strate an application of Eq. (9.29) in the next section of this chapter.

264 Fuzzy Neural Systems

9.3.3 Learning Fuzzy Rules

In their original paper, Higgins and Goodman [2] describe a methodfor extract-

ing fuzzy rules from empirical data. Their method is derived from a process of

generalizing specific rules obtained directly from the data using an information-

theoretic measure to estimate the appropriateness of a rule with respect to a given

example set. The measure used to evaluate the fit of each rule is called the J-

measure andis defined as a function of probabilities by

p(xly) _ p(x\y)
J = ply) | P<xty) tog, (n(x)) +ay les (oi))| (9.30)

where x refers to the consequent and yrefers to the antecedentin a rule of the

form if y then x. In the case of a fuzzy system, the antecedent can be thought
of as a conjunction of the input variables. Similarly, x can be cast as an output
variable.

To use this measure to construct a rule set from empirical data, we begin
by developing a set of specific rules, each of the form if y then x. The most
straightforward method for doing this is to start by writing one such rule for
every exemplar contained in the data, then generalizing the rules to eliminate
redundancies. For example, if our data set is of the form

X| = Vil; Y12, Vi3,-++5 Vin

X92 —= Y215 Y22; Y23;5 see gs Y2n

X3 = Y315 Y32, 33, a) ¥3n

Xm = Ym1, Ym2; Ym35+++s Ymn

we can construct m specific rules to describe these relationships. These rules
would all take the general form

IF input; = yj

AND input, = yj2

AND input, = yjn

THEN output = x;

Onceall such rules have been developed, we can then apply the J-measure, as
defined by Eq. (9.30), to each ofthe specific rules, using therelative frequencies
counted in the given discrete sample set to estimate the probabilities. Further, to
allow for fuzzy conditions on the variables, we use the fuzzy category with the
greatest membershipin each input variable. For example, if input; is more small
than medium or big, we should then use the membership function for the small
fuzzy set instead of y;; when computing the J-measure.

9.3 Fuzzy Neural Inference 265

After completing this process, we will have established the nominal measure
of each rule. We then generalize each rule slightly, by removing a single-input
variable from the antecedent in each rule. If we then repeat the process of com-
puting J-measures using the more-general version of each rule, we obtain a new
score for each rule. We can then conclude that the rule with the higher J-measure

is a better form of the rule, and eliminate the less-effective form of the rule. If we

ever encounter a situation where two rules have the same specific relationship,

we eliminate the redundantrule and continue generalizing. This process contin-

ues until no more-general rule with a higher J-measure exists. At that point, the

remaining rules define the minimal rule set needed to describe the data, and these

rules can be codified to predict an output from a new set of input parameters.

9.3.4 Codifying Fuzzy Neural Rules

As wedescribed in Section 9.2, the fuzzy-rule units in the neural-network struc-

ture encode the fuzzy rules that we have just derived. In order to implementthese

rules in our networkstructure, we must assign functionsto each of the units in the

network, and establish the connectivity needed to perform the desired processing.

The process of constructing the fuzzy-inference network from the derived fuzzy

rules, as described here, is analogous to learning in conventional neural-network

paradigms.

Webegin by inspecting our rules. Every unique fuzzy category used in the

minimal-rule set requires an associated unit in the input-membership function

layer. Likewise, there will be one fuzzy-rule unit for each rule in the minimal

set. Rules that have only one fuzzy variable as input are connected directly to

the appropriate input-membership unit. Rules that require conjunctions between

antecedent variables are similarly connected to the corresponding membership

units. Different rules that have an effect on the same output variable are con-

nected to the same output-membership unit. There will therefore be one output-

membership unit for each fuzzy-output category. Finally, all output-membership

units are connectedto all output-defuzzifier units, to produce the necessary crisp

output values. |

Once constructed, information is propagated through the networkstructure

using the algorithm described in Section 9.2. The outputs produced bythe net-

work are interpreted as indicators of the inferences made by the fuzzy rules en-

coded in the network structure, thus satisfying our objectives for the network.

9.3.5 Fuzzy Neural-Inference Results

Higgins and Goodman reported using the fuzzy-inference system described

in this section for two different applications, one a rather trivial function-

approximation problem and the other a more complicated control application.

The function-approximation experiment was conducted to demonstrate the abil-

ity of the system to learn a two-dimensional pyramid function. In Figure 9.11,

266 | Fuzzy Neural Systems

1.0

Low High
(a) Med

0.0

0 40 80 x coordinate

1.0

Low High
(b) Med

0.0

0 90 100 y coordinate

1.0

Low High(c) g

0.0

0 80 f (x,y)
Figure 9.11 These diagramsillustrate the membership functions used to construct the
function-approximation fuzzy inference network. (a) The membership function for the
x-coordinate system. (b) The membership function for the y-coordinate system. (c) The
membership function showing the desired response for the function T(x. ¥). Source:
Adapted from Fuzzy neural-logic system [3]. Used with permission. Copyright ©1992
IEEE.

we reproduce the membership functions used in that experiment, while in Fig-
ure 9.12 weillustrate the comparison betweenthe optimal response of the system
and the learned response.

The control application described by Higgins and Goodmanwasconstructed
to control the acceleration of a radio-controlled toy vehicle, to keep the speed of
the car constant. To simplify the experiment, the car wasset to run in a circle on
a flat surface, with no obstacles to avoid.

Figure 9.13 illustrates the membership functions used to construct the speed
controller for the radio-controlled vehicle. The data describing the application
was acquired by monitoring the velocity and acceleration of the car, and the
corresponding output from a conventional control system that was usedtostart
the vehicle and maintain the speed for a short time. The rules derived from the
data using the technique describedin this section are shownin Table 9.1.

In Figure 9.14, we illustrate the graph of the control response for the
radio-controlled speed-control application. It should be apparent from this graph
that the fuzzy-inference network did an adequate job of controlling the radio-

9.4 Fuzzy Control of BPN Learning 267

Figure 9.12 These plots illustrate (a) the desired response from the function-

approximation system and (b) the actual response from the fuzzy-inference network.

Source: Adaptedfrom Fuzzy neural-logic system [3]. Used with permission. Copyright

©1992 IEEE.

controlled car, even though the speed error tended to oscillate. The original

authors attribute this error to the limited training data that were used to develop

the rules. Because only onetraining run wasusedto capture the training data from

the conventional controller, the amount of data that described the controller’s re-

sponse to acceleration wasless than desired. Higgins and Goodman contendthat

the problem could be overcomebycollecting substantially more data, and repeat-

ing the exercise to more completely cover the control space.

9.4 FUZZY CONTROL OF BPN LEARNING

Wehavestudied how neural networks can be made to emulate fuzzy-logic opera-

tions, with the goal of implementing systemsthat will benefit from the integration

of the two technologies. In this section, we shall investigate a different approach

to combining the technologies. Essentially, we shall show how a fuzzy controller

can be used to dynamically alter the learning rate in a BPN duringtraining. The

benefit to this approachis that the fuzzy-logic controller can be generally applied

to any BPN application, thus removing the burden of heuristically selecting the

learning rate for the application from the developer.

268 Fuzzy Neural Systems

1.0

(a) Too Slow Too Fast

0.0

-20 20 Velocity

1.0

(b) Decelerate Accelerate

0.0

5 8 Acceleration

Figure 9.13 These diagramsillustrate the membership functions used to encode the
fuzzy rules in the radio-controlled control application. (a) The membership function
for velocity. (b) The membership function for acceleration of the car. (c) The output-
membership function for the control of the motor voltage on the radio-controlled
vehicle. Source: Adaptedfrom Learning fuzzy rule-based neuralnetworksfor function
approximation [2]. Used with permission. Copyright ©1992 IEEE.

IF Vv = too slow THEN out = sm pos
IF Vv = too slow AND a = decel THEN out = sm pos
IF Vv = too fast AND a = accel THEN _out = sm neg
IF v = too fast AND a = decel THEN out = sm neg
IF a = accel THEN out = sm neg
IF a = decel THEN out = sm pos

Table 9.1 The six rules derived from the empirical control data for the radio-controlled
vehicle speed-control application.

As described in Chapter 2, the connection weights in the BPN are updated
during training, according to the equation

Wry(t + 1) = wxy(t) + ndfoy +aAw,,(t — 1) (9.31)

9.4 Fuzzy Control of BPN Learning 269

30at 30ane
20 20

10 10

0 0

—10 —10
90 Error 00 Error

—30 —30
O 10 20 30 40 50 O 10 20 30 40 50

seconds seconds

(a) (6)

Figure 9.14 These graphsillustrate the performance of the two controllers in the radio-

controlled vehicle speed-control application. (a) The responseanderror of the handcrafted

controller used to provide the initial training data for the experiment. (b) The response

and error of the fuzzy-inference network on the same application. Source: Adaptedfrom

Learning fuzzy rule-based neuralnetworks for function approximation [2]. Used with

permission. Copyright ©1992 IEEE.

where 7 is a small, real value in the range from zero to one that controls the

learning rate in the network, and @ performs a similar function for controlling

the momentum of the change.” Inspection of Eq. (9.31) tells us how the value of7

influences the learning in the BPN: As 7 approachesone, the network’sability to

converge to a global solution diminishes, as the networkoscillates betweenstates

that minimize the error for each pattern presentation; conversely, as the value of 7

approacheszero, the ability of the network to converge increasesat the expense of

training time, as the numberof training passes required to complete the learning

process also increase.

Thus, selecting an ideal value for the learning-rate parameteris crucial for

creating a successful BPN application. Unfortunately, there are no definitive

guidelines for determining the proper value for n a priori. Bart Kosko [6] and

others have suggested that the learning rate ought to vary as training proceeds.

However, they offer no clear guidelines for how to select the initial value of 7, or

for determining the frequency of variation as training occurs.

In an attempt to address these issues, David Hertz and Qing Hu[1], of the

University of Miami, developed an architecture that allows the learning rate in a

BPN to be varied dynamically, controlling the instantaneous value of 7 used by

the BPN throughthe use of fuzzy logic. In the remainderof this section, weshall

describe the architecture of that system, and show how the original developers

2. Momentum.as it is described here. is an optional computation in the BPN paradigm. If used.

it serves to keep weight changes on every connection moving in the same general direction from

learning pass to learning pass. .

270 Fuzzy Neural Systems

evaluated the performance of the fuzzy-controlled neural network (FCNN). As

we shall discover, this integration of technologies offers a means of minimizing

the training times during a typical BPN development, without adversely affecting

the ability of the network to learn the application.

9.4.1. Fuzzy-Controller Design

The fuzzy controller developed for this architecture 1s based on the conventional

design of a fuzzy-logic system; that is, the crisp inputs are first fuzzified, in-

ferences are then made to determine the corresponding output, and the result is

defuzzified into a crisp control value. In this application, we want to control the

modulation of n in a standard BPN model. Therefore, we can conclude that the

output of the fuzzy controller will be a new value of 7 for the BPN. The only

question left unresolved is: Should the new value of 7 be globally applied (used

by every unit in the network), or should we use a specific value for each unit?

Equation (9.31) tells us that 7 has a direct influence on each connection in the

network. Therefore, Hertz and Hu decided to control the learning-rate parameter

at each unit in the networkstructure.

In order to construct such a controller, we must next select input values that

are somehowrelated to the desired output. Unfortunately, in the case of the BPN,

it is difficult to say precisely which values ought to be used to determine the

appropriate learning-rate value. Intuitively, the error signal, given by 5, in Eq.

(9.31), should provide a reasonable indicator of learning rate: A high-magnitude

error signal at the unit should indicate a larger corrective action, while a unit
with a low-magnitude error should require only a minor correction during each
training pass.

Unfortunately, this relationship betweenerror signals and learning rates cre-
ates a complication. As we know from our discussion of the BPN in Chapter 2,
the determination ofthe error signal on the outputlayer is simply

b¢ = (dj — of) f(nety) (9.32)

where dt is the desired output from unit k for input pattern p, and OV is the actual
output from the unit. The determination of the error signal at any nonoutput unit
is not as straightforward, however, because we have no a priori knowledgeof the

output that should have been generated by the unit. This is why werecursively

backpropagate error signals in the BPN network. Unlike the error signals on the

output layer, however, the backpropagated error signals tend to be rather small.

For this reason, and others that we shall describe in the next section, Hertz and

Huassert that the learning rate cannot be computed on nonoutputlayers in the

Same mannerthatit is determined for the outputlayer.

As shown in Figure 9.15, Hertz and Hu decided to use a fuzzy controller

to infer the new learning rate for the output layer of the BPN, then simply use

the largest value of 7 on the output layer as the learning-rate parameterat every

9.4 Fuzzy Control of BPN Learning 271

Fuzzy Controller oo

Figure 9.15 This diagram showsthe architecture of the FCNN developedto adaptively

modulate the learning rate in a BPN structure. Notice that the fuzzy controller is only

applied to the output layer in the network. For reasons described in the text, the largest

value of 7 computed by the controller is passed down to every nonoutput unit.

nonoutput unit. The next step in the implementation of this system is the devel-

opmentof the fuzzy rules, which we shall now discuss.

9.4.2 Fuzzy-Rule Development

Hertz and Hu developed seven fuzzy rules to control the determination of the

learning rate for a unit, given the error signal at that unit. These rules are illus-

trated in Table 9.2, and are interpreted as follows:

IF error is X THEN set 7, To Y

where X is one of the fuzzy subsets in the universe of discourse, denoted as

negative large (NL), negative medium (NM), negative small (NS), zero (ZE),

positive small (PS), positive medium (PM), and positive large (PL). Similarly, Y

is one of the fuzzy-outputsets, denoted by zero (ZE), small (S), medium (M), and

big (B).

As shownin Figure 9.16, triangular membership functions for both the input

and output fuzzy subsets were selected by Hertz and Hu. The triangular shape was

272 Fuzzy Neural Systems

Xx NL NM NS ZE PS PM PL

Y B M S ZE S M B

Fable 9.2 The fuzzy-rule set for controlling the learning-rate parameter in a BPN

selected to simplify the computation of the fuzzy-membership function, given for
each subset? by

1 ifx=x%
X,—X .

ato) if x4 <x< xy

ma(x) = “ar*a) (9.33)
XX . —

— ifx, <x< x4
(x —x4)

otherwise

where the term x, is used to denote the lower bound ofthe variable x in fuzzy
set A, xy indicates the upper bound of x in A, and x‘, denotes the center of the
membership function, which is determined by

+ —_

Xa —X4

2

Cc

XA = +x5 (9.34)

9.4.3 An FCNN Example

Using the fuzzy rules and membership functions indicated above, we shall now
describe an example to illustrate the Operation of the fuzzy controller. For this
example, we shall assumethat the network weare training has three output units,
and that, for the current exemplar, the error values computed at the output of the
network are 0.27, 0.53, and —0.47, respectively.

Webegin by computing the fuzzy membershipofthe error terms in the input
universe of discourse. The error term 5; is a member of the two fuzzy input
sets PS and PM. The membership value of 5; in each of these two fuzzy sets is
computed as

0.35 —0.27
mes) = 35 —O30)

— 0,533
0.27 — 0.25

memC= Ooo05)
= 0,133.

3. Note that Eqs. (9.33 and 9.34) apply only to triangular membership functions, such as those
described here.

9.4 Fuzzy Control of BPN Learning 273

10 NL NM NS ZE PS PM PL

(a)

0.9--—— >>>+
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

10 ZE PS PM PL

(b)

0.0
0.2 0.4 0.6 0.8 1.0

Figure 9.16 These diagramsillustrate the membership functions selected for the fcnn

application. (a) The membership functions for the error signal input. (b) The membership

functions of the output learning-rate parameter. Source: Adaptedfrom Fuzzy controller

for backpropagation networks [1]. Used with permission. Copyright ©1992 Society for

Computer Simulation International.

Similarly, the 52 error value produces membership values in PM and PL of

(0.133, 0.533), and 63 produces membership values NL and NM of (0.867,

0.467).

We then apply Kosko’s centroid defuzzification function, defined in Eq.

(9.29), to determine the crisp values of the learning rate for the output units in

this network. Forthe first unit, the output value is computed as

a X5XAs

i=! xjAj

(0.3)(0.533)A; + (0.7)(0.133)A2
~ (0.533A; + 0.13342)

_ 0.160 + 0.093
~ (0.533 + 0.133)
= 0.379

r=

where we have simplified the computation by allowing the area of each member-

ship function, indicated by A;, to be approximated as one. This approximation

274 Fuzzy Neural Systems

abides by the model developed by Hertz and Hu, which they assert is adequate

for the system, because the learning rate does not have to be very precise.

Similarly, the crisp learning-rate values for output units 2 and 3 are computed

as above, producing values of 0.939 and 0.897, respectively. Relating these val-

ues backto the original error terms, we see that the fuzzy controller has produced

fairly large values for n, for those units where the error was large, and smaller

learning-rate values for those units where the error wasfairly small, just as we
had planned.

For the hidden layer of units, the learning-rate value we will send down will
be the maximum value of nz from the output layer, in this case 0.939. Note that
all of these values are recomputed every time a new exemplaris presented to the
network for training, thus allowing the individual units to adaptively control the
learning rate needed to encode eachpattern.

9.4.4 FCNN Results and Conclusions

The graphs shownin Figure 9.17 illustrate a performance comparison between
the FCNN and a standard BPN (without momentum)in learning two associative-
memory applications: An autoassociative memory where the BPN is asked to
map a pixel character mapto itself, and a heteroassociative memory where the
BPNis askedto learn the mapping from a pixel character map to the ASCII code
associated with the character image. As you can see from these graphs,the results
reported by Hertz and Huindicate that the FCNNlearns the training set to the
same degree of accuracy as the standard BPN in 36% fewer training epochs, on
average.

Another importantresult of this study was that the FCNNstructure is exten-
sible to any application suited to a BPN. Becausetheinitial learning-rate parame-
ters are randomly assigned, instead of predefined, and then controllably modified
after every pattern presentation, Hertz and Huassert that there is no longer any
need to “play” with the learning-rate values to get the network to converge. Thus,
a working FCNN application can be constructed in muchless time than its BPN
counterpart.

The integration of fuzzy logic and neural-network technology bodes well
for the future, as there are many other fuzzy opportunities for controlling the
state of a network. Such opportunities include intelligently pruning neurons in a
networkstructure, selectively eliminating certain connections in a network, and
even deciding how to determine the proper learning rate at a nonoutput unit.
Manyof these problems have eluded solution by other means, or have been only
partially solved. If other network architectures can be developed alongthe lines
of the FCNNto addressthese issues, the integration of neural networks and fuzzy
logic holds a great deal of promise for future applications.

9.5 Fuzzy Neural-System Summary 275

5 1.0-
LLJ

@ 0.8~ -—s—» FCNN
wo

o 0.4—
Dd)
oO

® 0.2—-
x

0.0 ' | | f T ! 1

10 20 #30 40 50 60 70 80
Training Cycles

_ 1.0 -

O
Ww 0.8-

0.6 - 2——_s

(b) 3 “1 FCNN

2 0.4-
©
5 0.27
>

Zt 0.0))
40 80 120 160 200 240 280 320

Training Cycles

Figure 9.17 The graphsillustrating the performance of the FCNN are shown.(a) This

graph comparesthe operation of the BPN and FCNNonthe autoassociative character-to-

character image-mapping application. (b) This graph compares the two networksin the

heteroassociative-memory character-to-ASCII application. Source: Adaptedfrom Fuzzy

controller for backpropagation networks[1]. Used with permission. Copyright ©1992

Society for Computer Simulation International.

9.5 FUZZY NEURAL-SYSTEM SUMMARY

In this chapter, we have seen how fuzzy logic and neural networks have been

combined to form systems that provide a more robust environmentfor develop-

ing real-world applications. The combination of these two technologies is such an

exciting area of research that the IEEE has combinedits annual conferences on

neural networks and fuzzy logic into a single gathering, attracting more partici-

pants at this one event than both conferences wereable to attract independently.

Atthis writing, there are so many practical applications of the two technologies,

and of their integration, that we could have filled another book. Unfortunately,

space constraints simply do not allow us to elaborate on these applications. We

hope, however, that the (gentle) introduction to neural-network and fuzzy-logic

integration we have just completed provides the reader with the incentive to ex-

plore the synthesis of these two technologies independently.

276 Fuzzy Neural Systems

SUGGESTED READINGS

Currently, the most complete treatment of neural networks and fuzzy logic is Bart
Kosko’s seminal work, Neural Networks and Fuzzy Systems: A Dynamical Sys-
tems Approach to Machine Intelligence [5]. It was written by an engineer, for
engineers, and thus providesa fairly rigorous exploration of the two technolo-
gies. For a more in-depth analysis of fuzzy logic as it applies to information
processing and situation assessment, the most comprehensive work I reviewed
prior to writing this chapter was Fuzzy Sets, Uncertainty, and Information [4].
Of course, readers interested in obtaining a detailed understanding of the foun-
dations of fuzzy logic are referred to Lofti Zadeh’s seminal work, titled simply
“Fuzzy Sets,” which originally appeared in the journal Information and Con-
trol [10].

Asweindicatedearlier in this text, the combination of fuzzy logic and neural
networkshas only recently achieved a great deal ofattention. In this regard, there
has been a flurry of excellent technical papers published recently that describe
the practical applications of the two technologies. Readersinterested in the more
practical aspects of the combined technologies will find the papers published in
the Proceedings of the IEEE Fuzzy Logic and Neural Network conferences the
most enlightening. Another good source of practical-application papers can be
found in Neural Information Processing Systems: Natural and Synthetic, pub-
lished annually by Morgan-Kaufmannasthe edited proceedingsof the conference
and workshop of the same name.

BIBLIOGRAPHY

1. David B. Hertz and Qing Hu. Fuzzy-neuro controller for backpropagation networks.In
Proceedings of the Simulation Technology and Workshop on Neural Networks Conference,
Houston, TX, pp. 570-574, 1992.

2. C. M. Higgins and R. M. Goodman. Learning fuzzy rule-based neural networks for
function approximation. In Proceedings of the International Joint Conference on Neural
Networks, Baltimore, MD,pp. I(251-256), 1992.

3. L.S. Hsu, H. H. Teh,P. Z. Wang, S. C. Chan, and K. F. Loe. Fuzzy neural-logic system.
In Proceedings of the International Joint Conference on Neural Networks, Baltimore, MD,
pp. 1(245-250), 1992.

4. G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

5. Bart Kosko. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to
MachineIntelligence. Prentice-Hall, Englewood Cliffs, NJ , 1992.

6. Bart Kosko and S. Kong. Adaptive Fuzzy Systems for Backing Up a Truck-and-Trailer,
in IEEE Transactions on Neural Networks, Vol. 3, No. 2, pages 211-223, 1992.
7. N. Rescher. Many-Valued Logic. McGraw-Hill, New York, 1969.

Bibliography 277

8. Steven L. Tanimoto. The Elements of Artificial Intelligence. Computer Science Press,

Rockville, MD, 1987.

9. Patrick Henry Winston. Artificial Intelligence, Third Edition, Addison-Wesley, Read-

ing, MA, 1992. ,

10. Lofti A. Zadeh. Fuzzy Sets. Information and Control, Vol. 8, pp. 335-353, 1965.

ANSWERSTO SELECTED EXERCISES

Chapter 2

2.1 Linear units (on the output layer) tend to train more rapidly than sigmoidal, because

the derivative of the linear function does not minimize the amount of change in a saturated

unit.

2.2 Sigmoidalunits (orat least non-linear units) are needed on the hidden layer of a BPN

to allow the network to linearly-separate pattern vectors that are linear combinations of

each other.

2.3. As described above, linear units on the hidden layer of a BPN would learn alllin-

ear combinations of input pattern vectors. In many applications, exemplars have inputs

patterns that, while they are linear combinations ofeachother, producedistinctly different

outputs. To allow for this separation of patterns, a non-linearity (¢.g., the sigmoidal logistic

function) must be introduced.

2.4 Fortheparity application, input patterns must be separated into two classes (even and

odd parity) based on the numberof “ones” contained in the pattern. Thus, input patterns

that differ by only a single bit will fall into different categories. The CPN matches input

patterns by comparing the input vectorto all the weight vectors stored in the connections

to the instar layer in direction only. Therefore, in order to correctly match an arbitrary input

pattern correctly, an instar mustbe allocated to detect every possible input pattern.If not,it

would be possible to misclassify an input, simply because the winning instar was “closest”

to the input in Euclidean space. This behavior makes the CPN inappropriate for the parity

application.

2.5 The BPN retains no specific memory of input patterns. Rather, it encodes the char-

acteristics of a given input which lead to the successful generation of the desired output.

After a BPN haslearned an exemplarset, training it with new exemplars without reinforc-

ing the previously learned exemplars will cause it to adjustitself to produce only the new

exemplars, thus “forgetting” the earlier exemplarset.

Chapter 3

3.1 Let the attributes of the input pattern (x) be: sofa, coffee table, floor lamp, oven,re-

fridgerator (freezer), table, bed, dresser, shelves, desk, book case, work table, and tools.

Let the rooms that we wantto classify (y) be: living room, kitchen, bed room, den, and

garage. Using the attribute sequence defined above, one possible encoding for the exem-

plars for this application is:

279

280 Answersto Selected Exercises

x; = 1110000000000, y; = 10000

x2 = 0001110000000, y2 = 01000

x3 = 0000001101000, = y3=00100

x4 = 0000000000100, y4 = 00010

x5 = 0000000010011, ys = 00001

3.2 Using the sameattribute list as above, but allowing for overlap, one possible encod-
ing for the exemplars for this application is:

x; = 1110000010000, y; = 10000

x2 = 0001110000000, y2 = 01000

x3 = 0010001111000, y3 = 00100

x4 = 1010000011110, y4 = 00010

x5 = 0000100010011, ys = 00001

3.3. To scale any component of x properly, wefirst squash the given value to the range
between 0 and | by subtracting the bias from the value, and dividing by the rangeof values.
Wethen scale the result back to the range between L and U,and addin the new biasvalue.
Mathematically, this process is described by the equation

, xX; — min (x)
x, = x(U-L)+L

max (X) — min (x)

3.4. An ARTnetwork could be used,if altered to allow it to generate an outputthat differs
from the memoryofthe matchedinputpattern. For an example of this modification, see the
tic-tac-toe application described in Section 4.3.

3.5 Solution left to the reader.

3.6 Solution left to the reader.

3.7 The network contains 8,862 connections (207 inputs connected to 42 hidden units,
plus 42 hidden units connected to 4 outputs). Each connection requires 2 computations for
the feed-forward propagation, and 6 computations for the backward propagation. The 42
units on the hiddenlayer are all sigmoidal, so each requires 10 computations to determine
its output during the forward propagation. We have 8,759 exemplars that must be presented
to the network during each epoch,andtraining requires 100 epochs. The amountof time
needed to perform onetraining cycle on our 1 MFLOP machineis therefore:

((8862(2) + 8862(6) + 42(10))8759) 100

1,000,000

= 62,465 seconds

 lec =

= 17 hours, 21 minutes

To complete the hold-one-out test, we must repeat this process 8,760 times, requiring
17.35 years, with no time off for holidays, weekends, or good behavior.

Answersto Selected Exercises 281

3.8 Solution left to the reader.

Chapter 4

4.1. The output layer will consist of seven sigmoidal units. The encoding will be one unit

for each bit in the ASCII code. For example, the ASCII codefor the letter “A” is 4116. The

target output pattern for the character “A” input would then be 1000001.

4.2 The CPN would be a good choicefor this application, since the output patterns are

accreted. In this case, each time the given inputpattern is presented, the same competitive

unit would win the competition. As training progresses, the output vector associated with

the winning unit would become the combination ofall of the outputs associated with the

given input.

4.3 Solution left to the reader.

4.4 The following solution assumesthat the second place unit in the competition is the

unit associated with the 150° image. It could just as easily be the unit associated with the

90° image.

s = 0.5 sin(120°) + 0.5 sin(150°)

= 0.433 + 0.25

= 0.683

c = 0.5cos(120°) + 0.5 cos(150°)

= —0.683

4.4 Adjust the activation function for the competitive layer such that when a unit winsthe

competition with an activation of 1.0 (an exact match), only one unit produces an output.

If the activation of the winning unitis less than 1.0, use the top two units to interpolate the

output as before.

Chapter 5

5.1 The only requirement would be that the candidate indicator must have some (perhaps

implicit) relationship to the desired output, in this case, the S&P 500. If, for example, you

felt that the skiing conditions at Vale, Colorado indicated whether business people were

doing their jobs or were on the slopes relaxing, you might include this indicator in your

pattern set since it might indicate the strength of the market. Be warned, however,thatthe

network has no innate understanding of the value of the indicators that you provide, and

will therefore attempt to find a correlation between the indicator and the desired output,

even if it does not exist.

5.2 Retrain the network periodically with fresh data. You can either combine the new

patterns with the old and completely retrain the network, or you could retrain just on the

new data. If you choose the latter approach, be certain that the data set is complete enough

to provide adequate coverage of the domain, andretrain the network from scratch.

5.3. Solution left to the reader.

Chapter 6

6.1 Solution left to the reader. See Exercise 3.7 as an example.

282 Answers to Selected Exercises

6.2 Solution left to the reader. See Exercise 2.4 as an example.

Chapter 7

7.1. The compression network was mapping 256 gray-shadedpixels to themselves. Thus,

both the input and output patterns were comprised of components that could take on one

of 256 different values, a task better suited to linear units than to sigmoidal units.

Chapter 8

8.1

Fs)=
S- + Wr

8.2 The poles and zeros are determined by finding the roots of the equations

10-°s* + 0.035 + 20 =0

10->s +0.03 =0

Thus, the pole is at — 1000, and the zero is at —3000.

Chapter 9

9.1 For the fuzzy disjunctive network, the weights mustall be set to one. After reorder-
ing, the input and weights are:

p(x) = 0.4, 0.5.0.8

w’ = 1.0, 1.0, 1.0

We then compute the difference in activation between neighboring units as

q(x) = 0.4.0.1, 0.3

Next, we combine reordered connection weight values.

v=3,2, 1

After thresholding, v’ becomes

v=1.1,1

Finally, the output membership for the fuzzy disjunctive networkis computed as

o=0.4(1) + 0.101) + 0.3(1)

= (0.8

9.2 Solution left to the reader. See Exercise 9.1 as an example.

9.3 Solution left to the reader.

activation, 7

activation function, 10

binary threshold, 12, 225

competitive, 16-19, 42
instar, 16

gaussian, 19-21, 41

linear, 11, 42

outstar, 16

saturation of, 33, 68
sigmoidal, 13-15, 33

activation value, 9

adaptive linear element (Adaline), 225-

228
adaptive resonancetheory (ART), 46-52

ARTI, 46, 47-49, 115-116
operation of, 47-49

resonantstate, 49
structure, 47

ART?2,46, 49-52, 197-202

contrast enhancement, 50

equations, 50
operation of, 49-52

gain control, 47
orienting subsystem, 47
two-thirds rule, 47

vigilence parameter, 202-203

analog
output device, 11

signal processing, 6
Appel, Gerald, 136

ART, See adaptive resonance theory

ASCII characters, 105, 274

associative memory, 99
autoassociative memory, 100, 122, 274

herteroassociative memory, 100, 120,

274
interpolative associative memory, 53,

100
autoassociative memory, See associative

memory
automatic fine tuning (AFT), 213, 214

average directional index (ADX), 131-134

ADX,See average directional index

backpropagation network (BPN), 29-42,
90,100,125

equations, 32
forgetting patterns, 46, 113
learning, 31-34
learning rate, 32, 81, 96, 109, 170, 269
momentum, 109, 170, 269
related networks, 37-42
production mode, 36—37

structure, 30-31

training issues, 34-36

Barr, Dean S., 139-143

Bayesian decision strategy, 41
bias unit, 31, 225
bidirectional associative memory (BAM),

53-55, 100, 125

equations, 53
operation, 53-55

structure, 53
binary threshold units, See activation

function
bipedal locomotion, 228-233
bipolar, 67, 115, 225

bivalent indicator function, 244
Boltzmann completion network, 124

boundary contour system, 52

byte, 3

California Institute of Technology
(CalTech), 261

Carpenter, Gail, 46
cart/pole balancer, 221-228

Cherkassky, Vladimir, 233-240

Collard, Joseph E., 149-152
competitive units, See activation function

connections, 6
bidirectional, 54
bottom-up, 48
effect of on network, 2

excitatory, 8
feed-forward, 7, 30

inhibitory, 8
initialization, 52, 62-63

283

284

connections (cont.)

lateral inhibiting, 47
weight values, 2

contrast enhancement, See adapative
resonance theory

control theory, 212-221

closed-loop, 212-214

open-loop, 212
counterpropagation network (CPN), 42-46,

90, 100, 120
equations, 43-44
learning, 42-44

pattern recall, 45-46

structure, 43
crisp variables, 248

data representations
analog, 66
discrete, 66

digitized video, 4, 76, 118, 120, 175, 193,

203, 206
discrete time sampling, 130
doppler radar signatures, 161-171
Dutta, Soumitra, 144—147

electromagnetic radiation (EMR), 161,
197, 198

elman network, 38—39

ElMaraghy, W. H., 228-233
Enombo,Jean-Baptiste, 172-181

error
global, 96

least-mean squared, 237
signal, hidden layer(s) of BPN, 34
signal, output layer of BPN,33

Euclidean space

distance measures, 44-45, 106, 159
exclusive-or (XOR)

network, 21—23
exemplars

analysis, 77-85
consistency checking, 80-82
definition, 30
ensuring coverage, 78-80
selection of, 94, 113, 146-47

fan-out units, See layer

fast-Fourier transform (FFT), 164
feature detectors, 22, 90, 107, 155

feedback, 212

Fogler, R. J., 198

Freeman, James A., 52, 117

Fukushima, Kunihiko, 186, 187,209

functional link network, 40
expansion model, 40

Index

tensor model, 40

fuzzy
control of learning, 267-275

logic, 244-251
centroid defuzzification, 248, 263, 273

defuzzifying, 248
fuzzifying, 248, 261
hedges, 245
indicators, 250

max-av inference, 250

max-dot inference, 250
max-min inference, 250

measure of belief functions, 247

membership functions, 245, 263, 272

possibility theory, 245
reasoning, 248-250
rules, 248-251, 261, 272

sets, 244, 245

universe of discourse, 245
variables, 246

network, 252—260

complement network, 259

conjunctive network, 255-257
disjunctive network, 257-258

signal propagation through, 254-255
neural inference, 260—267

architecture of network, 260-262

learning fuzzy rules, 264-265
signal propagation through, 261-263

gain control, See adaptive resonance theory
gaussian units, See activation function
gender recognition, 192—197

generalized delta rule, 30
Golomb, B. A., 192
Goodman,R. M., 265

gradient-descent, 30

Grossberg, Stephen, 46, 209
Guo, Jenhwa, 233-240

Hagiwara, Masifuma, 55

hamming distance, 106, 115, 125

Haralick, Robert, 173
Hecht-Nielsen, Robert, 42, 224
Hertz, David, 269-271

heteroassociative memory, See associative
memory

Higgins, C. M., 265

Hinton, Geoffrey, 88
hinton diagrams,88
homogeniety, 212
Hopfield, John J., 56, 237
hopfield memory, 55-63, 238

adaptation of, 238

electrical model, 62

Index

initialization of, 62-63
structure, 59

Hu, Qing, 269-271

hyperspherical distance, 200

image compression, 193, 196
information fusing, 129
instar units, See activation function
interconnects, See connections
internal representation of images network,

181-192

interpolative associative memory, See
associative memory

intractable, 3

inverse fast-Fourier transform (IFFT), 164
inverse kinematics, 233

jacobian matrix, 236
jordan network, 39, 114

Kosko, Bart, 263, 269, 273

Lane, George C., 134

Laplace transform, 218-220

layer

competitive, 42
definition, 6
Fl (ART), 47
F2 (ART), 47
fan-out, 40, 42
feature-identification, 108
hidden, 30, 109
input, 30
output, 20, 42

Structure, 6

learning, See network
Lee, D. M. A., 228-233
linear

approximation of dynamic systems,
216-217

combiner, | |

interpolation, 18, 120
unit, See activation function

Loick, Walter J., 139-143

Luckasiewicz, Jan, 244
Lyapunovfunction, 54, 55

mapping
function, 235

networks, See network

McCullogh-Pitts model, 8
memory

long-term (LTM), 47
pattern, 17

short-term (STM), 47, 48

minimax, 110

285

Minsky, Marvin, |

modus ponensrule of inference, 248
motion detection network, 52

moving average convergence/divergence
(MACD), 136-137

multidirectional associative memory
(MAM), 52, 55, 100

multilayer perceptron, See backpropagation
network

multiplexor, See pattern

NASA

Jet Propulsion Laboratory, 182

Johnson Space Center, 175, 182

Nagase, Taku, 189-192

neocognitron, 186-189, 198-202

complex cells (C-cells), 187
grandmothercells, 188
receptive field, 187

simple cells (S-cells) 187, 199
Structure, 187

NETtalk, 37, 156-161
network

bidirectional mapping, 42
effectivenesstesting, 86-89
computations, 21—23
generalstructure, 5
mapping, 30, 38, 53, 90
learning, 2, 29, 212, 264

paradigms, 29-64
pruning, 274

recurrent, 55, 57-61
simulation, 23-25, 95, 118

neural networktechnology, 2
neurons,3
non-linear mapping, 34
non-polynomial,2

Omori, Takashi, 189-192

orienting subsystem , See adaptive
resonance theory

outstar units, See activation function

Pappert, Seymour,1
Parallel Distributed Processing (PDP), 1
parallel processing, 4, 5

pattern, See also exemplars, vectors

analog, 73—75
binary, 71

classification, 72, 78, 155, 199

combining, 83
conflicting, 38, 80, 114
context, 39
eliminating, 83
external, 7

286

pattern (cont.)
extrapolation, 86, 151
features, 66, 155
integration, 46
interpolation, 18-19, 86, 119, 151
interpretation, 68-7 |
internal representation, 30, 34
memory, 18, 90
multiplexor, 18, 46

n-ary, 73

null, 78
propagation, 23
temporal, 39, 76-77, 80

tertiary, 72—73
perceptrons,|
Philon, 212

picture elements (pixels), 3, 102-105, 117,

193, 195, 206
Poisson distribution, 247

probability
distribution, 246
theory, 245-246

probabilistic neural network, 41-42

processing element, See units

pruning, See network

quadrature, 163

random walk theory, 138
recurrent networks, See network

Rosenberg, Charles, 156

Rumelhart, David, |

Sandia National Laboratory, 197, 201

scaling, 75

Sejnowski, Terrence J., 37, 157

seletive attention model, 189
Shekhar, Shashi, 144-148

sigmoidal units, See also activation
function

derivative, 33
BPNtraining issues, 35
equations, 36

role in the BPN, 34

signal modulation, 8

signal-to-noise ratio (SNR), 163
simulation, See also network simulation

issues
memory consumption, 24, 76

compute time, 24, 73, 76, 95
methods

integrated circuits (silicon), 23

optical, 23

Index

software, 24

Singleton, J. Clay, 147-148
Skapura, David M., 52, 116
slab, See layer

sliding window technique, 158

spacecraft orientation demonstration,
117-121 |

stability-plasticity dilemma, 46
Standard and Poors (S&P), 139-142, 144
state transitions, 60

State units, See unit

stochastic oscillator, 134-136

superposition, 217
Surkan, Alvin J., 147-148

synthetic aperture radar (SAR), 197-203

texture analysis, 175-177
tic-tac-toe, 73, 74-75

application, 110—117
pattern representation, 111-112
state-space search, 110

Tolat, Viral, 223, 224, 225

ultrasound, 172

unit

analog processing, 6
context, 38
fan-out, 11

State, 39

vector-matrix multiplication, 57

vectors
averaging, 45
feature, 202
inner (dot)-product, 9, 44, 70, 200

normalized, 48, 50, 142

orthogonal, 10, 73

orthonormal, 159
pattern, 9
projection of one onto another, 9, 10, 48
weight, 9

video, See digitized video
vigilence parameter, See adaptive

resonance theory
visual cortex, 185, 208

Von-Neumannarchitecture, 3

Werbos, Paul, |

Widrow,Bernard, 223, 224, 225

Wilder, J. Welles, 131

XOR, See exclusive-or

Zadeh, Lofti, 244

RELATED TITLES FROM ADDISON-WESLEY

Neural Networks

Algorithms, Applications, and Programming Techniques

James A. Freeman and David M. Skapura

Providing useful background for Building Neural Networks, this introductory book explains in greater

detail the basic concepts and technology underlying common neural network models. Each chapter

surveys a successful architecture—Adaline and Madaline, backpropagation, associative memory, sim-

ulated annealing, the counterpropagation network, self-organizing maps, adaptive resonancetheory,

Spatiotemporal pattern classification, and the neocognitron. For each architecture, the authors discuss

relevant algorithms, applications, and programming techniques. ISBN 0-201-51376-5

Simulating Neural Networks with Mathematica

James A. Freeman

This book introduces neural networks, their operation and their application, in the context of Math-

ematica, a mathematical programming language. Readers will learn how to simulate neural network

operations using Mathematica, and will see how Mathematica can be employedto assess neural net-

workbehavior and performance. ISBN 0-201-56629-X

On to C On to C++

Patrick Henry Winston Patrick Henry Winston

A best-selling author has written two booksofinterest if you already know how to program and want

quickly to add C or C++ to your programming-language repertoire. Designed to be brief—about 300

pp each—the booksnevertheless contain everything you need to knowto get up and running in one or

both of these languages. ISBN 0-201-58042-X; ISBN 0-201-58043-8

BUGSin Writing

Lyn Dupré

If you are a scientist, engineer, or other person who writes and who works with computers, Dupré’s

BUGSin Writing will show you howtorid yourprose of the most commonproblemsthat writers face.

With simple principles for lucid writing conveyed by numerous, intriguing, and frequentlyhilarious

examples, BUGS mayalso be the first book on English grammarthat you will read for sheer fun.

Whether you havea paper, proposal, research study, thesis, software manual, conferencetalk, business

report, or any other documentto prepare, if you want to communicate yourideas effectively, first

browse through a copy of BUGS. ISBN 0-201-60019-6

Up-to-date information about Addison-Wesley booksis available from our Internet site, World Wide

Web address http: //www.aw.com. For Gopher access, type gopher aw.com. You will find these
books wherevertechnical books are sold, or you may call Addison-Wesley at 1-800-822-6339.

