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Abstract. The simple Bayesian classifier is known to be optimal when attributes are independent given the class,

but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical

results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest

that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s

probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier

itself can be optimal under zero-one loss (misclassification rate) even when this assumption is violated by a wide

margin. The region of quadratic-loss optimality of the Bayesian classifier is in fact a second-order infinitesimal

fraction of the region of zero-one optimality. This implies that the Bayesian classifier has a much greater range

of applicability than previously thought. For example, in this article it is shown to be optimal for learning

conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial

domains show that it will often outperform more powerful classifiers for common training set sizes and numbers

of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that

detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also

verified empirically.
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with attribute dependences

1. Introduction

In classification learning problems, the learner is given a set of training examples and

the corresponding class labels, and outputs a classifier. The classifier takes an unlabeled

example and assigns it to a class. Many classifiers can be viewed as computing a set of

discriminant functions of the example, one for each class, and assigning the example to the

class whose function is maximum (Duda & Hart, 1973). If E is the example, and fi(E) is

the discriminant function corresponding to the ith class, the chosen class Ck is the one for

which1

fk(E) > fi(E) ∀ i 6= k. (1)

Suppose an example is a vector of a attributes, as is typically the case in classification ap-

plications. Let vjk be the value of attribute Aj in the example, P (X) denote the probability

of X , and P (Y |X) denote the conditional probability of Y given X . Then one possible set

of discriminant functions is

fi(E) = P (Ci)
a

∏

j=1

P (Aj =vjk|Ci). (2)
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The classifier obtained by using this set of discriminant functions, and estimating the

relevant probabilities from the training set, is often called the naive Bayesian classifier.

This is because, if the “naive” assumption is made that the attributes are independent given

the class, this classifier can easily be shown to be optimal, in the sense of minimizing the

misclassification rate or zero-one loss, by a direct application of Bayes’ theorem, as follows.

If P (Ci|E) is the probability that example E is of class Ci, zero-one loss is minimized if,

and only if, E is assigned to the class Ck for which P (Ck|E) is maximum (Duda & Hart,

1973). In other words, using P (Ci|E) as the discriminant functions fi(E) is the optimal

classification procedure. By Bayes’ theorem,

P (Ci|E) =
P (Ci)P (E|Ci)

P (E)
. (3)

P (E) can be ignored, since it is the same for all classes, and does not affect the relative

values of their probabilities. If the attributes are independent given the class, P (E|Ci)
can be decomposed into the product P (A1 = v1k|Ci) . . . P (Aa = vak|Ci), leading to

P (Ci|E) = fi(E), as defined in Equation 2, Q.E.D.

In practice, attributes are seldom independent given the class, which is why this assump-

tion is “naive.” However, the question arises of whether the Bayesian classifier, as defined

by Equations 1 and 2, can be optimal even when the assumption of attribute independence

does not hold, and therefore P (Ci|E) 6= fi(E). In these situations, the Bayesian classifier

can no longer be said to compute class probabilities given the example, but the discriminant

functions defined by Equation 2 may still minimize misclassification error. The question

of whether these situations exist has practical relevance, since the Bayesian classifier has

many desirable properties (simplicity, low time and memory requirements, etc.), and thus

may well be the classifier of choice for such situations (i.e., it will be chosen over other

classifiers that are also optimal, but differ in other respects). However, even though the

Bayesian classifier has been known for several decades, to our knowledge this question has

so far not been explored; the tacit assumption has always been that the Bayesian classifier

will not be optimal when attribute independence does not hold.

In spite of this restrictive view of its applicability, in recent years there has been a gradual

recognition among machine learning researchers that the Bayesian classifier can perform

quite well in a wide variety of domains, including many where clear attribute dependences

exist. Evidence of the Bayesian classifier’s surprising practical value has also led to attempts

to extend it by increasing its tolerance of attribute independence in various ways, but the

success of these attempts has been uneven. This is described in more detail in the next

section.

This article derives the most general conditions for the Bayesian classifier’s optimality,

giving a positive answer to the question of whether it can still be optimal when attributes

are not independent given the class. A corollary of these results is that the Bayesian

classifier’s true region of optimal performance is in fact far greater than that implied by the

attribute independence assumption, and that its range of applicability is thus much broader

than previously thought. This tolerance of attribute dependence also helps to explain why

extending the Bayesian classifier by attempting to reduce it will not necessarily lead to

significant performance improvements.
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The remainder of the article elaborates on these ideas. Section 2 reviews previous empir-

ical results on the Bayesian classifier in the machine learning literature, and recent attempts

to extend it. Section 3 describes an empirical study showing that the Bayesian classifier

outperforms several more sophisticated approaches on a large number of data sets, and that

this is not due to the absence of attribute dependences in those data sets. Section 4 presents

a simple example that illustrates some of the key points to be made subsequently. Section 5

derives necessary and sufficient conditions for the local optimality of the Bayesian classifier

(i.e., its optimality for any given example), and computes how often these conditions will be

satisfied. Section 6 generalizes the previous results to a necessary and sufficient condition

for the Bayesian classifier’s global optimality (i.e., its optimality for any given data set).

It also shows that the Bayesian classifier has some fundamental limitations, but is optimal

for learning conjunctions and disjunctions. Section 7 formulates some hypotheses as to

when the Bayesian classifier is likely to outperform more flexible ones, even if it is not

optimal, and reports empirical tests of these hypotheses. Section 8 verifies empirically that

attempting to reduce attribute dependence is not necessarily the best approach to improving

the Bayesian classifier’s accuracy. The paper concludes with discussion and directions for

future work.

2. The simple Bayesian classifier in machine learning

Due to its perceived limitations, the simple Bayesian classifier has traditionally not been a

focus of research in machine learning.2 However, it has sometimes been used as a “straw

man” against which to compare more sophisticated algorithms. Clark and Niblett (1989)

compared it with two rule learners and a decision-tree learner, and found that it did surpris-

ingly well. Cestnik (1990) reached similar conclusions. Kononenko (1990) reported that,

in addition, at least one class of users (doctors) finds the Bayesian classifier’s representation

quite intuitive and easy to understand, something which is often a significant concern in

machine learning. Langley, Iba, and Thompson (1992) compared the Bayesian classifier

with a decision tree learner, and found it was more accurate in four of the five data sets used.

Pazzani, Muramatsu, and Billsus (1996) compared several learners on a suite of information

filtering tasks, and found that the Bayesian classifier was the most accurate one overall.

John and Langley (1995) showed that the Bayesian classifier’s performance can be much

improved if the traditional treatment of numeric attributes, which assumes Gaussian distri-

butions, is replaced by kernel density estimation. This showed that the Bayesian classifier’s

limited performance in many domains was not in fact intrinsic to it, but due to the additional

use of unwarranted Gaussian assumptions. Dougherty, Kohavi, and Sahami (1995) reached

similar conclusions by instead discretizing numeric attributes, and found the Bayesian clas-

sifier with discretization slightly outperformed a decision-tree learner in 16 data sets, on

average.

Although the reasons for the Bayesian classifier’s good performance were not clearly

understood, these results were evidence that it might constitute a good starting point for

further development. Accordingly, several authors attempted to extend it by addressing its

main perceived limitation—its inability to deal with attribute dependences.
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Langley and Sage (1994) argued that, when two attributes are correlated, it might be

better to delete one attribute than to assume the two are conditionally independent. They

found that an algorithm for feature subset selection (forward sequential selection) improved

accuracy on some data sets, but had little or no effect in others. In a related approach, Kubat,

Flotzinger, and Pfurtscheller (1993) found that using a decision-tree learner to select features

for use in the Bayesian classifier gave good results in the domain of EEG signal classification.

Kononenko (1991) proposed successively joining dependent attribute values, using a sta-

tistical test to judge whether two attribute values are significantly dependent. Experimental

results with this method were not encouraging. On two domains, the modified Bayesian

classifier had the same accuracy as the simple Bayesian classifier, and on the other two

domains tested, the modified version was one percent more accurate, but it is not clear

whether this difference was statistically significant. Pazzani (1996) proposed joining at-

tributes instead of attribute values. Rather than using a statistical test, as in Kononenko

(1991), Pazzani’s algorithm used cross-validation to estimate the accuracy of a classifier

with each possible join, and made the single change that most improved accuracy. This

process was repeated until no change resulted in an improvement. This approach substan-

tially improved the accuracy of the Bayesian classifier on several artificial and natural data

sets, with the largest improvements in accuracy occurring in data sets where the Bayesian

classifier is substantially less accurate than decision-tree learners.

The simple Bayesian classifier is limited in expressiveness in that it can only create

linear frontiers (Duda & Hart, 1973). Therefore, even with many training examples and no

noise, it does not approach 100% accuracy on some problems. Langley (1993) proposed

the use of “recursive Bayesian classifiers” to address this limitation. In his approach, the

instance space is recursively divided into subregions by a hierarchical clustering process,

and a Bayesian classifier is induced for each region. Although the algorithm worked on

an artificial problem, it did not provide a significant benefit on any natural data sets. In a

similar vein, Kohavi (1996) formed decision trees with Bayesian classifiers at the nodes,

and showed that it tended to outperform either approach alone, especially on large data sets.

Friedman, Geiger, and Goldszmidt (1997) compared the simple Bayesian classifier with

Bayesian networks, a much more powerful representation that has the Bayesian classifier as

a special case, and found that the latter approach tended to produce no improvements, and

sometimes led to large reductions in accuracy. This led them to attempt a much more limited

extension, allowing each attribute to depend on at most one other attribute (in addition to

the class). This conservative approach achieved the best overall results. Sahami (1996)

proposed a related scheme, and, in a similar spirit, Singh and Provan (1995, 1996) obtained

good results by forming Bayesian networks using only a subset of the attributes.

In summary, the Bayesian classifier has repeatedly performed better than expected in em-

pirical trials, but attempts to build on this success by relaxing the independence assumption

have had mixed results. Both these observations seem to conflict with the current theo-

retical understanding of the Bayesian classifier. This article seeks to resolve this apparent

contradiction.
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3. Empirical evidence

Whenever theoretical expectations and empirical observations disagree, either could be at

fault. On the empirical side, two potential sources of error can be readily identified. The

results of previous authors could be a fluke, due to unusual characteristics of the data sets

used (especially since, in several cases, the number of data sets used was relatively small).

Alternatively, these data sets might contain no significant attribute dependences, and in this

case the Bayesian classifier would indeed be expected to perform well. In order to test

both these hypotheses, we conducted an empirical study on 28 data sets, comparing the

Bayesian classifier with other learners, and measuring the degree of attribute dependence

in the data sets. The learners used were state-of-the art representatives of three major

approaches to classification learning: decision tree induction (C4.5 release 8, Quinlan,

1993), instance-based learning (PEBLS 2.1, Cost & Salzberg, 1993) and rule induction

(CN2 version 6.1, Clark & Boswell, 1991). A simple Bayesian classifier was implemented

for these experiments. Three main issues arise here: how to handle numeric attributes, zero

counts, and missing values. We deal with each in turn.

• Numeric attributes were discretized into ten equal-length intervals (or one per observed

value, whichever was least). Although Dougherty et al. (1995) found this approach to

be slightly less accurate than a more informed one, it has the advantage of simplicity,

and is sufficient for verifying that the Bayesian classifier performs as well as, or better

than, other learners. A version incorporating the conventional assumption of Gaussian

distributions was also implemented, for purposes of comparison with the discretized

one.

• Zero counts are obtained when a given class and attribute value never occur together

in the training set, and can be problematic because the resulting zero probabilities

will wipe out the information in all the other probabilities P (Aj = vjk|Ci) when

they are multiplied according to Equation 2. A principled solution to this problem

is to incorporate a small-sample correction into all probabilities, such as the Laplace

correction (Niblett, 1987). If nijk is the number of times class Ci and value vjk of

attribute Aj occur together, and ni is the total number of times class Ci occurs in the

training set, the uncorrected estimate of P (Aj = vjk|Ci) is nijk/ni, and the Laplace-

corrected estimate isP (Aj =vjk|Ci) = (nijk+f)/(ni+fnj), wherenj is the number

of values of attribute Aj (e.g., 2 for a Boolean attribute), and f is a multiplicative factor.

Following Kohavi, Becker, and Sommerfield (1997), the Laplace correction was used

with f = 1/n, where n is the number of examples in the training set.

• Missing values were ignored, both when computing counts for the probability estimates

and when classifying a test example. This ensures the Bayesian classifier does not

inadvertently have access to more information than the other algorithms, and if anything

biases the results against it.

Twenty-eight data sets from the UCI repository (Merz, Murphy & Aha,1997) were used

in the study. Twenty runs were conducted for each data set, randomly selecting 2
3 of the data

for training and the remainder for testing. Table 1 shows the average accuracies obtained.
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Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test

splits. “Bayes” is the Bayesian classifier with discretization and “Gauss” is the Bayesian classifier with

Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the

Bayesian classifier and the corresponding algorithm, using a one-tailed paired t test: 1 is 99.5%, 2 is 99%,

3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Data Set Bayes Gauss C4.5 PEBLS CN2 Def.

Audiology 73.0±6.1 73.0±6.16 72.5±5.86 75.8±5.43 71.0±5.15 21.3

Annealing 95.3±1.2 84.3±3.81 90.5±2.21 98.8±0.81 81.2±5.41 76.4

Breast cancer 71.6±4.7 71.3±4.36 70.1±6.85 65.6±4.71 67.9±7.11 67.6

Credit 84.5±1.8 78.9±2.51 85.9±2.13 82.2±1.91 82.0±2.21 57.4

Chess endgames 88.0±1.4 88.0±1.46 99.2±0.11 96.9±0.71 98.1±1.01 52.0

Diabetes 74.5±2.4 75.2±2.16 73.5±3.45 71.1±2.41 73.8±2.76 66.0

Echocardiogram 69.1±5.4 73.4±4.91 64.7±6.31 61.7±6.41 68.2±7.26 67.8

Glass 61.9±6.2 50.6±8.21 63.9±8.76 62.0±7.46 63.8±5.56 31.7

Heart disease 81.9±3.4 84.1±2.81 77.5±4.31 78.9±4.01 79.7±2.93 55.0

Hepatitis 85.3±3.7 85.2±4.06 79.2±4.31 79.0±5.11 80.3±4.21 78.1

Horse colic 80.7±3.7 79.3±3.71 85.1±3.81 75.7±5.01 82.5±4.22 63.6

Hypothyroid 97.5±0.3 97.9±0.41 99.1±0.21 95.9±0.71 98.8±0.41 95.3

Iris 93.2±3.5 93.9±1.96 92.6±2.76 93.5±3.06 93.3±3.66 26.5

Labor 91.3±4.9 88.7±10.66 78.1±7.91 89.7±5.06 82.1±6.91 65.0

Lung cancer 46.8±13.3 46.8±13.36 40.9±16.35 42.3±17.36 38.6±13.53 26.8

Liver disease 63.0±3.3 54.8±5.51 65.9±4.41 61.3±4.36 65.0±3.83 58.1

LED 62.9±6.5 62.9±6.56 61.2±8.46 55.3±6.11 58.6±8.12 8.0

Lymphography 81.6±5.9 81.1±4.86 75.0±4.21 82.9±5.66 78.8±4.93 57.3

Post-operative 64.7±6.8 67.2±5.03 70.0±5.21 59.2±8.02 60.8±8.24 71.2

Promoters 87.9±7.0 87.9±7.06 74.3±7.81 91.7±5.93 75.9±8.81 43.1

Primary tumor 44.2±5.5 44.2±5.56 35.9±5.81 30.9±4.71 39.8±5.21 24.6

Solar flare 68.5±3.0 68.2±3.76 70.6±2.91 67.6±3.56 70.4±3.02 25.2

Sonar 69.4±7.6 63.0±8.31 69.1±7.46 73.8±7.41 66.2±7.55 50.8

Soybean 100.0±0.0 100.0±0.06 95.0±9.03 100.0±0.06 96.9±5.93 30.0

Splice junctions 95.4±0.6 95.4±0.66 93.4±0.81 94.3±0.51 81.5±5.51 52.4

Voting records 91.2±1.7 91.2±1.76 96.3±1.31 94.9±1.21 95.8±1.61 60.5

Wine 96.4±2.2 97.8±1.23 92.4±5.61 97.2±1.86 90.8±4.71 36.4

Zoology 94.4±4.1 94.1±3.86 89.6±4.71 94.6±4.36 90.6±5.01 39.4

As a baseline, the default accuracies obtained by guessing the most frequent class are also

shown. Confidence levels for the observed differences in accuracy between the (discretized)

Bayesian classifier and the other algorithms, according to a one-tailed paired t test, are also

reported.3

The results are summarized in Table 2. The first line shows the number of domains in

which the Bayesian classifier was more accurate than the corresponding classifier, versus

the number in which it was less. For example, the Bayesian classifier was more accurate

than C4.5 in 19 domains, and less in 9. The second line considers only those domains where

the accuracy difference was significant at the 5% level, using a one-tailed paired t test. For

example, the Bayesian classifier was significantly more accurate than C4.5 in 12 data sets.

According to both these measures, the Bayesian classifier wins out over each of the other

approaches. The third line shows the confidence levels obtained by applying a binomial

sign test to the results in the first line, and results in high confidence that the Bayesian
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Table 2. Summary of accuracy results.

Measure Bayes Gauss C4.5 PEBLS CN2

No. wins - 12-7 19-9 16-11 20-8

No. signif. wins - 6-5 12-8 12-6 16-6

Sign test - 75.0 96.0 75.0 98.0

Wilcoxon test - 70.0 96.0 94.0 99.8

Average 79.1 77.8 77.2 77.6 76.2

Rank 2.43 2.75 3.14 3.21 3.46

classifier is more accurate than C4.5 and CN2, if this sample of data sets is assumed to be

representative. The fourth line shows the confidence levels obtained by applying the more

sensitive Wilcoxon test (DeGroot, 1986) to the 28 average accuracy differences obtained,

and results in high confidence that the Bayesian classifier is more accurate than each of

the other learners. The fifth line shows the average accuracy across all data sets, and again

the Bayesian classifier performs the best. The last line shows the average rank of each

algorithm, computed for each domain by assigning rank 1 to the most accurate algorithm,

rank 2 to the second best, and so on. The Bayesian classifier is the best-ranked of all

algorithms, indicating that when it does not win it still tends to be one of the best.

The comparative results of the discretized and Gaussian versions also confirm the advan-

tage of discretization, although on this larger ensemble of data sets the difference is less

pronounced than that found by Dougherty et al. (1995), and the Gaussian version also does

quite well compared to the non-Bayesian learners.

In summary, the present large-scale study confirms previous authors’ observations on

smaller ensembles of data sets; in fact, the current results are even more favorable to the

Bayesian classifier. However, this does not by itself disprove the notion that the Bayesian

classifier will only do well when attributes are independent given the class (or nearly so).

As pointed out above, the Bayesian classifier’s good performance could simply be due to

the absence of significant attribute dependences in the data. To investigate this, we need

to measure the degree of attribute dependence in the data in some way. Measuring high-

order dependencies is difficult, because the relevant probabilities are apt to be very small,

and not reliably represented in the data. However, a first and feasible approach consists

in measuring pairwise dependencies (i.e., dependencies between pairs of attributes given

the class). Given attributes Am and An and the class variable C, a possible measure of

the degree of pairwise dependence between Am and An given C (Wan & Wong, 1989;

Kononenko, 1991) is

D(Am, An|C) = H(Am|C) + H(An|C) −H(AmAn|C), (4)

where AmAn represents the Cartesian product of attributes Am and An (i.e., a derived

attribute with one possible value corresponding to each combination of values of Am and

An), and for all classes i and attribute values k,

H(Aj |C) =
∑

i

P (Ci)
∑

k

−P (Ci ∧Aj =vjk) log2 P (Ci ∧Aj =vjk). (5)
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Table 3. Empirical measures of attribute dependence.

Data Set Rank Max. D % D>0.2 Avg. D

Breast cancer 1 0.548 66.7 0.093

Credit 2 0.790 46.7 0.063

Chess endgames 4 0.383 25.0 0.015

Diabetes 1 0.483 62.5 0.146

Echocardiogram 1 0.853 85.7 0.450

Glass 4 0.836 100.0 0.363

Heart disease 1 0.388 53.8 0.085

Hepatitis 1 0.899 57.9 0.103

Horse colic 3 2.780 100.0 0.286

Hypothyroid 3 2.777 60.0 0.095

Iris 3 0.731 100.0 0.469

Labor 1 1.514 100.0 0.474

Lung cancer 1 1.226 98.2 0.165

Liver disease 3 0.513 100.0 0.243

LED 1 0.060 0.0 0.025

Lymphography 2 0.410 55.6 0.076

Post-operative 2 0.181 0.0 0.065

Promoters 2 0.394 98.2 0.149

Solar flare 3 0.216 16.7 0.041

Sonar 2 1.471 100.0 0.491

Soybean 1 0.726 31.4 0.016

Splice junctions 1 0.084 0.0 0.017

Voting records 4 0.316 25.0 0.052

Wine 2 0.733 100.0 0.459

Zoology 2 0.150 0.0 0.021

The D(Am, An|C) measure is zero when Am and An are completely independent given

C, and increases with their degree of dependence, with the maximum occurring when the

class and one attribute completely determine the other.4

D was computed for all classes and attribute pairs in each data set, using uniform dis-

cretization as before, ignoring missing values, and excluding pairings of an attribute with

itself. The results appear in Table 3.5 For comparison purposes, the first column shows the

Bayesian classifier’s rank in each domain (i.e., 1 if it was the most accurate algorithm, 2 if

it was the second most accurate, etc., ignoring the Gaussian version). The second column

shows the maximum value of D observed in the data set. The third column shows the

percentage of all attributes that exhibited a degree of dependence with some other attribute

of at least 0.2. The fourth column shows the average D for all attribute pairs in the data set.

This table leads to two important observations. One is that the Bayesian classifier achieves

higher accuracy than more sophisticated approaches in many domains where there is sub-

stantial attribute dependence, and therefore the reason for its good comparative performance

is not that there are no attribute dependences in the data. The other is that the correlation

between the average degree of attribute dependence and the difference in accuracy between

the Bayesian classifier and other algorithms is very small (R2 = 0.04 for C4.5, 0.0004 for

PEBLS, and 0.002 for CN2), and therefore attribute dependence is not a good predictor

of the Bayesian classifier’s differential performance vs. approaches that can take it into
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account. Given this empirical evidence, it is clear that a new theoretical understanding of

the Bayesian classifier is needed. We now turn to this.

4. An example of optimality without independence

Consider a Boolean concept, described by three attributes A, B and C. Assume that the

two classes, denoted by + and −, are equiprobable (P (+) = P (−) = 1
2 ). Given an

example E, let P (A|+) be a shorthand for P (A=aE |+), aE being the value of attribute

A in the instance, and similarly for the other attributes. Let A and C be independent, and

let A = B (i.e., A and B are completely dependent). Therefore B should be ignored,

and the optimal classification procedure for a test instance is to assign it to class + if

P (A|+)P (C|+) − P (A|−)P (C|−) > 0, to class − if the inequality has the opposite

sign, and to an arbitrary class if the two sides are equal. On the other hand, the Bayesian

classifier will takeB into account as if it was independent fromA, and this will be equivalent

to counting A twice. Thus, the Bayesian classifier will assign the instance to class + if

P (A|+)2P (C|+) − P (A|−)2P (C|−) > 0, and to − otherwise.

Applying Bayes’ theorem, P (A|+) can be reexpressed as P (A)P (+|A)/P (+), and

similarly for the other probabilities. Since P (+) = P (−), after canceling like terms this

leads to the equivalent expressionsP (+|A)P (+|C)−P (−|A)P (−|C) > 0 for the optimal

decision, and P (+|A)2P (+|C) − P (−|A)2P (−|C) > 0 for the Bayesian classifier. Let

P (+|A) = p and P (+|C) = q. Then class + should be selected when pq − (1 − p)
(1 − q) > 0, which is equivalent to q > 1 − p. With the Bayesian classifier, it will be

selected when p2q − (1− p)2(1− q) > 0, which is equivalent to q > (1−p)2

p2+(1−p)2 . The two

curves are shown in Figure 1. The remarkable fact is that, even though the independence

assumption is decisively violated because B = A, the Bayesian classifier disagrees with

the optimal procedure only in the two narrow regions that are above one of the curves

and below the other; everywhere else it performs the correct classification. Thus, for all

problems where (p, q) does not fall in those two small regions, the Bayesian classifier is

effectively optimal. By contrast, according to the independence assumption it should be

optimal only when the two expressions are identical, i.e. at the three isolated points where

the curves cross: (0, 1), (1
2 , 1

2 ) and (1, 0). This shows that the Bayesian classifier’s range

of applicability may in fact be much broader than previously thought. In the next section

we examine the general case and formalize this result.

5. Local optimality

We begin with some necessary definitions.

Definition 1 Let C(E) be the actual class of example E, and let CX(E) be the class

assigned to it by classifier X . Then the zero-one loss of X on E, denoted LX(E), is defined

as

LX(E) =

{

0 if CX(E) = C(E)
1 otherwise.

(6)



112 P. DOMINGOS AND M. PAZZANI

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

q

p

Simple Bayes
Optimal

Figure 1. Decision boundaries for the Bayesian classifier and the optimal classifier.

Zero-one loss is an appropriate measure of performance when the task is classification,

and it is the most frequently used one. It simply assigns a cost (loss) of one to the failure to

guess the correct class. In some situations, different types of misclassification have different

costs associated with them, and the use of a full cost matrix, specifying a loss value for

each (C(E), CX(E)) pair, will then be appropriate. (For example, in medical diagnosis

the cost of diagnosing an ill patient as healthy is generally different from that of diagnosing

a healthy patient as ill.)

In practice, it often occurs that examples with exactly the same attribute values have

different classes. This reflects the fact that those attributes do not contain all the information

necessary to uniquely determine the class. In general, then, an example E will not be

associated with a single class, but rather with a vector of class probabilities P (Ci|E),
where the ith component represents the fraction of times that E appears with class Ci. The

zero-one loss or misclassification rate of X on E is then more generally defined as

LX(E) = 1 − P (CX |E), (7)

whereCX(E), the class assigned byX toE, is abbreviated toCX for simplicity. P (CX |E)
is the accuracy of X on E. This definition reduces to Equation 6 when one class has

probability 1 given E.

Definition 2 The Bayes rate for an example is the lowest zero-one loss achievable by

any classifier on that example (Duda & Hart, 1973).
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Definition 3 A classifier is locally optimal for a given example iff its zero-one loss on

that example is equal to the Bayes rate.

Definition 4 A classifier is globally optimal for a given sample (data set) iff it is locally

optimal for every example in that sample. A classifier is globally optimal for a given problem

(domain) iff it is globally optimal for all possible samples of that problem (i.e., for all data

sets extracted from that domain).

The use of zero-one loss for classification tasks should be contrasted with that of squared

error loss for probability estimation. This is defined as

SEX(E) = [P (C|E) − PX(C|E)]2, (8)

where X is the estimating procedure and C is the variable whose probability (or probability

density) we seek to estimate. If there is uncertainty associated with P (C|E), the squared

error loss is defined as the expected value of the above expression. The main point of

this article, shown in this section, can now be stated as follows. When the independence

assumption is violated, Equation 2 will in general be suboptimal as a probability estimating

procedure under the squared error loss function, but combined with Equation 1 it can

nevertheless still be optimal as a classification procedure under the zero-one loss function.

This result is a direct consequence of the differing properties of these two loss measures:

Equation 2 yields minimal squared-error estimates of the class probabilities only when

the estimates are equal to the true values (i.e., when the independence assumption holds);

but, with Equation 1, it can yield minimal zero-one loss even when the class probability

estimates diverge widely from the true values, as long as the class with highest estimated

probability, CX(E), is the class with highest true probability.

For instance, suppose there are two classes + and −, and let P (+|E) = 0.51 and

P (−|E) = 0.49 be the true class probabilities given example E. The optimal classification

decision is then to assign E to class + (i.e., to set CX(E) = +). Suppose also that

Equation 2 gives the estimates P̂ (+|E) = f+(E) = 0.99 and P̂ (−|E) = f−(E) = 0.01.

The independence assumption is violated by a wide margin, and the squared-error loss is

large, but the Bayesian classifier still makes the optimal classification decision, minimizing

the zero-one loss.

Consider the two-class case in general. Let the classes be + and − as before, p =
P (+|E), r = P (+)

∏a

j=1 P (Aj =vjk|+), and s = P (−)
∏a

j=1 P (Aj =vjk|−) (refer to

Equation 2). We will now derive a necessary and sufficient condition for the local optimality

of the Bayesian classifier, and show that the volume of the Bayesian classifier’s region of

optimality in the space of valid values of (p, r, s) is half of this space’s total volume.

Theorem 1 The Bayesian classifier is locally optimal under zero-one loss for an example

E iff (p ≥ 1

2
∧ r ≥ s) ∨ (p ≤ 1

2
∧ r ≤ s) for E.

Proof: The Bayesian classifier is optimal when its zero-one loss is the minimum possible.

When p = P (+|E) > 1
2 , the minimum loss is 1 − p, and is obtained by assigning E to

class +. The Bayesian classifier assigns E to class + when f+(E) > f−(E) according to
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Equation 2, i.e., when r > s. Thus if p > 1
2 ∧ r > s the Bayesian classifier is optimal.

Conversely, when p = P (+|E) < 1
2 , the minimum zero-one loss is p, and is obtained by

assigning E to class −, which the Bayesian classifier does when r < s. Thus the Bayesian

classifier is optimal when p < 1
2 ∧ r < s. When p = 1

2 , either decision is optimal, so the

inequalities can be generalized as shown.

Note that this is not an asymptotic result: it is valid even when the probability estimates

used to compute r and s are obtained from finite samples.

Corollary 1 The Bayesian classifier is locally optimal under zero-one loss in half the

volume of the space of possible values of (p, r, s).

Proof: Since p is a probability, and r and s are products of probabilities, (p, r, s) only takes

values in the unit cube [0, 1]3. The region of this cube satisfying the condition in Theorem 1

is shown shaded in Figure 2; it can easily be seen to occupy half of the total volume of

the cube. However, not all (r, s) pairs correspond to valid probability combinations. Since

p is unconstrained, the projection of the space U of valid probability combinations on all

planes p = p0 is the same. By Theorem 1, the region of optimality on planes below p0 = 1
2

becomes the region of nonoptimality on planes above p0 = 1
2 , and vice versa (i.e., the

optimal region for projections below p0 = 1
2 is the photographic negative of the optimal

region for projections above). Thus, if S is the area of U ’s projection and SO is the area of

the optimal region for p0 < 1
2 , the area of the optimal region for p0 > 1

2 is S−SO, and the

total volume of the region of optimality is 1
2SO + 1

2 (S − SO) = 1
2S. (Also, since if (r, s)

corresponds to a valid probability combination then so does (s, r), the region of optimality

is symmetric about s = r, and therefore SO = 1
2S both above and below p0 = 1

2 .)

In contrast, under squared error loss, Equation 2 is optimal as a set of probability estimates

P (Ci|E) only when the independence assumption holds, i.e., on the line where the planes

r = p and s = 1− p intersect. Thus the region of optimality of Equation 2 under squared-

error loss is a second-order infinitesimal fraction of its region of optimality under zero-one

loss. The Bayesian classifier is effectively an optimal predictor of the most likely class for

a broad range of conditions in which the independence assumption is violated. Previous

notions of the Bayesian classifier’s limitations can now be seen as resulting from incorrectly

applying intuitions based on squared-error loss to the Bayesian classifier’s performance

under zero-one loss.

6. Global optimality

The extension of Theorem 1 to global optimality is immediate. Let p, r and s for example

E be indexed as pE , rE and sE .

Theorem 2 The Bayesian classifier is globally optimal under zero-one loss for a sample

(data set) Σ iff ∀E∈Σ (pE ≥ 1

2
∧ rE ≥ sE) ∨ (pE ≤ 1

2
∧ rE ≤ sE).
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Figure 2. Region of optimality of the simple Bayesian classifier.

Proof: By Definition 4 and Theorem 1.

However, verifying this condition directly on a test sample will in general not be possible,

since it involves finding the true class probabilities for all examples in the sample. Further,

verifying it for a given domain (i.e, for all possible samples extracted from that domain) will

in general involve a computation of size proportional to the number of possible examples,

which is exponential in the number of attributes, and therefore computationally infeasible.

Thus the remainder of this section is dedicated to investigating more concrete conditions

for the global optimality of the Bayesian classifier, some necessary and some sufficient. A

zero-one loss function is assumed throughout.

6.1. Necessary conditions

Let a be the number of attributes, as before, let c be the number of classes, let v be

the maximum number of values per attribute, and let d be the number of different numbers

representable on the machine implementing the Bayesian classifier. For example, if numbers

are represented using 16 bits, d = 216 = 65536.
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Theorem 3 The Bayesian classifier cannot be globally optimal for more than dc(av+1)

different problems.

Proof: Since the Bayesian classifier’s state is composed of c(av+1) probabilities, and each

probability can only have d different values, the Bayesian classifier can only be in at most

dc(av+1) states, and thus it cannot distinguish between more than this number of concepts.

Even though dc(av+1) can be very large, this is a significant restriction because many

concept classes have size doubly exponential in a (e.g., arbitrary DNF formulas in Boolean

domains), and due to the extremely rapid growth of this function the Bayesian classifier’s

capacity will be exceeded even for commonly-occurring values of a. On the other hand,

this restriction is compatible with concept classes whose size grows only exponentially with

a (e.g., conjunctions).

This result reflects the Bayesian classifier’s limited capacity for information storage, and

should be contrasted with the case of classifiers (like instance-based, rule and decision tree

learners) whose memory size can be proportional to the sample size. It also shows that the

condition in Theorem 2 is satisfied by an exponentially decreasing fraction of all possible

domains as a increases. This is consistent with the fact that local optimality must be verified

for every possible combination of attribute values if the Bayesian classifier is to be globally

optimal for a domain (Definition 4), and the probability of this decreases exponentially

with a, starting at 100% for a = 1. However, a similar statement is true for other learners;

it simply reflects the fact that it is very difficult to optimally learn a very wide class of

concepts. The information storage capacity of the Bayesian classifier is O(a). If e is the

training set size, learners that can memorize all the individual examples (or the equivalent)

have a storage capacity of O(ea), and therefore can in principle converge to optimal when

e → ∞. However, for any finite e there is a value of a after which the fraction of problems

on which those learners can be optimal also starts to decrease exponentially with a.

Let a nominal attribute be defined as one whose domain is finite and unordered, a feature

be defined as an attribute with a given value (i.e., Aj =vjk is a feature), and a set of classes

be discriminable by a set of functions fi(E) if every possible example E can be optimally

classified by applying Equation 1 with this set of functions. Then the following result is an

immediate extension to the general nominal case of a well-known one for Boolean attributes

(Duda & Hart, 1973).

Theorem 4 When all attributes are nominal, the Bayesian classifier is not globally

optimal for classes that are not discriminable by linear functions of the corresponding

features.

Proof: Define one Boolean attribute bjk for each feature, i.e., bjk = 1 if Aj = vjk and

0 otherwise, where vjk is the kth value of attribute Aj . Then, by taking the logarithm of

Equation 2, the Bayesian classifier is equivalent to a linear machine (Duda & Hart, 1973)

whose discriminant function for class Ci is logP (Ci)+
∑

j,k logP (Aj = vjk|Ci) bjk (i.e.,

the weight of each Boolean feature is the log-probability of the corresponding attribute value

given the class).
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This is not a sufficient condition, because the Bayesian classifier cannot learn some

linearly separable concepts. For example, it fails for some m-of-n concepts, even though

they are linearly separable. An m-of-n concept is a Boolean concept that is true if m or

more out of the n attributes defining the example space are true. For example, if examples

are described by three attributes A0, A1 and A2, the concept 2-of-3 is true if A0 and A1 are

true, or A0 and A2 are true, or A1 and A2 are true, or all three are true.6

Theorem 5 The Bayesian classifier is not globally optimal for m-of-n concepts.

Proof: This follows directly from the definition of global optimality, and the fact that

there exist m-of-n concepts for which the Bayesian classifier makes errors, even when the

examples are noise-free (i.e., an example always has the same class) and the Bayes rate is

therefore zero (e.g., 3-of-7, Kohavi, 1995).

Let P (A|C) represent the probability that an arbitrary attribute A is true given that the

concept C is true, let a bar represent negation, and let all examples be equally probable. In

general, if the Bayesian classifier is trained with all 2n examples of an m-of-n concept, and

a test example has exactly j true-valued attributes, then the Bayesian classifier will make a

false positive error if Diff(m,n, j) is positive and j < m, and it will make a false negative

error if Diff(m,n, j) is negative and j ≥ m, where

Diff(m,n, j) = P (C) P (A|C)j [1 − P (A|C)]n−j

−P (C) P (A|C)j [1 − P (A|C)]n−j

P (C) =

n
∑

i=m

(

n
i

)

2n

P (C) =

m−1
∑

i=0

(

n
i

)

2n

P (A|C) =

n−1
∑

i=m−1

(

n− 1
i

)

n
∑

i=m

(

n
i

)

P (A|C) =

m−2
∑

i=0

(

n− 1
i

)

m−1
∑

i=0

(

n
i

)

.

For example, Diff(8, 25, j) is positive for all j ≥ 6. Therefore, the Bayesian classifier

makes false positive errors for all examples that have 6 or 7 attributes that are true. Similarly,
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Diff(17, 25, j) is negative for all j ≥ 19 and the Bayesian classifier makes false negative

errors when there are 17 and 18 attributes that are true. However, a simple modification

of the Bayesian classifier will allow it to perfectly discriminate all positive examples from

negatives: adding a constant to the discriminant function for the concept, or subtracting

the same constant from the discriminant function for its negation (Equation 1). We have

implemented an extension to the Bayesian classifier for two-class problems that finds the

value of the constant that maximizes predictive accuracy on the training data. In preliminary

experiments, we have observed that this extension achieves 100% accuracy on all m-of-n
concepts when trained on all 2n examples, for n less than 18. Furthermore, we have tested

this extension on the mushroom data set from the UCI repository with 800 examples, and

found that the average accuracy on 64 trials significantly increased from 93.9% without this

extension to 96.2% with this extension (with 99.9% confidence using a one-tailed paired t
test).

Since in nominal domains the basic Bayesian classifier cannot learn some linearly sepa-

rable concepts, in these domains its range of optimality is a subset of the perceptron’s, or

of a linear machine’s (Duda & Hart, 1973). This leads to the following result.

Let the Vapnik-Chervonenkis dimension, or VC dimension for short, be defined as in

(Haussler, 1988).

Corollary 2 In domains composed of a nominal attributes, the VC dimension of the

simple Bayesian classifier is O(a).

Proof: This result follows immediately from Theorem 4 and the fact that, givena attributes,

the VC dimension of linear discriminant functions is O(a) (Haussler, 1988).

Thus, in nominal domains, the PAC-learning guarantees that apply to linear machines

apply also to the Bayesian classifier. In particular, given a classification problem for which

the Bayesian classifier is optimal, the number of examples required for it to learn the required

discrimination to within error ǫ with probability 1 − δ is linear in the number of attributes

a.

In numeric domains, the Bayesian classifier is not restricted to linearly separable prob-

lems; for example, if classes are normally distributed, nonlinear boundaries and multiple

disconnected regions can arise, and the Bayesian classifier is able to identify them (see

Duda & Hart, 1973).

6.2. Sufficient conditions

In this section we establish the Bayesian classifier’s optimality for some common concept

classes.

Theorem 6 The Bayesian classifier is globally optimal if, for all classesCi and examples

E = (v1, v2, . . . , va), P (E|Ci) =
∏a

j=1 P (Aj = vj |Ci).

This result was demonstrated in Section 1, and is restated here for completeness. The

crucial point is that this condition is sufficient, but not necessary.
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Theorem 7 The Bayesian classifier is globally optimal for learning conjunctions of

literals.

Proof: Suppose there are n literals Lj in the conjunction. A literal may be a Boolean

attribute or its negation. In addition, there may be a − n irrelevant attributes; they simply

cause each row in the truth table to become 2a−n rows with the same values for the class

and all relevant attributes, each of those rows corresponding to a possible combination of

the irrelevant attributes. For simplicity, they will be ignored from here on (i.e., n = a will

be assumed without loss of generality). Recall that, in the truth table for conjunction, the

class C is 0 (false) for all but L0 = L1 = · · · = Ln = 1 (true). Thus, using a bar to denote

negation, P (C) = 1
2n

, P (C) = 2n−1
2n

, P (Lj |C) = 1, P (Lj |C) = 0, P (Lj |C) = 2n−1

2n−1
(the number of times the literal is 0 in the truth table, divided by the number of times the

class is 0), and P (Lj |C) = 2n−1−1
2n−1 (the number of times the literal is 1 minus the one time

it corresponds to C, divided by the number of times the class is 0). Let E be an arbitrary

example, and let m of the conjunction’s literals be true in E. For simplicity, the factor

1/P (E) will be omitted from all probabilities. Then we have

P (C|E) = P (C) Pm(Lj |C) Pn−m(Lj |C) =

{

1
2n

if m = n
0 otherwise

and

P (C|E) = P (C) Pm(Lj |C) Pn−m(Lj |C)

=
2n − 1

2n

(

2n−1 − 1

2n − 1

)m (

2n−1

2n − 1

)n−m

.

Notice that 2n−1−1
2n−1 < 1

2 for all n. Thus, for m = n, P (C|E) = P (C)
(

2n−1−1
2n−1

)n

<

P (C)( 1
2 )n < 1

2n
= P (C|E), and class 1 wins. For all m < n, P (C|E) = 0 and

P (C|E) > 0, and thus class 0 wins. Therefore the Bayesian classifier always makes the

correct decision, i.e., it is globally optimal.

Conjunctive concepts satisfy the independence assumption for class 1, but not for class 0.

(For example, if C = A0 ∧A1, P (A1|C) = 1
3 6= P (A1|C,A0) = 0, by inspection of the

truth table.) Thus conjunctions are an example of a class of concepts where the Bayesian

classifier is in fact optimal, but would not be if it required attribute independence.

This analysis assumes that the whole truth table is known, and that all examples are

equally likely. What will happen if either of these restrictions is removed? Consider

first the case where examples are not distributed uniformly. For m < n, the Bayesian

classifier always produces the correct class, given a sufficient sample. For m = n, the

result will, in general, depend on the distribution. The more interesting and practical case

occurs when P (C) > 1
2n

, and in this case one can easily verify that the Bayesian classifier

continues to give the correct answers (and, in fact, is now more robust with respect to sample

fluctuations). It will fail if P (C) < 1
2n

, but this is a very artificial situation: in practice,
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examples of such a conjunction would never appear in the data, or they would appear so

infrequently that learning the conjunction would be of little or no relevance to the accuracy.

At first sight, the Bayesian classifier can also fail if the probabilities P (Lj |C) are such

that the product of all n such probabilities is greater than 1
2n

(or, more precisely, greater than

P (C|E)/P (C)). P (Lj |C) can be increased by increasing the frequency with which Lj is

1 but the class is not (i.e., at least one of the other literals in the conjunction is 0). However,

doing this necessarily decreases P (C), leading to the artificial situation just described.

Further, because increasing P (Lj |C) also decreases P (Lk|C) for the Lk that are 0 when

Lj is 1 and the class is 1, it can be shown that the product can never be greater than 1
2n

.

Thus, a very small P (C) is effectively the only situation where the Bayesian classifier will

not be optimal. In short, although distributional assumptions cannot be entirely removed,

they can be relaxed to exclude only the more pathological cases.

The Bayesian classifier’s average-case behavior for insufficient samples (i.e., samples not

including all possible examples) was analyzed by Langley et al. (1992), who plotted sample

cases and found the rate of convergence to 100% accuracy to be quite rapid.7 Comparing

Langley et al.’s results with Pazzani and Sarrett’s (1990) average-case formulas for the

classical wholist algorithm for learning conjunctions shows that the latter converges faster,

which is not surprising, considering that it was specifically designed for this concept class.

On the other hand, as Langley et al. (1992) point out, the Bayesian classifier has the

advantage of noise tolerance.

Theorem 8 The Bayesian classifier is globally optimal for learning disjunctions of lit-

erals.

Proof: Similar to that for Theorem 7, letting m be the number of the disjunction’s literals

that are false in E.

Conversely, disjunctions satisfy the independence assumption for class 0 but not for

class 1, and are another example of the Bayesian classifier’s optimality even when the

independence assumption is violated.

As corollaries, the Bayesian classifier is also optimal for negated conjunctions and negated

disjunctions, as well as for the identity and negation functions, with any number of irrelevant

attributes.

7. When will the Bayesian classifier outperform other learners?

The previous sections showed that the Bayesian classifier is, in fact, optimal under a far

broader range of conditions than previously thought. However, even when it is not optimal,

the Bayesian classifier may still perform better than classifiers with greater representational

power, such as C4.5, PEBLS and CN2, with which it was empirically compared in Section 3.

Thus, a question of practical significance arises: is it possible to identify conditions under

which the Bayesian classifier can be expected to do well, compared to these other classifiers?

The current state of knowledge in the field does not permit a complete and rigorous answer
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to this question, but some elements can be gleaned from the results in this article, and from

the literature.

It is well known that squared error loss can be decomposed into three additive components

(Friedman, 1996): the intrinsic error due to noise in the sample, the statistical bias (system-

atic component of the approximation error, or error for an infinite sample) and the variance

(component of the error due to the approximation’s sensitivity to the sample, or error due

to the sample’s finite size). A trade-off exists between bias and variance, and knowledge

of it can often help in understanding the relative behavior of estimation algorithms: those

with greater representational power, and thus greater ability to respond to the sample, tend

to have lower bias, but also higher variance.

Recently, several authors (Kong & Dietterich, 1995; Kohavi & Wolpert, 1996; Tibshirani,

1996; Breiman, 1996; Friedman, 1996) have proposed similar bias-variance decomposi-

tions for zero-one loss functions. In particular, Friedman (1996) has shown, using normal

approximations to the class probabilities, that the bias-variance interaction now takes a very

different form. Zero-one loss can be highly insensitive to squared-error bias in the classi-

fier’s probability estimates, as Theorem 1 implies,8 but, crucially, will in general still be

sensitive to estimation variance. Thus, as long as Theorem 1’s preconditions hold for most

examples, a classifier with high bias and low variance will tend to produce lower zero-one

loss than one with low bias and high variance, because only the variance’s effect will be

felt. In this way, the Bayesian classifier can often be a more accurate classifier than (say)

C4.5, even if in the infinite-sample limit the latter would provide a better approximation.

This may go a significant way towards explaining some of the results in Section 3.

This effect should be especially visible at smaller sample sizes, since variance decreases

with sample size. Indeed, Kohavi (1996) has observed that the Bayesian classifier tends to

outperform C4.5 on smaller data sets (hundreds to thousands of examples), and conversely

for larger ones (thousands to tens of thousands). PAC-learning theory (e.g., Corollary 2)

also lends support to this notion: even though it provides only distribution-independent

worst-case results, these suggest that good performance on a small sample by the Bayesian

classifier (or another limited-capacity classifier) should be predictive of good out-of-sample

accuracy, while no similar statement can be made for classifiers with VC dimension on the

order of C4.5’s. Further, since the VC dimension of a classifier typically increases with

the number of attributes, the Bayesian classifier should be particularly favored when, in

addition to being small, the sample consists of examples described by many attributes.

These hypotheses were tested by conducting experiments in artificial domains. The

independent variables were the number of examples n and the number of attributes a, and

the dependent variables were the accuracies of the Bayesian classifier and C4.5. Concepts

defined as Boolean functions in disjunctive normal form (i.e., sets of rules) were used. The

number of literals in each disjunct (i.e., the number of conditions in each rule) was set

according to a binomial distribution with mean d and variance d(a − d); this is obtained

by including each attribute in the disjunct with probability d/a (negated or not with equal

probability). The number of disjuncts was set to 2d−1, so as to produce approximately equal

numbers of positive and negative examples, and positive examples were distributed evenly

among the disjuncts. The number of examples n was varied between 10 and 10000, and a
was varied between 16 and 64. A value of d = 8 was used, reflecting a bias for concepts of
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intermediate complexity (d = 1 would produce the simplest concepts, and d = a the most

complex ones). One hundred different domains were generated at random for each (n, a)
pair. For each domain, n examples were generated for training, and 1000 for testing. Test-

set accuracy was then averaged across domains. The C4.5RULES postprocessor, which

converts decision trees to rules and thus better matches the target concept class, was used,

and found to indeed increase accuracy, by as much as 10% for larger n. All the results

reported are for C4.5RULES.

The results appear graphically in Figure 3. All accuracy differences are significant with

99.9% confidence using a one-tailed paired t test.9 For this broad class of domains, the

Bayesian classifier is indeed more accurate than C4.5 at smaller sample sizes (up to 1000,

which includes many practical situations), and the crossover point increases with the number

of attributes, as does the Bayesian classifier’s accuracy advantage up to that point. These

results are especially remarkable in light of the fact that C4.5RULES’s learning bias is far

more appropriate to these domains than the Bayesian classifier’s, and illustrate how far

variance can dominate bias as a source of error in small to medium data sets. This can

be seen as follows. Since the Bayes rate is zero for these domains, the only components

of the error are bias and variance. If bias is taken to be the asymptotic error (i.e., the

error for an infinite sample), and variance the difference between total error for a given

sample size and the bias (i.e., the “finite sample penalty”), then C4.5’s bias is zero, since its

accuracy asymptotes at 100%, and the Bayesian classifier has a high bias (approximately

30–35%, depending on the number of attributes). On the other hand, C4.5’s variance, which

approaches 50% for the smaller sample sizes, is much higher than the Bayesian classifier’s,

and thus the sum of bias and variance for C4.5 is greater than that for the Bayesian classifier

up to the crossover point.

Other authors have verified by Monte Carlo simulation that “choosing a simple method

of discrimination is often beneficial even if the underlying model assumptions are wrong”

(Flury, Schmid, & Narayanan (1994) for quadratic discriminant functions; Russek, Kro-

nmal, & Fisher (1983) for the Bayesian classifier vs. multivariate Gaussian models). In

general, the amount of structure that can be induced for a domain will be limited by both

the available sample and the learner’s representational power. When the sample is the dom-

inant limiting factor, a simple learner like the Bayesian classifier may be better. However,

as the sample size increases, the Bayesian classifier’s capacity to store information about

the domain will be exhausted sooner than that of more powerful classifiers, and it may then

make sense to use the latter. Of course, the Bayesian classifier may still outperform other

classifiers at larger samples sizes, if its learning bias happens to be more appropriate for the

domain.

The Bayesian classifier’s exact degree of sensitivity to variance will depend on the differ-

ence r − s, for r and s (see Section 5) estimated from an infinite sample. If this difference

is large, errors in r and s due to small sample size will tend to leave the sign of r − s un-

changed, and thus have no effect. On the other hand, if r ≃ s, even small errors can cause

the sign to change. If p and the infinite-sample values of r and s satisfy the preconditions

of Theorem 1, this will lead to classification errors. Conversely, if they do not, this will

lead to a reduction in the misclassification rate, because incorrect classifications will be

flipped to correct ones. Thus an increase in variance can sometimes lead to a reduction in
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Figure 3. Accuracy of the Bayesian classifier and C4.5RULES as a function of the number of examples, given

16 attributes (upper), 32 attributes (middle), and 64 attributes (lower). Error bars have a height of two standard

deviations of the sample mean. All accuracy differences are significant with 99.9% confidence using a one-tailed

paired t test.
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zero-one loss. Overall, Ben-Bassat, Klove, and Weil (1980) have shown that the Bayesian

classifier is quite robust with respect to errors in probability estimates due to small sample

size; this is not surprising, since it can be attributed to the same factors that make it robust

with respect to violations of the independence assumption.

8. How is the Bayesian classifier best extended?

One significant consequence of the Bayesian classifier’s optimality even when strong at-

tribute dependences are present is that detecting these is not necessarily the best way to

improve performance. This section empirically tests this claim by comparing Pazzani’s

(1996) extension with one that differs from it solely by using the method for attribute de-

pendence detection described in (Kononenko, 1991) and (Wan & Wong, 1989). In each

case, the algorithm finds the single best pair of attributes to join by considering all possible

joins. Two measures for determining the best pair were compared. Following Pazzani

(1996), the first measure was estimated accuracy, as determined by leave-one-out cross val-

idation on the training set. In the second measure, Equation 4 was used to find the attributes

that had the largest violation of the conditional independence assumption.

To conduct an experiment to compare these two approaches, a method is also required

to decide when to stop joining attributes. Rather than selecting an arbitrary threshold,

experiments were conducted in two ways:

• Joining only a single pair of attributes using each evaluation measure (provided the

change appeared beneficial to the measure).

• With the cross-validation measure, joining of attributes stopped when no further joining

resulted in an improvement. With Equation 4, the optimal stopping criterion was

assumed to be given by an oracle. This was implemented by selecting the threshold

that performed best on the test data.

Two artificial concepts were used to compare the approaches: exclusive OR with two

relevant attributes and six irrelevant attributes, and parity with six relevant attributes and

six irrelevant attributes. Experiments on UCI data sets were also carried out, to determine

whether the methods work on problems that occur in practice as well as in artificial concepts.

In this set of experiments, a multiplicative factor of 1 was used for the Laplace correction

(see Section 3), and numeric attributes were discretized into five equal intervals, instead

of ten. This causes the Cartesian product of two discretized attributes to have 25 values,

instead of 100, and leads to substantially more reliable probability estimates, given that

the training set sizes are in the hundreds. The domains and training set sizes appear in the

first two columns of Table 4. The remaining columns display the accuracy of the Bayesian

classifier and extensions, averaged over 24 paired trials, and found by using an independent

test set consisting of all examples not in the training set.

In Table 4, Accuracy Once shows results for the backward stepwise joining algorithm

of Pazzani (1996), forming at most one Cartesian product as determined by the highest

accuracy using leave-one-out cross validation on the training set; Entropy Once is the same

algorithm except it creates at most one Cartesian product with the two attributes that have
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Table 4. A comparison of two approaches to extending the Bayesian classifier.

Data Set Training Bayes Accuracy Entropy Accuracy Entropy

Size Once Once Repeated Optimal

Exclusive OR 128 46.1 100.0 100.0 100.0 100.0

4-parity 128 42.4 43.5 44.2 50.3 51.0

Chess endgames 300 86.8 93.4 + 90.3 93.9 + 90.8

Credit 250 84.0 83.7 84.1 84.0 84.6

Diabetes 500 75.5 76.1 76.1 76.1 76.1

Glass 150 41.7 48.9 + 42.6 49.3 + 42.6

Horse colic 200 81.0 80.8 79.5 80.6 81.1

Iris 100 93.1 93.2 93.3 93.3 93.6

Mushroom 800 94.0 97.4 + 93.4 99.3 + 94.0

Voting records 300 90.4 90.4 89.9 92.0 91.2

Wine 125 98.0 97.5 97.7 97.5 98.0

Wisconsin cancer 500 97.3 96.7 96.7 97.0 96.7

the highest degree of dependence. In this table, a paired t test between these two algorithms

is used to determine which method has the highest accuracy when making a single change

to the Bayesian classifier. A “+” indicates that using one method is significantly more

accurate than another. Both algorithms do well on exclusive OR. In this case the joining

of the two relevant attributes is clearly distinguished from others by either method. The

results indicate that estimating accuracy on the training data is significantly better on three

data sets and never significantly worse than using a measure of conditional independence.

The column labeled Accuracy Repeated gives results for the backward sequential joining

algorithm; in contrast, Entropy Optimal repeats joining the pair of attributes that have

the highest degree of dependence, stopping when the dependences fall below the optimal

threshold to maximize accuracy on the test set. Paired t tests indicate that the accuracy

estimation approach is often significantly better than using entropy to determine which

attributes to join, and is never significantly worse.

To further explore whether the degree of dependence is a reasonable measure for predicting

which attributes to join, an additional experiment was performed on the UCI data sets in

which Cartesian product attributes were beneficial: we formed every possible classifier with

a single pair of joined attributes (and all remaining attributes), and measured the test-set

accuracy, the accuracy estimated by leave-one-out cross validation on the training set, and

the degree of dependence. Figure 4 plots the accuracy of these classifiers on the test set as a

function of the other two measures (averaged over 24 trials) for the domain with the largest

number of attributes: chess endgames. The graphs show that cross-validation accuracy is

a better predictor of the effect of an attribute join than the degree of dependence given the

class. The value of R2 for this domain was 0.497 for cross-validation accuracy, vs. 0.006

for degree of dependence. For the voting domain, the values of R2 were respectively 0.531

and 0.212, for the glass domain 0.242 and 0.001, and for mushroom 0.907 and 0.019.

These experiments demonstrate that joining attributes to correct for the most serious

violations of the independence assumption does not necessarily yield the most accurate

classifier. To illustrate the reason for this finding, we constructed examples of an artificial
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Figure 4. Upper: The relationship between accuracy on the test set and using accuracy estimation on the training

set to decide which Cartesian product attribute to form, plotted for all pairs of attributes in the chess data set (R2

= 0.497). Lower: The relationship between accuracy on the test set and using entropy to decide which Cartesian

product attribute to form (R2 = 0.006).

concept with six variables. The concept is true whenever two or more of A1, A5, and A6

are true and two or more of A2, A3, and A4 are true. We generated examples in which A1

had a 50% chance of being true, an all other attributes Ai had a probability 1/i of having

the same value as A1. Otherwise, the value was selected randomly with a 50% chance of

being true. Therefore, attributes A1 and A2 were the most dependent. To avoid problems

of estimating probabilities from small samples, we ran each algorithm on 500 examples

generated as described above and tested on a set of 500 examples generated in the same

manner. We ran 24 trials of this procedure. Using this methodology, the simple Bayesian
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classifier was only 92.8% accurate on this problem. When using the entropy-based approach

to finding a pair of attributes to join, A1 and A2 were always chosen, and the classifier was

significantly less accurate at 90.1%. In contrast, when using cross-validation accuracy to

determine which two attributes to join, A5 and A6 were always chosen. These are the two

least dependent attributes in the data, yet the accuracy of the Bayesian classifier constructed

in this manner was significantly higher, at 96.9%. This occurs because on this problem the

representational bias of the simple Bayesian classifier presents more difficulties than the

independence assumption.

The experiments in this section show that the simple Bayesian classifier can be produc-

tively extended. However, correcting the largest violation of the independence assumption

does not necessarily result in the largest improvement. Rather, since under zero-one loss the

Bayesian classifier can tolerate some significant violations of the independence assumption,

an approach that directly estimates the effect of the possible changes on this loss measure

resulted in a more substantial improvement.

9. Conclusions and future work

In this article we verified that the Bayesian classifier performs quite well in practice even

when strong attribute dependences are present. We also showed that this follows at least

partly from the fact that, contrary to previous assumptions, the Bayesian classifier does

not require attribute independence to be optimal under zero-one loss. We then derived

some necessary and some sufficient conditions for the Bayesian classifier’s optimality. In

particular, we showed that the Bayesian classifier is an optimal learner for conjunctive

and disjunctive concepts, even though these violate the independence assumption. We

hypothesized that the Bayesian classifier may often be a better classifier than more powerful

alternatives when the sample size is small, even in domains where its learning model is not

the most appropriate one, and verified this by means of experiments in artificial domains.

We also verified that searching for attribute dependences is not necessarily the best approach

to improving the Bayesian classifier’s performance.

Ideally, we would like to have a complete set of necessary and sufficient conditions for the

optimality of the Bayesian classifier, efficiently verifiable on real problems. In Section 6

we began the work towards this goal. Another important area of future research concerns

finding conditions under which the Bayesian classifier is not optimal, but comes very close

because it makes the wrong prediction on only a small fraction of the examples. This should

also shed further light on the discussion in Section 7. Much work remains to be done in the

continuation of this section, further elucidating the conditions that will favor the Bayesian

classifier over other classifiers. Another useful extension of the present work would be to

apply a similar analysis to loss functions employing a full cost matrix (see Section 5).

In summary, the work reported here demonstrates that the Bayesian classifier has much

broader applicability than previously thought. Since it also has advantages in terms of

simplicity, learning speed, classification speed, storage space and incrementality, its use

should perhaps be considered more often.
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Notes

1. If there is a tie, the class may be chosen randomly.

2. This article will not attempt to review work on the Bayesian classifier in the pattern recognition literature. Jour-

nals where this work can be found include IEEE Transactions on Pattern Analysis and Machine Intelligence,

Pattern Recognition Letters, and Pattern Recognition.

3. These confidence levels should be interpreted with caution, due to the t test’s assumption of independently

drawn samples. Thus, a 99% level for a data set means the Bayesian classifier can be expected with high

confidence to outperform the corresponding algorithm on training sets drawn at random from that data set,

since the accuracy results were obtained by independently drawing training sets from the data set. This is

useful for cross-checking the results of this study with previous ones on the same data sets. However, no

conclusions can be drawn regarding different data sets drawn at random from the same domain as the UCI

data set, because with respect to the domain the training sets used here are not independent, being overlapping

subsets of the same data set. See Dietterich (1996) for more on this issue.

4. For any two attributes, Equations 4 and 5 implicitly marginalize over all other attributes. In particular, they

ignore that two dependent attributes could become independent given another attribute or combination of

attributes.

5. The annealing, audiology, and primary tumor domains are omitted because some of the relevant entropies

H(. . .) could not be computed. Due to a combination of missing values and rare classes, for these data sets

there exist Ci and Aj such that
∑

k
P̂ (Ci ∧ Aj = vjk) = 0 6= P̂ (Ci), causing the entropy measure to

become undefined.

6. More generally, some attributes may be irrelevant, i.e., an m-of-n concept may be defined using only n < a

attributes, where a is the total number of attributes describing the examples, and one must then specify which

attributes are the n relevant ones. This article considers only the more restricted case, but the results can be

trivially generalized.

7. The 100% asymptote implies optimality, but the authors did not remark on this fact.

8. Notice that Theorem 1 is valid for any classifier employing estimates r and s of the class probabilities, not

just the Bayesian classifier.

9. This includes points where the error bars overlap, which is possible because the t test is paired. Also, note that

these confidence levels apply to the accuracy difference in the entire domain class studied, not just a particular

data set, since the training sets were drawn independently from the domain class.
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Kaufmann.

Kohavi, R. (1995). Wrappers for performance enhancement and oblivious decision graphs. PhD thesis, Depart-

ment of Computer Science, Stanford University, Stanford, CA.

Kohavi, R. (1996). Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. Proceedings of

the Second International Conference on Knowledge Discovery and Data Mining (pp. 202–207). Portland, OR:

AAAI Press.

Kohavi, R., Becker, B., & Sommerfield, D. (1997). Improving simple Bayes (technical report). Data Mining

and Visualization Group, Silicon Graphics Inc., Mountain View, CA. ftp://starry.stanford.edu/pub/ronnyk/-

impSBC.ps.Z.

Kohavi, R., & Wolpert, D. H. (1996). Bias plus variance decomposition for zero-one loss functions. Proceedings

of the Thirteenth International Conference on Machine Learning (pp. 275–283). Bari, Italy: Morgan Kaufmann.

Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. Proceedings of

the Twelfth International Conference on Machine Learning (pp. 313–321). Tahoe City, CA: Morgan Kaufmann.

Kononenko, I. (1990). Comparison of inductive and naive Bayesian learning approaches to automatic knowledge

acquisition. In B. Wielinga (Ed.), Current Trends in Knowledge Acquisition. Amsterdam, The Netherlands:

IOS Press.

Kononenko, I. (1991). Semi-naive Bayesian classifier. Proceedings of the Sixth European Working Session on

Learning (pp. 206–219). Porto, Portugal: Springer-Verlag.

Kubat, M., Flotzinger, D., & Pfurtscheller, G. (1993). Discovering patterns in EEG-Signals: Comparative study of

a few methods. Proceedings of the Eighth European Conference on Machine Learning (pp. 366–371). Vienna,

Austria: Springer-Verlag.

Langley, P. (1993). Induction of recursive Bayesian classifiers. Proceedings of the Eighth European Conference

on Machine Learning (pp. 153–164). Vienna, Austria: Springer-Verlag.

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. Proceedings of the Tenth

National Conference on Artificial Intelligence (pp. 223–228). San Jose, CA: AAAI Press.

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference

on Uncertainty in Artificial Intelligence (pp. 399–406). Seattle, WA: Morgan Kaufmann.

Merz, C. J., Murphy, P. M., & Aha, D. W. (1997). UCI repository of machine learning databases. Department

of Information and Computer Science, University of California, Irvine, CA. http://www.ics.uci.edu/ mlearn/-

MLRepository.html.

Niblett, T. (1987). Constructing decision trees in noisy domains. Proceedings of the Second European Working

Session on Learning (pp. 67–78). Bled, Yugoslavia: Sigma.



130 P. DOMINGOS AND M. PAZZANI

Pazzani, M. J. (1996). Searching for dependencies in Bayesian classifiers. In D. Fisher & H.-J. Lenz (Eds.),

Learning from data: Artificial intelligence and statistics V (pp. 239–248). New York, NY: Springer-Verlag.

Pazzani, M., Muramatsu, J., & Billsus, D. (1996). Syskill & Webert: Identifying interesting web sites. Proceedings

of the Thirteenth National Conference on Artificial Intelligence (pp. 54–61). Portland, OR: AAAI Press.

Pazzani, M., & Sarrett, W. (1990). A framework for average case analysis of conjunctive learning algorithms.

Machine Learning, 9, 349–372.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.

Russek, E., Kronmal, R. A., & Fisher, L. D. (1983). The effect of assuming independence in applying Bayes’

theorem to risk estimation and classification in diagnosis. Computers and Biomedical Research, 16, 537–552.

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining (pp. 335–338). Portland, OR: AAAI Press.

Singh, M., & Provan, G. M. (1995). A comparison of induction algorithms for selective and non-selective Bayesian

classifiers. Proceedings of the Twelfth International Conference on Machine Learning (pp. 497–505). Tahoe

City, CA: Morgan Kaufmann.

Singh, M., & Provan, G. M. (1996). Efficient learning of selective Bayesian network classifiers. Proceedings of

the Thirteenth International Conference on Machine Learning (pp. 453–461). Bari, Italy: Morgan Kaufmann.

Tibshirani, R. (1996). Bias, variance and prediction error for classification rules (technical report). Department

of Preventive Medicine and Biostatistics, University of Toronto, Toronto, Ontario. http://utstat.toronto.edu/-

reports/tibs/biasvar.ps.

Wan, S. J., & Wong, S. K. M. (1989). A measure for concept dissimilarity and its applications in machine learning.

Proceedings of the International Conference on Computing and Information (pp. 267–273). Toronto, Ontario:

North-Holland.

Received July 2, 1996

Accepted July 29, 1997

Final Manuscript July 30, 1997


