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A Fast Adaptive k-means with No Bounds

Shuyin Xia*, Daowan Peng, Deyu Meng, Changqing Zhang, Guoyin Wang*, Elisabeth Giem, Wei Wei,

Zizhong Chen

Abstract—This paper presents a novel accelerated exact k-means called as ”Ball k-means” by using the ball to describe each cluster,

which focus on reducing the point-centroid distance computation. The ”Ball k-means” can exactly find its neighbor clusters for each

cluster, resulting distance computations only between a point and its neighbor clusters’ centroids instead of all centroids. What’s more,

each cluster can be divided into ”stable area” and ”active area”, and the latter one is further divided into some exact ”annular area”. The

assignment of the points in the ”stable area” is not changed while the points in each ”annular area” will be adjusted within a few

neighbor clusters. There are no upper or lower bounds in the whole process. Moreover, ball k-means uses ball clusters and neighbor

searching along with multiple novel stratagems for reducing centroid distance computations. In comparison with the current state-of-the

art accelerated exact bounded methods, the Yinyang algorithm and the Exponion algorithm, as well as other top-of-the-line tree-based

and bounded methods, the ball k-means attains both higher performance and performs fewer distance calculations, especially for

large-k problems. The faster speed, no extra parameters and simpler design of ”Ball k-means” make it an all-around replacement of the

naive k-means.

Index Terms—Ball k-means, k-means, Ball Cluster, Stable Area, Active Area, Neighbor Cluster.

✦

1 INTRODUCTION

C LUSTERING problems arise in many fields, such as
vector quantization [18], image compression [14], and

spatial data mining [24]. Due to its simplicity and high effi-
ciency, the k-means algorithm has become one of the top ten
algorithms to solve clustering problems [38]. Stuart Lloyd
at Bell Telephone Laboratories first proposed the algorithm
in 1957, although it was only published by Lloyd in its
widely-recognized form in 1982 [21]. The k-means clustering
algorithm is based on the calculation of a distance function
[17]. The algorithm proceeds in two phases: an assignment
phase which assigns each point to a cluster based on the
shortest point-centroid distance, and an update phase to
recalculate the centroids for each cluster based on the as-
signment of each point. Each phase is repeated in order until
the centroids stop moving. The cluster centroids in Lloyd’s
original k-means algorithm are initialized randomly, which
can lead to a varying number of iterations and differing
cluster results for each set of initial cluster centroids.

Lloyd’s k-means algorithm, also referred to as the stan-
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dard k-means or naive k-means algorithm, has been proven
to be an NP-hard problem [1], [26]. The time complexity
of the standard k-means algorithm is O(nkt), where n
denotes the data size, k represents the number of clusters,
and t is the total number of iterations until the algorithm
converges. In very large-scale clustering, the value of k is
usually a few thousand or more, which can cause enormous
time overhead in the standard k-means algorithm. In recent
years, many different improved k-means algorithms have
been proposed. Most focus on either optimizing the selec-
tion of the initial centroids, using approximate methods to
accelerate the k-means algorithm, or accelerating the exact
k-means algorithm.

We follow the last path. We build our k-means algorithm
by introducing the idea of ball clusters and neighbor cluster
searching to create an efficient and adaptive algorithm. The
main contributions of this paper are as follows:

• We craft the novel ball k-means algorithm by introducing
ball clusters as our main clustering tool. Ball k-means has
a per-iteration time complexity that drops to sublinear lev-
els as iterations progress, rendering it much more efficient
than existing k-means algorithms.

• Ball k-means has no bounds and is parameter-free; that is,
it does not need to keep track of any bounds for each data
point.

• We introduce the concepts of neighbor cluster searching,
an adaptive and efficient process that reduces the number
of distance calculations. We also introduce the partitioning
of ball clusters into stable and active areas, a process
which is exact and does not rely on any bounds, allowing
distances to be calculated not for the entire dataset, but
rather only a small part. We use the information from
previous iterations, resulting in the further reduction of
centroid-centroid computations per iteration to less than
O(k2).

• We show that ball k-means outperforms the two current
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state-of-the-art exact k-means algorithms as well as 5
other exact k-means algorithms, especially for large-k
problems. Ball k-means is completely adaptive, simple,
and easy to implement.

The rest of the paper is organized as follows: we in-
troduce related works in Section 2, and then detail the
background theory of ball k-means and neighbor cluster
searching in Section 3. Section 4 presents a time complexity
analysis of ball k-means. Evaluation results are given in
Section 5. We present our conclusions in Section 6.

2 RELATED WORK

k-means is a fundamental algorithm, allowing quite an
extensive body of research into the problem to accumulate.
There are three main categories of investigation in the liter-
ature: selection of the initial centroids, acceleration achieved
by approximation, and acceleration of exact algorithms.

2.1 Initial Centroid Selection

Many algorithms have been proposed to improve the se-
lection of the initial centroids in Lloyd’s original k-means
algorithm in order to help resolve the variance in iteration
number and final cluster results due to the random ini-
tialization of the original centroids [2], [4], [5], [6], [23]. k-
means++ is one of the most prominent of these improved
methods [2]. Arthur and Vassilvitskii propose an adap-
tive sampling scheme called D2-seeding that is O(log k)-
competitive with the optimal clustering. Bachem, Lucic,
Hassani, and Krause build on k-means++ by replacing D2

-seeding with a Markov chain Monte Carlo (MCMC) sam-
pling method [4], and then further improve their work by
removing assumptions on the MCMC method and theoreti-
cally guaranteeing the solution quality [5]. Another cluster
of work is centered on the CLARANS algoritm, which is
a two-parameter highly efficient algorithm structured as
graph searching that performs best on smaller datasets [24].
Newling and Fleuret improve the CLARANS algorithm
in both complexity and runtime, particularly enhancing
efficiency for large datasets by utilizing more parameters
in combination with the triangle inequality to reduce the
number of comparisons [23]. While the subject of initial
centroid selection is extensively researched, our method is
focused on neighbor cluster searching and does not heavily
rely on the initial selection of centroids.

2.2 Approximate k-means

Approximate k-means algorithms accelerate Lloyd’s origi-
nal k-means by approximating the clustering result [8], [12],
[16], [19], [25], [28], [29], [31], [32], [34], [35], [37]. Wang,
Jing, Ke, Gang, and Li use multiple random projection
trees to establish cluster closures to speed up the algorithm
[37]. Sculley introduces a mini-batch sampling method that
converges to better solutions without increasing the compu-
tational cost on large datasets [34]. Hu, Wu, Bai, Zhang, and
Cheng propose a multi-stage filtering k-means via a coarse-
to-fine search strategy which accelerates the algorithm up to
634 times faster than standard k-means [16]. Deng and Zhao
compare each data sample to its nearest neighbors by using
an approximate k-nearest neighbor graph [8]. Fahim, Salem,
Torkey, and Ramadan define an exclusion criterion which

is based on the object-centroid distances in two successive
iterations, allowing them to exclude distance calculations to
any remaining centroids in an iteration if the distance from
a point to a centroid is smaller than in the previous iteration,
resulting in a a significant speedup especially on large
datasets [12]. Tsai, Yang, and Chiang present an efficient
algorithm; in each iteration, data patterns that are close to
the centroid of a cluster or that remain in the same cluster for
a given number of iterations in a row—and are thus unlikely
to be moved from one cluster to another—are removed, and
a new data pattern is computed that represents the removed
patterns more compactly [35]. Pérez, Pires, Balby, Mexicano,
and Hidalgo propose an algorithm which heuristically de-
termines a threshold that decides which objects should be
excluded using the probability that centroids will move in
each iteration [29]. This algorithm was improved by Ortega
et al. through the use of a new heuristic with an equidistance
threshold for centroid movement and performs better on
large datasets [28]. Approximate k-means has a rich history
of research. However, our algorithm is an exact algorithm.

2.3 Accelerated Exact k-means

An alternative solution to speed up k-means is to accelerate
an exact k-means algorithm [7], [9], [11], [14], [15], [18],
[22], [27], [33], [39]. Pelleg and Moore propose the blacklist
algorithm, which builds a kd-tree on the sample points [27].
This algorithm can assign many points to a cluster at once.
However, the efficiency of kd-tree construction declines on
a high-dimensional dataset, as well as for larger k values,
making this algorithm inefficient for higher-dimensional
datasets without heavy pre-processing. T. Kanungo et al.
present a simple and efficient implementation of Lloyd’s k-
means clustering algorithm, called the filtering algorithm
[18]. This algorithm is easy to implement, requiring a kd-tree
as the only major data structure. Curtin proposes a dual-
tree k-means algorithm based on four pruning strategies
which builds two trees on both the data samples and the
centroids [7]. The selected pruning strategies can rule out
many centroids for many samples at once, so dual-tree k-
means is much more efficient than the blacklist algorithm at
large k values. They also suffer from the same inefficiency
on some high-dimensional datasets due to the tree-based
nature of the algorithm, and in addition the bounds on the
pruning strategies can sometimes be too loose, resulting in
a loss of efficiency.

Elkan applies the triangle inequality to bounds based
on the distance from datapoints to the centroids to avoid
some distance computations, resulting in a significant de-
crease in the amount of distance computations [11]. Each
point, however, has k lower bounds, so the algorithm must
maintain nk lower bounds per iteration, which is a severe
limitation when both n and k are large. Hamerly improves
this algorithm by reducing the number of lower bounds to
n per iteration [14]. This resulted in Hamerly’s algorithm
becoming sensitive to big movers, that is, cluster centroids
that drift dramatically in a centroid update. Big movers
cause the bounds to fail, necessitating a calculation of the
distance from the datapoint in question to every centroid
[9]. The method still performs best in low-dimensional
datasets. To improve Hamerly’s algorithm, Newling and
Fleuret propose the Exponion algorithm. In addition, they



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

propose a technique for making bounds tighter for all
bound based methods , allowing further redundant distance
calculations to be eliminated, increasing its performance
three times over its closest rival [22]. the Annulus algorithm
[10], which applies the triangle inequality to an annulus
centered on the origin. Ryšavỳ and Hamerly introduce
a new algorithm with tighter bounds that does not use
the triangle inequality, but rather takes into account the
direction in which the centroid moves. This did result in
some speedup, but it was limited and mostly apparent on
datasets that were clearly clustered [33]. Ding, Zhao, Shen,
Musuvathi, Mytkowicz compromise between Elkan’s algo-
rithm and Hamerly’s algorithm by introducing three types
of filtering, global, group, and local, which strategically
reduces the amount of comparison operations [9]. This
Yinyang k-means algorithm outperforms most existing k-
means algorithms. However, the number of groups is an
artificially selected parameter and has a significant influence
on the efficiency of the algorithm, reducing the adaptive
nature of the algorithm. Searching for the optimal number
of groups takes time, which decreases algorithm efficiency.
In this paper, we also present an accelerated exact k-means
algorithm, so these previous works form the baselines to
which we compare our work.

3 BALL k-MEANS CLUSTERING

In this section, we briefly review k-means in general, and
then present our new algorithm, ball k-means. We introduce
the concept of ball clusters, neighbor cluster searching,
ball cluster partitioning, and our mechanism for reducing
centroid-centroid distance computations between iterations,
the method of finding stable ball clusters.

The standard k-means algorithm can be described as
follows: Given a set of n samples, {x1, x2, ..., xn} ⊂ Rd,
where each sample represents a d-dimensional vector, and a
positive number k, the k-means algorithm aims to partition
these n samples into k clusters by minimizing the distortion,
which is the within-cluster sum of the distances from each
sample to its nearest centroid. This is expressed mathemati-
cally as:

J(x, c) =
k
∑

j=1

∑

xi∈Cj

‖xi − cj‖
2
, (1)

where cj is the centroid of cluster Cj , and the closest
centroid to xi. To optimize the objective function in (1),
Lloyd’s algorithm performs an assignment step and an
update step iteratively until the cluster centroids stabilize.
The assignment step assigns each sample to a cluster based
on the shortest sample-centroid distance, and the update
step recalculates the centroids of the clusters based on
the new point assignments. These two steps are expressed
mathematically as:

� Assignment step: each sample xi is assigned to the
cluster with the closest centroid:

b(xi) = argminj=1,..,k{‖xi − cj‖
2
}. (2)

� Update step: each centroid cj is updated using all
samples assigned to cluster Cj :

cj =
1

|Cj |

n
∑

i=1

{xi|b(xi) = j}, (3)

where |Cj | represents the number of sample points that
are assigned to Cj .

3.1 Ball Clusters

The structure of a ball is characterized by a radius and
centroid. We wish to use this structure to facilitate our
k-means algorithm; we introduce the concept of the ball
cluster, where a ball is used to describe a cluster.

Definition 1. Given a cluster C , we call C as a ball cluster
by defining its centroid c and radius r as follows:

c =
1

|C|

|C|
∑

i=1

xi, r = max(‖xi − c‖), (4)

where xi is a point that assigned to C , and |C| denotes
the number of samples in C .

3.2 Neighbor Cluster Searching

We wish to eliminate the distance calculations between
points and centroids that are very far from each other.
We introduce a method for finding the neighbor clusters
of a given cluster, and limit the distance computation to
points and their neighbor cluster centroids. We first define a
neighbor cluster.

Definition 2. Given two ball clusters Ci and Cj with cen-
troids ci and cj , Cj is a neighbor cluster of Ci if the radius
ri of Ci satisfies the following inequality:

1

2
‖ci − cj‖ < ri. (5)

From Equation 5 we can see that the neighbor relationship
is not symmetric. Specifically, any two ball clusters Ci and
Cj must have one of the following three relationships, as
illustrated in Figure 1:

1) Ci and Cj are mutual neighbor clusters, exemplified
by clusters C2 and C3 in Figure 1. As C2 and C3

are neighbor clusters, some points in C3 (C2) may be
moved into C2 (C3) in the current iteration.

2) Ci is a neighbor cluster of Cj , but Cj is not a neighbor
cluster of Ci; this case is demonstrated by clusters C1

and C3 in Figure 1. C1 is a neighbor cluster of C3, but
C3 is not a neighbor cluster of C1. In this case, some
points in C3 may be moved into C1, but no points in
C1 can be moved into C3.

3) Ci and Cj have no neighbor relationship to each other.
This case is illustrated by clusters C3 and C4 in Figure
1. In this case, no points in C3 (C4) can be moved into
C4 (C3) in the current iteration.

The relationship assertions above are self-evident, but
the restrictions on point movement may not be. We prove
the limitations on the movement of points based on the
neighbor relationships of clusters in the following theorem.

Theorem 1. Let Ci and Cj be two clusters with centroids
ci and cj , respectively. For a queried ball cluster C with
centroid c and radius r, let Ci be a neighbor cluster of
C (that is,r > 1

2‖c − ci‖) and let Cj not be a neighbor
cluster of C (that is, r ≤ 1

2‖c− cj‖). Then 1) some points
in C may be moved into Ci, and 2) no points in C can
be moved into Cj .
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Fig. 1. Schema of neighbor relationships of the queried ball cluster C3.
The dashed red line represents the bisector of the segment connecting
the centroids of two ball clusters. The yellow triangle and green line
represent the centroid and radius of a cluster respectively.

Proof. ∀x ∈ C , ‖x− c‖ ≤ r.
1) Let Cj not be a neighbor cluster of C .
Then r ≤ 1

2 ‖c− cj‖ and we have
‖x− c‖ ≤ r ≤ 1

2‖c− cj‖ = 1
2‖c− x+ x− cj‖,

and 1
2‖c− x+ x− cj‖ ≤ 1

2 (‖c− x‖+ ‖x− cj‖),
⇒ ‖x− c‖ ≤ 1

2 (‖c− x‖+ ‖x− cj‖),
⇒ 2‖x− c‖ ≤ (‖c− x‖+ ‖x− cj‖),
⇒ ‖x− c‖ ≤ ‖x− cj‖.
Therefore, for all points x ∈ C , x will not be moved into

Cj . We can conclude that no points in a queried ball cluster
can be moved into any non-neighbor cluster.

2) Let Ci be a neighbor cluster of C . Then r > 1
2 ‖c− ci‖

and ∃x ∈ C such that ‖c− x‖ > 1
2‖c− ci‖. Let x be a point

on the segment cci, which then satisfies:
(i) ‖c− x‖+ ‖ci − x‖ = ‖c− ci‖, and
(ii) ‖c− x‖ > 1

2‖c− ci‖.
Then we have:
1
2‖c− ci‖ = 1

2 (‖c− x‖+ ‖x− ci‖),
and 1

2‖c− ci‖ < ‖c− x‖,
⇒ 1

2 (‖c− x‖+ ‖x− ci‖) < ‖c− x‖,
⇒ (‖c− x‖+ ‖x− ci‖) < 2‖c− x‖,
⇒ ‖ci − x‖ < ‖c− x‖
Therefore, points satisfying certain properties in C may

be moved into Ci. We can conclude that it is possible that
some points in a queried ball cluster may be moved into its
neighbor clusters. �

The neighbor ball clusters of a queried cluster can be
exactly found using Definition 2, so the required distance
computations of points in C to the centroids of other clusters
are limited to the centroids of the neighbor clusters of C .
This results in a significant decrease in the amount of nec-
essary distance computations. Ryšavỳ and Hamerly use a
similar method of finding neighbor clusters [33]. Translating
into our notation, they use the following method. For two
clusters Ci and Cj with centroids ci and cj , ||ci − cj ||
is the distance between the centroids. Let s(Ci) represent
half the distance between Ci and its closest other centroid.
If ri + s(Ci) ≥ 1/2||ci − cj ||, then Cj is a neighbor of
Ci. By contrast, in this paper, Cj is the neighbor of Ci

if ri > 1/2||ci − cj ||. We see that in comparison with
Definition 2, Ryšavỳ and Hamerly require one additional
element in their neighbor condition, and therefore that their
condition is looser than that in Definition 2. In other words,

Definition 2 may result in finding less, but more exact,
neighbor clusters than Ryšavỳ and Hamerly.

3.3 Ball Cluster Partitioning

Our goal is to perform the smallest amount of distance
calculations possible. To this end, we show that a queried
ball cluster can be divided into two parts, the stable area
and the active area, in Definition 3. The points in the stable
area stay in the assigned cluster, which we prove in Theorem
2. The active area can be further divided into annular areas,
defined in Definition 4. We need to calculate the distances
from the points in each annular area to only some of the
neighbor clusters, which we prove in Theorem 3.

3.3.1 Stable and Active Areas

We first define the stable area and the active area as follows:

Definition 3. Let Ci be a queried ball cluster. {NCi
} de-

notes the centroid set of the neighbor clusters of Ci. If
{NCi

} 6= ∅, and if Cj is a ball cluster with centroid
cj and with cjǫ {NCi

}, then the stable area of Ci is de-
fined as the spherical region with centroid ci and radius
1
2min (‖ci − cj‖)cj∈NCi

. The remaining area including

those points of Ci that are not in the stable area is defined
as active area of Ci.

The points in the stable area of a given cluster will
remain in that cluster, which we formulate as a theorem
and prove now.

Theorem 2. Let Ci be a cluster. The points in the stable area
of Ci cannot be moved into any neighbor cluster in the
current iteration.

Proof. Let {NCi
} denote the centroid set of the neighbor

clusters of Ci. If x is any point located in the stable area of
Ci, then we have:

‖x− ci‖ ≤ 1
2min (‖ci − cj‖)cj∈NCi

and
1
2min (‖ci − cj‖)cj∈NCi

≤ 1
2 ‖x− ci‖ +

1
2 min (‖x− cj‖)cj∈NCi

,

⇒ ‖x− ci‖ ≤ 1
2 ‖x− ci‖+

1
2 min (‖x− cj‖)cj∈NCi

,

⇒ 2‖x− ci‖ ≤ ‖x− ci‖+min (‖x− cj‖)cj∈NCi

,

⇒ ‖x− ci‖ ≤ min (‖x− cj‖)cj∈NCi

.

This means that the points in the stable area will stay in
the current cluster for the current iteration. No point in the
stable area of a queried ball cluster will be moved into any
other cluster in the current iteration. �

We note that in the case when a ball cluster has no
neighbor clusters, the stable area is equal to the entire ball
cluster.

3.3.2 Active Area Partitioning

We now show how we partition the active area of a queried
cluster into some annular areas—generated by neighbor
clusters.

Definition 4. Let C be a queried ball cluster with centroid c
and radius r, and let {NC} represent the set of centroids
of neighbor clusters of C . Let |{NC}| = k’ and k′ 6= 0—
for if k′ = 0 then C has no neighbors and the stable
area of C is the entirety of C . Let ci and ci+1 represent
the centroids of the i-closest and (i+1)-closest neighbor
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χ3 X2

X1

The stable area 

The 1 st annular area The 2nd annular area 

Fig. 2. Schema of the cluster partitions generated by neighbor balls.
The dashed red line denotes the bisector of the segment connecting the
centroids of two ball clusters.

clusters of C , respectively (i < k’). The ith annular area
of C , denoted ℜi

C , is defined ∀x ∈ C

ℜi
C =

{

1
2‖c− ci‖ < ‖x− c‖ ≤ 1

2‖c− ci+1‖, 0 < i < k′

1
2‖c− ci‖ < ‖x− c‖ ≤ r, i = k′

We now introduce a theorem regarding the relative
movement of points between these annuli.

Theorem 3. Let C be a queried cluster with centroid c, and let
|{NC}| = k′. Then the points in the ith annular area of
C can only be moved within the first i-closest neighbor
clusters and itself (i ≤ k’).

Proof. Let ci and ci+1 represent the centroids of the ith

and (i + 1)th closest neighbor clusters of C , respectively,
with i < k’. Let x be a point in the ith annular area of C .
We have:

‖c− x‖ ≤ 1
2 ‖c− ci+1‖

and 1
2 ‖c− ci+1‖ ≤ 1

2 ‖c− x‖+ 1
2 ‖x− ci+1‖,

⇒ ‖c− x‖ ≤ 1
2 ‖c− x‖+ 1

2 ‖x− ci+1‖,
⇒ 2‖c− x‖ ≤ ‖c− x‖+ ‖x− ci+1‖,
⇒ ‖c− x‖ ≤ ‖x− ci+1‖.

This tells us that points in the ith annular area are closer
to the centroid of the queried ball cluster than to the centroid
of its (i + 1)th-closest neighbor cluster. We can conclude
that the (i + 1)th-closest neighbor cluster of the queried
cluster is not a neighbor cluster of the ith annular area. Thus,
the points in the ith annular area can only participate in
assignment step within the queried ball cluster itself and its
first-i closest neighbor clusters. �

The stable area and active area partitioning are illustrat-
ed in Figure 2. Both C2 and C3 are neighbor clusters of
C1. C2 is the nearest neighbor cluster of C1, and the area
enclosed by the dashed green circle is the stable area. Points
in the stable area, such as x1, do not participate in the
assignment step. The 1st annular area is the area between
the dashed green circle and dashed blue circle. Points in
the 1st annular area, such as x2, may only move within C1

and C2 during the assignment step. The 2nd annular area is
the area between the dashed blue circle and the solid black
circle. Points in the 2nd annular area, such as x3, may move
within C1, C2 and C3 during the assignment step.

Fig. 3. Schema for avoiding direct centroid-centroid distance calculation-

s. The dashed red line represents the midpoint of dist(c
(t)
i

, c
(t)
j

). Cj is

not a neighbor cluster of Ci in the (t)-th iteration.

3.4 Reducing Centroid-Centroid Distance Computa-

tions between Iterations

As seen in Section 3.2, finding the neighbor clusters of
each ball cluster requires the computation of all centroid-
centroid distances, which costs O(k2) per iteration. For large
k clustering, this is a non-negligible cost. The purpose of cal-
culating centroid-centroid distances is to find the neighbor
clusters for the next iteration. If a non-neighbor relationship
in the next iteration can be discovered in advance using the
relationship of the ball clusters in the current iteration, then
directly calculating the centroid-centroid distances could
be avoided. We now develop a method to implement this
idea, attempting to find the non-neighbor relationships
in advance to avoid unnecessary calculation of centroid-
centroid distances. We first list some helpful notation, and
then present a theorem towards this end.

We let c
(t)
i represent the centroid of the cluster Ci in the

tth iteration, and we let δ(c
(t)
i ) = ‖c

(t)
i −c

(t−1)
i ‖ represent the

movement of the cluster centroid of Ci between the (t−1)th

iteration and the tth iteration. We also say that dist(c
(t)
i , c

(t)
j )

represents the distance between ci and cj in the tth iteration.

Theorem 4. Let Ci and Cj be clusters. If dist(c
(t−1)
i , c

(t−1)
j ) ≥

2r
(t)
i + δ(c

(t)
i ) + δ(c

(t)
j ), then Cj cannot be the neighbor

cluster of Ci in the current iteration and the calculation
of the centroid-centroid distance between them may be
elided.

Proof. With the shift in cluster centroids due to the centroid
update, we have:

dist(c
(t)
i , c

(t)
j ) ≥ dist(c

(t−1)
i , c

(t−1)
j )− δ(c

(t)
i )− δ(c

(t)
j ).

We assumed in the theorem statement that:
dist(c

(t−1)
i , c

(t−1)
j ) ≥ 2r

(t)
i + δ(c

(t)
i ) + δ(c

(t)
j ).

Combining these, we have:

dist(c
(t)
i , c

(t)
j ) ≥ 2r

(t)
i +δ(c

(t)
i )+δ(c

(t)
j )−δ(c

(t)
i )−δ(c

(t)
j ).

However, we can see that:
2r

(t)
i + δ(c

(t)
i ) + δ(c

(t)
j )− δ(c

(t)
i )− δ(c

(t)
j ) = 2r

(t)
i ,

⇒ dist(c
(t)
i , c

(t)
j ) ≥ 2r

(t)
i .

But from Definition 2 and Theorem 1, if 2ri ≤ dist(ci, cj)
then Cj cannot be the neighbor of Ci in the current iteration.
Therefore, the computation of the distance between ci and
cj can be avoided. �

We illustrate this theorem in Figure 3. We can see here
that Cj cannot be a neighbor cluster of Ci in the current
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iteration, because the distance between the two centroids in
the previous iteration is greater than the shift in centroids

added to twice the radius if Ci, that is, dist(c
(t−1)
i , c

(t−1)
j ) ≥

2r
(t)
i + δ(c

(t)
i ) + δ(c

(t)
j ).

3.5 Stable Ball Cluster in Subsequent Iterations

In the ball k-means algorithm, we use stable ball cluster to
refer to a ball cluster in which no points move into the
cluster and no points move out of the cluster in the current
iteration. Due to the fundamental characteristics of the k-
means algorithm, as the number of iterations increases, the
general trend is that more and more ball clusters become
stable ball clusters, that is, the points within them remain
unchanged. Based on the characteristics of the k-means
algorithm, we introduce a method of finding these stable
ball clusters. A flag corresponding to a ball cluster is used
to judge whether a ball cluster is stable. For a queried ball
cluster, if no points in the queried ball cluster move into the
neighbor clusters, and no points in any other ball cluster
move into the queried ball cluster in the current iteration,
then the flag is marked TRUE.

Theorem 5. Assume ball k-means is implemented on a given
dataset D. Let C be a queried ball cluster. If all the
neighbor ball clusters of C are stable in one iteration,
C will not take part in the distance calculations in the
next iteration.

Proof. The proof is straightforward. For a queried ball
cluster C , if all the neighbor ball clusters of C are stable,
then the partitioning of the stable area and annular areas
are the same as those in the previous iteration. Therefore, the
assignment step of the queried ball cluster can be avoided.
�

As the iterations progress during the execution of the
ball k-means algorithm, more and more ball clusters will
become stable, and the data points in the stable ball clusters
will not figure in to any distance calculations. Therefore, the
time complexity of ball k-means per iteration will become
sublinear, and ball k-means will execute each iteration faster
and faster. We present the ball k-means algorithm in detail
in Algorithm 1. The processes of reducing centroid-centroid
distance computations between iterations is shown in Algo-
rithm 2, and the process of filtering points by the stable and
annular areas is presented in Algorithm 3. We have made
all source codes available at https://github.com/syxiaa/
ball-k-means.

Algorithm 1 Ball k-means algorithm

Input: data X = x1, . . . , xn ⊂ Rd, the number of clusters k,
initial centroids c1, . . . , ck ∈ Rd;
Output: cluster centroids c1, . . . , ck

1: After one standard k-means iteration
2: Set t=1 //t is the number of the tth iteration, t = 1, 2, . . .

until the algorithm converges
3: flagi = FALSE(i = 1, . . . , k) //Determine whether the

center and radius need to be updated
4: repeat
5: for i = 1, . . . , k do
6: if flagi = FALSE then

7: c
(t)
i = mean(x|x ∈ Ci) // Update the centroids.

8: δ(c
(t)
i ) = ‖c

(t)
i − c

(t−1)
i ‖ //c

(0)
i represents the

initial centroid of ci
9: Calculate radius r

(t)
i via Equation (4)

10: end if
11: end for
12: if t = 1 then
13: Calculate the distances between any two centroids

dist(c
(t)
i , c

(t)
j )(i, j = 1, . . . , k) //Initialize the cen-

troid distance matrix
14: else
15: Update centroid distance matrix according to Alg.

2
16: end if
17: for i = 1, . . . , k do

18: Set {N
(t)
Ci

} = ∅ as the set of centroids of neighbor
clusters for Ci in the current iteration.

19: for j = 1, . . . , k do

20: if dist(c
(t)
i , c

(t)
j ) < 2r

(t)
i then

21: Append cj to {NCi
}

22: end if
23: end for
24: Reassign the points in cluster Ci according to Alg.3
25: end for
26: for i = 1, . . . , k do
27: if Ci is stable then
28: flagi = TRUE
29: else
30: flagi = FALSE
31: end if
32: end for
33: t=t+1
34: until cluster centroids stop changing

Algorithm 2 Reducing centroid-centroid distance computa-
tions between iterations

1: for i = 1, . . . , k do
2: for j = 1, . . . , k do

3: if dist(c
(t−1)
i , c

(t−1)
j ) ≥ 2r

(t)
i +δ(c

(t)
i )+δ(c

(t)
j ) then

4: dist(c
(t)
i , c

(t)
j ) = dist(c

(t−1)
i , c

(t−1)
j ) − δ(c

(t)
i ) −

δ(c
(t)
j )

5: else
6: dist(c

(t)
i , c

(t)
j ) = ‖c

(t)
i − c

(t)
j ‖

7: end if
8: end for
9: end for
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Algorithm 3 Filtering points by the stable and annular areas

1: if t 6= 1 and N
(t)
Ci

= N
(t−1)
Ci

and flagi = TRUE and all
flagj = TRUE(cj ∈ NCi

) then
2: continue //The points in Ci will not change during

the current iteration
3: else
4: Sort {NCi

} ordering from smallest to largest distance
5: for each point x in cluster Ci do

6: if dist(c
(t)
i , x) < 1

2min(dist(c
(t)
i , c

(t)
j ))(cj ∈ NCi

)
then

7: continue
8: else
9: if point x in hth annulus area (|NCi

| = k′, h =
1, . . . , k′) then

10: Calculate the distances from x to its first h
closest neighbor cluster centroids, and assign
x to the closest cluster

11: end if
12: end if
13: end for
14: end if

4 TIME COMPLEXITY ANALYSIS

Let n represent the number of data points in a data set.
The ball k-means is implemented on this data set. The ball
k-means algorithm consists of two main parts: searching
neighbor clusters and assigning points. To search for the
neighbor ball clusters of a queried cluster, we must compute
the distances to up to k − 1 cluster centroids, which costs
O(k2) in the worst case. In addition, as we showed in
Theorem 4 in Section 3.4, we do not need to compute
the distances to all of the other k − 1 cluster centroids
except the first iteration, but only to those cluster centroids
near to the queried cluster, i.e. those fulling the condition
in Theorem 4. This means that, in practice, searching the
neighbor clusters requires a time of less than O(k2) in some
iterations, especially in the later iterations of ball k-means.

We denote the average number of neighbor ball clusters
of a queried cluster and the number of data points in active
areas as m (1 ≤ m ≤ k) and n′ respectively. Computing the
distance from all data points in active areas to the centroids
of their neighbor clusters is equal to O(mn′). Besides, we
need to compute all distance of data points to the centroids
of their clusters, which will cost a time complexity of O(n).

In addition, as shown in Algorithm 1, we need to sort
the neighbor clusters for a queried ball cluster C , ordering
from the smallest to largest distance from C . Implementing
a quick sorting algorithm such as merge sort on the m
distances from the centroid of C to the centroids of its
m neighbor clusters will add time of O(m logm). Multi-
plying this by all k centroids results in a time complexity
of O(km logm) per iteration for sorting in the worst case
scenario. Because the neighbor clusters of a queried cluster
will have some stability between two close iterations, we
first search the neighbor clusters in the current iteration in
the order of the neighbor clusters of the last iteration, then
search any remaining neighbor clusters. In this way, the
distances of the neighbor clusters to the queried cluster are
almost ordered before the sort, with the ordering increasing

in later iterations as the clustering results become more
stable. Some preexisting order in the set to be ordered leads
to a smaller cost for many sorting algorithms. Therefore, the
time complexity of sorting the m distances from the centroid
of C to the centroids of its m neighbor clusters is generally
less than O(m logm), especially in the later iterations.

In summary, considering the worst cases, adding al-
l other obvious loops from the algorithm, we arrive at
a per-iteration total time complexity for ball k-means of
O(k2 + km logm + mn′ + n). In addition, as shown in
Theorem 5, during the execution of ball k-means, an in-
creasing number of ball clusters will become stable, and
the datapoints in these stable ball clusters will not figure
into any distance calculations. The time complexity of ball
k-means per iteration will drop to the sublinear level in later
iterations. Consequently, ball k-means is very efficient in
practice.

The per-iteration time complexities, setup costs, and
space costs in the worst case scenarios for our baseline
algorithms (Lloyd, Hamerly, Dualtree kd,Blacklist,Yinyang,
Ann and Exp) compared to our ball k-means algorithm
are shown in Table 1. As we can see, the standard k-
means costs O(kn) per iteration. The worst-case runtime
of Hamerly’s algorithm is O(k2 + kn), and the Yinyang and
Blacklist algorithms cost O(kn) in the worst case. Although
the Annulus and Exponion algorithms are efficient, they
have a high time complexity than others. The dualtree
algorithm has a competitive time cost similar to ours, but
its time complexity depends on some assumptions about
dataset-dependent constants—the imbalance of the dualtree
[7]. Performance can deteriorate significantly on balanced
trees, especially on high-dimensional datasets; experimental
results confirm this statement.

5 EVALUATION

5.1 Performance on Test Datasets in Contrast with

Known k-means Algorithms

We demonstrate the efficiency of ball k-means by eval-
uating the performance of our approach on a variety of
real-world datasets and comparing it with those of seven
other exact k-means algorithms. We choose the following as
our baselines: the two fastest known k-means algorithms,
Yinyang k-means [9] (improved version Syin-ns [22]) and
the Exponion algorithm(Exp-ns) [22], the fastest known k-
means for large k problems, dualtree kd [7], another three
fast k-means, blacklist [27], Hamerly’s algorithm [14], [22],
the Annulus algorithm(Ann) [10], and finally the standard
k-means algorithm. Hamerly’s algorithm is an improvement
on Elkan’s algorithm [11], eclipsing it in most cases [22], so
we have only considered Hamerly’s algorithm here. We also

TABLE 2
Dataset information

Data sets Size Dimension
Four-class 862 3
Svmguide1 7088 5
Codrna 59535 8
Kegg Network 65554 28
Epileptic 11500 179
Birch3 100000 2
Ijcnn 141690 22
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TABLE 1
Per-iteration time complexity and space cost(n: points; k: clusters; -: N/A)

Algorithm Setup Worst-case Space cost
Lloyd - O(kn) O(k + n)

Hamerly - O(k2 + kn) O(k + n)
Dualtree kd O(nlogn) O(klogk + n) O(k + n)

Blacklist O(nlogn) O(kn) O(klog(n) + n)
Yinyang O(k2 + kn) O(kn) O(kn)
Annulus O(k + n) O(klog(k) + nlog(k) + k2 + kn) O(k2 + kn)
Exponion - O(k2log(k) + nloglog(k) + k2 + kn) O(k2 + kn)

Ball k-means O(k2 + kn) O(k2 + km logm+mn′ + n) O(k2 + kn)

TABLE 3
Number of distance calculations and speedup over Lloyd

Data sets k iter Lloyd Hamerly Dualtree kd Blacklist Syin-ns Ann Exp-ns Ball k-means

Four-class
30 12 3.E+05 7.E+04(4.53) 3.E+04(10.73) 7.E+04(4.46) 5.E+04(6.09 ) 7.E+04(4.66) 6.E+04(5.20 ) 8.E+03(37.35 )
50 20 9.E+05 2.E+05(4.67) 7.E+04(12.73) 2.E+05(4.49) 9.E+04(9.74 ) 2.E+05(5.52) 1.E+05(7.59 ) 8.E+03(109.62 )
100 10 9.E+05 3.E+05(2.8) 7.E+04(13.20) 2.E+05(4.61) 1.E+05(7.74 ) 2.E+05(3.45) 2.E+05(4.46 ) 5.E+03(181.53)

Svmguide1
30 35 7.E+06 2.E+06(4.83) 6.E+05(11.93) 1.E+06(6.11) 8.E+05(9.36 ) 1.E+06(6.01) 1.E+06(5.96 ) 7.E+05(10.89)
50 28 1.E+07 3.E+06(3.18) 8.E+05(11.88) 1.E+06(6.89) 1.E+06(9.39 ) 2.E+06(4.67) 2.E+06(5.08 ) 6.E+05(16.23 )
100 45 3.E+07 9.E+06(3.37) 2.E+06(15.69) 4.E+06(7.38) 2.E+06(18.67 ) 5.E+06(5.99) 4.E+06(9.01 ) 1.E+06(32.11 )

Codrna
30 99 2.E+08 3.E+07(5.98) 1.E+07(14.83) 3.E+07(6.71) 1.E+07(15.22 ) 3.E+07(6.46) 3.E+07(6.36 ) 3.E+07(5.62 )
50 71 2.E+08 5.E+07(3.88) 2.E+07(13.66) 3.E+07(7.6) 2.E+07(12.99 ) 4.E+07(4.75) 4.E+07(5.08 ) 2.E+07(8.63 )
100 102 6.E+08 1.E+08(4.14) 4.E+07(17.07) 7.E+07(8.88) 2.E+07(24.35 ) 1.E+08(5.99) 8.E+07(8.02 ) 5.E+07(11.15 )

Kegg Network

30 78 2.E+08 3.E+07(4.81) 1.E+07(15.02) 2.E+07(8.42) 2.E+07(6.59 ) 3.E+07(5.89) 3.E+07(4.96 ) 3.E+07(5.20 )
50 77 3.E+08 5.E+07(4.85) 1.E+07(22.22) 2.E+07(11.43) 2.E+07(11.68 ) 3.E+07(8.25) 4.E+07(5.65 ) 3.E+07(9.36 )
100 64 4.E+08 9.E+07(4.54) 2.E+07(26.03) 3.E+07(12.72) 3.E+07(16.12 ) 5.E+07(8.9) 6.E+07(7.19 ) 2.E+07(18.49 )
300 39 8.E+08 2.E+08(3.64) 3.E+07(27.01) 6.E+07(12.68) 3.E+07(22.68 ) 9.E+07(8.21) 7.E+07(10.35 ) 2.E+07(50.02 )

Epileptic

30 51 2.E+07 8.E+06(2.3) 5.E+06(3.32) 1.E+07(1.25) 6.E+06(3.19 ) 4.E+06(4.95) 4.E+06(4.34 ) 5.E+06(3.79 )
50 29 2.E+07 1.E+07(1.28) 7.E+06(2.46) 1.E+07(1.43) 8.E+06(2.12 ) 5.E+06(3.51) 6.E+06(3.00 ) 4.E+06(4.64 )
100 50 6.E+07 4.E+07(1.54) 2.E+07(3.47) 4.E+07(1.6) 2.E+07(3.32 ) 1.E+07(5.91) 1.E+07(4.97 ) 1.E+07(5.48 )
300 57 2.E+08 1.E+08(1.61) 5.E+07(3.77) 1.E+08(1.64) 5.E+07(3.92 ) 3.E+07(6.79) 3.E+07(5.64 ) 3.E+07(7.07 )
750 43 4.E+08 3.E+08(1.42) 1.E+08(3.38) 2.E+08(1.6) 6.E+07(6.24 ) 7.E+07(5.68) 8.E+07(4.70 ) 4.E+07(9.96 )

Birch3

30 26 8.E+07 7.E+06(10.57) 4.E+05(183.49) 7.E+05(118.83) 6.E+06(13.92 ) 6.E+06(13.43) 5.E+06(15.13 ) 2.E+06(36.71 )
50 62 3.E+08 2.E+07(18.03) 1.E+06(243.11) 2.E+06(125.41) 1.E+07(32.45 ) 1.E+07(29.84) 8.E+06(39.50 ) 4.E+06(83.17 )
100 79 8.E+08 6.E+07(13.69) 3.E+06(248.74) 6.E+06(129.39) 2.E+07(43.99 ) 2.E+07(34.61) 2.E+07(51.78 ) 5.E+06(151.52 )
300 123 4.E+09 4.E+08(9.21) 1.E+07(329.86) 2.E+07(148.62) 4.E+07(82.61 ) 9.E+07(43.36) 5.E+07(67.83 ) 9.E+06(426.87 )
750 113 8.E+09 1.E+09(6.7) 2.E+07(478.12) 5.E+07(166.48) 9.E+07(92.94 ) 2.E+08(37.3) 2.E+08(54.69 ) 6.E+06(1493.32 )

Ijcnn

30 44 2.E+08 3.E+07(7.2) 1.E+07(16.50) 3.E+07(5.9) 1.E+07(13.27 ) 3.E+07(6.5) 2.E+07(10.14 ) 2.E+07(11.19 )
50 68 5.E+08 7.E+07(6.5) 3.E+07(17.47) 8.E+07(5.87) 3.E+07(18.45 ) 8.E+07(6.26) 4.E+07(11.84 ) 3.E+07(17.71 )
100 88 1.E+09 3.E+08(4.92) 7.E+07(17.76) 2.E+08(5.87) 4.E+07(29.27 ) 2.E+08(5.33) 8.E+07(15.11 ) 5.E+07(27.03 )
300 88 4.E+09 1.E+09(3.14) 2.E+08(19.19) 6.E+08(6.06) 8.E+07(49.21 ) 9.E+08(4.19) 2.E+08(21.46 ) 6.E+07(64.06 )
750 83 9.E+09 4.E+09(2.39) 4.E+08(20.46) 1.E+09(6.14) 2.E+08(57.35 ) 2.E+09(4.01) 3.E+08(25.61 ) 7.E+07(123.65 )

use improved and accelerated versions of the Yinyang in
[22] and Annulus algorithms [10] in our experiments. The
terminal condition that we stop the k-means iterations is
that each cluster centroids stop changing.

We use the same initial centroid seeds for all algorithms;
because the algorithms are exact, they all converge to the
same clustering result after the same number of iterations.
We generated the centroid seeds using the method proposed
by Bachem et al. [5]. We implemented all of the algorithms in
the C++ programming language on a laptop PC with a Eight
core Intel CPU I9-9900 with 4GB DRAM. We evaluated them
for a variety of k values on seven real-world datasets, six of
which are from the UCI Machine Learning Repository [3],
and the last of which, Birch3, is a commonly used data set
[13]. We provide pertinent information about the datasets
in Table 2. In the Yinyang algorithm, we set t = k/10,
where t is the number of lower bounds per point; this led to
the optimal performance [9]. We show experimental results
regarding the number of distance calculations and runtime
calculations in Tables 3-6. We mark the fastest algorithm on
each data set in boldface in each of these tables.

Tables 3 and 4 show that our ball k-means algorithm

has the smallest number of distance calculations and the
highest efficiency in most cases. Even in some cases where
the number of distance calculations ball k-means performs
is greater than that of other algorithms, ball k-means is
still more efficient than other algorithms. This is because
ball k-means can exactly and adaptively find a tight set
with no bounds: in contrast, in other accelerated k-means
algorithms, including the Hamerly, Yinyang, Annulus, and
Exponion algorithms, each sample requires the computation
of upper and lower bounds. These bounds will cost more
computations than the direct distance calculations in ball k-
means, but will not be counted in the distance calculation
metric. Another contributing factor, as described in Section
4, is that the time complexity of later iterations in ball k-
means is lower than O(n).

Tables 5 and 6 show that the advantage of ball k-means
is more obvious in large-k problems. This is because the per-
centage of neighbor ball clusters for a queried ball cluster,
out of the overall number of ball clusters, is very likely to be
smaller when k increases. This indicates that ball k-means is
more efficient than other exact k-means in large-k problems.

Hamerly’s algorithm did not perform well on high-
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TABLE 4
Speedup over Lloyd and running time ((ms)/iteration)

Data sets k iter Lloyd Hamerly Dualtree kd blacklist Syin-ns Ann Exp-ns Ball k-means

Four-class
30 12 0.31 0.29(1.08) 0.3(1.06) 0.2(1.6) 0.08(3.76) 0.08(3.76) 0.08(3.76) 0.03(12.23)

50 20 0.34 0.29(1.08) 0.34(1.02) 0.22(1.58) 0.05(6.89) 0.05(6.89) 0.05(6.89) 0.03(12.64)

100 10 0.7 0.19(1.83) 0.59(1.19) 0.43(1.63) 0.1(6.97) 0.1(6.97) 0.2(3.49) 0.07(10.3)

svmguide1
30 35 1.84 1.76(1.09) 1.92(0.96) 1.07(1.72) 0.31(5.86) 0.37(4.96) 0.4(4.6) 0.24(7.57)

50 28 3.05 0.88(2.08) 2.51(1.21) 1.57(1.94) 0.5(6.09) 0.75(4.06) 0.64(4.74) 0.3(10.05)

100 45 4.72 1.46(2.09) 3.53(1.33) 2.31(2.04) 0.64(7.32) 1.13(4.16) 0.98(4.83) 0.36(12.97)

Codrna
30 99 17.63 6.97(1.92) 14.32(1.23) 8.88(1.98) 2.2(8) 3.77(4.68) 3.45(5.1) 3.15(5.59)
50 71 27.61 6.24(2.83) 20.62(1.34) 13.8(2) 3.31(8.34) 7.59(3.64) 6.38(4.33) 3.42(8.08)
100 102 50.08 11.34(2.44) 30.82(1.62) 19.15(2.62) 4.24(11.82) 11.42(4.38) 7.92(6.32) 4.19(11.96)

Kegg Network

30 78 42.77 49.9(2.83) 29.92(1.43) 20.85(2.05) 8.56(4.99) 9.73(4.4) 10.46(4.09) 12.21(3.5)
50 77 64.1 17.37(2.46) 33.49(1.91) 23.77(2.7) 8.43(7.6) 11.52(5.56) 14.99(4.28) 11.77(5.44)
100 64 122.58 22.17(2.89) 49.78(2.46) 35.67(3.44) 12.67(9.67) 19.94(6.15) 23.05(5.32) 11.3(10.85)

300 39 343.45 37.51(3.27) 120.21(2.86) 92.01(3.73) 26.49(12.97) 61.05(5.63) 48.59(7.07) 12.14(28.29)

Epileptic

30 51 41.57 169.53(3.3) 43.62(0.95) 50.39(0.83) 18.78(2.21) 12.47(3.33) 13.73(3.03) 15.58(2.67)
50 29 67.83 23.21(1.79) 82.17(0.83) 74.91(0.91) 46.1(1.47) 28.45(2.38) 32.97(2.06) 17.38(3.9)

100 50 113.31 56.06(1.21) 106.75(1.06) 108.47(1.04) 59.12(1.92) 33.84(3.35) 39.78(2.85) 26.37(4.3)

300 57 318.96 76.83(1.47) 289.75(1.1) 288.4(1.11) 149.39(2.14) 86.67(3.68) 104.12(3.06) 47.33(6.74)

750 43 780.22 201.45(1.58) 874.18(0.89) 733.46(1.06) 239.07(3.26) 258(3.02) 316.44(2.47) 98.31(7.94)

Birch

30 26 20.46 694.44(1.51) 5.52(3.7) 4.03(5.08) 3.38(6.04) 2.35(8.72) 2.54(8.06) 1.18(17.3)

50 62 29.79 5.39(3.79) 4.44(6.71) 2.64(11.29) 2.74(10.86) 1.92(15.52) 1.31(22.8) 0.77(38.66)

100 79 55.93 4.22(7.05) 5.87(9.52) 4.52(12.38) 3.3(16.93) 3(18.64) 2.09(26.78) 0.81(69.17)

300 123 160.66 6.85(8.16) 8.88(18.08) 14.19(11.32) 6.64(24.19) 6.37(25.24) 4.04(39.76) 1.12(143.39)

750 113 399.54 21.19(7.58) 14.75(27.09) 40.07(9.97) 17.02(23.48) 16.32(24.48) 12.67(31.53) 2.77(144.3)

Ijcnn

30 44 80.22 84.4(6.37) 64.36(1.25) 47.93(1.67) 8.8(9.12) 14.84(5.41) 9.8(8.19) 9.82(8.17)
50 68 112.43 31.35(2.56) 74.44(1.51) 55.04(2.04) 10.49(10.72) 24.47(4.59) 12.9(8.72) 14.94(7.52)
100 88 210.08 32.91(3.42) 117.62(1.79) 94.09(2.23) 14.06(14.95) 54.2(3.88) 19.81(10.61) 21.84(9.62)
300 88 591.96 56.76(3.7) 284.1(2.08) 241.98(2.45) 26.35(22.46) 197.08(3) 40.7(14.54) 22.91(25.84)

750 83 1468.42 212.4(2.79) 647.72(2.27) 584.32(2.51) 62.41(23.53) 508.75(2.89) 87.01(16.88) 25.97(56.55)

TABLE 5
Distance calculations under large k

Data sets k iter Lloyd Hamerly Dualtree kd Blacklist Syin-ns Ann Exp-ns Ball k-means

Four-class 300 5 1.E+06 6.E+05(2.01) 8.E+04(17.21) 3.E+05(4.55) 3.E+05(4.78 ) 7.E+05(1.89) 6.E+05(2.07 ) 2.E+03(726.84)

Svmguide1 300 28 6.E+07 3.E+07(2.33) 3.E+06(17.39) 8.E+06(7.56) 3.E+06(18.91 ) 1.E+07(4.7) 7.E+06(8.59 ) 6.E+05(97.19)

Codrna 300 142 3.E+09 8.E+08(3.27) 1.E+08(18.92) 3.E+08(9.81) 5.E+07(54.65 ) 4.E+08(5.96) 2.E+08(10.91 ) 9.E+07(26.92)

Kegg Network 500 44 1.E+09 4.E+08(3.74) 5.E+07(27.87) 1.E+08(12.53) 4.E+07(32.20 ) 2.E+08(8.75) 1.E+08(11.04 ) 2.E+07(86.54 )

Epileptic 1000 38 4.E+08 3.E+08(1.54) 1.E+08(3.29) 3.E+08(1.52) 6.E+07(6.76 ) 8.E+07(5.17) 1.E+08(4.32 ) 4.E+07(10.51 )

Birch 1000 131 1.E+10 2.E+09(7.03) 2.E+07(549.89) 7.E+07(176.04) 1.E+08(111.32 ) 3.E+08(39.22) 2.E+08(52.58 ) 5.E+06(2478.51)

Ijcnn 1000 84 1.E+10 5.E+09(2.31) 5.E+08(22.04) 2.E+09(6.19) 2.E+08(60.63 ) 3.E+09(4.2) 4.E+08(27.30 ) 8.E+07(157.45)

TABLE 6
Speedup over Lloyd and running time ((ms)/iteration)under large k

Data sets k iter Lloyd Hamerly Dualtree kd Blacklist Syin-ns Ann Exp-ns Ball k-kmeans

Four-class 300 5 1.93 1.76(1.09) 1.25(1.54) 1.12(1.72) 0.6(3.21) 1(1.93) 1.6(1.2) 0.32(6.09)

svmguide1 300 28 13.38 6.97(1.92) 8.35(1.6) 6.37(2.1) 1.86(7.2) 4.14(3.23) 3.07(4.36) 0.78(17.12)

Codrna 300 142 141 49.9(2.83) 72.52(1.94) 49.18(2.87) 7.93(17.78) 32.52(4.34) 16.03(8.8) 7.23(19.5)

Kegg Network 500 44 559.5 169.53(3.3) 183.37(3.05) 137.28(4.08) 32.84(17.04) 93.98(5.95) 75.45(7.42) 14.88(37.59)

Epileptic 1000 38 1047.16 694.44(1.51) 1267.11(0.83) 1030.2(1.02) 292.55(3.58) 376.87(2.78) 457.68(2.29) 122.85(8.52)

Birch 1000 131 537.84 84.4(6.37) 17.13(31.39) 54.72(9.83) 20.46(26.29) 21.3(25.25) 17.5(30.73) 4.34(123.91)

Ijcnn 1000 84 1943.4 909.74(2.14) 808.44(2.4) 783.93(2.48) 78.24(24.84) 644.67(3.01) 109.15(17.8) 33.04(58.83)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

dimensional datasets, as expected [14]. The performance of
tree-based approaches suffers in high dimensions because
the bounds become looser as the data dimension increases
[7]. This fact resulted in the dualtree kd and blacklist algo-
rithms performing very well on low-dimensional datasets,
but worst on those with relatively high dimensionality, such
as Epileptic. However, all exact k-means algorithms suffer to
some degree from the curse of dimensionality on extremely
high-dimensional datasets, which lead to poor performance
from exact k-means algorithms [20], [36]. In contrast to some
approximate k-means algorithms, exact k-means algorithms
are seldom directly used on high-dimensional datasets. Data
distribution greatly affects the number of neighbors each
ball cluster has in ball k-means, however, so for complete-
ness we provide experimental results and analysis on high-
dimensional datasets.

Fig. 4. The number of distance calculations for ball k-means and base-
lines on the high-dimensional dataset RNA-Seq (20531 dimensions).

Fig. 5. Running time for ball k-means and baselines on the high-
dimensional dataset RNA-Seq (20531 dimensions).

5.2 The Influence of Dimension

Figure 4 shows the number of distance calculations and Fig-
ure 5 shows the running time for the compared algorithms
on the high-dimensional dataset RNA-Seq from the UCI Ma-
chine Learning Repository [3]. The dataset has a dimension

of 20531. We observe that the number of distance calcu-
lations for Yinyang is smaller than that for ball k-means.
High dimensionality can make the difference between the
distance to the nearest and farthest points from a centroid
small, resulting in a large number of neighbor ball clusters
for a queried ball cluster and consequent increase in the
number of distance calculations. We see in Figure 5 that the
advantages in running time of ball k-means in comparison
with other algorithms is also diminished. To investigate the
impact of dimension on the ball k-means algorithm in more
depth, we define the concept of the neighbor ball ratio as
follows:

Definition 5. Let ball k-means be implemented on a given
data set D. Let k, t, and K represent the number of clus-
ters, the number of iterations, and the total number of
neighbor balls in ball k-means, respectively. The neighbor
ball ratio denotes the percentage of the average number
of neighbor balls of each ball cluster in all of the ball
clusters, expressed mathematically as K

tk2 .

Figure 6 shows the neighbor ball ratio over datasets with 2
to 2000 dimensions; we see that the ratio increases towards
1, resulting in a concomitant decrease in the efficiency of
ball k-means. We also point out the interesting interaction
between dimension and k value: the influence of dimension
is moderated by the increase in k value. When k=100, the
neighbor ball ratio does not exceed 50% for all dimensions.
This result also demonstrates the advantages of ball k-
means in large-k problems, consistent with earlier results.

Fig. 6. The influence of dimension on the neighbor ball ratio. The data
sets were generated from RNA-Seq by selecting the specified number
of random dimensions.

5.3 The Influence of Uniform Distribution

The problems of high dimensionality extend to uniform
distribution—indeed, the curse of dimensionality is the u-
niform nature of the distances obtained in Euclidean space.
The high number of neighbors for each ball cluster present
in high dimensional space may also be present in uniform
space, and for the same reason [30]. We thus also show the
behavior of the neighbor ball ratio on uniform data (the
size of the uniform data is 200 thousand). Figure 7(a) shows
the neighbor ball ratio on an artificially generated perfectly
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(a) (b) (c)

Fig. 7. The influence of data distribution on the neighbor ball ratio. (a) The data under uniform distribution (artifical dataset). (b) A cut of the UCI
MLR dataset Epileptic. (c) A cut of the UCI MLR dataset kegg.

uniform dataset. The maximum dimension is only a very
small number, 10, but already the neighbor ball ratio is
close to 1, except for extremely high k values. This indicates
that the number of neighbor ball clusters is close to the k
value for reasonable k values, and therefore ball k-means
is approaching Lloyd k-means and cannot accelerate it very
much. In contrast, in Figure 7(b) and Figure 7(c), the data
is non-uniformly distributed and the neighbor ball ratio
is always smaller than 0.5, even for low k. This indicates
that ball k-means will perform much better on non-uniform
datasets than those that are uniformly distributed. Ball k-
means is an exact k-means algorithm, so it cannot overcome
this short-coming. It is better suited for data with spherical
or convex internal structure.

6 CONCLUSIONS AND FUTURE WORK

We have presented ball k-means, a simple and fast method
of k-means clustering. Ball k-means is exact, has no bounds,
and accelerates the standard k-means algorithm through
searching neighbor clusters and partitioning queried clus-
ters into stable and active areas. The algorithm is simple
and easy to implement. Experimental results show that ball
k-means outperforms its competitors on most datasets and
for most k values.

Although ball k-means consistently outstrips its com-
petitor algorithms in most cases, there is still interesting
work ahead. By design, the algorithm is a good candidate
for parallelization. This may help mitigate performance on
some datasets with high numbers of distance computations.
Another line of inquiry is to investigate those methods used
in other clustering algorithms that perform well on high-
dimensional datasets, and to combine them with ball k-
means to improve performance. While already fast, we want
to push ball k-means to the limit of possibility.
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