Generating Furry Face Art from Sketches using a GAN (Shitpost for 6.869,
December 2019)

Andrew Yu

acyulmit.edu

Abstract

I generate furry face artwork from color sketches. The
sketches are procedurally generated from a data set of furry
artwork. Sketches are translated back into artwork via a
Generative Adversarial Network. I implement the GAN us-
ing a U-Net autoencoder with encoder-decoder skip con-
nections and experiment with adding adaptive instance nor-
malization into upsampling layers. The results show effec-
tive mapping of training and dev set sketches back to their
input style. However, the model does not perform as effec-
tively on novel user sketches and often fails to add stochas-
tic textures like hair details.

1. Introduction

While there are highly successful prior works on gener-
ating animu waifus [[15} 5], there have been no successful
prior efforts on generating furries. This problem appears
more difficult, as there is greater variation in the “structure”
and “style” of furry content relative to animu (Figure [I). I
refer to “structure” as the global features of a scene, such
as shapes, geometry and colors. I refer to “style” as how
features are filled, such as the shading and fine details. In
this metric, animu and furry would refer to a specific mix of
structure and style.

When generating artwork, we want control of both struc-
ture and style. Generating from user inputted sketches pro-
vides control over the global structure and content. Style
can either be deduced from an input image or tuned from a
generative model. For this work I generate furry faces from
rough line and color sketches using a generative adversarial
network (GAN) to get a specific stylistic output [4} §]].

GAN:Ss are increasingly powerful at creating both photo-
realistic and highly varied human faces, objects, and envi-
ronments [4} [1}[10L [11]]. However their problem from a user
perspective is that the input is a poorly understood and ar-
bitrary “latent space”. Typically GAN inputs are a random
noise vector sampled from this latent space.

Replacing the latent space with user inputted images
turns the problem into image translation, which is a mix of

Western
A

Eastern

Figure 1: Animu and furry subspaces of artwork projected
on Eastern-Western style and Human-Animal content axes.
Dashed box indicates the style-content subspace of the data
set used in this work.

generation and style transfer. Traditional image style trans-
fer infers the style of one image then transfers it onto the
content inferred in another image [3, [7]. For image trans-
lation, the model is simply a map between input and out-
put spaces. However, this makes it challenging to generate
multiple, varied style outputs from the same input [8]]. This
work explores different techniques in upsampling layers to
tune image generation.

2. Data Set

I scraped 17K raw images from the image gallery
sitele621 .net/from a curated subset of artists with a con-
sistent style as indicated in Figure [T} From these, I hand-
selected and labeled faces to form a 4K image data set for
training.

2.1. Sketch Generation

The art “sketch” for the GAN input is to consist of simple
black outlines with flat color fills. I choose this representa-

e621.net

Downsample
(Lanczos)

WinZwW I&

% waifu2x

(Win,Hin,€) xlﬂly
Win<w

PhotoSketch

il @%

Blur Posterize

N

Figure 2: Sketch generation pipeline. PhotoSketch [12] and
waifu2x [14] are neural net models.

tion because it’s a common flow for artists to first segment
the structure of their scene with lines, then fill with basic
colors. Figure [2] depicts the procedure to generate sketches
from raw artwork.

The input is a square crop with size (wjy, hin, c) Where
Wi, = h;y, are dimensions and c are color channels. If the
crop is not equal to the target model input size (w, h, c),
different techniques are used for downscaling and upscal-
ing. Downscaling uses a conventional Lanczos downsam-
pler. For upscaling, I use waifu2x, a super-resolution neural
network trained for animu-style art [[14]. For most cartoon
art, waifu2x is far better at preserving stylistic content and
avoiding artifacts of conventional upsampling techniques
(bilinear, bicubic).

To generate a simplified color structure of the input im-
age, I apply a blur followed by a mean shift posterization
filter. The blur removes the solid black outlines common in
cartoon-style artwork. A naive posterization is to uniformly
quantize the color space and map colors to their nearest
threshold level. The problem with this technique is that it
mismatches the sketch color with the ground truth color.
A better technique is mean shift filtering, which maps col-
ors to local cluster averages [2]]. This provides much closer
mapping to the ground truth color.

Black outlines are generated using a pre-trained Photo-
Sketch, a GAN that generates sketch-style black outlines
from an input image [[12]. While PhotoSketch was trained
on photos, it works sufficiently well on artwork.

I finish generating the sketch by overlaying the outlines
on top of the simplified color structure.

3. Network Architecture

The baseline generator architecture is a U-Net (Figure
3) which uses skip connections between autoencoder lay-
ers. The overall baseline image translation GAN architec-
ture is a pix2pix architecture with 512 autoencoder latent
space features, which I will simply refer to as “pix2pix”
[9]]. T use the standard conditional GAN loss functions with

Upsample

(a) (b)

Figure 3: Network architectures. (a) Conventional U-Net
with skips. (b) U-Net with AdaIN upsampling blocks and
skips.

| Method
pix2pix
style-pix2pix

Parameters\ FID ‘

57.2M 122.3
49.1M 133.2

Table 1: Fréchet Inception Distance (FID, lower is better)
of two models. Note this metric is weak because the data
set and output samples size are small.

L1 regularization [9],

ﬁcGAN(G, D) = Ex,y [10g D(.r, y)] + (D)
E, . [log(1 — D(z,G(x, 2)))]
L11(G) =Eay.: [lly — Gz, 2)[|1] 2

for generator GG, discriminator D, real image x, input sketch
z, and generated y. The total loss is £ = L.gan + A1
where) is the weight of L1 regularization.

Karras et al. adopt Adaptive Instance Normalization
(AdalN) in their GAN upsampling layers [11]], a technique
first used in feed-forward style transfer by Huang et al. [7]]
AdalN is defined as:

Xi — p(xi)

o(x;)

This is an instance normalization but the affine parameters
v = (¥s,¥») are mapped from the latent space through a
series of fully connected layers. This is supposed to let the
input modulate the “style” of each feature activation vector

AdaIN(x;,y) = ysi + Yob,i 3)

+noise

Upsampler Modifications J

+AdaIN +conv/AdalN
T — { 4

-blur

()

Figure 4: Effects of adding in different upsampler techniques in early training stages (~0.04M images). (a) is a U-Net
baseline. (b)—(f) sequentially add new techniques to the upsampler. Images are from the dev set.

x; through these AdaIN blocks [[7]. AdalN replaces batch
norm, pixel norm, or pure instance norm.

As shown in Figure [3] I replace the normal U-Net up-
sampling blocks with those used in StyleGAN. The pix2pix
model uses batch norms while these new layers use AdalN
instead. The ‘A’ blocks in Figure 3 are fully connected lay-
ers that generate separate (y,y) for each AdaIN.

I continue to use skips which concatenate downsampler
activations with the upsampled activations. I find that the
skips help seed the output with global color and structure
based on the input image. This creates the global output
image structure without using multi-scale approaches like
progressively growing the generated output [[10].

Additionally, the upsampling uses bilinear image re-
sizing instead of a transposed convolution. I apply anti-
aliasing blurs to feature activations after concatenating the
skip connection inputs [[16]. T inject noise into the post-
concatenated features with a learned weighting ‘B’. Ac-
cording to Karras et al. the noise improves finely detailed
stochastic texture generation .

I refer to this architecture as “style-pix2pix.” This ar-
chitecture is quite similar to that used by Huang et al. in
[8]. However, they use a separate downsampling network
to feed the fully connected layers that map to AdaIN pa-
rameters, whereas I re-use the same downsampler and pull
features from one of the middle downsampler layers.

Both pix2pix and style-pix2pix use the same convolu-
tional Markovian discriminator described in [9], which de-
tects if local patches are real or fake.

Table [T] gives the number of trainable model parameters

and the commonly used Fréchet Inception Distance (FID)
metric of the generated results [6] after training for ~0.8M
images. However, FID is a poor metric on small few thou-
sand image sample sizes due to variance in the data set. Rel-
ative values show the style-pix2pix is performing slightly
worse, which will be discussed in Section [4]

3.1. Training Details

The total data set contains ~4.2K images, which are
shuffled into a ~4.1K image train set and ~100 image dev
set. I apply random horizontal left-right image flips during
training. Test set cases are personal hand drawn images. All
image inputs and outputs are sized 256x256.

I implement both models in Figure [3] using Tensorflow
2.0. T use a minibatch size of 16. Both the generator and
discriminator use an Adam optimizer with learning rate of
0.0002, g1 = 0.6, and B = 0.99. Layer weights are all
initialized using a random normal N'(0,1). I did not use a
training scheduler. I train using a Nvidia GTX 1060.

4. Results and Discussion

To diagnose how the output is being generated, Figure]
shows the effects of different upsampler techniques during
the early stages of training (after ~0.04M images). Blurring
upsampled images separately in each activation channel (b)
creates smoother texture but heavily distorts lines. Addi-
tive noise (c) is initialized with 0 weight (i.e. no noise), so
the impact is not seen well in early training. Adding the
first AdaIN (d) corrects the distortions from blurred acti-

Total Training Images
_—

input ~0.08M ~0.4M ~0.8M

N
pix2pix
9
style-pix2pix

Figure 5: Generation versus total training images.

input pix2pix stylg—pLXZpix

Figure 6: Results on dev and test examples after training for
~0.8M images

vations and appears to tune the colors generated. Adding
the second conv/AdalN block (f) appears to add more tex-
ture variation. Removing the activation blurring in (b) but
keeping the other elements in (c)-(e) appears to cause some
additional rough patches (f).

I proceeded to train style-pix2pix model with techniques
in Figure @p. Figure [5] compares the generation over
~0.8M training images between baseline pix2pix and style-
pix2pix. The style-pix2pix appears to initially generate
strong texture noisiness as seen in the hair, but eventually
loses this. By the end of training the textures are highly
smoothed. In contrast, the pix2pix is able to add in some

input style-pix2pix input piX2pix

pix2pix

style-pix2pix

Figure 7: Failure cases, typically certain colors and samples
with little color variation. Solid color inputs on the right
show artifacts.

Train Set Generator Loss (Normalized) 14 Train Set Discriminator Loss

1.0

pix2pix
0.9 style-pix2pix

adjusted L1
loss weight 0.6

[a.u]

style-pix2pix

0.7 1

0.6 pix2pix

T T T T 0.0 T T T T
00M 02M 04M 06M 08M 1.0M 0.0M 02M 04M 06M 0.8M 1.0M
Images Images

Figure 8: Training loss, showing pix2pix mode collapse.

new texture as seen in the hair. However, both results are
still relatively smooth. A better discriminator or loss func-
tion could help improve texture generation.

Figure [6] shows results after ~0.8M training images on
dev and test set examples. As shown before, the style-
pix2pix resulted in smoother texture outputs. Two issues
with test set results are lack of texture generation and the
model appears quite sensitive to thickness of the black lines.
This is likely because PhotoSketch outputs the same thick-
ness black lines for each image, and the model may overfit
on these exact lines. As can be seen in the test set exam-
ples in Figure [6] using slightly thicker black lines causes
thicker and often rougher outlines in the output. And the
blue wolf’s mouth disappeared. So in the future it may be
better to simply train on only colors and let the model infer
outlines.

4.1. Failure Modes

The worst dev set results are shown in Figure [7] Cer-
tain colors (especially darker tones) and images with little
color variation tend to produce garbage results, especially
patches of sharp, bright colors. Testing with a solid color
input shows texture artifacts at the edges. The style-pix2pix

model did not generate these patches. Instead style-pix2pix
suffers from overly smooth textures.

Figure [§] shows the training loss for both models. The
sharp decrease in discriminator loss for the pix2pix model
suggests it is suffering from mode collapse and overfitting
on certain features. The style-pix2pix model did not col-
lapse, but instead had difficulty fitting to the output, with
the loss functions simply oscillating.

This work only tunes the generator and shows that rea-
sonably varied outputs can be generated. However, the fail-
ure cases, overly smooth colors, and lack of variance sug-
gest the loss function and discriminator need to be greatly
improved to get results with proper texture generation [13]].

5. Conclusion

I have introduced a new high quality hand-labelled 4K
image data set for furry face artwork, developed a pipeline
for sketch generation from artwork, and implemented a
GAN model for generating art from sketches. The conven-
tional pix2pix GAN results are promising but suffer from
the usual problems of mode collapse, difficult training, and
lack of texture variation. A modified GAN with AdaIN
blocks in the upsampler did not suffer from mode collapse
but instead had issues converging and the resulting textures
are too smooth. A selection of dev set results for both mod-
els are included in Figure [O]and [I0]at the end of this paper.

A major issue with this current sketch approach is that
the results tend to overfit on the sketch’s input black lines.
As a result, for the output to look good, the input should
already look good. An improvement may be to just remove
the black lines in the sketches and generate based solely
on color, letting the model infer the outlines. Further ex-
periments in decoupling the output could include removing
the skip connections or adding a separate latent space input
noise vector for generating AdalN style parameters.

6. Resources

The figures and code used for image processing and neu-
ral net training are included in supplementary materials file
acyu.zip. The code is setup with local paths and requires
external third party software (waifu2x and PhotoSketch), so
it cannot be easily run and is included only as reference.

References

[1] A. Brock, J. Donahue, and K. Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. In /CLR,
2019.

[2] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):603-619, May
2002.

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]
(14]

[15]

[16]

L. A. Gatys, A. S. Ecker, and M. Bethge. Image Style Trans-
fer Using Convolutional Neural Networks. In CVPR, pages
2414-2423, 2016.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672-2680, 2014.
gwern. Making Anime Faces with StyleGAN, 2019.
https://www.gwern.net/Faces.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. GANs trained by a two time-scale update rule
converge to a local Nash equilibrium. In NIPS, pages 6627—
6638, 2017.

X. Huang and S. Belongie. Arbitrary Style Transfer in Real-
Time with Adaptive Instance Normalization. In ICCV, pages
1510-1519, 2017.

X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal
Unsupervised Image-to-Image Translation. In ECCV, vol-
ume 11207, pages 179-196. Springer International Publish-
ing, 2018.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-
Image Translation with Conditional Adversarial Networks.
In CVPR, pages 5967-5976, 2017.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
Growing of GANs for Improved Quality, Stability, and Vari-
ation. In /CLR, 2018.

T. Karras, S. Laine, and T. Aila. A Style-Based Generator
Architecture for Generative Adversarial Networks. In CVPR,
2019.

M. Li, Z. Lin, R. Mech, E. Yumer, and D. Ramanan. Photo-
Sketching: Inferring Contour Drawings From Images. In
WACYV, pages 1403-1412, 2019.

L. Mescheder, A. Geiger, and S. Nowozin. Which Training
Methods for GANs do actually Converge? In /ICML, 2018.
nagadomi. waifu2x, 2018.
https://github.com/nagadomi/waifu2x.

M. Sugimura. Fgo StyleGAN: This Heroic Spirit Doesn’t
Exist. https://towardsdatascience.com/fgo-stylegan-this-
heroic-spirit-doesnt-exist-23d62tbb680e.

R. Zhang. Making Convolutional Networks Shift-Invariant
Again. In ICML, 2019.

Figure 9: Dev set results using pix2pix after ~0.8M training images

~0.8M training images

Figure 10: Dev set results using style-pix2pix after

