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Image colorization, as an essential problem in computer vision (CV), has attracted an increasing amount
of researchers attention in recent years, especially deep learning-based image colorization techniques(DLIC).
Generally, most recent image colorization methods can be regarded as knowledge-based systems because they
are usually trained by big datasets. Unlike the existing reviews, this paper adopts a unique deep learning-based
perspective to review the latest progress in image colorization techniques systematically and comprehensively.
In this paper, a comprehensive review of recent DLIC approaches from algorithm classification to existing
challenges is provided to facilitate researchers’ in-depth understanding of DLIC. In particular, we review
DLIC algorithms from various perspectives, including color space, network structure, loss function, level
of automation, and application fields. Furthermore, other important issues are discussed, such as publicly
available benchmark datasets and performance evaluation metrics. Finally, we discuss several open issues of
image colorization and outline future research directions. This survey can serve as a reference for researchers
in image colorization and related fields.
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Transformer

1. Introduction yellow, or other colors. In general, image colorization is a challenging
and interesting research problem.

In recent years, the powerful feature extraction ability of deep
learning in image processing has shown great application potential
with rapid development. Particularly, the first deep learning-based
image colorization (DLIC) method was proposed in 2015 (Cheng et al.,
2015), DLIC algorithms have rapidly shown superior performance over
conventional solutions and are constantly improving to the state of
the art. Various deep learning techniques have been applied to image
colorization tasks, including conventional convolutional neural net-
works (CNNs) (Larsson et al., 2016; He et al., 2018; Zhang* et al.,
2017; Su et al.,, 2020; Zhang et al.,, 2016; Dias et al., 2020; Dong
et al., 2022; Xuan et al., 2021; Iizuka et al., 2016; Dabas et al., 2020;
Chybicki et al., 2019; Zhang et al., 2021a; Khanolkar et al., 2021;

The art challenges the technology, and the technology inspires the art.
— John Lasseter

Image colorization is the process of assigning RGB color value to
each pixel of a grayscale image to obtain colorized images, which is
a prospective image processing technique in computer vision (CV).
Colorized images have a better visual experience and are widely used in
image recognition (Cordonnier et al., 2021; Chen et al., 2022; Wu et al.,
2021a), object detection (Tang et al., 2022; Dai et al., 2021), and other
fields (Deng et al., 2021; Jin et al., 2021c; Valanarasu et al., 2021).
Therefore, image colorization methods have been extensively studied,
including but not limited to animation scene design (Ci et al., 2018; Zou
et al., 2019; Zhang* et al., 2018; Yoo et al., 2019; Ramassamy et al.,
2019), historical photograph restoration (Larsson et al., 2016; He et al.,

2018; Zhang* et al., 2017; Su et al., 2020; Zhang et al., 2016), infrared
image colorization (Kuang et al., 2020; Suarez and Sappa, 2017; Suarez
et al., 2018; Xu et al., 2021; Dong et al., 2018; Zhong et al., 2020),
remote sensing image processing (Ji et al., 2020; Gravey et al., 2019;
Dias et al., 2020; Song et al., 2017), and so on (Dong et al., 2022; Xuan
et al., 2021; Bian et al., 2021; Liang et al., 2021; Morra et al., 2021; Yu
et al., 2020; Guo et al., 2021; Mathur et al., 2021). Image colorization
is a multimodal problem, that is, the same target object has different
colorization schemes. For example, a pair of shoes can be white, red,

Endo et al., 2021; Xiao et al.,, 2019b; An et al., 2020; Varga and
Sziranyi, 2016; Larsson et al., 2017a; M.H. Baig, 2017b), generative
adversarial networks (GANs) (Zou et al., 2019; Zhang* et al., 2018;
Kuang et al., 2020; Chen and Hays, 2018; Zhang et al., 2019; Hensman
and Aizawa, 2017; Seo and Seo, 2021; Cao et al., 2017), capsule neural
networks (CapsNet) (Zbulak, 2020), Transformer (Manoj et al., 2021),
and so on (Su et al., 2018; Zhao et al., 2020; Liang et al., 2016).
Fig. 1 shows the general development trajectory of image colorization
methods based on deep learning since 2015.
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Fig. 1. Development of DLIC. Purple: CNN-based method. Green: GANs-based method. Red: CapsNet-based image colorization method. Yellow: Transformer-Based Method.

Due to the increasing requirements of image controllability and
automation, the DLCI methods also can be divided into fully automatic
colorization methods and semi-automatic colorization methods. For the
former, the color image is obtained through an end-to-end model, and
there is no need for human intervention and preprocessing or post-
processing. However, this method often requires a large number of
image datasets to conduct model training, and the color of obtained
image is often relatively simple and uncontrollable. The latter can be
guided by user guidance, including scribbles, text description, reference
images, etc., to make up for the color uncontrollable problem of fully
automatic colorization methods. However, because the semi-automatic
colorization methods are heavily rely on human guidance, it is not
suitable for the novice. In addition, semi-automatic methods are often
difficult for users to provide accurate color information to guide nat-
ural scenarios image colorization, so the color of the colorized image
look unnatural. Therefore, how to implement the fully automatic and
controllable image colorization still requires further exploration.

The research on colorization in theory and application has been
rapidly developing in recent years. However, several certain prob-
lems require attention. Existing DLIC methods often require large-scale
image datasets, and the obtained colorization results are often un-
satisfactory, such as color uneven or unsaturation, and lack of color
diversity. Although the control of colorized results can be achieved
through human interaction, it largely depends on people’s aesthetic
and experience, so it is not suitable for novice. In addition, there
are some problems, such as artifact and loss of detail information.
Therefore, image colorization is an interesting and challenging research
that deserves further exploration.

In this paper, we give a comprehensive review of recent advanced
DLIC methods. In the existing review literature, there are few review
articles on DLIC methods. Most of the early review articles focus
on conventional non-deep learning image colorization methods, and
the existing reviews on DLIC methods are often not comprehensive
enough. Such as, Recently, Zeger et al. (2021) summarized the methods
of image colorization based on deep learning, and described several
commonly used objective image quality evaluation metrics. However,
this review only focuses on the colorization of natural images, but
ignores the colorization methods in other fields (Line art images, in-
frared images, remote sensing images, etc.). Moreover, this review

is not comprehensive enough, and some open issues existing in the
colorization methods are not discussed. More recently, Anwar et al.
(2022) reviewed image colorization methods from the perspective of
domain type, network structure, etc., but this survey did not review
the image colorization methods in the last two years, and only reviewed
the single-image colorization methods. Therefore, this paper adopts a
unique deep learning-based perspective to systematically and compre-
hensively review the latest progress of colorization techniques. The
main contributions of this paper include the following three aspects:

(1) We comprehensively review the existing advanced DLIC methods
from various perspectives. The existing DLIC methods are classi-
fied and sorted out from four aspects: color space, loss function,
network structure, and application field. The proposed taxonomy
is intended to help researchers gain a deeper understanding of
the key Characteristics of DLIC models.

(2) We summarize the key issues of DLIC methods, including prob-
lem definition, datasets, image quality assessment. In addition,
we have conducted a series of comparative experiments and
comprehensively evaluated the performance of different col-
orization models by various objective evaluation metrics.

(8) We discuss existing challenges and some open-minded issues,
and identify the development trend and future research direction
of DLIC methods, to provide insightful guidance for further
research.

The rest of this paper is organized as follows. Section 2 explains
the problem definition of the image colorization task, and classifies
DLIC methods according to different color spaces and loss functions,
respectively. Section 3 summarizes the existing method from the per-
spective of network structure. Section 4 provides an overview of the
DLIC methods according to the level of automation. Section 5 overviews
the different application fields of image colorization. Sections 6 and 7
summarizes the existing public datasets and image quality evaluation
criteria for image colorization respectively, and presents the experi-
mental results several representative colorization methods. Section 8
discusses the challenges and future research directions of colorization.
Finally, Section 9 summarizes the work of this article. Fig. 2 shows the
structure of this survey.
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Fig. 2. Structure of this survey.

2. Problem setting and terminology

This section introduces the problem definition and terminology of
image colorization, and summarizes the existing DLIC methods from
the perspective of color space and loss function. Table 1 shows some
representative DLIC methods.

2.1. Problem definitions

Before reviewing recent DLIC models, we first provide a com-
mon definition of image colorization. Image colorization refers to the
restoration of corresponding color images from grayscale or line art
images. In practice, it is difficult to obtain a large number of gray image
datasets to train a colorization model, so the gray image I, is usually
modeled as the output of the following equation:

@

where I, represents the color image. For the line art image, the con-
ventional edge detection algorithm, such as eXtended Difference-of-
Gaussians (XDoG) (Ci et al., 2018; Zou et al., 2019; Lee and Lee, 2020;
Kim et al., 2019; Liu et al., 2017), Canny Edge Detection algorithm (Seo
and Seo, 2021; Thasarathan and Ebrahimi, 2019; Sun et al., 2019b; Li
et al., 2021b), is used to process the true color image. Researchers need
to colorize the obtained grayscale image or line art image, i.e. given an
input grayscale image or line art image I, with a size of W x H, the
input gray image /, is mapped into a color image I, through the image
colorization model f. The equation is as follows:

I =1 (1) )

For DLIC methods, the model F is usually obtained by learning a
collection of training samples. i.e., given a grayscale image collection
G={I, € R">*#*1} and corresponding real color image collection C =

1= (1,)

{I, e R">*H>3} find a model F which can minimize prediction errors
L.

A
9=argngnL(Ic - 1)+ AP () (3)

L here is usually certain distance measurement (such as L1 distance, L2
distance) or a combination of various distance measurements. F is the
set of potential mapping functions. ¥ () is the regularization term, and
4 is the compromise parameter. DLIC methods are typically modeled
through deep learning networks, which are discussed later in Section 3.

2.2. Color space for image colorization

In the past few years, color space plays an important role in
DLIC (Larsson et al., 2016; Zhang* et al., 2017; Su et al., 2020; Zhang
et al,, 2016; Cheng et al., 2015; lizuka et al., 2016; Manoj et al.,
2021; Deshpande et al.,, 2017; Xu et al., 2020). Color space is the
theoretical basis of color information research, which quantifies color
from people’s subjective feelings to concrete expression, and provides a
powerful basis for the computer record and performance of color. The
selection of different color spaces has a great influence on whether the
image colorization methods are effective. Therefore, choosing a suitable
color space is an important issue in ensuring the performance of the
colorization models.

Color space can be expressed in various forms, which can be di-
vided into two categories according to the basic structure, i.e., the
primary color space and color-bright separable color space. The former
is typically RGB color space, while the latter includes YUV/YCrCb,
CIELAB, HSV, and other spaces. Correspondingly, according to the
different color spaces used, the image colorization method can be
roughly divided into RGB space-based methods, separable space-based
methods, and multispace-based methods. The main difference between
the two methods is that the former uses single-channel grayscale image
X € RFXWX1 a5 the input to predict the three-channel color image
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Y € REXWX3| while the latter predicts two missing color channels
Y € RHXWX2,

Next, we will focus on commonly used color spaces. On this basis,
the image colorization methods based on deep learning are classified
and reviewed.

2.2.1. RGB space-based method

RGB color space is the most well-known color space, which is widely
used in various fields of image processing. This color space consists of
three channels: red (R), green (G), and blue (B). Each color channel
has 256 gray values (0-255), and each channel can be combined in a
specific proportion to present different colors. However, there are some
problems with the RGB color space. For example, the color changes
with the value of each channel; the gray value of each channel of a
certain color is difficult to express accurately.

RGB color space is the most widely used in the line art image
colorization task (Ci et al., 2018; Zhang* et al., 2018; Seo and Seo,
2021; Kim et al., 2019; Thasarathan and Ebrahimi, 2019; Zhang et al.,
2017; Xie* et al., 2020), which is mainly because, compared with gray
image, line art image only has simple line composition, neither gray
value nor semantic information, so it is difficult to realize the col-
orization in the color-light separable color space. For example, Zhang*
et al. (2018) proposed a semi-automated colorization model based on
RGB color space, which solves artifacts such as watercolor blur color
distortion and dark texture to some extent. Similarly, a GANs-based
line art colorization method was proposed by Seo and Seo (2021). This
method achieves good colorization performance in RGB color space. In
addition, RGB color space is also used in gray image colorization tasks,
and has achieved a favorable colorization effect (Ramassamy et al.,
2019; Johari and Behroozi, 2020a,b; Mourchid et al., 2021).

However, there are some limitations to the image colorization
method based on RGB space, that is, it is necessary to predict R, G, B
channels with a given grayscale image, which increases the difficulty of
the colorization task. For the representation of color predictions, using
RGB is overdetermined, as lightness is already known.

2.2.2. Separable space-based method

The Human Visual System (HVS) is less sensitive to color than to
brightness. In the RGB color space, three primary colors are equally
important, but the brightness information is ignored. In color-light
separable color space, the chroma information and the brightness in-
formation of the image can be separated, so that we can handle the
chroma and brightness information, separately. This kind of color space
is closer to human vision and more convenient for color editing. In
general, the separable space-based method consists of three stages,
as shown in Fig. 3, and CIELAB color space here is taken as an
example. Firstly, the brightness channel L (grayscale image) is input
into the colorization model to obtain the two missing channels A and

B. Then, the complete CIELAB color image is obtained by combining the
obtained chrominance AB with the input brightness channel L. Finally,
the merged image is converted to RGB color space through color space
conversion to obtain the final color image.

Compared with RGB space-based methods, the separable space-
based methods only need to predict the other two missing channels
except for the brightness channel, which makes the model training
more stable (Cao et al., 2017). We will introduce three commonly used
color-light separable color spaces, including CIELAB, YUV, and HSV
color space as follows.

(a) CIELAB Color Space. Different from RGB color space, CIELAB
is a color space independent of equipment, and any colors can be ex-
pressed in CIELAB color space. This color space can describe the human
visual experience in a digital manner. In CIELAB space, the L channel is
independent of the color information and only contains the brightness
information. The AB channel only contains color information, where A
represents the red-to-green range and B represents the blue-to-yellow
range. CIELAB space and RGB space can be converted into each other
through XYZ space, which can be calculated by the following equations.

X 04125 03576 0.1804 |[ R

Y |=| 00193 0.1192 09502 || G |; Q)
z 0.0193  0.1192 09502 || B

L=116f(Y/Y,) - 16
A=500[f(X/X,)-f(Y/V,)] : 5)
B=200[f(Y/Y,)-f(Z/Z,)]

'3 if 1>(2% ’

f= (%) , (6)

%(%9)2t+ 24—9 otherwise
where the default value of X,, Y,, Z, is 95.047, 100.0, 108.883.
CIELAB color space has been widely used in image colorization
because of its perceptual consistency with human color vision (Yoo
et al.,, 2019; Zhang et al., 2019; Lee et al., 2020; Chen et al., 2018a;
Kong et al., 2021; Kim et al., 2021; Li et al., 2021c). In the research
of lizuka et al. (2016), it is shown that more sensible colorization results
can be obtained in CIELAB color space compared with RGB color space.
This space is also adopted in Xian et al. (2018) to solve the problem that
color constraints input in RGB form need to struggle with semantic un-
derstanding of the network. This method converts ground truth images
into CIELAB space, and constraints were applied in the L channel and
AB channel respectively to obtain higher quality color images without
introducing obvious visual artifacts. Similar colorization methods are
also found in Cao et al. (2017), Zhao et al. (2020). In general, image
colorization based on CIELAB space can obtain colorized images unified
with human color visual perception.
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Table 1
Description of several representative methods.
Methods Color space Loss function Network Application Automaticity Description Journal/
structure Conference
Cheng’s YUV 12 loss DNNs Natrual image fully-automatic end-to-end, the first deep ICCV 2015
(Cheng et al., learning color method, huge
2015) reference images required
lizuka’s CIELAB cross-entropy CNNs Natrual image fully-automatic end-to-end; data-driven; user ACM TOG 2016
(lizuka et al., loss+mse loss uncontrollable; insufficient
2016) generalization
Zhang’s CIELAB cross-entropy CNNs Natrual image fully-automatic+semi- end-to-end, data driven, ACM TOG 2017
(Zhang* loss+smooth-11 loss automatic interactive colorization, color
et al., 2017) +regression loss bleeding
Ci’s (Ci RGB adversarial cGANs Line Art semi-automatic interactive colorization; color ACM MM 2018
et al., 2018) loss+perceptual loss overflow; user guidance is
required
Zhang’s RGB adversarial GANs Sketch image semi-automatic interactive colorization; Two ACM TOG 2018
(Zhang* loss+mae loss stage; not suitable for complex
et al., 2018) sketches
Zhang’s CIELAB adversarial GANs Video semi-automatic first end-to-end network for CVPR 2019
(Zhang et al., loss+perceptual exemplar-based video
2019) loss+temporal colorization; reference image
consistency loss+11 required
loss+smooth loss
Kim’s (Kim RGB adversarial ACGANs Line Art semi-automatic two stages; text tag-based ICCV 2019
et al., 2019) loss+reconstruction
loss+classification
loss+changing loss
Xu's (Xu CIELAB huber loss CNNs Natural image semi-automatic end-to-end; reference-based; CVPR 2020
et al., 2020) pretrained VGG19
Lee’s (Lee CIELAB similarity-based GANs Sketch Image semi-automatic reference-Based, CVPR 2020
et al., 2020) triplet augmented-self reference is
loss+adversarial utilized
loss+perceptual
loss+11 loss+style
loss
Zhang’s RGB mse loss CNNs Line Art semi-automatic user-guided; split filling CVPR 2021
(Zhang et al., mechanism; simple but
2021a) effective
Manoj’s RGB negative Transformer Natrual image fully-automatic First application of ICLR 2021
(Manoj et al., log-likelihood transformers for image
2021) colorization; self-attention;

diverse colorization

(b) YUV (YCrCb) Color Space. YUV color space, also known as
YCrCb, the Y component represents brightness, and the Cr and Cb
components represent chrominance, which describes the color and
saturation of an image, respectively. Similarly, YUV and RGB color
spaces can be converted to each other by the conversion equation is
shown below.

Y 0299 0587 0.114 R
U [=] -0.169 0.331 0.5 G )
|4 0.5 0419 —0.081 B

YUV color space takes human perception into account and is therefore
more suitable for image colorization tasks. This color space can min-
imize the correlation between the three coordinate axes of the color
space. Based on this feature, the colorized image has higher accuracy
and better visual effects (Cheng et al., 2015; Xiao et al., 2019a). Since
U and V are independent chroma signals, Liang et al. (2016) used
two networks of the same architecture to output U and V respectively,
which simplified the network structure and improved the accuracy of
the structure. Cao et al. (2017) showed that colorized images obtained
in RGB space suffer from structural loss due to an additional trade-off
between L1 loss and GAN loss, while the obtained images in the YUV
color space are smoother and more natural. To sum up, YUV color space
is very popular in the application of image colorization tasks, and often
can achieve good colorization effects.

(c) HSV Color Space. HSV color space is an intuitive color model,
which is widely used in image editing tools. It is composed of three
components: Hue (H), Saturation (S), and Value (V). The H component
is represented by angle and ranges from 0O to 360. The S component
represents the degree of similarity between the colors and the spectrum.

The value of the S component ranges from 0 to 1, with the larger the
value, the more saturated the color. The V component is the brightness
of the color, usually ranging from O to 1, i.e., black to white. HSV
and RGB color space can be converted to each other by equation set
as follow.

0°& ,if&A=0

60° x (52 + o)& if&Cpp = R

60° x (B';R’ + 2)&, if&Cpy = G’

60° x (R';G' + 4)& Lif&Cyy = B’ ®
0&, Cpra = 0
S=1 Agc, £0
Cmax ’ max
v=c

max

where R’ = R/255,G’ = G/255, B’ = B/255, and C,,, = max (R',G', B')
Cpin = min (R, G’, B') , 4 = Cpy — Cpyin- Since there are few colorization
methods for images based on HSV color space in practical applications,

these methods will not be described in detail here.

2.2.3. Multi-color space-based methods

Fig. 4 shows the representation of the same image in different color
spaces. Observing Fig. 4, we can find that the color and brightness
information of an image is separable in YUV, CIELAB, and HSV spaces,
while in the RGB color space the color and brightness information are
mixed. Different color spaces have their advantages and disadvantages,
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Fig. 4. The representation of images in different color spaces. (a) represents images in different color spaces; (b), (c), and (d) respectively represent three different components.
Taking the first row as an example, (b), (c), and (d) respectively represent three components R, G, and B.

Multi-color Space

Grey Decode |, €010
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Fig. 5. Multi-color Space-Based Method, image from Zhou et al. (2020). First, the
freedom of color is extended to a high-dimensional tensor, and then the linear
autocorrelation constraint is obtained by using the intermediate results to guide the
global direction of color more accurately. The use of multiple color spaces facilitates
subsequent accurate colorization.

so many researchers began to study the DLIC method based on the com-
bination of multiple color spaces in recent years. For instance, Hensman
and Aizawa (2017) combined HSV with RGB color space to improve the
reliability and accuracy of the colorization model. In Zhou et al. (2020),
the prior information of multiple color spaces, including RGB, YCrCb,
and HSV, was used as effective constraints to improve the performance
of the colorization model (see Fig. 5). In general, model learning in
multi-color spaces provides more redundancy and related samples for
training, so that more reliable and accurate models can be obtained.
The adoption of multi-color space, to a certain extent, expands the free-
dom of color space, and provides a richer color saturation. Therefore,
multi-color space-based methods have strong development potential
and are worth further exploration and research

2.3. Loss function for image colorization

In the field of image colorization, the loss function is used to
evaluate the degree of inconsistency between the predicted image and
ground truth, and it is also the objective function of optimization
in neural networks. The smaller the loss function is, the better the
robustness of the model will be. In the early stages, researchers usually
used pixel-level loss (such as L1 loss and L2 loss) (Cheng et al., 2015;
Su et al., 2018), but later we found that such loss could not accurately
measure the difference between colorized image and ground truth.

Therefore, other loss functions, such as perceptual loss (Ci et al., 2018;
Chen and Hays, 2018) and total variation (TV) loss (Kuang et al.,
2020; Liu et al., 2017; Johari and Behroozi, 2020a), are studied to
better assess the error between the colorized image and ground truth
image, to obtain more realistic and natural, higher-quality colorization
results. The selection of loss function is an important factor affecting
the model colorization performance. Next, we will introduce the loss
function widely used in DLIC methods, and make a simple induction
of the existing colorization methods. Some representative publications
corresponding to commonly used loss functions are listed in Table 2.

In most studies, the researchers attributed the images colorization
to a regression problem and solved it with a deep learning model.
Specifically, a mapping function F is learned using a series of gray-color
pairs, which can then be used to transform a new grayscale image into
a color image. To obtain great colorization performance, it is necessary
to select an appropriate loss function to optimize the model.

2.3.1. L1 loss

L1 loss, also known as Mean Absolute Error (MAE), calculates
the absolute sum of the difference between the target image and the
predicted image. This loss function can be used to measure the distance
between the predicted image and the ground truth. The calculation is
shown as follows.

n

L=y

i=1

A
Y, -, (C)]

where l/}, is the output of the colorization model, i.e., the pixel matrix
of the colorized image. Y; is the pixel matrix of the true color image.
L1 loss function is widely used in image processing, including im-
age super-resolution, image restoration, image colorization, and other
tasks. In Xiao et al. (2019a), L1 loss is used as a constraint condition
to ensure that the gray image of the colorized image is consistent with
the original gray image. In addition, the colorization results obtained
by Seo and Seo (2021), Thasarathan and Ebrahimi (2019), Hou et al.
(2019) show that the use of L1 loss can reduce the blur degree of
the colorized image to a certain extent. However, because L1 loss
only calculates the global error and ignores the local information, the
colorized image lacks the fine texture information and is prone to
artifacts (Berg et al., 2018). In addition, the colorization method using
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Table 2

Different colorization method categories and representative publication.
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Category

Sub-category

Representative publication

Loss function

L1 Loss

L2 Loss

Smooth L1 loss
Perceptual Loss

Total Variance Loss
Adversarial Loss

Kuang et al. (2020), Xu et al. (2021), Ji et al. (2020), Dabas et al. (2020), Seo and Seo
(2021), Cao et al. (2017), Su et al. (2018), Lee and Lee (2020), Kim et al. (2019), Zhang et al.
(2017), Xie* et al. (2020), Mourchid et al. (2021), Chen et al. (2018a), Xiao et al. (2019a),
lizuka and Simo-Serra (2019), Yin et al. (2021)

Ci et al. (2018), Suarez et al. (2018), Dong et al. (2018), Cheng et al. (2015), Dabas et al.
(2020), Su et al. (2018), Liang et al. (2016), Xu et al. (2020), Xian et al. (2018), Lee and Lee
(2020), Liu et al. (2017), Du et al. (2021), Zhong et al. (2020)

Zou et al. (2019), Yoo et al. (2019), He et al. (2018), Zhang* et al. (2017), Su et al. (2020),
Zhang et al. (2019)

Ci et al. (2018), He et al. (2018), Kuang et al. (2020), Xu et al. (2021), Chen and Hays (2018),
Zhang et al. (2019), Xu et al. (2020), Lee et al. (2020), Lei and Chen (2019), Yin et al. (2021)
Kuang et al. (2020), Liu et al. (2017), Johari and Behroozi (2020a,b)

Zhang* et al. (2018), Yoo et al. (2019), Suarez and Sappa (2017), Xu et al. (2021), Endo et al.
(2021), Chen and Hays (2018), Zhang et al. (2019), Cao et al. (2017), Liu et al. (2017), Zhang
et al. (2017), Johari and Behroozi (2020b), Mourchid et al. (2021), Xiao et al. (2019a), Hou
et al. (2019), Zhong et al. (2020), Furusawa et al. (2017), Li et al. (2021c), Wu et al. (2021b),
Yin et al. (2021)

Level of
automation

Fully Automatic

Scribble-Based Methods

Language-Based

Reference-Based

Ramassamy et al. (2019), Zhang et al. (2016), Bian et al. (2021), lizuka et al. (2016), Chybicki
et al. (2019), Varga and Sziranyi (2016), Chen and Hays (2018), Seo and Seo (2021), Zbulak
(2020), Liu et al. (2017), Mourchid et al. (2021), Hou et al. (2019), Kiani et al. (2020), Yu

et al. (2015), Wan et al. (2020)

Ci et al. (2018), Zhang et al. (2021a), Lee and Lee (2020), Liu et al. (2017), Thasarathan and
Ebrahimi (2019), Chen et al. (2019), Min et al. (2020), Li et al. (2020), Furusawa et al. (2017)
Zou et al. (2019), Kim et al. (2019), Chen et al. (2018a), Bahng et al. (2018), Manjunatha

et al. (2018)

Larsson et al. (2016), He et al. (2018), Kuang et al. (2020), Xuan et al. (2021), Zhang et al.
(2019), Sun et al. (2019b), Xu et al. (2020), Zhang et al. (2017), Lee et al. (2020), Kong et al.
(2021), Chakraborty (2019), Lee and Cho (2020), lizuka and Simo-Serra (2019), Chen et al.
(2020), Li et al. (2021c¢)

Application
fields

Natural Image
Colorization

Line Art Colorization

Infrared Colorization
Remote Sensing

Colorization
Video Colorization

Other Colorization

Ramassamy et al. (2019), Larsson et al. (2016), He et al. (2018), Zhang* et al. (2017), Su et al.
(2020), Zhang et al. (2016), Cheng et al. (2015), lizuka et al. (2016), Dabas et al. (2020), An
et al. (2020), Cao et al. (2017), Su et al. (2018), Deshpande et al. (2017), Xu et al. (2020),
Johari and Behroozi (2020a), Mourchid et al. (2021), Chen et al. (2018a), Cheng et al. (2017),
Bahng et al. (2018), Jin et al. (2021b), Li et al. (2021c), Wu et al. (2021b), Yin et al. (2021)
Ci et al. (2018), Zou et al. (2019), Zhang* et al. (2018), Yoo et al. (2019), Ramassamy et al.
(2019), Zhang et al. (2021a), Varga and Sziranyi (2016), Chen and Hays (2018), Seo and Seo
(2021), Lee and Lee (2020), Kim et al. (2019), Thasarathan and Ebrahimi (2019), Sun et al.
(2019b), Xie* et al. (2020), Lee et al. (2020), Xian et al. (2018), Chen et al. (2020), Furusawa
et al. (2017), Zhang et al. (2021), Cao et al. (2021), Casey et al. (2021)

Kuang et al. (2020), Suarez and Sappa (2017), Suarez et al. (2018), Xu et al. (2021), Dong

et al. (2018), Zhong et al. (2020), Limmer and Lensch (2016), Yang et al. (2022)

Ji et al. (2020), Gravey et al. (2019), Dias et al. (2020), Song et al. (2017), Huang et al.
(2021), Li et al. (2018), Doi et al. (2020), Poterek et al. (2020), Ozcelik et al. (2020)

Endo et al. (2021), Zhang et al. (2019), Thasarathan and Ebrahimi (2019), Lei and Chen
(2019), Vondrick et al. (2018), lizuka and Simo-Serra (2019), Shi et al. (2020), Akimoto et al.
(2020)

Dong et al. (2022), Xuan et al. (2021), Bian et al. (2021), Liang et al. (2021), Morra et al.
(2021), Yu et al. (2020), Guo et al. (2021), Hou et al. (2019), Klein et al. (2020), Maejima

et al. (2019), Aizawa et al. (2019)

Evaluation
Metric

MSE

PSNR

SSIM

MS-SSIM

1S
FID

EN
LPIPS
HaarPSI
Other

Zhang* et al. (2018), Suarez et al. (2018), Chybicki et al. (2019), Min et al. (2020), M.H. Baig
(2017b), Teng et al. (2021), Chen et al. (2020)

Ramassamy et al. (2019), Larsson et al. (2016), Su et al. (2020), Kuang et al. (2020), Xu et al.
(2021), Dong et al. (2018), Ji et al. (2020), Dong et al. (2022), Bian et al. (2021), Chybicki
et al. (2019), Endo et al. (2021), Xiao et al. (2019b), M.H. Baig (2017b), Zbulak (2020), Su
et al. (2018), Zhao et al. (2020), Thasarathan and Ebrahimi (2019), Johari and Behroozi
(2020b), Lee et al. (2020), Kong et al. (2021), Zhou et al. (2020), Cheng et al. (2017), Lei and
Chen (2019), Du et al. (2021), Chen et al. (2019), Min et al. (2020), Wan et al. (2020), Teng
et al. (2021), Larsson et al. (2017b), Li et al. (2021c), Zhang et al. (2021), Wu et al. (2021b)
Ramassamy et al. (2019), Su et al. (2020), Kuang et al. (2020), Suarez et al. (2018), Xu et al.
(2021), Ji et al. (2020), Dong et al. (2022), Bian et al. (2021), Dabas et al. (2020), Chybicki
et al. (2019), Varga and Sziranyi (2016), Thasarathan and Ebrahimi (2019), Mourchid et al.
(2021), Kong et al. (2021), Zhou et al. (2020), Du et al. (2021), Chen et al. (2019), Min et al.
(2020), Wan et al. (2020), Li et al. (2021c), Zhang et al. (2021), Wu et al. (2021b)

Kuang et al. (2020), Chybicki et al. (2019), M.H. Baig (2017b), Johari and Behroozi (2020b),
Min et al. (2020), Teng et al. (2021)

Chen and Hays (2018), Johari and Behroozi (2020a)

Ci et al. (2018), Ji et al. (2020), Chybicki et al. (2019), An et al. (2020), Zhang et al. (2019),
Manoj et al. (2021), Lee and Lee (2020), Kim et al. (2019), Thasarathan and Ebrahimi (2019),
Johari and Behroozi (2020a), Lee et al. (2020), Cao et al. (2021), Wu et al. (2021b)

Xu et al. (2021), Kong et al. (2021)

Yoo et al. (2019), Su et al. (2020), Seo and Seo (2021), Lei and Chen (2019), Kim et al. (2021)
Chybicki et al. (2019)

Ci et al. (2018), Kuang et al. (2020), Xu et al. (2021), Ji et al. (2020), Chybicki et al. (2019),
Varga and Sziranyi (2016), Lee and Lee (2020), Kong et al. (2021), Min et al. (2020), Teng

et al. (2021)
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L1 loss often obtains a color image with low color saturation, this is
mainly because L1 loss tries to predict the pixel difference between the
image and the ground truth on average (Dabas et al., 2020). Directly
minimizing the L1 loss between the colorized image and ground truth
greatly inhibits the color diversity (Chen and Hays, 2018).

2.3.2. L2 loss

L2 loss, also known as Mean Squared Error (MSE) loss, is calculated
as the square error between the pixel matrix of the predicted image and
the target image. The calculation equation is described as follows:

A LEYON 2
LY, Y)=) <Y,. - Y,.> 10)
i=1

Compared with L1 loss, L2 loss is easier to solve, and the model
converges faster with the same learning rate. Therefore, L2 loss is
widely used in CV, such as style transfer (Chen et al., 2017, 2018b)
photo-realistic image synthesis (Chen and Koltun, 2017), image super-
resolution (Sajjadi et al., 2017). In the first DLIC method (Ramassamy
et al., 2019), L2 loss function is used to minimize the square distance
between the colorized image and ground truth to achieve model opti-
mization. The use of L2 loss function can obtain a more natural image
colorization effect, but it is not robust to the inherent multimodal
properties in the image colorization problem (Larsson et al., 2016;
Zhang et al., 2016). In addition, because L2 loss cannot correctly learn
the global background of the image, the colorized image has obvious
colorization errors (lizuka et al., 2016). To sum up, L1 loss and L2 loss
have their pros and cons. while the occurrence of huber loss (smooth-11
loss) combines the advantages of both.

2.3.3. Smooth-11 loss
Smooth-11 loss combines the advantage of L1 and L2 loss, which can
be calculated by:

N 2
l<Y—Y> for

oYy =Y

A
-Y| <6

[S)

L5(1/>,Y) = an

- %5 otherwise

where IA/ is the colorized image and Y is ground truth. In general,
6 = 1. L1 and L2 loss are in many cases replaced by smooth-I1 loss.
For instance, Zou et al. (2019) replaced L1 loss with Smooth-11 loss
to overcoming the problem of excessive color differences due to slight
differences in corresponding RGB values. In He et al. (2018), Zhang*
et al. (2017), Smooth-11 loss was used as a distance measure to avoid
the usage of average solutions in fuzzy colorization problems.

2.3.4. Perceptual loss

Perceptual loss (Justin et al., 2016) was originally proposed for
single-image super-resolution and style transfer tasks. Perceptual loss
is more robust to measures image similarity than pixel loss functions,
such as L1, L2 loss, and others mentioned above. The initial perceptual
loss includes two parts: the feature reconstruction loss and the style
reconstruction loss, which are used to measure the content and style
differences between images, respectively. The feature reconstruction
loss L?/ and the style reconstruction loss Lf’j can be calculated by the
Egs. (12) and (14).
2
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where IA/ and Y represent the predicted image and the real image,
respectively. G}” computes the Gram matrix of C; X C;, ¢;(Y) is the
output of input Y at the jth layer in the loss network ¢, and its
shape is C; x H; x W;. When perceptual loss is used for image col-
orization, only feature reconstruction loss is usually used. This loss
function can make up for the defects of the pixel-level loss function
and better measure the perceptual and semantic differences between
images. In Kuang et al. (2020), the perceptual loss was applied to the
thermal image colorization task to recover texture information. For the
multimodal problem of video colorization, Lei and Chen (2019) used a
perceptual loss with diversity to distinguish the various modality in the
solution space. Perceptual loss measures semantic differences caused
by unnatural colorization, which is robust to appearance differences
caused by two plausible colors. However, perceptual loss also has some
limitations, such as the inability to use unusual or artistic colors to color
images (He et al., 2018).

2.3.5. Total variance loss

TV loss (Rudin et al.,, 1992) is defined as the sum of absolute
differences between adjacent pixels, which can be calculated by the
following equation.

Ly = \/(yi+1,j - yi,j)2 + (Vi1 — yi¢j)2 (15)
To suppress the noise in the generated image, Liu et al. (2017) intro-
duced TV loss in image colorization. This loss avoids the color mutation
problem in the output image, this is because TV loss can constrain the
pixel changes in the generated results and improve the smoothness level
of the image. Johari and Behroozi (2020a) also found that the training
process of GANs can be stabilized by using the TV loss function.

2.3.6. Adversarial loss

In recent years, GANs have been widely used in various image
processing tasks because of its powerful generative capability, such
as image generation, image inpainting, image super-resolution, and
image colorization. In general, GANs consist of two parts: generator and
discriminator, and the model is optimized by adversarial loss. Four ad-
versarial loss functions that are widely used in DLIC methods, including
GANs (Goodfellow et al., 2014), Least Squares GANs (LSGANs) (Mao
et al., 2017), Wasserstein GANs (WGANSs) (Arjovsky et al., 2017), and
WGAN-GP (Ishaan et al., 2017) are introduced below.

The initial adversarial loss is represented by the cross-entropy loss,
which can be calculated by:

rnGin max V(D,G)=E, _p, [log D ()]
+E; _p ) [log(1 - D(G (2)))] .

For discriminator D, the equation is maximized as much as possible,
and for generator G, the opposite is true. The training for GANs is an
iterative process that repeats the following steps: (a) Fix G, train D’s
discrimination skills; (b) Fix D, train G’s generation capability; until G
and D reach dynamic equilibrium, i.e., the image generated by G is
consistent with the distribution of the real image, D cannot distinguish
between the generated image from real image. Compared with conven-
tional CNNs, GANs improve the quality of generated images through
adversarial learning between generator and discriminator.

However, because cross-entropy loss only depends on the authen-
ticity of the generated image, and ignores the pixel difference between
the generated image and the real image, the gradient disappearance
problem occurs in generator. To solve this problem, Mao et al. (2017)
used the least-squares loss function instead of the cross-entropy loss
to obtain higher quality generation results and more stable training
process. The least-squares adversarial loss can be calculated by the
following equation set.

(16)
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(a) Single-Stream Network

(b) Dual-Stream Network

(¢)Triple-stream Network

(e) U-Net with Skip Connection

Condition

(f) Conditional Concatenation

W

(g) ResNet Block

===

(h) ResNeXt Block

Sy

(i) DenseNet Block

[ ]

Noise Gray Image

Reference Image
/Color Hints

Colorized Image Skip Connection

Fig. 6. Typical network structures and key module structures. (a) Single-stream network, where a grayscale image is input into an end-to-end network to obtain a colorized

image. (b) Dual-stream network, where a reference image or other auxiliary information (color hints, text descriptions, etc.) is input in addition to the grayscale image, through
two networks with similar or different structures to obtain a colorized image. (c¢) Triple-stream network, i.e., with three inputs, typically R, G, and B images and noise vectors
concatenated together into a network with the similar structure to obtain the colorized image. (d) AE, i.e., encoder-decoder structure. (e) U-Net with skip connection, i.e., skip
connection is added between encoder—decoder. (f) Conditional concatenation, i.e., adding conditions to each layer of the network. (g) ResNet Block. (h) ResNext Block. (i) DenseNet

Block.

where z is random noise, P, (x) is the probability distribution obeyed
by the real data x, E, .p,_ () is the expectation. Constants a and
b represent the markup of the real image and the generated image,
respectively. In general, a = ¢ = 1 and b = 0. Similarly, a Wasserstein
distance-based adversarial loss was proposed by Arjovsky et al. (2017)
to solve the problem of GANs training instability. This loss function
can ensure the diversity of generated samples. Further, on the basis of
Wasserstein adversarial loss, Ishaan et al. (2017) set up an additional
loss to limit the gradient of the discriminator, as equation set (18),
allowing the generation model to converge faster and produce higher
quality samples.
L(D)=-E, .p, ) (D) +E; .p, ) [D(G(x)]

<

-~

W asserstein adversarial  loss
+AE, p, . olIVD @I =11 (18)
-
gradient  penalty

LG) = ~E, .p, ([D(G )]

In the image colorization, the adversarial loss is mainly responsible
for supervising the quality of the generated color image and making
it conform to the true distribution (Isola et al., 2017). While the
adversarial loss makes the network produce clear and realistic colorized
images, it inevitably brings some problems, such as the network’s
understanding of color sometimes conflicts with the user’s color con-
straints. For example, the user provides a rainbow color constraint for

the ocean, but the adversarial network thinks it looks fake and prevents
the generator from producing such an output, but in fact the colorful
ocean is reasonable (such as the ocean under a sunset glow). For this
limitation, Xian et al. (2018) only applied adversarial loss to grayscale
images, making the discriminator focus on generating sharp realistic
details while ignoring the color information of the image. In addition,
it is well known that the usage of adversarial loss tends to produce
distorted textures in image synthesis tasks, this problem also occurs
in image colorization tasks. Therefore, the adversarial loss is usually
combined with loss functions, such as pixel-level loss and perceptual
loss, to improve the colorization performance of the image colorization
model (Ci et al., 2018; Chen and Hays, 2018; Zhang et al., 2019; Cao
et al., 2017; Liu et al., 2017; Zhang et al., 2017; Johari and Behroozi,
2020b; Mourchid et al., 2021; Chen et al., 2018a).

3. Representative network architectures

Nowadays, network design is an important issue in deep learning.
In image colorization, researchers apply various design strategies to
construct the network structures. In this section, we divide image col-
orization methods into four categories from the perspective of network
structures, including CNNs-based, GANs-based, Transformer-based, and
other methods. In addition, we have a simple classification of the
backbone structure and key modules in the colorization model, which
is shown in Fig. 6.
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Input Grayscale Image Refined Chrominance Refined Color Image  Ground-truth Color

(a) Reference image clusters

Joint bilateral filte 1

4

(b) The proposed colorization method

Fig. 7. The pipeline of Deep colorization (Cheng et al., 2015). The first deep learning based image colorization method.
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Fig. 8. The pipeline of lizuka et al. (2016). A representative study of dual-stream networks.

3.1. CNNs-based methods

In recent years, with the development of deep learning, CNNs has
made great achievements in image processing with its strong feature
learning ability. Particularly, CNNs-based colorization methods are also
proliferating and achieving impressive results.

3.1.1. Deep Colorization (Cheng et al., 2015)

In 2015, the first DLIC method based on a deep neural network
was proposed by Cheng et al. (2015), and the pipeline of this method
is shown in Fig. 7. The method first divides the reference images
into different clusters using the proposed adaptive graph clustering
method, and then trains a colorization model for each cluster im-
age collection separately. Specifically, given a grayscale image, the
proposed method first automatically searches for the closest clusters
and the corresponding pre-trained models; then each pixel point is
extracted with feature descriptors as input to the neural network, and
the output is the chromaticity of the corresponding pixel, followed
immediately by combining the output with the grayscale pixel values
to obtain the corresponding color values. Finally, a joint bilateral filter
(using the grayscale image as a guide) is used to further adjust the
output color image. Although this method performs well for natural
image colorization, its application is largely limited by the need to use
reference images.

3.1.2. Let there be Color! (lizuka et al., 2016)

lizuka et al. (2016) is a representative work based on a dual-stream
network structure. This work proposes a method for image colorization
combining global features with local features. The proposed model
consists of four main components: a low-level feature network, a mid-
level feature network, a global feature network, and a colorization
network. All components are tightly coupled and trained in an end-to-
end manner. The output of the model is the chromaticity of the image,
which is fused with the luminance to form the colorized image. The

10

proposed method can be generalized to many types of images because
this method learns information from a large dataset in an end-to-end
manner. Fig. 8 shows the pipeline of lizuka et al. (2016)

Colorization methods based on CNNs have also been applied by
other researchers (Larsson et al., 2016; Zhang et al., 2016). CNNs-based
colorization methods usually require a large-scale reference image
dataset to train the learning model to realize image colorization. How-
ever, it is difficult to obtain the image dataset containing all the objects
to train the neural network model in the actual training process, which
greatly limits the performance of this method. Another disadvantage
is that such methods tend to assign only one color to the same object,
whereas in practice there are multiple potential colors.

3.2. GANs-based methods

GANs was proposed in 2014, and it has demonstrated great appli-
cation potential in CV with its powerful generation capabilities (Good-
fellow et al., 2014; Mao et al., 2017; Arjovsky et al., 2017; Ishaan
et al., 2017). GANs also evolved from the original model to conditional
GANs(cGANSs) (Isola et al., 2017), CycleGANs (Zhu et al., 2017), and
most recently StyleGAN3(Karras et al.,, 2021), and so on. With the
development of GANs, image colorization methods based on GANs have
achieved good colorization performance. In GANs-based colorization
models, the main difference usually is the network structure, especially
the generator structure and the loss function. Most of these colorization
methods are based on classic generative models (such as cGANs and
CycleGANSs) to make these models more suitable for image colorization.
Next, we will summarize the general architecture and key modules of
the generator by category.

Generator structures in colorization models can be divided into
single-stream networks, dual-stream networks, and multi-stream net-
works. The structure of single-stream networks is shown in Fig. 6(a),
which can be seen in the research (Ci et al., 2018; Xu et al., 2021;
Seo and Seo, 2021; Cao et al., 2017; Liu et al., 2017; Li et al., 2021bj;
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Fig. 9. The pipeline of Suarez and Sappa (2017). A representative study of triple-stream networks.

Mourchid et al., 2021; Silva et al., 2019; Huang et al., 2021). Single-
stream network usually takes a grayscale image as input directly and
outputs a colorized image after a series of convolution, pooling, acti-
vation, and deconvolution operations. Unlike single-stream networks,
dual-stream networks have two inputs, one of which is a grayscale
image and the other input is an auxiliary condition that provides color
information (which may be a reference image, a color scribble or
a text description); correspondingly, there are also two branch sub-
networks, which may have similar or very different structures. One
branch network is used to extract input grayscale images for feature
extraction, and the other branch network is used to extract features
of reference images or other color cues (Kuang et al., 2020; lizuka
et al.,, 2016; Sun et al., 2019b; Lee et al., 2020; Kong et al., 2021;
Du et al., 2021). The adoption of a dual-stream network results in a
colorized image with richer and more natural color information, due to
the reference image as well as other additional information. However,
the access to additional information often has high aesthetic and profes-
sional requirements for the user, thus largely limiting the application of
this type of network. The structure of dual-stream networks is shown
in Fig. 6(b). The multi-stream network is not limited to triple-stream
networks, as shown in Fig. 6(c), but also includes networks with more
branches. For example, the three-branch colorization method proposed
by Suarez and Sappa (2017), which is shown in Fig. 9. In this method,
infrared image block and gaussian noise are input into three branch
networks to obtain R, G, and B channels respectively. This network
structure is also seen in Zhang* et al. (2017), Suarez et al. (2018).
Furthermore, there are some differences between the backbone
structure and key modules in the model, which greatly affects the color
performance of the model. Next, we will focus on the backbone network
and key modules that are widely used in image colorization models.
The backbone network includes the autoencoder (AE), U-Net (Ron-
neberger et al., 2015) with skip connection, and conditional concate-
nation. Key modules include ResNet block, ResNeXt block, DenseNet
block, as shown in Fig. 6(g), Fig. 6(h), and Fig. 6(i) respectively.
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3.2.1. AE

AE consists of an encoder and a decoder, as shown in Fig. 6(d).
In the generator of image colorization model, it is often combined
with other modules, such as ResNet block (Ji et al., 2020). The usage
of these modules can deepen the network and improve the feature
extraction capacity of the network. However, the colorized images are
not satisfied, because of the lack of the underlying feature (Chybicki
et al., 2019).

3.2.2. U-Net

The U-Net network was originally proposed for the image segmen-
tation (Huang et al., 2021), which adds layer-by-layer connections
between encoders and decoders to form a U-shaped structure, as shown
in Fig. 6(e). In colorization models, skip connection can help deconvo-
lution to reconstruct the color image by fusing the low-level features
and high-level features. In addition, ResNeXt block (Cao et al., 2017;
Lee and Lee, 2020), ResNet block (Ji et al., 2020; Seo and Seo, 2021;
Lee et al., 2020), and other modules (Xu et al., 2021; Li et al., 2021b)
are also used in U-Net structure to further improve the quality of the
colorized image. For example, Xu et al. (2021) combined DenseNet
block with U-Net for colorization of near-infrared face images. In Lee
and Lee (2020), ResNeXt block was combined with U-Net structure to
enhance the quality of colorized images. A similar approach can be seen
in Seo and Seo (2021).

3.2.3. Conditional concatenation

However, the encoder-decoder structure is more inclined to extract
global features with or without the addition of skip connections, which
is more suitable for global shape transformation tasks. However, spatial
local guidance is as important as global features in image colorization.
Local guidance can ensure that target boundaries in colorized im-
ages are accurately separated by different generated colors. Therefore,
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conditional concatenation module inputs auxiliary information (text
description, noise, category labels, etc.) layer by layer in the generative
network to enhance the color diversity of the generated image. For
example, Cao et al. (2017) input grayscale images as conditions into
each layer of the network to provide continuous condition supervision,
as Fig. 6(f). Similarly, gaussian noise was input into each layer of the
generator to increase the diversity of colors in Suarez et al. (2018).

3.3. Transformer-based methods

Transformer (Carion et al., 2020) was originally proposed as a
sequence-to-sequence model for machine translation. Recent studies
have shown that Transformer-based pre-training model performs better
in a variety of tasks, including CV, audio processing, and even chem-
istry and life sciences. Manoj et al. (2021) introduced Transformer into
the image colorization task for the first time, realizing high-fidelity
image colorization. The method first uses a conditional self-regression
Transformer to generate a low-resolution coarse-colorized image, and
then the obtained image is up-sampled through two completely par-
allel networks to obtain the fine color high-resolution images. Fig. 10
shows network structure of Manoj et al. (2021). More recently, Casey
et al. (2021) introduced Transformer into the colorization of animation
images, named Animation Transformer (AnT), which uses a Trans-
former based architecture to learn the spatial and visual relationships
between segments across a sequence of images. This method provides a
practical and advanced Al-assisted colorization method for professional
animation workflow.

3.4. Other methods

In addition to the colorization methods mentioned above, a few
image colorization methods based on other network structures have
also been proposed. For instance, Zbulak (2020) adopted a Capsule
Network (CapsNet) that was studied to solve the image colorization
problem. Zhao et al. (2020) used conditional PixelCNN to generate
pixel-by-pixel distribution and realize pixel semantic image coloriza-
tion. In Liang et al. (2016), an image colorization method based on
vectorized convolutional neural network(VCNN) was proposed. In ad-
dition, some colorization methods adopt the idea of transfer learn-
ing (Kiani et al., 2020) to transfer the pre-trained network model to
realize image colorization.
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4. Level of automation

In order to more comprehensive understanding of the DLCI meth-
ods, this section divides colorization methods into automatic coloriza-
tion and semi-automatic colorization based on the automation level of
colorization. Further, according to the different input of the model,
the semi-automatic image colorization methods can be divided into
scribble-based method, language-based methods, and reference-based
methods. Several representative colorization methods with different
levels of automation are shown in Table 2.

4.1. Fully automatic methods

The fully automatic image colorization method does not require
any human intervention, nor does it require the colorization method
of image pre-processing and post-processing operations. This method
often requires learning a direct mapping from grayscale images to color
images on large-scale datasets without artificially providing reference
images or other color cues, such as color scribble and color palette. The
fully automatic method can combine low-level detail information and
semantic information to receive realistic natural colorization results.
In particular, the data-driven deep networks have relieved users of the
burden of retrieving high-quality training images with the development
of large datasets.

Although automatic colorization methods have yielded impressive
automatic color results (Zhang et al., 2016; Iizuka et al., 2016; Chen
and Hays, 2018; Seo and Seo, 2021; Zbulak, 2020; Liu et al., 2017),
there are some limitations: this kind of method can only cover a
small part of scenes, because it is difficult to find a large dataset with
all target objects or scenes for model training. In addition, another
limitation of fully automatic colorization is that it does not provide
a favorable colorization effect, and it is difficult to meet the specific
requirements of different users, i.e., users cannot manipulate the output
image with the colors they want. More fundamentally, the color of an
object is essentially ambiguous, such as leaves, which can be green,
brown, or yellow, but the existing fully automatic method often can
only select a single color, and the colorization effect is not necessarily
reasonable. Therefore, the fully automatic image colorization method
has a lot of research space, it is worth further exploration.
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4.2. Semi-automatic methods

The Semi-automatic colorization method allows users to control
the color of the output image, which can be roughly divided into
three methods: scribble-based methods, language-based methods, and
reference-based methods.

4.2.1. Scribble-based methods

Early scribble-based methods employed user-provided scribble or
palette to color adjacent pixels with similar intensity values, which
relied heavily on user input and usually required a large amount of
user interaction to achieve fine colorization effects. Subsequent studies
have improved such methods, especially as deep learning has evolved,
and learning-based interactive scribble-based methods have begun to
appear. For example, Ci et al. (2018) proposed a method to generate
color illustrations based on a given line art image and color scribble.
In Chen et al. (2019), a method of automatically generating scribble
was proposed by Chen et al. the generated scribble was placed in the
region of minimum entropy, which improved the credibility of color
propagation. Recently, a colorization model based on the total variation
of natural vectors was proposed by Min et al. (2020), this method solves
the color overflow problem that exists in the scribble-based method to
some extent. More recently, Zhang et al. (2021a) proposed a line art
plane fill method that can calculate the “impact area” of the user’s
color scribble, this method reduced color leakage/pollution between
scribbles.

These methods have data-centric properties that reduce the artist’s
burden and produce visually pleasing colorization results. Inevitably,
there are some limitations in these methods, which are often used
in animation images, line art images, and other artistic images, but
they are not applicable for real natural images. For real natural scene
colorization, it is difficult to provide accurate color even if users know
what color the target object should be. An example is that it is often
difficult for humans to accurately describe the colors of sunset glow
because they are often colorful and variable.

4.2.2. Reference-based method

Unlike the scribble-based method, the reference-based methods use
the color information of the reference image to realize the target image
colorization. In particular, large datasets have become more accessi-
ble in recent years, largely eliminating the time-consuming problem
of selecting reference images. Therefore, reference-based colorization
methods are revitalized in the deep learning era. Sun et al. (2019b) used
reference images to specify the structure and color style of the icon to
achieve the purpose of customizing the icon. In He et al. (2018), He
et al. adopted an image retrieval algorithm, which takes into account
the semantic information and low-level brightness information of the
image, to randomly recommend the reference image, and then used
the selected image’s color information to colorize the image. Similar
reference-based methods have been proposed in Kuang et al. (2020),
Xuan et al. (2021), Xu et al. (2020), Kong et al. (2021), Chakraborty
(2019), Lee and Cho (2020).

In general, the colorization results obtained by the reference-based
methods largely depend on the selection of the reference images. There-
fore, the key of the reference-based methods is to find the reference
image which is highly related to the gray image in content (such as
objects, illumination, and viewpoint). However, the existing methods
are either very sensitive to the selection of reference images or require
a large amount of time and resources that are difficult to apply to
real-time colorization.

4.2.3. Language-based methods
The language-based image colorization method employed text de-
scription and gray image to generate the specified color image. Com-
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pared with the scribble-based methods, these methods can reuse the
same set of instructions to achieve consistent colorization of a group of
sketches that contain similar objects. This is a challenge for scribble-
based methods because there is a direct and fixed relationship between
scribble and specific sketch areas. Therefore, the language-based meth-
ods can be considered as a complement to the scribble-based methods.
The first colorization method based on text descriptions was proposed
by Chen et al. (2018a), which used attention mechanisms to integrate
natural language description and image features, and realizes language-
based image colorization. Subsequently, Bahng et al. (2018) proposed
a method that can use text semantics to generate a palette, and then
used the generated palette to obtain the colorized image, which is
more focused on using text to generate palettes than directly colorizing
images. For the color artifact problem, Zou et al. (2019) designed
a language-based interactive colorization system for scene sketches.
The system allows users to interactively locate specific instances of
foreground objects, and then through language instructions to meet
various colorization needs progressively.

However, language-based colorization methods also have some lim-
itations. Most of the existing methods can only deal with individual
language instructions, and cannot understand context information. In
addition, some information contained in the input instruction can-
not be recognized and processed, like blonde hair, the “wheels” of
the car. More fundamentally, the colorized image obtained by the
language-based methods often has artifacts and uneven color effects.

5. Applications of image colorization

In order to have a more comprehensive understanding of the de-
velopment of colorization, this section introduces the application field
of colorization in detail. DLIC methods can be roughly divided into
six categories according to different application fields: natural image
colorization, line art image colorization, infrared image colorization,
remote sensing image colorization, video colorization, and other col-
orization methods. We present representative work for each of these
six colorization application areas in Table 2.

5.1. Natural image colorization

According to the different scenes, the natural image colorization
method can be divided into indoor scene colorization and outdoor
scene colorization. Indoor scene mainly includes bedroom, restaurant,
and other scenes (Cheng et al., 2015; Cao et al.,, 2017; Xiao et al.,
2019a), the outdoor scene is not limited to the sky, ocean, mountains,
grasslands, deserts, and other natural scenes (He et al., 2018; Zhang*
et al.,, 2017; Xiao et al.,, 2019b; An et al.,, 2020; Su et al., 2018;
Johari and Behroozi, 2020a; Kong et al., 2021), but also buildings,
billboards, transportation, and other artificial objects (lizuka et al.,
2016; Zbulak, 2020; Deshpande et al., 2017; Zhou et al., 2020; Silva
et al., 2019), as well as human, animal (Larsson et al., 2016; Xu et al.,
2020; Johari and Behroozi, 2020b; Xian et al., 2018; Kiani et al., 2020;
Lee and Cho, 2020). Natural scene images are various, which contain
different objects, so natural image colorization is a challenging research
topic. Especially, the fully automatic image colorization method is
usually data-driven, that is, it needs a large number of real color image
datasets to carry out model training. However, it is difficult to obtain
a color natural image dataset that contains all objects of all scenes.
In addition, the task of natural image colorization, except historical
images, is not particularly meaningful because the acquisition of color
images is no longer a problem contemporarily. However, in terms of
historical images, how to obtain color images that not only retain the
real historical scenes but also restore the history as far as possible is still
a problem to be solved urgently. This is not just because large reference
image datasets are hard to obtain, but more because things that existed
in old photographs do not exist today.
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5.2. Line art colorization

Line art images exist in the fields of interior design, animation
creation, and video editing (Lee and Lee, 2020; Kim et al., 2019; Liu
et al., 2017; Thasarathan and Ebrahimi, 2019; Sun et al., 2019b; Li
et al., 2021b). However, there is a limit to using only black and white
line art to convey the complex emotional changes and atmosphere of
a scene, so it is customary to use color image to convey ideas. The
colorization of line art not only relies on the designer’s imagination
to match the color of objects, but also needs to consume a lot of time
and effort. According to the different application scenes, the line art
colorization methods can be divided into manga colorization and other
line art colorization. The former is mostly utilizing color scribble or
color clues to achieve image colorization. The latter is similar to image
synthesis or image-to-image translation, that is, the sketch image is
inputted into the deep learning model to generate colorized natural
images with rich detailed texture information. These two methods are
described in the next two sections.

5.2.1. Mange colorization

Mange colorization is not only an interesting research topic, but
also has potential applications in digital entertainment. However, cre-
ating an impressive and expressive animation requires a good color
composition and proper use of textures and shadows, which means
that even experienced artists can spend a huge amount of time and
effort. Therefore, both fully automatic and semi-automatic methods
can reduce the artist’s workload to a certain extent. Unlike natural
images colorization, mange sketch colorization is more challenging
because sketch images contain only a few lines and no texture or
shadow information. In addition, it is difficult to obtain the ground
truth-sketch image pairs due to the limitation of comic copyright, which
also increases the uncertainty of model generalization largely.

Therefore, most manga colorization methods employed color cues to
achieve fully automatic or semi-automatic colorization. These methods
are based on prior knowledge learned on composite sketches to realize
the line art image colorization. For example, Ci et al. proposed a
scribble-based user-guided animation line-art colorization method (Ci
et al., 2018). Zhang et al. (2021a) proposed the user-guided coloriza-
tion method, which can calculate the influence area of the user’s color
scribble and can well avoid color overflow. However, the colorized re-
sults obtained by the scribble-based methods are often too monotonous
and even contain unrealistic colors or artifacts. On this basis, other
methods use two-stage model to realize the colorization of line-art
images (Zhang* et al., 2018; Silva et al., 2019). In the first stage, these
methods guess the color areas based on given color clues and splashing
colorful colors on the sketch to get a colorized draft. The purpose of
this stage is to increase the richness of the color scheme. Although the
generated sketch image may contain more coloring errors and blurred
textures, it is full of rich, vibrant color schemes. The second stage is to
refine the obtained drafts, including the detection of unnatural colors
and color enhancement, to obtain a high-quality colorized image with
natural realism. Fig. 11 shows the two-stage line art image colorization
process.

5.2.2. Other sketch colorization

In addition to the manga colorization mentioned in the previous
section, line art images are widely used in other fields, such as interior
design and icon design. For the human face and animal sketch, Lee
et al. (2020) used the same image with geometric distortion as a
virtual reference to realize the transformation from sketch image to
ground truth image. Similarly, Li et al. (2021b) proposed an auto-
matic colorization model in interior design, which can generate interior
design images of different styles based on reference images. In Sun
et al. (2019b), colorization techniques were applied to the contours of
icons (such as banners, signboards, billboards, homepages, and mobile
applications). In general, although the existing line art colorization
method is not perfect, its extensive application scenarios and huge
application potential. It is worth researchers to further study to explore
the application of line art colorization methods in more fields.
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5.3. Infrared colorization

With the continuous development of sensors, the thermal infrared
images have gradually expanded from the initial military reconnais-
sance to modern environmental monitoring, security monitoring, and
other fields. This section introduces the main technical areas and
limitations of infrared image colorization to understand their charac-
teristics and performance. Fig. 12 shows some typical infrared image
colorization models.

Unlike the RGB cameras, infrared imaging can not only work all-
weather, but also benefit from the super penetration of infrared ra-
diation, which can overcome some visual obstacles such as clouds
and fog, to obtain more information (such as pedestrians, animals,
road and roadside information). However, the gray value of infrared
images obtained in low-light or night vision environments is seriously
homogenized, and has the disadvantages of low resolution and poor
interpretability. In addition, compared with visible image colorization
that only estimates the chromaticity of the image, the infrared image
colorization needs to estimate the brightness and chromaticity simul-
taneously. Moreover, the objective feature (thermal feature) of the
thermal infrared image has no necessary relationship with its visible
appearance (perceived color), which further increases the difficulty of
colorization.

Existing visible image colorization methods can also be applied
to near-infrared image colorization, but the obtained image is often
difficult to present the image with the real environment color and
lacks the high-frequency detail information. Therefore, many infrared
image colorization methods have been proposed to obtain visually per-
ceptive high-quality color infrared images (Kuang et al., 2020; Suarez
and Sappa, 2017; Suarez et al., 2018; Xu et al., 2021; Dong et al.,
2018). Suarez and Sappa (2017) proposed a near-infrared colorization
method based on GANs, which used a triple architecture to learn the
three color channels R, G, and B, separately. Furthermore, Suarez et al.
(2018) included gaussian noise in each layer of the generator in order
to ensure the color diversity of generated images. The same year,
an end-to-end near-infrared image colorization method was proposed
by Dong et al. (2018), which adopted S-Shape Net(S-Net) composed
of ColorNet and EdgeNet. EdgeNet can not only enhance the edge, but
also stabilize the color region, and then obtain rich and clear color RGB
image. However, these methods often need to rely on a large number
of infrared image-visible image pairs, and the absence of paired images
limits the application of such colorization methods largely. To solve the
problem of insufficient matching data, the CycleGANs-based coloriza-
tion method is proposed (Nyberg et al., 2019; Sun et al., 2019a). There
are still coloring errors and other color artifacts in the colorized images
obtained by these methods, so there is still considerable effort needed
to explore this research.

5.4. Remote sensing colorization

Remote sensing image contains various types of images, such as
panchromatic image (PAN), multi-spectral (MS) image, hyperspectral
(HS) image, and synthetic aperture radar (SAR) image. PAN images
are single-channel and generally have high spatial resolution, but they
cannot display the color of the ground object, i.e., the image has little
spectral information. Therefore, PAN image colorization is a worthy
research topic. Fig. 13 shows some typical colorization model structures
of remote sensing images. For example, in Li et al. (2018), a coloriza-
tion method of grayscale satellite images using multiple discriminators
is proposed. Similarly, Ji et al. (2020) used multi-domain periodic
consistent GANs (MC-GANs) for SAR image colorization to solve the
problem of limited paired data. For the grayscale aerial images, Poterek
et al. (2020) proposed a colorization model based on cGANs.

In addition to the remote sensing image colorization methods men-
tioned above, there are some methods that use image fusion methods
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Fig. 11. The process of two-stage mange image colorization. The first stage: Drafting Stage, where the coloring does not exactly follow the lines of the sketch, but splashes the
colors onto the canvas in a relatively spontaneous way. The second stage: Refinement Stage, which focuses on fixing coloring mistakes and retouching details to get the final

colorized image.

ColorNet

Train & Test

Train only Ground Truth

RGB image

Contracting path

Loss function

Differonce map

EdgeNet

Feature maps from encoder

Ql

HxW Hxw

Loss: C’r_';u.

(a) S-shape Net

i
! Cyclic
: loss

Decision [0,1]

Domain X Domain Y
TIR input Generated
VIS

-

Decision [0,1)

Generator F

Dy VIS2TIR
Cyclic TIR
(b) TIRcGAN
SUEAE 2a2R —
16616
BBai28 4l
. { RN NN P
— 16602 b 428
Stiada Rauls

rput 1286128

RaAR

64x6ax16
16x16a8 8128
B .‘.‘.< .< .
~. .
128x128x16 Rauss

Ghnbda32 1606128 BxB256

(c) AE-DNN

discrimi 'natqr
—» Ladv

, A
L perecptual Lcontent

generator

discriminator
Conv 4x4x32
LeakyReLU

AvgPool 3x3

Conv 7x7x32

Conv 3x3x64

Conv 3x3x64

Cony 4x4x128

Conv 3x3x128 TeakyReLU
Conv 3x3x256 Coav 442236
Decony 3x3x256
Deconv 3x3x128

Deconv 3%3x64 i

: >‘ block
) 4

(d) TIC-CGAN
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et al. (2020) respectively.

to obtain high-quality color remote sensing images, also known as pan-
sharpening. Specifically, pan-sharpening is a method of fusing high-
spectral resolution and low-spatial resolution MS images with high-
spatial resolution and low-spectral resolution PAN images to obtain
high-resolution color fusion images. In recent years, many researchers
have applied CNNs to pan-sharpening tasks, such as PNN (Masi et al.,
2016), PNN+ (Scarpa et al., 2018), and PANNet (Yang et al., 2017).
Although they have achieved good results, these methods often require
additional supervision, which limits their performance to a certain
extent. In addition, this method mainly uses the spectral information
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of MS images, but neglects the rich spatial information of PAN images,
which makes the obtained color fused images lack of detail information.
More recently, with the development of GANs, many GANs-based pan-
sharpening methods have been proposed, such as (Liu et al., 2018a;
Shao et al., 2019; Ma et al.,, 2020; Jin et al., 2021a). Liu et al.
(2018a) and Shao et al. (2019) still need high resolution MS images
for supervised learning. Ma et al. (2020) and Jin et al. (2021a) often
obtain color fused images with high spatial resolution and high spectral
resolution without the supervision of ground truth. In general, remote
sensing colorization can provide powerful prior information for ground
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scene classification and target detection, which is worthy of further
research.

5.5. Video colorization

Video colorization is challenging because of its multimodality and
global space-time consistency requirements. First, it is not reasonable
to restore a true image in various situations. For example, given a
grayscale image of a T-shirt, we often cannot predict the correct color of
the T-shirt accurately, as it may be yellow, blue, or some other color.
The goal of colorization is to produce a set of colorized results that
look natural, not to restore the underlying colors. Second, it does not
matter what color is assigned to a region (e.g., T-shirt), but should the
entire region be spatially consistent. In addition to the above image
colorization challenges, video colorization has other challenges, such as
time consistency, cost, and user control. To be specific, video coloriza-
tion requires that a particular object should be consistent between the
previous frame and the current frame of the video or even throughout
the video clip. For example, an orange cat named “Meow Meow” should
appear orange throughout the video, rather than black one frame before
and white the next. Therefore, the image colorization methods cannot
be directly extended to video colorization. We show some typical video
colorization models in Fig. 14.

In video colorization, the most intuitive method is to run a time
filter on frame-by-frame colorization results during post-processing,
which relieves flickering but can lead to color degradation and blur (Do-
gan et al., 2015; Paul et al., 2017; Lai et al., 2018). Another way is

16

to spread color scribble between frames through explicit calculation
of optical flow (Dogan et al., 2015; Vondrick et al., 2018; Jampani
et al,, 2017; Liu et al., 2018b; Meyer et al.,, 2018) or assume that
the first frame is colorized, and then propagate the color frame by
frame. This method may cause colorization error accumulation, and
the number of propagable frames is limited, so it is only applicable to
short videos. For the colorization error accumulation, Liu et al. (2018b)
colorized each frame with the help of reference images, which greatly
reduced the accumulation of errors. However, the above methods
often require human intervention (color scribble or provide reference
images), so in Lei and Chen (2019), an automatic video colorization
method without label data and user guidance was proposed. Although
this method alleviates the problem of manual intervention largely,
the colorization effect is not ideal, and there are problems such as
unsaturated color and uneven color. In addition, for specific videos to
be colorized, such as animation and historical videos, the colorization
results are often biased from the user’s intention or historical facts.
Therefore, video colorization is still a worthy and challenging study.

5.6. Other applications

In addition to the applications mentioned above, the image col-
orization method is also applied to medical images (Liang et al., 2021;
Morra et al., 2021; Yu et al., 2020; Guo et al., 2021). For X-ray image
colorization, a colorization method based on transfer learning was
proposed by Morra et al. (2021). In Yu et al. (2020), Liu et al. pro-
posed a (Positron Emission Tomography) PET data colorization method
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Fig. 14. Representative video colorization models. (a), (b), (c) and (d) respectively show the network structure of the colorization model in Endo et al. (2021), Vondrick et al.

(2018), Zhang et al. (2019), Akimoto et al. (2020).

Natural Scene
Dataset

emote Sensing
Dataset

Video
Dataset

Medical
Dataset

Tanga Dataset

ear Infrared
Dataset

Fig. 15. Dataset for different Colorization tasks.

based on dual-threshold scheme, which applies a pair of high and low
thresholds to colorize the PET image. In addition, it has applications
in 3D point cloud data (Hou et al., 2019), archaeology (Klein et al.,
2020), monochromatic microscopic images (Bian et al., 2021), and
other fields (Dong et al., 2022; Xuan et al., 2021).

6. Datasets and evaluation metrics

In this section, we introduces the datasets commonly used in col-
orization model training(or testing) and the model performance eval-
uation system respectively. The types of datasets are sorted from five
aspects: natural image, remote sensing image, infrared image, manga
image and video, as shown in Fig. 15. In addition, we also present com-
monly used performance evaluation metrics for colorization models,
including user studies and objective image quality evaluation metrics.

6.1. Datasets for colorization

Fig. 15 illustrates the common dataset classification for colorization
methods. It is well known that different colorization methods use

17

different datasets for model training when applied to different domains.
They also differ significantly in terms of the type, number, resolution
and diversity of images. Therefore, in order to help researchers to
choose the right datasets for different colorization tasks, we sort out the
commonly used datasets in terms of data type, data volume, number of
scenes or target classes, and applicable research tasks, and also give
the sources of different datasets, as shown in Table 3. Furthermore,
we show the examples of different datasets in Figs. 16-19, to give the
reader a clearer visualization of the actual situation of each dataset.

6.2. Evaluation metrics

To evaluate the performance of image colorization methods, re-
searchers proposed several image quality evaluation methods, which
can be divided into subjective evaluation and objective evaluation.
The main purpose of image quality evaluation is to compare the per-
formance of different colorization methods, which can be used as a
guide for selecting colorization methods in practical applications, and
also as a loss function. The subjective evaluation method is a popular,
reliable and direct method to evaluate the quality of colorized images
based on HVS, it plays an important role in image quality evaluation.
Generally, trained raters score the colorized images by observing the
image details, object integrity, and image distortion. Because of this,
the subjective evaluation method has disadvantages such as long time
consuming, high cost, and non-reproducibility. Therefore, the objective
evaluation method which can quantitatively and automatically evaluate
the image quality is proposed to overcome these problems. Compared
with the subjective evaluation method, the objective evaluation method
is highly consistent with the visual perception of human, and is not easy
to be biased by observers. Objective evaluation methods can be further
divided into three categories: full reference methods, reduced reference
methods based on feature extraction, and no reference methods. In this
section, we briefly introduce some representative image quality evalu-
ation methods, and list the usage of different image quality evaluation
methods in Table 2.

6.2.1. Subjective evaluation

Mean Opinion Score (MOS) test is a commonly used subjective
image quality evaluation method, which requires raters to assign
perceived quality scores to the test images. In general, the score
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Table 3
Description of the datasets and their sources.
Category Datasets Quantity Object/scenario Instructions Resource
classes
ImageNet 14,197,122 1000 image colorization, image processing, https://image-net.org/
(Huang image recognition
et al., 2015)
SUN (Xiao 130,519 899 image colorization,scenario https://vision.princeton.edu/projects/
et al.,, 2010) understanding 2010/SUN/
Natural scene PASCAL VOC 11,530 20 image colorization, https:
dataset (Zhu (Everingham classification,recognition, object //host.robots.ox.ac.uk/pascal/VOC/
et al, 2017) et al., 2015) detection
LSUN (Yu 1,000,000 10/20 image colorization, scenario https://www.yf.io/p/Isun
et al., 2015) understanding
Places205 25,000,000 205 multi-scene image colorization, scene http://places2.csail.mit.edu/
(Zhou et al., classification download.html
2014)
Place365 10,000,000 400+ multi-scene image colorization, scene http://places.csail.mit.edu/
(Zhou et al., classification downloadData.html
2014)
Oxford 250,000+ 17/205 image colorization, classification https://www.robots.ox.ac.uk/~vgg/
Flower data/flowers/
SketchyScene 40,000+ 7,000/11,000 image retrieval, sketch colorization https://github.com/SketchyScene/
Manga (Zou et al., SketchyScene#dataset
dataset 2018)
Yumi’s cell - - line art image colorization https://comic.naver.com/webtoon/
list?titleld=651673
Danboroo 3692578 - image colorization, classification https:
(Danbooru- //www.gwern.net/Danbooru2020
Community,
2018)
Mangal09 109 109 image colorization, object recognition http://www.mangal09.org/en/
(Matsui and retrieval tasks
et al., 2017)
KAIST 95,000 pairs - thermal infrared colorization, https://github.com/SoonminHwang/
Multispectral Multispectral pedestrian detection rgbt-ped-detection/blob/master/data/
Near infrared Pedestrian README.md
dataset (Hwang
et al., 2015)
RGB-NIR 477 pairs 9 image colorization, image fusion,Scene http://matthewalunbrown.com/
Scene (Zhao Category Recognition. nirscene/nirscene.html
et al., 2011)
NWPU- 31,500 45 image colorization, image fusion, Remote http://www.escience.cn/people/
RESISC45 Sensing Image Scene Classification JunweiHan/NWPU-RESISC45.html
ISPRS 38 - image colorization, Semantic https://www?2.isprs.org/commissions/
Remote Potsdam6 segmentation comm2/wg4/benchmark/2d-sem-
sensing label-potsdam/
dataset Vaihingen7 33 - image colorization, Semantic https://www2.isprs.org/commissions/
segmentation comm2/wg4/benchmark/2d-sem-
label-vaihingen/
SEN1-2 - 282,384 pairs image colorization,SAR-Optical Data https://mediatum.ub.tum.de/1436631
(Schmitt Fusion
et al., 2018)
Videvo Stock 351,331 25 Video colorization https://www.videvo.net/
Hollywood2 3669 69 Video colorization http://www.di.ens.fr/~laptev/
actions/hollywood2/
Video DAVIS 3455 50 Video colorization https://davischallenge.org/
(Perazzi
et al., 2016)
YouTube-8M 8,264,650 4,800 Video colorization https:

(Abu-El-Haija
et al., 2016)

//research.google.com/youtube8m/

ranges from 1 (bad color) to 5(good color), the final MOS is the
arithmetic mean of all the scores. Image subjective evaluation method
can reflect the real intuitive quality of the colorized image, and the
evaluation results are reliable, but there are many shortcomings: it
cannot be described by the mathematical model, and it is difficult
to achieve real-time quality evaluation. In practical application, some
image colorization models have poor performance in the commonly
used objective quality evaluation metrics, but are far better than other
models in terms of perceived quality. In this case, the MOS test is the
most reliable image quality evaluation method.
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6.2.2. Full-reference methods

The full reference image quality evaluation method is to evaluate
the image quality by comparing the evaluated image with the real
image. Commonly used quality evaluation metrics include MSE, PSNR,
SSIM, MS-SSIM, and so on.

(a) MSE. Mean Squared Error (MSE) is used to calculate the pixel
error between the colorized image and the source image. The smaller
the MSE metric, the better the colorization performance, i.e., the closer
the distance between the colorized image and the source image, and
the more realistic and natural the colorized image is. The MSE can be
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Fig. 16. Examples of Natural Scene datasets. Row 1: ImageNet Dataset; Row 2: SUN
Dataset; Row 3: PASCAL VOC Dataset; Row 4: LSUN Dataset; Row 5 and 6: Places
Dataset; Last two rows: Oxford Flower Dataset.

calculated by the following equation:
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where m, n represents the size of the real image 7' and the colorized im-
age F. MSE evaluates the pixel-level difference between the colorized
image and the real image, but does not care about visual perception,
so it is biased in evaluating the quality of the colorized image.

(b) PSNR. Peak Signal-to-Noise Ratio (PSNR) reflects the distortion
degree of the colorized image. It is the most common and most widely
used objective evaluation metric of image quality. The calculation
equation is as follows.

MAX3
MSE >
where M AX % represents the maximum pixel value in the image, the
higher the PSNR value is, the better the quality of the colorized image
is. Like MSE, they are based on the error between the corresponding
pixel points. Because PSNR does not take into account the visual charac-
teristics of the human eyes, the evaluation results are often inconsistent
with subjective feelings.

(c) SSIM. Since HVS is very sensitive to structural loss and distor-
tion, a general image quality evaluation metric, structural similarity
metric (SSIM), is proposed to measure the structural similarity between
images, which is mainly composed of structural brightness and con-

trast. Egs. (21)—(23) are brightness, contrast, and structural calculation
equations, respectively.

PSNR=10xlog,, < (20)
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Fig. 17. Examples of Different Manga Datasets. First row: SketchyScene Dataset;
Second row: Mangal09 Dataset; Third row: Yumi’s Cell; Last row: Danboroo Dataset.
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s (x, y) = M (23)
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where y,, u, are the mean values of images x and y. o}, o; are the

variances of images and respectively is the covariance between imagesx
and y. Usually, L=255; k;, k, are constant, k;=0.01, k,=0.03. The SSIM
can be obtained by multiplying the Eqgs. (21)-(23), which is expressed
as follows.
SSIM = [I(x, )] % [c(x, »)I’ X [s(x, )]
_ @uepyter) (onyter)
- (M§+M§+Cl )(n‘%+o‘§+cz)

(25)

Here, a=p=y=1. The value range of SSIM is [0-1]. The larger the value,
the smaller the gap between the predicted image and the real image,
which means that the colorized image is more consistent with human
visual perception. Therefore, it is widely used in the performance
evaluation of the image colorization model.

(d) MS-SSIM. Multi-scale SSIM (MS-SSIM) is an extended version of
SSIM, which is more flexible in terms of changes in image resolution or
angle. Compared with SSIM, MS-SSIM is closer to the subjective quality
evaluation method, and its calculation equation is as follows.

M

MS=SSIM =[x, »)]™ x [ [¢;Cx. WP %[5, 0] (26)
j=1

The original image scale is 1, the highest scale is M, the width and

height are reduced by 2M — 1 as the factor, the similarity and contrast
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(2 )RGB-NIR Scene Dataset

Fig. 18. Examples of Different Near Infrared Datasets. (1) KAIST Multispectral Pedestrian Dataset (2) RGB-NIR Scene Dataset.

are compared on [1 — M] scales, and only the brightness is compared
at the scale M. On the jth scale, a;=f;=y;, and the sum of these three
parameters in M scales is 1, i.e., Zﬁ] aj:zjj\il ﬂj:Zinl vj =1L

6.2.3. Non-reference methods

Compared with the reference methods, the evaluation method with-
out reference images is strongly flexible. In the actual application of
image colorization, it is difficult to obtain the real color image, so the
non-reference metrics are more suitable for evaluating the colorized im-
age quality. Next, we will introduce two common no-reference metrics:
inception score (IS) and image entropy (EN).

(a) IS. Inception score (IS) indicator (Salimans et al., 2016) is
calculated through the pre-training network InceptionNet-V3, as the
Eq. (27). Firstly, the pre-trained image classification model Inception
is applied to generated images to obtain conditional label distribution.
Then, IS is obtained by calculating the KL divergence between the con-
ditional label distribution and the edge label distribution. This metric is
often used to evaluate the quality and diversity of the generated image,
especially the rationality and diversity of the colorized image obtained
by the image colorization. However, IS also has some limitations. Such
as, the existence of multiple objects in the image may lead to the
increase of conditional distribution entropy, which is not related to the
quality of the colorized image, but may mislead IS measurement.

18 =exp (E, .y, [KLGGI0) | p0)]) @7)

where, image x is sampled from the distribution p, of generated image,
and KL stands for KL divergence. p(y|x) represents the classifica-
tion vector of Inception network output, and p(y) is the marginal
distribution of the generated image on all categories.

(b) Image Entropy. Image entropy is a statistical form of feature,
which reflects the average amount of information in the image. The
one-dimensional entropy of an image represents the information con-
tained in the aggregation feature of the gray distribution in the image,
which can be calculated by

255

H ==Y plogp, (28)
i=0

where p; is the probability that a certain gray level appears in the
image, which can be obtained by the gray level histogram.
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6.2.4. Reduced-reference methods

The reduced-reference method only extracts part of the image in-
formation as reference, which has a wide range of applications. This
method evaluates the image quality by comparing the feature error
between the ground truth and colorized image.

(a) FID. Fréchet inception distance score (FID) (Heusel et al., 2017)
is an improvement on IS, which is also based on InceptionNet-V3. IS
directly evaluates the generated images, and the larger the value, the
better the image quality. The FID score is obtained by comparing the
generated image with the real image. The smaller the metric value is,
the better the image quality is. FID is less sensitive to noise and more in
line with human evaluation. FID score calculated relies on a pre-trained
Inception to extract features of the colorized image and the ground
truth, these features are considered as the statistics of the image. This
metric is often applied to the colorization performance of GANs-based
models, which can calculate by

FID = ||uy — no

+Tr (le +Yx2-2(Yx1 ZxZ)l/z)

where yu,; and u,, represent the mean values of eigenvectors of gener-
ated images x1 and real images x2 respectively. > x1 and ’ x2 are the
covariance matrices of the eigenvectors, and T'r represents the trace of
the matrix.

(b) LPIPS. Learned perceptual image patch similarity metric (LPIPS)
is proposed by Zhang et al. (2018), which compares the perceptual
differences between depth features extracted by CNNs. Compared with
PSNR, SSIM and other metrics, LPIPS is closer to human perception and
can be used to evaluate the diversity of generated sample quality, so
this metric is widely used in the colorization task. Given ground truth
and colorized image, the perception similarity measurement equation

is shown as follows.
Al Al
w O Y =Yy,
AlAl

where Y Y, € RE>XWXCi represent the output of the /th layer.

Although the above methods show better performance in capturing
human visual perception, what perceptual quality (more natural, or
more consistent with ground truth, or the color more reasonable) we
need is still a question to be explored. Therefore, evaluation indicators
such as PSNR and SSIM are still mainstream at present.

29
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Fig. 19. Examples of Different Remote Sensing Datasets. (1) NWPU-RESISC45 Dataset (2) SEN1-2 Dataset (3(a)) ISPRS Potsdamé (3(b)) Vaihingen?7.

6.2.5. Other methods

In addition to the commonly used evaluation metrics mentioned
above, there are also many other image quality evaluation metrics.
For example, Chybicki et al. (2019) adopted an evaluation metric that
combined the natural image statistical model, image distortion model,
and HVS model, namely visual information fidelity (VIF). This metric
has a high consistency with subjective vision. Kuang et al. (2020)
used noise quality measure (NQM) to evaluate the performance of
the colorization model. Besides, in Varga and Sziranyi (2016), Min
et al. (2020), Quaternion SSIM (QSSIM) was used to evaluate the
colorized image quality. Because simple FID scores do not provide a fair
comparison in the colorization field, thus Lee and Lee (2020) proposed
an image quality evaluation metric, namely colorization-FID, which is
based on the segmentation suggestion constraint. In general, there is no
unified image quality evaluation system in image colorization, which
is an urgent problem to be solved.

7. Experiments

In this section, the existing advanced image colorization meth-
ods are experimentally analyzed according to the application fields,
including natural image colorization methods, remote sensing image
colorization methods, and infrared image colorization methods. The
experimental results are shown in Figs. 20-22. In addition, we also
evaluated the performance of the natural image colorization model
on different datasets by objective image quality evaluation metrics, as
shown in Table 4.

For natural image colorization methods, we conducted compara-
tive experiments of five representative methods on the oxford flower
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dataset. By observing Fig. 20, we can find that although these meth-
ods can obtain good colorization results on some specific grayscale
images, most of the existing methods still suffer from color over-
flow, uneven coloring, and unsaturated tones. For the remote sensing
image colorization methods, we compared five advanced image col-
orization methods on remote sensing images obtained by three different
satellites(WorldView-II, QuickBird, GF-2), and most of the methods
were able to obtain good colorization results due to the relatively
single color of remote sensing images (mostly green, blue, gray, ect.).
However, careful observation can still reveals that colored images
obtained by some methods suffer from color loss, as shown in the first
row of Fig. 21, where all methods perform poorly except for column
(d) (i.e., Vitoria et al. (2019)), which enables accurate coloration on
the roof. There is also the problem of low color saturation, as shown in
the last two rows of Fig. 21 in (e) (f).

Analogously, for the infrared image colorization method, we con-
ducted a series of comparative experiments on the KAIST Multispectral
Pedestrian dataset (Hwang et al., 2015), and the results are shown
in Fig. 22. The experimental results show that most of the infrared
image colorization methods are able to give good color to the images,
such as sky, trees, roads, etc., but the retention of detail information is
poor, especially for cars, road signs, buildings, etc. In addition, most
of the existing infrared image colorization methods require pairs of
infrared-visible images, however, it is practically difficult to obtain
strictly aligned image pairs, which largely limits the application of
such methods. There are some methods that can preserve the original
information of infrared images well without the use of strictly aligned
visible images, such as Zhu et al. (2017) Li et al. (2021a), as shown
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Fig. 20. Experimental comparison of different image colorization methods in oxford flower datasets. (a) Gray image. (b) Zhu’s (Zhu et al., 2017). (¢) Zhang’s (Zhang et al.,
2016). (f) Antic’s (Antic, 2022). (g) Ground Truth.

(d) Larsson’s (Larsson et al., 2016). (e) Lizuka’s (lizuka et al.,
in Fig. 22(e) (f). However, there is a problem of missing color in areas
where there is a large difference in brightness between infrared images
and visible images (such as zebra lines). In general, deep learning-based
image colorization methods still have a big space for improvement and
are worthy of our in-depth study.

8. Challenges and discussion

Although DLIC models have made critical progress, they still have
limitations in practical application and need further improvement and
research.

(1) Limited Training Data and Open Source Codes. Many existing
deep learning-based colorization methods do not have open source code
for further research or use, which greatly limits the research progress
in this field. In addition, Numerous methods are trained on the real-
world image datasets, and their applications are mostly limited to
the colorization of historical photographs. But there are no large-scale
public datasets available in many application fields, such as line art

22
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2016).

images, infrared images, remote sensing images, and medical images.
Besides, the performance of the most current models seriously relies
on training datasets. In practice, it is difficult or impossible for users
to collect enough samples to train a model for the colorization of all
natural scenes or objects. Therefore, how to make the DLIC models
more practical in the case of limited data is worth further research. This
problem may be solved by transfer learning and few shot learning.
(2) Lack of Color Saturation and Diversity. Most of the existing
colorization models ignore the rare instances in the data, and often
select the most frequent color to generalize the data. Although this
approach succeeds in producing naturally believable colorized images,
each image loses its color characteristics. For example, in anime images,
different characters are often distinguished by their hair color, skin
color, or pupil color. In addition, for different target objects, it can
actually show a variety of colors, which has been neglected by most
studies. Especially for man-made scenes/objects, taking cars as an
example, although they are of the same brand and series, they may have
different colors, such as flamboyant red, calm black, or even bright
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Fig. 21. Comparison of different remote sensing image colorization methods. (a) Gray image. (b)Lizuka’s (lizuka et al., 2016). (c) Zhang’s (Zhang et al., 2016). (d) Vitoria’s (Vitoria
et al., 2019). (e) Yoo’s (Yoo et al., 2019). (f) Isola’s (Isola et al., 2017). (g) Ground Truth. The first and second rows show the experimental results on the dataset obtained from the
WorldView-II satellite. The third and fourth rows show the experimental results on the dataset obtained from the QuickBird satellite. The fifth and sixth rows are the experimental

results on the dataset obtained from the GF-2 satellite.

yellow. Therefore, how to realize the diversification of the color scheme
for the same object is also a major research point in image colorization.
For GAN-based methods, perhaps we can add additional noise vectors
to the generator to increase the color diversity and saturation of the
generated image. In addition, by exploring the potential space of GAN,
we can find the direction to control the color of the object, which is
also a possible solution to realize the color diversity of the generated
image.

(3) Precise Colorization. For the application scenes of image col-
orization, most studies only focus on some simple natural scene images,
such as grassland, ocean, buildings or some simple indoor scenes. In
fact, deep neural networks with a minimum semantic interpretation
can solve it. However, the research of high-resolution complex scene
colorization is insufficient with a great challenge. Imagine a busy street
with lots of people, different buildings, and even cars. It is obviously
difficult to achieve precise colorization for this scene, this is because
each color in this complex scene is special and there is no valid ground
truth, and any color combination can work if some special harmony is
followed. Therefore, we may first carry out scene recognition for com-
plex scenes, and then coloring all kinds of target objects respectively to
achieve the precise colorization of the whole scene.

(4) Reasonable Colorization. How to realize the reasonable image
colorization is also an urgent problem to be solved. In natural scenes,
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we need to consider the relationship between various objects in a scene.
Particularly, we should consider the relationship between light and
shadow. The common situation is, when the blue sky, white clouds
and surrounding trees are reflected on the calm river, their reflections
should be given the same color as their own. However, the existing
colorization models often give them average but unreasonable colors
only according to the brightness information of the scene. Similar
situation is more common in video colorization. As the shots change,
the characters or scenes may show different colors due to the lighting
changes, but in fact, most researches have not considered this factor.
In addition, most studies have focused on the colorization of a single
video scene, while very few studies have explored the colorization of a
video under different scene transitions, such as walking from indoor to
outdoor. Therefore, how to guarantee the quality of the color image and
give consideration to the rationality of the image/video color scheme
is a problem that needs to be fully explored.

(5) Insufficient Generalization. For different scenes, the coloriza-
tion models in most existing researches often need to be retrained
because the color difference between two real application scenarios
are great and the colors of the same object in different scenes may
be various, which causes the waste of computing resources and time
largely. Besides, the requirement of training dataset is also difficult
for a specific scenario, and the colorization effect achieved in practical
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Fig. 22. Comparison of different infrared image colorization methods. (a) Infrared image. (b) Isola’s (Isola et al., 2017). (¢) Zhu’s (Zhu et al., 2017). (d) Kuang’s (Kuang et al.,

2020). (e) Bansal’s (Bansal et al., 2018). (f) Li’s (Li et al., 2021a). (g) Visible image.

Table 4
Experimental comparison of several representative image colorization methods.

Methods Publication Datasets SSIM PSNR?T
Zhu’s (Zhu et al., 2017) ICCV/2017 Oxford Flower 0.5616 20.3554
Isola’s (Isola et al., 2017) CVPR/2017 Oxford Flower 0.9631 30.3054
Oxford Flower 0.3699 14.0588
) ImageNet 0.8921 21.7912
Zhang’s (Zhang et al., 2016) ECCV/2016 Coco 0.8952 21.8383
Places205 0.9214 22.5811

Oxford Flower 0.6913 19.741
) ImageNet 0.9271 25.1074
Lasson’s (Larsson et al., 2016) ECCV/2016 €oco 0.9302 25.0618
Places205 0.9518 25.7224

Oxford Flower 0.6903 20.722
. v (1 ImageNet 0.9177 23.6365
Lizuka’s (lizuka et al., 2016) TOG/2016 €oco 0.9225 23.8635
Places205 0.9502 25.5817
Oxford Flower 0.6396 28.5172
., . . ImageNet 0.9145 23.5374
Antic’s (Antic, 2022) Online/2022 Coco 0.9207 23.6928
Places205 0.9396 23.9836
ImageNet 0.9332 26.9805

Su’s (Su et al., 2020) CVPR/2020 COCO 0.9401 27.777
Places205 0.9546 27.1675
Wu’s (Wu et al., 2021b) Arxiv/2021 ImageNet 0.8825 21.8162
ImageNet 0.9316 26.2615
Kim (Kim et al., 2021) Arixiv/2021 COCO 0.9424 26.2337
Places205 0.9537 27.4834
Li’s (Li et al., 2021c) TIP/2021 Places205 0.8925 28.9862

application is not ideal and needs further study. Thus, how to improve
the performance of model generalization is serious for its applica-
tion. We think that the model generalization should be considered
in its designing and training. Besides, the testing technique of model
generalization should be explored as well.
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(6) Lack of Uniform Colorization Performance Evaluation Sys-
tem. For image colorization, the existing image quality evaluation
metrics are not targeted, which cannot comprehensively evaluate the
color quality of the colorized image. In addition, it is necessary to ex-
plore a new evaluation metric for image colorization rationality, which
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can be used to evaluate whether the color scheme of colorized image
is reasonable or consistent with common sense, so as to avoid ignoring
the rationality of image while considering the color diversity of image.
Especially for natural scene images, the sky may show different colors
at different times of the same day or in different seasons, but it is
impossible to be green even though the color of the sky is changeable.
We consider that the human perception should be took into account
in colorization evaluation system. Therefore, it is necessary to explore
a unified and pointed image colorization quality evaluation system to
evaluate model performance, comprehensively.

Furthermore, among the existing methods, the automatic method
often fails to realize the controllable image colorization, while the semi-
automatic method (such as reference-based methods, scribble-based
methods) can make up for this defect, but it largely relies on human
intervention. Therefore, how to achieve a fully automatic and control-
lable image colorization, which is still a challenging and interesting
research. This problem may be realized by analyzing the latent space or
activation space of GANSs to find the direction or variable that controls
the color of different object categories in the gray image.

9. Conclusion

In this paper, we comprehensively review image colorization tech-
niques based on deep learning. Firstly, we describe the problem defi-
nition of DLIC, and introduce the commonly used color space and loss
function, and on this basis, the DLIC models are classified. Then, we
provide new ideas for the classification of DLIC methods from three
different perspectives: network structure, degree of automation, and
application domain. Next, we cover a contemporary study of popular
public datasets and evaluation criteria, and experimentally compare
different image colorization methods in three application domains, as
well as fully analyze the performance of different colorization meth-
ods using a comprehensive image quality evaluation system. Finally,
we discuss several open issues and challenges of colorization in the
deep learning era, and identify some potentially productive directions
forward.

All in all, image colorization methods have made remarkable
progress in deep learning era. To achieve more effective model de-
signing, training, and reasoning, there are still many problems to be
explored for academic researches and practical applications. We hope
that this review will provide an effective way to understand the current
state of art and provide insights into the future of DLIC.
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