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Featured Application: Colorization of line-arts in storyboards for media industries including

movie, animation, and game. Automatic colorization of comic strips, anime style images,

and cartoons.

Abstract: Line-arts are used in many ways in the media industry. However, line-art colorization is

tedious, labor-intensive, and time consuming. For such reasons, a Generative Adversarial Network

(GAN)-based image-to-image colorization method has received much attention because of its

promising results. In this paper, we propose to use color a point hinting method with two GAN-based

generators used for enhancing the image quality. To improve the coloring performance of drawing

with various line styles, generator takes account of the loss of the line-art. We propose a Line Detection

Model (LDM) which is used in measuring line loss. LDM is a method of extracting line from a color

image. We also propose histogram equalizer in the input line-art to generalize the distribution of line

styles. This approach allows the generalization of the distribution of line style without increasing

the complexity of inference stage. In addition, we propose seven segment hint pointing constraints

to evaluate the colorization performance of the model with Fréchet Inception Distance (FID) score.

We present visual and qualitative evaluations of the proposed methods. The result shows that using

histogram equalization and LDM enabled line loss exhibits the best result. The Base model with

XDoG (eXtended Difference-Of-Gaussians)generated line-art with and without color hints exhibits

FID for colorized images score of 35.83 and 44.70, respectively, whereas the proposed model in the

same scenario exhibits 32.16 and 39.77, respectively.

Keywords: GAN; automatic colorization; line-art colorization; histogram equalization; loss function;

line detection mode; line distribution generalization

1. Introduction

Line-artworks play a crucial role in the initial phases of media industries for making storyboards,

games, illustrations, animations, and movies. Since there is a limit in communicating the complicated

emotional transitions and atmosphere of a scene using only line-art, it is a customary to use colorized

line-art and colorful storyboards to convey ideas. However, coloring line-art is a very tedious and

manual labor intensive job. For example, if an animation is two hours long and uses 24 frames per

second, then animators have to colorize about 17 thousand frames. If we assume that colorization of

line-art takes about 5 min per frame then it would take about 2302 days of working hours without

any resting. To automate the colorization of line-art, the research community began to use Generative

Adversarial Networks (GANs) [1]. There are also commercialized tools such as PaintsChainer and Clips
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Studio that automate the line-art; however, the perceived quality of the results are not as satisfactory

as real-world colorized line-arts.

Colorization of line-arts are considered as difficult because, unlike black and white images, it does

not contain texture or shade information. Although many models make use of a reference image

or add few hint pixels on a line-art to aid the colorization process, the result of colorization shows

limited color spectrum and monotonous color space. Basic steps included in automatic colorization

of line-art are acquiring characteristics or features from a line-art, segmenting the image to generate

texture and shades from a limited information, and seamlessly concatenating the segments as a final

colorized image.

The automatic colorization of line-art can be categorized into three depending on the types

of input data. The first category is fully automatic colorization that exploits only the line-art [2,3].

The second category is semi-automatic colorization which makes use of style transfer based on input

data of line-arts and colorized images [4–6]. The final category is hint-based methods that inform what

color to be used in which specific area of an image [7–12].

All three categories of colorization models have to extract contour of lines from the original

line-art. Interestingly, the colorization performance of a generated colored line-art of the artificial line

is better than that of real-world line-arts drawn by a artist. We conjecture that the low quality is due to

over-fitting of input line-art data and imbalance of distribution of input line style and the distribution

of real-world line style. In this work, we provide solution to over-fitting of the line style distribution

and colorize a line-art with better color spectrum, shades, and gradation.

The proposed scheme is composed of five steps: (1) line-art augmentation with histogram

equalization, (2) conversion of original image to grayscale image for subset of line-art, (3) data

augmentation with two different line extraction method, (4) Line Detection Model (LDM) loss function

for line generalization, and (5) two-stage generator that takes a low resolution image in the draft

model and enhances color quality in the colorization stage. Figure 1 shows the result of colored images

exploiting the proposed method using real-world images as the input data.

Figure 1. Proposed method’s real word line-art coloring results.

Many of the works in the field have used Fréchet Inception Distance (FID) score to compare

the quality of generated images. However, we believe that simple FID score does not provide a fair

comparison in the field of colorization because the generated color spectra are not correlated across

the generated images. In this paper, we propose segment-based hinting constraints for consistent and

fair comparison of colorized artworks. We named this method as Colorization FID (C-FID). We have
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conducted C-FID evaluation on the proposed model with XDoG generated line-art and real-world

line-arts. When we provided a weak hint with 28 pixels on artificial line-art and real-world line-art,

the FID shows 32.16 and 57.51 in the proposed model which are the lowest, respectively. In the case of

FID measured on the artificial line-art and original line-art without hints, the result shows 39.77 and

98.75, respectively.

The main contributions of the work are as follows:

• Provide flexibility in enhancing the resolution of an image through two stage generators.

• Introduction of line style distribution generalization via histogram equalization of line-art to

provide better colorization performance.

• Randomly use the grayscale transformed image instead of the line-art in data augmentation to

increase the line-art generalization performance.

• Introduction of seven segment hint pointing constraints in measuring the performance of line-art

colorization.

The organization of the paper is as follows. Section 2 introduces the research done on the field of

colorization of line-arts. Section 3 describes the proposed data augmentation method, construction

of model, and learning method. Section 4 explains the data used in the learning, presents result of

experiments, and analyzes the result. Finally, Section 5 concludes the paper.

2. Related Work

In this section, we describe GAN- and Convolutional Neural Network (CNN)-based methods

in the colorization of line-arts. There are three different methods (fully automatic colorization, style

transfer or semi automatic colorization, and user hint) of colorization the line-art with respect to input

data format.

2.1. Generative Adversarial Networks

Recently, Generative Adversarial Network (GAN) model [1] is proven to be efficient in generating

super resolution image [13], Text To Speech (TTS) [14], and data augmentation [15] because of its

performance in generating high quality data. GAN is composed of generator that generates data

similar to the real data and discriminator that tries to distinguished the generated data among the real

data. The goal of the two models is to deceive the other model. As a result, generator model generates

a data that closely follows the distribution of input data.

Despite the advantages of GAN model, it is not a trivial job to balance the training of the two

models. Moreover, it is also very difficult to have control over the output of GAN model because

the output follows the distribution of input data. After numerous experiments, Radford et al. [16]

proposed Deep Convolutional Generative Adversarial Network (DCGAN) that exploits CNN and batch

normalization [17] in building balanced generator and discriminator model structure. Mehdi et al. [18]

proposed Conditional GAN (cGAN) that employs class labels to have control over generated data.

2.2. Fully Automatic Colorization

Fully automated line-art colorization uses only the line-art without any other form of user aids [2,

3]. Isola et al. [2] (Pix2Pix) used the Conditional GAN model to provide solution to image-to-image

translation problems. By combining the adversarial loss and the L1 loss, they create a photo realistic

image. Kang et al. [3] used three different models (low resolution painter, background detector,

and polishing network) to colorize the line-art. Low resolution painter model colors the given line-art.

Background detector model distinguishes the foreground and the background of the line-art. Polishing

network model combines the resulting low resolution image and extracted background segments

to restore the resolution of the image. By exploiting the characteristics of speech bubbles in comics,

they filled in the speech bubble regardless of the non image components such as letters in the comic.

Although they show superior quality in preventing background color bleeding, they lack in power in
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painting a specific location with a certain color. Another issue with it is that the output resolution of

the image is limited to 256 × 256 pixels.

2.3. Style Transfer-Based Colorization

Another way of automatically colorizing the line-art is based on style transfers [4–6]. It makes use

of two user input data consisting line-art and colored image as a reference style. Furusawa et al. [4]

exploit a reference image and interactive color hint (color palette) on comic strips to allow users to have

control over the choice of color within the line-art. They synthesized coloring information acquired

in colorization process onto contour information from the original comic strip. Although the use of

color palette gives better control over the chosen color in a specific area of the image, the colors are

painted or spread over the contour and the letters. Another issue with synthesizing is that the contours

can not be clearly extracted from the image; as a result, intended texture is incompletely blended into

the image. Zhang et al. [6] exploit style image through VGG16/19 model network. They introduced

two guide decoder within the model to prevent the vanishing gradient and achieve better quality of

colorized artwork. However, since they use VGG16/19 network model, it contains multiple issues.

the first issue is that the size of the model is large; second, it is difficult to have control over colors in

specific area; and lastly, the resolution of the final image is limited to 256 × 256 pixels.

2.4. Colorization with Color Point Hinting

The third type of automatic colorization of line-art exploits user provided hint to paint certain color

in specific areas of the image [7–12]. A representative work on this category is done by Ci et al. [10].

They used Local Feature Network (LFN) to prevent the over-fitting of artificially generated lines from.

They claim that the use of LFN in their approach has solved the issue of the over-fitting of lines in the

image through generalization of lines. One disadvantage is that they exploit VGG16 in calculating

loss of the model, which results in large model size. Sangkloy et al. [7] made use of four different line

extraction methods to prevent over-fitting in painting face line-art. Frans et al. [9] exploited two separate

generators for learning colors and shades. Liu et al. [8] devised a way to reduce the color smearing

or spilling over the contour through maneuvering coefficients of loss. The result of their work shows

better image quality than Pix2pix [2]. Hati et al. [12] also used a two-stage generator. The colorization

model is based on generator model proposed by Ci et al. [10]. The colorization model generates an

image and the line model generates artificial line-art from the provided image. They increased the

colorization performance by taking account of reconstruction loss of generated line-art and real-world

line-arts in colorization model. Zhang et al. [11] tried to improve the performance of colorization via

exploiting two stage generator model. They reduce the dependency of initial image in post processing

model by stimulating artifacts in the generated draft image.

3. Structure of Proposed Method

The overall layout of the proposed system is illustrated in Figure 2. It uses two generators (draft

model and colorization model). The first generator creates a roughly colored draft image (128 × 128).

The second generator enhances the image generated in the draft model, then increases its dimension to

512 × 512. To generate the colorized image, two models learn the provided line-art and a weak hint.

Sections 3.1 and 3.2 describe the method used in the pre-processing and Line Detection Model used in

the learning of the draft stage, respectively. In Section 3.3, we define and explain the image generator

model used in the colorization stage. Section 3.4 describes the classifier used in GAN, and Section 3.5

describes the loss functions used in the models.
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Figure 2. Network overview.

3.1. Line-Art Over-Fitting

To paint the line-art, existing works exploit a pair of line-art and color image. In order to obtain

contour of lines from an image, one needs to manually select the lines which takes a long laborious time

even for experienced artisans. Thus, the research community moved on to self-learning-based methods

where computer vision algorithms are used to extract contours of lines in an original colorized image

and exploit them in the learning process. The colorization performance of generated line-arts and

real-world line-arts are quite different. However, the colorization performance of actual line-art tends

to be low. The reason for the low performance is overfitting of line distribution. The pixel distribution

of real-world images and algorithmically extracted lines from color image is different. By learning

the inaccurate line distribution, we cannot achieve good colorization performance. Ci et al. [10] tried

to solve the over-fitting problem using LFN that has pre-trained by animation illustrations and

tags. In the case of the model proposed by Ci et al. [10], they have to use LFN in the inference

stage. Sangkloy et al. [7], on the other hand, approached the over-fitting of lines in different angle.

They exploit four different methods to extract the artificial contour of lines and use them as data

samples to learn to produce generalized line-arts.

In this work, we propose to increase the level of generalization of artificial lines used in the

learning through following four techniques. First, the use of auto-encoder that extracts lines from a

colorized image as a transfer learning model for draft model. Second, a subset of images are converted

to grayscale image. Then, they are used as the line-art for learning. Third, one of the two artificial line

generation scheme is randomly chosen to generate lines with diverse line distribution. Fourth, use of

histogram equalizer to generalize lines and augmentation of samples.

Depending on the algorithms used for line extraction, the histogram of lines can be very different.

Figure 3 shows the histogram of two different line extraction methods and a real-world line-arts.

Figure 4 shows the image after applying the line extraction methods. We can observe that histogram

of real-world line-arts are densely populated from 0 to about 170 where as XDoG and Dilate abs sub

covers about 120 to 140 and about 0 to 60, respectively. The difference in line style distribution can

be seen clearly in Figure 4. The distribution can also be affected by characteristics of digitizer pen,

parameters used for image editors such as pen style, padding, style, and pen pressure. Although not

shown in the paper, our initial experiment shows that the stability of the colorization of an image is

very sensitive to the brightness of the line. Combining all the test results, we deduce that the quality of

colorization of line-art depends on the distribution of line style.

In this work, histogram equalization is applied on the brightness of lines to generalize line style

of an image. During the pre-process stage of the learning, we convert a line-art to grayscale and

then apply histogram equalizer on that image to augment the learning data. One side effect of using

histogram equalization is that it is a lossy transformation that changes the average brightness of

lines. In our case, the histogram equalization is only applied in the pre-processing stage and a new

information is generated in the draft generation, thus the characteristic of the line remains the same.
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Figure 3. Histogram of line-art (eq: histogram equalization).

Figure 4. Line-art for Figure 3 (eq: histogram equalization).

3.2. Pre-Processing

Data used in the learning phase are a pair of extracted line-art and the color image cropped in

the dimension of 512 × 512 at a random position. In the draft model, the input image is resized into a

dimension of 128 × 128. As shown in Figure 2, we use a hint image for the learning of the draft model.

A sample of hint image used in the draft model is shown in Figure 5. The hint image consists of four

channel image (RGBA). The hint is appended as an alpha channel on line-art. We randomly chose 0 to

128 pixels from the original image as a hint for learning of the draft model. The alpha channel marks

the location of randomly chosen pixels.

Figure 5. Three pairs of images for pre-processing (Gray has alpha value of 0 in the hint image).
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To extract lines from a color line-art, we used Extended Difference of Gaussians (XDoG) [19] and

Dilate abs sub. Algorithm 1 describes the pseudo-code of the proposed Dilate abs sub scheme. Result of

the two line extraction algorithms are shown in Figure 4. We used σ of {0.3, 0.4, 0.5} for XDoG and

kernel size of 4 × 4 and 5 × 5 for Dilate abs sub. The parameters are randomly chosen to introduce

diversity in line style.

Algorithm 1 Dilate abs sub

Require: color image image
Require: Kernel size K

kernel← (K,K) size kernel
dilated← dilate(image, kernel)//imported from OpenCV
diff← absdiff(dilated, image)
line← ImageToGray(255− di f f )

3.3. Line Detection Model

Line Detection Model (LDM) is used to extract contour of line from a color image. The purpose of

LDM is to prevent line over-fitting and improve the line generalization performance. In our approach,

we use LDM on real-world line-art and line-art generated from the draft model. The structure of LDM

is shown in Figure 6, it uses auto-encoder as the Base model. The output filter number, kernel size,

and stride are depicted in the blocks in the diagram. For example, c32k3s1 denotes output filter size

of 32, kernel size of 3, and stride of 1. LDM receives the color image with resolution of 128 × 128

and generates grayscale line-art with the same resolution. It is used only in the learning process of

draft model. The loss function used for LDM is described in Equation (1), l denotes line extracted via

either “XDoG” or “Diate abs sub”, and c denotes color image. Ec,l denotes the expected value of all l

and c instances. LL1(ldm) measures L1 loss, which is the pixel difference of ldm(c) and l. Adam [20]

is used for the training, and the parameters used are β1 = 0.5, β2 = 0.9, and learning rate is 0.0001.

The learning rate is decreased by one tenth of current rate at step 110K and 183K. The batch size is set

to 16 and total of 256k steps are used in the training.

Figure 6. Line Detection Model (c: output filter number, k: kernel Size, s: stride, For example, c32k3s1

means inter convolution layer output filter number is 32, kernel size is 3, and stride is 1).

LL1(ldm) = Ec,l [‖l − ldm(c)‖1] (1)

There are two benefits of using LDM. First, we can create optimized feature extraction model for

the resolution of line-art used in the learning process. Second, it is used only in the learning phase;

thus, it does not increase the overhead in the inference phase. The result of loss function is used as

feedback to the draft model so that it can further improve the line generalization performance of the

draft model.



Appl. Sci. 2020, 10, 8699 8 of 16

3.4. Draft Stage

The proposed structure of colorization has two stages; the first stage generates the draft image,

and the colorization stage paints the generated image. The role of draft model is to produce a low

resolution (128 × 128) colorized draft image from the line-art and user provided hint. When the size

of 512 × 512 is used for training in the draft model, the result was very unstable and requires a lot

computation. The draft image does not have to generate a high quality image, but it needs to portray

rich a color spectrum which can be enhanced in the colorization stage.

The draft model exploits U-Net [21] architecture which is widely utilized in existing works.

We used 10 layers per block in ResNeXt block [22]. For up-sampling, we used sub-pixel convolution

pixel shuffle [23] while reducing the checkerboard artifacts [24]. We did not use normalization

layer [17] to increase the accuracy of painting and maintain color range flexibility of output

data [10,22,25]. We used Leaky ReLU with slope of 0.2, except for the last layer which uses tanh

as the activation function.

We used GAN [1] to generate abundant color space in the draft model. The discriminator used in

the draft model is shown in Figure 7 which is designed by Radford et al. [16]. We used Leaky ReLU

with a slope of 0.2, except for the last layer which uses sigmoid as the activation function.

Figure 7. Model architecture (c: output filter number, u: output unit number, k: kernel Size, s: stride).

3.5. Colorization Stage

The structure of colorization model is depicted in Figure 7. Following the same nomenclature as

Figure 6, c, k, and s denote output filter number, kernel, and stride, respectively. The colorization stage

uses the result of draft model as the input data then enhances the color portrayed in draft image. Note

that the result of the draft model may contain errors and unnecessary artifacts. To reduce the effect of

artifacts on draft image on the colorization stage, we followed the approach used in Zhang et al. [11]

that adds artifact stimulation that synthesizes color spray, color smear, and distortion. Layout of artifact

stimulation is illustrated in Figure 7. Once the draft image synthesized with artifacts is ready, we

enhance the image into higher resolution (512 × 512) then it is used as the input to the colorization

model. The colorization model also uses U-NET [21] and the activation function for the last layer

exploits is tanh. We did not use GAN in the colorization stage because the color space is already

decided and provided by the draft model.
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3.6. Loss Function

In this section, we describe loss functions used in the model. The loss function for the draft

model is defined in Equation (2). It takes account of four different loss functions: GAN loss (LGAN),

reconstruction loss (Lrecon), contents loss (Lcont), and line loss (Lline). The effect of each component is

controlled by coefficients wa, wr, wc, and wl , respectively. Notation l denotes line-art with dimension

128 × 128, h denotes color hint, and c denotes the original color image with dimension 128 × 128.

D and G denote discriminator and generator used in the draft model.

Ldraft = wamin
G

max
D
LGAN(G, D) + wrLrecon(G) + wcLcont(G,F )) + wlLline(G, ldm) (2)

LGAN(G, D) =Ec[log(D(c))] +El,h[log(1− D(G(l, h)))] (3)

Loss of GAN is described in Equation (3) following the work of [1,16]. Discriminator, D(),

estimates the probability of real color image, c. The result of D() has value between 0 and 1. Ec and El,h

measures the expected value of log(D(c)) and log(1− D(G(l, h))), respectively. G(l, h) generates a

colored image exploiting extracted line-art along with user provided hint. G(l, h) tries to generate

a image distribution as close as original image. D(G(l, h)) estimates the probability of generated

instances.

In theory, D() and G() are enough to work against each other to improve the quality. However,

practically, we need to employ other loss functions to provide balance in GAN structure. In this paper,

we exploit Equations (4)–(6) to stabilize the learning process.

Lrecon(G) = El,h,c[‖c− G(l, h)‖1] (4)

The reconstruction loss is defined in Equation (4). Expected value is measured over L1 loss of real

color image c and generated draft image G(l, h). Through Lrecon, G() can adjust color space of given

images to match the color distribution of original color image, c. As a result, G() can generate a better

image that can deceive D().

Lcont(G,F ) = MSE(F (c)−F (G(l, h))) (5)

Content loss (Lcont) is defined as Equation (5). Lcont is L2 measurement (Mean Square Error,

MSE) of F feature map obtained from draft image and the original image. F represents feature

map generated in fourth convolution layer in VGG16 [26] which is trained with ImageNet [27].

Lcont measures the effect of the feature maps difference of output from the generator and the original

image. Lcont is a method of calculating the distance of the extracted feature map using pre-trained F .

Since the perceptual similarity is the main concern in this equation, using the feature map captures the

characteristics of the image that cannot represented by observing a pixel.

Lline(G, ldm) = El,h,c[‖ldm(c)− ldm(G(l, h))‖1] (6)

Line loss (Lline) is defined as Equation (6). Lline calculates the L1 loss of line-arts of draft

(ldm(G(l, h))) and the original image (ldm(c)) generated by LDM. LDM is described in Section 3.3

and converts color images c to line-art ldm(c). The logic behind Lline is as follows. If G is sufficiently

trained and the generalization of the line-art is properly progressed, the difference between the line-art

ldm(G(l, h)) and ldm(c) created using G(l, h) and c should be small. Lline takes account of the line

distribution difference between two line-arts (ldm(G(l, h)), ldm(c)) generated by LDM in pixel space.

Then, it is reflected in Ldraft to improve the generalization performance of the line-art in the draft

model. As a result, we can get better quality.

Lcolor(G
′, G) = El,l′ ,h,c′ [‖c

′ − G′(l′, resize(G(l, h)))‖1] (7)
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Equation (7) defines colorization loss, where G′ denotes colorization model, l denotes line-art

(128 × 128), l′ denotes line-art with dimension of 512× 512, h denotes hint, c′′ denotes colorized image

with dimension of 512 × 512. After learning process of G is finished, we enlarge the dimension of draft

image (G(l, h)) from 128 × 128 to 512 × 512, then measured the L1 loss in pixel space of generated

color image and the original color image. Adversarial loss is not used in this step, instead we focus on

enhancing the color generated in G(l, h).

4. Experiments and Analysis

4.1. Data Set

Danbooru [28] is a well-known data set for anime style illustrations; however, it not only contains

a lot of noise but also contains strokes to aid the ratio of the drawing in the image which are not part of

actual artwork. Thus, we made a crawler to gather illustration data from shuushuu-image-board [29].

After acquiring the data set, we manually inspected image that might cause adverse effect on the

learning. After the screening, we acquired total of 733,322 color anime style illustrations and 546 pairs

of line-arts and its colorized version of artwork. Manually filtered images, which are considered as

noise, are black and white image, high/low key image, dimension less than 512 × 512, image with

skewed color, doodles, and image containing photos of real objects.

4.2. Environment

PyTorch framework [30] is used to implement the proposed model. Single NVIDIA RTX 2080Ti

card is used for training. For draft model, we used Adam [20] as optimizer, and β1 and β2 are set to

0.5 and 0.9, respectively. We used learning rate of 0.0001 and reduced it by one tenth of the current

learning rate at the 48 K step. The batch size is set to 64 and total of 175 K steps are used in the learning.

Hyperparameters for model configuration are represented by Figures 6 and 7. Coefficients of loss

functions used in the draft model are as follows: wa = 0.05, wr = 1.0, wc = 0.1, and wl = 1.0.

Adam optimizer is also used in the colorization model, and the hyper parameters are same as

that of in draft model. Learning rate is reduced by one tenth of its original value at the 733 K step.

Since we scale the image dimension in the colorization stage, the largest batch size we could use was 4.

The colorization model trains for 1173 K steps.

4.3. Visual Analysis

A good automatic colorization model should not only work on artificially generated line-art

but also on real-world line-arts. To achieve high quality result on both images, we proposed to use

histogram equalization and to take account of LDM in calculation of line loss (Lline). Figure 8 presents

visual comparison of different algorithms: Model proposed by Ci et al. [10] (Base), Pix2Pix [2], proposed

model without histogram equalization, proposed model without line loss, and proposed model with

histogram equalization and LDM applied line loss. The results show that the proposed model works

with both types of images. Figure 8b shows checkerboard artifacts [24] from transpose convolution.

Pix2pix also shows that the result is very sensitive to type of input data and is very unstable.

The effect of histogram equalization and Lline is clearly shown in Figures 8a,b and 9a.

Without histogram equalization, colors are not contained within the line contours but spilled or

smeared over the boundaries of lines. When both methods are used in the colorization, that is Figure 8e,

the result shows that contours are clearly distinguished and colors are contained within the boundaries.

Visual inspection (Figure 9) of the results shows that generalization performance of the proposed

model is better than existing works.

We also tested colorization performance of other styles of image, i.e., grayscale image with various

line thickness, texture, and shading. The result is illustrated in Figure 10. In the case of Base model,

black was the dominant color and shows a lot of artifacts. Colors in the Pix2Pix model are skewed

and also show a lot of artifacts. In the case of proposed model, the model presents a wider color
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range. Reasons that Base and Pix2Pix cannot properly color the image, unlike the proposed model,

is because the distribution of thick lines are not trained and texture present in the image distorts the

line distribution.

Figure 11 shows the performance of models with 64 randomly chosen color hints leaked from

the original color image. To show that our model solves the line overfitting problem, we performed

the same experiment on real-world line-arts and lines extracted with XDoG method. Results of Base

and Pix2Pix in XDoG line-arts show that they have low accuracy in reflecting input color hints. In the

case of Pix2Pix, it shows the checkerboard effect and other artifacts. On the contrary, our model closely

follows the original image where hints are given. For example, right collar on the first row of Figure 11e

XDoG has colored blue correctly because the hint is given in that region. The left collar is colored with

color of hair because the color hint in that region is not given. In the case of real-world line-arts, both

Base and Pix2Pix fail to contain the color within the lines. Although Base model tries to color the image

with respect to given hints, the colors are spilled and does not follow the given hints. Pix2Pix, on the

other hand, consistently shows various artifacts. Consistent with the XDoG case, the colorization

of real-world line-arts follows the provided hints. In this case, both of the collars in the first row of

Figure 11e real-world are colored with blue which is the color of hints in that region. From Figure 11,

we can observe that colorization performance of the proposed model is most stable compared to

other models.

Figure 8. Visual comparison of different models. (a): Base [10], (b): Pix2pix [2], (c): ours (Line Detection

Model (LDM) enabled line loss only), (d): ours (histogram equalization only), (e): ours (Both: LDM

enabled line loss + histogram equalization).

Figure 9. Visual comparison of artifacts. (a): Base [10], (b): Pix2pix [2], (c): ours (LDM enabled line

loss only), (d): ours (histogram equalization only), (e): ours (Both: LDM enabled line loss + histogram

equalization).
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Figure 10. Visual comparison of include grayscale. (a): Base [10], (b): Pix2pix [2], (c): ours (LDM

enabled line loss only), (d): ours (histogram equalization only), (e): ours (Both: LDM enabled line loss +

histogram equalization).

Figure 11. Visual comparison of color restoration (a): Base [10], (b): Pix2pix [2], (c): ours (LDM enabled

line loss only), (d): ours (histogram equalization only), (e): ours (Both: LDM enabled line loss +

histogram equalization).

4.4. Mean Opinion Score (MOS) Evaluation

The quality of a painting is subjective and varies widely from person. We used Mean Opinion

Score (MOS) evaluation to provide objective evaluation of proposed method [2,10]. For evaluation, we

asked 118 users to give a score between 1 (bad) and 5 (excellent) based on image quality. A person

scores a total of thirty images. There are ten sets of images for three different methods (Base [10],

Pix2Pix [2], ours). Each image set is applied to three methods. To have general understanding of the

performance of each method, we chose five sets of images in animation style and the other five sets of

images in non-animation style. The MOS results are summarized in Table 1 and Figure 12. All users are

randomly chosen. MOS of Base [10] and Pix2Pix [2] are 2.56 and 2.75 with 1.30 and 1.34, respectively

whereas our method shows MOS of 3.82 and standard deviation of 1.05. Using a p < 0.01 level of

significance to test the MOS, we can say than our method is superior to the other methods.

Figure 12. Heatmap of Mean Opinion Score (MOS).
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Table 1. MOS of models.

Model MOS STD

Base [10] 2.56 1.30
Pix2pix [2] 2.75 1.34
Ours 3.82 1.05

4.5. Quantitative Analysis

In order to evaluate the performance of the proposed model, we used the same data set described

in Section 4.1 and performed 178 k steps of training on open sourced automatic colorization model

used in Ci et al. [10].

To quantitatively measure the difference of models, we used Fréchet Inception Distance (FID)

score [31]. FID score measures the similarity of two data sets, and FID is generally known to have high

correlation with human judgment of visual quality of a given image. It is often used in evaluating the

quality of image generated by GAN. Base image used in FID is generated by Inception model which

is trained with ImageNet [27] data set. Target image used in FID is generated by some other model,

in our case, two stage generator with histogram equalization and LDM. By applying base and target

image on Inception model, we obtain two feature maps. Fréchet distance of normalization of feature

map of base and target image gives us the FID score. We used 140K artificial line-arts generated by

XDoG and 530 pairs of line-arts and their colorized version of artwork.

Ci et al. [10] and Hati et al. [12] proposed not to use hints while comparing the quality of generated

images with FID score because it can not fairly compare the colorization performance of a model.

However, FID score is not adequate in measuring colorization performance because it does not take

account of color and location information present in the hint. Even if we exploit the hint in measuring

FID score, we can not fairly compare the two results unless the location of hints are controlled. Thus,

we need to have another performance metric to properly take account of the accurate representation of

hint color, locality of color, and color containment within the boundaries of line contours.

In this paper, we propose another performance metric, called Colorization FID (C-FID), specifically

designed for comparing the colorization performance. Figure 13 shows the layout of the measurement

mechanism. Although, C-FID and FID score are fundamentally the same, the only difference is the

use of hint in colorization. C-FID uses segment-based hint pointing method, whereas FID does not

use hints. The calculation of the score is the same. We divide an image into seven segments-based on

the composition locality present in illustrations. First set of segments are placed in four corners. Let

width be w, then we set the dimension of the corner segment as 1
4 · w by 1

4 · w. We call this region the

corner. In between the two corners on the left and and right hand side of the image, there is rectangle

segments with dimension of 2
4 ·w by 1

4 ·w. This region is called the wing. The rest of the image is called

the body. Each corner contain one pixel hint in arbitrary location within the corner. Each wing contains

two one pixel hints and the body contains 20 one pixel hints within each wing and body, respectively.

Using this constraints, different models can be given a fair comparison because each segment is given

a specific number of hint colors within limited space. Then, we measure FID score over the generated

images. We call this method of performance measurement as Colorization FID (C-FID).

Table 2 shows the comparison of C-FID scores on different models. Just as FID, the lower the

C-FID score is, the better. The result shows that by applying the proposed line loss and histogram

equalization, the proposed method achieves lower C-FID than the Base model in all scenarios. There

are two interesting observations in the result of C-FID. In the case of real-world line-arts, C-FID score

is more than two times larger than that of XDoG line-arts. On the other hand, standard deviation is

at least five times lower than that of XDoG line-arts. As we can see from Figure 3, real-world line-art

does not contain background texture where as colored version of the line-art is full of texture. As a

result, C-FID score becomes high because of the presence of the background texture in the image.

The reason behind the low standard deviation is that the training data set of real-world images are
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about 270 times less than that of XDoG. Thus, we had to crop the original image into 512 × 512 pixel at

random locations. Since, we ran an excessively long iteration to learn the given data set, the resulting

standard deviation becomes very small.

Figure 13. Hint mask for Colorization FID score evaluation.

Table 2. Quantitative comparison of Colorization FID score. The score measured using total of 145,408

XDoG line-arts and 530 pairs of line-arts and their colorized version of artwork. Lower Colorization

FID score is better.

W/O Color Hint XDoG Line-Arts Real-World Line-Arts

Model FID STD FID STD

Base [10] 44.70 2.01 109.39 0.40
Pix2pix [2] 41.14 1.51 117.24 0.38

Ours (LDM enabled line loss only) 43.87 1.91 99.40 0.32
Ours (Histogram equalization Only) 39.54 1.84 92.63 0.24

Ours 39.77 1.75 98.75 0.17

With Color Hint XDoG Line-Arts Real-World Line-Arts

Model C-FID STD C-FID STD

Base [10] 35.83 1.81 87.95 0.36
Pix2pix [2] 34.21 1.12 94.14 0.31

Ours (LDM enabled line loss only) 35.51 1.74 61.83 0.26
Ours (Histogram equalization Only) 33.29 1.51 60.45 0.24

Ours 32.16 1.57 57.51 0.23

5. Conclusions

In this paper, we proposed a Line Detection Model (LDM) loss function and histogram

equalization for generalization of line distribution. We also proposed a new performance metric called

Colorization FID (C-FID) that can provide fair comparison of colorization performance. The experiment

results show that the quality of generated image is sensitive to line distribution. The reason for poor

quality of generated image is that line distribution of artificially generated line contours is different

from real-world line-arts. We compared Base model and the proposed model in four different scenarios.

We used XDoG generated line-art and real-world line-arts with and without color hints. The result

shows that using histogram equalization and LDM enabled line loss exhibits the best result. The Base

model with XDoG generated line-art with and without color hints exhibits C-FID score of 44.70

and 35.83, respectively, whereas the proposed model in the same scenario exhibits 39.77 and 32.16,

respectively. C-FID score of real-world line-art with color hint is more dramatic. The Base model exhibits

87.95 and the proposed model exhibits 5.51. From the result, we can conclude that generalization of

line distribution leads to better quality of colorized image.
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