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Abstract—Watermarking neural networks is a quite important
means to protect the intellectual property (IP) of neural networks.
In this paper, we introduce a novel digital watermarking frame-
work suitable for deep neural networks that output images as the
results, in which any image outputted from a watermarked neural
network must contain a certain watermark. Here, the host neural
network to be protected and a watermark-extraction network are
trained together, so that, by optimizing a combined loss function,
the trained neural network can accomplish the original task while
embedding a watermark into the outputted images. This work
is totally different from previous schemes carrying a watermark
by network weights or classification labels of the trigger set. By
detecting watermarks in the outputted images, this technique can
be adopted to identify the ownership of the host network and find
whether an image is generated from a certain neural network or
not. We demonstrate that this technique is effective and robust on
a variety of image processing tasks, including image colorization,
super-resolution, image editing, semantic segmentation and so on.

Index Terms—Watermarking, neural networks, deep learning,
image transformation, information hiding.

I. INTRODUCTION

RECENT advances in deep learning (DL) [1] have led to

great success in a variety of fields, e.g., visual computing

[2]–[4], speech recognition [5]–[8], and natural language pro-

cessing [9], [10]. Major enterprises such as Microsoft, Apple,

and Google, have already deployed DL models in their com-

mercial products to provide higher-quality and smart services.

However, when we are experiencing the many advantages of

profound changes brought by DL, new problems and chances

are arising as well, among which securing DL models is one

of the most important yet quite challenging topic. Considering

such a real application scenario, an enterprise has developed

a DL based product and distributes it to customers for profits.

According to the agreement, the customers have the right to

use the service by themselves, but cannot provide the product

and service to others for commercial use without permission

from the enterprise. Obviously, how to protect the intellectual

property (IP) of the product is a critical problem.

As a means to information hiding [11], digital watermarking

[12] enables us to hide secret information into a digital object
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without impairing the use of the object. It has extensive appli-

cations, e.g., integrity authentication [13], copyright protection

[14], source tracking [15] and tracing traitors [16] (yet another

common way for tracing traitors is fingerprinting [17] such as

Tardos codes [18], [19]). Therefore, a straightforward idea to

protect the IP of DL models is applying digital watermarking.

Traditional watermarking algorithms are often limited to media

objects, e.g., digital image is still the most popular cover type

for watermarking because of its wide distribution over social

networks [20], [21]. As designing a watermarking system takes

into account the cover characteristics, traditional media based

watermarking algorithms cannot be directly applied to the DL

models. Though some works [22]–[24] have combined DL into

a media watermarking system, they actually aim to protect the

media content, rather than the used DL model. It has motivated

us to investigate the IP protection of DL models.

Actually, there are increasing watermarking works designed

for protecting DL models in recent years. They can be roughly

categorized into two categories, i.e., carrying watermarks by

network weights and by classification labels of the trigger set.

Carrying watermarks by network weights. Embedding a

watermark into the weights of a DL model is a straightforward

idea, which has been investigated in the existing works. E.g.,

Uchida et al. [25] first propose to mark deep neural networks

(DNNs) with a parameter regularizer allowing the watermark

to be embedded during model training phase. Wang et al. [26]

further improve Uchida et al.’s work by adding an independent

neural network to project network weights to watermark space.

However, it cannot avoid the ambiguity attack. To this end,

Fan et al. [27] propose novel passport-based DNN ownership

verification schemes, which are relatively robust to network

modifications and resilient to the ambiguity attack. Rouhani et

al. [28] propose DeepSigns, which, unlike previous works, is

an end-to-end IP protection framework that enables developers

to systematically insert digital watermarks in the pertinent DL

model before distributing the model. Zhang et al. [29] propose

a watermark implanting approach to infuse watermarks into

DL models, and design a remote verification mechanism to

identify ownership, enabling the DL models to learn specially

crafted watermarks at training and activate with pre-specified

predictions when observing watermark patterns at inference.

Carrying watermarks by classification labels of trigger

set. This approach aims to insert a backdoor into the network

to be protected, and only the owner can activate the watermark

extraction procedure. For example, Adi et al. [30] introduce

a backdoor based watermarking framework by incorporating

the author’s signature in the process of training DNNs. The

resulting watermarked DNN behaves in a different, predefined

pattern when given any signed inputs, accordingly proving the

authorship. Shafieinejad et al. [31] also present an approach for

watermarking DNNs in the way of backdoor, which works for
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Fig. 1. The application scenario of applying the proposed method. The entire process can be summarized in three phases: model training, model usage, and
ownership verification. Any image outputted from the network trained by our framework must carry a watermark. By detecting watermarks in the outputted
images, it can be used to identify the ownership of networks and find whether an image is generated from a certain network or not.

general classification tasks and can be combined with current

learning algorithms, demonstrating that embedded watermarks

are relatively robust to removal attacks such as fine-tuning and

pruning. One could refer to [32]–[34] for more related works.

There has no doubt that, the above-mentioned watermarking

algorithms have moved the IP protection of DL models ahead

rapidly. However, in the real-world, a company or person may

steal a DL model and then only provides the API service to

users for profits without permission. In this case, the owner

cannot identify the ownership if the watermark was previously

embedded into the DL model by directly modifying network

weights since he/she cannot access the network weights and

structure. One may use traditional media watermarking meth-

ods or adversarial network [35] to process the output for model

protection [36]. However, as the operation does not rely on the

internal network details, once the network itself was stolen, it

cannot protect the model. Though the classification labels of

trigger set can alleviate it, the watermark capacity is relatively

too low to carry a sufficient payload. Moreover, they are often

limited to classification tasks, and cannot be applied directly

to popular generative tasks such as image transformation.

In this work, we propose a novel watermarking framework

to protect DNNs, which is applicable for networks that produce

images as results, such as image colorization and editing. Any

image outputted from a DNN trained by our framework must

contain a certain watermark. In order to extract the watermark,

we design a watermark-extraction network, where the loss is

based on mean accuracy of the watermark. The DNN to be

protected (called host network) and the watermark-extraction

network are trained together. During the training phase, the

parameters of the host network will be updated according to its

own loss and the watermark loss. Meanwhile, the parameters

of the watermark-extraction network will be updated according

to only the watermark loss. After training the two networks,

only the host network will be released and the watermark-

extraction network will be kept as a secret. Experiments have

shown that this technique is effective and robust on a wide

variety of image tasks, including image colorization, super-

resolution, image editing and semantic segmentation.

The contributions of this paper are summarized as follows:

• We present a novel watermarking technique to DNNs that

produce images as outputs. It can identify the ownership

of DNNs and identify whether an image is generated from

a certain network. Moreover, when a DNN model is not

allowed to feed trigger images (e.g., standard GANs [35]

and VAEs [37] have only a low dimensional latent vector

as input), the proposed work can still embed a watermark

since the proposed work does not rely on the input of the

host DNN, which is a significant advantage compared to

trigger set based methods (that require trigger inputs).

• The proposed work can resist common attacks including

image cropping and noise adding, which has been verified

by experimental results. Even though the image was tam-

pered with a relatively high degree, the hidden watermark

can be still sufficiently extracted. It is due to the reason

that tampered samples were used for adversarial training.

• We introduce a secret key for watermark extraction. The

secret key is only kept by the IP holder. The watermark-

extraction network works when the correct key is provid-

ed. Once the watermark-extraction network is stolen, the

watermark is still undetectable without the key.

The rest structure of this paper is organized as follows. We

detail the proposed method in Section II, followed by extensive

experiments and analysis in Section III. Finally, we conclude

this paper and provide further discussion in Section IV.

II. PROPOSED METHOD

In this section, we propose a novel watermarking framework

suitable for DNNs that output images as results, in which

any image outputted from this network must carry a certain

watermark. Fig. 1 shows an application scenario of embedding

a watermark in a DNN model by our framework. The entire

process can be summarized in three phases: model training,

model usage, and ownership verification.

Model Training. During the training phase, the host net-

work G and the watermark-extraction network E are trained

together by optimizing a combined loss. The host network G
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Fig. 2. Sketch for the proposed watermarking framework.

learns to accomplish the original task while embedding a wa-

termark into the outputted images. The watermark-extraction

network E learns to extract the hidden watermark from the

output of the host network. It is noted that, in order to train

these two networks simultaneously, an image dataset and a

secret watermark wraw (together with a key k) are used. The

details of G and E will be given in the subsequent subsections.

Model Usage. After the two networks mentioned above

are trained, the marked host network can be released to

accomplish a particular image task. And, the watermark-

extraction network will be kept secretly. It is pointed that,

unlike other ordinary networks, for the marked host network,

it will output an image containing a watermark, which can be

used for ownership verification, source tracking, and model

identification. The watermark can be either visible or invisible.

Ownership Verification. In case of copyright disputes, the

IP holder can extract a watermark wext from the “marked”

output of G by using E together with a secret key k for

ownership verification. Mathematically, for any input x ∈ X ,

the output of G, denoted by G(x), contains a secret watermark

wext = E(G(x), k) that is quite close to the expected water-

mark wraw according to a distance measure. If one uses an

incorrect key k′ 6= k or a non-marked image x′, the distance

(distortion) between the extracted watermark and the original

watermark is expected to be significantly large.

A. Structural Design

As shown in Fig. 2, the host network consists of a generator

G and a discriminator D (optional). The watermark-extraction

network consists of three sub-networks, allowing the hidden

watermark to be reconstructed from the output of G. We show

details about the structures of all networks below.

1) Host network: The generator G could be arbitrary struc-

ture related to image transformation. Mathematically, given

two image domains X and Y , G aims to learn a mapping,

i.e., G : X → Y , which can be trained with an image dataset

including lots of diverse image-pairs by supervised learning.

With a trained G, an image can be generated, which is visually

close to the ground truth (if it exists). Moreover, optionally,

a discriminator D can be utilized for optimizing G. Since we

focus on the generality of the proposed framework, we will

not discuss a particular network structure to be protected. A

Fig. 3. The detailed structural information for EA, EB , and EC .

variety of structures are supported by the proposed framework,

including ResNet [4], U-Net [3], CGAN [38], and so on.

2) Watermark-extraction network: The extraction network

E accepts an image and a secret key k as input. In the structure

of E, we combine three convolutional neural networks (CNNs)

EA, EB , and EC to learn the extraction function. The proce-

dure of the forward propagation follows the following settings:

• EA accepts a digital image sized H×W ×3 as the input,

and outputs an image with the identical size. The output

image would be resized to h × w × c1. Here, we have

c1 = ⌊ 3HW
hw

⌋, and we consider the watermark as an image

sized h× w × c, e.g., we have c = 3 for color images.

• The secret key k is a binary string sized lk, which can be

determined from a seed or specified rule. In the proposed

work, the secret key is randomly generated according to

a secret seed such that it can be flatten as a tensor sized

h×w×t, where lk = h×w and t ≥ 1. The tensor can be

divided to disjoint blocks and the elements in each block

have the same value since CNNs have superior ability to

learn block based features [1], [4]. A larger block size

can facilitate model training but reduce the significant

size of the key. From a trade-off point, we use 4× 4× t

(tunable) as the block size and t = 1. Therefore, before

feeding k into EB , it is resized to a tensor sized h×w×t.

Thereafter, EB will output a feature map sized h×w×c2,

where c2 is empirically set to be 48 in our experiments.

• The outputs of EA and EB will be further concatenated to

constitute a feature map sized h× w × (c1 + c2), which

will be fed into EC . The output of EC represents the

reconstructed watermark, whose size is h× w × c.

Fig. 3 shows the structural information of EA, EB and EC .

In detail, EA starts with a convolutional layer, followed by

two inception-residual blocks [39], and finally connected by a

convolutional layer. As shown in Fig. 4, in order to partition

the patterns in the generated image into different channels,

the inception-residual block is utilized, which consists of 1×
1, 3 × 3, 5 × 5 convolutions, and a residual connection that

sums up a feature map and the input itself, so that various

perception fields are included in the feature extraction. It is

straightforward to understand the structures of EB and EC . It

is noted that, ReLU [40] is used here for all layers except for

the output (which uses ‘tanh’) as the activation function since

ReLU does not activate all neurons at the same time and thus

has shown superior performance in accelerating convergence
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Fig. 4. The detailed structural information for the inception-residual block.

[41]. Moreover, using the ‘tanh’ for the output can prevent

the DNN from modeling large values [42]. However, it is still

open for us to design other effective activation functions.

B. Loss Function

The host network and the watermark-extraction loss will be

trained according to the task loss Lt and watermark loss Lw.

Watermark Loss. From the model owner’s point of view,

all images can be divided into two groups: one is generated

by the host network, the other one is not generated by the host

network. We denote the former as S1 and the latter as S2. Each

image in S1 contains a watermark, which can be extracted

by E together with the correct secret key. Each image in S2

reveals nothing about the watermark, meaning that, the output

of E by feeding any image in S2 is expected to be noise-like.

Therefore, since we hope that a particular watermark can be

always extracted from any image in S1, the distance between

the extracted watermark and the target watermark should be

as small as possible. Namely, we expect to minimize:

L(1)
w =

1

|S1|

∑

G(x)∈S1

||E(G(x), k)− w||pp, (1)

where w denotes the target watermark, and k means the secret

key. On the other hand, we hope that only random noises can

be extracted from the images in S2, implying that, the distance

between an extracted watermark and a random-noise image is

small. It indicates that, we expect to minimize:

L(2)
w =

1

|S2|

∑

xi∈S2

||E(xi, k)− wz||
p
p, (2)

where wz reveals nothing about w and is randomly generated

in advance. In our experiments, wz is an all-zero matrix for

simplicity. Furthermore, the correct key k can be used to

ensure the security of the watermark extraction procedure. It

means that, when the used key is incorrect, the watermark ex-

traction procedure will fail. In this way, we hope to minimize:

L(3)
w =

1

|S1|

∑

G(x)∈S1,kx 6=k

||E(G(x), kx)− wz||
p
p, (3)

Accordingly, the watermark loss here is finally designed as:

Lw = αL(1)
w + βL(2)

w + γL(3)
w , (4)

TABLE I
TASKS, ARCHITECTURES, DATASETS AND THEIR SUBSET SPLITS.

Task DNN Dataset Training/validation/testing

Paint Transfer [54] [49] 180,000/10,000/10,000

Image Editing [50] [50] 380/100/100

Super-resolution [43] [51] 118,287/20,000/20,679

Colorization [38] [52] 7,000/500/689

Semantic Segmentation [38] [53] 2,975/1,000/1,025

where α, β and γ are tunable parameters so that different tasks

can be properly balanced [45], [46]. It is required to set α > β

and α > γ since the primary task of the watermark-extraction

network is to reconstruct the watermark. Therefore, we use

α = 1 and β = γ = 0.5 in default. We use L1 distance for

the watermark loss. One may also use L2 distance.

Task Loss. The primary goal of the host network here to be

protected is to accomplish a specific task. We below present

several loss functions that are popular in different kinds of

tasks and will be used in our experiments. The task loss can

be one of them or their combinations, depending on the task.

• Pixel loss [38]: It is defined as the distance between the

output image and the target image by using L1 distance,

rather than L2, so as to encourage less blurring.

• Discriminator loss: The loss function can not only be

mathematical formula, but also network, called discrimi-

nator D, as shown in Fig. 2. The discriminator loss [35] is

calculated by subtracting the fake loss from the real loss.

The generator is basically trying to trick the discriminator,

while the discriminator learns to classify between fake

and real. In this paper, “fake” means “marked”, and “real”

means “non-marked (images)”.

• Perceptual loss: Rather than encouraging the pixels of

the output image to exactly match the pixels of the target

image, Johnson et al. [43] instead encourage them to have

similar feature representations as computed by the loss

network, such as a well-trained VGG-16 network [44].

Thus, to train the host network and the watermark-extraction

network simultaneously, the total loss can be expressed as:

L = Lt + θLw, (5)

where θ is a tunable parameter, and Lt depends on the task. In

default, we use θ = 1 since the original task and the watermark

extraction task are equally important in this paper.

Remark: For the original task, on the one hand, designing a

universal host network structure suited to arbitrary image task

is a very challenging problem that has not been well addressed.

On the other hand, altering a particular host network structure

also requires us to design the matched loss function(s), which

should take into account the original task and is not the focus

of proposed work. Therefore, we do not limit the host network

to any particular structure, which shows better generalization

ability. It is possible that, the original task was also controlled

by using a secret key or a trigger pattern. For example, one

may use a trigger pattern [47] to control the host network to

perform its original task. Additionally, though our experiments

have verified the superiority and applicability of the proposed
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Fig. 5. Examples for embedding a binary QR code for the five tasks: paint
transfer, image editing, super resolution (×4), colorization, and semantic seg-
mentation. First column: input, second column: non-marked images (generated
by neural networks), third column: marked images, fourth column: extracted
watermarks (ignoring the black lines on borders and the relative ratios between
the watermarks and the marked images). The SSIMs between the non-marked
images and the corresponding marked images are determined as 0.896, 0.886,
0.965, 0.975 and 0.809, respectively (from the first row to the fifth row).

watermark-extraction structure, it should be admitted that it is

still open for us to design other efficient network structures.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present experimental results for perfor-

mance evaluation and analysis.

A. Datasets and Setup

To explore the generality of our framework, we implement

our evaluations on a variety of tasks and datasets, including

both graphic tasks such as image editing, and vision tasks

such as semantic segmentation. Table 1 shows the detailed

information for the datasets used in this paper and their split

information for experiments. We note that our framework is

suitable for different sizes of the training sets, e.g., the paint

transfer task is trained on Danbooru2019 [49] consisting of

more than 100 thousand images, while the image editing task

is trained on RIO [50] consisting of less than 400 images.

Both perform well after embedding a certain watermark.

The used DNN architectures are also provided in Table 1.

Both inputs and outputs of the DNNs follow the same size,

Fig. 6. Examples for embedding a color image for the five tasks: paint transfer,
image editing, super resolution (×4), colorization, and semantic segmentation.
First column: input, second column: non-marked images (generated by neural
networks), third column: marked images, fourth column: extracted watermarks
(ignoring the relative ratios between the watermarks and the marked images).
The SSIMs between the non-marked images and the corresponding marked
images are determined as 0.898, 0.917, 0.945, 0.955 and 0.718, respectively
(from the first row to the fifth row).

i.e., 256× 256× 3. The height and width of the watermark to

be embedded are all fixed as 64, if no otherwise specified.

As shown in Table 1, For paint transfer, we follow the struc-

ture in sketch transfer [54]. For image editing, we follow the

structure in product placement [50]. For super-resolution, we

use the perceptual loss [43]. For colorization and segmentation,

we use Pix2Pix [38]. Note that, in our experiments, we regard

the segmentation task as the generative task, and only L1 loss

is used as discussed in Pix2Pix [38].

During model training, the host network and the watermark-

extraction network are trained together. The ADAM optimizer

[55] is adopted for training, where the learning rate is set as

1.0× 10−8, L1 = 0.5, L2 = 0.999. Our implementation uses

TensorFlow and cuDNN, trained on a single Titan RTX GPU.

In Eq. (3), the incorrect key kx is randomly generated for each

sample, and the number of different bits between kx and the

correct key k is controlled to be a random integer no more

than a small threshold Td in each time, e.g., we empirically

use Td = 8 in our experiments. The advantage is that, using a

small Td forces the watermark-extraction network to learn to

capture the slight difference between two different keys. Thus,
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TABLE II
PERFORMANCE OF NETWORK FIDELITY AND WATERMARK RELIABILITY FOR EMBEDDING BINARY WATERMARKS. BOTH PSNR0 (DB) AND SSIM0 ARE

DETERMINED BETWEEN THE IMAGES GENERATED BY NON-MARKED NEURAL NETWORKS AND THE CORRESPONDING GROUND TRUTHS. BOTH PSNR1

(DB) AND SSIM1 ARE DETERMINED BETWEEN THE IMAGES GENERATED BY MARKED NEURAL NETWORKS AND THE CORRESPONDING GROUND

TRUTHS. BOTH PSNR2 (DB) AND SSIM2 ARE DETERMINED BETWEEN THE IMAGES GENERATED BY MARKED NEURAL NETWORKS AND THAT

GENERATED BY NON-MARKED NEURAL NETWORKS. BER IS DETERMINED AS THE PERCENTAGE OF ERRORS BETWEEN THE EXTRACTED WATERMARK

AND THE CORRESPONDING GROUND TRUTH. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES.

Task BER PSNR0 PSNR1 PSNR2 SSIM0 SSIM1 SSIM2

Paint Transfer 0.0083 22.62 20.13 21.26 0.642 0.618 0.814

Image Editing 0.0000 33.56 31.68 36.63 0.923 0.901 0.981

Super-resolution 0.0092 21.35 20.42 31.69 0.637 0.613 0.934

Colorization 0.0000 30.27 29.77 28.54 0.814 0.807 0.952

Semantic Segmentation 0.0075 23.30 21.56 24.55 0.819 0.810 0.876

TABLE III
PERFORMANCE OF NETWORK FIDELITY AND WATERMARK RELIABILITY FOR EMBEDDING COLOR WATERMARKS. BOTH PSNR0 (DB) AND SSIM0 ARE

DETERMINED BETWEEN THE IMAGES GENERATED BY NON-MARKED NEURAL NETWORKS AND THE CORRESPONDING GROUND TRUTHS. BOTH PSNR1

(DB) AND SSIM1 ARE DETERMINED BETWEEN THE IMAGES GENERATED BY MARKED NEURAL NETWORKS AND THE CORRESPONDING GROUND

TRUTHS. BOTH PSNR2 (DB) AND SSIM2 ARE DETERMINED BETWEEN THE IMAGES GENERATED BY MARKED NEURAL NETWORKS AND THAT

GENERATED BY NON-MARKED NEURAL NETWORKS. PSNR (DB) IS DETERMINED BETWEEN THE EXTRACTED WATERMARK AND THE CORRESPONDING

GROUND TRUTH. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES.

Task PSNR PSNR0 PSNR1 PSNR2 SSIM0 SSIM1 SSIM2

Paint Transfer 34.22 22.62 20.18 20.51 0.642 0.626 0.792

Image Editing 38.54 33.56 31.46 34.75 0.923 0.905 0.968

Super-resolution 31.71 21.35 20.03 28.81 0.637 0.610 0.909

Colorization 32.35 30.27 29.04 26.95 0.814 0.797 0.922

Semantic Segmentation 31.21 23.30 21.72 23.36 0.819 0.735 0.830

TABLE IV
PERFORMANCE OF NETWORK FIDELITY AND WATERMARK RELIABILITY FOR EMBEDDING BINARY WATERMARKS WITH DIFFERENT SIZES. PSNR (DB) IS

DETERMINED BETWEEN THE OUTPUTTED MARKED IMAGES AND THE GROUND TRUTHS. BERw IS DETERMINED AS THE PERCENTAGE OF ERRORS

BETWEEN THE EXTRACTED WATERMARKS AND THE GROUND TRUTHS. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES.

Task
32

2
64

2
96

2
128

2
256

2

PSNR BERw PSNR BERw PSNR BERw PSNR BERw PSNR BERw

Paint Transfer 22.34 0.0035 20.13 0.0083 21.42 0.0112 20.94 0.0150 21.44 0.0224

Image Editing 33.97 0.0000 31.68 0.0000 33.43 0.0026 35.52 0.0072 31.57 0.0083

Super-resolution 23.28 0.0040 20.42 0.0092 21.88 0.0183 23.15 0.0197 22.07 0.0232

Colorization 29.70 0.0000 29.77 0.0000 30.13 0.0060 29.71 0.0071 29.85 0.0087

Semantic Segmentation 24.66 0.0000 21.56 0.0075 21.98 0.0080 25.52 0.0126 24.15 0.0181

TABLE V
PERFORMANCE OF NETWORK FIDELITY AND WATERMARK RELIABILITY FOR EMBEDDING COLOR WATERMARKS WITH DIFFERENT SIZES. PSNR (DB) IS

DETERMINED BETWEEN THE OUTPUTTED MARKED IMAGES AND THE GROUND TRUTHS. PSNRw (DB) IS DETERMINED BETWEEN THE EXTRACTED

WATERMARKS AND THE GROUND TRUTHS. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES.

Task
32

2
64

2
96

2
128

2
256

2

PSNR PSNRw PSNR PSNRw PSNR PSNRw PSNR PSNRw PSNR PSNRw

Paint Transfer 22.90 34.50 20.18 34.22 22.84 32.39 23.05 29.45 22.12 27.72

Image Editing 31.10 38.59 31.46 38.54 32.22 34.89 31.28 25.79 30.25 23.84

Super-resolution 22.49 33.82 20.03 31.71 20.94 29.25 20.90 26.38 20.54 25.22

Colorization 30.29 38.35 29.04 32.35 28.42 27.30 32.18 24.14 32.06 20.08

Semantic Segmentation 24.06 32.79 21.72 31.21 24.12 29.27 23.14 27.91 22.82 23.53

the watermark-extraction network will be sensitive to the key.

B. Qualitative Evaluation

In this section, the basic results of two implementations by

the proposed framework will be introduced. One is embedding

a binary image, and the other one is embedding a color image.

Both watermarks are invisible, which should be detected by

the watermark-extraction network. A binary image is a digital

image that has only two possible values for each pixel. A color

image includes RGB components for each pixel.
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Fig. 7. Examples for cropping the marked images: (a, c) the cropping images,
(b, d) the extracted watermarks from corresponding cropped images.

Fig. 8. Examples for inserting noise to the marked images: (a, c) the noised
images, (b, d) the extracted watermarks from corresponding noised images.

Fig. 5 shows visual examples of embedding a binary image.

Fig. 6 shows visual examples of embedding a color image. It

can be seen from Fig. 5 and Fig. 6 that, all the non-marked

networks and marked networks can successfully complete the

corresponding original tasks, indicating that, the watermark-

extraction networks do not suppress the original task. The non-

marked images and the marked images are visually similar to

each other. It implies that, the watermark-extraction networks

do not significantly impair the original tasks. It is also seen

that, the visual quality of all extracted watermarks are satisfac-

tory to human visual system, meaning that, the proposed work

would be effective in identifying the ownership of DNNs.

However, we can also find that different original tasks show

different subjective quality of generated images. For example,

for paint transfer, the non-marked images and marked images

have better subjective visual quality than that for image editing

though image editing can achieve the high SSIMs. Two reasons

can be derived for explaining this normal phenomenon. The

first one is the size of training set [56]. Namely, more training

samples can lead to better performance since more training

data enable the DNN to learn domain knowledge to generate

images with better quality. Therefore, it can be inferred from

Table 1 that, due to the small size of training set, image editing

can lead to the relatively worse subjective quality of generated

images compared to paint transfer. The second reason is that,

a host DNN itself has a bias on the image task. Clearly, in

this paper, we did not design any new host DNN for a specific

image task. There may be better DNNs designed for a specific

image task in the literature. This indicates that, the host DNNs

tested in this paper may be not optimal for the corresponding

image tasks. Therefore, for better evaluation, it is desirable

to compare the difference between non-marked images and

ground truths as well as the difference between marked images

and ground truths, which can skip the bias caused by the host

DNNs themselves. It leads us to present more results below.

C. Quantitative Evaluation

We first evaluate the proposed work in terms of network

fidelity and watermark reliability. The network fidelity means

the performance on the original task of the host neural network

should be not significantly degraded after embedding a secret

watermark. We use structural similarity-index (SSIM) [48] and

peak signal-to-noise rate (PSNR) to measure the quality of the

images generated by the marked neural network. Watermark

reliability means the watermark should be effectively detected

and extracted. It is important because the IP holder is thereby

able to detect any guilty use of the model. In case of using

binary images as the watermarks, we use bit error rate (BER)

to evaluate the quality of the extracted watermarks. The BER is

computed as the percentage of errors between the binarization

of extracted watermark and the ground truth. In case of using

color images, we employ PSNR to evaluate the image quality.

In experiments, we train the non-marked DNNs for baseline,

and train the corresponding marked DNNs for comparison. We

evaluate the fidelity of the host DNNs with PSNRs and SSIMs.

The number of the generated images for a specific task can

be found in Table I (i.e., the number of testing images). The

mean PSNR and mean SSIM are determined as the results. We

evaluate the reliability of the extracted watermarks with BERs

(for binary watermarks) and PSNRs (for color watermarks).

The mean BER and mean PSNR are determined as the results.

Table II and Table III have shown the experimental results.

It can be observed that the BER values for binary watermarks

are small and the PSNR values for color watermarks are all

larger than 31 dB. It implies that the reconstructed watermarks

have good visual quality, and therefore can be very effective

in protecting the IP of DNN models. It can be also seen

that, the overall difference between “PSNR0” and “PSNR1”

as well as that between “SSIM0” and “SSIM1” are small.

It indicates that, the proposed work does not significantly

degrade the performance of the original task. We can also find

that, the performance for “SSIM2” significantly outperforms

“SSIM0” and “SSIM1”. And, in most cases, the performance

for “PSNR2” outperforms “PSNR0” and “PSNR1”. It implies

that, regardless of the performance impact caused by the host

DNNs themselves, the proposed work can well maintain the

global statistical distribution of the generated images. In other

words, the proposed work does not impair the performance of

the used host DNNs on the original task (though the used host

DNNs may not perform well on the original task). In addition,

by comparing Table II and Table III, it can be further observed

that, in terms of “PSNR2” and “SSIM2”, the performance for

binary watermarks are better than the performance for color

watermarks. It is due to the reason that color watermarks

contain more visual information than binary watermarks and

therefore require more representation ability of the host DNNs.

D. Capacity

To analyze the capacity, we retrain all the neural networks

separately by embedding watermarks with different sizes. We

vary the watermark size from 32 × 32 to 256 × 256. In our

experiments, both binary watermarks and color watermarks are

considered. We compute the mean PSNRs and mean BERs for
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Fig. 9. The mean PSNR between the original watermark and the reconstructed watermark due to different σ for each image task: (a) paint transfer, (b) image
editing, (c) super-resolution, (d) colorization and (e) semantic segmentation.

Fig. 10. The mean PSNR between the original watermark and the reconstructed watermark due to different cropping rates for each image task: (a) paint
transfer, (b) image editing, (c) super-resolution, (d) colorization and (e) semantic segmentation.

the extracted watermarks, and the mean PSNRs for the marked

images outputted by the host DNNs. Table IV and Table V

have shown the experimental results. It could be observed

from these Tables that, different image tasks result in different

performance. However, for a specific task, both the network

fidelity and watermark reliability can be kept in a high level

when the watermark size increases. Especially, even the size of

the watermark is identical to the size of the outputted image,

the mean PSNRs for extracted watermarks are all above 20 dB,

showing that, our work indeed achieves superior performance.

E. Robustness

Attackers may attempt to remove the embedded watermark

by applying image processing operations to the marked output.

We consider two common attacks, i.e., cropping and adding

noise. To this end, we propose to use cropped or noised images

to train the DNN to resist against the corresponding attack.

For cropping attack, we randomly crop the input images for

training. Namely, given an image sized 256×256×3, we keep

a randomly selected region sized hcrop ×wcrop × 3 unchanged,

and set the values of all rest pixels as zeros. For simplicity, we

use hcrop = wcrop ∈ {128, 144, 160, 176, 192, 208, 224, 240}.

We use the color image Lena sized 64 × 64 × 3 used

previously as the watermark. For evaluation, we determine

the PSNR between the original watermark and the watermark

reconstructed from a cropped marked image. The mean PSNR

for the test images is used as the result. Fig. 7 shows two

examples for cropping. For noise attack, we add Gaussian

noise to each input image with µ = 0 and random σ ∈ (0, 0.5]
for training. For evaluation, we determine the PSNR between

the original watermark and the watermark reconstructed from

a noised marked image. The mean PSNR is used as the result.

Fig. 8 shows two examples for adding Gaussian noise. Fig.

9 and Fig. 10 further show the experimental results. It can

be concluded that, both adding noise and cropping the inputs

during training can significantly improve the robustness of

retrieving the embedded watermark though the PSNRs decline

when the attack degree increases during testing. It indicates

that, in applications, it would be quite desirable to accordingly

alter the inputs for model training to resist the specific attack.

F. System Security

In the proposed watermarking system, a secret key is used to

secure the watermark reconstruction procedure. It is necessary

to evaluate the sensitivity of the secret key. In theory, similar to

cryptography, it is required that only the correct key can lead

to the successful extraction of the embedded watermark. For

any incorrect key, the corresponding reconstructed watermark

should reveal nothing about the original watermark. However,

unlike cryptography based on rigorous mathematical derivation

and analysis, a DNN corresponds to a learning system aiming

to learn domain knowledge from given training samples. The

learning performance relies on the complexity of the task, the

structural information of the DNN, training samples, parameter

initialization and optimization. Any potential factor may cause

performance degradation [1]. Therefore, from the viewpoint of

practice, it is basically required that, the correct key allows the

watermark to be successfully extracted and a very few errors in

the key lead to the failure in watermark extraction. Fig. 11 has

shown the mean PSNRs between the original watermarks and

the extracted watermarks due to a different number of error

bits in the secret key (whose size is set as 1024) for different

tasks. It can be observed that, the PSNR values fall rapidly

with the increment of error bits in the key. It can be inferred

that the watermark cannot be extracted even a very few bits in

the key are changed. We provide the box-plots to display the

distribution of the data points shown in Fig. 11. As shown in

Fig. 12, it can be observed that, the number of outliers (whose

values are larger than the corresponding maximum value) is

no more than 4 for all the five tasks, which has verified the

aforementioned analysis. In fact, for those who cannot access

the secret key, they can only guess the secret key, which will
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Fig. 11. The mean PSNRs between the original watermarks and the extracted
watermarks due to a different number of error bits in the key for all tasks.

Fig. 12. The mean PSNR distribution due to a different number of error bits
in the key: (a) paint transfer, (b) semantic segmentation, (c) super-resolution,
(d) image editing, and (e) colorization.

result in around 50% error-bits in the secret key and therefore

will surely fail in watermark extraction. Further improving the

sensitivity of the secret key will be also investigated in future.

IV. CONCLUSION AND DISCUSSION

Model protection against IP infringement is quite important

to preserve the competitive advantage of the IP holders. We

propose a novel framework to protect the DNN models, which

is suitable for image-outputted networks, in which any image

outputted from a watermarked DNN must contain a certain wa-

termark. This technique can be used to identify the ownership

of DNNs and find whether an image is generated from a certain

network. We have demonstrated that this technique is effective

and robust on many image tasks. In addition, a secret key is

used to control the watermark extraction, which can enhance

the security of the watermarking system. Moreover, based on

our experiments, it is suggested to adding additional operations

such as adding noise to the generated images during training

to resist real-world attacks, which could significantly improve

the robustness. Digital watermarking is an effective means for

protecting the ownership of digital products. It has been widely

used in commercial areas and also supported by legal terms,

e.g., in China, digital watermarking can be used to address

the IP disputes. With the rapid development of deep learning,

protecting the IP of DNN models will be very necessary. We

hope this work could make contribution to the IP protection of

DNN models, and inspire more advanced works in the future.
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