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Abstract—Passive non-line-of-sight (NLOS) imaging has drawn
great attention in recent years. However, all existing methods
are in common limited to simple hidden scenes, low-quality
reconstruction, and small-scale datasets. In this paper, we propose
NLOS-OT, a novel passive NLOS imaging framework based on
manifold embedding and optimal transport, to reconstruct high-
quality complicated hidden scenes. NLOS-OT converts the high-
dimensional reconstruction task to a low-dimensional manifold
mapping through optimal transport, alleviating the ill-posedness
in passive NLOS imaging. Besides, we create the first large-scale
passive NLOS imaging dataset, NLOS-Passive, which includes 50
groups and more than 3,200,000 images. NLOS-Passive collects
target images with different distributions and their corresponding
observed projections under various conditions, which can be used
to evaluate the performance of passive NLOS imaging algorithms.
It is shown that the proposed NLOS-OT framework achieves
much better performance than the state-of-the-art methods
on NLOS-Passive. We believe that the NLOS-OT framework
together with the NLOS-Passive dataset is a big step and can
inspire many ideas towards the development of learning-based
passive NLOS imaging. Codes and dataset are publicly available
(https://github.com/ruixv/NLOS-OT).

Index Terms—Non-line-of-sight imaging, optimal transport,
autoencoder, manifold embedding.

I. INTRODUCTION

NON-LINE-OF-SIGHT (NLOS) imaging enables hidden

objects to be seen when occluded from direct view by

analyzing the scattered light on a relay wall. With the trait of

seeing hidden objects, NLOS imaging has numerous potential

applications in autonomous vehicles, robotic vision and remote
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sensing. This inherent characteristic of greatly expanding the

field of view and improving the observation capability has

made NLOS imaging arouse great attention in recent years.

Depending on whether a controllable light source is used,

NLOS imaging can be divided into active imaging [1]–[7]

and passive imaging [8]–[12]. Among them, active NLOS

imaging uses an ultrafast laser to illuminate the area on the

relay surface, and exploits a high resolution time-resolved

detector to capture the transient response of three-bounce light.

Exploiting the controllable light source, active imaging can

obtain photon responses at different moments and positions,

and reconstruct the three-dimensional hidden scene with high

quality. In this paper, we focus on passive imaging methods

without controllable light sources to complete NLOS recon-

struction using an ordinary camera, as shown in Fig. 1.

Passive NLOS imaging is an extremely challenging problem

because of uncontrollable probe illumination [10]. Specifically,

the close contribution between pixels due to isotropic diffuse

reflection makes the condition number of light transport matrix

in passive NLOS imaging very large, causing it difficult to

obtain good reconstructions from the observations. To alleviate

this problem, many methods have been proposed, including

placing a partial occluder [9], [11], using polarizers [10] and

applying deep learning [12]–[14]. Among them, deep learning-

based passive NLOS imaging [12]–[15] is attractive since the

superior representation ability of deep neural networks can

greatly improve the reconstruction resolution. However, there

are still several challenges when applying deep learning for

passive NLOS imaging. Firstly, existing methods utilize the

U-Net [16], a mature network structure that has been verified

to be effective in not very ill-posed tasks including image

segmentation and deblurring, as the basic network structure,

which is however not quite effective since the distributions

of the input and output of the passive NLOS imaging are

extremely different. Secondly, there is no large-scale dataset

for the passive NLOS imaging, due to which the advantages

of deep learning cannot be fully explored. Recent work [12]

simulates the forward propagation process based on the Phong

model [17] to produce datasets, which however cannot be used

for practical lighting conditions due to the ideal assumptions

in the model.

In this paper, we are committed to addressing the above

challenges. Particularly, we propose a network architecture

based on the optimal transport (OT) theory [18], NLOS-

OT, for the passive NLOS imaging to resolve the unbalance

distribution challenge between the input and output. The

proposed NLOS-OT first obtains the latent code for the target
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Fig. 1. Passive NLOS Imaging. (a) Experimental setup, where the LCD screen displays target images, the corresponding light projects onto the relay wall,
and the camera captures the projection image on the wall. (b) Projection image on the relay wall captured by the camera. (c) Reconstructed image by the
proposed NLOS-OT. (d) Target image displayed on the LCD screen.

image through an autoencoder, and then maps the projection

image to the latent code through another encoder by the

optimal transport. It is worth noting that the OT, in theory,

has the capability to map a projection image with limited

information to the latent space of the target image. In addition,

we create the first large-scale dataset, NLOS-Passive, for

passive NLOS imaging utilizing a common LCD and a mobile

phone camera. The NLOS-Passive includes 50 groups 1 and

more than 3,200,000 projection images, where the projections

of the MNIST [19], public face data [20], animation face

data [21], [22], and STL-10 [23] on different relay walls are

captured. NLOS-Passvie contains data under different optical

transport conditions, such as brightness, camera angle, hidden

object position, etc. Thus, NLOS-Passive can be used to not

only study the performance of different algorithms, but also

compare the performances of a specific algorithm in different

optical conditions. We believe that the NLOS-OT framework

together with the NLOS-Passive dataset is a big step and

can inspire many ideas towards the development of learning-

based passive NLOS imaging. Our primary contributions are

summarized as follows:

1) We propose a novel framework named NLOS-OT, for

the challenging passive NLOS imaging. The NLOS-

OT enables passive NLOS imaging in complex scenes

through manifold embedding and optimal transport.

Through experiments, we have demonstrated that

NLOS-OT performs significantly better than existed end-

to-end training framework.

2) We verify through experiments that the diffuse projec-

tion image, even captured by cell phone camera, under

unknown partial occlusion contains enough information

about the hidden scene. When using widely distributed

data with unknown occlusion for training, NLOS-OT

can complete the test on a completely different dataset,

which shows that NLOS-OT has strong generalization

1Each ”group” refers to the data of the same dataset collected under
the same optical conditions (such as distance, angle, illumination, reflective
surface). The size of the group depends on the size of the image dataset. For
example, it is 70,000 for MNIST.

and further demonstrates the feasibility of passive NLOS

imaging tasks.

3) We build NLOS-Passive, a large-scale passive NLOS

dataset containing more than 50 groups of data and

3,200,000 samples. NLOS-Passive includes data of d-

ifferent hidden scenes collected under different light

transport conditions, which can be used to evaluate the

performance of passive NLOS imaging algorithms. To

the best of our knowledge, NLOS-Passive is the first

public large-scale passive NLOS dataset.

The remainder of this work is organized as follows. Sec-

tion II presents related works on NLOS imaging, optimal

transport, generative models and optical eavesdropping. Sec-

tion III describes our proposed NLOS-OT model in detail.

The experimental setups and results are provided in Sec. IV.

Finally, discussions and conclusions are drawn in Sec. V and

Sec. VI respectively.

II. RELATED WORKS

In this section, we introduce the related works on passive

NLOS imaging, generative models, OT theory, and optical

eavesdropping respectively.

A. Passive Non-line-of-sight imaging

Depending on whether there is a controllable external light

source, NLOS imaging has active methods and passive meth-

ods. Here, we focus on passive NLOS imaging.

Without a controllable light source, the passive methods

collect mostly intensity information and depend on incoherent

ambient light for illumination [24] or directly reconstruct the

two-dimensional image displayed on a screen, which has also

received much attention in recent years. Torralba and Freeman

observed for the first time that the surrounding environment

can be used as an “accidental” camera to recover hidden

objects [25]. Passive methods usually have a much lower cost

and faster data collection speed than active methods. However,

since passive NLOS imaging only collects the intensity of

reflected light, which lacks information such as time and phase
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in active methods, most existing works [9], [12] only focused

perform 2D reconstruction or localization while a few recent

works can estimate both hidden shape and depth with partial

occluder [26], [27]. Specifically, for passive reconstruction

tasks, intensity information is the most commonly utilized in-

formation [9]–[11], [13], [26]. In such a case, two-dimensional

reconstruction can be completed, such as the computational

periscopy [9] and computational mirrors [13]. Besides, by

introducing depth information into the forward model, the

distance of a simple scene can be roughly estimated with

partial occlusion [26], [27]. If the goal is localization, all

we need is to get the distance between several target points

and the relay wall. Because several target points can reflect

or emit coherent light independently and move over time,

coherence-based information (such as spatial coherence [8],

optical ToF [28]) and space-time information [29] can be

exploited to complete passive sensing and localization.

In this paper, we mainly focus on 2D reconstruction in

passive NLOS scenes, i.e., passive NLOS imaging as shown

in Fig. 1. As described in Section I, the existing methods

usually include physical-based methods (i.e., placing partial

occlusion [9], [11], using polarizers [10] or exploiting optical

memory effect [30]) and deep learning-based methods [12]–

[15]. However, physical-based methods can only complete

the rough reconstruction of simple scenes, while the methods

based on deep learning have challenge on generalization

ability and the reconstruction performance greatly depends

on the similarity between the training set and the test set.

Therefore, it is meaningful to develop a new passive NLOS

imaging model that can not only achieve extremely high-

quality reconstruction on specific datasets, but also have great

generalization capabilities on large-scale datasets, which are

the features of the proposed NLOS-OT.

B. Optimal transport and generative models

1) Optimal transport: Optimal transport(OT) theory studies

the transmission problem of different distributions and has

been successfully used in domain adaptation [31], image

processing and other fields [32]. From a geometric view, OT

can measure the distribution difference between two manifolds

embedded in a high-dimensional space, which is similar to

“earth mover’s distance” (EMD) [33] used in WGAN [34].

Aude et al. used the stochastic gradient descent method to

solve the OT problem [35], while Lei et al. applied OT to

deep learning through convex optimization [36]. For extremely

challenging image restoration tasks, using OT to map the input

to the latent code of target space can effectively exploit the

information in the input image [37], [38]. Nevertheless, to the

best of our knowledge, there is no research on applying OT

to passive NLOS imaging tasks.

2) Generative models: Numerous generative models have

been successfully applied to image restoration tasks in recent

years. Encoder-Decoder based models(AEs) [16], [39]–[42]

and Generative Adversarial Networks (GANs) [34], [43]–[47]

are two of the most dominant approaches since they can

generate high-quality and realistic results. However, due to

limited model interpretation, injected noise, and element-wise

noise, AE-based models often produce blurry images [40]. On

the other hand, GAN is difficult to train and prone to mode

collapse/mixture problems since the transport map is discon-

tinuous while DNNs can only represent continuous maps [48].

In this paper, different from AEs and GANs, NLOS-OT first

obtains the latent code through manifold embedding and then

employs optimal transport to map the input data space to the

latent space. The reduction of dimensionality makes passive

NLOS problem more practical.

C. Optical eavesdropping

Techniques for utilizing optical compromising emanations

to obtain user privacy have a rich history [49]–[53]. In these

tasks, the eavesdroppers used sensors near the user’s display

screen to monitor the information on the screen. As an

early work, M. Kuhn [49] exploited photosensor to spy CRT

(cathode-ray tube) computer monitors. Due to the raster scan

of CRTs, time-resolved sensors can separate different pixel-

s, and then complete pixel-level reconstruction. For NLOS

scenes, because the response time of the diffuse reflection is

short enough, [49] has completed the reconstruction of the

CRTs screen reflected by a diffuse wall. However, for flat-

panel displays (FPDs, e.g., LCD monitors and plasma screens),

it is tough to resolve temporal information, which greatly

increases the difficulty of NLOS reconstruction [49], [50]. [51]

and [52] used a relay surface with specular material (such

as eyeballs) and a high-power telescope to complete NLOS

eavesdropping. It can be seen that most optical eavesdropping

works essentially avoid the diffuse reflection on the wall –

[49], [50] exploited the raster scan of CRTs, and [51], [52]

adopted specular reflective materials to replace the diffuse

wall. On the contrary, our work aims to recover the hidden

scenes displayed on an ordinary FPD and reflected by a diffuse

wall, which is a typical problem statement in passive NLOS

imaging [9], [10], [12], [13], [54]. As a price, compared with

optical eavesdropping, the existing passive NLOS imaging

detection distance is very short, which makes it difficult to

use in snooping scenes despite its vast potential.

III. OUR APPROACH

Here, we propose NLOS-OT, a novel framework designed

for passive NLOS tasks. In this section, we introduce our

settings and explain the motivations of NLOS-OT, then discuss

our network and loss function.

A. Problem setup

As shown in Fig. 1 (a), the objective of passive NLOS imag-

ing is to recover the target image, i.e., the hidden object, by

processing the projection image, i.e., the observed information,

on the diffuse reflection wall. Assuming that each pixel on

the target image is an independent point light source, then the

corresponding measured projection on the wall can be written

as

I(py) =

∫ ∫

pf∈F

A(pf , py)I(pf )dpf + nb+d(py) (1)
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Fig. 2. Inspired by [48], NLOS-OT separates the manifold embedding and optimal transport of generative models. It first obtains the latent code from the
target image space, and then completes the mapping from the projection image space to the latent space. The training phase is divided into two steps. The
first step is to train the autoencoder composed of E1 and D1, and the second step is to train E2 to get the optimal transport with fixed E1 and D1.

where I(py) is the light intensity on the pixel py of the

detected projection area, and I(pf ) is the intensity on the pixel

pf of the hidden source display area. Besides, A(pf , py) is the

optical transport from the point light source pf to area py on

the relay wall. F represents all pixels on the entire screen,

which is a rectangular area with two spatial dimensions,

corresponding to the two integrals in Eq. 1. nb+d(py) is the

noise at the pixel py , generated by the background (b) light

and the detector (d) itself. The model can be discretized as

y = Af + nb+d (2)

where f ∈ R
HfWf is the vectorized scene intensities and

Hf × Wf is the resolution of the display. y ∈ R
HyWy is

the vectorized observation, and Hy × Wy is the resolution

of the measured projection image. A ∈ R
HyWy×HfWf is

the light transport matrix. nb+d ∈ R
HyWy represents the

vectorized noise. Considering that the optical transport matrix

A is determined by the bidirectional reflectance distribution

function (BRDF) of the wall µ, the range between the hidden

object and the wall r, the position of the camera c, A can be

denoted as A(µ, r, c). Hence, Eq. 2 can be rewritten as

y = A(µ, r, c)f + nb+d (3)

We further use the matrix form to represent the scene

intensities and observation, where Tµ,r,c,n is the corresponding

transformation from the target image f to the projection image

y. Please note that the T−1
µ,r,c,n here is not equivalent to the

inverse of A−1, but a comprehensive consideration of A−1,

noise n and data distribution. Thus, the passive NLOS imaging

problem can be written as

f = T−1
µ,r,c,n(y) (4)

where the mapping T−1
µ,r,c,n is the reconstruction process that

the proposed NLOS-OT aims to do.

Due to the large condition number of the optical transport

matrix A, the passive NLOS reconstruction is very chal-

lenging. Existing methods alleviated this problem by exploit-

ing the additional obstacles [9] and polarizers [10]. In this

paper, we resolve this problem by utilizing the OT theory

and exploiting the deep image prior with an autoencoder.

For specific datasets, such as MNIST, NLOS-OT can obtain

sharp and high-quality reconstruction results by learning data

distribution, inverse transport process, and noise distribution;

for widely distributed datasets, such as STL-10, NLOS-OT

mainly learns inverse light transport to obtain a good result

with solid generalization ability. Besides, NLOS-OT does not

need to assume prior knowledge of A, e.g., the BRDF of the

wall.

B. Network architecture of NLOS-OT model

1) Motivation of NLOS-OT network: Existing data-driven

passive NLOS imaging methods [12]–[14] mainly use the U-

Net [16], which however do not consider the characteristic

of NLOS imaging task where the distribution of the input and

output are very unbalanced. Such methods can only reconstruct

simple scenes and will result in fuzzy artifacts on the complex

scene as illustrated in our experimental results. Moreover, if

changing the U-Net to the conditional GAN, mode collapse is

prone to occur.

The main reason for the above problems is that the existing

network structure cannot efficiently map the limited features in

the projection image y to the target space. Particularly, existing

methods have completed this task in the image space, which

has too many modes to achieve good results. On the contrary,

we hope to complete this task in the embedded latent space

using OT. Hence, the proposed NLOS-OT framework consists

of two steps: obtaining the latent code of the target image

through an autoencoder in step 1; and mapping the projection

image to the latent space through the OT theory in step 2.
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Therefore, the difficult passive NLOS imaging task is de-

composed into two simple tasks in the proposed NLOS-OT

model, i.e., step 1 manifold embedding and step 2 optimal

transport. Note that in step 1, because the input contains all

the information of the output, the manifold embedding is easy

to implement. In step 2, the OT is performed in the latent

space Z , which greatly reduces the difficulty. Moreover, the

OT theory can alleviate the mode collapse problem that may

occur during the mapping process. Both step 1 and step 2 are

implemented by deep learning, of which the network structure

and loss function are described thoroughly in the following.

2) Network of NLOS-OT: As shown in Fig. 2, NLOS-OT

mainly consists of three parts, namely encoder E1 and decoder

D1 for manifold embedding, and encoder E2 for optimal

transport.

Among them, E1 and D1 form an autoencoder to complete

the first step of the manifold embedding task; E2 is responsible

for the second step of the optimal transport task, mapping the

projection image to the latent space (L).
In these three networks, E1 and E2 have the same network

structure, but obviously the weights are different. As a decoder,

D1 has a symmetrical structure with E1. Their structure is

based on IntroVAE [40] with some modifications including

the change of the IntroVAE structure into an autoencoder and

the use of Tanh at the end of decoder D1 for activation and

normalization. The specific network structures of Encoder E1

and E2 are illustrated in Fig. 3

Among them, BatchNorm is used to complete the normal-

ization, and the activation function is LeakyReLU. Through

the fully connected layer, the encoder outputs a vector of

1∗512, which is the latent code. The first step of NLOS-OT is

to train the autoencoder E1 and D1 to get the transformation

from target images to latent code; the second step is to train

E2 to get the code from projection images to latent code.

C. Loss function of NLOS-OT

There are two steps in the training process, each of which

has an independent loss function.

1) Step 1. Manifold embedding using encoder E1 and

decoder D1: In step 1, the encoder E1 and decoder D1 are

trained with the target image f as the input and output to

obtain the latent code z. Here, E1 represents the mapping

from the target image space T to latent space Z , while D1

represents the mapping from the latent space Z to the target

image space T . The network architecture of the autoencoder

is similar to those in IntroVAE [40] and PGGAN [55]. The

size of the latent code is adjusted to 1×512 so that it is large

enough to meet the requirements of the manifold embedding

as well as small enough to reduce the difficulty of optimal

transport. In addition, we add the activation function Tanh at

the end of the decoder D1 to make sure both input and output

data are within [-1,1].

The objective of the manifold embedding is to find the latent

code of the target image through optimizing E1 and D1. The

corresponding loss function is divided into two parts, the pixel

space distortion loss Ld and the feature space perceptual loss

Lp

LAE = Lp
︸︷︷︸

perceptual loss

+ λ · Ld
︸ ︷︷ ︸

distortion loss

︸ ︷︷ ︸

loss of step1

(5)

Here, Lp is a simple MSE Loss but measured by the difference

between f (the target hidden image) and f̂ (the reconstructed

hidden image) on VGG features [45], [56] as

Lp =
1

W ×H

W∑

m=1

H∑

n=1

(

φ3,3 (f)m,n − φ3,3

(

f̂
)

m,n

)2

where φ3,3(·) represents the feature map obtained by (3, 3)
convolutional layer within the VGG19 network pretrained on

ImageNet. W and H are the dimensions of feature maps. The

Ld in Eq.(5) measures the distortion between target image f

and f̂ pixel-wisely using L1-norm:

Ld =
∥
∥
∥f − f̂

∥
∥
∥
1

Both the perceptual loss Lp and distortion loss Ld measure

the difference between f and f̂ . We find that the perceptual

loss Lp can well restore the high-level features and spatial

structure, but cannot preserve the colors. Conversely, distortion

loss Ld can restore the image color more accurately, but

with blurry results(See Appendix II in the supplementary for

details).

2) Step 2. Optimal transport using encoder E2: In step

2, the encoder E2 is trained with the parameters of E1 and

D1 fixed. Here, E2 is the mapping from the projection image

space P to the latent space Z . Ideally, given a projection image

y, we hope that E2 would map it to the latent code z that

corresponds to the target image f . The network structure of

E2 is set to be identical with that of E1.

The actual outputs we get from E2 constitute another

latent space Ẑ . Calculating the distance loss between the two

distributions Z and Ẑ and using the gradient descent method

and backpropagation to force E2 to encode the mapping from

the projection image space P to latent space Z is the purpose

of step 2.

To consider the geometry of the underlying spaces Z and

Ẑ , NLOS-OT employs the optimal transport (OT) metrics

to assess the divergence between them. Let µ̂ and µ be

two measures on latent spaces Ẑ and Z respectively, and

T : Ẑ → Z is a measure preserving transport map, i.e.

µ(B) = µ̂
(
T−1(B)

)
for any µ-measurable set B, notated

as T#µ̂ = µ. The cost function is denoted as c : Ẑ ×Z where

c(ẑ, z) measures the cost to transport a unit mass from ẑ ∈ Ẑ
to z ∈ Z . The purpose of using OT in step 2 is to minimize

the cost function c by training E2, which is, according to

Kantorovich’s optimal transport theory [57], given µ̂ ∈ P(Ẑ)
and µ ∈ P(Z)

min LOT =

∫

Ẑ×Z

c(ẑ, z)dπ(ẑ, z) (6)

s.t. π(Ẑi ×Z) = µ̂(Ẑi) (7)

π(Zi × Ẑ) = µ(Zi) (8)

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on November 27,2021 at 18:34:43 UTC from IEEE Xplore.  Restrictions apply. 



1057-7149 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2021.3128312, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, 202X 6

256*256,64
128*128,128

ResBlock

64*64,256
32*32,512

16*16,512 8*8,512
4*4,512

8192*1

512*1

Conv2d +BN+LeakyReLU

FC

AvgPool

ResBlock

256*256,3

Reshape

Target/ Projection

Image Space Latent Space

Connection

Fig. 3. The network architecture of encoders in NLOS-OT. The performance of the autoencoder determines the upper limit of NLOS-OT reconstruction,
so the structure of the encoder cannot be too simple. Inspired by IntroVAE [40], we adopt this network structure, which can be used to encode multiple types
of images.

Fig. 4. Samples from NLOS-Passive. It contains 4 different kinds of target images, including (a) supermodel faces, (b) anime faces, (c) MNIST and (d)

STL-10. (a)- (c) are narrow-distributed specific datasets. The 16 columns behind each target image represent projection images collected under 16 different
optical transport conditions. (d) are broad-distributed data. The 2 columns behind each target image represent projection images collected with or without
unknown partial occlusion. NLOS-Passive has a total of more than 50 groups and 3, 200, 000 samples.

where ẑ = EθE2
(y) is the output of E2 with the input of

projection image y. π ∈ P(Ẑ,Z) is a measure that satisfies

marginal constraints of µ̂ and µ in Eq.(7) and (8), i.e., the sum

of mass removed from any measurable set Ẑi ∈ Ẑ should be

equal to µ̂(Ẑi), also same for Z and µ. Hence, π(ẑ, z) is the

amount of mass transported from ẑ to z. Compared to map T

used in Mong’s OT theory [58] only transporting ẑ to another

z, π(ẑ, z) allows mass in ẑ to be mapped separately, which is

a natural advantage.

In general, the cost function c(ẑ, z) changes with z, such

as c(ẑ, z) = ‖ẑ − z‖1 for original Monge’s OT [58] and

c(ẑ, z) = ‖ẑ − z‖2 for Wasserstein distance [34]. In step 2,

however, because the indices of Z and Ẑ are already matched,

i.e., i − th latent code ẑi ∈ Ẑ and the i − th latent code

zi ∈ Z are paired in each batch, the cost function c(ẑ, z) can

be simplified to a finite constant(e.g., 1) if and only if ẑ and

z have the same index and are generated by the same hidden

image, else it would be +∞. Additionally, for two latent codes

ẑi ∈ Ẑ and zi ∈ Z , the amount of mass π(ẑ, z) is set to the

L1-norm ‖ẑi − zi‖1. Considering that zi is known when ẑi
is given, π(ẑ, z) conforms to the constraint in Eq.(7). In the

same way, it also meets the constraint in Eq.(8). Therefore,

we can optimize E2 through gradient descent by minimizing

LOT .

The most crucial role of OT is to transform the original

mapping from high-dimensional space to high-dimensional

space into a mapping from high-dimensional space to low-

dimensional embedded space. For the highly challenging

task of passive NLOS imaging, other CNN-based end-to-

end methods do not constrain the target space and directly

complete the mapping from the projection images to the

target images, making it difficult for the network to converge.
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In NLOS-OT, OT optimizes the mapping by measuring the

difference between two low-dimensional vectors, thereby im-

proving reconstruction quality. Following experiments show

that according to the characteristics of the dataset, NLOS-

OT can achieve extreme high-quality reconstruction or have

strong generalization capabilities with reasonably good recon-

struction.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup,

including the used dataset NLOS-Passive, baseline methods

and training details. After that, we evaluate the performance

of NLOS-OT, in terms of reconstruction quality and gen-

eralization ability, through conducting experiments on the

NLOS-Passive dataset. Specifically, we first fix the optical

transport condition and evaluate the reconstruction quality of

the NLOS-OT on different types of data. Then, we fix the

type of data and evaluate how NLOS-OT works under various

optical transport conditions. Finally, we train NLOS-OT with a

broadly distributed dataset (STL-10) and test it under different

conditions to evaluate the generalization ability and robustness

to light conditions of NLOS-OT.

A. Experimental setup

1) Dataset (NLOS-Passive): To effectively learn the en-

coders (E1, E2) and decoder (D1) in NLOS-OT, we need a

large-scale dataset. However, to our best knowledge, currently

there is no existing large-scale passive NLOS imaging dataset

available to use. Thus, we create a dataset, namely NLOS-

Passive, with the experimental setting shown in Fig. 1(a), i.e.,

we display different target image f on the LCD and use a

camera to capture the projection image y on the wall.

We use four different types of target images f , namely

MNIST [19], the supermodel face dataset generated by Style-

GAN [59], the animation face data DANBOORU2018 [21]

and a widely distributed natural image dataset STL-10 [23].

Among them, MNIST, supermodel faces dataset and anima-

tion faces dataset are specific datasets with limited distribution,

which is used to study the reconstruction effect of the model

on special scenes. For each of the three target image datasets,

we control four optical transport conditions: distance between

the LCD and the wall D, the angle of the camera ∠α, the

ambient illumination L, and the material of the relay surface.

Each of the four conditions has 2 values. Please see Fig. S4

in Appendix III in the supplementary for details. Therefore,

for each of the three types of data (MNIST, supermodel faces,

animation faces), we collected 16 groups respectively. These

16 sets of data are all without partial occlusion. It should be

noted that in order to verify the influence of occlusions on

the reconstruction methods, we collected a group of data for

supermodel faces with partial occlusion as well, described in

Appendix III in the supplementary for detail.

STL-10 is used to analyze the performance and general-

ization ability of the model on a broad dataset. Specifically,

we collected two groups of STL-10 data without occlusion

to verify the performance of NLOS-OT on a broader dataset.

Besides, we also collected two groups of STL-10 data as well

as some samples from other datasets with partial occlusion to

demonstrate the generalization ability. Each group of STL-10

data contains 113, 000 samples.

During the acquisition process, various camera parameters,

including white balance, focal length, exposure time, etc.,

remain unchanged to prevent changes in camera parameters

from affecting the data. We totally collect more than 50 groups

of data and 3,200,000 samples, as shown in Fig. 4. The details

of NLOS-Passive and the hardware we used are covered in

Appendix III and IV in the supplementary respectively.

2) Baseline methods: Since there are only a few works

using deep learning for the passive NLOS imaging [12]–[15],

in this paper, we compare the proposed NLOS-OT with the

following two baseline methods.

a) U-Net used in Phong [12]: The first baseline is the

U-Net structure used in [12], [15].

b) Conditional GANs: U-Net can be regarded as an

encoder-decoder based model, representing the state-of-the-

art passive NLOS imaging methods. However, in recent years,

GANs have also achieved superior results in areas including

image deblurring and denoising. Thus, we also compare with

GANs to verify the performance of NLOS-OT. Since there is

no passive NLOS imaging method based on GANs, we es-

tablish a C-GAN reconstruction network according to Pix2Pix

GAN [44] and DeblurGAN [45] as a baseline. See Appendix I

in the supplementary for more details.

3) Training details: All three methods, including two base-

lines and the proposed NLOS-OT, are implemented using

PyTorch [60]. The training is performed on a single GeForce

GTX 1080 Ti. The captured projection image has the size of

720× 720, but all input images and output images are resized

to 256× 256.

The training process of NLOS-OT is divided into two steps,

manifold embedding and optimal transport. In the first step,

the network is an autoencoder containing only E1 and D1.

The input and output of the network are both target images

f . The learning rate is 0.0001 in the first 30 epochs, and

exponentially decays to 0 in the subsequent epochs. We also

adopt an early stopping strategy to prevent over-fitting and

reduce the difficulty of optimal transport in step 2. Specifically,

with the increase of training epoch in step 1, although the

reconstruction result of step 1 is more realistic, it becomes

harder to map the projection image space P to the latent

space Z in step 2. We thus choose 100 epochs for MNIST

and supermodel faces data, and 10 epochs for anime faces

data and STL-10 data considering the trade-off between the

accuracy of manifold embedding and the difficulty of step 2.

In the OT step, E2 is added to the network, and the

parameters of E1 and D1 are fixed based on step 1. In the

training process of step 2, the input includes projection images

y and target images f . E1 extracts the features from f to

get the latent code z, while E2 is continuously optimized to

complete the optimal mapping from y to the latent code ẑ.

In the testing phase, the network only has E2 and D1 where

E2 maps the projection images f to the latent code ẑ and D1

decodes ẑ to reconstruct the hidden images.
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NLOS-OTC-GAN[44,45]
Phong[12]

(U-Net)Target Input
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Fig. 5. Results under different kinds of hidden images. The reconstruction results of different methods when the target image is from MNIST(a),
supermodel faces(b), anime faces(c) and STL-10(d). All data are collected on the wall under D = 100 cm, angle ∠α1 and dark light.

B. Reconstruction of complex hidden scenes

Existing passive NLOS imaging algorithms can only recover

simple hidden scenes with blurry reconstruction. The proposed

NLOS-OT reduces the reconstruction difficulty by simplifying

the generation target from the image space T to the latent

space Z , and thus can be applied to more complex hidden

scenes with good reconstruction quality.

By keeping the distance D, the angle ∠α, the illumination L

and BRDFs unchanged, we fix the optical transport conditions

to train and test on the four datasets respectively, as shown

in Fig. 5. Among the four types of data, MNIST is the

simplest so that U-Net, C-GAN and NLOS-OT can all achieve

good reconstruction. When the data becomes more complex,

the advantages of NLOS-OT become more apparent. For

supermodel faces, the SSIM of the reconstruction obtained

by NLOS-OT is higher than those obtained by the baseline

methods. When the data is the anime face and STL-10 with

more patterns, only NLOS-OT can obtain acceptable results,

TABLE I
QUANTITATIVE COMPARISON WITH SSIM AND PSNR. THE

STATISTICAL RESULTS OF DIFFERENT METHODS ON THREE DATASETS,
WHICH ARE OBTAINED UNDER TYPICAL OPTICAL TRANSPORT CONDITION

(REFLECTED ON THE WALL, D= 100CM, ANGLE ∠α1 , DARK LIGHT,
WITHOUT OCCLUSION).

Method
MNIST SuperModel Faces STL-10

SSIM PSNR SSIM PSNR SSIM PSNR

Phong [12] 0.67 14.52dB 0.33 13.32dB 0.04 10.31dB
C-GAN 0.80 14.83dB 0.54 14.87dB 0.34 13.59dB
ours 0.83 15.27dB 0.59 16.04dB 0.46 15.41dB

indicating that the proposed NLOS-OT has the superior ability

on the passive NLOS imaging for complex hidden scenes.

Table I compares the quantitative results of NLOS-OT and

the baseline methods. It can be seen that NLOS-OT achieves

the best performance in terms of both SSIM [61] and PSNR,

which verifies that by encoding the target image to latent code
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Fig. 6. Results under different optical transport conditions. With a specified target image, (a) illustrate the results of different methods under the optical
transport condition: dart environment, distance D = 100, angle ∠α1, and the wall reflection. (b)-(e) represent the reconstruction results obtained by different
methods after changing one of the four optical transport conditions in (a), respectively.

and then performing the optimal transport in the latent space,

NLOS-OT can greatly improve the reconstruction of passive

NLOS imaging. The SSIM and PSNR of traditional model-

based methods are about 0.28 and 7.3dB respectively [9], [10],

which is also exceeded by the proposed NLOS-OT.

C. Reconstructionunderdifferentopticaltransportconditions

Existing passive NLOS imaging methods mainly work in a

dark environment, and may fail to achieve good reconstruction

with more ambient light. In addition to ambient light, other

optical transport conditions can also affect the NLOS recon-

struction. Therefore, besides the ability to reconstruct complex

hidden scenes, the robustness to different optical transport

conditions is also an important criterion.

To evaluate the robustness of the NLOS-OT under different

optical transport conditions, we first select a certain target

image set (e.g., the SuperModel Faces) and then determine

a combination of optical transport conditions. The results are

shown in Fig. 6, where (a) are the reconstructions under the

optical transport condition: dark light environment, distance

D=100, angle ∠α1, and the wall reflection. By changing

one of the four optical transport conditions in (a), (b)-(e)

represent the corresponding reconstruction results obtained by

different methods. ”Day Light” here refers to the measurement

conditions with obvious ambient light. After calculation, the

”day light” data is equivalent to adding 0.05 dB (SNR) shot

noise that obeys the ambient light distribution to the dark light

projection.

It can be seen that under different optical transport condi-

tions, the reconstruction can be different for the same method.

Overall, low illumination and high reflection relay surface have

greater impact on the reconstructions, while the distance D and

the angle ∠α have less influence on the results. In all cases,

the proposed NLOS-OT achieves the best reconstruction under

different conditions. These results show that the proposed

NLOS-OT is robust to optical transport conditions.

D. Assessment of generalization ability

1) Generalization of unseen test data: Generalization a-

bility is an essential factor needed to be considered for the

learning-based methods due to the implicit assumption that the

distribution of the test data is similar to that of the training

data.

For passive NLOS imaging tasks, there are mainly three

types of knowledge that NLOS-OT can learn: inverse transport

process, noise distribution and data prior. The generalization

ability will be poor when learning too much data prior, which

is not expected. When the distribution of the training dataset

is sufficiently broad, the difficulty of learning the data prior

will increase, forcing the network to learn more inverse light

transport knowledge, thus having a stronger generalization

ability.

(a) (b) (c) (a) (b) (c) (a) (b) (c)

Fig. 7. Generalization of NLOS-OT model. When the dataset is complex,
NLOS-OT has good generalization ability. The training set is STL-10, and the
test set is MNIST and supermodel dataset. Left: input, middle: output, right:
ground truth.

Therefore, we collected STL-10 data with an unknown

partial occlusion (randomly placing a tripod in front of the

screen, described in Appendix V in the supplementary) as the
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training set. On the other hand, some MNIST and supermodel

face data were collected as the test set, keeping all conditions

unchanged. Then, the generalization ability can be evaluated

by training on the STL-10 dataset, and testing on the MNIST

and supermodel face dataset. The results are shown in Fig. 7,

illustrating that NLOS-OT can be trained on STL-10, and

tested on the MNIST and supermodel face datasets with good

results. Besides, we also find that when two tested input

images are added as the new input, the output is almost the

added result of the corresponding target images (as shown in

Fig. 8). Combined with Eq. 3, it can be seen that NLOS-OT

has almost completed the theoretical linear transformation.

All the results show that when the training dataset is

appropriate, NLOS-OT can indeed learn something very sim-

ilar to the inverse optical transport matrix and have strong

generalization capabilities, which also demonstrates that the

projection data in Fig. 7-(a) does contain enough information

to restore almost any hidden scene. Moreover, the performance

is better than the previous methods. For more information

about the generalization ability experiment, including the test

results on the realistic pictures, and the comparison of the

generalization ability with baseline methods [12], [45], please

see Appendix VI in the supplementary.

Fig. 8. The results of adding two test images together as the input of

the network. Left: input image. Middle: output image. Right: ground truth.
The network is trained by the projections of STL-10 dataset with an unknown
occluder.

2) Comparison with traditional physics-based algorithms

using unseen test data: Besides using different types of

data (MNIST and supermodel faces) in NLOS-Passive for

generalization ability verification, we also used images from

existing physics-based works to illustrate the generalization

ability of NLOS-OT. Specifically, we used our screen to play

the hidden images in [9] and [10], then tested them under

our light transport settings (wall, D= 100cm, angle ∠α1,

dark light). The test result is compared with the result in [9]

and [10], as shown in Fig. 9.

It can be seen that for the hidden image in [9], the results

obtained by NLOS-OT are not as good as [9]. Nevertheless,

NLOS-OT does not need to measure the parameters of the

scene and perform scaling calibration on different color chan-

nels, and can achieve better results when the target scene is

similar to the training images. For (e)-(g) in Fig. 9, NLOS-

OT can achieve similar and even better results than traditional

algorithms in [10]. In fact, from quantitative comparison, the

results of our method on the new test data are better than the

TABLE II
QUANTITATIVE COMPARISON BETWEEN NLOS-OT AND TRADITIONAL

ALGORITHMS. ALL NLOS-OT DATA ARE COLLECTED UNDER (DARK,
ANGLE B, D=100, WALL CONDITIONS, AND ONLY TRAINED ON STL-10).
QUANTITATIVE RESULTS OF TRADITIONAL ALGORITHMS ALL COME FROM

[10]

Test set / Methods PSNR (dB) SSIM

NLOS-OT
Only trained by STL-10

STL-10 17.46 0.507

MNIST 15.14 0.229
Supermodel Faces 17.35 0.581

Real Images 14.30 0.509

Traditional Methods TV regularization 8.8 0.37
Polarized NLOS 11.7 0.43

traditional algorithm (the quantitative results of the traditional

algorithms come from [10]), as shown in Tab. II. This can

be explained by NLOS-OT’s ability of not only learning the

optical transport matrix, but also learning the data prior.

All these experiments can show that NLOS-OT has strong

generalization capabilities and can be used for new distribution

of images that have never been seen before.

3) The adaptability of NLOS-OT to different data collection

conditions: What is described above is the classic gener-

alization ability, that is, the ability of NLOS-OT to adapt

to different distributed data, which is essentially the ability

of NLOS-OT to learn the inverse light transport process.

Next, we will discuss another kind of “generalization ability”,

which measures the adaptability of NLOS-OT to different

data collection conditions, and is essentially the ability of

NLOS-OT to learn data prior. We believe that although in

the usual sense, learning physical mapping is more important

than learning data prior. However, for specific NLOS imaging

tasks, it is also important to learn data priors to achieve

high reconstruction quality and be applied to different light

transport conditions. Specifically, we choose a narrow dataset

(supermodel faces) and mix the data under 16 different optical

transport conditions to form a new dataset for the training and

testing. The results are shown in Fig. 12. It can be seen that

NLOS-OT still performs best on this mixed dataset, which

means that NLOS-OT has better ”generalization ability” on

different light conditions than existing methods based on U-

Net [12], [15] and C-GAN.

The results in Fig. 7 and Fig. 12 illustrate the ability of

NLOS-OT to learn data prior and to learn the process of

inverse light transport, respectively. This shows that NLOS-OT

can learn the inverse light transport process for a widely dis-

tributed dataset to obtain strong generalization ability, instead

of difficult to converge as other existing end-to-end methods.

Furthermore, NLOS-OT can get higher quality results and

generalization ability to different light conditions for a specific

dataset by learning the data prior.

E. Assessment of robustness to noise

As described in Section III, the noise of passive NLOS

imaging is mainly background noise caused by different am-

bient light levels, which is shot noise based on the distribution

of ambient light. Besides, some Gaussian noise would be

added due to the camera. Here, we use the wall projection
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Fig. 9. Comparison of NLOS-OT and traditional algorithms [9] and [10]. The TV regularization results of (a)-(d) are from [9], and the traditional
algorithms results of (e)-(g) are from [10]. NLOS-OT uses STL-10 data for training, and the collected projection data for testing.

AL: 30dBDark light AL: 20dB AL: 15dB AL: 30dBDark light AL: 20dB AL: 15dB

(a) trained by supermodel faces dataset in dark light (b) trained by STL-10 dataset in dark light 

Fig. 10. The test results on different levels of noise due to ambient light (AL). All the results in this figure are trained under dark light and tested after
adding ambient light noise with different SNRs. (a) Test results on small-scale dataset. (b) Test results on large-scale dataset. Both (a) and (b) are tested under
three different ambient noise levels (30dB, 20dB and 15 dB)

data collected under a dark environment, D = 100 and angle

∠α1 to train the network, and add these two types of noises at

different levels to the projection images separately to illustrate

the robustness of NLOS-OT to noise.

1) Shot noise caused by ambient light: We exploited a sta-

ble light source with adjustable brightness as the noise source,

and collected test data under different SNRs (30dB, 20dB,

15dB). After that, we separately evaluated the robustness of

the smaller-scale dataset (supermodel faces) and the larger-

scale dataset (STL-10) to ambient light. The results are shown

in Figure 10-(a) and (b) respectively.

It can be seen from Fig. 10 that when the noise continues

to increase, the distribution of the input images will change

significantly, resulting in a sharp drop in the quality of the re-

constructed images. When the scale of the training set is small,

the results under different SNRs change more significantly. On

the contrary, when using a larger dataset, the ambient light

noise has less influence on the reconstructions, which means

a stronger robustness. For example, when using the STL-10

dataset for training, the number “5” in MNIST can be clearly

recovered even at an SNR of 15dB. In terms of visual effects,

the tolerance of NLOS-OT to noise generated by ambient light

is about 10dB.

2) Gaussian noise: To analyze the robustness of NLOS-OT

to Gaussian noise, we added 10dB, 20dB, and 30dB Gaussian

noise to each input image to test the reconstruction effect of

the network on these noisy images.

Figure 11 shows the reconstruction results under different

SNRs. It can be seen that NLOS-OT has strong robustness

to noise. Considering that NLOS imaging is a very ill-

conditioned problem, this robustness to noise is largely due

to the contribution of the scene prior to NLOS-OT. With the

noise around 10dB, NLOS-OT began to produce completely

different reconstruction results.

Apart from noise, we also evaluated the robustness of

NLOS-OT to other factors, including the distance from the
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Fig. 11. Reconstruction results under Gaussian noise with different

SNRs.

display to the wall D, the camera angle, and the relay surface

material. The results show that NLOS-OT has good robustness

to the distance D and relay surface materials, but is less robust

to the camera angle and the position of the occluder. Please

see Appendix VI in the supplementary for details.

V. DISCUSSIONS

In this section, we first discuss what NLOS-OT has learned,

the contribution to passive NLOS imaging tasks, and the

challenge faced by NLOS-OT, then analyze the limitations of

NLOS-Passive and our future work.

A. Discussion about our method: NLOS-OT

1) Transport matrix VS Data prior: As mentioned above,

there are two main types of knowledge that can be exploited

in passive NLOS imaging tasks: the inverse light transport

process and data prior (including noise distribution). Tradi-

tional physics-based methods mainly exploit the light transport

process by approximating the light transport matrix and using

other ways (e.g., adding partial occlusions [9], [62], [63]

and polarizers [10]) to decrease the condition number, hence

obtaining strong generalization capabilities (not dependent on

data distribution) but low-quality results. On the contrary, the

existing end-to-end deep learning methods [12] mainly learn

the data distribution of the data set (MNIST), hence obtaining

higher quality but poor generalization ability results.

2) What does NLOS-OT learn: To some extent, NLOS-

OT combines the strengths of the above two methods. That

is, NLOS-OT can learn both the data prior and the inverse

light transport process. For datasets with simple distribution,

physics-based methods cannot effectively extract data priors,

but NLOS-OT can effectively extract them and complete

the state-of-the-art, high-quality reconstructions. On the other

hand, for datasets with complex distributions, the existing deep

learning-based methods are difficult to converge. Still, NLOS-

OT is effective and learn the inverse transport process so

that the generalization ability is equivalent to the traditional

methods (any hidden scenes can be reconstructed), but with

faster reconstruction speed (neural network only needs forward

propagation during testing) and better quality (still learning a

small amount of data prior) results.

Which one (data prior or inverse transport) is the pre-

dominant knowledge learned by NLOS-OT depends on the

NLOS-OT
C-GAN

[44,45]

Projection

(Input)

Phong[12]

(U-Net)
Target

Phong[12] C-GAN NLOS-OT

PSNR 12.87dB 14.85dB 18.57dB

SSIM 0.333 0.577 0.658

Fig. 12. The adaptability of NLOS-OT to different optical transport
conditions. When all the data under different optical transport conditions
are mixed, the proposed NLOS-OT has the best reconstruction, reflecting the
better generalization ability to different light conditions.

distribution of the data set. When the dataset is relatively small,

the learning experience is very conducive to the decline of the

loss function, and the network will tend to learn experience

at this time. However, when the dataset is complex, the loss

function will be challenging to decline through the learn-

ing experience. On the contrary, learning effective physical

transformations will become a more efficient way. Hence, the

network will learn the physical transformation behind passive

NLOS imaging.

To verify the conclusion, we conduct two experiments. In

the first experiment, we keep the ambient light, angle, distance,

and relay surface material unchanged to collect new data with

partial occlusion. The results with and without occlusion are

shown in Figure 13-(b) and (c), and the comparison of their

loss functions on the validation set is shown in Figure 13-(d).

In quantitative comparison, with occlusion, SSIM is 0.674,

while PSNR is 19.37dB, both of which are higher than

that without occlusion. Thus, it can be seen that NLOS-OT

has indeed learned the effective physical mapping in passive

NLOS even with narrow datasets. Another experiment fed the

STL-10 dataset in Fig. 7 to NLOS-OT for training, and used

the data measured in [9] for testing. Since what the NLOS-OT

learn is mainly the optical transport matrix in this situation,

and the STL-10 dataset we collected has a completely different

optical transport matrix from the data in [9], the reconstruction

cannot be completed theoretically, which is consistent with

the experiment results. Please see Appendix V - (4) in the

supplementary for details.

3) Challenges: Nevertheless, NLOS-OT still faces many

limitations. First, due to the “black box” nature and the

gradient backpropagation mechanism, the network will au-

tomatically learn knowledge that is easy to learn, making it

extremely difficult to use small-scale datasets to obtain strong

generalization results. In addition, because of the ill-posedness

of passive NLOS imaging, it is tough to obtain extremely high-
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(a) Hidden 

images

(b) without occluders

PSNR: 16.04dB

SSIM: 0.597

(c) with occluders

PSNR: 19.98dB

SSIM: 0.687

(d) Loss functions of with / without occlusion for validation set on supermodel faces 

Fig. 13. The results of with and without partial occlusion on supermodel

face reconstruction. (a) Hidden images. (b) Input and reconstruction results
when there is no occlusion. (c) Input and reconstruction results when there
is a partial occluder. In terms of quantitative comparison, the PSNRs of with
and without occlusion are 16.04dB and 19.37dB, and SSIMs are 0.597 and
0.674, respectively. (d) Loss functions with/without partial occlusion. This
shows that partial occlusion is helpful to NLOS-OT, proving that NLOS-OT
has learned relevant knowledge about inverse light transport.

quality results on complex datasets. We believe two possible

ways can alleviate these problems. The first is through transfer

learning, enabling the data trained in one type of hidden scene

to be quickly transferred to another type. The second is to

combine with model-based methods to force the network to

learn only the information of the optical transport matrix, e.g.,

using matrix factorization to simulate the optical transport

matrix [13]. We leave these to our future studies.

B. Discussion about the dataset: NLOS-Passive

In NLOS imaging, due to many unavailable calibration

processes, collecting data, especially a large-scale dataset, is

very difficult. Therefore, most existing works generate simu-

lated datasets through rendering models. In this work, we use

different hidden images to collect data under different optical

transport conditions, and made the NLOS-Passive, including

more than 50 groups and 3,200,000 samples in total.

We believe that NLOS-Passive can be useful in various

aspects. First, since it contains hidden scenes of different com-

plexity, NLOS-Passive can be used to study the performance

of passive NLOS imaging algorithms, whether conventional

or data-driven methods. Secondly, with data captured under

different light conditions, NLOS-Passive can be used to study

the influence of lighting on the reconstruction algorithm and

the optical transport matrix. Last but not least, NLOS-Passive

is an experimentally collected dataset, so it can be used to

train the optical transport process to help optimize the existing

imaging model.

Despite its many potential applications, NLOS-Passive also

has its limitations. First, because different optical transport

conditions need to be manually controlled, we only collect

data under limited optical conditions, as well as only use two

relay materials, wall and whiteboard, which led to NLOS-

Passive cannot represent enough data space. This limitation

can be untangled by using NLOS-Passive as a constraint to

improve the data rendering model. Besides, using RAW data

is also an approach to enhance NLOS-Passive. They are left

to our future studies.

VI. CONCLUSIONS

In this paper, we developed NLOS-OT, which enables pas-

sive NLOS imaging in complex scenes through manifold em-

bedding and optimal transport. In addition, we created NLOS-

Passive, a large-scale passive NLOS dataset totally containing

more than 50 groups of data and 3,200,000 samples, which

is, to the best of our knowledge, the first public large-scale

passive NLOS dataset.

The proposed NLOS-OT resolves the unbalanced distri-

bution problem by first performing manifold embedding to

obtain the latent space, and then using optimal transport to

map the projection image to the latent space. Such procedures

greatly simplify the imaging since the dimension of the latent

space is much lower than that of the target image space, as

shown in Tab. I. We also show that NLOS-OT has the ability

to reconstruct any hidden images, which means that NLOS-

OT has a strong generalization ability. We anticipate that the

NLOS-OT framework together with the NLOS-Passive dataset

will accelerate the development of learning-based passive

NLOS imaging research, and thereby enable real-time and

high-quality passive NLOS imaging in the near future.
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