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Figure 1: Examples to illustrate the effectiveness of the proposed Density-Preserving Regularization (DP Reg.) approach in

stabilizing the transformation that is performed by latent space walks. In each example, the images are synthesized (upper row)

w/o DP Reg. and (bottom row) w/ DP Reg..

ABSTRACT

Generative adversarial network (GAN)-based models possess supe-

rior capability of high-fidelity image synthesis. There are a wide

range of semantically meaningful directions in the latent representa-

tion space of well-trained GANs, and the corresponding latent space

walks are meaningful for semantic controllability in the synthesized
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images. To explore the underlying organization of a latent space,

we propose an unsupervised Density-Preserving Latent Semantics

Exploration model (DP-LaSE). The important latent directions are

determined by maximizing the variations in intermediate features,

while the correlation between the directions is minimized. Consid-

ering that latent codes are sampled from a prior distribution, we

adopt a density-preserving regularization approach to ensure latent

space walks are maintained in iso-density regions, since moving

to a higher/lower density region tends to cause unexpected trans-

formations. To further refine semantics-specific transformations,

we perform subspace learning over intermediate feature channels,

such that the transformations are limited to the most relevant sub-

spaces. Extensive experiments on a variety of benchmark datasets

demonstrate that DP-LaSE is able to discover interpretable latent

space walks, and specific properties of synthesized images can thus

be precisely controlled.
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1 INTRODUCTION

Generative Adversarial Networks (GANs) [14] have become a dom-

inant generative modeling paradigm, and GAN-based generative

models have made significant progress in modeling complex data

distributions over the past years. The state-of-the-art GAN-based

models have shown the capability of synthesizing high-fidelity and

high-resolution images, like BigGAN [5], PGGAN [19] and Style-

GAN [20, 21]. In these generative models, a generator aims to learn

a mapping from a latent space to a higher dimensional data space.

Image semantics is typically controlled by the latent codes that

encode pre-defined class labels or attributes. Semantic controlla-

bility has gained lots of attention, since there is great potential in

downstream applications, such as image editing.

To understand the generation process, researchers have begun

to pay attention to the interpretability of the latent space in GANs

[4, 18, 32, 39]. The previous works provide evidence that there are

a wide range of semantically meaningful directions in the latent

space of well-trained GANs [12, 18, 32, 36, 43]. The identified latent

directions can be utilized for semantic manipulation in synthesized

images. This in turn reveals how GANs encode semantics. Due to

the diversity and entanglement of image semantics, discovering

meaningful directions in a latent space is challenging. Some recent

works study this problem in a supervised manner. In this case, at-

tribute labels of training data or a pre-trained attribute predictor

are required, and the identified latent directions are limited to the

pre-defined range. On the other hand, unsupervised learning tech-

niques are also applied to explore the underlying organization of

GAN feature space. In [15, 37], important latent directions are de-

termined by performing principal component analysis and matrix

factorization on the features and weights of an intermediate layer,

respectively. However, there is an issue arising from the above ex-

ploration process: Only latent directions are determined, such that

the precision of semantic controllability is sensitive to the strides

of latent space walks, e.g., identity of a person changed in face

images. Due to the fact that latent codes are drawn from a prior

distribution, like Gaussian, the ones located in low-density regions

may lead to unrealistic images, while complex semantics become

interwoven in high-density regions. We consider that one possible

reason of the above issue is the significant density differences be-

tween the two end points of a latent space walk. To address this

issue, we regularize the process of latent semantic discovery via

a density-preserving constraint to perform more precise semantic

manipulation as shown in Figure 1.

In this work, we aim to discover steady latent space walks to

precisely control semantics in synthesized images via pre-trained

GANs. Toward this end, we propose an unsupervised Density-

Preserving Latent Semantics Exploration model (DP-LaSE). The

learning process is enforced to search for the latent space walks

associated with the independent factors of variation in the synthe-

sized images. More specifically, the important latent directions are

determined by maximizing the variations in intermediate features.

To capture diverse factors of variations, we also minimize the cor-

relation between the directions and between the feature changes

caused by different directions. On the other hand, we jointly train

a density estimation module, such that we can perform density-

preserving regularization on latent space walks. Benefiting from

this regularization, the resulting latent space walks are able to be

located in iso-density regions. Considering that the intermediate

feature channels also have influence on semantics, we further per-

form subspace learning over the channels to identify the main

subspace, which is most relevant to each identified latent direc-

tion. As a result, the transformation through a latent space walk is

limited to the corresponding subspace. The structure of DP-LaSE

is illustrated in Figure 2. Extensive experiments are performed to

verify the effectiveness of the adopted techniques in improving

semantic controllability. Moreover, DP-LaSE is able to outperform

the previous state-of-the-art methods in terms of synthesis quality

and interesting image manipulation.

The main contributions of this work are summarized as fol-

lows: (1) We explore steady latent space walks for precise semantic

controllability in synthesized images via pre-trained GANs in an

unsupervised manner. (2) We find that moving between different

density regions with respect to a prior distribution tends to cause

unexpected changes in image contents. To address this issue, we im-

pose a density-preserving regularization on latent space walks. (3)

By utilizing the association between intermediate feature channels

and underlying semantics, we perform subspace learning over the

channels for each important latent direction, such that the semantic

transformation can be limited to the most relevant subspace.

2 RELATEDWORK

2.1 Generative Adversarial Networks

GAN-based generative models have demonstrated the superior

capability of modeling real image distributions by synthesizing di-

verse and high-fidelity images from scratch [2, 5, 14, 19ś21, 27, 33].

To improve the stability of the training process of GANs, a variety of

regularization methods were incorporated, such as Wasserstein dis-

tance [2, 13, 41], Lipschitz continuity constraint [26, 44] and other

useful techniques [3, 9, 13, 31, 35]. Furthermore, a number of works

focus on improving visual quality of synthesized images. Brock

et al. [5] explored how to increase the capacity of the constituent

networks in GANs and load throughput via a larger batch size, and

the resulting model is referred to as BigGAN. BigGAN has demon-

strated the capability of generating a wide range of realistic images

over the ImageNet benchmark [7]. To synthesize high-resolution

images, Karras et al. [19] adopted a progressive enhancement strat-

egy to increase image resolution, such that the finer-scale details

can be gradually incorporated. To enhance semantic controllability
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Figure 2: An overview of the proposed DP-LaSE model, which mainly consists of a pre-trained generator {𝐺1,𝐺2}, a density

estimation module 𝐹 and a correction module 𝐶. To discover semantically meaningful latent space walks, we identify a set of

important latent directions {𝜸1,𝜸2, . . . ,𝜸𝑘 } by maximizing the variations in the intermediate features 𝐺1 (·). Benefiting from 𝐹 ,

we impose a density-preserving regularization on latent space walks, and 𝐶 learns a correction vector to maintain the resulting

latent codes 𝒛𝑑𝑝 in iso-density regions. For each 𝜸 𝑗 , we perform subspace learning over the intermediate feature channels, and

the transformations can be further controlled by limiting the effect of latent space walks to the most relevant subspace.

in the synthesis process, Karras et al. [20, 21] proposed a Style-

GAN model, in which latent codes and attribute information were

mapped into different intermediate feature spaces of a style-based

generator with adaptive instance normalization [17]. There are also

a number of works that explore how to reduce the dependence of

GANs on labeled training data [10, 11, 24, 25, 30, 38, 42].

2.2 Interpretation of Prior Latent Space

It is an important research direction to investigate how GAN-based

generative models learn the factors of variation from real data. In

recent works [4, 12, 18, 36, 43], researchers found that the latent

space or intermediate feature space of GANs typically encode a

variety of semantics. To discover latent semantics, a supervised

strategy was typically used to learn meaningful directions in the

latent space, which corresponds to changes in labeled attributes.

Goetschalckx et al. [12] used a memorability predictor [22] to guide

the process of learning latent directions along which produced

images have increasing or decreasing memorability. Shen et al.

[36] employed a set of attribute classifiers to partition the latent

space in GANs, and the normal vectors with respect to the obtained

separating hyperplanes were associated with the corresponding

attributes.

To avoid labeling training data or pre-training an attribute predic-

tor, a variety of techniques were developed to learn the underlying

factors of variations in an unsupervised fashion. Chen et al. [6]

proposed a regularization method to explicitly learn a factorized

representation by maximizing the mutual information between

latent codes and synthesized images. Mollenhoff and Cremers [28]

proposed the FlatGAN model, in which training data was modeled

as an oriented 𝑘-dimensional manifold, and moving along tangent

planes leads to interpretable manipulations. Jahanian et al [18]

adopted a self-supervised training strategy to construct training im-

age pairs via simple transformations, which have been commonly

used for data augmentation. A set of latent directions were thus

learnt to associate with the transformation in a supervised manner.

Similarly, Plumerault et al. [32] also utilized pre-defined transforma-

tions to construct training pairs and searched for latent directions

encoding the transformations. Voynov and Babenko [40] incorpo-

rated a reconstructor to reproduce the latent shift, conditioned on

the transformed images, and trained a classifier to identify semantic

latent directions. Harkonen et al. [15] applied principal component

analysis over the intermediate features of random samples to deter-

mine the principal latent directions. Shen and Zhou [37] performed

factorization over the weights of a pre-trained generator, and a

closed-form algorithm was developed to determine latent semantic

directions that lead to maximum image variations.

3 METHOD

3.1 Overview

GAN-based generative models learn a mapping from a latent space

to a data space via a generation network 𝐺 : 𝒛 → 𝒙 , where 𝒛 and

𝒙 denote a latent code and an image, respectively. 𝒛 is typically

sampled from a prior probability distribution 𝒑0. To explore the

structure of the latent space, we investigate the factors of variation

in synthesized images in terms of semantically meaningful latent

space walks, which correspond to changes in well-defined attributes

and are easy to distinguish from each other. Toward this end, we

search for a set of latent directions {𝜸1,𝜸2, . . . ,𝜸𝑘 }, where 𝑘 denotes

the number of directions. Moving 𝒛0 in the directions can lead to

variations in 𝐺 ’s intermediate features to as large an extent as pos-

sible. Due to the fact that latent codes are drawn from 𝒑0 in the

training process of GANs, the ones located in low-density regions
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may lead to unrealistic images, while complex semantics become in-
terwoven in high-density regions. The resulting images 𝐺 (𝒛0 +𝜀𝜸 𝑗 ) 
may be displaced from the underlying manifold, where 𝜀 denotes 
the manipulation intensity. To address this issue, we propose a 
density-preserving regularization approach to learn a correction 
vector 𝐶 (𝒛0, 𝜀,𝜸 𝑗 ), such that 𝒛0 + 𝜀𝜸 𝑗 +𝐶 (𝒛0, 𝜀,𝜸 𝑗 ) can be located in 
a position where the probability density is the same as that in the 
original position. We consider that this density-preserving regular-
ization benefits image semantic controllability. Further, we perform 
subspace learning over 𝐺 ’s intermediate feature channels to find 
the channels which are most relevant to the identified latent direc-
tions. As a result, the transformation can be precisely controlled 
by limiting the effect of a latent space walk to the corresponding 
subspace.

3.2 Exploration of Latent Space Walks

A latent space walk is represented by a direction vector 𝜸 𝑗 multi-

plied with a continuous parameter 𝜀, and the resulting latent vector 
is defined as follows:

𝒛 (𝜸 𝑗 ) = 𝒛0 + 𝜀𝜸 𝑗 . (1)

Increasing the value of 𝜀 leads to a greater degree of transformation.

In the learning process, the value of 𝜀 is randomly sampled in the

range of [−𝛼, 𝛼]. We provide details on the determination of 𝜸 𝑗

below.

Density-Preserving Regularization. To preserve the proba-

bility density after a latent space walk, we consider the following

two cases: (1) When the prior distribution of latent codes is known,

like Gaussian, we can simply modify the norm of 𝒛 (𝜸 𝑗 ) as follows:

𝒛𝑑𝑝 (𝜸 𝑗 ) =
∥𝒛0∥

∥𝒛 (𝜸 𝑗 )∥
𝒛 (𝜸 𝑗 ) . (2)

As a result, the resulting latent vector is located in the same den-

sity region as the original latent vector, since they are equidistant

from the origin. (2) The prior distribution of latent codes is un-

known. For instance, initial latent codes are mapped into a higher

dimensional space in [5, 19ś21, 33]. There can be richer semantic

knowledge encoded in the new latent space, but the distribution

of latent codes can be complex. To impose density-preserving reg-

ularization on latent space walks, we adopt a density estimation

module 𝐹 to capture the distribution. Instead of directly modeling

the probability density function, we propose to learn the corre-

sponding cumulative density function based on a well-defined set

of properties. For simplicity, we assume that the elements of each

latent code 𝒛 = {𝒛 (1) , 𝒛 (2) , . . . , 𝒛 (𝑑) } are independent and identi-

cally distributed, where 𝑑 denotes the number of dimensions. By

definition, the probability density is the derivative of the cumulative

distribution function, and we thus have 𝐹 (𝒛 (𝑖) ) = 𝑃𝑟 (𝜏 < 𝒛 (𝑖) ) and

𝑝0 (𝒛
(𝑖) ) = 𝐹 ′(𝒛 (𝑖) ), which can be approximated as follows:

𝐹 ′(𝒛 (𝑖) ) ≈
𝐹 (𝒛 (𝑖) + 𝜍) − 𝐹 (𝒛 (𝑖) )

𝜍
, (3)

where we use a very small positive value of 𝜍 . To ensure that 𝐹 is

monotonically increasing, we define a training loss function ℓ𝑚𝑜𝑛

as follows:

ℓ𝑚𝑜𝑛 =

𝑑
∑︁

𝑖=1

max(0, 𝜈 − 𝐹 ′(𝒛 (𝑖) )), (4)

where 𝜈 denotes the minimum slope that must be maintained. To

approximate the underlying distribution of latent codes, we define

a likelihood-based loss function ℓ𝑙𝑖𝑘 as follows:

ℓ𝑙𝑖𝑘 =

𝑑
∑︁

𝑖=1

− log 𝐹 ′(𝒛 (𝑖) ) . (5)

Benefiting from the density estimation, we formulate density-preserving

latent space walks as follows:

𝒛𝑑𝑝 (𝜸 𝑗 ) = 𝒛0 + 𝜀𝜸 𝑗 +𝐶 (𝒛0, 𝜀,𝜸 𝑗 ), (6)

where𝐶 denotes a correction module that aims to learn a correction

vector. To enforce the density consistency at the start and end points,

a loss ℓ𝑑𝑒𝑛 is defined as follows:

ℓ𝑑𝑒𝑛 =

𝑘
∑︁

𝑗=1













𝑑
∑︁

𝑖=1

log 𝐹 ′(𝒛
(𝑖)
0 ) −

𝑑
∑︁

𝑖=1

log 𝐹 ′(𝒛
(𝑖)

𝑑𝑝
(𝜸 𝑗 ))













2

. (7)

As will be illustrated in the experiments, 𝐶 plays an important role

when performing a large 𝜀-step transformation.

Latent Direction Exploration. Next, we determine the latent

directions that give rise to variations in synthesized images in an

unsupervised manner. To measure the difference between images

in a feature space is typically more effective than that in the image

space. We decompose the generator 𝐺 into two components at an

intermediate layer, and the resulting sub-networks are denoted

by 𝐺1 and 𝐺2, respectively. 𝐺1 takes a latent vector 𝒛 as input

and produce a set of feature maps 𝐺1 (𝒛), which are fed to 𝐺2 to

synthesize an image. Let Γ = [𝜸1,𝜸2, . . . ,𝜸𝑘 ] denote a matrix with

its columns corresponding to a set of latent directions. We require

that moving a latent code in the directions lead to large variations

in the intermediate feature space, and define a corresponding loss

function ℓ𝑣𝑎𝑟 as follows:

ℓ𝑣𝑎𝑟 =

𝑘
∑︁

𝑗=1

−∥Δ(𝒛0,𝜸 𝑗 )∥
2
𝐹

+ 𝜆

𝑘
∑︁

𝑗,ℎ=1

1𝑗≠ℎ · ∥Δ(𝒛0,𝜸 𝑗 )
𝑇
Δ(𝒛0,𝜸ℎ)∥

2
𝐹 ,

(8)

where the function 1𝑗≠ℎ outputs 1 if 𝑗 ≠ ℎ and 0 otherwise,

Δ(𝒛0,𝜸 𝑗 ) = 𝐺1 (𝒛0) −𝐺1 (𝒛𝑑𝑝 (𝜸 𝑗 )), (9)

𝜆 is a weighting factor, and ∥ · ∥2
𝐹
denotes the squared Frobenius

norm. To encourage Γ to associate with different factors of varia-

tions, the second term in Eq.(8) serves as a penalty for the similarity

of feature changes caused by different latent directions. On the

other hand, we also require the latent directions to be orthogonal

with each other, and define a regularization loss ℓ𝑟𝑒𝑔 as follows:

ℓ𝑟𝑒𝑔 = ∥Γ𝑇 Γ − 𝐼 ∥2𝐹 , (10)

where 𝐼 denotes the identity matrix.

After integrating the above two aspects: density-preserving reg-

ularization and latent direction determination, the corresponding

optimization problem can be formulated as follows:

min
𝐹,𝐶,Γ

E𝒛0∼𝒑0 [ℓ𝑚𝑜𝑛 + ℓ𝑙𝑖𝑘 + ℓ𝑑𝑒𝑛 + ℓ𝑣𝑎𝑟 ] + 𝜁 ℓ𝑟𝑒𝑔, (11)
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Figure 3: Estimation of unknown prior distributions: (left)

uniform and (right) mixture of Gaussian.

where 𝜁 is a weighting factor. The density estimation module 𝐹 ,

correction module 𝐶 and latent directions Γ are jointly optimized

in the proposed framework.

3.3 Subspace-based Refinement

There are only a few works [4, 36] that focus on investigating the

intermediate feature space of the generator in GANs. It is found

that the feature channels of an intermediate layer are highly cor-

related and interact with each other to exert significant influence

on semantics in synthesized images. We demonstrate that the main

semantic factors can be disentangled from other factors by finding

the most relevant subspaces over intermediate feature channels of

GANs.

For each latent direction𝜸 𝑗 , subspace learning is performed over

the output channels of 𝐺1. Specifically, we feed a latent vector

𝒛𝑑𝑝 (𝜸 𝑗 ) to 𝐺1, and represent 𝐺1 (𝒛𝑑𝑝 (𝜸 𝑗 )) in the form of a matrix

𝑀 (𝒛𝑑𝑝 (𝜸 𝑗 )) with its columns corresponding to the flattened feature

maps. To model the self-expressiveness property of the feature

channels, a reconstruction coefficient matrix 𝑅 is learnt to minimize

ℓ𝑟𝑒𝑐 defined as follows:

ℓ𝑟𝑒𝑐 = ∥𝑀 (𝒛𝑑𝑝 (𝜸 𝑗 )) −𝑀 (𝒛𝑑𝑝 (𝜸 𝑗 ))𝑅∥
2
𝐹 . (12)

To avoid a trivial solution (𝑅 = 𝐼 ), it is necessary to set 𝑑𝑖𝑎𝑔(𝑅) = 0.

On the other hand, a sparsity regularization criterion is imposed on

𝑅 to ensure subspace discovery, and the optimization formulation

is summarized as follows:

min
𝑅

E𝒛0∼𝒑0 [ℓ𝑟𝑒𝑐 ] + 𝜂∥𝑅∥1,

𝑠 .𝑡 . 𝑑𝑖𝑎𝑔(𝑅) = 0,
(13)

where 𝜂 is a weighting factor. Based on 𝑅, we compute an affinity

matrix 𝑆 among the channels as follows:

𝑆 =
|𝑅 | + |𝑅𝑇 |

2
, (14)

and then apply a spectral clustering method [29] to partition the

feature channels into a specified number of subsets. We find that

the largest subset is most relevant to the semantics associated with

the latent direction 𝜸 𝑗 , and limit the transformation to the corre-

sponding subspace as follows:

𝒙 = 𝐺2 (𝒎
∗ ⊙ 𝐺1 (𝒛𝑑𝑝 (𝜸 𝑗 )) + (1 −𝒎

∗) ⊙ 𝐺1 (𝒛0)), (15)

where the feature channels in the largest subset are indicated by a

binary mask 𝒎∗, and ⊙ denotes channel-wise multiplication. The

advantage of subspace-based refinement is to allow themodification

Figure 4: Synthesized images of latent space walks (upper

row) w/o DP Reg. and (bottom row) w/ DP Reg.. The initial

images are annotated with red bounding boxes.

of intermediate features within a range of channels, while leaving

the other channels unchanged.

4 EXPERIMENTS

In this section, we perform extensive experiments to evaluate the

proposed DP-LaSE model on a variety of standard image synthesis

benchmarks, including CelebA-HQ [19], FF-HQ [20], Anime Faces

[1] and ImageNet [8]. We first provide the implementation details of

DP-LaSE and experiment settings. Next, we verify the effectiveness

of our density-preserving regularization approach in stabilizing the

transformation that is performed by latent space walks. We also

conduct experiments to highlight the association between seman-

tics and intermediate feature channels. Further, we demonstrate the

advantage of DP-LaSE over the state-of-the-art competing methods

in semantic controllability in synthesized images.

4.1 Implementation and Settings

All the experiments are based on well-trained GANs, including

SNGAN [26], BigGAN [5], PGGAN [19] and StyleGAN [20, 21]. In

addition to the generator𝐺 in a pre-trained GAN, the proposed DP-

LaSE model mainly consists of a density estimation module 𝐹 and a

correctionmodule𝐶 , which are composed of 3 and 6 fully connected

layers, respectively. For important latent direction discovery, we

divide𝐺 into𝐺1 and𝐺2 by the 3rd intermediate layer (1st-4th layers

for StyleGAN), and set the total number of directions to 20. The

moving step 𝜀 randomly takes values in the range of [−10, 10]. In

Eq.(4), Eq.(8), Eq.(11) and Eq.(13), the parameters 𝜈 , 𝜆, 𝜁 and 𝜂 are

set to 0.01, 0.001, 10 and 0.5, respectively.𝐺 ’s parameters are frozen

when jointly training 𝐹 and𝐶 together to determine Γ. We adopt the

Adam optimizer [23] with 50,000 training iterations, learning rate

of 0.0001 and momentum parameters of (0.9, 0.999). For subspace

learning, we incorporate a fully connected layer on top of 𝐺1, and

the setting of the Adam optimizer is the same as the above task. We
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Table 1: IS and FID scores of synthesized images by performing random latent space walks without and with density-preserving

regularization on ImageNet.

𝜀 = −10 𝜀 = −5 𝜀 = 0 𝜀 = 5 𝜀 = 10

Method IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓

w/o DP Reg. 3.44±0.04 199.23 5.47±0.07 143.68 96.45±1.94 43.84 5.54±0.08 143.74 3.39±0.05 203.10

w/ DP Reg. 97.10±2.09 44.05 96.22±2.91 44.01 97.31±2.07 43.68 99.63±2.10 43.70 99.78±1.86 43.69

(a) (b)

Figure 5: (a) Visual comparison of synthesized images by performing a random latent space walk (upper row) w/o DP Reg. and

(bottom row) w/ DP Reg., and (b) the perceptual distance between the initial and transformed images. The stride 𝜀 increases

from 0 to 4 with an interval of 0.5.

set the total number of subspaces to 4 when performing spectral

clustering on the intermediate channels.

4.2 Probability Density Estimation

For the case that the prior distribution of latent codes is unknown,

we adopt the module 𝐹 to capture the underlying distribution. In

this example, we highlight the effectiveness of 𝐹 on two toy datasets:

latent codes are sampled from uniform and mixture of Gaussian

distributions. In Figure 3, we can observe that the estimated proba-

bility density curves can effectively approximate the ground-truth

ones.

4.3 Density-Preserving Latent Walks

Latent codes are typically sampled from a prior distribution in

the training process of GANs. The latent codes in the low-density

regions have much less chance of being used for image synthe-

sis, while the ones in the high-density regions encode complex

semantics. When performing latent space walks, we consider that

maintaining the start and end points in the iso-density regions

benefits semantic controllability. To verify this point, We perform

an experiment based on SNGAN and BigGAN, which are trained

on Anime and ImageNet. Figure 4 shows the synthesized images

for the cases without and with density-preserving regularization.

In addition, we randomly sample latent codes and move each

one in a random direction, and quantitatively evaluate the quality

of synthesized images on ImageNet in terms of Inception Score

(IS) [34] and Fréchet Inception Distance (FID) [16]. As shown in

Table 1, when increasing the stride 𝜀 of latent space walks, we find

that the IS/FID score of synthesized images without regularization

falls/rises rapidly. This suggests that the quality of synthesized im-

ages becomes significantly poor, when the degree of transformation

Figure 6: Examples of exchanging feature maps in the sub-

spaces associated with the attributes of (left) lip color and

(right) background. In each example, the reference images

are in the diagonal positions.

becomes greater. In contrast, the quality of synthesized images with

regularization is stable. In Figure 5, we also visualize examples of

latent space walks without and with density-preserving regulariza-

tion. Continuing to increase the amplitude of the transformations

typically leads to unrealistic images or undesirable deviation from

the initial ones. We consider that the resulting images become dis-

placed from the underlying manifold, and the Learned Perceptual

Image Patch Similarity metric (LPIPS) [45] between the initial and

transformed images thus increases significantly.

4.4 Subspace-based Image Manipulation

We exploit the self-expressiveness property of intermediate fea-

ture channels in PGGAN trained on CelebA-HQ [19] to perform

subspace learning over them. We first consider the case without
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Figure 7: Given a random latent space walk (first row), sub-

space learning is performed over intermediate feature chan-

nels to disentangle the attributes of (second row) background,

(third row) gender and (fourth row) expression.

performing any latent space walks. To demonstrate the charac-

teristics of a specific subspace, we exchange the corresponding

intermediate feature maps of two reference images, and feed the

resulting features in 𝐺2 to synthesize two new images. As shown

in Figure 6, we find that the obtained subspaces have influence on

meaningful attributes: lip color and background. Next, we perform

latent space walks with a random direction, and apply the subspace

learning approach to further disentangle the associated semantics.

In Figure 7, we can observe that the transformation involves multi-

ple semantics. We select three largest subspaces, allow the changes

occur in the one of them, and fix the remaining subspaces. The

results demonstrate that the subspaces disentangle the attributes

of background, gender and expression.

4.5 Interpretable Latent Walks

To demonstrate the capability of DP-LaSE in capturing the inter-

pretable factors in synthesized images, we perform a set of ex-

periments based on BigGAN and StyleGAN, which are trained on

ImageNet and FF-HQ, respectively. Although different network ar-

chitectures are used in BigGAN and StyleGAN, DP-LaSE is able to

identify diverse and meaningful latent directions, and the corre-

sponding latent space walks lead to interpretable transformations

in the synthesized images. In Figure 8, each row demonstrates how

a latent space walk affects the reference (first) image. The variations

with the latent space walks can be easily interpreted, and the corre-

sponding transformations are in the same manner for each case. For

instance, we can successfully zoom in on the dog by constructing

a latent space walk. In addition, the thickness of beard and the

length of hair can be well controlled without changing identity and

expression. The results suggest that DP-LaSE is able to semantically

change the reference images, while remaining consistent with the

image context.

Figure 8: A number of synthesized images with the semanti-

cally meaningful transformations we explore.

4.6 Comparison to State-of-the-arts

We further perform an experiment to conduct a comparison be-

tween the proposed DP-LaSE and state-of-the-art methods, UDID

[40] and SeFa [37], in the extent of similar transformations. The

experiment is based on StyleGAN and PGGAN, which are trained

on FF-HQ and CelebA-HQ, respectively. We adopt the same ex-

perimental configuration for the methods, and the transformation

results are shown in Figure 9. There are four attributes involved in

the transformations: glasses, hat, hair color and age. Separating the

semantics is not trivial. UDID fails to disentangle the attributes of

sunglasses-hat and gender-age, and SeFa changes hairstyle/identity

when performs the transformation on glasses/hair color. In con-

trast, the transformations determined by DP-LaSE are desirable,

and control large-scale variations. Based on the above results, we

consider that the competing methods fail to reach our transforma-

tion level. In Figure 10, we investigate the capacity of semantic

transformations by increasing the stride 𝜀. A quantitative compari-

son between DP-LaSE and two competing methods is performed

in terms of LPIPS. The result suggests that DP-LaSE performs bet-

ter than UDID and SeFa in maintaining the perceptual distances

between initial and transformed images.

5 CONCLUSION

In this work, we present an unsupervised semantically meaningful

latent space walk exploration model, which is useful for under-

standing the underlying structure of the latent space in well-trained
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Figure 9: Visual comparison of DP-LaSE and state-of-the-art

methods in semantic controllability.

Figure 10: Comparison between DP-LaSE and state-of-the-art

methods in terms of the LPIPS distance between initial and

transformed images.

GANs. In our model, a set of orthogonal latent directions are deter-

mined by maximizing the changes in the generator’s intermediate

features. To encourage the discovery of the latent space walks

that lead to meaningful transformations, we incorporate a density-

preserving regularization criterion in the learning process. On the

other hand, we further limit the transformation to the most relevant

intermediate feature subspace. On the standard benchmarks, we

find that exploitation of the discovered latent space walks would

make image manipulation more straightforward. Our exploration

facilitates the understanding of GANs and enriches the techniques

of semantic controllability.
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