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Abstract—As display technologies evolve and high-resolution
screens become more available, the desirability of images and
videos with high perceptual quality grows in order to properly
utilize such advances. At the same time, the market for illustrated
mediums, such animations and comics, has been in steady growth
over the past years. Based on these observations, we were
motivated to explore the super-resolution task in the niche of
drawings. In absence of original high-resolution imagery, it is
necessary to use approximate methods, such as interpolation
algorithms, to enhance low-resolution media. Such methods,
however, can produce undesirable artifacts in the reconstruct
images, such as blurring and edge distortions. Recent works
have successfully applied deep learning to this task, but such
efforts are often aimed at real-world images and do not take
in account the specifics of illustrations, which emphasize lines
and employ simplified patterns rather than complex textures,
which in turn makes visual artifacts introduced by algorithms
easier to spot. With these differences in mind, we evaluated
the effects of the choice of loss functions in order to obtain
accurate and perceptually pleasing results in the super-resolution
task for comics, cartoons, and other illustrations. Experimental
evaluations have shown that a loss function based on edge
detection performs best in this context among the evaluated
functions, though still showing room for further improvements.

I. INTRODUCTION

Nowadays, high-definition screens are becoming increas-

ingly available due to advances in display technologies: statis-

tics show a nine fold growth in the number of ultra-high-

definition televisions from 2014 to 2019 [1]. To make the

best use of high-definition displays, the availability of high-

resolution imagery is desirable. However, while new content

may be produced in high-resolution, previously recorded me-

dia may only be avaiable in low-resolution.

Enlarging images requires the use of some method to fill in

pixels with unknown values. The most naı̈ve method, referred

to as nearest neighbor interpolation, is to repeat the intensity

of the closest known pixel. However, this method introduces

artifacts on the image, creating aliasing. A more elaborated

method to fill in the unknown values is to interpolate the

intensity based on the neighbors value and a polynomial

function: e.g., linear and bicubic interpolation. The choice of

the interpolation method also impacts the perceptual quality

of the result by potentially producing unwanted artifacts: in

this case, there is a loss in the definition of the edges as the

image becomes blurry [2]. Figure I exemplifies the artifacts

introduced by the nearest neighbor and bicubic interpolation

methods.

(a) Ground Truth (b) Nearest neighbor in-
terpolation

(c) Bicubic interpolation

Fig. 1. Examples of distortions produced by interpolation methods when
applied to a low-resolution version of image 1a. Regions outlined in magenta
are magnified to aid the comparison between methods. The edges in image
1b have aliasing artifacts not present in the Ground Truth. In the result of the
interpolation method 1c, it is possible to observe the blur along the edges.
The Ground Truth image is from the SYNLA dataset [3].

Single-Image Super-Resolution (SISR) is a classical task

in computer vision of recovering a high-resolution image

from a single low-resolution sample. It is inherently a ill-

posed problem, as several possible solutions exist for a given

low-resolution image [4]. Due to the details present in high-

resolution images with high perceptual quality, the task is

widely used in works involving high-definition television,

medical, satellite and security imagery [5], [6].

One of the previous representative solutions for this problem

employed a pipeline based on sparse coding pipeline with

steps such as patch-extraction, dictionary look-ups and recon-

struction in order to perform this task [7], [8]. However, it

was shown that the process could be made more efficient,

and potentially more accurate, by employing Convolutional

Neural Networks (CNNs) with internal layers equivalent to

such steps [4].

In fact, CNNs achieved memorable results in the task of

creating super-resolution images [4], [5], [9], [10]. However,

their application is focused on real world images. Therefore,

one of the media type often reproduced in the high-quality

screens, the illustrations, are underrepresented in the deep

learning literature.

Illustrations, i.e. images from comic books, manga, cartoons

and anime, are produced by an entirely different process from

photography and generally focus only on salient details while

abstracting the rest: edges are overly emphasized and complex

textures are often replaced with flat regions or simplified

patterns. In applications such as style transfer, these intrinsic

difference causes the neural network to produce undesirable



artifacts likened to watercolor paintings, where noisy transi-

tion textures are generated instead of the expected simplified

patterns [11]. The proposed work explores the application

of deep learning techniques — specifically, CNNs — to the

problem of single-image super resolution within the niche of

illustrations, which potential applications include enhancing

drawing, comics or — when combined with video processing

techniques — animations [12].

The main contribution of this work is a quantitative, through

the SSIM and PSNR metrics, and qualitative evaluation of four

loss functions in order to determine which produces the most

accurate and perceptually pleasing images in the SISR task.

II. RELATED WORK

In this section, we present an overview of the Single-

Image Super-Resolution (SISR) area by exploring remarkable

works. For the sake of clarity, we divide the works in the

section related to CNN architectures, quality metrics, and loss

functions applied in the SISR problem.

A. Super-resolution neural networks

The concept of Convolutional Neural Networks has been

around since the late 1980s [13], with its resurgence in recent

years justified by advances in hardware and algorithms and

by the favorable results exhibited in tasks such as image

classification and object recognition [4], [6].

A breakthrough in the application of deep learning for

single-image super-resolution was the SRCNN [4], which

preprocessed images with the bicubic interpolation, forwarded

their Y-channel through three convolutional layers. The idea

is to first interpolate the image and then use the convolution

operations to remove the created artifacts. The results achieved

by the approach either surpassed or matched the state of the

art at the time.

Shi et al. proposed the Efficient Sub-Pixel Convolutional

Neural network (ESPCN) [5] architecture, which has shown

superior results over the SRCNN while being more time

efficient and with fewer learnable weights. This was enabled

by the use of the sub-pixel convolution layer as the network

output, allowing to avoid the bicubic interpolation step, which

increased feature map sizes while not producing an equivalent

amount of additional information.

Deeper architectures, such as SRResNet [9], EDSR [10]

and RDN [14], have been enabled by the use of residual

networks [15], which address the vanishing gradients prob-

lem [16]. Haris et al. [17] proposed an iterative up and down-

sampling method with units combining intermediate features

to error maps calculated by upsampling the error in an internal

input reconstruction pipeline.

B. Loss functions for image reconstruction

The loss function serves as the objective in the deep learning

optimization process, guiding its training and, in image re-

construction tasks, determining how to compare a synthesized

sample to its ground truth [18]. Given the differences between

illustrations and photographs, we are interested in examining

the effects that the choice of a loss function on the character-

istics of the reconstructed images. The focus of this work is in

the analysis of four loss functions: Mean Squared Error, Mean

Absolute Error, the usage of the Structural Similarity Index

Measure as a loss function [18], and, based on the emphasis

on contours that illustrations commonly exhibit, a mixed loss

function which accounts for image gradients through the Sobel

operator [19].

The mean squared error (MSE) loss is considered a popular

choice [18], being employed in the works we build upon [4],

[5]. The use of mean absolute error (MAE) was proposed

as an attempt to overcome limitations of the MSE, said to

produce splotchy artifacts [18]. Despite the MAE providing

improvements over the MSE, its results were said to be sub-

optimal, leading to the exploration of other loss functions [18].

The structural similarity index measure (SSIM) [20] is a metric

motivated by the human visual perception, which evaluates

images accounting for perceived changes in structural infor-

mation. Zhao et al. proposed the use of the SSIM as a loss

function for image restoration neural networks.

Alternatives have been proposed in order to produce images

with higher perceptual quality for humans. Johnson et al.

proposed to use a feature extractor from a classifier, e.g.,

VGG-16 [21], to describe the ground truth and reconstructed

image, and then calculate the distance between the feature

maps. The authors demonstrate that this perceptual loss embed

domain knowledge in the training process [22]. Ledig et

al. [9] introduced the use of Generative Adversarial Networks

(GANs) [23] for SISR in order to produce photo-realistic

images.

Given that illustrations place emphasis on lines, a method

that optimizes for that should intuitively perform better. The

use of an edge detection operator provides another means

of embedding such domain knowledge in the context of

illustrations. To that end, we explored the mixed gradient error,

which is composed by MSE and a weighted mean gradient

error [19], calculated using the classic edge detection filter

proposed by Sobel [24].

C. Evaluating perceptual quality

The structural similarity index measure (SSIM) and peak

signal-to-noise ratio (PSNR) are widely used metrics for quan-

titatively estimating the effectiveness of image reconstruction

methods [4], [5], [18], [19]. However, their adequacy for the

human perception has been questioned, with works exhibiting

restored images with better perceptual quality despite lower

metric scores [9], [22]. Thus, we also direct our focus in

qualitative comparisons across loss functions.

III. METHODOLOGY

Our work consisted in evaluating the effects of the loss

function in the training of CNNs for the single-image super-

resolution task for illustrations. Each loss was evaluated by

training our chosen neural network architecture from scratch

using an illustration dataset, then performing quantitative and

qualitative analysis on their outputs. In this section, we present



Fig. 2. Architecture overview of the ESPCN [5] network. Our application of the architecture differs from the original by inserting a normalization layer after
the input and by using RGB images from end to end. Source: Shi et al. [5]

how we carried the training and the analysis of the CNN

model.

A. Neural network architecture

We base our methodology upon the ESPCN [5] CNN

architecture, presented in Figure 2. The choice of a shallower

network architecture over the more recent deep residual net-

works [9], [10] is based on the goal of this work of making

relative evaluations of loss functions, under the assumption

that such relationships would be maintained if reevaluated

on more complex networks. Thus, we default to training the

simpler architecture, aiming faster experimentation cycles.

Following previous observations that networks trained on

RGB images perform best on super-resolution tasks [4]. Thus,

we modified the ESPCN architecture to operate from end-to-

end on RGB images. To that end, we modify the number of

input and output channels to 3, which raised the number of

learnable weights of the network. We also added an additional

non-parametric normalization layer at the start of the network

to approximate the input into a standard normal distribution.

B. Loss Functions

We evaluate the impact of four loss functions in the training

process of the CNN model based on the ESPCN architecture

to create super-resolution images in the context of illustrations.

1) Mean Squared Error: The Mean Squared Error (MSE)

for a high-resolution image y and its reconstructed counterpart

ŷ can be defined as:

MSE (ŷ, y) =
1

n

∑

p∈P

[yp − ŷp]
2, (1)

in which P is the set of the indices of the pixels and n is their

amount.

Another metric to evaluate the quality of the reconstruction

in the context of image reconstruction, is the Peak Signal-to-

Noise Ratio (PSNR), that can be expressed as:

PSNR(ŷ, y) = 10 · log
10

(

1

MSE (ŷ, y)

)

. (2)

Analyzing the relation between MSE and PSNR, it can be seen

that minimizing MSE maximizes the PSNR between y and ŷ.

Therefore, as pointed in the literature [4], [22], conducting the

training process using MSE leads to high values of PSNR.

This MSE-PSNR relation motivates the designation of the

MSE as the default choice [18] for image reconstruction if one

considers the PSNR a suitable proxy for the human assessment

of perceptual quality.

2) Mean Absolute Error: The use of the Mean Absolute

Error (MAE) has previously been proposed as an attempt

to reduce the artifacts introduced by the MSE loss [18].

Differently from the MSE (Equation 1), the errors are weighted

uniformly in MAE formulation, as follows:

MAE (ŷ, y) =
1

n

∑

p∈P

|yp − ŷp|. (3)

3) Structural Similarity: By employing a loss function

motivated by the human perception, one should expect yields

in the perceptual quality of the generated images. To that end,

we evaluate the use of the Structural Dissimilarity Index Mea-

sure (DSSIM) loss function [18] derived from the Structural

Similarity Index Measure (SSIM) metric, defined as:

DSSIM (ŷ, y) =
1− SSIM (ŷ, y)

2
. (4)

where SSIM , in turn, is defined for a window of y and ŷ as:

SSIM (ŷ, y) =
(2µŷµy + c1)(2σŷy + c2)

(µ2

ŷ + µ2
y + c1)(σ2

ŷ + σ2
y + c2)

, (5)

in which c1 and c2 are stabilizing terms, µx and σ2

x are the

mean and variance, respectively, for a given x.

4) Mixed Gradient Loss: With regards to the emphasis on

lines exhibited by illustrations, we also explore the Mixed

Gradient Loss (MixGE), which embeds the Sobel operator in

order to guide the network to produce sharp edges which are

close to those of the ground truth [19]. The Mixed Gradient

Error (MixGE) can be defined as:

MixGE = MSE (ŷ, y) + λGMSE (G(ŷ), G(y)) , (6)

where the hyperparameter λG is a weighting factor and G(y)
represents the gradient magnitude yielded by the Sobel oper-

ator, defined as:



TABLE I
QUANTITATIVE EVALUATION OF THE BASELINE METHODS AND LOSS FUNCTIONS OVER DIFFERENT ILLUSTRATION DATASETS. HIGH VALUES ARE

BETTER AND THE BEST ONE IS PRESENTED IN BOLD FACE.

Methods
Danbooru2020 Manga109 SYNLA (Color) SYNLA (Greyscale)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bilinear 21.42 0.7806 17.52 0.6922 21.19 0.7475 21.27 0.7498
Bicubic 21.97 0.8026 18.01 0.7190 22.29 0.7977 22.37 0.7996
Baseline 23.08 0.8274 19.31 0.7726 22.50 0.7638 24.23 0.8493
Baseline-RGB 22.47 0.7878 18.73 0.7328 22.39 0.7660 23.73 0.8410
Ours (MSE) 23.99 0.8514 20.12 0.8040 23.14 0.7816 24.84 0.8663
Ours (MAE) 23.14 0.8402 19.07 0.7751 22.58 0.7831 24.34 0.8655
Ours (DSSIM) 23.12 0.8600 19.34 0.7949 22.37 0.8013 23.93 0.8751
Ours (MixGE, λG = 0.01) 24.61 0.8708 20.62 0.8235 23.30 0.7864 25.35 0.8791

Ours (MixGE, λG = 0.10) 24.62 0.8700 20.65 0.8216 23.22 0.7858 25.31 0.8776
Ours (MixGE, λG = 1.00) 24.66 0.8707 20.63 0.8231 23.24 0.7839 25.17 0.8746

G(y) =
√

G2

X(y) +G2

Y (y) , (7)

for the gradient maps GX and GY defined in the X and Y

direction, respectively.

IV. EXPERIMENTS

In this section, we provide details about the implementation,

datasets, experimental evaluation, and its results.

A. Network configuration

To perform the experiments, we implement the modified

version of the ESPCN CNN, presented in Section III-A and

illustrated in Figure 2. The architecture is composed of 64 5×5
feature maps in the first layer, 32 3× 3 in the second, and 27
3× 3 in the last, totaling 31 thousand learnable parameters.

Each network was trained for up to 1500 epochs; the

training process was halted after no improvements in the

loss function were shown on the validation dataset for 100
epochs. The learning rate was set to α = 10−3 on the first

two convolution layers of the network and 10−4 on the last,

with no scheduling, as reported by the authors [5].

We trained three networks in order to observe the effects of

the λG hyperparameter in the MixGE loss function.

B. Input and Output data

Our experiments were executed on RGB images set to be

upscaled by a factor of 3. We used the central patch of each

image as the high-resolution target, and prepared the low-

resolution inputs by blurring the target with a Gaussian kernel

of σ = 1.0 before downsampling with bicubic interpolation by

a factor of 3.

C. Datasets

In an attempt to replicate the wide spectrum of illustrations,

the following three datasets were used in this work.

1) Danbooru2020: A collection of approximately 4 million

crowdsourced illustrations [11]1 of varying characteristics,

ranging from line art to highly textured pictures. A subset

of 40 thousand randomly sampled images were selected for

use during the training phase, of which 8 thousand were used

for validation at the end of each epoch. A second subset of

10 thousand images was used for testing. Due to hardware

constraints for training, we used 96× 96 central patches as

the ground truth images.

2) Manga109: A collection of approximately 10 thousand

comic pages drawn by professional manga artists in Japan [25],

[26]2 used as a benchmark for SISR tasks [14], [17]. This

dataset is characterized by having mostly grayscale images

with finer details such as text. We used 288× 288 central

patches from this dataset as the ground truth images. A larger

patch size was used in order to capture a meaningful section

of the illustration images present in this dataset.

3) SYNLA: In order to further evaluate the generalization

capabilities of the networks and find potential pathological

cases, we also included a collection of synthetic line art

images [3].3 The dataset is available in two versions, each with

roughly 2000 images, both which were used: one in greyscale,

the other in color. As the original image sizes were smaller

than the patch size 288× 288, specified in Section IV-C2, and

not an exact multiple of our scale factor, we used 192× 192
central patches from this dataset as the ground truth images.

Danbooru2020 was used for training and testing, due to its

wide range of illustrations in order to train networks able to

generalize over style characteristics. Manga109 and SYNLA

were used solely for testing.

D. Competitors

We compare our proposed models with the following ap-

proaches: (i) Baseline, the original ESPCN model [5], using

as input the Y-channel of the image in YCbCr color space,

1Publicly available at https://www.gwern.net/Danbooru2020.
2Available upon request at http://www.manga109.org/en/.
3Publicly available at https://github.com/bloc97/SYNLA-Dataset.



(a) Input (b) Ground Truth (c) Bicubic (d) Baseline (e) Ours (MAE) (f) Ours (MSE) (g) Ours (DSSIM) (h) Ours (MixGE)

Fig. 3. From top to bottom rows, images are cropped samples of the following sources: 1) Manga109 [25], [26], © Ken Akamatsu 2) Wikipedia
(https://en.wikipedia.org/wiki/File:Wikipe-tan face.svg) 3) SYNLA dataset [3] 4) Set14 dataset [27]. Regions outlined in magenta are magnified to better
visualize the impact of applying different SISR methods. Ours (MixGE) uses λ = 0.01 and the Baseline is the pre-trained Y-channel ESPCN model.

with pretrained weights in the DIV2K dataset [28], and MSE

loss function; (ii) Baseline-RGB, the ESPCN model with

RGB images as input, trained in the DIV2k dataset, MSE

loss function, applying the same network configuration of our

methods; (iii) Bilinear and (iv) Bicubic interpolation methods

were also evaluated to establish a lower bound.

V. RESULTS

In this section, we discuss the results obtained from train-

ing the neural networks with the loss functions discussed

through the work, presented in Table I. We also present a few

handpicked samples (Figure 3) for discussion as part of our

qualitative analysis. Due to space limitations, the results from

the Bilinear, Baseline-RGB and Ours (MixGE with λG = 0.10
and λG = 1.00) were omitted, since these results were

outperformed by their variants, Bicubic, Baseline and Ours

(MixGE, λG = 0.01), respectively.

Two images outside from the datasets listed in Section IV-C

were included in qualitative analysis in Figure 3: the image

in the fourth row is an illustration frequently used as a test

case across super-resolution works. The level of details in this

image reduces the gap between the result obtained from the

baseline network (Figure 3d) and our best result (Figure 3h).

Regarding the modification applied to the ESPCN archi-

tecture, we observe that the addition of the non-parametric

normalization layer at the start of the network helped the

training process making the model to learn faster.

From experimental observations, the MAE caused the train-

ing process to reach a plateau after the least number of iter-

ations among the studied functions, followed by the DSSIM.

The training process persisted for the MSE and the MixGE

until the upper limit of 1500 epochs.

While the images produced by the network trained with

the MAE loss have less noise than the one trained with the

MSE, it has caused aliased edges in flat images, such as the

second row in Figure 3e, motivating further exploration. It was

observed that the DSSIM led the network to optimize for edge

restoration at the expense of accuracy in color reproduction.

In the second row of Figure 3g, the image has less noise than

its counterparts, but the colorization of the character is visibly

different. This can also be observed in the first row: the image

has a slight red hue compared to its grayscale counterparts.

As seen in Table I, variations of the MixGE loss function

have led to the best results in most recorded metrics. While

it has been observed to reconstruct well in general scenarios,

images restored from blurry low-resolution pictures, such as

the image in the second row in Figure 3, have shown the

highest incidence of noise among the trained networks, as seen

in Figure 4, characterizing a pathological case.

Our experiments showed little to no impact in assigning

three different weights (0.01, 0.10, 1.00) to the λG gradient

component of the MixGE loss — as seen in Table I, metric

results were close to each other and no discernible differences

were observed in an analysis of the reconstructed images.

VI. CONCLUSIONS

Through the analysis of the experimental evaluation, we

observed significant improvements in the super-resolution task

by applying the domain knowledge in the loss function of a

neural network. Within the context of this work, the knowledge



(a) Baseline (b) Ours (MixGE, λG = 0.01)

(c) Baseline (d) Ours (MixGE, λG = 0.01)

Fig. 4. Comparison of the photography-centric baseline against the MixGE
loss, depicting a case that (b) the model produces smoother edges, and (d) a
pathological case due to excessive production of noise.

that illustrations generally emphasize edges was used in order

to search for a loss function more apt to consider this factor.

However, the best network showed pathological behavior over

certain types of images, e.g., an originally blurred image.

Motivated by the fact that some loss functions perform

better on some types of illustrations, which encompasses line

art to drawings with rich textures, future works may benefit a

stricter segregation by image types of the test dataset. There is

an assumption that the quality characteristics and relationships

of the loss functions are maintained if used on a larger

network architecture. Verifying such assumption is planned

as future work. Moreover, our work did not explore complex

loss functions, such hybrid losses other than the MixGE, losses

based on feature descriptors (i.e., perceptual losses [22]), nor

GANs, leaving room for improvement.
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