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ABSTRACT

Information steganography is a family of techniques that hide secret

messages into a carrier; thus, the messages can only be extracted

by receivers with a correct key Although many approaches have

been proposed to achieve this purpose, historically, it is a difficult

problem to conceal a large amount of information without occasioning

human perceptible changes. In this paper, we explore the room

introduced by the low-rank property of natural signals (i.e., images,

audios), and propose a training-free model for efficient information

steganography, which provides a capacity of hiding full-size images

into carriers of the same spatial resolution. The key of our method

is to randomly shuffle the secrets and carry out a simple reduction

summation with the carrier. On the other hand, the secret images can

be reconstructed by solving a convex optimization problem similar

to the ordinary tensor decomposition. In the experimental analysis,

we carry out two tasks: concealing a full-RGB-color image into a

gray-scale image; concealing images into music signals. The results

confirm the ability of our model to handle massive secret payloads.

The code of our paper is provided in https://github.com/

minogame/icassp-SIC.

Index Terms— Image Steganography, Tensor Decomposition,

Privacy Protection, Image Signal Processing

1. INTRODUCTION

Have you ever listened to a song and felt like the music was painting a

picture in your mind, or sending you secret messages? Oddly enough,

that might not have been your brain playing tricks on you. Actually,

the information steganography technique plays an essential role in

our daily life for copyright-ownership control, privacy protection, and

covert communication [1, 2, 3].

Most of the existing steganography approaches are achieved by

replacing or modifying least significant bits (LSB) with the secret

information in spatial [4, 5, 6, 7, 8, 9, 10], or transform [11, 12,

13, 14, 15] domains. The basic motivation of these methods is to

carefully manipulate the LSB for embedding messages, such that the

resulted distortions would be statistically difficult to be distinguished.

However, the payload capacity is upper bounded by the original LSB

method, i.e. 1 or 2 bits can be utilized for each pixel [4], which is

not satisfying when dealing with heavy payloads such as a whole

image of the same resolution. Although several deep-learning-based

methods are recently proposed to improve the efficiency of image

concealing, the training procedure is hungry with the scale of the

dataset. Furthermore, the bias between training and test data may

decrease the performance in practice [16].

To solve the aforementioned problems, we propose a training-

free model that can effectively conceal the images into various types

Fig. 1: Example of concealing a full-size secret image into a piece of

music. Sub-figures (a) and (b) illustrate the original secret image and

the corresponding reconstruction, respectively. Sub-figure (c) shows

the waveform of the cover carrier, including the waveform before

concealing (left-top), after concealing (right-top) and a fragment for

comparison (bottom). Sub-figure (d) shows the power spectrum of

the music signal before and after concealing. See Section 3.2 for the

experimental setting and discussion.

of carriers (see Fig. 1 for example). In our model, we leverage

a common algebraic property owned by various datasets, i.e. low-

rankness, for information steganography. The low-rank structure

is a global characteristic of the data, allowing it to be embedded

onto a lower-dimensional subspace under a certain tolerated error,

i.e. approximated by a low-rank matrix. Such low-rank structures do

ubiquitously exist in various real-life datasets.

Although former studies have considered the rooms provided by

the low-rank structure [17, 18], they mainly multiply the singular val-

ues or vectors, and only a few bits can be hidden in these approaches.

In contrast, inspired by the studies for the latent convex tensor decom-

position (LCTD) [19], we consider the concealing and reconstruction

as a matrix/tensor decomposition problem. We propose to replace the

tensor unfolding operation in LCTD with the “randomly shuffling”

operation. This approach not only provides the essential incoherence
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for the decomposition model [20] but also increases the privacy secu-

rity due to the randomness. The main contributions of our work can

be summarized as follows: First, we propose a training-free model

for image concealing, which leverages the low-rank structures of both

carrier and secret images. Second, we experimentally demonstrate

that the effectiveness and efficiency of the proposed model, in the case

of heavy payload (i.e. hide a full-size RGB image into a grayscale

image), and the case of cross-domain (i.e. hide an image into a snatch

of music.)

2. PROPOSED METHOD

In this section, we describe the technical detail about the concealing

and reconstruction scheme of the proposed method. We represent the

carrier by a matrix C ∈ R
m×n and denote a set of I secret images

as the matrices Ai ∈ R
m×n, i ∈ [I], where [I] denotes the set of

integers from 1 to I . After concealing, we use the matrix X with the

same size to represent the observation, which is perceptively similar

to the carrier but contains the secret messages.

2.1. Concealing scheme

Before concealing, we define a random shuffling operation for each

secret image. Roughly speaking, random shuffling for a given image

means that we spatially rearrange pixels of that image to different

locations.

In the concealing procedure, we first normalize each secret image

by removing the mean value, dividing it by the standard deviation,

and then conducting the random shuffling operations. We then sum all

the shuffled secret images up to generate the “payload” in concealing.

Next, we multiply the payload matrix by a scalar σ to control the its

strength for the trade-off between security and efficiency.

Mathematically, we represent the shuffling operations as a series

of linear mappings Ri : R
m×n → R

m×n. Thus the shuffled secrets

are denoted by Ri(Ai), ∀i. Therefore, the concealing procedure can

be formulated as1

X = C
︸︷︷︸

carrier

+σ

I∑

i=1

Ri(Ai)

︸ ︷︷ ︸
payload

. (1)

In practice, it is not necessary for the carrier to have a matrix

form as C. The carrier can have arbitrary forms such as vector

(e.g.time series) and tensor (e.g.multi-way arrays). In our model, we

can reshape the carrier into a matrix form. In the following sections,

we demonstrate that any signal in its matrix form can be used as the

carrier as long as its matrix form has a low-rank structure.

Analysis of security. It is worth mentioning that the spatial structures

of the shuffled images would be completely destroyed due to the pixel-

wise rearrange operations, and the correlation between the entries in

the payload matrix would be weak due to the random choice of the

shuffling operations. Therefore, based on the central limit theorem

in probability theory, the pixels of the reduced payloads tend to be

distributed normally and independently. Therefore, it implies the

difficulty of distinguishing the statistical properties payloads from

the additive white Gaussian noise (AWGN). Hence, the attackers

cannot detect the secret messages easily by analyzing the statistical

properties. Furthermore, reconstructing the secret images without

the knowledge of the random shuffling operations is an NP-complete

problem [21]. This leads to a more secure concealing system; even

the carrier is fully exposed to the attackers.

1Here we ignore the normalization for brevity.

2.2. Reconstruction scheme

To extract the secret images, we solve the inverse problem of the

image concealing. It implies that we need to reconstruct Ai, i ∈
[I] only with the observation X and the shuffling operations Ri’s.

This inverse problem is obviously ill-posed because the number of

unknowns is significantly more than the number of knowns. Inspired

by the previous studies on matrix/tensor completion [22] and the

robust principal component analysis (RPCA) [23], we solve this

problem by further regulating the rank of both the carrier C and the

secret images Ai, ∀i. This allows us eliminating the ambiguity of

the solution. Specifically, the secret images can be reconstructed by

solving the following optimization problem:

min
C,Ai,i∈[I]

‖C‖∗ +
I∑

i=1

‖Ai‖∗

+
λ

2

∥
∥
∥
∥
∥
X−

(

C+ σ

I∑

i=1

Ri(Ai)

)∥
∥
∥
∥
∥

2

F

(2)

where ‖ · ‖∗ denotes the nuclear norm which equals the sum of the
singular values of the matrix, ‖ · ‖F denotes the Frobenius norm,

and λ denotes the tuning parameter w.r.t. the strength of the noise.

Due to the fact that the nuclear norm is the convex approximation

of the matrix rank [24], minimizing the objective function in (2) is

equivalent to looking for the low-rank solutions which satisfy the

model (1). If both the carrier and the secret images obey the low-rank

assumption, we can reconstruct the hidden secret images from the

observation by solving (2).

To solve the optimization problem (2), we alternately update C

and Ai, i ∈ [I] at each iteration. When updating the carrier C, we

treat Ai, ∀i as constants. Thus in this case the objective function of

(2) can be rewritten as

f(C) = ‖C‖∗ +
λ

2

∥
∥
∥
∥
∥

(

X− σ

I∑

i=1

Ri (Ai)

)

−C

∥
∥
∥
∥
∥

2

F

+ CA, (3)

where CA denotes the constant that contains the residual in (2). Note

that minimizing (3) has a closed-form solution, which is given by

C
+ := D 1

λ

(

X− σ

I∑

i=1

Ri (Ai)

)

, (4)

where D 1

λ

(·) denotes the soft-thresholding operation [25]. If X =

UDV
⊤ is the singular value decomposition (SVD) of X, then

D 1

λ

(X) = UD̄V
⊤, where the entries D̄(i, j), ∀i, j are defined

to be

D̄(i, j) =

{
D(i, j)− 1

λ
D(i, j) > 1

λ

0 otherwise
. (5)

Likewise, we update the secret images Ai by the following equation:

A
+
i := D 1

λ



R
−1
i



X−C− σ

I∑

j 6=i

Rj (Aj)







 , (6)

where R−1
i denotes the inverse operation of the random shuffling Ri.

The theoretical analysis on the identifiability of the model can be seen

in our previous work [26].

2.3. Tricks

Besides the main body of our model, we also employ additional 3

tricks to speed up the reconstruction procedures when improving the

performance of the proposed algorithm.
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Table 1: Performance comparison between the LSB and proposed

methods. We split the datasets to two sub-sets, denote as SET A

(carrier: Finger secret: DTD, Face) and SET B (carrier: X-ray secret:

Live, Anime). PSNRs between the carrier and observation, and

the clean and reconstructed secret, are given under “car./obv.” and

“scr./rec.”, respectively.

Method
SET A SET B

car./obv. scr./rec. car./obv. scr./rec.

LSB(1bit) 31.23 12.84 34.88 12.44

LSB(2bits) 14.99 20.52 18.61 20.44

SICσ=0.05 27.60 21.44 29.79 21.90

SICσ=0.10 22.65 21.87 24.87 22.92

2.3.1. Initialization

A good initialization significantly accelerates the convergence of the

optimization. In the concealing procedure, we let the parameters σ to

be a small value to reduce the distortion on the carrier. Hence, for re-

construction, we expect that the main information of the secrets is con-

tained in the several smallest singular values of the shuffled observa-

tions and their corresponding singular vectors. Inspired by such fact,

we initialize the secret images through the SVD of the observation

X under the corresponding inverse-shuffling operation. Specifically,

for the ith secret images, we first use SVD to decompose the inverse-

shuffled observation, i.e. R−1
i (X) = UXDXV

⊤
X. Subsequently, we

construct the initial value of Ai using A
init
i := UXD̃XV

⊤
X, where

D̃X equals DX but only keeps the several smallest singular values.

In the experiments, we set this number to be 5, which accelerates the

convergence three times faster.

2.3.2. Sketching

From the updating rules (4) and (6) we see that the main compu-

tation cost comes from the SVD operations of the matrix. As-

sume both the carrier and secret images are the matrices of the

size n × n, then the computational complexity of the reconstruc-

tion equals O(In3) at each iteration. In our experiments, we em-

ploy the sketching trick [27] for the acceleration of SVD. Specifi-

cally, to update the matrix Ai by (6), we need to calculate the SVD

of Yi := R−1
i

(

X−C− σ
∑I

j 6=i Rj (Aj)
)

. With the sketch-

ing trick, we first generate a Gaussian random projection matrix

Pi ∈ R
n×l, where l is the dimension to be projected. Then we

calculate the left singular vectors of the projected matrix YiPi using

QR decomposition, i.e. [Ûi,∼] = qr(YiPi). After achieving the

matrix Ûi, we get the SVD of Yi as Yi = ÛiDtmpV
⊤
tmp, where

Û
⊤
i Yi = UtmpDtmpV

⊤
tmp is the SVD of Û⊤

i Yi. With the sketch-

ing trick, the computational complexity can be theoretically reduced

from O(In3) to O(In2) in each iteration if the dimension of the ran-

dom projection is sufficiently small. On the other hand, the sketched

SVD will result in unavoidable noise in the reconstructions. In the

experiments, we choose the l to be half of the dimension n to balance

the reconstruction speed and quality.

2.3.3. Singular value truncation

Since the reconstruction error is deterministically bounded by the

rank of the data. Although in Equation 2 we approximate it with the

nuclear norm, in practice, the non-zero small singular values could

confound the extraction of secret pixels. Given the fact that these

singular values do not affect the appearances of an image, we consider

to pre-progress the carrier by C = UcD̂
r
cVc

T , where D̂
r
c indicates

the r smallest singular values are truncated from Dc. The influence

of r will be examined in Section 4.2.

3. REAL-WORLD DATA EXPERIMENTS

3.1. Concealing images into images

In this section, we compare the performance of the proposed method

with baseline methods. To demonstrate the effectiveness and ef-

ficiency of our method, we carry out a task that is typically un-

achievable by the ordinary methods, that is, we conceal one full-

size RGB color image into one grayscale image. We employ six

datasets from different domains as the carriers and the secret images:

the Describable Textures Dataset [28], Image Quality Assessment

Database [29], MIT-CBCL face recognition database [30], Anime

Illustration Dataset2, Fingerprint recognition database [31] and the

National Institutes of Health Chest X-Ray Dataset [32], and from each

dataset we randomly select 25 images to be used as the cover or secret.

Since the resolutions of the images varies from around 512 × 512
to 4K, and we re-size them to 2048 × 2048 in the experiment for

simplicity.

To the best of our knowledge, there is no similar approach that

could offer equivalent capacity. Hence, we compare our method with

a naive baseline model that modifies the Least Significant Bits (LSB)

in the spatial domain (denoted as LSB). Concretely, we alter 1, 2 bits

of the carriers for hiding the RGB channels of the secret images. We

employ the hyper-parameters λ = 1.0 and σ = 0.05, 0.10 for our

method, which is named as SIC (Shuffled Image Concealing) in the

table and figure. 3

The experimental results are provided in Table 1. It can be seen

that the LSB method suffers from a trade-off between the appearance

of the observations and the reconstruction quality. Embedding with

only 1 bit per color channel will severely degrade the quality of the

secret images while embedding with 2 bits sharply hurts security,

such that the embedded images can be easily observed by human

beings. In the contrast, our proposed method provides the best re-

construction quality while keeps the appearances of observations at

a reasonable level. Furthermore, it is worth mentioning that, the

performance can be further improved by selecting hyper-parameters

individually for each of the datasets, providing better flexibility in

different situations than the LSB method. Examples of the results are

provided in Figure 2.

3.2. Concealing images into audio signals

Besides using images as the cover carriers, in this subsection, we

show an illustrative experiment to conceal image into the music

waveform (The result is shown in Fig. 1). In contrast to the natural

images, the single-channel music signals are generally formulated

as high-dimensional vectors. However, we found that the music is

significantly low rank if we reshaped it into a matrix. To support this

claim, we evaluate the normalized singular values of several classical

music fragments from the dataset “piano-midi”. Specifically, we

choose the music fragments from the musicians Chopin, Liszt, and

Mozart. For each fragment, we only keep the first 1 million samples

to generate the matrix (1000× 1000).

2https://www.gwern.net/Danbooru2017
3We also make an effort on implementing deep steganography for this task.

Unfortunately, we could not train a network that could extract the RGB-color
image from a signal gray-scale image after dozens of attempts.
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Fig. 2: Examples of concealing a grayscale or RGB color secret

image into a grayscale carrier image.

We observe that different musicians’ music fragments have in-

herent low-rank structures that more than 80% of the singular values

are close to zero. The insight behind this characteristic is that the

frequency of the music signals is mainly concentrated on a narrow

frequency band. It implies that a small amount of Fourier bases can

well approximate each piece of the signals. Hence, if we consider

each column of the reshaped matrix as a piece of the music signal,

then the columns will linearly dependent on each other when the size

of the matrix is sufficiently large, i.e. the low-rank structure.

In the illustrative experiment, we employ our model to conceal

the musician Chopin’s full-size picture (1000×1000 grayscale image.

See Fig. 1 (a)) into the music signal. In the model, we configure

the tuning parameters σ = 0.005 and λ = 25. We can see from

Figure 1(b-c) that the carrier is just slightly distorted by the secret

payload, but our model can still reconstruct the secret image with high

precision. As aforementioned, the statistical characteristics of the

payload are similar to AWGN due to the random shuffling operations.

As shown in Fig. 1 (d), the power spectrum of the payload is about

50dB weaker than the carrier and has equal strength at different

frequencies.

4. HYPER-PARAMETER SELECTION

4.1. Selection of σ

The σ controls the strength of concealing, which balances between

the distinguishability of the observation and the quality of the recon-

struction. Concretely, a larger σ for the secret image would make

the observation looks more “noisy”, while offering good quality of

the reconstructed image. On the contrary, a smaller σ for the secret

image would cause less visual alteration in the carrier at the cost

of the quality of the reconstructed image. Moreover, since the final

image file will be quantized to integers within the range 0 to 255,

the σ could not be smaller than 1/255. Otherwise, all the embedded

information will be lost during the quantization.

To illustrate this, we carry out several experiments using different

σ with different numbers of secrets. The changes of the PSNR in the

observations and reconstructions are reported in Figure 3. The results

show that the quality between the observation and the reconstruction

can be balanced within a wide range.

4.2. Selection of the cover rank

Similar to σ, the truncated rank r of the carrier also controls the

trade-off between the distinguishability of the observation and the

quality of the reconstruction. A smaller r declines the visual details in

Fig. 3: The performance of the proposed method under different σ

configurations. In the figure, 1, 2 and 3 components are used as the

secrets.

Fig. 4: The trade-off between the distinguishability of the observation

and the quality of the reconstruction using r.

the carrier while suppressing the interference of small singular values.

To illustrate this, we further carry out experiments on synthesized

datasets with controlled r for carrier images. The results are given in

Figure 4. We vary the r of carrier images from 16 to 512 with stride

16, and fix the rank of secret images to be 64. We choice σ = 0.1
and λ = 1.0 for all the experiments.

5. DISCUSSION

In this paper, we propose a novel model for a lossy-style image con-

cealing problem, in which we allow the acceptable reconstruction

error on the secret images. Our model exploits the low-rank structure

of the data to improve the payload capacity of concealing, which

is completely different from the conventional bit-concealing-based

methods. However, it is worth noting that there still exist several

shortages in our model: (a) we don’t consider the quantization error

in our mathematical model, which may severely influence the recon-

struction precision when we choose a small σ. (b) In the model, we

indiscriminately modify every sample (pixel) of the cover carrier as

the original LSB method, and this may make our concealing model

more detectable. Hence, in future work, we consider only modify the

samples (pixels) that are safe for attackers’ detection. In this case,

we need to alter our reconstruction methods to handle the incomplete

components.
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[5] Vojtěch Holub and Jessica Fridrich, “Designing steganographic

distortion using directional filters,” in 2012 IEEE International

workshop on information forensics and security (WIFS). IEEE,

2012, pp. 234–239.
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