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a b s t r a c t

Utilization of classification latent space information for downstream reconstruction and generation is an

intriguing and a relatively unexplored area. In general, discriminative representations are rich in class

specific features but are too sparse for reconstruction, whereas, in autoencoders the representations

are dense but has limited indistinguishable class specific features, making it less suitable for classifica-

tion. In this work, we propose a discriminative modelling framework that employs manipulated super-

vised latent representations to reconstruct and generate new samples belonging to a given class.

Unlike generative modelling approaches such as GANs and VAEs that aim to model the data manifold dis-

tribution, Representation based Generations (ReGene) directly represents the given data manifold in the

classification space. Such supervised representations, under certain constraints, allow for reconstructions

and controlled generations using an appropriate decoder without enforcing any prior distribution.

Theoretically, given a class, we show that these representations when smartly manipulated using convex

combinations retain the same class label. Furthermore, they also lead to novel generation of visually real-

istic images. Extensive experiments on datasets of varying resolutions demonstrate that ReGene has

higher classification accuracy than existing conditional generative models while being competitive in

terms of FID.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Image classification is one of the major areas of computer vision

that has been tremendously revolutionized by Deep Learning (DL).

Since the work on AlexNet [1], there have been significant contri-

butions like ResNet [2], DenseNet [3], InceptionNet [4], that have

pushed the boundaries by increasing classification accuracy and

offering robustness (to some extent), as the latent space represen-

tations of these classifiers extract a rich set of distinguishing fea-

tures pertaining to each class. Ideally, such latent features

contain potential information much more than required for the

classification task, which can be utilized for downstream applica-

tions. While self-supervised representations are recently being

investigated (SimCLR [5] and variants), other downstream applica-

tions of supervised classification latent space is still an intriguing

open research.

Deep Learning based generative modelling has manifested itself

as a fascinating and promising research area for image generation.

Recent advancements in generative modeling include autoencoder

(AE) based generative models [6–10], GAN based methods [11–15],

and Flow based methods [16,17]. A plethora of algorithms devel-

oped based on these ideas (and their variants) have redefined the

notion of image generations. As much as the interest for image

generations have been shown towards generative models, to the

best of our knowledge, revisiting discriminative approaches for

the possibility of generations from classification latent space is

comparatively less explored.Similar to AE and its variants being

subjected to the downstream task of classification, it will be inter-

esting to investigate the feasibility of training a classifier first and

then exploiting its latent space for downstream image reconstruc-

tions and generations. Such analysis will help in better under-

standing of supervised latent representations, and can potentially

aid in finding better robust representations.

In this regard, few natural questions arise: Can learning these

supervised latent representations by a model trained exclusively

for classification task be reused for another downstream task such

as reconstructions, and more interestingly, for generations? Can
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the requirement for a latent space prior (as in VAEs/GANs) be sub-

stituted with a property extracted from classification latent space

for image generations? In this work, we primarily endeavor to

address the above two questions.We first begin by showing that

supervised latent space representations can be reused for recon-

struction using a suitable decoder with an appropriately designed

loss function. From these representations for a set of image sam-

ples belonging to a given class, we generate new representations

while guaranteeing that they belong to the same class. We then

show how these new latent representations can be decoded to give

new visually meaningful images. Hence, we propose a framework,

namely Representation based Generations (ReGene), that investi-

gates the above factors and demonstrates the feasibility of reusing

classification latent space representations. Some examples of

images generated (on different datasets of varying resolutions)

using ReGene are summarized in Fig. 1.

The main contributions in this work are as follows: (i) We the-

oretically show that classifier latent space can be smartly interpo-

lated using convex combinations, to yield new representations

within the manifold. (ii) We discuss how to select good latent

space representations that are sufficient for reconstruction through

the design of an appropriate decoder using a combination of loss

functions. (iii) Finally, we demonstrate how convex combinations

of latent representations (z) of images (X) belonging to a class

can lead to realistic and meaningful generations of new image

samples belonging to the same class, using a decoder network

exhibiting good generalization capability (i.e., pðXjzÞ). The overall

ReGene framework that is built based on discriminative modelling

approach and capable of generating new images (from convexly

combined latent space representations) belonging to a class, is

depicted in Fig. 2, and the associated details are presented in the

ensuing sections.

2. Background and related work

In this section, we discuss the literature pertaining to latent

space representations and image generations inline with the

ReGene framework.

Fig. 1. ReGene image generations (proportionately scaled) for different datasets (of varying resolutions) – MNIST (28�28), Fashion MNIST (28�28), CIFAR-10 (32�32), CelebA

(64�64 and 128�128), and Anime (128�128). Best viewed in color.

Fig. 2. ReGene Framework: Top blocks show classifier for supervised latent space representations (Details in Section 3.1) and decoder for image reconstruction (Details in

Section 3.2). Bottom row depicts the image generation procedure using the trained classifier and decoder (Details in Section 3.3 to 3.4).
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2.1. Latent space representations

There are few interesting works on the exploration of latent

spaces for supervised (classification latent space) and unsuper-

vised (autoencoder) tasks [18,19]. Autoencoders learn compressed

latent space representations but can also produce realistic interpo-

lated images by imposing additional constraints. For instance, [20]

proposed an adversarial regularizer on the generated samples from

autoencoder latent space interpolations and [21] trained adversar-

ially on latent space interpolations. Autoencoder latent space rep-

resentations can be utilized for downstream tasks by adding

relevant regularizers [20,22,23].Autoencoder latent space for gen-

erations of image samples has been exploited to great extent, but

to the best of our knowledge classification latent space based

image generations is relatively unexplored in the computer vision

community.

2.2. Generative modeling – gaining popularity for image generations

GANs and VAEs lead the list of modern generative learning

approaches and have shown tremendous progress in recent years

for generation of new images. Vanilla versions of both the

approaches model the data distribution in an unsupervised fashion

(unlabelled). VAEs enforce a prior distribution to control latent

representations, whereas, GANs do not have an encoder to provide

latent representations and require random noise from a prior dis-

tribution. GANs tend to suffer from issues such as mode collapse/-

mode drop, training instability, etc., which have been addressed in

[12,24].VAEs may produce blurry images and recent methods

address these issues and have generated better quality images

[10,25]. Conditional GANs ([26,27]) and Conditional VAEs ([9,28])

learn data distributions that are conditioned on class label or other

images. Generating high-resolution and high-quality images is a

challenge for both GANs and VAEs. BigGAN [29] and Progressive

GAN [30] are recent works that address this problem. VQ-VAE,

leveraging on discrete latent embedding also demonstrates compa-

rable performance to state-of-the-art GAN models [25]. Though

GANs and VAEs are the most studied generative modeling

approaches, it should be emphasized that ReGene is a discrimina-

tive modeling framework and this work takes a different approach

towards the possibility of representative modeling based

generations.

3. Representation Based Generations (ReGene)

The prime focus of ReGene framework is to utilize classification

latent space representations to generate new images belonging to a

given class. To achieve this, the ReGene framework involves three

parts (as shown in Fig. 2): (i) Classifier: Encoder for supervised

latent space representation, (ii) Decoder: Image reconstruction

and generation from the set of latent representations, and (iii) Con-

vex analysis based manipulation of latent space representation. In

this section, we derive the mathematical formulations that theo-

retically explains the framework’s ability to capture the data distri-

butions. Let X ¼ fXðiÞg
m

i¼1; y ¼ fyðiÞg
m

i¼1 be the set of m i.i.d. data

samples (images) and the corresponding class labels, respectively.

3.1. Classifier: Encoder – image space to latent space

The purpose of the encoder here is to find the appropriate latent

space representations to classify the data samples according to

their respective class labels (the well-known classification prob-

lem). For sake of clarity, let f clsðX; h;W;bÞ be the classifier that

maps the dataset X to its respective class labels y. This classifier

can be written as composition of two functions:

(i) Encoder f encðX; hÞ, which maps the elements of dataset X to

the corresponding latent space representation z;

(ii) Discriminator f disðz;W;bÞ, which maps the set of latent

space representation z ¼ fzðiÞg
m

i¼1 to the corresponding class labels

in y, using the respective hyperplanes characterized by W and b.

That is,

f clsðX; h;W;bÞ ¼ f disðf encðX; hÞ;W;bÞ: ð1Þ

Let pðyðiÞ 2 yjXðiÞ 2 XÞ be the probability of classifying image XðiÞ

according to its class label yðiÞ for each data sample in X. Then, the

overall classifier likelihood function can be defined as

Lðh;W;bÞ ¼ E
x;y�px;y

½log pðyðiÞjXðiÞ
; h;W;bÞ�: ð2Þ

The corresponding loss function is to minimize the cross-

entropy error which is defined as,

Lðh;W;bÞ ¼ �
1

m

X

m

i¼1

X

cN

c¼c1

1fc ¼ yðiÞg log ðfclsðX
ðiÞ
; h;W;bÞÞc; ð3Þ

where c ¼ c1; c2; . . . ; cN denotes the N class labels.

On training the classifier using (3), the obtained optimal (in

convergence sense) model parameter estimates h� yield the enco-

der latent space representations zðiÞ�, which is defined as:

zðiÞ� ¼ f encðX
ðiÞ
; h ¼ h�Þ: ð4Þ

These latent space representations will then be used to recon-

struct/ generate images, as discussed next.

3.2. Decoder: Latent space to Image space Reconstruction

Let f decðz 2 z;/Þ be the decoder, which maps the optimal latent

space representations zðiÞ� 2 z to the respective data sample

XðiÞ 2 X. Let pðXðiÞjzðiÞ�Þ be the conditional probability of obtaining

the sample XðiÞ given the latent space representation zðiÞ� via the

process of generalized reconstruction. Then the overall decoder

likelihood function can be defined as

Lð/Þ ¼ E
z� ;x�pz� ;x

½logpðXðiÞjzðiÞ�;/Þ�: ð5Þ

A decoder designed by optimizing the above function will model

pðXjzÞ and hence can be used for reconstruction and generation,

provided the new z (will be discussed in subsequent sections) used

for the generation still remains valid for the designed decoder. It

should be emphasized that in ReGene framework a single decoder

is simultaneously trained for all the classes. In other words, the

decoder simply aims to invert the classification latent space repre-

sentations, and hence, preserve class information which facilitates

class specific image generations. Designing such a decoder is non-

trivial as the obtained z are optimal in the classification sense but

not necessarily suitable for reconstruction. Hence, the decoder

architecture (detailed in Section 5.2) and appropriate loss function

need to be specifically designed. In this work, we design the follow-

ing loss function for decoder:

Lð/Þ ¼
1

m

X

m

i¼1

½k1MAE f decðz
ðiÞ�

;/Þ;XðiÞ
� �

þ k2SSIM f decðz
ðiÞ�

;/Þ;XðiÞ
� �

þ k3Perceptual Loss f decðz
ðiÞ�

;/Þ;XðiÞ
� �

�; ð6Þ

where f decðz
ðiÞ�

;/Þ is the output from the decoder on passing latent

space zðiÞ�. In (6), difference between XðiÞ and f decðz
ðiÞ�

;/Þ are com-

puted in the per pixel image space (MAE), structural similarity dif-

ference (SSIM) [31], and difference in activation of conv features at
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various layers of a trained neural network (perceptual loss) [32].

k1; k2, and k3 are the respective weights for the different compo-

nents of the loss function.

3.3. Convex combinations of latent space representations

This section focuses on analyzing the latent space representa-

tions of the samples/ images of a class. Particularly, we show via

the following lemma that the classification latent space is exploita-

ble, by demonstrating that the convex combination of two or more

latent space representations of images belonging to a given class is

still classifiable as the same class.

Lemma 1. Consider a binary classification scenario. Let class A

contains NA image samples and class B contains NB image samples. Let

set A ¼ fa1; . . . ; anA
g � RnA�n contain n-dimensional feature space

representation of nA images in class A, where 2 6 nA 6 NA. And let set

B ¼ fb1; . . . ;bnB
g � RnB�n contain n-dimensional feature space rep-

resentation of nB images in class B, where 2 6 nB 6 NB. Given a

separating hyperplane (Section 3.1) WTzþ b ¼ 0, that separates these

two classes such that:

WTzþ b < 0; 8z 2 A ð7Þ

WTzþ b > 0; 8z 2 B: ð8Þ

Then, it is true that

WTzþ b < 0;8z 2 convfa1; . . . ;anAg ð9Þ

WTzþ b > 0;8z 2 convfb1; . . . ;bnBg; ð10Þ

where convex hull of fa1; . . . ;amg � Rn is defined as

convfa1; . . . ;amg ¼ z ¼
X

m

i¼1

hiaij1
T
mh ¼ 1; hi P 0

( )

: ð11Þ

Proof. Let us begin by proving (9). Let a 2 convfa1; . . . ; anAg. Then,

WTaþ b can be written as:

¼ WTðh1a1 þ h2a2 þ � � � þ hnAanA Þ þ b;

wherehi P 0; i ¼ 1; . . . ;nA;1
T
nA
h ¼ 1ðbyð11ÞÞ

ð12Þ

¼ h1W
Ta1 þ h2W

Ta2 þ � � � þ hnAW
TanA

þb1T
nA
h; ðas1T

nA
h ¼ 1Þ

ð13Þ

¼ h1W
Ta1 þ h2W

Ta2 þ � � � þ hnAW
TanA

þðh1bþ h2bþ � � � þ hnAbÞ
ð14Þ

¼ h1ðW
Ta1 þ bÞ þ h2ðW

Ta2 þ bÞ þ � � �

þhnAðW
TanA þ bÞ

ð15Þ

< 0ðby ð7ÞÞ ð16Þ

Following similar steps, (10) can also be proved. h

Now, let us consider the generalization of Lemma 1 for an N-class

classification scenario with class labels c1; . . . ; cN . As we are inter-

ested in generating new latent space representations (and subse-

quently new image generations) of a given class (say

ci; i 2 f1; . . . ;Ng with latent representations Ci ¼ fa1; . . . ;anCi
g

belonging to class ci), the multi-class classification scenario can be

considered as class ci vs other classes. In other words, (7) now

becomes:

WTzþ b < 0;8z 2 Ci ð17Þ

WTzþ b > 0;8z R Ci: ð18Þ

Then, following the proof of Lemma 1, it is straight-forward to

show that

WTzþ b < 0;8z 2 convfa1; . . . ;anCi
g: ð19Þ

3.4. Generations in image space

Consequently, as the decoder is trained to capture the distribu-

tion of Xjz (i.e., pðXjzÞ) through a finite set of latent space represen-

tations z, it can be shown that visually meaningful new images can

be generated for each and every element belonging to the convex

hull of the set z0# z, where z0 is any set of latent space representa-

tions of a given class of interest. The generations in image space are

obtained by performing the following two steps:

(i) Obtain generations in latent space for a given class via con-

vex combinations of any n P 2, number of latent space representa-

tions (defined by set z0), belonging to that class.

(ii) Trigger the trained decoder with the newly obtained latent

space representations to get the corresponding image space

generations.

The latent space representations obtained from step (i) lie

within the given class (see Lemma 1). Unlike VAE, we do not

enforce a prior on latent space to obtain random generations. Alter-

natively, we achieve our generations by varying the number of

latent space representations in set z0 (that belongs to a class of

interest), that are used in the generation process with different

convex combination ratios. Theoretically, we can generate infinitely

many image samples using any value lying in ½0;1� for convex com-

bination ratio. But, to achieve maximum diversity in the genera-

tions, we use (in the experiments) the convex combination ratio

to be 1=n (uniform weightage for each latent space representation)

for the selected n samples from z0. Let N be the number of samples

in z0, then we can generate a total of 2N � N � 1 samples, consider-

ing each possible n (n ¼ 2;3; . . . ;N) sample combinations.

The validity of image space generation obtained by the decoder

in step (ii) is presented in Theorem 2. From [33] we have the fol-

lowing Theorem 1, which will be used in the proof of Theorem 2.

Theorem 1. Given two random variables a1 and a2, with probability

density functions q1ðxÞ and q2ðxÞ respectively, the probability density

function qðxÞ of the mixture obtained by choosing a1 with probability

w and a2 with remaining probability 1�w is a convex combination of

probability density functions of original random variables, i.e.

qðxÞ ¼ f ðq1ðxÞ;q2ðxÞÞ ¼ w:q1ðxÞ þ ð1�wÞ:q2ðxÞ: ð20Þ

Theorem 2. For an ideal decoder, the convex combinations of latent

space representations per class (z0# z) yields image representations

belonging to the original image space distribution.

Proof. Let the classification latent space obtained be zðiÞ� (From 4),

zðiÞ� ¼ f encðX
ðiÞ
; h ¼ h�Þ: ð21Þ

Let f decðz
ðiÞ�

;/Þ be the decoder, that learns a mapping from the

latent space distribution to image space distribution and z�jyc be

the latent space distribution for class yc .

The latent representations per class,

zðiÞ�jyc � pðzjycÞ ð22Þ

For the mixture of two latent representations, zðiÞ�jyc and zðjÞ�jyc
from a given class yc chosen with probabilities a and 1� a respec-

tively, the probability density is given by,
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f ðpðzðiÞ�jycÞ; pðz
ðjÞ�jycÞ ¼ a:pðzjycÞ þ ð1� aÞ:pðzjycÞ

ðby Theorem 1Þ

¼ pðzjycÞ

ð23Þ

As the mixture of two latent representations for a given class

preserves the latent space distribution for that class (Lemma 1),

the decoder, f decðz
ðiÞ�

;/Þ is able to map this latent space represen-

tation to a sample in the image space. Since the output of decoder

belongs to the original image space distribution, the newly gener-

ated image sample also belongs to the original image space distri-

bution. h

4. ReGene vs AutoEncoder: Case study with MNIST

This section provides a toy-study comparison between the

Autoencoder (AE) and ReGene in terms of latent space representa-

tions’ ability to classify, reconstruct and generate (using convex

combinations, refer Sections 3.3 and 3.4). More rigorous analysis

on complex datasets will be discussed in subsequent sections.

On training with MNIST data set, the ReGene classifier achieves

99% test accuracy whereas the AE achieves 95% (using a linear layer

added on top AE latent space). As seen in Fig. 3(a), the classifier

latent space is well-separated as compared to that of the autoen-

coder latent space. The test reconstruction Mean Absolute Error

(MAE) for AE and ReGene decoder are 0.0134 and 0.0273, respec-

tively. In other words, using the classification latent space, ReGene

decoder is still able to achieve good reconstructions but with

slightly higher MAE as compared to AE.The AE is trained (from

scratch) end-end to reconstruct the given sample, using MAE as

loss function. Since the latent space z does not have additional con-

straint (to be classifiable), the decoder learns an arbitrary mapping

from z to X that minimizes MAE. Hence, it cannot and is not

expected to learn class specific features. On the other hand,

ReGene’s decoder uses the z from a trained classifier model, (learnt

using cross entropy loss function) and therefore has higher classi-

fication test accuracy, but also incurs slightly higher MAE (while

reconstructing), as the latent space is designed for classification

and not constrained for reconstruction. There is a trade-off

between reconstruction and classification due to which there is a

slightly higher MAE when reconstructing from classification latent

space (ReGene) versus an AE. This is further explained in detail in

Table 1 and in Section 5.2.1. Fig. 3(b) shows the generation in

image space using Autoencoder and ReGene decoder. For Autoen-

coder it is observed in Fig. 3(a) that convex combination of samples

in a given class do not always belong to the same class. For

instance, a line (convex combination) between two points (lying

on two different class ‘4’ clusters) belonging to the class 4 (green)

passes through the class 9. Therefore, the generated images based

on such combinations cannot be guaranteed to be realistic and

meaningful. One such illustration is shown in Fig. 3(b) (top) where

the transition can be seen blurry as it moves from left (a given true

sample) to right (another true sample). On the other hand, for the

same two true samples, Fig. 3(b) (bottom) shows the classification

latent space based transition, where one can observe a smooth

transition within intermediate samples still preserving the class

information (in this case ‘‘4”). This illustrates that unlike AE latent

space, the classifier space is apt for generating new meaningful

samples that still belong to the same class of interest.

5. Experimental setup

This section provides validation for the formulation and theory

behind the framework. We discuss the experimental procedures

including choice of datasets considered (of varying resolutions),

and provide a high level overview of the classifier and decoder net-

work architectures employed here for analyzing ReGene frame-

work. We also discuss the evaluation metrics for performance

comparison with state-of-the-art methods for image generation.

5.1. Datasets

Four standard datasets for image generation tasks – MNIST [34],

Fashion MNIST [35], CIFAR-10 [36] and CelebA [37] are selected.

MNIST and Fashion MNIST are relatively easier due to smaller

image dimensions (28x28 px), grayscale images, perfect alignment,

and absence of background. CelebA is chosen to demonstrate the

generation of real-world, relatively higher-dimensional color

images. To be consistent with other reported results in the litera-

ture, we followed the same pre-processing steps provided in

[7,8] by taking 140 � 140 center crops and resizing the image to

64 � 64 px resolution.2 To obtain latent space representation for

CelebA, we introduce Anime [38] dataset as the complementary

class. 15K random samples from both CelebA and Anime were cho-

sen for training the classifier. For the decoder, we trained CelebA

separately using the entirety of 200K samples. Additionally, we also

trained CelebA and Anime for 128 � 128 px resolution without addi-

tional cropping other than provided in the original aligned dataset.

CIFAR-10 (32 � 32 px) is an interesting dataset of choice since it pre-

sents a multiclass scenario with high intraclass variations and una-

ligned images with mixed backgrounds. For quantitative evaluation

on the datasets, we directly state the respective numerical values

of the standard evaluation metrics (as reported in the respective lit-

erature), to have fair comparisons with other existing generative

approaches.

5.2. Network architectures

It should be noted that the prime focus of this work is on the

theory and principle of the representation framework that suits

the downstream task of generation. Here, we demonstrate our

approach using simple feed-forward convolutional neural net-

works. Both classifier and decoder networks follow VGG-style

architectures of varying depths and multiple blocks, with each

major block having Conv2D for classifier/Conv2DTranspose for

decoder, with BatchNorm, LeakyReLU, followed by a MaxPooling

for classifier/UpSampling for decoder layer. Cross-entropy is

adopted as the loss function for classification since it aims to max-

imize the capture of information sufficient enough to separate the

classes (as reported in (3)). Deriving from information theory, min-

imizing entropy maximizes (class relevant) mutual information,

which in turn captures a strong z and makes decoding to X possi-

ble. Other loss functions (e.g. hinge) for complex datasets (e.g.

cifar10) are not as effective in terms of accuracy as they have over-

lapping latent space boundaries. Also, there is no theoretical guar-

antee to state that information in z using other loss functions has

the necessary latent feature representations that can positively or

negatively influence the reconstruction of X. For the decoder, we

employ a combination of three weighted loss functions (as

reported in (6)): Mean Absolute Error (MAE), Structural Similarity

Index (SSIM) [31] and Perceptual Loss [32]. The ratio of weights

k1; k2 and k3 are dataset dependent; however the general heuristic

is to allow initial training epochs to have high weights assigned to

SSIM (k2) and Perceptual Loss (k3) to first reconstruct the global

outline and texture of the image. In later epochs, those weights

are gradually reduced to focus more on pixel wise error (k1). The

MAE is weighted relatively high throughout the training Network

weights are optimized using Adam optimizer. All experiments

2 It should be noted that existing works in literature have used different versions of

CelebA dataset with respect to pre-processing. Additional details pertaining to this

are provided in Appendix B.
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were run on a workstation with the following specifications: 64 GB

RAM, Intel i9-9900 K CPU and 2x NVIDIA GeForce RTX 2080 Ti.

Detailed network architectures for both classifier and decoder,

training details such as learning rates, batch sizes, number of

epochs, empirically chosen weights for k1; k2 and k3 during decoder

training, time taken per epoch, etc. are provided in Appendix A.

5.2.1. Architecture selection for a good latent feature representation –

Case study with CIFAR-10

For a complex dataset with high intra-class background vari-

ance, learning proper class specific features becomes difficult. Tak-

ing CIFAR-10 as an example, we examine how to achieve trade-off

between good classification and reconstruction. Discriminative

classification models often yield highly sparse latent representa-

tions that sacrifice reconstruction and generation quality, implying

even a decoder with sufficient capacity may under perform if it

does not receive an input with sufficient information. This further

implies that the best state-of-the-art classifier cannot be directly

considered for ReGene framework as it would impose significant

loss in reconstruction, and generation quality. With the intention

of finding good latent space representations that achieve a balance

between classification and reconstruction/generation, a hyper-

parameter search was conducted for a suitable architecture in

terms of depth (layers), latent space dimension size and relative

non-sparsity in the latent feature space. Fig. 4 shows a comparison

between different classifier architectures with their t-SNE plot for

viewing the extent of class separation boundaries, and latent space

representations per class (represented by the bar code). It can be

observed that although architectures with more layers achieve

higher classification accuracy and the t-SNE appears to be more

compact, the latent representations (barcodes) gradually appears

sparser (Fig. 4). With such sparser latent representations, the deco-

der training becomes more difficult, due to the limited information

available for reconstruction.

We also experimented on DenseNet100 trained for the same

task, which gave accuracy of 91%. Visual results in Fig. 5 show that

the latent space of DenseNet is visibly sparse, except in certain

regions, sufficient enough for the classifier to make decisions.

However, image reconstructions only cover faint outline of the

object of interest.

It is observed that achieving sparsity in the latent representa-

tion of autoencoder helps in learning useful features as a byproduct

[19]. Indirectly, introducing methods towards sparsity (e.g. by

enforcing regularization), makes the network learn class relevant

properties. [20] enforced a regularizer and evaluated their

improved latent space representation for downstream tasks such

as classification. On the other hand, since we adopt a classifier

trained via discriminative modelling in the first step, learning class

relevant features and in-turn sparseness are already incorporated;

therefore we focus on preventing over-sparsity while ensuring suf-

Table 1

Comparison of different network architectures for selection of a CIFAR-10 classifier latent space representations capable of reconstruction. Metrics used for selection: classifier

accuracy and decoder MAE (Mean Absolute Error) computed on test set.

Network (Major Blocks) Latent Space Convolutions per Block Classifier Accuracy Decoder MAE

4 2048 1 0:772 0:079

3 0:795 0:135

5 512 1 0:776 0:135

3 0:808 0:182

6 128 1 0:779 0:169

3 0:821 0:209

Fig. 3. MNIST Classification and Generation: Autoencoder vs ReGene.
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ficient class relevant features are captured. In general, a network

with more layers (network blocks) favours better classification at

the expense of increased sparsity. A decoder that receives such a

sparse vector as input may be incapacitated for reconstruction of

the original image, and hence, image generation, despite deep net-

work architectures. This is further shown in Table 1 where decoder

reconstruction MAE on the test set increase with increase in net-

work blocks. The classification network architecture having latent

space 2048 and single convolution per layer was empirically cho-

sen as it achieves the best decoder MAE.3 Similar approach was

adopted to find the right choice of classifier and decoder combina-

tion for other datasets (presented in Appendix A).

5.3. Evaluation metrics

To quantitatively evaluate the generations, we report their Clas-

sification Accuracy and Fréchet Inception Distance (FID) [39]. The

classification accuracy validates the claim from Lemma 1 from

the perspective of a neutral classifier (ResNet56v1 architecture),

trained from scratch on the original dataset corresponding to the

generations. FID is the standard evaluation measure predomi-

nantly used when comparing the performance of image generative

methods. It should also be noted that FID is susceptible to the

decoder noise, which is further discussed in Section 6.6. Also, for

qualitative evaluations, we compare generations with nearest

neighbors in the original training image space, their reconstruc-

tions, and with other generations created.

6. Results and discussion

In this section, extensive results for validation of Lemma 1 and

generations from multiple combinations are presented (for various

datasets). Additionally, comparison of generations with the closest

match in the dataset using different distance measures, and the

possibility of iterative generations are also discussed. Finally, we

compare the FID scores between reconstructions and generations

and show the presence of low level decoder noise can impact the

FID score while still generating visually meaningful images.

Fig. 4. Visualizing the latent space (using barcodes for each class) and t-SNE plots of CIFAR-10 for 6 classifier architectures (of varying depth of network, size of latent

representations and number of convolutional layers per block). Classification accuracy on the test set is also shown below the respective t-SNE plots.

Fig. 5. Comparison of DenseNet100 (left) vs the chosen ReGene classifier (right) – latent space sparseness (top-left) and inability of decoder to reconstruct back the original

image is observed in DenseNet (bottom-left). Whereas for the chosen classifier, the latent representations are comparatively less sparse (top-right) and ReGene decoder is

able to reconstruct (bottom-right). Best viewed in color.

3 Finding an optimal classifier/decoder architecture is in itself a evolving research

direction for any Deep Learning application.
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6.1. Practical validation of Lemma 1

The experimental validity of Lemma 1 can be inferred from the

Table in left provided in Fig. 6(a), wherein the generations obtained

using convex combination of 2, 3, and 5 are passed through a neu-

tral classifier ResNet56v1 trained on the respective original data-

sets. Note that the classification accuracies are all high (P0.9). It

is observed that convex combinations of higher order (larger n)

tend to provide generations with higher classification accuracy.

We take the example of Cifar-10 dataset in Fig. 6(b) and compare

the classification accuracy score of ReGene with baseline condi-

tional generative models, such as DCGAN, WGANGP, and SNGAN.

In comparison to other conditional generative models, the genera-

tions of ReGene are classified better. Further, as compared to real

test data (92.8%), ReGene generations are almost equally classifi-

able by a neutral classifier (91.37%). This demonstrates the gener-

Table 2

Trials taken by ReGene to process 5000 image generations (500 generations per class) using convex combination (cc) of 2, for MNIST, Fashion MNIST and Cifar10 datasets. Values

denote number of combination trials needed to be processed for 500 valid generations per class, first pass being Latent Space (LS) validation, followed by Image Space (IS)

validation.

Class Label MNIST LS 500 MNIST IS 500 FashionLS 500 Fashion IS 500 Cifar10 LS 500 Cifar10 IS 500

0 500 501 504 564 502 830

1 502 507 500 500 501 730

2 500 521 501 538 508 929

3 504 520 501 608 512 681

4 501 518 526 808 506 901

5 500 513 506 590 517 895

6 500 502 552 847 502 1347

7 501 505 500 607 504 780

8 500 531 500 531 501 563

9 503 548 500 510 501 1390

Fig. 7. Left: Generations (highlighted in the blue square) produced from convex combination of different samples – n = 2,3,5 with combination ratio of 1/n. Right: Latent

Space Interpolation transitions between two source images (top and bottom of each column) of digit 0, bag, anime and celeb, shown vertically for varying convex combination

ratios (0.1 to 0.9) (All images are shown in same scale due to space constraints though they have different resolutions). Best viewed in color.

Fig. 6. (a) Generation Classification Accuracy on Neutral Classifier for different dataset generations with convex combinations – 2, 3 and 5. Results reported are averaged over

3 runs (left). (b) Comparison on Cifar10 dataset. ReGene outperforms other conditional generative approaches in terms of generation classification accuracy on Cifar10. Scores

for baseline GANs are reported from [40] (right).
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ative efficacy of ReGene from the eyes of a neutral classifier.

Although a perfect validation for Theorem 2 can be obtained only

from an ideal (error free) decoder, the comparative scores of FID

(reported and discussed in Section 6.6) help to substantiate that

the decoder indeed closely learns the mapping from latent space

to image space distribution and that the generations are not far

from the original image space distribution.

6.2. Generations via convex combinations

Novel samples belonging to any class can be generated using

the convex combination of multiple existing samples randomly

chosen from that class, by combining (n P 2) samples in the latent

space. Theoretically, we can have multiple samples participating in

the generation process. For practical purposes, due to inevitable

classification and decoder training errors, we apply a threshold

that serves as a filtering criteria to select most meaningful genera-

tions. We apply a two-step judging criteria to decide whether a

sample from the convex combination is fit to be considered as a

new generation: (i) On obtaining the new latent space representa-

tion, we pass it to the trained ReGene classifier portion (softmax

layer) and only allow samples that are correctly classified, (ii) Such

sample representations once decoded to image (via decoder) are

again passed to the ReGene classifier (as an image) to double check

whether the new image has class confidence score above a certain

threshold. General threshold adopted is the average class-

confidence per class over the test/holdout samples. For generating

5,000 valid samples using the average class-confidence threshold,

ReGene processed 5,166 combinations for MNIST, 6,103 combina-

tions for Fashion MNIST, and 9046 combinations for Cifar10.

Class-wise combination trials are provided in Table 2. It is observed

that the Latent Space verification is close to 500 (per class), indicat-

ing that almost all samples are indeed within the convex hull of the

same class it is being generated for (Lemma 1), whereas the Image

Space verification takes higher number of samples, owing to recon-

struction error in the decoder.

In Fig. 7, we show generations from combinations n = 2,3,5 and

the convex combination ratio = 1/n, for each selected latent repre-

sentation. Each row presents generations (highlighted in the blue

square) from datasets selected in Section 5.1. Below each of the

generated images (highlighted blue square) we have shown the

spatial overlapping of the source images to visually observe the

novelty and quality of the generated samples. Each column shows

samples from different number of samples participating in the

combinations. The generations - Digit 0, Bag, Anime, and Celeb

transitions are produced by changing the convex combination

ratios (0.1 to 0.9) in the latent space. The images reveal the gener-

ative ability of ReGene (for different value of n and in various data-

sets) and the smooth image transitions (for n ¼ 2). Collage of each

dataset is visualized in Appendix C.

6.3. Matrix visualizations

Generations from the convex combination of 2 samples are pre-

sented in a matrix structure for visual study of the subtle impact

introduced by the nature of the different images. Examples shown

Fig. 8. Cifar10 Car generations displayed in Matrix format. Orange rectangular box specifies the source images. Best viewed in color.
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include Cifar10 (32 � 32 px) in Fig. 8, CelebA in Fig. 9 (64 � 64 px)

and Fig. 10 (128 � 128 px), and Anime in Fig. 11. Considering one

row (one image), one can observe the different changes the new

generation undergoes by combining with another image of differ-

ent property (color, expression, shape, background etc.)

6.4. Finding the closest match from the training data and among

generations

To demonstrate that the decoder does not produce generations

that simply mimic existing samples, and to show it is truly robust

to mode collapse, we show qualitative samples comparing genera-

tions with samples from the training set in Fig. 12. We take two

existing images, generate a new image and compare it against

other existing images from the training dataset. Comparison to

the closest match is done in three ways: (i) in the increasing order

of squared error in image and latent space representations, (ii) in

the decreasing order of SSIM in image space, and (iii) in the

increasing order of squared error on latent features passed through

Imagenet pre-trained VGG-16 network. We also compare the clos-

est match with our own created generations set in Fig. 13, showing

the generations from convex combination are truly unique, and the

property of mode collapse can be avoided. Additional comparisons

are available in Appendix D.

6.5. Generations arising across generations

It is also possible to create infinite generations, by iterative

combinations of the generated images as inputs and feeding them

back to the framework. Doing so allows for subsequent levels of

generation, each level dependent on the generation from one level

before. In Fig. 14a and b, ‘Gen-1’ refers to the first set of genera-

tions. Two newer ways for generation are: (i) applying convex

combination of Gen-1 latent features in latent space (LS) directly

(termed sibling generations’ in ‘Gen-2:fromLS’), or, (ii) by passing

the Gen-1 images in image space (IS) back to classifier and obtain-

ing new generations from convex combination of their respective

latent features (termed ‘child generations’ in ‘Gen-2:fromRecon’).

The slight deterioration in the quality of newer generations is

due to decoder not being 100% error-free, as the low level noise

can be propagated with each subsequent level of generation.

6.6. Comparing FID scores of reconstruction vs generation

The decoder of ReGene serves for both reconstruction and gen-

eration. Unlike GANs/Conditional GANs, ReGene does not employ

adversarial training. The FID scores obtained using ReGene gener-

ations for different datasets, and those obtained by different gener-

ative approaches (as reported in the literature), are summarized in

Table 3. It is important to note that the FID scores computed

between Org vs Recon are better than other AE based methods,

but still relatively high due to low level decoder noise. This does

not affect generation qualitatively (as can be witnessed from

images in Fig. 7), but it impacts FID score significantly. As FID score

is susceptible to such small decoder noise, it favor methods trained

in adversarial fashion. The FID scores between Recon vs Gen pro-

vide a better comparison since they both (reconstruction and gen-

eration from same decoder) take into account the same decoder

noise. Similar observation has also been reported in [25]. Fig. 15

(a) compares the generative performance exclusively for Cifar-10

with other conditional GAN methods, where the FID score for

Recon vs Gen is close to SoTA methods trained exclusively for gen-

Fig. 9. CelebA Face (64�64 px) generations displayed in Matrix format. Orange rectangular box specifies the source images. Best viewed in color.
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eration. In Fig. 15(b), we plot FID score vs accuracy for different

convex combination ratios of original-reconstructed versions of

the Cifar-10 samples. Initially, when all original training images

are presented, the accuracy reaches 1 and FID is 0. As convex com-

bination weight a of the reconstructed images increase, there is a

gradual deterioration in the image quality, which decreases the

accuracy and conversely increases FID. This further confirms that

the error in decoder has significant influence on the two metrics

(FID and accuracy). Though the purpose here is to demonstrate

the generation ability of ReGene framework, it should be noted

that with an improved decoder (implying lower FID for Org vs

Recon), ReGene has the potential to generate images with even

lower FID scores (for Org vs Gen). Though FID is predominantly

used as a standard evaluation metric, earlier works also used

Inception Score (IS). Since existing VAE [41] based literature

reported the IS values only for MNIST and Fashion MNIST dataset,

for a fair comparison we have compared those with the IS scores

obtained by ReGene, as summarized in Table 4. Note that a higher

IS score is an indication of better image generation.

6.7. Comparison of different loss functions for classifier

To compare the performance of classifier and its downstream

effect on the generations, we study four different classification loss

functions - cross-entropy (default), multi-class hinge, cosine simi-

larity, and mean squared error. We analyze the effect of each loss

function over different metrics, shown in Fig. 16. In terms of classi-

fier accuracy, cross-entropy outperforms other loss functions. There

is also a slight degradation in decoder MAE when using the latent

spaceobtained fromclassifiers that are trainedusingother loss func-

tions, compared to the cross-entropy based classifier. This in turn

affects generation FID score, and the accuracy of those generations

when passed through the trained classifier.With strict constraints/-

judging criteria added on latent and image space (Section 6.2), it

becomes harder to find quality generations for other loss functions,

whereas cross-entropy clearly has better performance.With lowFID

score and 10K tries, it yields constraint satisfying generations with

fewer tries when compared with hinge (4x), MSE (2.9�) and cosine

(1.8�). Those generations also have low FID, and are classified cor-

rectly when passed through the trained classifier.

Additional details on the latent space representations of each

loss function visualized by t-SNE and activation bar plots are avail-

able in Appendix B.

6.8. Classification performance on varying the % of training samples

This section studies the impact of varying different % of gener-

ations on the classifier’s performance. Considering Cifar10 dataset

for the experiment, the performance on varying different sample

sizes for training classifier is plotted in Fig. 17. From the extreme

left (indicated by red dot) with 100% generated images (no original

samples), we analyse the classification accuracy by gradually

Fig. 10. CelebA Face (128�128 px) generations displayed in Matrix format. Orange rectangular box specifies the source images. Best viewed in color.
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increasing the number of original samples used to train the classi-

fier and keeping the overall training samples as constant (the per-

centage of generated samples is correspondingly reduced). At the

center (indicated by blue dot) with 100% original samples (no gen-

erations) corresponds to the default classifier with accuracy of 77%

for the particular chosen architecture (Table A.7). It can be

observed that the performance of classifier steadily increases from

left to the center with increasing percentage of original samples.

On the other hand, the plot progresses from the center to the right

with varying % of generations augmented to the existing complete

set of original samples. At extreme right (indicated by green dot),

with 200% (100% original +100% generations) training samples,

Fig. 11. Anime (128�128 px) generations displayed in Matrix format. Orange rectangular box specifies the source images. Best viewed in color.

Fig. 12. Comparison of generation (left – center image) generated via Image 1 and Image 2 among the training set samples – Showing Top 3 closest matches among Original

(Row 1) and Reconstructed images (Row 2) using MSE, SSIM in Image Space and VGG-16 Latent Feature Space. As SSIM and VGG-16 Feature space operate on images and MSE

can operate on both images and latent space, Row 3 depicts the closest matches in Latent Space using MSE.
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the accuracy increased to around 80% with an improvement of

around 3% from the base accuracy of 77% (center), indicating that

generations can also be potentially used as an augmentation tech-

nique for improving classification accuracy.

Fig. 13. Comparison of generation among other generations – First two rows show top 5 closest matches in increasing order of squared error in image space; bottom two

rows show top 5 closest match in terms of decreasing order of SSIM in image space. Best viewed in color.

Fig. 14. Generations across Generations shown for CelebA and CIFAR-10 car (in (a)), and CIFAR-10 bird and horse (in (b)). Shown in the figure are generations (Gen-1) whose

latent features are used to combine and produce new generations Gen-2:fromLS (orange border) and Gen-2:fromRecon. (green border). Best viewed in color.

Table 3

Comparison of FID scores between ReGene and other methods. For benchmarking purposes, results indicated by y are taken from [8], } from [10]. The blanks indicate that the

values are not reported in the respective papers. ReGeNe generations are obtained by performing convex combinations of 2 samples, experiments repeated over 3 separate runs.

The last row represents FID scores computed between dataset reconstruction and generations.

Method MNIST Fashion CIFAR-10 CelebA

NS GANy 6:8	 0:5 26:5	 1:6 58:5	 1:9 55:0	 3:3

LSGANy 7:8	 0:6 30:7	 2:2 87:1	 47:5 53:9	 2:8

WGAN GPy 20:3	 5:0 24:5	 2:1 55:8	 0:9 30:3	 1:0

BEGANy 13:1	 1:0 22:9	 0:9 71:4	 1:6 38:9	 0:9

VAE} 19:21 – 106:37 48:12

CV� VAE} 33:79 – 94:75 48:87

WAE} 20:42 – 117:44 53:67

RAE� SN} 19:67 – 84:25 44:74

LVPGA} 6:32	 0:16 – 52:94	 0:89 13:8	 0:20

2-Stage VAEy 12:6	 1:5 29:3	 1:0 72:9	 0:9 44:4	 0:7

ReGene (Org vs Gen) 6:13	 0:12 15:16	 0:08 40:06	 0:23 46:65	 0:23

ReGene (Org vs Recon) 6:03 12:43 29:93 27:41

ReGene (Recon vs Gen) 3:98	 0:03 7:34	 0:03 17:45	 0:02 16:35	 0:03
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7. ReGene: Strengths and limitations

To summarize, in ReGene framework two probabilistic models –

encoder/ classifier pðyjXÞ and decoder pðXjzÞ are defined and

trained separately. Unlike in VAEs and C-VAEs, in ReGne there is

no need for probabilistic modelling of pðzjxÞ and pðzjX; yÞ respec-

tively, which facilitates comparatively easier training. Also, instead

of randomly sampling the latent space as in VAEs/C-VAEs, ReGene

Fig. 15. Left (a): Comparison of FID on the Cifar10 dataset - The FID score for Recon vs Gen (17.45) is comparable to SoTA conditional GANs. ReGene (Org vs Gen) FID score

(40.06) is higher, however, (i) ReGene was never optimized directly for generations, (ii) the (Org vs Recon) FID score (29.93) is also high, indicating the reconstruction error

should be accounted for during comparison. Right (b): Trend of FID score (blue) vs Accuracy (orange) for different convex combination ratios of original:reconstructed

samples. Higher FID score is observed as the ratio tends towards reconstructed samples, caused primarily by the decoder error.

Table 4

Comparison of Inception Score (higher values are better) with other Conditional VAE

variants. Results shown for MNIST and Fashion MNIST.

Method IS for MNIST IS for Fashion MNIST

Real Image 9:8793	 0:0614 9:0617	 0:0430

CVAE 2:0594	 0:0426 3:5721	 0:0483

CCVAE 2:6463	 0:1007 3:4170	 0:1455

CCapsCVAE 2:2970	 0:0512 4:1865	 0:0627

ReGene 2:3840	 0:0173 4:4061	 0:0367

Fig. 16. Different loss functions employed for training classifier on Cifar10 are compared with each other on different metrics such as classification accuracy, generation

quality and number of tries taken to obtain quality generations. Among the four loss functions, crossentropy outperforms other approaches in almost all of the listed metrics.

Fig. 17. Classification performance on varying the % of training samples containing generation and original samples, experimented on Cifar10. Reading from center to left

shows the performance of varying original versus generations while retaining same number of samples. Reading center to right is the performance of generation

augmentation on top of original images. Colored dots (red, blue, green) indicate the complete absence of original data, default 100% original data, and complete augmentation

with equal ratio of original and generations.
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framework uses convex combinations to generate new samples

(Lemma 1). Other main advantages of ReGene includes (i) Guaran-

tee for same class generations in both latent space and image space

(from Lemma 1 and Theorem 2); (ii) No prior distribution required

to model latent space distributions; (iii) No mode drop issue (as

selection samples for a given class are deterministic in nature),

and (iv) Stable and straight-forward training procedure (no adver-

sarial training required). As ReGene is one of the first frameworks

to investigate classification latent space based image generation,

the following limitations requires further attention: (i) ReGene

cannot directly evaluate pðxÞ for modeling the data distribution;

(ii) Trade-off between reconstruction and classification accuracy

as highlighted in Section 5.2.1, and (iii) Finally, the quality of image

generations is dependent on the reconstruction ability of decoder.

8. Conclusion

The answer to the question: ‘Can classification latent space rep-

resentations be reused for the downstream task of reconstruction

and generation?’ is Yes – through the proposed ReGene framework

which can reconstruct using classification latent space representa-

tions and generate visually meaningful images via convex combi-

nations of such representations. We quantitatively and

qualitatively demonstrated the efficacy of ReGene framework on

standard datasets and showed comparable performance with other

existing state-of-the-art generative methods. While our experi-

ments utilized simple network structures to prove the possibility

of this alternative generative approach, design and development

of more sophisticated architectures for better reconstruction and

therefore, generation will further strengthen the generation qual-

ity of ReGene. It should be noted that Lemma 1 is directly defined

on classification latent space, and hence its application to domains

other than computer vision will be an exciting research direction.

We firmly believe this work will foster further intriguing

researches in exploration and exploitation of supervised latent

space representations to other downstream tasks.
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Appendix A

In this Section, we provide extra information that may be useful to

understand better the sections in the main portion, and aid the

readers in understanding the implementation details.4 Appedix A

provides details of the different neural network architecture used

for each dataset, along with hyperparameters. Appedix B is a short

discusission on the discrepancy in CelebA across different methods,

and its effect on FID score. Appedix C presents collage of visualiza-

tions for all the datasets used under the Experiment Section Appedix

D compares the closest match of a generation across all training

samples, and across other generations, per class and dataset.

Table A.5

Network Architecture of Classifier/Encoder and Decoder used for MNIST/Fashion dataset.

Classifier/Encoder Architecture Details

Input(shape=(28, 28, 1))

[Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3)] x 2, MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

[Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3)] x 2, Flatten(dimension=1152)

Dense(nodes=10), Softmax Activation

Decoder Architecture Details

Input(shape=(1152)), Reshape(shape=(3, 3, 128))

[Conv2DTranspose(filters=512, kenel size=3x3, padding=valid),

LeakyReLU(a=0:3), BatchNorm] x 2

Conv2DTranspose(filters=512, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm, UpSampling2D(size=2x2)

[Conv2DTranspose(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2DTranspose(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3

Conv2D(filters=3, kenel size=3x3, padding=same), Sigmoid Activation

4 The code for Regene framework will be released on acceptance of the paper, to

foster further research in this direction.

S. Gopalakrishnan, Pranshu Ranjan Singh, Y. Yazici et al. Neurocomputing 471 (2022) 296–334

310



A.1. Network architectures

The network architectures used in experiments (Section 4) for

datasets MNIST (and Fashion), CelebA/Anime and CIFAR-10 are

depicted here in Tables A.5–A.7, respectively. Additional training

details for each dataset are provided below. Most of the hyperpa-

rameter settings are common for similar datasets (MNIST, Fashion

MNIST). Depending on resolution and RGB channels, slight changes

are made to accommodate size and memory constraints.

A.1.1. MNIST


 Classifier

– Loss function: Categorical Crossentropy

– Optimizer: Adam (learning rate = 0.005 with drop of 0.99

every 20 epochs)

– Batch Size: 512

– Epochs Trained: 50

– Time taken for training on RTX 2080Ti: 3 s per epoch.


 Decoder

– Loss functions: MAE, SSIM

– Loss weights:

Epoch 1–200: k1 (MAE)=1.0, k2 (SSIM)=1.0; Adam opti-

mizer (learning rate = 0.001)

Epoch 200–300: k1 (MAE)=1.0, k2 (SSIM)=0.0; Adam opti-

mizer (learning rate = 0.0001)

– Batch Size: 512

– Epochs Trained: 300

Table A.6

Network Architecture of Classifier/Encoder and Decoder used for CelebA/Anime dataset.

Classifier/Encoder Architecture Details

Input(shape=(64, 64, 3))

[Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3)] x 2, MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

[Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3)] x 2, Flatten(dimension=2048)

Dense(nodes=2), Softmax Activation

Decoder Architecture Details

Input(shape=(2048)), Reshape(shape=(4, 4, 128))

[Conv2D(filters=512, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2D(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2D(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2D(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2D(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3

Conv2D(filters=3, kenel size=3x3, padding=same), Sigmoid Activation

Table A.7

Network Architecture of Classifier/Encoder and Decoder used for CIFAR-10 dataset.

Classifier/Encoder Architecture Details

Input(shape=(32, 32, 3))

[Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3)] x 2, MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=3x3, padding=same), BatchNorm,

LeakyReLU(a=0:3), MaxPool2D(pool size=2x2)

Conv2D(filters=128, kenel size=9x9, padding=same), BatchNorm,

LeakyReLU(a=0:3)
Conv2D(filters=128, kenel size=11x11, padding=same), BatchNorm,

LeakyReLU(a=0:3), Flatten(dimension=2048)

Dense(nodes=10), Softmax Activation

Decoder Architecture Details

Input(shape=(2048)), Reshape(shape=(4, 4, 128))

[Conv2DTranspose(filters=512, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2DTranspose(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2DTranspose(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3, UpSampling2D(size=2x2)

[Conv2DTranspose(filters=256, kenel size=3x3, padding=same),

LeakyReLU(a=0:3), BatchNorm] x 3

Conv2D(filters=3, kenel size=3x3, padding=same), Sigmoid Activation
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– Time taken for training on RTX 2080Ti: 20 s per epoch.

A.1.2. Fashion MNIST


 Classifier

– Loss function: Categorical Crossentropy

– Optimizer: Adam (learning rate = 0.005 with drop of 0.99

every 20 epochs)

– Batch Size: 512

– Epochs Trained: 50

– Time taken for training on RTX 2080Ti: 3 s per epoch.


 Decoder

– Loss functions: MAE, SSIM

– Loss weights:

Epoch 1–200: k1 (MAE)=1.0, k2 (SSIM)=1.0; Adam opti-

mizer (learning rate = 0.001)

Epoch 200–300: k1 (MAE)=1.0, k2 (SSIM)=0.0; Adam opti-

mizer (learning rate = 0.0001)

– Batch Size: 512

– Epochs Trained: 300

– Time taken for training on RTX 2080Ti: 20 s per epoch.

A.1.3. Cifar10


 Classifier

– Loss function: Categorical Crossentropy

– Optimizer: Adam (learning rate = 0.005 with drop of 0.99

every 20 epochs)

– Batch Size: 512

– Epochs Trained: 100

– Time taken for training on RTX 2080Ti: 13 s per epoch.


 Decoder

– Loss functions: MAE, SSIM, Perceptual Loss (InceptionV3 -

block1_conv1)

– Loss weights:

Epoch 1–100: k1 (MAE)=1.0, k2 (SSIM)=1.0, k3 (Perceptual

Loss)=1.0; Adam optimizer (learning rate = 0.001)

Epoch 100–200: k1 (MAE)=1.0, k2 (SSIM)=0.0, k3 (Percep-

tual Loss)=1.0; Adam optimizer (learning rate = 0.001)

Epoch 200–300: k1 (MAE)=1.0, k2 (SSIM)=0.0, k3 (Percep-

tual Loss)=0.0; Adam optimizer (learning rate = 0.0001)

– Batch Size: 512

– Epochs Trained: 300

– Time taken for training on RTX 2080Ti: 35 s per epoch.Fig. B.18. t-SNE of latent spaces obtained through different loss functions when

training classifier.

Fig. B.19. Barcode and bar plots obtained by passing samples belonging to the particular class – Crossentropy and multi-class hinge.
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A.1.4. CelebA


 Classifier

– Loss function: Binary Crossentropy

– Optimizer: Adam (learning rate = 0.005 with drop of 0.99

every 5 epochs)

– Batch Size: 256

– Epochs Trained: 50

– Time taken for training on RTX 2080Ti: 40 s per epoch.


 Decoder

– Loss functions: MAE, SSIM, Perceptual Loss (InceptionV3 -

block1_conv1)

– Loss weights:

Epoch 1–300: k1 (MAE)=1.0, k2 (SSIM)=1.0, k3 (Perceptual

Loss)=1.0

Epoch 300–600: k1 (MAE)=1.0, k2 (SSIM)=0.0, k3 (Percep-

tual Loss)=1.0

600–700: k1 (MAE)=1.0, k2 (SSIM)=0.0, k3 (Perceptual

Loss)=0.0

– Optimizer: Adam (learning rate = 0.0005)

– Batch Size: 128

– Epochs Trained: 700

– Time taken for training on RTX 2080Ti: 300 s per epoch.

Appendix B. Comparison of different loss functions for classifier

The extended study of different loss functions used for optimiz-

ing the classifier are provided here. t-SNE comparison of the differ-

ent methods discussed in the main paper is shown in Fig. B.18,

followed by the barcode and activation plots in Figs. B.19 and

B.20 respectively. Notable from the classifier latent space is

multi-class hinge, where the decision boundary separates the

classes neatly,but the representation shape does not favour convex

combination. This is reflected from Table 16, it takes 4x as much

tries compared to crossentropy to generate a valid and high accu-

racy yielding generation. Other methods such as cosine similarity

and mean squared error have worse performance than crossen-

tropy in terms of classifier accuracy and FID scores.

Fig. B.20. Barcode and bar plots obtained by passing samples belonging to the particular class – Cosine similarity and mean squared error.

Fig. C.21. Comparison of different CelebA face generations from (i) LVPGA, (ii) WAE,

(iii) 2-Stage VAE, and (iv) Ours (ReGene). Notice the face scaling is more closer for

LVPGA.
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Appendix C. Discussion on CelebA dataset: Discrepancy in

CelebA dataset used by LVPGA

We would also like to bring to notice on the different CelebA

versions reported by different existing approaches in the litera-

ture, with respect to the pre-processing (center cropping) per-

formed to extract the faces. (As mentioned in Section 4.1 in

the main paper) When we computed FID for original CelebA

‘Align&Cropped Images’ dataset (128 � 128 resize without crop),

we have obtained FID score of � 78. After following the cropping

procedure used by WAE [7] and 2-Stage VAE [8] (140 � 140 cen-

ter crop on the original CelebA ‘Align&Cropped Images’ dataset)

and resized to 64 � 64 to compare, our FID score was 48.3. For

LVPGA, we noticed that the cropping resolution for CelebA faces

used is not mentioned, and visual inspection readily showed that

the cropping is even smaller, and contains only limited face fea-

tures (cutting off portions of hair and the chin) (Refer Fig. C.21).

Hence, different versions of the same CelebA dataset giving dif-

ferent FID scores is not a surprise, and LVPGA achieving a low

FID score of 13.8 can be partially attributed to its custom crop-

ping procedure.

Appendix D. Additional visualizations

D.1. Collage

Collage of generations for MNIST (Fig. D.22), Fashion MNIST

(Fig. D.23), Cifar10 (Fig. D.24), CelebA faces (Figs. D.25), D.26 and

Anime faces (Fig. D.27) are provided.

Fig. D.22. Generation Collage from MNIST (28�28 resolution). The generations per row are digits 0 to 9.

Fig. D.23. Generation Collage from Fashion MNIST (28�28 resolution). The generations per row are: ‘Tshirt’,‘Trouser’,‘Pullover’,‘Dress’,‘Coat’,‘Sandal’,‘Shirt’,‘Sneaker’,‘Bag’, and

‘Ankle boot’.
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Fig. D.24. Generation Collage from Cifar10 (32�32 resolution). The generations per row are: ‘Airplane’, ‘Automobile’, ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’, ‘Horse’, ‘Ship’, and ‘Truck’.

Best viewed in color.

Fig. D.25. Generation Collage from CelebA (64�64 resolution). Best viewed in color.
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Fig. D.26. Generation Collage from CelebA (128�128 resolution). Best viewed in color.
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Fig. D.27. Generation Collage from Anime (128�128 resolution). Best viewed in color.
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Appendix E. Closest match

E.1. Closest match across training samples

We present generations and compare with the existing training

dataset to get closest match. The closest matches among training

samples (both original and reconstructed versions) in terms of (i)

increasing image space MSE, (ii) decreasing image space SSIM,

and (iii) VGG-16 feature space are shown in Figs. E.28–E.39.

Fig. E.28. Cifar10 Closest Match Among Training Samples – Airplane.
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Fig. E.29. Cifar10 Closest Match Among Training Samples – Car.
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Fig. E.30. Cifar10 Closest Match Among Training Samples – Bird.
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Fig. E.31. Cifar10 Closest Match Among Training Samples – Cat.
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Fig. E.32. Cifar10 Closest Match Among Training Samples – Deer.
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Fig. E.33. Cifar10 Closest Match Among Training Samples – Dog.
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Fig. E.34. Cifar10 Closest Match Among Training Samples – Frog.
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Fig. E.35. Cifar10 Closest Match Among Training Samples – Horse.
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Fig. E.36. Cifar10 Closest Match Among Training Samples – Ship.
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Fig. E.37. Cifar10 Closest Match Among Training Samples – Truck.
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Fig. E.38. CelebA Faces Closest Match Among Training Samples.
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Fig. E.39. Anime Faces Closest Match Among Training Samples.
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E.2. Closest match across generations

Generations are compared to find closest match among each

other. Figs. E.40, E.42 and E.43 illustrate generations are unique

when calculating MSE scores in image space, and Figs. E.41, E.44

and E.45 illustrate generations are unique when calculating SSIM

scores in image space.

Fig. E.40. Cifar10 Closest Match Among Generations – MSE.

Fig. E.41. Cifar10 Faces Closest Match Among Generations – SSIM.
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Fig. E.42. CelebA Faces Closest Match Among Generations – MSE.

Fig. E.43. Anime Faces Closest Match Among Generations – MSE.
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