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Abstract. Many studies have shown that generative adversarial net-
works (GANs) can discover semantics at various levels of abstraction,
yet GANs do not provide an intuitive way to show how they understand
and control semantics. In order to identify interpretable directions in
GAN’s latent space, both supervised and unsupervised approaches have
been proposed. But the supervised methods can only find the directions
consistent with the supervised conditions. However, many current unsu-
pervised methods are hampered by varying degrees of semantic property
disentanglement. This paper proposes an unsupervised method with a
layer-wise design. The model embeds subspace in each generator layer
to capture the disentangled interpretable semantics in GAN. And the
research also introduces a latent mapping network to map the inputs
to an intermediate latent space with rich disentangled semantics. Addi-
tionally, the paper applies an Orthogonal Jacobian regularization to the
model to impose constraints on the overall input, further enhancing dis-
entanglement. Experiments demonstrate the method’s applicability in
the human face, anime face, and scene datasets and its efficacy in finding
interpretable directions. Compared with existing unsupervised methods
in both qualitative and quantitative aspects, this study proposed method
achieves excellent improvement in the disentanglement effect.

Keywords: Discovery of interpretable directions · Generative
adversarial network · Unsupervised learning · Disentangled semantic

1 Introduction

Powerful image synthesis abilities and the capacity to fit domain-specific seman-
tic information from enormous volumes of data [1–4] are two features of Gen-
erative Adversarial Networks (GANs) [5]. However, GANs do not offer a sim-
ple explanation of how it understands and utilizes the learned semantics. Until

H. Hu, X. Zhou, X. Huo and B. Zhang—Contributing authors.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Li et al. (Eds.): BigData 2022, CCIS 1709, pp. 21–39, 2022.
https://doi.org/10.1007/978-981-19-8331-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8331-3_2&domain=pdf
https://doi.org/10.1007/978-981-19-8331-3_2


22 H. Hu et al.

Fig. 1. Examples of interpretable directions we found on the FFHQ and Anime face
datasets. For example, the “Age” attribute and “Smile” are found in layer 1 and layer
4 of the face dataset, the “Pose” is found in layer 2 of the Anime face dataset and
“hairstyle” in layer 3 of the Anime face dataset.

recently, [6] analyses pre-trained convolutional neural networks and generative
adversarial networks by introducing network dissection [7,8]. They find that dif-
ferent layers in the CNN and GAN contained units corresponding to various
High-level visual concepts that are not explicitly labeled in the training data.
Many findings [8–11] also show that different layers in the network can capture
semantic objects with different levels of abstraction. For instance, [12] analyzes
the semantic information in the scene dataset using a pre-trained GAN model.
They conclude from the experimental data that the model’s deep, intermedi-
ate and shallow networks correspond to color background information, entity
objects, and scene structure. In order to identify semantic properties from the
different layers of the generator and to be able to control them to synthesize
images, many studies [3,13–24] have focused on mining the semantic informa-
tion in the latent space of the GAN in recent years.

Some methods [3,13–21] add supervised conditions to the learning of GAN
and discover semantic directions in latent space consistent with supervised fac-
tors. [3,13–17,19–21] are used to add supervised conditions by assigning labels,
manual annotations, or pre-trained classifiers to the generated images, thus find-
ing interpretable semantic directions. For example, the approach [15–17] draw
on the contrastive pre-training language-image encoder [18] and textual informa-
tion as supervised conditions to guide the generation of semantic images. Recent
works, such as [15,19–21], employ pre-trained attribute classifiers as supervised
conditions to steer the semantic direction in the latent space of the GAN to
be consistent with the specific attribute operations. However, supervised meth-
ods are limited to finding directions that are interpretable in light of the given
supervision criteria; they cannot find a wide variety of semantic directions.

Another research direction that finds interpretable semantics in latent space
is to impose unsupervised constraints on the orientation of the latent space.
GANSpace [22] discovers important directions in GAN latent space by applying
PCA in StyleGAN latent space and BigGAN feature space. SeFa [23] discovers
GAN learned latent semantic directions by decomposing model weights, and it
focuses on the relationship between image changes and internal representations.
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However, these methods require heavy training efforts, and they need to randomly
extract a large number of random latent directions and fit them to interpretable
semantic directions as much as possible. EigenGAN [24] embeds a linear subspace
in each generator layer. The orthogonal basis in subspaces at various levels can
capture different semantic directions during model training. However, EigenGAN
only imposes a simple regularization constraint on the subspace, and its network
structure is relatively simple. For these reasons, although EigenGAN can unsu-
pervised discover many interpretable directions, these directions are poorly dis-
entangled, i.e., there are often multiple attributes entangled together. Compared
with supervised methods, unsupervised methods are able to discover more inter-
pretable directions than expected. In fact, poor disentangled visual effects are still
a challenge that many unsupervised methods face.

This work aims to develop a network to explore more interpretable seman-
tics in GAN’s latent space. So we design a network structure with a linear sub-
space [24] in each generator layer to discover highly disentangled interpretable
directions through an unsupervised approach during GAN learning semantic
knowledge (Fig. 1 shows the examples). However, unsupervised approaches are
usually worse than supervised ones regarding the degree of disentanglement of
the found semantic directions. Inspired by [3], we introduce the mapping net-
work of styleGAN to improve the disentanglement of interpretable directions
discovered unsupervised. Many studies [3,25,26] also show that the latent space
W of styleGAN is rich in disentangled properties and that the space W can
learn the more disentangled semantic information better than the original space
Z. Inspired by this, we introduce the latent mapping network in the network
structure in order to improve the disentanglement of attributes of interpretable
directions discovered in an unsupervised way. In addition, to further improve the
disentanglement between the subspace feature dimensions, we introduce Orthog-
onal Jacobian regularization [27] to disentangle the model by constraining the
orthogonal properties between changes caused by the output of each feature
dimension. Compared with the method of EigenGAN, we directly impose con-
straints on the model’s inputs to disentangle the learned directions of feature
dimensions in each layer. The trial outcomes demonstrate a significant improve-
ment in disentanglement for our strategy.

Overall, we would like to emphasize the following as our primary contribu-
tions:

• We suggest an unsupervised method for discovering disentangled interpretable
directions in a layer-wise GAN’s latent space.

• To overcome the attribute entanglement problem of unsupervised methods,
we add a latent mapping network and Orthogonal Jacobian regularization to
the model. The latent mapping network transforms the generator’s input to
an intermediate latent space with rich disentangled semantics. Meanwhile,
Orthogonal Jacobian regularization imposes constraints on the overall w-
vector of the input generator to improve its orthogonality.

• The experiment results demonstrate our approach’s ability to identify distinct
and disentangled semantics on various datasets (e.g., human face, anime face,
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scene). Compared with existing unsupervised methods in both qualitative and
quantitative aspects, ours achieves excellent improvement in the disentangle-
ment effect.

2 Related Works

2.1 Generative Adversarial Networks

GAN’s fundamental structural components are a generative network and a dis-
criminative network. The goal of the generative network is to map the noise
obtained from random sampling to a high-fidelity image while fooling the dis-
criminative network as much as possible. On the other hand, the discriminant
network must decide if the image sent by the generative network is genuine or
fake. Therefore, the training is completed by gradually making the generative
network capable of generating realistic images as the generative network and the
discriminative network confront each other.

Because the training process of GAN is usually complex and unstable, plenty
of researches carry out on regularization [1,28,29] and loss function [30,31] in
order to improve the ability of GAN to learn semantic knowledge. Our proposed
method requires designing subspace structures in each layer of the generative
network such that it can sense the changes in sample distribution from random
noise fitting to generate realistic images and capture interpretable changes as
semantic directions.

2.2 Semantic Discovery for GANs

After GAN models were developed, it was discovered that the latent space of
GAN typically contains semantically significant vector operations. Therefore,
many studies [8,12–14,22,23,32–37] have been devoted to mining these vectors
and using them for image editing.

Supervised Methods. For some methods [8,12–14,32,33] to extract inter-
pretable directions from latent space, manual annotations or outright labels must
be added as supervision conditions. InterfaceGAN [13] is a classical supervised
approach to semantic face editing by interpreting the latent semantics discovered
by GANs. InterfaceGAN allows for exact control of facial characteristics (e.g.,
gender, age, expression, glasses). However, it also necessitates sampling a sizable
amount of labeled data with the aid of an attribute predictor that has already
been trained. In StyleFlow [32], labels are used in conjunction with a contin-
uous normalized flow technique to localize the semantic directions in GANs.
Additionally, methods [8,12,14,33] use pre-trained semantic predictors to iden-
tify interpretable semantics in the latent space. For instance, [12] finds semantic
directions in latent space containing scene information by using target detec-
tors to locate entity classes, attributes, and structural information. Even though
supervised algorithms can discover interpretable directions of higher quality from
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latent space, they frequently necessitate the insertion of pricey external super-
vision conditions. Additionally, it can only find expected semantic features; it
cannot find additional, unanticipated directions.

Unsupervised Methods. GANspace [22] performs Principal Component Anal-
ysis (PCA) on the latent space of pre-trained StyleGAN and BigGAN models
without any constraint to find major interpretable directions. SeFa [23] discovers
the latent semantic directions that GAN has learned by decomposing the model
weights and examining the connection between image changes and internal rep-
resentations. It does not depend on any training or labeling. In recent years,
three approaches [34–36] capture key interpretable directions from a pre-trained
GAN model. They all involved training a reconstructor and a direction matrix.
Specifically, the reconstructor anticipates the changes received from the direc-
tion matrix to predict interpretable directions and displacements, whereas the
direction matrix is utilized to detect semantic changes in latent space. They all
use an unsupervised method to extract interpretable directions from the latent
space of the GAN, but this also depends on how well the pre-trained GAN
performed. Similarly, latentCLR [37] also uses training a direction matrix to dis-
cover interpretable directions from the pre-trained GAN model. However, the
difference is that it employs a self-supervised contrast learning loss function to
optimize training. These methods are post-processing techniques, meaning that
they must get a pre-trained generative network. Only that can they find seman-
tics, even though they do not necessitate the additional insertion of supervision
conditions. As a result, their effectiveness heavily depends on how well the pre-
trained GAN performs, and they also need to be operated in two steps. Instead
of depending on a pre-trained GAN model, our approach only needs one opera-
tion step-capturing interpretable directions from changes in the samples during
the GAN training.

2.3 Disentanglement Learning with Orthogonal Regularization

Many studies [38–40] have started with regularization to achieve disentangle-
ment, aiming to enhance disentanglement, including regularization in the net-
work training procedure. InfoGAN [38] enables variables to have interpretable
information by constraining the relationship between latent code and generated
results. Peebles et al. [39] proposes to include the regularization term Hessian
Penalty in the generative model, encouraging a generative model’s Hessian with
regard to its input to be diagonal. So it can be used to find interpretable direc-
tions in BigGAN’s latent space in an unsupervised fashion. In order to encour-
age the learnt representations to be orthogonal, D Wang et al. [41] implement
orthogonal regularization on the weighting matrices of the model in the manner
of

∥

∥WT W − I
∥

∥

2
, where W is the weight matrix and I is an identity matrix.

Furthermore, Bansal et al. [42] introduced another form of regularization by
considering both

∥
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and
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. However, the authors also

note that this format does not always perform better than
∥
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2
and

even performs worse on specific tasks, as evidenced by experimental findings.
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EigenGAN [24] also uses regularization in the form of
∥

∥WT W − I
∥

∥

2
in the sub-

space. According to the experimental findings, improving the disentanglement in
the discovered interpretability direction is limited by adding the regularization
of [41] alone. Thus, we introduce Orthogonal Jacobian regularization (OroJaR)
[27], which limits the orthogonal characteristics of each input dimension in the
model to disentangle the model by constraining the orthogonal properties of
each dimension of the input between the changes induced by the output. In con-
trast to earlier approaches, the OroJaR can enable the generative model to learn
disentangled variants more effectively.

3 Methods

3.1 Overview

Moving in latent space along a specific interpretable direction can get the
visual effect after changing the corresponding semantic properties. Our goal
is to discover some interpretable directions in GAN learning specific domain
knowledge. Figure 2 depicts the overall framework of our model. Firstly, the
latent code z ∈ Z = N

(

μ, σ2
)

is obtained by random sampling, where
z = [z1, z2, . . . , zl] and l is the number of generator layers. Following that, map-
ping network transformation is used to obtain the latent vector wi = f(zi), where
w = [w1, w2, . . . , wl] , wi ∈ W ⊆ R

l. Here, f(·) represents the mapping network

Fig. 2. The architecture of proposed method, which composed of a latent mapping
network, one generator and discriminator. The randomly sampled latent code z is
converted into the vector w by the latent mapping network and fed into the generator
along with the randomly sampled noise. The subspace model of the generator learns
interpretable directions from the sample variations during training.
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implemented using the multilayer perceptron, and each zi shares the same f(·). As
a result, we train just one latent mapping network. The generator G(·) receives
the w vector as input to produce the fake image xfake, which is then supplied to
the discriminator D(·) with the genuine image xreal for judgment. Eventually,
the generator subspace learns interpretable directions from the changes in the
sample distribution during training.

3.2 Layer-Wise Semantic Discovering Model

Numerous research [25,26] have shown that the space W of styleGAN is rich in
disentangled semantics. Moreover, the intermediate latent space can learn more
semantically disentangled information than the original latent space. Therefore,
inspired by [3], we convert the model input to the intermediate latent space.
First, the latent code z = [z1, z2, . . . , zl] is randomly sampled for each layer of the
generator’s subspace where the subscript ℓ denotes the number of generator lay-
ers. Furthermore, the z is normalized and input to the latent mapping network.
Additionally, the latent mapping network outputs a vector w = [w1, w2, . . . , wl]
of the space W without altering the latent code’s size. The w-vector is then
individually input to each stage of the generator. This design choice is benefi-
cial for the final disentangled interpretable directions. Moreover, our generative
adversarial model, which draws inspiration from [3,12,24,43], adopts the layer-
wise design concept. And the StyleGAN [3] and BigGAN [43]) also introduce
it to improve the training stability and synthesis quality. The layer-wise GANs
input constants at the first layer and latent code at each subsequent layer, in
contrast to traditional GANs that only input latent code at the first layer. Like
[24], we feed w into each generator layer and random noise into the first layer.
Using the FFHQ dataset as an example, the generator takes the random noise
ǫ ⊆ R

512 in the first layer and wi in each layer as input and the synthetic image
xfake as output. The discriminator facilitates the adversarial training by judging
xfake = G([w1, w2, . . . , wl]) and xreal, which eventually enables the generator to
synthesize high-fidelity face images. The generator’s subspace model learns the
interpretable direction in the face images unsupervised from changes in the sam-
ple distribution during adversarial training. Notably, in contrast to the original
latent code z, which obeys a Gaussian distribution, [25] states that the distribu-
tion of the intermediate latent code w cannot be explicitly modeled. Therefore,
since the latent mapping network converts z into w, the changes learned by the
subspace model will be more disentangled thanks to the distribution of w.

Similar to [24], we set up a subspace structure Mi = [Ui, Li, μi] , i ∈ [0, l] in
each generative network layer to capture interpretable directions, where

• U is the orthogonal basis of the subspace, which aims to discover interpretable
directions in latent space. Ui = [Ui1, Ui2, . . . , Uid], where d denotes the dimen-
sion of the subspace. Besides, it also represents the number of semantic direc-
tions discovered. Each basis vector Uij ∈ R

Hi×Wi×Ci is used to discover one
interpretable direction.
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• L is the importance matrix Li = diag (li1, li2, . . . , lid), where the absolute
value of lij indicates the importance of Uij for the semantic change at level
ith.

• μ denotes the starting point of subspace operations.

The above three parameter values change with the training of the model, and
when the training of the model is completed, we need to edit the interpretability
direction found by Uij . Firstly, the latent code z = [z1, z2, . . . , zl] is randomly
sampled and converted to vector w = f(z). Then it is inputted into the sub-
space of each layer of the generator, activating Ui in the particular ith layer and
calculating to get the subspace coordinate points, as shown in Eq. (1).

ωi = Ui ∗ wi ∗ Li + μi =
d

∑

j

Uij ∗ wij ∗ lij + μi (1)

Then ωi is added to the network features in the ith layer for calculation,
which determines the semantic changes in the ith layer of the generator.

3.3 Orthogonal Jacobian Regularization

In terms of disentanglement, supervised methods are typically more effective
than unsupervised methods for finding interpretable directions in GAN. It is so
that methods with additional supervised conditions can find directions that are
more different from other directions to achieve disentanglement since they are
better at identifying the target interpretable directions. Some methods increase
the regularization of the training in order to achieve disentanglement [38,39].
Additionally, EigenGAN [24] incorporates the Hessian penalty [39] in training.
However, this is insufficient for discovering interpretable semantics in GAN since
many semantics-induced changes are usually spatially dependent (e.g., Pose,
Hairstyle, etc.). It is not sufficient to constrain each element alone. Instead, [27]
proposed that constraining the changes induced by each latent factor in a holistic
manner can achieve better disentanglement.

Inspired by this, we also introduce Orthogonal Jacobian regularization [27]
in the model to achieve disentanglement. Let hi = Gi (wi) in the ith layer of
the generator, where hi is the network feature and Gi denotes the output of
the ith layer. For the wi = [wi1, wi2, . . . , wid] at layer ith, to make wij and wiq,
j �= q, j, q ∈ [0, d] the changes induced in the output of the ith layer independent,
it is necessary to make the Jacobian vectors in each dimension of the input
orthogonal to each other, as shown in Eq. (2).

[

∂Gi

∂wij

]T
∂Gi

∂wiq

= 0 (2)

The orthogonality of the Jacobian vectors of wij and wiq implies that they
are also uncorrelated. Similar to [27], we consider using Orthogonal Jacobian
regularized loss functions for all input dimensions to help the model learn to
disentangle interpretable directions. As shown in Eq. (3).
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LOJR =

l
∑

i=1

d
∑

j=1

∑

j �=q

|

[

∂Gi

∂wij

]T
∂Gi

∂wiq

|2 (3)

where l represents the generator’s overall number of layers.

Optimization Objective. In addition, to further improve the model’s effec-
tiveness in finding the disentangled interpretable directions, we add the Hessian
penalty [39] to the model for constraining the vectors w of the input generators.
Also, inspired by [41], an orthogonal loss function for U is introduced in order
to achieve the disentanglement between the interpretable directions found by U ,
as shown in Eq. (4),

Lre.g. =
∥

∥UT
i Ui − I

∥

∥

2
(4)

Therefore, the loss functions of the generator and discriminator are shown in
Eq. (5) and Eq. (6).

LG = Ladv
−

G + Lhes + Lreg + LOJR (5)

LD = Ladv
−

D (6)

where Ladv
−

G and Ladv
−

D are consistent with the adversarial objective function
of GAN [5], and Lhes denotes the Hessian penalty [39].

4 Experiments

4.1 Experiment Settings

Datasets. To assess the efficacy of our approach, we used the FFHQ [3], Dan-
booru2019 Portraits [44], and LSUN-Church datasets [45]. They include the
Danbooru2019 Portraits dataset, which has 30,2652 anime face photos, and the
FFHQ dataset, which has 70,000 HD resolution face photographs. We aim to
demonstrate the interpretable directions discovered from the dataset and eval-
uate their disentanglement. We also apply the method to LSUN-Church and
present the interpretable directions we find in scene photographs and animal face
images further to illustrate the resilience and efficacy of our proposed method.

Implementation Details. We perform all experiments using the Pytorch tool-
box on a single NVIDIA GeForce RTX 1080Ti 11 GB. We reduce the image’s
resolution to 256 * 256 and increase the batch size to 8 due to the limitation of
video memory size. And we select the Adam algorithm as the optimizer and set
the initial learning rate to 1e-4.
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Fig. 3. Interpretable directions found in different layers of the FFHQ dataset [3]. The
intensity of the attribute editing locates at ∈ [−4σ, 4σ]. And each dimension of the
orthogonal basis corresponds to a specific semantic direction. We only show a few of
the most meaningful attributes in the figure.

4.2 Non-trivial Visual Effects

First, we show the interpretable directions learned by our method for each layer
of the subspace model during the GAN training. Figure 3 displays some illustra-
tions of interpretable directions that the model discovered while learning about
faces in the FFHQ dataset, where “Li Dj” denotes the jth dimension of the ith

layer of the generator network. In addition, a larger value of i indicates a shal-
lower network layer. By setting xshift ∈ [−4σ, 4σ] and replacing the position of
the dimension corresponding to that layer in the latent code z with the value
of xshift, we can initially activate a particular dimension of the subspace in a
specific layer. Then the semantic editing result image is obtained by traversing
the coordinate value in [−4σ, 4σ] in a specific interpretable direction. As can be
observed, progressing in the interpretable direction causes the image’s general
semantics to progressively shift in that way in order to provide an editing effect
that is aesthetically acceptable to humans.

As shown in Fig. 3, the shallow subspaces of the model (layer5, layer6) tend
to learn lower-level semantic attributes, such as L5D5 learning to “sunlight”,
the “skin tone” in L5D6, and the “hue” in L6D6. It is obvious that the shal-
low subspaces are more eager to discover color-related interpretable directions.
The intermediate layer subspaces of the model are skewed to discover regional
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Fig. 4. Examples of interpretable directions found on the Anime face dataset [44] (left)
and the LSUN-Church dataset [45] (right)

structural changes as the number of layers deepens. For instance, L3 learns the
“hair color” attribute while L4 finds changes in position. We discover the deep
subspace’s propensity to discover high-level interpretable directions related to
the abstract features of the deep network layer of the generator learning face
knowledge. As seen in the figure, the deep subspace discovers the face’s high-
level semantic features, e.g., L0 and L1 found attributes such as “glasses”, “gen-
der”, “hairstyle”, and “age”. However, the deeper subspaces do not have the
same degree of disentanglement as the shallow ones. For instance, the attribute
“beard” also appears in the figure when the attribute “gender” advances in the
direction of “male”. It is probable that the semantic qualities of “male” that
the generator learned always include the attribute “beard”. As a result, both
attributes frequently show up in specific interpretable directions.

To sum up, shallow subspaces in generators often learn low-level features. In
contrast, deeper subspaces can find more intricate and high-level interpretable
directions, which is in line with the conclusion of Yang Ceyuan [12]. In addition,
the conclusion reached by Bau David [6] in GAN models exploring hierarchical
semantics, that various layers in a GAN model can find different levels of seman-
tics, is validated by our method since we also use layer-wise ideas in the building
of GAN models. However, there is still some entanglement in the interpretabil-
ity directions of the deeper subspaces because the deeper layers of generators
typically learn more abstract features.

On the other hand, we also apply our method to the anime face dataset
and scene dataset LSUN-Church in order to confirm the method’s applicability.
As seen in Fig. 4, we can also find FFHQ-like interpretable directions in the
anime face dataset, e.g., “Gender”, “Hairstyle”, “Bangs”, etc. Similar to the
findings of FFHQ, anime discovers high-level attributes like “Hair color” in the
deep subspace and low-level interpretable directions like “Gender” in the shallow
subspace. In addition, the Church dataset contains interpretable directions, e.g.,
“Vegetation”, “Clouds”, “Night”, “Sky”, and “Building color”.
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Fig. 5. Qualitative comparison among GANspace [22], SeFa [23], GLD [35], EigenGAN
[24] and ours in four common interpretable directions

4.3 Comparison

In this section, to further demonstrate the effectiveness of our approach, we have
chosen several classical unsupervised methods for qualitative and quantitative
comparisons. Regarding the comparison method, we choose a few traditional
unsupervised approaches, including GANspace [22], SeFa [23], GLD [35], and
EigenGAN [24] for comparison.

4.3.1 Qualitative Analysis

We compare the interpretable directions found by different methods on the
FFHQ face dataset. We download and immediately call the official models offered
by GANspace, SeFa, GLD, and EigenGAN to prevent the effects of different
machine performances on the model. Then, we call several methods to move
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the same step along that direction for the found interpretable direction to get
the semantically edited results. Figure 5 lists a number of common semantic
attributes on faces found in common by several methods. All methods achieve
visual effects that are consistent with the target attributes. Compared with the
other methods, EigenGAN and ours obtain smoother changes in visual effects in
interpretable directions of movement. Since all methods use an unsupervised app-
roach, the attribute disentanglement is not good enough. In terms of attribute
disentanglement, however, our method is still superior to the others, e.g., the
change of “Beard” is not entangled with “Gender” or “hair”.

4.3.2 Quantitative Analysis

FID Analysis. For a quantitative comparison, we perform the following experi-
ment. To evaluate the effect of the edited visuals obtained by moving along a spe-
cific interpretable direction on the image quality, we estimate the Fr‘echet Incep-
tion Distance (FID) [46] for the images before and after editing. We chose an
interpretable direction corresponding to the visual effect of the “smile” attribute
for the calculation since all five methods can find it on FFHQ. Figure 6 illustrates
the computation of the FID values between the original and edited images fol-
lowing several methods to change the semantics of the images along the semantic
direction of the “smile” in different steps. The folded data in the figure demon-
strates that our method achieves lower FID values at several edit intensities.
Therefore, the edited image obtained by changing along the specific semantics
direction found by our method is convincing in terms of visual effect.

Fig. 6. FID plots for the semantic direc-
tion of “smile” produced by different
methods. And a smaller FID value indi-
cates that the editing has less impact on
the image quality.

Fig. 7. ID plots for the semantic direc-
tion of “smile” produced by different
methods. The closer the ID value is to
1, the better the identity information is
preserved.

ID Preservation Analysis. On the other hand, we use ArcFace [47] to extract
embedding vectors from edited images and compare identity preservation to the
other four methods to assess our method’s effect on the identity information of
the original face after changing the semantics along the interpretable direction.
This is a rather fair assessment of how well each method preserves the original
facial identity information features while changing the semantics of the image.
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Similar to the evaluation scheme of FID, we still chose the semantic direction
of“smile”. We calculate the identity similarity before and after changing the
semantics of the face images in different steps along the “smile” direction (the
value closer to 1 means the identity information is better preserved). Figure 7
illustrates that the ID value calculated by our method is closer to 1 than the
other methods, thus proving the validity of preserving identity information.

Re-scoring Analysis. The disentanglement of the semantic attribute is also
essential in the task of interpretable direction discovery. Therefore, the evalua-
tion of several methods for semantic attribute disentanglement is also an indis-
pensable part. We perform rescoring analysis with the help of a well-trained
attribute predictor [23], which can recognize 40 facial attributes on the celebA
[8] dataset. Specifically, an interpretable direction is first selected for shifting to
change the image semantics. The edited image is then scored using the attribute
predictor. Attribute disentanglement can be assessed numerically based on the
changes in the scores of other semantic directions throughout the shift to a par-
ticular direction, in addition to qualitatively analyzing whether the identified
direction accurately represents the relevant semantic attribute. Figure 8 shows
the test results of EigenGAN (Fig. 8a) and our method (Fig. 8b). From the results
in the figure, it is not difficult to conclude the observations: (i) Like EigenGAN,
the interpretable directions discovered by our method do control the change of
specific semantics. (ii) Some attributes are more easily entangled, such as “gen-
der” and “beard”, which are associated with the performance of both methods,
probably since “beard” is often the same as “male” when GAN learns facial
features. (iii) Our method performs better than EigenGAN in terms of attribute
disentanglement, e.g., EigenGAN entangles “gender” and “age” together.

Fig. 8. The results of re-scoring analysis after training EigenGAN [24] (a) and our
method(b) on the FFHQ dataset [3]. The data in the table shows how the scores of
other semantic features change after moving in a specific semantic direction.
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Fig. 9. The visual effects of two strategies for editing the “Pose” and “Hair color”
attributes with training one mapping network and six mapping networks.

4.4 Ablation Studies

In our method design, the latent code z of each layer is obtained by random sam-
pling and then input to the mapping network to transform to the intermediate
latent space to get the w vector. In our architecture, only one mapping network
is trained, and the latent code z of each layer in GAN is transformed through
this mapping network. However, since each subspace in the GAN learns differ-
ent levels of feature for each layer, we propose the following conjecture. Suppose
a separate mapping network is trained for the subspace of each layer. Is there
an improvement in the editing effect for the interpretable directions learned in
the subspace of each layer? In this section, we design an ablation experiment to
verify whether the above conjecture is feasible.

First, we compare two strategies: training six mapping networks (our method
is designed with six layers of subspaces) versus training just one mapping net-
work. Finally, we compare the editing effects in the interpretability direction for
both strategies discovered in the same layer and dimension.

Figure 9 shows the visual effect of editing the attribute “pose” found in L4D1
and the attribute “hair color” found in L5D4 for the above two strategies.
Although both methods identify the same interpretable direction in the same
dimension at the same layer and the disentanglement and semantic effects are
likewise positive, it is clear that the visual effect produced by the training pro-
cedures for six mapping networks contains glaring artifacts.

It is well known that the adversarial training process of generative adversarial
networks is prone to instability for various reasons compared to other models.
Inspired by [48,49], the following two conjectures were obtained regarding the
reasons for the causes of artifacts when training six mapping networks. (i) Net-
works with more layers are typically stronger than networks with fewer tiers in
the neural network. In contrast, our model has a simpler structure and fewer net-
work layers (the generator has only six layers). Suppose the additional mapping
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network is trained for the subspace model of each layer. In that case, the differ-
ence in the distribution of w-vectors obtained between each mapping network
will become increasingly large. Moreover, J Wulff et al. [50] also conclude from
their analysis that the original noise space obeys a Gaussian distribution, but the
intermediate latent space W cannot be clearly modeled. The above strategy may
bring complex negative information into the model and destabilize the model’s
adversarial training, leading to artifacts in the output images when combined
with the layer-wise design idea of our method. (ii) We add Jacobian regulariza-
tion to the model to impose constraints on the input of the entire generator.
When combined with the analysis in the first point, the introduction of data
into the model with large distributional differences may result in competition
between the Jacobian regularization loss and the adversarial training loss, which
in turn undermines the stability of the model training.

5 Conclusion

This paper suggests a method for finding disentangled interpretable directions
in GAN’s latent space in an unsupervised form. We adopt the layer-wise idea to
construct the GAN and add the subspace model to the generator to capture the
interpretable directions. Since space W is rich in disentangled semantics, we also
introduce a latent mapping network to convert the model input to the intermedi-
ate latent vector w. In addition, to further achieve well disentanglement, we add
the Orthogonal Jacobian regularization to the model to impose constraints on
the overall model input. According to the experimental results, compared with
existing methods, ours achieves excellent improvement in the disentanglement
effect, both in terms of qualitative analysis of the editing effect in the inter-
pretable direction and quantitative analysis of the degree of disentanglement.
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