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(a) Color image (b) Ci et al. [1] (c) Ours (d) Real sketch (e) Ci et al. [1] (f) Ours
Figure 1. Examples of (a)-(c) sketch extraction used to generate trainset and (d)-(f) sketch colorization for real sketches with and without

color hint. All samples were selected from the Safebooru dataset [2].

Abstract

Automatic line-art colorization is a demanding research

field owing to its expensive and labor-intensive workload.

Learning-based approaches have lately emerged to improve

the quality of colorization. To handle the lack of paired

data in line art and color images, sketch extraction has

been widely adopted. This study primarily focuses on the

resizing process applied within the sketch extraction proce-

dure, which is essential for normalizing input sketches of

various sizes to the target size of the colorization model.

We first analyze the inherent risk in a conventional resiz-

ing strategy, i.e., early-resizing, which places the resizing

step before the line detection process to ensure the practi-

cality. Although the strategy is extensively used, it involves

∗These authors contribute equally.
†Corresponding author.

an often overlooked risk of significantly degrading the gen-

eralization of the colorization model. Thus, we propose a

late-resizing strategy in which resizing is applied after the

line detection step. The proposed late-resizing strategy has

three advantages: prevention of a quality degradation in the

color image, augmentation for downsizing artifacts, and al-

leviation of look-ahead bias. In conclusion, we present both

quantitative and qualitative evaluations on representative

learning-based line-art colorization methods, which verify

the effectiveness of the proposed method in the generaliza-

tion of the colorization model.

1. Introduction

Automatic line-art colorization is a demanding research

field in the market owing to its expensive, time-consuming,

and labor-intensive workload. In previous studies, tradi-
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tional energy-based methods, such as LazyBrush [3] and

Manga Colorization [4], were described to handle lines

with a low shape complexity. However, they are insufficient

to grasp high-level features, which leads to vacancies and

other unavoidable errors in the detailed parts. To address

these issues, researchers have recently explored data-driven

colorization methods [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],

which utilize learned priors, such as color scribbles [1, 5, 7,

8, 10, 11, 14] and a reference image [9, 12]. To grasp well-

generalized features, learning-based a line-art colorization

approach requires a massive scale of paired data of line art

and color images. However, this method suffers from a lack

of data because paired line art is not only sparse but also

labor-intensive when manually traced from a color image.

To deal with a lack of data, synthetic sketch extraction meth-

ods have been adopted to utilize abundant real color images.

However, sketch extraction causes another challenge in

reducing a domain gap between synthetic and real sketches,

thus degrading the generalization of the colorization model.

One of the characteristics that make the extraction of line

art a challenge is the diversity in styles, such as intensity

and thickness. To avoid sensitivity to noise and monotony

in styles of traditional sketch extraction methods [15, 16],

Liu et al. [7] and Sangkloy et al. [8] adopted an XDoG fil-

ter [17] that can extract sketches with different levels of de-

tail through parameter adjustments. PaintsChainer [10] and

Zhang et al. [11] presented learning-based sketch extraction

methods to reflect both perceptually realistic characteristics

and the semantics of the content, which are not grasped in

hand-defined, prior-based methods [15, 16, 17]. To improve

prior knowledge during training, these methods are com-

bined in various ways using the post-processing techniques,

such as an intensity adjustment or sketch simplification [18]

The sketch extraction process consists of three common

parts: resizing, line segment detection, and post-processing.

In particular, scale normalization is an essential process pre-

ceding the training and inference stage owing to the fixed

kernel size of the CNN [19] architecture. By convention,

the resizing step has long been applied before the line de-

tection step (as shown in the top-right column in Fig. 2) for a

few practical reasons, such as saving data storage and reduc-

ing the complexity of the sketch extraction operator. How-

ever, we determined that an early resizing not only can con-

taminate the line information while subsampling the source

color images it can also complicate the subsequent line de-

tection processes (Fig. 1 (b)). To improve the generaliza-

tion of the line art colorization model, this study is aimed

at mitigating to mitigate the risk of a domain gap, which is

inherent in the resizing step.

We propose a simple, but effective, strategy for sketch

extraction called late-resizing, in which the resizing is ap-

plied after the line detection step (as shown in the bottom-

right column in Fig. 2). This simple idea alleviates the do-

Figure 2. Examples of sketch extraction strategies.

main gap between the synthetic and real sketches from the

following three perspectives. First, it prevents the resizing

process from degrading the quality of the color images used

as inputs in the line detection process. Second, it reproduces

downsizing effects [20, 21], such as anti-aliasing and de-

noising, which occur during the scale-normalization pro-

cess of the input sketch. Finally, it helps alleviate a look-

ahead bias problem in which the model is fitted to the par-

tial information of the posterior given to the prior, which

causes a fatal degradation in the quality of the colorization

for a real sketch. As one of the most powerful feature of the

proposed late-resizing strategy, no further modifications are

required for the adaptation unless the line detector has con-

straints in terms of the input size. To quantitatively evaluate

whether the coloring model has failed to generalize, we also

devised a saturation-sensitivity score that measures the level

of activity of the input sketch is in the colorization model.

Our main contributions are as follows:

• We analyze the risk of the domain gap between syn-

thetic and real sketches inherent in the resizing step,

which is an essential process in a sketch extraction.

• We propose a simple but effective strategy for sketch

extraction, called late-resizing, which improves the

generalization of the line art colorization model, and

is highly compatible with other existing methods.

• We devise a saturation sensitivity score to quantita-

tively evaluate the improvement of the generalization.

• We present both quantitative and qualitative evalu-

ations on representative learning-based colorization

methods and two different types of datasets, which ver-

ify the effectiveness of the proposed method.

2. Related Work

Leaning-Based Line-Art Colorization. Compared to

gray-scale images, line-art is more challenging to colorize
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Table 1. Comparison of sketch extraction methods.

Reference
Sketch extraction pipeline

Pre-resizing Line detection Cleaning Post-resizing

(a) Frans et al. [5] 256×256 Canny edge detector thresholding -

(b) Auto-painter [7] 512×512 XDoG tanh -

(c) PaintsChainer [10] - mophology + LNeT (9:1) Otsu binarization (20%) 512×512

(d) Style2Paints-v3 [11] 512×512 sketchKeras not presented 256×256

(e) AlacGAN [1] 512×512 XDoG tanh -

(f) Tag2Pix [13] 512×512 sketchKeras + XDoG (1:1) simplification & tanh -

(g) Ren et al. [14] 512×512 sketchKeras not presented -

(h) Yuan and Simo-Serra [22] 512×512 sketchKeras + XDoG (1:1) simplification & tanh -

because only an abstracted borderline is present, without

information on the expected texture or style of the con-

tent. In the recent paradigm of automatic line-art coloriza-

tion, learning-based approaches have been used to combine

both low, and high-level semantic information to produce

perceptually satisfying colorization results. Pix2Pix [23]

presents an outline for mapping one image to another by

optimizing the pixel loss and an adversarial loss function

in a supervised manner. Using this strategy, the usability

and controllability of the colorization have been improved

by conditioning additional user-interactive priors, such as

color strokes [1, 5, 7, 8, 10, 11, 14], a color histogram [6], a

reference image [9, 12], and even text [13]. Frans et al. [5],

Zhang et al. [11], and Ren et al. [14] presented a multi-stage

design for dividing a task into simpler and clearer subtasks.

In addition, Ci et al. [1] adopted additional modules, i.e.,

ResNeXT [24] blocks and a dilated convolution [25], to in-

crease the capacity and size of the receptive field of the col-

orization network, respectively. This model architecture in-

spired a later study [13]. Although these approaches have

addressed the complexity of the colorization in a promising

way, achieving a generalization for a real sketch remains

a challenge owing to the difficulty in extracting sketches

without a domain gap.

Sketch Extraction. To compare the existing sketch ex-

traction methods in detail, we summarized the process of

sketch extraction into four common steps: pre-resizing,

post-resizing, line detection1, and cleaning. Specifically, re-

sizing is a significant process matchomg the target size of

the colorization model and extracted sketch and is divided

into two steps (i.e., pre-resizing and post-resizing) depend-

ing on whether it is applied before or after the line detec-

tion. The cleaning step is a common post-processing ap-

plied to remove the remaining artifacts from the previous

step. Table 1 shows the summarized results of a sketch ex-

traction method applied as a representative colorization ap-

proach [1, 7, 10, 11, 13, 14].

Earlier, in a study on sketch colorization [5], traditional

1We refer to line detection as the process of estimating the presence of

line components, and sketch extraction as a broader meaning that includes

all of the refinement processes of the estimated line components.

algorithms such as a Canny edge detector [16] were used to

detect line segments from color images. To avoid monotony

in the style and sensitivity to noise found in traditional

line detection methods, Auto-painter [7], Scribbler [8], and

AlacGAN [1] adopt an XDoG filter [17], which can ex-

tract lines with different levels of detail through parame-

ter adjustments. As presented in the original study on this

topic [17], application of an XDoG filter generally precedes

a hyperbolic tangent operation, which can be used for bina-

rization of a sketch. PaintsChainer [10]2 uses a morphology-

based line detection method, where a line is estimated from

the difference between the source color image and its di-

lated results. A learning-based sketch extraction method,

LNeT, was also presented based on HED [26], which re-

flects not only the perceptually realistic characteristics but

also the semantics of the content, which have yet to be

grasped in hand-defined, prior-based methods [15, 16, 17].

A morphology-based method and LNeT at a ratio of 9:1

were also used, and the extracted sketches were then bi-

narized using an Otsu thresholding algorithm [27]. To de-

crease some of the noise and unimportant details generated

by LNeT, Style2Paints-v3 [11] applied sketchKeras [28],

which combines a rule-based algorithm and LNeT. In addi-

tion, Tag2Pix [13] uses sketchKeras and an XDoG filter at

the same ratio, and a line simplification method [18] is ad-

ditionally applied to adjust the presence of an unnecessary

depiction or incorrect control of the line thickness. More-

over, Ren et al. [14] and Yuan and Simo-Serra [22] uses

the sketchKeras [28] method without a blending or clean-

ing strategy.

For the resizing step, except for early PaintsChainer [10]

and Style2Paints-v3 [11] approaches, all of the subsequent

studies adopted an early-resizing strategy as a conventional

strategy for the purpose of saving data storage. Contrary

to this practice, this study demonstrates that a late-resizing

strategy can improve the performance of existing studies

particularly for generalization.

2Because the second stage of PaintsChainer is main stage for coloriza-

tion, we focused on the sketch extraction process for this stage.
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3. Methods

In this section, to show that an early-resizing strategy can

degrade the generalization of the line-art colorization model

(Section 3.1), we first analyze the risk of the domain gap

between synthetic and real sketches inherent in the resizing

step. Subsequently, we present the effectiveness of the pro-

posed late-resizing3 strategy, where the line detection pro-

cess precedes the resizing of the color image that alleviates

the degradation of the generalization (Section 3.2).

3.1. Motivation

A manual colorization process is conducted at a resolu-

tion of 1024×1024 or higher, whereas the output size of

most colorization models is approximately 512×512. To

simplify the equation, in our study, we assume that the size

of the source color image is always larger than the target

size of the sketch extraction. Subsequently, resizing needs

to be applied solely through a reduction, i.e., downsizing.

In an early-resizing strategy, where the resizing of the

color image precedes the line detection, the ideal sketch ex-

traction method S
∗ satisfies the following:

S
∗(↓ (yc + ys)) =↓ (ys), (1)

where y is an arbitrary source color image, ↓ is a downsizing

operator, ys is an ideal paired sketch for color image y, and

yc is a color component that satisfies y = ys+yc. Assuming

that S and ↓ are kernel-based convolution operations, Eq. (1)

can be written as follows:

S
∗(↓ (yc)) + S

∗(↓ (ys)) =↓ (ys). (2)

In the ideal sketch extract method S
∗, downsized color com-

ponent ↓ (yc) should not remain in the extracted sketch

S
∗(↓ (yc + ys)), whereas ↓ (ys) should be intact. Thus,

we can summarize the objective of S∗ in twofold: inhibiting

the activation of ↓ (yc) and keeping ↓ (ys) identical.

S
∗(↓ (yc)) → 0, S

∗(↓ (ys)) →↓ (ys) (3)

To solve Eq. (3), S∗ needs to distinguish ↓ (ys) from

↓ (yc). However, this becomes an ill-posed problem be-

cause the interpolation in downsizing process not only di-

lutes ys and yc but also involves the loss of their surround-

ing pixel information. This necessitates S to restore the lost

information of a line segment and estimate the type of inter-

polation incurred by an arbitrary pixel yi. This implies that

the early-resizing strategy has a risk of an incorrect sketch

extraction. Figs. 3 (a) - (c) present the sample loss of the

pixel information and the risk of incorrect extraction, where

(a) denotes a color image downsized from 1860×1860 to

3Because we focused on whether or not to apply the resize step before

line detection, we refer to proposed methods as late-resizing, rather than

post-resizing in a broader sense.

(a) downsized (c) original

color image color image

(b) early-resizing (d) late-resizing (e) real sketch

Figure 3. Visual comparisons of synthetic and real sketches.

512×512, (b) denotes a synthetic sketch extracted from (a)

through an XDoG filter [17], and (c) denotes the original

color image. Compared to Fig. 3 (c), a significant quality

degradation occurs in the line segments shown in Fig. 3 (a),

as indicated by the red dotted circle. Finally, Fig. 3 (b) illus-

trates how the degraded quality in Fig. 3 (a) leads to broken

lines and misleading priors, which indicate the presence of

certain coloring techniques such as hair highlights in the

sketch retrieved through the line detection step. This study

aims at alleviating the gap between the synthetic and real

sketches, which occurs because an incorrect sketch extrac-

tion is highly probable in early-resizing strategy.

3.2. Late­resizing strategy

We propose a simple and intuitive strategy, called late-

resizing, where the sketch extraction S
∗ precedes the resiz-

ing step.

↓ (S∗(yc + ys)) =↓ (ys) (4)

The objective of the sketch extraction S
∗ can be summa-

rized as in Eq. (5) in the same manner as in Eq. (3). We can

simplify it as Eq. (6).

↓ (S∗(yc)) → 0, ↓ (S∗(ys)) →↓ (ys) (5)

S
∗(yc)) → 0, S

∗(ys)) → ys (6)

The proposed late-resizing strategy differs from the tra-

ditional early-resizing strategy based on the fact that S∗ be-

comes independent of the resizing process such that it is

no longer affected by a downsizing. In the following sub-

sections, we describe how this independence contributes to

alleviating the domain gap between the synthetically ex-

tracted and real sketches.
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(a) (b) (c)

(d)
Figure 4. Examples of (a)-(c) borderline artifact and (d) steganog-

raphy phenomenon in line detection prior to binarization. The

OpenCV [29] library was used to capture the pixel values in (d).

3.2.1 Prevention of quality degradation in color image

In the early-resizing strategy, the quality of source color im-

ages is more often degraded with unintended artifacts while

downsizing, and the line detection quality is also affected

by these distortion. Most distortions occur near the lines:

including broken lines, loss of dim and delicate lines, and

uneven irregular spots made from the interpolation between

color and line pixels (Figs. 3 (a) and (b)). This places bur-

den of restoring the lost pixel information on the sketch ex-

traction process, which is almost impossible to achieve. By

contrast, a late-resizing strategy naturally prevents a quality

degradation of the color image through downsizing, as de-

scribed in Eq. (6). As a result, late-resizing leads to more

realistic, continuous lines of adequate thickness with less

wandering speckles and spots, as shown in Fig. 3 (b). We

can observe an alleviation in most of the artifacts present in

Fig. 3 (b), as indicated by the blue dotted circle in Fig. 3 (d).

3.2.2 Alleviation of look-ahead bias

As another risk of the synthetic artifacts, they hide the

information of the posterior to the prior in an impercep-

tible form. As a result, colorization models trained on

these ill-extracted sketches tend to suffer from look-ahead

bias [30, 31] and a fatal degradation in the colorization qual-

ity for authentic sketches. One of the most frequent and seri-

ous synthetic artifacts is dimmed borderlines spreading into

the foreground areas of a line-art, as shown in the circled

area of Fig. 4 (b). This is mainly caused by the ambiguity

of the sketch and color components around the borderline

(Eq. (3)). The extracted lines tend to be thicker and more

spread on the segment colorized in darker (i.e., more sat-

urated) colors. Colorization models trained with these arti-

facts are prone to interpret thicker and darker lines as prior

indicators that an area needs to be colorized with darker col-

ors.

Here, it is noteworthy that these artifacts appear more of-

ten and to a more severe extent with an early-resizing strat-

egy. Fig. 4 (c) shows how the proposed late-resizing strat-

egy further mitigates the spread at the borderlines. This is

because the quality degradation of the color images caused

by an early resizing makes it more difficult for the line ex-

tractor to distinguish between the sketch and color compo-

nents. It is vital to maintain the highest quality of color im-

ages when lines are extracted to minimize distortions of the

borderlines, which makes late-resizing the optimal strategy.

3.2.3 Downsizing augmentation

The independent downsizing process of the extracted

sketches itself has an augmentation effect that improves the

generalization of the colorization model. In the inference

stage of colorization, the size of an input sketch should

be normalized to the proper target size of the coloriza-

tion model. Thus, reproducing the influence of interpola-

tion on sketch images during the scale normalization, is an-

other objective of the sketch extraction process. However,

the more complex the interpolation method is, particularly

the higher the number of scaling factors adopted, the more

difficult it is to reproduce the influence of the interpolation.

With the sketches being normalized to the target scale and

thus already losing pixel information, the use of an early-

resizing strategy becomes a challenge. By contrast, in the

late-resizing strategy, it is intuitive that once S(ys) → ys is

correctly extracted, such influence is naturally reproduced

in the subsequent downsizing process. Fig. 3 (d) shows

the effectiveness of the proposed method in reproducing

the influence of the interpolation, such as anti-aliasing and

sub-sampling, similar to that of a real sketch presented in

Fig. 3 (e).

3.2.4 Mitigating side effects of binarization

As summarized in Table 1, binarization or alternative meth-

ods such as thresholding and simplification are widely

accepted in colorization studies for handling a crucial

steganography phenomenon. This is because, without bina-

rization, an imperfect activation of 255 values in the fore-

ground areas in synthetic sketches leads to a strong look-

ahead bias.

Fig. 4 (d) shows a detected line from source color im-

age, which has yet to be binarized. The red box in Fig. 4 (d)

shows how the pixels that should ideally be activated to a

full value of 255 (which indicates a plain white area) fail

to do so and remain at 252 or 253, whereas the blue box

of Fig. 4 (d) shows well the activated 255 values. This dif-

ference comes from the difference in the source colors that

each area is extracted from; here, the sketch in the blue box
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Table 2. Experiment settings and quantitative results. Here, ↓ indicates that the lower the score, the higher the performance. Fatally

low SS values are marked in red, and the lower FID score for each comparison is marked in blue, except for a comparison of the

synthetic sketch set.

Method Model
Sketch extraction pipeline Score (FID↓/SS)

Pre-resize Line detection Binarization Post-resize Synthetic SB line art Webtoon

(a) S2Pv3 [11] UNeT 256 XDoG tanh - 108.11/0.251 168.38/0.006 122.31/0.243

(b) S2Pv3-ours UNeT - XDoG tanh 256 106.21/0.357 153.82/0.341 114.12/0.302

(c) Alac [1] AlacGAN 512 XDoG tanh - 21.95/0.231 107.56/0.036 42.36/0.258

(d) Alac-ours AlacGAN - XDoG tanh 512 21.44/0.209 47.08/0.216 43.56/0.224

(e) Alac-ours w/o bin AlacGAN - XDoG - 512 23.27/0.279 115.03/0.141 74.70/0.285

is extracted from plain white area, whereas the sketch in

the red box is from the skin color. This activation failure

becomes more apparent with more saturated colors. In real

sketches, all areas other than the sketch itself are empty with

a plain white background. As a result, to predict what areas

to colorize and what areas to leave empty colorization mod-

els trained with these artifacts are prone to incorrectly rely

on an imperfect activation in the sketches, inferred not from

lines but what should be empty areas encompassed by them.

However, as a serious drawback of binarization, most

real sketches used by artists are grayscale with pixel in-

tensity information. Thus, it is highly beneficial for late-

resizing strategy blends lines to closely mimic the line

intensities of real sketches through an interpolation with

empty areas while downsizing the extracted and binarized

sketches. Comparing Fig. 3 (d) with Figs. 3 (b) and (e), a

late-resizing strategy effectively brings a binarized sketch

extremely close to a real sketch by less blending of the

thicker lines through an interpolation whereas thinner liners

are more deeply affected by the interpolation. By contrast,

an early-resized sketch remains binarized.

4. Experiments

4.1. Comparison baselines

To demonstrate the effectiveness of the proposed meth-

ods on various model architectures and training strate-

gies, we conducted qualitative and quantitative comparisons

for the two representative auto-colorization methods (i.e.,

Style2Paints-v3 [11] and AlacGAN [1]) and for two test sets

(i.e., Safebooru and the Webtoon line-art dataset).

To analyze the robustness according to the model archi-

tecture, we compared our approach with two representative

hint-based line-art colorization methods, Style2Paints [11]

and AlacGAN [1]. For Style2Paints, we only handle the

draft stage to focus on the difference in the degree of color

expression according to the sketch, rather than the effect of

refinement. We train the baselines from scratch using the

Safebooru [2] dataset, and thereby use the pre-trained mod-

els to exclude the influence of additional practical factors

not mentioned in the original papers of baselines. In addi-

(c) colorized result (d) saturation map (e) sensitivity map
Figure 5. Example of saturation-sensitivity score.

tion all models are sufficiently trained until they no longer

show any improvement in performance for the validation

set. For the consistency of the experiment, the XDoG line

detector was used for all experiments. Table 2 compares

the baselines and the corresponding methods using our pro-

posed method. As a downsizing operator, we used Inter-area

interpolation implemented in the OpenCV library [29].

For the test set, we collected a total of 2000 real line-art

data from the Safebooru [2] dataset. Although this set was

not used for training, it is useful for experiments that focus

on the level of the line segment, rather than the shape of

the contents, in that the domain gap problem for the shape

is reduced because they share the same source. In addition,

we manually collected from Webtoon artists approximately

2000 datasets, called a Webtoon set, which have different

painting styles distinct from Safebooru. The Safebooru line-

art set is dominated by rough sketches with a wide range of

intensities, whereas the Webtoon set is dominated by flat

and sparse images.

4.2. Evaluation metrics

Fréchet Inception Distance (FID). FID [32] is a well-

known metric for evaluating the performance of a gener-

ative model by measuring the Wasserstein-2 distance be-

tween the feature space representations of the target images
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(a) line art (b) S2Pv3 (c) S2Pv3-ours (d) AlacGAN (e) Alac-ours

Figure 6. Visual comparison according to the application of the proposed method. Each synthetic sketch for inference was extracted in the

same manner as used to train the corresponding model. The first row of each real test is the result of colorization without color hints, and

the bottom row is the result of colorization when color hints are given. All sketches, including synthetic sketches, were not shown during

the training process.

and the generated outputs. A low FID score indicates that

the generated output has a close distribution of real data in

terms of quality and diversity. Following Ci et al. [1], for

fairness in applying the hint injection method, we evaluated

only the results of the colorization without.

Saturation-Sensitivity Score. However, the FID is lim-

ited to separate two important aspects of the quality of

generative models [33]. To explicitly measure the risk of

an under-generalization, we propose a saturation-sensitivity

(SS) score inspired by the light-sensitivity score presented

by Ren et al. [14]. Intuitively, the color expression for the

black and white sketch increases the saturation of the result-

ing colorized image. Therefore, if the increment of the sat-

uration is insufficient, this implies that the activation for the

corresponding sketch has not properly occurred. Based on

this intuition, we propose a method for evaluating the gen-

eralization of the model by measuring the number of pixels

above the pre-defined threshold in the saturation component

of the colorized result. The SS score is formulated as fol-

lows:

ψ(Y sat) =
1

n

∑

ys∈Y sat

∑

ys

i
∈ys

B(1− ysi ), (7)

where ψ, B, ys ∈ [0, 1]H×W , Y sat, and ysi represent the

SS score, binarization operation, saturation component of

the colorized result in the HSV space, the set of ys, and i-

th element of ys, respectively. Here, n, H , and W denote

the number of colorized results and the height and width

of the colorized result, respectively. A value of 0.07 was
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(a) line-art (b) Alac-ours (c) Alac-ours

w/o bin w/ bin
Figure 7. Visual comparisons of the importance of binarization.

The synthetic sketch for inference was extracted in the same man-

ner as used to train the corresponding model, and all sketches were

colorized without color hints.

used as the threshold value for binarization in our compar-

ison. Note that the SS score represents a risk for an under-

generalization only when it is measured at an extremely low

value, and a high score does not represent a good coloriza-

tion performance. Fig. 5 shows an example of the process

used calculate the SS score.

4.3. Comparisons to baselines

As summarized in Table 2, the only differences between

Figs. 6 (b) and (c) and between Figs. 6 (d) and (e) are the

resizing strategy. All the models showed a flawless perfor-

mance for the synthetic sketches.

For the Safebooru line-art set, in the case of Figs. 6 (b)

and (d), the color was under-saturated even when hints were

given, as shown in the third row. Color bleeding occurred in

Fig. 6 (b) and the color is less filled in Fig. 6 (d). We deter-

mined that the early-resizing method was not generalized

for the Safebooru line art set, as depicted by the low SS

scores of 0.006 and 0.036, respectively. However, as shown

in Figs. 6 (c) and (e), when using the proposed late-resizing

strategy, the coloring quality improved both when the hint

was given and was not. Specifically, as shown in Fig. 6 (c),

the phase expression was stronger in the result without color

hints, and when hints were fed, color bleeding was allevi-

ated. We determined that this occurred because the model in

Fig. 6 (c) grasped a better understanding of the features of

the input sketch than that in Fig. 6 (b). We found that this is

because a higher capacity model is more effective in learn-

ing the augmentation effect obtained through a late resizing.

As mentioned in Section 4.1, for the Safebooru line art set,

the influence of the domain gap in the shape of the contents

is small, and it was therefore concluded that a sketch extrac-

tion has a large effect on this result.

For the Webtoon set, despite the gap in the shape of the

contents, Fig. 6 (b) shows a better color expression than the

results for the Safebooru line-art set irrespective of the hints.

We found in which the improvement results from the char-

acteristic that the flat line segment is similar to that of the

sketch extracted in Fig. 6 (b). From this analysis, we suggest

that the domain gap for the characteristic of the line segment

is as important as that of the shape of the contents. As shown

in both Figs. 6 (c) and (e), a similar performance improve-

ment occurred, as in the case for the Safebooru line-art set.

In particular, when a hint was given, the result of Fig. 6 (e)

showed more detailed and richer colorization results than

that in Fig. 6 (d) without color bleeding or missing colors.

This indicates that the model used for Fig. 6 (e) has not lost

its generalization even for the Webtoon set.

As shown in Table 2, both the FID and SS scores of the

model using the proposed late-resizing strategy were rela-

tively high or comparable to the corresponding models us-

ing the early-resizing strategy.

In conclusion, we can verify that the late-resizing strat-

egy proposed in this paper is effective in improving the gen-

eralization irrespective of the model architecture applied.

More results can be found in the supplementary material,

including comparisons with a baseline when using different

types of sketch extraction techniques in combination.

4.4. Importance of binarization in late­resizing

As shown in Fig. 7 (b), the absence of the binarization

process caused a fatal performance degradation, in which

a color was faintly expressed; however, it presented flaw-

less colorization results for the synthetic sketch. This might

have resulted from the look-ahead bias for the region infor-

mation, which had artifacts and was an unclean area in the

sketch, as discussed in Section 3.2.2. By contrast, in the case

of using binarization as shown in Fig. 7 (c) showed plausi-

ble result. This indicates that the proposed strategy has a

synergy with binarization, thereby alleviating the bias.

5. Concluding Remarks

In this paper, we proposed a simple but effective strat-

egy for sketch extraction called late-resizing, in which re-

sizing was applied after in our proposed method, detection

step. Compared with a traditional early-resizing strategy,

the line detection process is no longer dependent on the

resizing process, which contributes to alleviating the do-

main gap problem between the synthetic and real sketches

and the look-ahead bias. The experimental results showed

the potential to improve the generalization of the coloriza-

tion model. However, the expected benefit of the proposed

method may be limited when the difference between the

size of the source color image and target size is insignifi-

cant. In future studies research we will adopt super resolu-

tion methods to upscale the source color images and utilize

a late-resizing method. We expect that the proposed method

will contribute to alleviating the ambiguity of the sketch ex-

traction strategy for future line-art colorization studies.
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