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Abstract

Training deep models using contrastive learning has

achieved impressive performances on various computer vi-

sion tasks. Since training is done in a self-supervised man-

ner on unlabeled data, contrastive learning is an attractive

candidate for applications for which large labeled datasets

are hard/expensive to obtain. In this work we investigate

the outcomes of using contrastive learning on synthetically

generated images for the Image Quality Assessment (IQA)

problem. The training data consists of computer generated

images corrupted with predetermined distortion types. Pre-

dicting distortion type and degree is used as an auxiliary

task to learn image quality features. The learned representa-

tions are then used to predict quality in a No-Reference (NR)

setting on real-world images. We show through extensive

experiments that this model achieves comparable perfor-

mance to state-of-the-art NR image quality models when

evaluated on real images afflicted with synthetic distortions,

even without using any real images during training. Our

results indicate that training with synthetically generated

images can also lead to effective, and perceptually relevant

representations.

1. Introduction

Image Quality Assessment (IQA) refers to the problem of

objectively quantifying and predicting perceptual judgments

of image quality. In No-Reference (NR) or blind IQA, the

task is to estimate quality with no additional information

about the pristine reference image or the type of distortions

present in the degraded image. IQA models are designed

with the aim of obtaining accurate quality predictions that

have high correlations with subjective judgements. The pres-

ence of multiple distortion types, along with the influence of

content on perceived image quality, make blind IQA problem

a challenging task. Social media applications, image and

video-sharing sites such as Facebook, Instagram, YouTube

etc. have millions of digital user-generated contents (UGC)

uploaded to them everyday, and it is essential to objectively

control and govern the quality, before performing additional

operations such as compression.

NR-IQA has been extensively studied over the last decade,

resulting in a variety of IQA datasets and models. Two

types of IQA databases have been proposed in the literature

: LIVE-IQA [39], CSIQ-IQA [24] etc. which contain syn-

thetically degraded images, and CLIVE [13], KonIQ [18]

etc. which contain images with realistic distortions. Dis-

torted images with synthetic artifacts often contain a single

distortion type such as blur, white noise etc. whereas in

case of authentic artifacts, a combination of multiple distor-

tion types are present. To objectively capture these artifacts,

different approaches have been presented in the literature.

Natural Scene Statistics (NSS) based models [33–35, 38]

rely on statistical deviations arising due to distortions for

obtaining quality-aware features. Recently, deep Convolu-

tional Neural Network (CNN) based, data-driven IQA mod-

els [21, 41, 50, 54] have achieved remarkable accuracy in

predicting image quality.

Deep CNNs contain millions of trainable parameters, thus

require large labeled datasets to achieve better performance.

However, currently there is lack of sufficiently large labeled

IQA datasets, thus majority of the existing methods use

transfer learning methods, where a pretrained model is fine-

tuned using image quality labels. In CONTRIQUE [29],

an unsupervised training scheme using unlabeled dataset

was proposed as an alternative to transfer learning, and the

model performance was observed to be comparable to that

of current state-of-the-art (SOTA) IQA models. Employing

synthetic data for training is another approach that has been

explored in the literature for problems like stereo disparity

[32], optical flow [6, 10]. For these applications, the models

trained on synthetic data was shown to perform well even

on real-world datasets [7, 42]. One key drawback of using

synthetic data is the presence of domain gap between real

and synthetic images, which can be a significant factor for

certain applications [4].

Here, we investigate the performance of models trained

on synthetic data for IQA problem. The goal is to under-

stand the significance of semantic information in obtaining

features which are representative of image quality. We fol-

low the CONTRIQUE [29] framework in our experiments,
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where real images are replaced with synthetically generated

images, and the training is performed in a self-supervised

manner using a contrastive objective. To the best of our

knowledge, this is first such work employing synthetic im-

ages for the IQA problem. Our contributions in this work

can be summarized as

1. We generated synthetic images using the dead leaves

(DL) [25] model. DL model is based on statistical

properties of natural images. It is a simplistic model

for image generation and computationally inexpensive.

During testing, model trained on DL data was evaluated

on real images with no additional fine-tuning.

2. We introduced an extension to the DL model by includ-

ing textures, and studied its influence on image quality

prediction. We observed that addition of textures al-

ways improved model performance.

3. DL images lack semantic information prevalent in nat-

ural images. In order to better understand the impact

of image semantics, a dataset containing anime images

was used for training, and the model performance was

observed to be better than that obtained using DL data.

4. Models trained with synthetic data achieved perfor-

mance comparable to SOTA IQA models on datasets

containing synthetic distortions.

2. Related Work

2.1. Blind Image Quality Assessment

The presence of diverse distortion types coupled with the

effects of image content on different artifacts makes blind

IQA a challenging task. NR models can be broadly cate-

gorized based on the design philosophy - traditional/hand-

crafted models, and deep CNN based models. Traditional

models generally contain a hand-crafted feature extraction

framework to obtain quality aware features and a regressor is

trained to map these features to quality scores. These include

Natural Scene Statistics (NSS) based models such as DI-

IVINE [35], BLIINDS [38], BRISQUE [33] and NIQE [34],

where deviations in the image statistics due to artifacts is

used for predicting quality. CORNIA [48] and HOSA [47]

employ a codebook based approach, where quality aware

representations are obtained using a visual codebook con-

structed from local patches.

Inspired by the successes of deep learning on various

computer vision tasks [16, 17, 42], many CNN-based based

models have been applied for NR-IQA achieving impressive

performances. The lack of large-scale datasets involving

image quality has led to use of transfer learning techniques,

whereby a pretrained model is fine-tuned using ground-truth

quality scores. Pretrained CNNs extract reliable semantic

features, and in [22] it was shown that these features are

also excellent indicators of image quality. DB-CNN [54]

used two separate CNNs to account for synthetic and real-

istic artifacts, respectively. In [50], a statistical distribution

of subjective scores was used during training yielding su-

perior quality estimates. PaQ-2-PiQ [49] model showed

that fine-tuning with both image and patch quality scores

can considerably improve model performance. In CON-

TRIQUE [29], a self-supervised training mechanism using

unlabeled dataset was shown to yield robust and accurate

image quality representations. All the above models employ

real images during training and testing, while here we focus

on employing synthetic images for training, and real images

for testing.

2.2. Synthetic Data for Training

Certain computer vision problems such as disparity esti-

mation, optical flow etc. have achieved remarkable successes

in using synthetic datasets for model training, and fine-tuning

on real world data. This is particularly beneficial for those

applications for which obtaining large-scale labeled datasets

is challenging and expensive. Synthetic datasets such as

Sintel [6], Flyingchairs [10], and Scene flow [32] have sig-

nificantly contributed towards improving stereo disparity [7]

and optical flow [42] estimation. Recently Achddou et al. [1]

employed images generated using dead leaves model for

training a deep CNN, and obtained competitive performance

on various image restoration tasks. Here we appraoch IQA

problem using synthetic data, which has not been explored

previously.

3. Method

Here, the goal is to learn effective representations us-

ing synthetically generated images which can be used to

predict quality of real images. Since artificially created im-

ages are used for training, there is no ground-truth quality

scores that can be used for training. Hence, a self-supervised

training methodology based on CONTRIQUE [29] model is

employed for feature learning. The whole training procedure

is illustrated in Fig. 1. In the following sections each module

present in the training pipeline is presented in detail.

3.1. Synthetic Image Generation

The first step is to create a database of undistorted syn-

thetic images. In the literature, obtaining synthetic images

using computer animation, and rendering using 3D graph-

ics software such as Blender1 has been extensively stud-

ied [6, 10, 32]. These images are created with the goal of

lending sufficient diversity and realism as observed in natu-

ral images. However, this typically requires a careful design

of contents in terms of background, color, objects present

in the scene, degree of textures etc. Here, we experiment

1https://www.blender.org/
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Figure 1. Illustration of training pipeline using synthetic images.

with Dead Leaves (DL) model, a simplistic image generation

model based on natural image statistics.

The DL model was originally proposed by Matheron

[31] to study morphological properties of materials, and

was later observed to exhibit many statistical characteristics

commonly seen in natural images [25]. In the DL model

it is assumed that the image is formed by a set of template

based objects whose locations are sampled from a Poisson

process, and are arranged in a layered manner with partial

occlusions. The marginal and joint derivative statistics of

these DL images was observed to be similar to that of natural

images [25]. Additionally, the power spectrum of DL images

showed inverse square variation with frequency, commonly

seen in natural scenes [12, 40].

Here, for obtaining DL images we follow the procedure

detailed in [1], using circular disks as template objects. The

radius r of circular disks is sampled from f(r) = Kr−3

distribution, where K is a normalizing constant. In [25] it

was shown that this constraint was essential to have statistics

similar to natural images. In order to have similar color his-

tograms as natural images, each disk was assigned colors by

randomly sampling from natural image color histogram. For

this purpose, a natural image was fed as input during image

generation (different scenes had different natural images).

3.1.1 Textured Dead Leaves

The expressive power of the original DL model can be en-

hanced by introducing textures to template objects present

in the DL model. From Fig. 2a it can be observed that the

images generated from the original DL model can contain

significant smooth regions. Since smooth regions have small

gradients, marginal gradient distributions are peakier when

compared to that of natural images, as can be observed in Fig.

3. Including textures has several advantages: (i) It boosts gra-

dient values, particularly in smooth regions. (ii) The statistics

of resulting textured DL images are closer to that of natural

images. This is illustrated in Fig. 3 where distributions are

visually as well as objectively (using Kullback-Liebler diver-

gence values) compared. Additionally, we also show in Sec.

4.2 that representations learned from textured DL images

yield better quality estimates. The textures were applied to

each circular disk separately using alpha blending with equal

weights on texture and background color. The textures were

randomly chosen from Brodatz texture database [5]. In Fig.

2, a sample DL image and corresponding textured version is

shown.

3.2. Auxiliary Task

An auxiliary task is an alternate but closely related task

for which ground-truth labels are either known or can easily

be obtained. Following the CONTRIQUE framework, the

auxiliary task is to obtain embeddings that can distinguish
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(a) DL Image (b) Textured DL Image

Figure 2. Sample DL image and corresponding textured version.

images based on distortion type as well as the degree of

degradations. This can be considered as a classification

problem with images afflicted with same distortion type and

degradation level categorized under the same class.

Let an undistorted synthetic image s be distorted by

di, i ∈ {1, . . . , D} with degradation degree lij , j ∈
{1, . . . , Li} resulting in a distorted image s̃ji . Here D and

Li denote number of distortion types and degradation de-

grees, respectively. Thus, this is a classification problem

with
∑D

i=1 L
i + 1 classes (total number of degradation lev-

els + one undistorted image). To extract features, the images

are fed to a deep model consisting of two parts: an encoder

and projector. An encoder can be any popular CNN archi-

tecture like Resnet [17] (with fully connected terminal layer

removed) and the projector is a multi-layer perceptron (MLP)

which reduces the dimensionality of the features produced

by the encoder. For a given image s ∈ R
3×H×W

k = f(s), z = g(k) = g(f(s)) k ∈ R
B , z ∈ R

K (1)

where k is the B-dimensional output from the encoder. Sim-

ilar to [8, 15], the intermediate features k are L2 normalized

before feeding as input to the projector. In the last step, a

contrastive loss for image si is calculated as

Li =
1

|P (i)|

∑

j∈P (i)

− log
exp(φ(zi, zj)/τ)∑N

m=1 ✶m ̸=i exp(φ(zi, zm)/τ)
,

(2)

where N is the number of images present in the batch, ✶ is

the indicator function, τ is the temperature parameter, P (i)
is a set containing image indices belonging to the same class

as si (but excluding the index i) and |P (i)| is its cardinality.

φ measures similarity between a pair of representations and

is calculated as a dot product φ(a, b) = aT b/||a||2||b||2.

The expression (2) is similar to the supervised contrastive

loss [20] with class labels derived from prior knowledge

about distortions.
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Figure 3. Comparison of distributions of spatial derivatives of natu-

ral and DL images. For plotting purposes 100 images from each

type were employed. For DL and textured DL distributions, KL-

divergence values with respect to natural images is also shown.

3.3. Multiscale Learning and Augmentations

Images, as well as artifacts present in them are multi-

scale, and for obtaining better quality estimates it is essential

to consider the effects of both local as well as global image

characteristics. To obtain more accurate quality estimates,

prior IQA methods [33–35, 46] have used feature extraction

at multiple scales. In the training pipeline, we employ im-

ages at two scales: full resolution, and half-scale resolution

obtained by downsampling by a factor of two. An anti-

aliasing filter is used before downsampling to avoid aliasing

artifacts as shown in Fig. 1.

The images are then randomly cropped to a fixed size

M × M . Although the cropped version can have differ-

ent perceived quality as the original image, we assume that

the distortion class remains the same. For each image two

cropped versions are obtained, one each at full-scale and

half-scale. The cropped versions are then subjected to two

augmentations : horizontal flipping and color space conver-

sion. Different color spaces are employed to extract com-

plementary quality information present in them. Four color

spaces RGB, LAB. HSV and grayscale along with a band-

pass transform obtained using local Mean-Subtraction (MS)

coefficients were randomly chosen for each crop of the in-

put image. Prior NSS based models [3, 14, 30, 43] have

also demonstrated the perceptual significance of using these

transformation for quality prediction. Note that the above

augmentations are quality preserving, whereby quality of

the input image remains unchanged on application of these

transforms.

The last step in the training pipeline involves partitioning
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the transformed image into non-overlapping patches of size

P ×P . This is done with the goal of capturing image quality

attributes in a more granular manner. These patches were

then fed as input to the encoder to obtain local representa-

tions and subsequently used in the loss function (2). Note

that we assumed that patches will inherit the same distor-

tion class labels as the original image, as was the case with

cropping operation.

3.4. Evaluating Representations

Once the model training is complete the last step involves

mapping learned embeddings to quality scores. The correla-

tions of human judgments against predicted quality scores

serve as a proxy for evaluating efficiency of the learned rep-

resentations. During evaluation, the projector network g(.)
is discarded and output k from encoder is used as image

features. An L2 regularized linear regressor (ridge regres-

sion) is trained on top of the frozen encoder network using

ground-truth quality scores from a suitable IQA database

for predicting quality. The expression for ridge regression is

given by

y = Wk, W ∗ = argmin
W

N∑

i=1

(GTi − yi)
2 + λ

M∑

j=1

W 2
j ,

(3)

where y denotes predicted scores, GT ground-truth quality

scores, λ is the regularization parameter, W is a trainable

vector having same dimensions as h, M is number of dimen-

sions of h, and N is the number of images present in the train-

ing set. During inference, all the features are computed at

the native resolution of the input image, and no data augmen-

tations are performed. Features are extracted at two scales :

full-scale and half-scale, and a concatenated version of these

two scales is used for regression. Note that no additional

fine-tuning of encoder using ground-truth quality scores is

performed as this can modify encoder weights, and will not

be a true indicator of the effectiveness of self-supervised

training process as well as the training data employed.

4. Experiments and Results

In this section we perform a series of experiments to in-

vestigate the effect of using synthetic data for training. First

we will describe experimental settings, evaluation procedure

and methods used for comparison. We then compare the

performance of models trained using synthetic data against

SOTA IQA models. Additionally, we also analyze the out-

come of using anime images for training. Lastly, we extend

the current model to a Full Reference (FR) setting where

features from both reference and distorted images are used

for predicting quality.

4.1. Experimental Details

Training Data

We generated 5000 DL images using the method detailed in

Sec. 3.1. The generated images were then corrupted with

D = 25 distortion types with each type having Li = 5 de-

grees of degradation. The distortion types and degrees were

same as those employed in KADIS [27] dataset. Interested

readers can refer to [27] for more details about distortion

types and degradation levels. Since there are 125 (25 × 5)

possible distortions for each image, the generated dataset

contains around 5000× 25 = 625, 000 images in total. This

results in 126 distortion classes (125 distortion classes + 1

undistorted type) that are used in the contrastive objective

(2).

Training Details

Resnet-50 [17] architecture (with fully connected layer re-

moved) was used as the encoder network g(.) and MLP with

2 hidden layers as projector network g(.). Both the hidden

layers of MLP contained 2048 neurons. The training was

done with a batch size of N = 512 and the sampled images

were randomly cropped to square blocks of size M = 256.

For local feature extraction the image crops were further

partitioned to patches of size P = 64, resulting in 4 patches

from each image crop. The temperature parameter used in

(2) was fixed at τ = 0.1 and dimension of final feature z
was chosen to be K = 128. Local representations were

calculated using adaptive average pooling layer at the end

of encoder module. The models were trained from scratch

for 25 epochs using a stochastic gradient descent (SGD)

optimizer having initial learning rate of 0.3 and cosine de-

cay schedule without restarts [28] and a linear warmup for

first two epochs. The implementations used in this work are

available here. 2

Compared Methods

We compared the performance of models trained on DL and

textured DL data against nine SOTA IQA models. The com-

pared methods include traditional models such as BRISQUE

[33], NIQE [33], CORNIA [48] and HOSA [47]. The

above models (except NIQE) use a support vector regres-

sor (SVR) for predicting quality. The compared methods

also contain deep learning based IQA models such as DB-

CNN [54], PQR [50], BIECON [21], HyperIQA [41] and

CONTRIQUE [29]. For numerical comparison of above IQA

models, we copied the numbers provided by the respective

authors or as available in the literature. Note that all the

above models are trained on real images with no presence of

synthetic images in their design framework.

2https://github.com/pavancm/CONTRIQUE_syn
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Table 1. Performance comparison of NR models on IQA databases containing synthetic distortions. In each column, the first and second

best models are boldfaced. Entries marked ’-’ denote that the results are not available.

Method
LIVE-IQA [39] CSIQ-IQA [24] TID2013 [36] KADID [26]

SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

BRISQUE [33] 0.939 0.935 0.746 0.829 0.604 0.694 0.528 0.567

NIQE [34] 0.907 0.901 0.627 0.712 0.315 0.393 0.374 0.428

CORNIA [48] 0.947 0.950 0.678 0.776 0.678 0.768 0.516 0.558

HOSA [47] 0.946 0.950 0.741 0.823 0.735 0.815 0.618 0.653

DB-CNN [54] 0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.856

PQR [50] 0.965 0.971 0.872 0.901 0.740 0.798 - -

BIECON [21] 0.961 0.962 0.815 0.823 0.717 0.762 - -

HyperIQA [41] 0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845

CONTRIQUE [29] 0.960 0.961 0.942 0.955 0.843 0.857 0.934 0.937

Dead Leaves 0.940 0.941 0.852 0.873 0.703 0.731 0.776 0.774

Textured Dead Leaves 0.950 0.951 0.920 0.930 0.751 0.776 0.820 0.820

Figure 4. Sample images from the Danbooru database

Evaluation Criteria

Spearman’s rank order correlation coefficient (SROCC) and

Pearson’s linear correlation coefficient (PLCC) were the

evaluation metrics used for comparing IQA models. The

predicted scores were fed to a four parameter logistic non-

linearity [44] before calculating PLCC.

For evaluation we used four IQA databases containing

synthetic distortions : LIVE-IQA [39], CSIQ-IQA [24],

TID [36] and KADID [26]. These datasets contain images

corrupted with synthetic distortions along with correspond-

ing human opinion scores. For calculating weights of the lin-

ear regressor, each dataset is randomly divided into 70%,10%

and 20% sets corresponding to training, validation and test-

ing, based on reference image to avoid overlap of contents.

The above procedure was repeated 10 times with different

train-test combinations to avoid any bias on the choice of

training contents, and the median performance is reported.

4.2. Correlation Against Human Judgments

In Table 1 we compare the performance of IQA models

across four databases. Since models trained on synthetic data

are based on CONTRIQUE framework, they are clustered

together for ease of comparison. From the Table we can

derive two important conclusions. (i) Using textured dead

Table 2. SROCC performance comparison of model trained on the

Danbooru dataset against models trained on dead leaves trained

data. In each column, the top performing model is boldfaced.

Model LIVE-IQA CSIQ-IQA TID KADID

CONTRIQUE 0.960 0.942 0.843 0.934

Dead Leaves 0.940 0.852 0.703 0.776

Textured
0.950 0.920 0.751 0.820

Dead Leaves

Danbooru 0.960 0.942 0.790 0.910

leaves data almost always improves performance. (ii) The

performance difference between CONTRIQUE and models

trained on synthetic images demonstrate the domain gap be-

tween real and dead leaves images. Notably, on LIVE-IQA

and CSIQ-IQA datasets this gap relatively low, especially

when trained with textured DL data. Also from Table 1 it

can be seen that models trained on DL data outperform most

traditional IQA models, suggesting that the learned repre-

sentations from synthetic data more accurately represent

perceptual quality than handcrafted features.

4.3. Training with the Danbooru dataset

We analyzed the significance of using synthetic images

generated from dead leaves model in Table 1. In this ex-

periment we investigate the effect of using other type of

synthetic images obtained by a different generative model.

In particular we use Danbooru [2] dataset, which is a large-

scale collection of anime images containing in excess of 4

million images. Sample images present in this dataset are

shown in Fig. 4. The motivation behind using this dataset is

to study the importance of image semantics on IQA as anime

images contain more semantic information than dead leaves

images. The images present in this database are of high

quality with 512 × 512 resolution and contains images of

popular anime characters. We randomly sample 5000 images

from this dataset, and artificially degrade them following the

same procedure employed for DL images, obtaining a total
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Table 3. Full Reference performance comparison across 4 IQA databases. In each column, the first and second best models are boldfaced.

Entries marked ’-’ denote that the results are not available.

Method
LIVE [39] CSIQ-IQA [24] TID2013 [36] KADID [26]

SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

PSNR 0.881 0.868 0.820 0.824 0.643 0.675 0.677 0.680

SSIM [45] 0.921 0.911 0.854 0.835 0.642 0.698 0.641 0.633

FSIM [52] 0.964 0.954 0.934 0.919 0.852 0.875 0.854 0.850

VSI [51] 0.951 0.940 0.944 0.929 0.902 0.903 0.880 0.878

PieAPP [37] 0.915 0.905 0.900 0.881 0.877 0.850 0.869 0.869

LPIPS [53] 0.932 0.936 0.884 0.906 0.673 0.756 0.721 0.713

DISTS [9] 0.953 0.954 0.942 0.942 0.853 0.873 - -

DRF-IQA [23] 0.983 0.983 0.964 0.960 0.944 0.942 - -

CONTRIQUE-FR 0.966 0.966 0.956 0.964 0.909 0.915 0.946 0.947

Dead Leaves 0.948 0.948 0.931 0.932 0.791 0.816 0.869 0.868

Textured Dead Leaves 0.950 0.950 0.945 0.950 0.842 0.853 0.898 0.900

Danbooru 0.962 0.962 0.950 0.957 0.880 0.891 0.935 0.937

of 625,000 distorted images. In Table 2, the performance

of the Danbooru trained model is compared against other

models, and it can be seen that it outperforms DL trained

models. These results indicate that training data containing

better semantic information can be beneficial in obtaining

more accurate image quality representations.

4.4. Full-Reference IQA

Similar to CONTRIQUE, the learned representations can

be employed in an FR setting with no additional training of

the encoder module. This is accomplished by incorporating

reference features in the regressor as

y = W |kref − kdist|,

W ∗ = argmin
W

N∑

i=1

(GTi − yi)
2 + λ

M∑

j=1

W 2
j ,

(4)

where absolute difference between the features of refer-

ence and distorted images is used for predicting quality.

The performance of FR-IQA models is compared in Ta-

ble 3. Similar evaluation protocol of dividing datasets into

70%,10%,20% as training/validation/testing sets, respec-

tively based on content, was followed. The train-test di-

vision was repeated 10 times and median correlation values

are reported. Nine SOTA FR-IQA models were included for

performance comparison : PSNR, SSIM [45], FSIM [52],

VSI [51], PieAPP [37], LPIPS [53], DISTS [9], DRF-IQA

[23] and CONTRIQUE-FR [29]. From the Table 3 we can

make similar observations as seen in the No-Reference case,

where training with Danbooru data performed better than

that using DL data, emphasizing the importance of semantic

information for training.

5. Drawbacks of Using Synthetic Images

In the previous sections we analyzed the model perfor-

mances on synthetically distorted IQA datasets. Every dis-

torted image in these databases was corrupted by a ’single’

distortion type. However, if we consider images with real-

istic distortions such as User Generated Content (UGC) im-

ages, a combination of multiple distortions is involved. Mod-

els which are trained on synthetic data often under-perform

when evaluated on UGC datasets as can be seen in Table

4, where performances across 4 IQA datasets KonIQ [18],

CLIVE [13], FLIVE [49] and SPAQ [11] containing authen-

tic distortions are compared. We hypothesize that two fac-

tors might have contributed to this performance gap. Firstly,

the training data contains distorted images which only have

’single’ types of corruption. Thus there exists a significant

domain gap in terms of synthetic and authentic distortions

resulting in lower performance. Artificially replicating au-

thentic distortions is hard, as they often contain diverse mix-

tures of unknown distortions. Secondly, image semantics

play a major role in quantifying realistic distortions [22, 41].

Thus, the lack of sufficient semantic information might also

be a contributing factor of the performance degradation.

6. Conclusion and Future Work

In this work we investigated the effect of using synthetic

data in an unsupervised training framework for learning ef-

fective image quality representations. A synthetic image

dataset from dead leaves model was generated, and discrimi-

nating distortion type and degree was used as an auxiliary

task to train a deep CNN model. We conducted holistic

evaluation on multiple IQA databases and analyzed the sig-

nificance of texture and semantic information in predicting

image quality. We also highlighted the drawbacks of employ-

ing models trained with synthetic data on images corrupted

with realistic distortions. As part of future work we plan

to explore adding multiple distortions to the training data

similar to LIVE multiply distorted dataset [19], and analyze

its effect on quantifying realistic distortions.
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Table 4. Performance comparison of NR models on IQA databases containing authentic distortions. In each column, the first and second

best models are boldfaced. Entries marked ’-’ denote that the results are not available.

Method
KonIQ [18] CLIVE [13] FLIVE [49] SPAQ [11]

SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

BRISQUE [33] 0.665 0.681 0.608 0.629 0.288 0.373 0.809 0.817

NIQE [33] 0.531 0.538 0.455 0.483 0.211 0.288 0.700 0.709

CORNIA [48] 0.780 0.795 0.629 0.671 - - 0.709 0.725

HOSA [47] 0.805 0.813 0.640 0.678 - - 0.846 0.852

DB-CNN [54] 0.875 0.884 0.851 0.869 0.554 0.652 0.911 0.915

PQR [50] 0.880 0.884 0.857 0.882 - - - -

HyperIQA [41] 0.906 0.917 0.859 0.882 0.535 0.623 0.916 0.919

CONTRIQUE 0.894 0.906 0.845 0.857 0.580 0.641 0.914 0.919

Dead Leaves 0.812 0.826 0.671 0.700 0.460 0.500 0.870 0.877

Textured Dead Leaves 0.820 0.835 0.677 0.700 0.485 0.528 0.872 0.879

Danbooru 0.841 0.851 0.715 0.717 0.520 0.540 0.886 0.893
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