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Abstract—In this work we study the problem of anime char-
acter recognition. Anime, refers to animation produced within
Japan and work derived or inspired from it. We propose a
novel Intermediate Features Aggregation classification head,
which helps smooth the optimization landscape of Vision
Transformers (ViTs) by adding skip connections between inter-
mediate layers and the classification head, thereby improving
relative classification accuracy by up to 28%. The proposed
model, named as Animesion, is the first end-to-end framework
for large-scale anime character recognition. We conduct ex-
tensive experiments using a variety of classification models,
including CNNs and self-attention based ViTs. We also adapt
its multimodal variation Vision-Language Transformer (ViLT),
to incorporate external tag data for classification, without
additional multimodal pre-training. Through our results we
obtain new insights into the effects of how hyperparameters
such as input sequence length, mini-batch size, and variations
on the architecture, affect the transfer learning performance
of Vi(L)Ts.

1. Introduction

Anime, originally a word to describe animation works
produced in Japan, can be seen now as an umbrella term for
work that is inspired or follows a similar style to the former
[1]. It is a complex, global, cultural phenomenon, with an
industry that surpasses 2 trillion Japanese yen [2]. Recently,
the anime film, Kimetsu no Yaiba (Demon Slayer), became
the highest-grossing film of all time in Japan and the 5th
highest-grossing film of 2020 worldwide [3]. Clearly anime
as a phenomenon and industry is thriving from an economic
point of view. Furthermore, viewing has been recognized as
an integral part of literacy development by educators [4], and
its importance as a medium cannot be understated. For these
reasons, it is imperative for content streaming platforms such
as Netflix to develop robust multimedia content analysis
systems for more efficient access, digestion, and retrieval
of information.

We leverage ViTs for the task of anime character recog-
nition. ViTs, like CNNs are sensitive to mini-batch size
selection [5], [6], [7], [8], but to a much higher degree.
However, they differ from CNNs in that intermediate feature
maps are uniform across all layers. Taking advantage of
this, we propose a simple but effective Intermediate Features
Aggregation (IFA) classification head which helps improve
the performance of ViTs across a variety of experimental set-
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tings. Second, we perform a study on the effects of a variety
of design hyperparameters (base model architecture, input
sequence size, mini-batch size) on the recognition accuracy
of anime characters. Lastly, we release our source-code and
pretrained model checkpoints, in an effort to encourage and
facilitate researchers to continue work in this domain. This
paper is organized as follows: Section 2 presents relevant
work on computer vision and computational methods for
drawn media while Section 3 describes the experimental
methodology. Then, in Section 4 we discuss the results and
in Section 5 we summarize our findings.

2. Background and Related Work

2.1. Transformers for Computer Vision

Transformers [11] have become the state-of-the-art
(SotA) in Natural Language Processing (NLP) and therefore
in the past few years there’s been quite active research into
porting this architecture for vision tasks [12], [13]. The big
breakthrough came in the form of the Vision Transformer
(ViT) [9]. In their paper, Dosovitskiy et al. took a trans-
former encoder and applied it directly to image patches,
beating the current SotA, in both classification accuracy and
computation efficiency, in a variety of benchmarks. How-
ever, transformers suffer from quadratic costs in memory
requirements with respect to the input size, and when it
comes to images, this quickly makes for models which
require industrial-level hardware to fine-tune for a given
task, let alone pretrain from scratch.

For this reason, many works have studied how to im-
prove vision transformers efficiency by making significant
changes to the architecture or the attention mechanism [14],
[15]. However, there’s been less studies on how to improve
the performance and efficiency from the training strategy
and hyperparameters side. Touvron et al. [16] studied the
influence of the optimizer, data augmentation and regu-
larization, and noticed how transformers are sensitive to
the settings of optimization hyperparameters. This influence
of hyperparameters for neural network training has been
widely studied for computer vision using CNNs [17], and
also for transformers in NLP settings [18]. Among these
hyperparameters, asides from the optimization algorithm and
the learning rate, there’s the (mini-)batch size. In general,
smaller mini-batch sizes may lead to better performance, in
terms of classification accuracy, due to consistent arrival at
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Figure 1. Overview of our framework for anime character recognition. Figure adapted from ViT [9] and ViLT [10]

flat minima, in contrast to the sharp minima at which large
batch sizes training leads to [5], [6], [7].

However, in practice, the consensus is that we aim
to maximize performance while minimizing training time.
Due to this, many methods have been proposed to lever-
age parallelization, by increasing batch size, while keeping
competitive performance. Goyal et al. [19] suggested to
use a learning rate that is a function of the batch size,
along with learning rate warm-up. Yet, another important
consideration is the accessibility to hardware. While some,
in practice have access to unlimited computation nodes,
others are much more constrained in terms of computational
resources. If we aim to fully utilize the capabilities of vision
transformers for a variety of tasks, we need to optimize
these hyperparameters to obtain a better trade-off between
performance, and cost, both in terms of computational and
monetary resources.

2.2. Computer Vision for Drawn Media

Anime, comics, cartoons, manga, and sketches, all of
these have something in common; traditionally, they have all
been drawn media. Drawn media has significant differences
compared to natural images, images taken by common RGB
cameras, which most CV algorithms are designed for. In
particular, most drawn media is not as texture rich as photos,
and this may affect CNNs performance since they may be
biased towards textures, rather than shapes [20]. For this
reason, drawn media can be a challenging testbed for CV
models. Therefore, we aim to evaluate ViT models in this
task that may be challenging for CNNGs.

CV research on these mediums is not new and several
reviews on approaches leveraging computation exist [21].
Most of the existing works have been focused on how to
apply CV methods for image translation, synthesis, gener-
ation and/or colorization of characters [22], [23]. However,
the task of character recognition and classification has been
mostly unexplored. We aim to gain further understanding
in this area of research on drawn media as we believe
that hierarchical learning, from simple to complex, with
a better understanding of what makes a certain character
unique, will allow us to design better automatic character
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generative models down the line, as has been demonstrated
through class-guided generation [24], [25], and semantically
consistent translation with natural images [26].

3. Methodology

3.1. Data

We use the DanbooruAnimeFaces dataset in our ex-
periments. DAF [27], is a subset of the 2018 release of
Danbooru20xx [28]. Due to its extremely long-tailed dis-
tribution, we only keep classes with at least 20 samples,
resulting in 463, 437 images of 3,263 characters. We split
it into training, validation, and testing sets using a ratio of
0.7, 0.1, and 0.2, respectively. Since the original dataset only
contains face crops, we also sample full body images by
resizing the original images from Danbooru20xx, and coin
it as DAFull. Furthermore, we include description tags from
Danbooru20xx as additional multimodal data.
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Figure 2. Diagram of proposed Intermediate Features Aggregation (IFA)
classification head.

3.2. Experiments

Architecture. We conduct experiments on DAF and
DAFull, using image sizes of 128x128 and mini-batch size
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of 64, using both CNN-based architectures (ResNet-18 and
ResNet-50 [29], and EfficientNet-BO [30]) and vision trans-
formers (ViT B-16, B-32, L-16, L-32), with and without
pretraining. All of the ViT models were pretrained on
ImageNet-21k (IN-21k), following the procedure described
in [9], while CNN-based ones are pretrained on ImageNet-
k.

Mini-batch and image size. We study the effect of
image size and mini-batch size when fine-tuning vision
transformers. We test five different batch sizes: 256, 128,
64, 32, and 16, and two image sizes: 128x128, and 64x64.

Multimodal inputs. We study the possibility of using
tag descriptions as text tokens to enhance classification
performance. For these experiments we utilize the modi-
fications proposed by Kim et al. in VILT [10] to process
text data using a ViT. We tokenize the text strings utilizing
a pretrained BERT [31] WordPiece (WP) tokenizer from
the HuggingFace [32] library. Utilizing this tokenizer leads
to an average of 39.5 tokens for each image, and for this
reason, we utilize 32 text tokens as input as baseline for our
multimodal VIiLT experiments. We compare the multimodal
versions, against the vision-only, for both DAF and DAFull.
We also study the effect of the number of text tokens used
as input, by comparing against 16 and 64 text tokens.

IFA classification head. We propose a simple modifi-
cation to the classification head used in the Vision Trans-
former, by extracting the best features from all intermediate
layers, as shown in Figure 2. Instead of just using the [CLS]
token (the first token from ViT) from the last layer as input
to the classification head, we concatenate the [CLS] tokens
from all layers (L = 12 in the case of ViT B models) into
a third dimension (B x D x L, where B is the batch size
and D is the hidden dimension size of the transformer) and
pass the concatenated features through a fully connected
(FC) layer that reduces the number of dimensions back to
two (B x D), followed by a ReLU activation function, and
a LayerNorm, then pass it through a second FC layer that
changes the dimensions of the output into the number of
classes used for classification. We visualize the effects of
IFA head by utilizing loss-landscapes package [33] inspired
by [8].

For all of our experiments we utilize stochastic gradient
descent (SGD) with momentum, with an initial learning
rate (LR) of 0.001 and momentum of 0.9, and train for
50 epochs. For the experiments on architecture, mini-batch
and image size, we also apply a constant epoch (CE) LR
decay, where we reduce the current LR by 1/3 after each
20 epochs. For the experiments using multimodal inputs,
and using the proposed intermediate feature aggregation
classification head, we utilize a cosine LR scheduler with
warm-up of 1000 steps. For data augmentation, we apply
random crop, where we first resize the image to a square
of size 160x160 or 96x96, then take a random square crop
of the desired input size (128, and 64 respectively). Addi-
tionally, we perform random horizontal flip, color jittering,
and normalization of the images. We normalize using mean
and standard deviation of 0.5 for all three RGB channels.
For validation and testing, we only resize the images to
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the desired input size, and normalize them. If not specified,
we utilize image size 128x128 and mini-batch size 64. We
compare results utilizing test set top-1 average classification
accuracy (%) and when needed, the relative percentage
change compared to a baseline.

4. Results and Discussion

TABLE 1. CLASSIFICATION ACCURACY FOR DAF AND DAFull USING
DIFFERENT ARCHITECTURES, WITH(OUT) PRETRAINING.

Pretrained=False Pretrained=True

Model

DAF DAFull DAF DAFull
RN-18 75.00 67.68 81.16 74.68
RN-50 76.41 69.64 84.33 80.37
EffN-BO 72.75 64.47 80.37 74.21
ViT B-16 58.99 34.93 83.78 76.10
ViT B-32 47.30 29.45 75.49 61.55
ViT L-16 56.52 35.95 87.70 79.38
ViT L-32 49.65 30.39 76.31 62.58

¢) IFA=True, BS=64

d) IFA=False, BS=64

Figure 3. Visualization of loss surfaces for ViT B-32.

We highlight the best results in bold, and in certain cases,
the second best, in italics.

Character recognition. CNN-based architectures per-
form much better in the absence of pretraining, but as more
data and computational resources are allocated, transformers
tend to outperform CNNs (Table 1).

The type and size of the input has a large impact on
classification performance when using transformers. There’s
a big performance gap when utilizing DAF vs DAFull, this
is due the fact that by inputting the face area we are directly
facilitating the model a discriminative region. A module for
automatic extraction of discriminative regions would help
alleviate this issue, and make the model more practical. The
image size is another important factor since it’s directly
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TABLE 2. CLASSIFICATION ACCURACY FOR DAF AS A FUNCTION OF MINI-BATCH SIZE FOR IMAGE SIZE 128X128 AND 64X64.

Batch size 16 32 64 128 256
Model
Image size 128 64 128 64 128 64 128 64 128 64
ViT B-16 87.71 72.24 86.23 69.63 83.78 62.67 78.21 50.80 64.52 3341
ViT B-32 80.40 49.83 79.62 47.09 75.49 39.62 66.78 28.82 49.64 18.93
ViT L-16 89.71 73.69 88.78 73.11 87.70 70.52 85.34 62.92 78.36 47.04
ViT L-32 81.64 50.42 80.13 47.09 76.31 40.14 68.48 28.92 52.36 18.14
TABLE 3. EFFECTS OF INPUTTING TAGS AS ADDITIONAL TABLE 6. ACCURACY AND PERFORMANCE CHANGE FOR DAF WHEN
INFORMATION, FOR DAF AND DAFull. USING IFA CLASSIFICATION HEAD, AS FUNCTION OF MINI-BATCH SIZE.
Model Dataset Model Mini-batch size
DAF DAFull 16 32 64 128 256
Top-1 Difference Top-1 Difference B-16 87.57 87.07 86.22 83.06 74.19
ViLT B-16 85.93 +2.57 81.26 +6.78 0 +1.36 +3.92 +8.39 +19.41
ViLT B-32 81.67 +8.19 74.34 +20.78 B32 80.15 79.56 77.70 72.85 63.09
ViLT L-16 90.30 +2.96 85.44 +7.63 -0.62 +0.52 +3.61 +10.00 +28.39
ViLT L-32 81.03 +6.19 73.31 + 17.15

TABLE 4. EFFECTS OF TEXT SEQUENCE LENGTH IN CLASSIFICATION
ACCURACY, FOR DAF AND DAFull.

Max text tokens

Set Model
16 32 64
DAF ViLT B-16 85.68 85.93 86.14
ViLT B-32 79.74 81.67 82.3
DAFull ViLT B-16 79.74 81.26 81.61
ViLT B-32 71.04 74.34 75.61

correlated to the effective input sequence length, and it
specially affects the [B/L]-32 models, as their effective input
sequence length is more than halved due to the larger patch
size, as can be seen in Table 2

Similarly, adding other modalities of inputs such as
tags helps boost the performance (Table 3), as it increases
the effective input sequence length, and enriches it with
attributes that represent additional data for the model to
extract useful correlations. Likewise, increasing the max text
input length also increases the classification accuracy (Table
4).

Surprisingly, the mini-batch size may be the strongest

TABLE 5. EFFECTS OF PROPOSED IFA CLASSIFICATION HEAD IN
CLASSIFICATION ACCURACY, FOR DAF AND DAFull.

Dataset
Model DAF DAFull
Top-1 Difference Top-1 Difference
ViT B-16 86.22 +2.91 78.44 +3.07
ViT B-32 77.70 +2.93 63.41 +3.02
ViLT B-16 89.17 +3.77 84.37 +3.83
ViLT B-32 84.40 +3.34 78.05 +4.99
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predictor for performance of a given transformer model,
with all other hyperparameters fixed, smaller batch sizes
consistently outperform larger ones (Table 2).

Finally, in Table 5 we can see how our simple IFA classi-
fication head leads to improvement across tested datasets, ar-
chitectures (and effective input sequence length), and modal-
ities, while incurring an almost negligible computational
overhead of 1 extra minute per epoch (19 min vs 18 min),
and roughly 1.3 GB extra VRAM usage (14.4 GB vs 13.1
GB), when using ViT B-16 with batch size 256. From Table
6 we can see how our proposed IFA helps reduce the gap
between different batch sizes, and in Figure 3 we can see
a visualization of the loss surface around the local minima
after training. We can see how larger batch sizes make the
minima sharper but our IFA head helps smooth them out.

5. Conclusion

In this work we study a variety of factors that af-
fect anime character recognition performance, including
pretraining strategy, architecture variations, input sequence
size and type, mini-batch size, and classification head. Our
proposed IFA classification head effectively helps reduce
the sensitivity of ViTs to mini-batch size, recovering lost
performance as batch size is increased, while incurring
minimal computation overhead. Our results also demonstrate
the feasibility of using multimodality augmented transform-
ers in a relatively low-resource setting, without extensive
additional pretraining.
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