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Fig. 1. Samples of our Danbooru-Parsing dataset (a), the first anime portrait parsing dataset. This dataset opens up new opportunities for multiple chal-

lenging translation tasks to produce high-quality results. We thus use this dataset to train a novel anime translation model, supporting unsolved tasks like

portrait-to-anime (b), anime-to-portrait (c), and manga-to-portrait (d).

Anime is an abstract art form that is substantially different from the human

portrait, leading to a challenging misaligned image translation problem

that is beyond the capability of existing methods. This can be boiled down
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to a highly ambiguous unconstrained translation between two domains.

To this end, we design a new anime translation framework by deriving the

prior knowledge of a pre-trained StyleGAN model. We introduce disentan-

gled encoders to separately embed structure and appearance information

into the same latent code, governed by four tailored losses. Moreover, we

develop a FaceBank aggregation method that leverages the generated data

of the StyleGAN, anchoring the prediction to produce in-domain animes.

To empower our model and promote the research of anime translation, we

propose the first anime portrait parsing dataset,Danbooru-Parsing, contain-

ing 4,921 densely labeled images across 17 classes. This dataset connects

the face semantics with appearances, enabling our new constrained trans-

lation setting. We further show the editability of our results, and extend

our method to manga images, by generating the firstmanga parsing pseudo

data. Extensive experiments demonstrate the values of our new dataset and

method, resulting in the first feasible solution on anime translation.
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1 INTRODUCTION

Anime, originated from Japanese animation, has gained popularity

across the world with its unique style. Many people have grown

up with anime and then pass it on to their children, generation by

generation. Turning a portrait selfie into an anime character is thus

in high demand not only for anime production but also for enter-

tainment, especially for people who want to personalize their own

portrait in favorite anime styles. However, a high-quality anime

translation needs to capture both accurate anime style and portrait

features, which is not an easy task even for experienced designers.

In this paper, we aim to develop an automatic anime transla-

tion method, allowing the general public to generate customized

anime portraits∗ in high quality. Since it is hard to obtain a large

amount of portrait-anime paired data, we formulate our problem

as an unsupervised image-to-image translation task [Huang et al.

2018; Kim et al. 2020; Liu et al. 2017, 2019; Zhu et al. 2017]. This

kind of task aims to establish a mapping function between source

and target domains, such as from sketch to image, from summer

to winter, and from horse to zebra, and so on. Though stunning

results have been achieved due to the development of generative

adversarial networks (GANs), the results are often limited to

appearance-level translation. In addition, since people are sensi-

tive to facial features, the generated artifacts are easily noticeable

and the results are less visually pleasing.

As large-scale generative models like StyleGAN [Karras et al.

2019, 2020] evolve, they have shown great potential in high-quality

portrait synthesis. Several works are using the prior knowledge

of a pre-trained StyleGAN for image-to-image translation on por-

trait [Huang et al. 2021; Richardson et al. 2021]. In particular,

pSp [Richardson et al. 2021] learns to invert the images of the

source domain to the latent space of a StyleGAN pre-trained on

the target domain. Toonify [Pinkney and Adler 2020] and the con-

current works of UI2I [Huang et al. 2021] and StyleCariGAN [Jang

et al. 2021] further train two StyleGANs for two different do-

mains, respectively, and then integrate these two networks to real-

ize image-to-image translation. Overall, because of the rich and di-

verse prior knowledge encoded in the large-scale generative mod-

els, the above attempts achieve stable and high-quality editing and

translation performance, compared to training a translation model

from scratch. However, anime translation cannot be solved eas-

ily with existing frameworks using unconstrained direct mapping

(e.g., pSp) or layer swapping (e.g., UI2I and Toonify). This is be-

cause of the large domain gap between anime and natural images.

Thus, anime translation involves extensive abstraction simplifica-

tion and large deformation on local structures, which is extremely

challenging. On the other hand, rather than simply keeping anime

style, original facial features also need to be preserved in our task.

To address the above challenges, we propose a novel framework,

called StyleAnime, by bridging the domain gap through a parsing

map. StyleAnime can translate a human portrait into an anime

and vice versa. The underlying principle is to convert a source

domain image conditioned by its parsing map into a latent code

of a StyleGAN pre-trained on the target domain. To support our

framework and further promote the research of anime analysis,

∗We use anime and anime portrait interchangeably in the context of our paper.

we contribute the first anime portrait parsing dataset, named as

Danbooru-Parsing. This dataset contains 1,521 professionally an-

notated anime portraits over 17 classes of portrait components. A

comprehensive quantitative experiment is conducted to evaluate

several state-of-the-art methods over these annotated images. The

best performed method is selected to augment Danbooru-Parsing

to 4,921 images for usage. This new dataset not only makes our

framework become possible, it can also initiate a new anime face

parsing task.

Simply relying on the parsing condition is not enough for trans-

lating two domains with such a large gap. To this end, we take

two specially designed components for solving this problem. We

first introduce a disentangled encoder that discriminatively en-

codes structure and appearance features from the parsing map and

source image, respectively. In this way, the translation can pre-

serve both the input facial features and anime style in the target

domain. Our encoder is trained under the self-supervision of the

anime images, meanwhile it can be adapted on the portraits.We tai-

lor several losses to handle structure and appearance consistency

and the domain adaptation problems. To ensure the quality and

editability of the resulted latent codes, we propose a FaceBank ag-

gregation approach to generate and integrate an in-domain code-

book of StyleGAN. Extensive experiments demonstrate that our

method can produce plausible translation results with appropri-

ate structure deformations and appearance consistency. Further-

more, we extend our dataset and method to several novel applica-

tions, including parsing-based anime editing, manga portrait pars-

ing, manga-to-portrait translation, and video translation. Note that

our method is based on the pre-trained StyleGAN that trained on

the Danbooru Dataset, which includes mostly female anime char-

acters. Thus, all experiments are performed on female anime trans-

lation. However, our method is general and extendable to male

anime translation by simply adopting a StyleGAN that trained on

a gender-balanced dataset.

In summary, our contributions are three-fold:

• We contribute the first anime face parsing dataset, which con-

sists of 4,921 anime-parsing pairs. It provides the explicit guid-

ance of structural deformations. This valuable dataset will

benefit not only anime translation tasks, but enable more pos-

sibilities for anime analysis.

• Wepropose the novel disentangled encoders thatmap the por-

trait and corresponding parsing map to the latent space of

StyleGAN. Several losses are designed to handle color consis-

tency and domain adaptation problems.

• Extensive experiments show that our method is the first fea-

sible anime translation solution. Our method can be easily

extended to novel applications including parsing-based edit-

ing, appearance-based editing, and manga translation. Be-

sides, our model can also work on videos.

2 RELATEDWORK

2.1 Image-to-Image Translation

Image-to-image translation (I2I) aims to translate an image

from the source domain to the target domain, and our problem of

anime translation can fall in this line of research. Pix2Pix [Isola

et al. 2017] designs a conditional GAN for the image to image
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translation, showing expressive results on diverse tasks, such as

from photo to Monet and from winter to summer. Pix2PixHD

[Wang et al. 2018] introduces a multi-scale generator and discrim-

inator to synthesize high-resolution images. However, both of

these works require paired data as supervision. To explore learning

under the unsupervised setting, CycleGAN [Zhu et al. 2017] pro-

poses a cycle-consistent constraint that encourages reconstructing

images after a cycle translation. Although CycleGAN [Zhu et al.

2017] can preserve identity well, it cannot deal with the structural

deformations (e.g., mouth, nose). UNIT [Liu et al. 2017] learns a

joint distribution of different domains based on a shared latent

code assumption. MUNIT [Huang et al. 2018] further decomposes

the latent space into shared content and independent style space

for generating diverse outputs. A similar disentanglement idea

also emerges in DRIT [Lee et al. 2018]. Though the above works

have gained huge progress on the appearance-level translation,

they often fail on the translation tasks with structure gap, such

as portrait-to-anime translation. For capturing the most discrim-

inative structure areas, UGATIT [Kim et al. 2020] and AniGAN

[Li et al. 2021] design generators that simultaneously transform

local shapes and appearance. However, since there is no explicit

guidance on the shape transformation, they cannot synthesize

the plausible structure transformation results. Instead, we share a

similar spirit with disentangled image editing [Lee et al. 2020; Park

et al. 2020; Tan et al. 2020; Wu et al. 2021], to disentangle the struc-

ture and appearance through encoders by introducing parsing

maps for providing explicit guidance on structure deformation.We

can translate results consistently on both anime styles and facial

features.

2.2 Portrait Generation and Stylization

Recently, many generative models are proposed for synthesizing

the high-quality images, such as PGGAN [Karras et al. 2018], Big-

GAN [Brock et al. 2019], and StyleGAN [Karras et al. 2019, 2020].

Thanks to StyleGAN, high-resolution human portraits can be gen-

erated in a natural way that cannot be distinguished from real

photos easily. Moreover, StyleGAN has a style-based architecture

and its layer-wise representation disentangles the structure and ap-

pearance information [Karras et al. 2019, 2020]. This feature pow-

ers real applications on portrait stylization. Toonify [Pinkney and

Adler 2020] and Huang et al. [2021] introduce layer swapping in

pre-trained StyleGANs for achieving facial stylization, and they

can obtain high-quality stylized results. However, the layer swap-

ping lacks explicit guidance to preserve the visual features of input

portraits. An alternative StyleGAN-NADA [Gal et al. 2021] lever-

ages the semantic power of large scale Contrastive-Language-

Image-Pre-training (CLIP) [Radford et al. 2021]models to shift a

generative model to new domains driven by texts. Instead of warp-

ing and deforming facial appearance through control points [Cao

et al. 2018; Shi et al. 2019], directly generating a portrait with ex-

aggerated structure and style becomes possible [Jang et al. 2021]

with the help of StyleGAN. The quality of generated caricature

enhances because of the explicit modeling on dense and detailed

shape deformation, learned from unpaired photo-caricature data.

In addition, Song et al. [2021] and Jang et al. [2021] impose at-

tribute consistency between the input portrait and the stylized one.

It is worth noticing that most of the above methods are based on

Fig. 2. Analysis of annotation consistency. The first row shows animes that

need to be labeled. The second and third rows show annotated parsing

maps. The two parsing maps of each anime are annotated by the same

person at different times (i.e., a three-month interval). And the last row

shows the differences between the two annotations of each anime. The

pixel-wise consistency accuracy is shown at the bottom of each example.

the same assumption that the stylized results share the same latent

code with the input portrait. We argue that this is a too strong as-

sumption for our portrait-to-anime translation due to the large do-

main gap. In contrast, we design disentangled encoders with elab-

orated losses for producingmore plausible and high-quality anime

results.

3 DANBOORU-PARSING DATASET

In this section, we describe the creation of Danbooru-Parsing

dataset, which contains around 5k anime-parsing pairs with man-

ual and automatic annotations jointly. To ensure the diversity

and quality of our dataset, we choose to select anime images from

the largest anime dataset called Danbooru2020 [Anonymous et al.

2021]. Danbooru2020 contains over 4.2 million unprocessed ani-

mes, and each anime contains also the body part. Since we only

want the portrait part, we first randomly selected 10,000 anime im-

ages from Danbooru2020 and then cropped the portraits out by an

anime-face detector [Nagadomi and Youkaichao 2014]. After filter-

ing out the monochrome and low-resolution images, we obtained

1,521 valid animes with the resolution of 256 × 256 for manual

annotation. This filtered dataset covers portraits in diverse poses,

facial features, and artistic styles.

3.1 Manual Annotation

We annotated the selected anime portraits on the Labelbox.† We

followCelebaMask-HQ dataset [Lee et al. 2020] by annotating each

†https://labelbox.com/product/platform.
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Table 1. Comparison of State-of-the-Art Segmentation Methods on Anime Parsing

Method Background Skin Left-Brow Right-Brow Left-Eye Right-Eye Eye-Glass Left-Ear Right-Ear Earring

FCNet [Long et al. 2015] 77.45 85.72 17.67 7.57 84.22 83.91 0.50 59.56 26.39 1.09

EHANet [Luo et al. 2020] 79.40 85.99 22.77 17.28 83.92 84.43 0.03 50.36 29.77 0.94

BiSeNet [Yu et al. 2018] 80.04 86.09 19.50 15.98 84.73 84.81 2.15 62.46 28.18 3.48

Deeplabv3 [Chen et al. 2017] 82.51 85.82 22.05 21.44 84.48 84.04 0.96 61.92 28.23 2.64

Deeplabv3+ [Chen et al. 2018] 82.63 86.56 25.94 21.91 84.74 84.47 2.41 57.69 30.76 1.37

DANet [Fu et al. 2019] 83.48 86.55 22.74 19.68 85.01 85.13 4.77 57.62 31.32 1.83

Method Nose Mouth Neck Necklace Cloth Hair Hat | Overall Acc. mIoU

FCNet [Long et al. 2015] 46.12 70.59 65.51 19.01 61.18 86.21 40.65 | 87.75 49.02

EHANet [Luo et al. 2020] 48.50 72.07 70.41 18.27 64.92 86.91 43.62 | 88.79 50.56

BiSeNet [Yu et al. 2018] 47.16 72.11 72.83 24.03 66.08 88.14 45.95 | 89.38 51.98

Deeplabv3 [Chen et al. 2017] 50.35 71.26 74.08 26.58 72.34 88.73 53.54 | 90.44 53.59

Deeplabv3+ [Chen et al. 2018] 49.72 71.60 74.08 26.09 72.20 89.30 55.25 | 90.68 53.92

DANet [Fu et al. 2019] 45.14 72.99 74.62 31.49 75.14 89.67 55.37 | 91.10 54.27

We report pixel-wise accuracy (%) on different component classes and on the whole image (overall). We also report class-wise mean intersection over union (mIoU, %). The
best results are marked in bold.

Fig. 3. Statistics of our Danbooru-Parsing dataset. We show the distribu-

tion of face area in (a) and the distribution of facial components in (b).

anime with 17 component classes by the professional experts, in-

cluding “skin”, “nose”, “eyes”, “eyebrows”, “ears”, “mouth”, “hair”

and so on. Note that we also include class “hat” to indicate hair

accessories (e.g., hairband and hair ring) as it is a common feature

of anime portrait. During the labeling process, we neglected the

regions outside of our pre-defined classes.

To examine whether our annotations are reliable and consistent,

we follow ADE20K dataset [Zhou et al. 2017] by re-annotating

50 randomly selected images by the same annotator after three

months. On average, 93.77% of the pixels got the same labels as the

initial annotation, which demonstrates that our annotations have

strong consistency. We show four examples with annotation accu-

racy in Figure 2. The example in the first column has lower con-

sistency due to the omissions and labeling errors in classes ‘cloth’,

‘neck’, and ‘hat’. The consistencies of the other three examples are

higher, with only misalignment on the edges.

3.2 Automatic Annotation

Though manually labeling can achieve annotations in the highest

accuracy, it is time-consuming and labor-intensive, which limits

the scalability of our dataset. In this subsection, we aim to train a

parsing model for automatic annotation. To find a sophisticated

model, we compare existing segmentation models on our man-

ually annotated samples. More specifically, we divide our anno-

tated dataset into 1,200 and 321 samples for training and testing,

respectively. We test a set of state-of-the-art face parsing models,

including FCNet [Long et al. 2015], Deeplabv3 [Chen et al. 2017],

Deeplabv3+ [Chen et al. 2018], BiSeNet [Yu et al. 2018], DANet [Fu

et al. 2019], and EHANet [Luo et al. 2020]. All the testedmodels are

pre-trained on the CelebAMask-HQ dataset [Lee et al. 2020] and

fine-tuned on our training split of 1,200 anime-parsing pairs. After

training, we measure the pixel-wise accuracy andmean intersec-

tion over union (mIoU) on the test split. We average accuracy

across all pixels, and mIoU across different parsing classes.

The results are shown in Table 1. We can see that all methods

can achieve around 50% mIoU and 90% pixel-wise overall accuracy.

The earliest work FCNet [Long et al. 2015] gets a 87.75% overall

accuracy and a 49.02% mIoU, but cannot detect small anime com-

ponents effectively, such as right brow. In addition, DANet [Fu et al.

2019] obtains the best results among these methods on both met-

rics. In this way, we use this well-trained DANet for automatic

annotations over 3,400 animes provided by UGATIT [Kim et al.

2020]. We also undergo a second pass on these annotations to cor-

rect wrong predictions. Finally, we get 4,921 anime-parsing pairs

in total as our Danbooru-Parsing dataset.

3.3 Dataset Statistics

To better understand our Danbooru-Parsing dataset, we show

some statistics in Figure 3. Figure 3(a) shows the distribution of

face area over the whole image, and facial components include

‘left-eye’, ‘right-eye’ ‘eye-glass’, ‘left-brow’, ‘right-brow’, ‘left-ear’,

‘right-ear’, ‘earring’, ‘nose’, ‘mouth’. We can see that the majority

of the face area falls in the range of (0.1,0.3]. Figure 3(b) shows

the distribution of facial components. Note that ‘left-eye’ and
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Fig. 4. Overview of our conditional portrait-to-anime translation. We disentangle the structure and appearance by feeding the parsing maps xp, yp and

portraits x, y into different encoders Ep and Es, respectively. The generated latent codes control the different layers of a pre-trained StyleGAN generator

Gy for a better disentanglement. During training, the latent code is sent into the generator directly, as shown in the orange region. A set of calibrated losses

are added to train our model in a self-supervised manner. During testing, as shown in the green region, the latent code undergoes a FaceBank aggregation

before decoding to maintain a high-quality anime result.

‘right-eye’ have higher percentages and ‘mouth’ has a lower per-

centage. This is consistent with the characteristics of anime images

on big eyes and small mouths.

4 STYLEANIME

Given an image x in the source domain X (i.e., portrait), our goal

is to learn a mapping function to translate x to its counterpart y in

the target domain Y (i.e., anime). The large structural deformation

of the translation induces serious artifacts. Previous works, such as

MUNIT [Huang et al. 2018] and DRIT [Lee et al. 2018], handle the

domain barrier by learning two independent mapping functions.

One is for domain-invariant content space, and the other is for

domain-specific attribute space. However, both of them take a sin-

gle source image as the input, which lacks the explicit separation

signal between structure and appearance. This limits the transla-

tions within the appearance level. In our work, we seek structure

guidance from a parsing map xp , also providing an editing handle

for users to adjust the generated anime easily.

Contrasting to the previous methods that learn the mapping

function from scratch, we use a StyleGAN [Karras et al. 2019,

2020] pre-trained on the target domain as a prior bank. As the

state-of-the-art portrait generation model, StyleGAN can gener-

ate high-quality portraits that humans cannot distinguish from the

real ones. With the high capacity, the layer-wise representation of

StyleGAN’sW+ latent space can disentangle the structure and ap-

pearance information apart [Abdal et al. 2019; Karras et al. 2019;

Richardson et al. 2021]. The former part of theW+ latent code con-

trols the structure of output images through shallow layers of the

generator, and the latter part of theW+ latent code controls the

appearance of output images through deep layers. This is a strong

prior for conquering the learning ambiguity of structure and ap-

pearance in the portrait-to-anime translations.

The overview of our conditional portrait-to-anime translation

is shown in Figure 4. Taking a portrait x and its corresponding

parsing map xp as inputs, our disentangled encoders generate la-

tent codes to control the anime x̂ generation through a pre-trained

StyleGAN decoder Gy . During training, a set of elaborated losses

are imposed to learn anime translation in a self-supervised way.

During testing, a FaceBank aggregation is added to enhance the

quality of output animes. We then introduce each critical compo-

nent in detail.

4.1 Disentangled Encoders

As mentioned above, different from previous works that take a sin-

gle source image as the input, our model also inputs the parsing

map xp for providing the explicit guidance signal on the structure.

Instead of fusing both inputs directly through a single encoder, our

disentangled encoders contain two: one is the parsing encoder Ep
that maps the parsing map xp to its latent codewp , and the other is

the style encoder Es that encodes the style information of source

image x into codews .

We use the modifications of pSp [Richardson et al. 2021] for dis-

entangled encoders. pSp is designed to match each input image to

the W+ latent space accurately with a feature pyramid through

three levels: coarse, medium, and fine. The lower layer features

are not only fed to the higher layer, but also sent into a map2style

block for generating the styles in the latent space. For the pars-

ing encoder, we only keep features from the coarse and medium

levels extracted from the parsing map for controlling the struc-

ture of output images. For the style encoder, we only keep the fea-

tures from the fine level by discarding the output features from

map2style blocks of coarse and medium levels. In this way, the

structure and appearance information is encoded by two respec-

tive encoders. This disentanglement operation separates the struc-

ture and appearance effectively, and also provides a more flexible

editing knob. Note that these two encoders are trained to have spe-

cific focuses on parsing map and color distribution regardless of

the input image domain. Thus, we can apply the same encoders to

the parsing map and image from another domain (e.g., portrait in

Figure 4) during testing to realize translation.

Particularly, the code wp ∈ R10∗512 generated from the parsing

map controls the former layers of StyleGAN (i.e., 1st∼10th layers in
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our implementation). Each layer is controlled by a 512 − d vector,

respectively. The code ws ∈ R4∗512 encoding the style and color

consistency controls the latter layers of generator (i.e., 11th∼14th

layers). As demonstrated in Section 5.6, our disentangled encoders

relieve the learning ambiguity effectively.

4.2 Loss Functions

Our disentangled encoders aim to map the source images to the

latent space of the pre-trained StyleGAN. However, without pair-

wise data, this mapping function becomes unclear. How to design

loss functions become the key to solving this problem. Previous

works often rely on cycle-consistency by reconstructing images

through a cycle translation. It requires learning two mapping func-

tions simultaneously, increasing the difficulty of learning. In our

work, we take the images of the target domain as a bridge. The

disentangled encoders are trained by reconstructing the target im-

ages through self-supervision, while adapting to the source images.

Hence, our losses can be divided into two groups: the first ones are

the self-supervision losses on target images, and the other is the

domain adaptation loss on the source images.

4.2.1 Reconstruction Loss. Given an input image y in the target

domain with its parsing map yp , our model should reconstruct the

input image in an auto-encoder way. We use the pixel-wise L2 loss

for reconstruction, formulated as:

ŷ = Gy (cat(Ep (yp ), Es (y))), (1)

Lrec = | |y − ŷ | |2, (2)

where cat(·) denotes the concatenation operation between two

latent codes, and Gy (·) is the StyleGAN generator pre-trained on

the target domain.

Following the work [Richardson et al. 2021], we also use the

LPIPS loss [Zhang et al. 2018] for a better image quality preserva-

tion, which can be presented as:

Llpips = | |F (y) − F (ŷ) | |2, (3)

where F (·) denotes denotes the perceptual feature extractor.

4.2.2 Color-preservation Loss. Different from portraits, animes

always have glorious colors. With only reconstruction loss as the

supervision signal, the generated colors are degraded because of

the learn-to-average nature of L2. To make sure that the recon-

structed images still preserve the same color distribution as their

inputs, inspired by BeautyGAN [Li et al. 2018], we introduce his-

togram matching (HM) into the color preservation [Gonzalez

et al. 2009]. However, directly counting color histogram for calcu-

lating loss is not differentiable. Instead, we create a guidance im-

age HM (ŷ,y) through histogram mapping, by preserving both the

content of ŷ and the color distribution of y. Particularly, HM (ŷ,y)

transforms the image ŷ so that the output has the same color his-

togram with y and content with ŷ, which can be used as a guid-

ance signal for preserving the color information. Furthermore, to

put more emphasis on the portrait features, we constrain the his-

togrammatchingwithin three components, i.e., hair, skin, and eyes.

We use the parsing map for more fine-grained color preservation.

Specifically, for each component c, we define the color preserva-

tion loss as follows:

Lc = y
c
p ⊙ ||ŷ − HM (ŷ ⊙ ycp ,y ⊙ y

c
p ) | |2, (4)

where ycp denotes the binary parsing maps of the specific compo-

nent, and ⊙ denotes element-wise multiplication.

Finally, the proposed color-preservation loss is formulated as:

Lcp = αhLhair + αsLskin + αeLeyes , (5)

where αh , αs, and αe denote the trade-off weights to balance each

term of the color-preservation loss.

4.2.3 Domain Adaptation Loss. So far, the above losses are de-

signed only on images in the target domain. To make our disentan-

gled encoders work on the source domain, we propose a domain

adaptation loss for narrowing the domain gap, achieving a better

generalization ability.

As shown in Figure 4, our domain adaptation loss is applied on

theW+ latent space. We align the distribution of source images’

latent codes with the targets’ codes by a code discriminator. In

particular, we take the codes produced by target images as the real

samples, and those produced by the source images as the fake ones.

This discriminator is trained with encoders in an adversarial man-

ner, which can be presented as:

LE
da
= − E

xp∼pXp ,x∼pX
[log(D1 (cat(Ep (xp ), Es (x ))))], (6)

L
D1

da
= − E

xp∼pXp ,x∼pX
[log(1 − D1 (cat(Ep (xp ), Es (x ))))]

− E
yp∼pYp ,y∼pY

[log(D1 (cat(Ep (yp ), Es (y))))],
(7)

where pX , pXp , pY and pYp denote the distribution of the source

image, source parsing map, target image, and target parsing map,

respectively.D1 (·) is a discriminator for the generated latent codes,

regarding real samples as 1s, and fake samples as 0s. The discrimi-

nator is trained with the disentangled encoders in a min-max way.

After training, both the appearance encoder Es and structure en-

coder Ep can be well generalized on the source images.

4.2.4 Adversarial Loss. To make sure that the reconstructed

and the translated images are realistic enough, we also propose

an adversarial loss that is applied to the generated images. In par-

ticular, as shown in Figure 4, our model generates two fake images

x̂, ŷ based on the source input and the target input. Both of them

are aligned with the real target image y by image discriminatorD2.

The discriminator is trained with a dual-supervised encoder in an

adversarial manner, which can be presented as:

LE
adv
= − E

yp∼pYp ,y∼pY
[log(D2 (Gy (cat(Ep (yp ), Es (y)))))]

− E
xp∼pXp ,x∼pX

[log(D2 (Gy (cat(Ep (xp ), Es (x )))))],
(8)

L
D2

adv
= − E

yp∼pYp ,y∼pY
[log(1 − D2 (Gy (cat(Ep (yp ), Es (y)))))]

− E
xp∼pXp ,x∼pX

[log(1 − D2 (Gy (cat(Ep (xp ), Es (x )))))]

− E
y∼pY

[log(D2 (y))] +
γ

2
E

y∼pY
| | ▽y D2 (y) | |

2
2 .

(9)
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Total loss.We get our final loss function for training the disen-

tangled encoders:

L = λ1Lrec + λ2Llpips + λ3Lcp + λ4L
E
da + λ5L

E
adv , (10)

where {λi } denote the weight factors for balancing loss terms.

4.3 FaceBank Aggregation

Our model can already generate satisfying results most of the time

after training with the elaborated losses. However, since there are

no ground truths during training and the domain gap between por-

traits and animes is large, sometimes noticeable artifacts can be

found during testing. The artifacts come outwhen the generated la-

tent code from the source input does not lie on theW+ latent space.

To mitigate these artifacts, following the spirit of DeepFaceDraw-

ing [Chen et al. 2020], we adopt a FaceBank aggregation strategy

during testing.We first generate a large number ofW+ latent codes

(i.e., 50,000) by a StyleGAN pre-trained on the target domain, to

form a FaceBank, denoted as Sbank = {w0,w1,w2, . . . ,wn }. These

latent codes are naturally lied on theW+ latent space, and inherit

the linear property ofW+ space for interpolation.

During the testing, for each predicted latent codewx , we search

its top k nearest neighbor codes in the FaceBank Sbank, measured

by the Euclidean distance, formulated as:

SkNN (w
x ) = [wx

1 ,w
x
2 , . . . ,w

x
k
],wx

i ∈ Sbank, i ∈ [1,k]. (11)

After obtaining k nearest neighbor codes, we design an anchor

code wx
anchor

as a weighted combination of these neighbor codes.

For each neighbor, we calculate the weight βi by minimizing the

Euclidean distance between the anchor codewx
anchor

and the latent

codewx , formulated as:

wx
anchor

=

k∑

i=1

βi ·w
x
i , s .t .

k∑

i=1

βi = 1, (12)

β∗i = argmin
βi

�
�
�
wx −wx

anchor
�
�
�

2

2
. (13)

Since the anchor code wx
anchor

is a combination of the neighbors

in theW+ latent space, it is more likely to be lied inW+ space.

Hence, we interpolate between the latent codewx and the reliable

wx
anchor

for narrowing the domain gap, which can be presented

as:

wx
agg = α ·wx

+ (1 − α ) ·wx
anchor

, (14)

where α is the scale factor for interpolating two codes. Feeding the

interpreted codewx
agg to the target generatorGy can yield the final

result fitting more into the target domain. In addition, by control-

ling the α value, we can obtain multi-interpolated results.

5 EXPERIMENTS

In this section, we first describe the experimental settings and

compare our methods with state-of-the-art methods in related do-

mains both qualitatively and quantitatively. Ablation studies have

been conducted to examine the effectiveness of each model de-

sign choice. We use our Danbooru-Parsing dataset as the anime

dataset for training and evaluation. For portrait, we select 4,921

females randomly from the CelebaMask-HQ [Lee et al. 2020], a

dataset with well-annotated parsings. All images are resized to a

resolution of 256 × 256. To show the generality of our model, we

test on both portrait-to-anime and anime-to-portrait tasks in most

of the experiments. Note that we train two sets of encoders for

portrait-to-anime and anime-to-portrait tasks, respectively.

5.1 Implementation Details

We take the StyleGAN2 [Karras et al. 2020] pre-trained on the

FFHQ dataset [Karras et al. 2019] as our portrait generator due

to its generation ability. Meanwhile, we also fine-tune it on our

Danbooru-Parsing dataset with a learning rate of 0.002 as the

anime generator. The fine-tuning process contains 90,000 itera-

tions, which takes around two days on a single Nvidia GeForce

RTX 2080Ti GPU.

We follow e4e [Tov et al. 2021] using a 4-layer MLP network

as our latent code discriminator, and the discriminator of Style-

GAN2 [Karras et al. 2020] is employed as the image discriminator.

We jointly train the encoders and discriminators with the fixed

pre-trained generator. Moreover, we chose Adam [Kingma and Ba

2015] optimizer with the learning rate of 1e−4 for encoders and

discriminators. Especially, in our experiment, the λ values are set

as λ1 = 2.5, λ2 = 2, λ3 = 0.1, λ4 = 0.1, and λ5 = 0.1.

5.2 Compared Methods

We chose 11 state-of-the-art image translation works as our

competitors, they include: CycleGAN [Zhu et al. 2017], UNIT [Liu

et al. 2017], MUNIT [Huang et al. 2018], DRIT++ [Lee et al. 2020],

UGATIT [Kim et al. 2020], CouncilGAN [Nizan and Tal 2020],

ACLGAN [Zhao et al. 2020], AnimeGANv2 [Chen et al. 2019],

ReStyle [Alaluf et al. 2021], UI2I [Huang et al. 2021]/Toonify

[Pinkney and Adler 2020], and StyleGAN-NADA [Gal et al. 2021]

(i.e., SG-NADA). Particularly, ReStyle, UI2I/Toonify, and SG-

NADA also use the pre-trained StyleGAN generators for image

translation. Note that we use the reference-based SG-NADA

in the comparison, the results of text-based SG-NADA can be

found in the supplement. For non-StyleGAN-based methods, we

retrain their models using our dataset for a fair comparison. For

StyleGAN-based methods, all methods use the same pre-trained

models as ours. Please refer to the supplementary document

for more details of these methods. Note that different from our

method, none of them employ the structure information explicitly.

5.3 Evaluation Metrics

For the quantitative comparisons, we use two metrics: Fréchet In-

ception Distance (FID) [Heusel et al. 2017] and Learned Per-

ceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018], for

evaluating the realism and quality of outputs translated by differ-

ent methods. FID computes the Wasserstein-2 distance between

the distribution of generated and target images and the lower the

better. As for the LPIPS, we follow UI2I [Huang et al. 2021] that

uses it for evaluating the diversity of generated images and se-

mantic consistency between the source inputs and the generated

results. For measuring the diversity, we calculate the LPIPS dis-

tance between two images randomly selected from the generated

results.We denote this metric as LPIPS-d and the higher the better.

For measuring the semantic consistency, we calculate the LPIPS be-

tween sources and the generated images, which is represented as

LPIPS-s and the lower the better for this metric.
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Fig. 5. Qualitative comparison of our method with state-of-the-art methods on portrait-to-anime task. Note that results from other methods have serious

artifacts either on structure deformation or appearance consistency.

5.4 Qualitative Comparison

In this section, we first present the qualitative comparisons on

the portrait-to-anime task. Different from the traditional I2I

translation, portrait-to-anime is a much more difficult task since

it needs large structure deformations and appearance variations.

The comparison results can be seen in Figure 5 (comparison with

UNIT [Liu et al. 2017], CouncilGAN [Nizan and Tal 2020], and

ACLGAN [Zhao et al. 2020] can be found in the supplementary

materials due to the limited space). We can see that most of

the competitors cannot synthesize plausible results. Though

much progress has been gained by CycleGAN [Zhu et al. 2017],

MUNIT [Huang et al. 2018], and DRIT++ [Lee et al. 2020] on

the common image translations, they fail on the tough portrait-

to-anime task that needs both structure deformation and style

transfer. Particularly, the results produced by CycleGAN [Zhu

et al. 2017] preserve appearance information with the input but

fail to achieve plausible anime structure.

Except for the unsatisfactory structure, MUNIT [Huang et al.

2018] cannot preserve the color-consistency of the source input.

Cooperated with the attention module, UGATIT [Kim et al.

2020] is more reasonable on the structure deformation than

previous works, but the translated results cannot handle the

deformation of the local regions, and the quality of outputs is not

high. As shown in the last row of Figure 5, the result produced by

UGATIT [Kim et al. 2020] presents the blurry facial components

with noticeable artifacts. AnimeGANv2 [Chen et al. 2019] is an

unsupervised method that learns an anime filter, and therefore

it can only change the rendering style. UI2I [Huang et al. 2021]

also uses a pre-trained StyleGAN generator and the shared latent

space assumption. It can produce plausible results, but loses the

semantic consistency and identity information with the sources,

especially on the profile faces. Moreover, their synthesized results

are monotonous, as they share the same facial components.

Another StyleGAN-based method Restyle [Alaluf et al. 2021]

can handle the structure deformation more than other methods,

but it generates a misty appearance. SG-NADA [Gal et al. 2021]

focuses more on text-driven I2I, and a pre-trained CLIP [Radford

et al. 2021] is too general to provide a specific representation of

anime style. Thanks to our disentangled encoders, we can provide

explicit guidance to the structural deformation. Another interest-

ing observation is that UNIT [Liu et al. 2017], MUNIT [Huang

et al. 2018], and DRIT++ [Lee et al. 2020] also utilize the idea of

structure and appearance disentanglement, but their image-level

disentanglement cannot work for anime translation. Our latent-

space disentanglement presents a reasonable and consistent shape

deformation with the source inputs. In addition, our generated

results are more visually pleasing with harmonious colors. More

importantly, our method can capture the unique characters of the

input, even the finest expressions, and the translated faces are

plausible and diverse.

The qualitative comparison on anime-to-portrait task can be

seen in Figure 6. Same as the portrait-to-anime task, we can see

that most of the generated portraits show weird faces, which in-

dicates that they cannot handle the difficult structure deforma-

tions, as well as the appearance transformations. UI2I [Huang et al.

2021] generates a plausible result, however, their faces cannot be
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Fig. 6. Qualitative comparison of our method with state-of-the-art methods on anime-to-portrait task.

well aligned with the source animes, like the bangs and expres-

sions. In opposite, our generated results not only present the be-

lievable faces but also can preserve the semantic information with

the source animes. It is worth mentioning that the portrait and

anime images are aligned with different criteria, such that the sam-

ple distributions are different (e.g., anime heads tend to be smaller).

This problem is well addressed by the involved domain-adaptation

and adversarial losses in our method.

5.5 Quantitative Comparison

The quantitative comparison on portrait-to-amine and anime-to-

portrait are shown in Table 2, respectively. We can see that our

model outperforms most of the other methods on three metrics

by a large margin. AnimeGANv2 [Chen et al. 2019] presents the

best performance on LPIPS-s metric. This is because AnimeGANv2

applies an image filter to the input and does not change the

shapes of the objects (see Figures 5 and 6). Our performance on

the LPIPS-s metric indicates that our model has a better trans-

lation ability and produces semantic consistent results. We be-

lieve that this improvement attributes to our parsing encoder,

which provides explicit guidance on the translation process. In

addition, our superiority on the LPIPS-d and FID metrics indi-

cates that our model can capture the distribution of target images

and synthesis of diverse images. To demonstrate our robustness

in real-world scenarios that ground truth parsing maps are un-

available, we replace the input ground truth parsing maps by the

predicted parsing maps (using DANet [Fu et al. 2019]), denoted

as “Ours-Pred” in Table 2. We can see it achieves a close perfor-

mance to using ground truth inputs, because of (1) parsing re-

sults are sufficiently accurate, and (2) subtle differences will not

Table 2. Quantitative Comparison of our Method with State-of-the-Art

Methods on Portrait-to-Anime and Anime-to-Portrait Tasks

Methods
Portrait-to-Anime Anime-to-Portrait

FID↓ LPIPS-s↓ LPIPS-d↑ FID↓ LPIPS-s↓ LPIPS-d↑

CycleGAN 101.8 0.442 0.580 118.9 0.597 0.529

UNIT 105.5 0.542 0.576 114.9 0.576 0.561

MUNIT 101.8 0.558 0.585 105.6 0.553 0.521

UGATIT 105.6 0.455 0.553 147.2 0.602 0.570

DRIT++ 99.3 0.590 0.567 106.9 0.559 0.457

CouncilGAN 109.3 0.623 0.575 129.8 0.678 0.494

ACLGAN 118.1 0.496 0.466 141.3 0.544 0.517

UI2I 105.9 0.597 0.432 127.8 0.634 0.400

AnimeGANv2 153.9 0.301 0.571 172.2 0.255 0.588

SG-NADA 176.3 0.645 0.401 146.5 0.682 0.449

ReStyle 132.3 0.497 0.498 119.4 0.550 0.504

Ours 91.9 0.421 0.603 81.4 0.505 0.610

Ours-Pred 91.8 0.421 0.599 81.4 0.502 0.610

↑ denotes the higher the better and vice visa. The best results are marked in bold.
“Ours-Pred” indicates the results using predicted parsing maps as input.

affect the generation quality (qualitative results can be found in the

supplement).

5.6 Ablation Studies

In this subsection, we analyze the efficacy of the main components

in the network architectures and the losses design of the proposed

method.We first set a baseline calledVanilla Encoder, by directly

using the architecture and training scheme of pSp [Richardson

et al. 2021] as our encoder. It takes the parsing map of an anime

as input, and the model learns to generate its ground truth anime
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Fig. 7. Ablation studies on network architectures (i.e., “Vanilla Encoder”, “w/oWS”, “w/oWS − P”, “w/o PE”, and “w/o FaceBank”) and loss function

designs (i.e., “w/o Lcp ”, “w/o Lda”, and “w/o Ladv ”). Each of the components make an essential contribution to the final quality of the results.

under a supervised setting (similar to GAN inversion, i.e., parsing

branches only and the green regions is removed in Figure 4). We

further compare our full model with seven another variants: (1)

w/oWS, we apply different parsing encoders and style encoders

for anime and portrait domains (i.e., not shared during training

and testing); (2) w/oWS − P, we use two individual parsing en-

coders for two domains and a shared style encoder; (3) w/o PE,

by removing the parsing encoder. We map the source input to

the target one using a single appearance/image encoder; (4) w/o

Lcp , by removing the color-preservation loss; (5) w/o Lda , by re-

moving the domain adaption loss; (6) w/o Ladv , by removing the

adversarial loss; and (7) w/o FaceBank, by removing FaceBank

aggregation during the testing. We show qualitative and quan-

titative results on both portrait-to-anime and anime-to-portrait

tasks.

Qualitative Comparison. The qualitative comparisons of dif-

ferent variants are shown in Figure 7. Though the Vanilla Encoder

can produce plausible results, without the elaborated disentan-

gled encoders and loss functions, it cannot preserve the appear-

ance of the source inputs (e.g., the hair color). The variant “w/o

WS” trains two individual encoders for two domains, the source

encoders can be only trained with unsupervised losses. Without

supervision from the target domain (e.g., reconstruction of target

inputs), the structures of the outputs cannot be consistent with

the inputs. For example, the hairstyle around the forehead in 1st

row is inconsistent with the input portrait. The same inconsistency

problem also emerges in the results of variant “w/o WS − P”,

since its source parsing encoder also only trained without super-

vision from the target domain. In contrast, our results preserve

more structural consistency with the inputs by sharing the pars-

ing encoders, demonstrating that our disentangled encoders are

domain-agnostic that can be applied across domains. By compar-

ing two variants with our full model, we draw the conclusion that

the parsing encoder sharing strategy plays a vitally important role

in our model. That is because the domain gap between portraits

and animes mainly exists in the structure, and our parsing en-

coder can narrow it effectively. The images translated by the vari-

ant “w/o Lcp ” present the gray and dim styles compared with the

real animes, showing that our color-preservation loss can narrow

the color-domain gap effectively. The same efficacy also occurred

on the “Lda ” and “Ladv ”. Without these two losses, the translated

results cannot yield vivid animes. The translated results produced

by the variant of “w/o FaceBank” may contain the artifacts in small

regions, such as the region of hair in the example of the first row,

and region of the right eye in the example of the second row. In-

stead, our FaceBank aggregation can eliminate these artifacts effec-

tively. With our whole model, the generated results can preserve

both structure and appearance consistent with the input portraits.

Moreover, vivid details (e.g., the highlights on the hairs) are also

presented in the final results like those that appeared in the real ani-

mes. The above findings and conclusions drawn from the portrait-

to-anime task are also fit in the anime-to-portrait results as shown

in the last two rows of Figure 7.

Quantitative Comparison. The quantitative comparisons of

different variants can be seen in Table 3. From the results, we can

see that each component and loss can boost the quantitative perfor-

mance on two tasks. The Vanilla Encoder presents the worst quan-

titative results on three metrics. “w/oWS” achieves the second-

worst overall performance, mainly due to the shape and struc-

ture inconsistency as shown in Figure 7. The variant of “w/o PE”

achieves the highest value on LPIPS-s metric in two tasks, which

evidences that the parsing encoder plays vital importance on the

semantic consistency. In addition, the color-preservation loss, ad-

versarial loss, and domain adaption loss influence the FID metric

a lot, which indicates that these three losses can align the distri-

bution of translated results to the real targets. With the help of

FaceBank aggregation, our model further improves the quantita-

tive performances as desired.
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Table 3. Quantitative Results of Ablation Studies on Portrait-to-Anime

and Anime-to-Portrait Tasks

Variants
Portrait-to-Anime Anime-to-Portrait

FID↓ LPIPS-s↓ LPIPS-d↑ FID↓ LPIPS-s↓ LPIPS-d↑

Vanilla Enc. 162.4 0.514 0.536 138.7 0.587 0.441

w/oWS 147.0 0.535 0.508 123.4 0.595 0.432

w/oWS − P 129.6 0.521 0.514 116.2 0.574 0.439

w/o PE 119.1 0.564 0.490 106.5 0.612 0.443

w/o Lcp 128.4 0.509 0.582 100.4 0.584 0.568

w/o Ladv 128.3 0.522 0.565 109.7 0.553 0.453

w/o Lda 126.9 0.481 0.560 112.4 0.570 0.511

w/o FaceBank 93.7 0.433 0.591 92.2 0.521 0.588

Full 91.9 0.421 0.603 81.4 0.505 0.610

↑ denotes the higher the better and vice visa. The best results are marked in
bold.

Fig. 8. Real anime editing based on the parsing maps of portraits and ani-

mes. When the local components in the parsings are modified (e.g., ears in

the 1st and 3rd rows, hairstyle in 2nd and 4th rows), the resulted animes

are adjusted accordingly.

6 APPLICATIONS

Not limiting to the portrait-to-anime and anime-to-portrait trans-

lations, our model can support various other applications, includ-

ing parsing-based editing, manga-to-portrait translation, video

translation, manga-to-anime translation, appearance-based edit-

ing, and semantic-based editing (the last three applications can be

found in the supplement). Artists often edit the anime to achieve

the desired goals. With our model, designer can adjust the resulted

anime in structure and appearance individually.

6.1 Parsing-based Real Image Editing

The parsing branch of our disentangled encoders embeds the pars-

ing map into the latent space. As a result, we can edit the resulted

animes through the parsing maps. Note that the input to our pars-

ing encoder is not limited to portrait parsing map, and parsing

maps of existing animes are also acceptable. Given an input real

anime, we can encode it using our disentangled encoders to obtain

corresponding latent code, then we follow PTI [Roich et al. 2022]

to fine-tune the anime generator for the faithful reconstruction of

anime image (see 1st and 2nd rows of Figure 8). When taking a

portrait input, we can also edit the corresponding parsing map to

change the resulted animes (see 3rd and 4th rows of Figure 8). We

can see that the resulted animes are modified based on the parsing

maps. For example, in the 1st row of Figure 8), the face becomes

rounder and the ears appear after the parsing map is edited. Sim-

ilar observations can be found in the other samples, such as the

changes in haircut (2nd and 4th rows of Figure 8). Besides, our

modification is bounded to the local regions by maintaining other

unchanged facial features.

6.2 Manga-to-Portrait Translation

Manga, aka black-and-white Japanese comics, becomes one of the

essential pop arts around the world. Many readers want to hal-

lucinate the manga characters in the real world but failed to do

so. Here, our model can be extended to manga translation. Our

StyleAnime also supports various manga translation tasks after

manga data processing (details can be found in the supplement).

In this application, we need a reference image for providing the

style code (also known as style-mixing in Abdal et al. [2019]). To

the best of our knowledge, no previous works target the manga-

to-portrait translation. We compare our method with two state-of-

the-art sketch-to-portrait works, that is, DeepFaceDrawing [Chen

et al. 2020] and pSp encoder [Richardson et al. 2021]. For a fair

comparison, we also provide the same reference image to pSp en-

coder. The results are shown in Figure 9. The facial features are not

preserved by DeepFaceDrawing, such as the haircut, facial expres-

sion, and bangs. The results of both previous methods lack vivid

details and those from pSp cannot preserve the face shapes with

the inputmangas. However, ourmodel can synthesize high-quality

portraits, aligning with the facial features of the input manga

images.

6.3 Video Translation

Our StyleAnime achieves satisfied translations on static images.

However, when applying our method to videos, the translated

videos present incoherent results between neighboring frames

(such as flickering). The reason is that spatial information may be

lost because of the abstracted nature of the latent space. In this

subsection, we propose two new losses for eliminating the discon-

tinuity of the video-based translation.

6.3.1 Latent Code Smoothing Loss. The translation is con-

trolled by the latent codes completely. For obtaining the coher-

ent translation video, we first proposed a latent code smoothing

loss that enforces the smoothness of the predicted latent codes in

a video. Particularly, given sequential frames {x0, x1, . . . , xn }, we

can get corresponding latent codes {w0, w1, . . . ,wn }. The smooth

loss is defined as:

Llcsc =
�
�
�
�

1

2
(wi+1 +wi−1) −wi

�
�
�
�2
. (15)

This loss enforces the smoothness of neighbor latent codes, which

guarantees the temporal coherence of translated frames.
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Fig. 9. Comparison on manga-to-portrait translation. The appearances of

our results and pSp are assigned according to the reference images.

Input Non-Smoothed Smoothed

Fig. 10. Portrait-to-Anime translation on video. Non-Smooth denotes that

our video continuity losses are disabled. This figure contains animated

videos, which are best viewed using Adobe Acrobat. Video results can be

found in the supplement.

6.3.2 Frame Interpolation Loss. Besides the latent code smooth-

ing loss, we further propose a frame interpolation loss that applies

on the translated frames directly. Given a triplet neighboring trans-

lated frame {x̂t−1, x̂t , x̂t+1}, we perform the frame interpolation

based on x̂t−1 and x̂t+1 by a pre-trained frame interpolationmodel,

and minimize the distance between interpolation results and x̂t to

guarantee the frame coherency, which can be presented as:

Lf ic = | |M (x̂i−1, x̂i+1) − x̂i | |2, (16)

where M (·, ·) is the pre-trained anime frame interpolation model,

and we use AnimeInterp [Siyao et al. 2021] in this paper.

6.3.3 Portrait-to-Anime on Video. For each input video, we fine-

tune our StyleAnime model on this video using the above two

losses with original loss on images in Equation 10 as:

Lvideo = λ6Llcsc + λ7Lf ic , (17)

Lf inal = L + Lvideo , (18)

where λ6 and λ7 denote the weights for balancing loss terms and

they are both set as 1. We set the learning rate as 1e−4 and itera-

tions as 5,000. As shown in Figure 10, we obtain the portrait2anime

results on real videos. The results show that our method not only

demonstrates visually pleasing results on individual frames, but

also can maintain the smoothness and continuity when applied to

video.

7 CONCLUSION

In this paper, we resolve the troublesome portrait-to-anime trans-

lation by introducing the anime-parsing dataset and proposing the

disentangled style encoders by absorbing the prior knowledge of a

pre-trained StyleGAN model. The anime-parsing dataset connects

the anime semantics with styles, which provides the explicit sep-

arate signal between structures and appearances to our disentan-

gled encoders. The encoders are trained under our tailored losses,

which handle structure and appearance consistency meanwhile do-

main adaptation problems. Furthermore, we develop a FaceBank

aggregation method that aligns the generated latent codeswith the

distribution of a pre-defined latent space. Extensive experiments

demonstrate the values of our new dataset and method, resulting

in an excellent solution on portrait-to-anime translation. Further-

more, our model also supports various interesting applications, in-

cluding parsing or appearance-based anime editing, and manga-

translation task.

Limitations.One limitation of ourwork is thatwe cannot trans-

late the male portrait or anime correctly, as shown in Figure 11(a).

We can see that the predicted parsing maps by our model are ac-

curate, which demonstrates our parsing model is gender-agnostic.

However, the model still translates a male input into a female

anime/portrait. This limitation is caused by the lack of large-scale

male anime images for training the base StyleGAN. Besides, as

shown in Figure 19 in the supplement, a similar training dataset

limitation of profile faces prevents our method from generating

portraits with large angles. These two problems and other data

bias-related problems (e.g., age) can be solved in the future by

proposing a large attribute-balanced anime dataset. On the other

hand, our model cannot translate the small or unusual accessories

accurately. As shown in Figure 11(b), the earrings, necklaces, and

hood are missed in the translated results. We believe that because

those unusual accessories cannot be captured by the pre-trained

StyleGAN generator. Thus, we cannot obtain a precise latent code

in its latent space. Our global constraints added on structure and
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Fig. 11. Examples of failure cases. Although our parsing model is gender-

agnostic, our translation cannot handle the male portrait/anime shown

in (a) due to the data deficiency of the base StyleGAN training. Similar

problem occurs for the small or unusual accessories in (b).

appearance can also lead to some minor defects, such as asymmet-

ric eye sizes and salient color preservation in anime translation.

This might be mitigated by adding an adaptive symmetrical or

locality-aware constraint, and we leave this problem in the future

work.
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