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Abstract—Even though deep neural network-based conditional 

image synthesis has shown impressive advances in terms of image 

quality, they still fall short of dealing with domain-dependent global 

and local styles and distinct shape representations of synthesized 

images. To address this issue, we propose a novel GAN-based 

conditional image synthesis model that incorporates a conditional 

normalization layer called IAN for style and edge-weighted shape 

enhancing loss for shape. Comparative experiments and ablation 

studies on popular and different domain datasets show that the 

proposed model outperformed other popular image-to-image 

translation model for diverse image domains. 
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I. INTRODUCTION

Conditional image synthesis refers to the generation of 
photorealistic images for condition images given as input. 
Traditional methods for this have been to concatenate image 
fragments or use image collection to compute the resulting 
image [1]. Recently, deep neural networks have been used to 
directly learn mappings between inputs and outputs [2,3]. In 
particular, Generative Adversarial Networks (GANs)-based 
methods have attracted much attention due to their versatility 
and superior quality of generated images. Depending on the 
domain of the input data and the output image, conditional 
image synthesis can be defined by various tasks [4,5] such as 
colorizing, transforming styles, and editing images. 

To generate good quality of images for conditional images 
(i.e., image-to-image translation), we need to consider two types 
of semantic elements in images: style and shape. Style 
representation refers to spatially and semantically appropriate 
color expression and surface pattern. On the other hand, a shape 
representation describes the structural shape of an object in an 
image. Recent studies on style representation have used various 
conditional normalization layers that work for style transfer and 
high-resolution image synthesis [6,7,8]. These conditional 
normalization layers effectively propagate semantic information 
of input data to neural network by adaptively modulating 
intermediate feature maps. On the contrary, works on shape 
representation have used edge maps to increase the clearness of 
output images in super-resolution tasks [9,10] or utilize 
perceptual loss function [11] based on a pretrained network to 
preserve image content. Despite a lot of efforts so far, it is still 
challenging to properly handle both style and shape 

representations in conditional image synthesis. Specifically, in 
style representation, it is difficult to effectively control both the 
global and local styles of an image. Likewise, in shape 
representation, edge maps are difficult to use except for super-
resolution tasks, and the perceptual loss function cannot 
guarantee performance in domains where the pretrained network 
has not learned [11]. 

In this paper, we propose a novel GAN-based conditional 
image synthesis model based on improved style and shape 
representations. For style representation, we propose a 
conditional normalization layer called integrated adaptive 
normalization (IAN). IAN enhances both global and local style 
representations by combining functional strengths of existing 
conditional normalization layers. For shape representation, we 
propose an edge-weighted shape enhancing loss to make the 
shape of generated images clearer by using an edge map of real 
images extracted by canny edge detector. This loss function has 
advantages in terms of model complexity and ease of application 
as it does not require a separate pretrained network for edge 
information. As these two methods have minimal impact on 
each other's purpose (style and shape representation), both can 
be easily applied to model training simultaneously. Various 
comparative experiments that we carried out using popular 
datasets such as Cityscapes, CelebAMask-HQ, and High-
resolution anime show that our proposed model outperforms 
other existing techniques. In addition, we demonstrate the 
effectiveness of the proposed model through extensive ablation 
studies. 
The main contributions of this paper are as follows. 

We propose a conditional normalization layer called
IAN to handle global and local texture representations
effectively.
We show how to use edge-weighted shape enhancing
loss to improve shape clarity in generated images.
We verify the performance and impact of the proposed
method through comparative experiments and ablation
study using various datasets.

The structure of this paper is as follows. In Section 2, we 
introduce several related works. Section 3 describes in detail the 
proposed model and Section 4 verifies the performance and 
impact of the proposed model through comparative experiments 
and ablation study. Finally, Section 5 concludes this work. 

This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) 
through the International Cooperative R&D program. (Project No. P0017192)  
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II. RELATED WORKS 

2.1 Deep Generative Models 

Recently, various deep generative models such as generative 
adversarial networks (GANs) [12] and variational autoencoders 
(VAE) [13] have shown good performance in generating 
realistic images compared to other approaches. GAN consists of 
a generator and a discriminator. The generator tries to produce a 
realistic image so that the discriminator cannot distinguish the 
synthesized image from the real image. GANs generate random 
images by default, but conditional image synthesis is also 
possible by adding condition data of output images during 
training.  

Depending on the type of input data, GANs for conditional 
image synthesis are divided into several types. For instance, the 
class conditional GANs [14] learns to synthesize images 
corresponding to the binarized category labels. GANs can also 
be fused with natural language processing models to generate 
images based on text [15,16]. Another interesting type of GAN 
is to perform image-to-image translation [17,18] using images 
as input and output.  

2.2 Normalization Layers 

The normalization layer was a key factor in the development 
of deep neural network structure. Normalization layers 
explicitly control activations, the intermediate outputs of the 
neural network, to improve performance. For instance, Batch 
Normalization (BatchNorm) [19] of Inception-v2 network 
stabilized the training of classification networks and improved 
their performance by preventing internal covariance shift. Since 
then, several normalization layers have been proposed for 
various purposes. For example, Instance Normalization 
(InstanceNorm) [20] bleaches the style information of the input 
image for style transfer. Layer Normalization (LayerNorm) [21] 
is structurally suitable for sequential models such as RNN. 
Group Normalization (GroupNorm) [22] is an alternative to 
BatchNorm to improve memory efficiency. These normalization 
layers are classified as unconditional normalization layers 
because they are not dynamic with respect to external condition 
data. 

A conditional normalization layer, on the other hand, aims 
to inject information from external condition data into the 
network. Conditional normalization layers usually work in two 
steps. First, the output of each layer is normalized with zero 
mean and unit deviation. Second, the mean and standard 
deviation of the output are modulated using affine 
transformation inferred from the external condition data. Affine 
transformation inference uses additional neural network 
contained in the conditional normalization layer. For instance, 
Conditional Batch Normalization (Conditional BatchNorm) [8] 
and Adaptive Instance Normalization (AdaIN) [6] adjust the 
global style representation of the output. They were used for 
style transfer task and various vision work. Spatially Adaptive 
(De)Normalization (SPADE) [7] applied spatially-adaptive 
affine transformation using semantic maps. Similarly, Spatial 
Feature Transform (SFT) [23] proposed spatially dynamic 
feature modulation layers for super-resolution task. Overall, 
these works focused on the adjustment of either global or 
spatial(local) style representation. We combine the functional 

structure of existing conditional normalization layers to handle 
both styles. 

2.3 Shape Enhancment 

In image synthesis, it is important to properly reconstruct the 
clarity of the shape of an object. Popular reconstruction loss 
functions for image synthesis include mean-squared error 
(MSE), root mean-squared error (RMSE), and mean-absolute 
error (MAE). Although these pixel-wise mean error-based loss 
functions are generic, they do not correlate well with human 
perceived quality. This is because they do not consider salient 
features inherent in the image [9]. Therefore, simply optimizing 
these loss functions does not always lead to optimal perceptual 
shape representation of the output image. Recent approaches to 
address this problem include perceptual loss [11] and edge-
based methods [9, 10]. Perceptual loss calculates the perceptual 
error between the output image and the target image based on 
the high-level features extracted from the pretrained VGG 
network [24] and replaces MSE loss in various computer vision 
tasks [25]. Edge-based methods enhance image clarity by using 
edge information, an intuitive alternative to shape representation. 
Several works on semantic segmentation added sub-branch 
networks to perform edge prediction for segmentation boundary 
refinement [26, 27]. Similarly, in the super-resolution task, edge 
detection branches were added to the GAN-based model to 
sharpen the high-frequency and shape information of the image 
[10, 28]. However, edge-based methods are limited to semantic 
segmentation or super-resolution tasks despite their rich shape 
representation of edges because the edges can optimize even 
very detailed shape information. So, we extract only prominent 
edges through edge thresholding and using them for image-to-
image translation. 

III. METHODS 
In this paper, we propose a method for improving the style 

representation and shape representation of generated images in 
GAN-based image-to-image translation. To do that, we first 
introduce a new conditional normalization layer, IAN to 
enhance style representation. Then, we describe our edge-
weighted shape enhancing loss for shape representation. Lastly, 
we show the structure of our proposed model, loss functions, and 
additional elements for conditional image synthesis. 

3.1 Integrated Adpative Normalization 

IAN learns a mapping function that converts conditional 
images into realistic images, taking into account both global and 
local style representations. As in other normalization layers, 
activations are normalized and then modulated with the learned 
scale and bias. Let  be the activations of the -th layer in a deep 
convolution network for a batch of  samples, and let , , 
and  be the number of channels, height, and width of  
activations, respectively. Also, assume that   
represents a condition image with height H and width W. Then, 
the activations are normalized to unit distribution in channel-
wise manner for . The 
resulting normalized activations,  can be defined by Eq. (1) 

  (1) 
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Here,  and  represent the mean and standard deviation of 
activations in channel c, respectively, and can be defined by the 
following equations. 

  (2) 

  (3) 

As shown in Fig. 1, IAN consists of three branches: shared 
branch, global style branch, and local style branch. Each branch 
has three convolutional layers. The shared branch converts the 
condition image  into a shared style feature . The shared style 
feature is passed as input to the global style branch and the local 
style branch to calculate the modulation parameters. The global 
style branch produces global style modulation parameters  
and  for scale and shift. Respectively. They are multiplied and 
added to the normalized activations in a channel-wise manner: 

   (4) 

Here,  indicates channel-wise multiplication and  denotes 
globally stylized activations. After adjusting the global style of 
the activations, the spatial and local style of the image need to 
be refined. As in the global style branch, the local style branch 
produces local style modulation parameters  and  for scale 
and shift, respectively. They are multiplied and added to the 
globally stylized activations passed through the activations 
function  in element-wise manner: 

   (5)  

Here,  indicates element-wise multiplication and  denotes 
final stylized activations with global and local style 
representations for realistic image synthesis. 

In fact, IAN integrates and generalizes several existing 
conditional normalization layers. For instance, if we remove the 
global style branch, reduce the number of convolution layers in 
the branch to one, and restrict the condition image to 
segmentation mask, then IAN becomes SPADE [7]. Similarly, 
if we remove the local style branch, replace the its convolutional 
layer with a fully-connected layer, and replace the condition 
image with a real image, IAN becomes ADAIN [6]. SPADE and 

ADAIN are complementary. In other words, the former is good 
at extracting rich spatial and local style representations from 
segmentation masks, while the latter is suitable for texture 
transformations that manipulate the global style of an image. 
The global and local branches of IAN accommodate both the 
advantages of conditional normalization layers using channel-
wise or element-wise modulation. IAN also supports various 
condition image types (e.g., segmentation mask, sketch image). 
We used deeper convolutional layers (3 layers per branch) 
compared to SPADE for better performance [30]. In addition, 
we did the global stylization first and then the local stylization. 
That's because doing so has been more effective empirically. 

3.2 Edge-weighted Shape Enhancing Loss  

Images generated from image-to-image translations should 
retain their original intended shape. Although the adversarial 
loss function of GANs and the mean error-based reconstruction 
loss function described in Section 2.2 retain the shape 
information to some extent, they do not guarantee a satisfactory 
shape representation. Adversarial loss introduces undesirable 
distortion in the output image because it is difficult to converge 
to the optimal point [29] and mean error-based reconstruction 
loss does not consider key features of the image, resulting in 
blurriness in the image [9,12]. We use both shape information 
of real images and mean error-based reconstruction losses to 
guide the network to generate shape representations that are 
considered perceptually important. In particular, we use the edge 
map produced by the Canny edge detector as shape information.  

Now, we describe our edge-weighted shape enhancing loss 
in detail. Basically, we focus on pixels belonging to the edge 
area in the mean error-based reconstruction loss. Let   
and   be the output image of the generator with height 
H and width W and the correct target image for the output image, 
respectively. In addition,  is the binary edge map of 
the target image. As shown in Fig. 2, we can get the edge map E 
from the target image using the Canny edge detector [31]. In 
edge filtering, we set the low and high thresholds heuristically 
so that unnecessary edges are removed and only key edges are 
left. These threshold settings for edge extraction can vary by 
data domain. Then, the edge-weighted shape enhancing loss, 

, is defined as the average of the element-wise 

 
Fig. 1. Structure of IAN. IAN integrate the operations of existing normalization layers and effectively manipulates the global texture and local details simultaneously. 
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multiplication of the binary edge map and the mean error-based 
reconstruction loss for : 

  (6) 

Fig. 3 visualizes the procedure for calculating the shape 
enhancing loss. We chose MAE as the mean error-based 
reconstruction loss. The shape enhancing loss optimizes only the 
portion that corresponds to the shape representation of the image 
due to the edge map. The shape enhancing loss is then combined 
with the reconstruction loss, , to give the pixel loss, 

 by Eq. 8. 

  (7) 

  (8) 

Here,  adjust the ratio of the shape enhancing loss to 
reconstruction loss and we experimentally set  to 10. 
Pixel loss guides the network to produce sharper edges 
compared to conventional reconstruction loss. This method can 
be used for various image-to-image translation tasks with a 
minor modification and leads to more effective shape 
representation. 

3.3 Proposed Model 

In this section, we describe the overall structure of our 
proposed model. Firstly, we introduce GAN-based image-to-
image translation network with IAN and then describes the loss 
functions including shape enhancing loss. 

Fig. 4 shows the generator architecture of the proposed 
model. IAN encodes and feeds information about condition 
images at each layer. So, we can remove the encoder from 
generator of the encoder-decoder structure [32]. This 
simplification applies similarly to SPADE and ADAIN, which 
helps to make the model lighter [7]. Our generator consists of 
several ResNet blocks [33] and upsampling layers. As shown in 
the figure, IAN is implemented in the normalization layer of the 
ResNet block. As each ResNet block operates at a different scale, 
we downsample the input condition image to the IAN to match 
the resolution. The initial input of the generator is also the 
downsampled condition image. 

We also used the multi-scale discriminator of pix2pixHD 
[34], which consists of two discriminators: one receives the 
original input image and the other receives its half resolution 
image. Each discriminator simply consists of convolutional 
layers. We also applied spectral normalization [35] to all layers 
of the generator and discriminator. This modification 
contributes to stable model training. 

Now, we describe the loss function that we used to train our 
network and its role. First, we consider the adversarial loss 

 for training generator and discriminator. We chose the 
least square adversarial loss [36] with conditional input as the 
adversarial loss for generator G and discriminator D: 

 

  (9) 

In the proposed model, the least square loss experimentally 
performed better than the non-saturate loss [14] or Wasserstein 
loss [29]. In addition, we applied perceptual content loss, 

 for better shape representation [11]. 

   (10) 

Here,  is -th intermediate layer of pretrained VGG network 
and , ,  are the number of channels, height, and width of 
intermediate feature map , repectively. We employed 
VGG 19 [34] as our pretrained VGG network. Perceptual 
content loss optimizes shape information by considering the 
high-level features of the image. Although pixel loss alone 
achieved some sufficient performance, we found that perceptual 
content loss prevented some image synthesis failures. In 
addition we used feature matching loss  [12], a popular 
training stabilization technique for GAN models: 

  (11) 

Assuming  is -th intermediate layer of the discriminator D, , 
the final loss function  is derived as: 

   

 
Fig. 2. Edge maps extracted from target images. The thresholds of first and 
second row are 5, 100 and 12, 100 respectively. 

 
Fig. 3. Visualization of shape enhancing loss. In the edge map, the value of edge 
part is 1 and the rest is 0. 
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   (12) 

Here,  is the weight hyper-parameter for  and we set 
, , , and  to 1, 1, 10, and 10, respectively. 

IV. EXPERIMENT 

4.1 Experimental setup 

 The learning rates of the generator and discriminator were 
set to 0.0001 and 0.0004 [36], respectively. We used ADAM [38] 
as the optimizer and set  and  to 0 and 0.999, respectively. 
All experiments were performed on NVIDIA RTX 3090 GPU. 
All models were selected at the highest performance point 
within the acceptable training period. 
Datasets: We also used three different datasets to evaluate the 
performance of different image-to-image translation tasks. All 
images in the datasets were resized to 256  256 for the 
experiment. A brief description of the datasets used is as 
follows. 

 Cityscapes dataset [39] is a large-scale database which 
focuses on semantic understanding of urban street scenes. 
It provides semantic and dense pixel annotations for 8 
categories (flat surfaces, humans, vehicles, constructions, 
objects, nature, sky, and void). The dataset consists of 
around 3000 annotated images with the size of 256 x 256. 
Images were collected over several months in 50 cities 
during the day and in varying weather conditions. The low 
and high thresholds of the Canny edge detector for shape 
enhancing loss were set to 8 and 100, respectively. We 
used 2500 images for model training and 500 images for 
validation. 

 CelebAMask-HQ[40] is a large-scale face image dataset 
that has 30,000 high-resolution face images selected from 
the CelebA-HQ[41]. Each image has segmentation mask of 
facial attributes corresponding to CelebA-HQ. The masks 
of CelebAMask-HQ were manually annotated with the size 
of 512 x 512 and 19 classes including all facial components 
and accessories. The low and high thresholds of the Canny 
edge detector for shape enhancing loss were set to 5 and 100, 

respectively. We used 29,700 images for model training and 
300 images for validation. 

 High-Resolution Anime Face Dataset [42] provides high-
resolution Japan-style animation face images. This dataset 
was created by manually filtering low-quality images from 
the character anime illustration dataset Danbooru2019 
Figures [42] and cropping only facial regions, including 
neckline, ears, and hats. All images are in 512  512 
resolution. We extracted sketch images from animation 
images using line distiller and used the sketch images as 
condition images. The low and high thresholds of the 
Canny edge detector for shape enhancing loss were set to 
12 and 100, respectively. We used 4,700 images for model 
training and 300 images for validation. 

Performance metrics: The Fréchet inception distance (FID) 
[37] is used to assess the quality of images. Unlike the earlier 
inception score (IS) [43], which evaluates only the distribution 
of generated images, the FID compares the distribution of 
generated images with the distribution of real images that were 
used to train the generator. Practically, the FID score is 
calculated by the L2 distance of the mean and variance of the 
image feature map distributions extracted by pretrained 
Inception V3 [44]. A smaller FID score indicates better 
performance. 
Baselines: We compare our method with two representative 
image-to-image translation models, pix2pixHD and SPADE. 
pix2pixHD is a pix2pix-based conditional image synthesis 
framework for high-resolution. SPADE is another conditional 
image synthesis framework with normalization layer that 
encode spatial semantic information of condition image. We 
also construct two ablation models of our network, w/o IAN and 
w/o Shape Loss. In the former model, IAN is replaced by 
SPADE normalization layer. In the latter model, we remove the 
shape enhancing loss from model training.  

4.2 Comparison results 

Qualitative Results: Figure 5 compares the images generated 
by the proposed model, the existing models, and the ablation 
models. In the figure, we can observe that the images by the 

 
Fig. 4. (left) Structure of single residual block with IAN. IAN uses downsampled condition image X to modulate the activations. (right) Generator architecture of 
proposed model. Our generator consists of series connection of residual blocks and upsampling layers. The upsampling layer is omitted from the figure. Initial input 
of the first layer is also a downsampled condition image.  
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proposed model more effectively describe the style quality and 
shape according to the domain. That is, the proposed model 
reproduces the local style of a specific segmentation label while 
maintaining the global style according to the domain. Especially 
in the anime dataset, it can be difficult to express an appropriate 
style because the input image has only line information 
excluding spatial semantic labels. However, IAN effectively 

generated color expression of appropriate animation styles 
according to regions such as eyes, hair, and skin. In contrast, 
existing models and w/o IAN produced faded color. Fig. 6 
shows the binary edge maps of the generated images to evaluate 
shape representation. Our model produced sharper and more 
realistic edge maps compared to the existing models. In addition, 
the results of the ablation model w/o Shape Loss indicate that 
the shape enhancing loss contributes to shape representation. 
Overall, the proposed IAN and shape enhancement loss 
effectively perform style representation and shape 
representation. Fig. 7 provides more examples. 
Quantitative Results: Now, we evaluate the quality of the 
generated image using the FID score. As shown in Table. 1, our 
model outperforms the existing and ablation models for all 
datasets.  From the ablation models, we can see that IAN and 
shape enhancing loss are combined together to achieve the best 
image quality without other adverse effects. This is probably 
because the two methods are designed to optimize different 
objects (style and shape representation), with minimal influence 
on each other. 

TABLE I.   FID scores of our methods and comparative model. 
FID scores were measured using validation sets and same 
number of generated images. ‘CelebA’ and ‘Anime' denote 
CelebAMask-HQ and High-Resolution Anime Face dataset. 

Dataset pix2pixHD SPADE w/o IAN w/o Shape 
Loss Ours 

Cityscape 74.57 71.04 66.21 60.46 59.49 

CelebA 107.85 104.77 101.29 97.51 95.55 

Anime 113.29 105.92 102.06 96.00 93.41 

 
Fig. 5. Generated image comparison with existing methods and ablation models. Our methods generate more realistic images with diverse color expression and vivid 
shapes. Rows 1~2, 3~4, 5~6 are the results of Cityscape, CelebAMask-HQ, High-Resolution Anime Face dataset, respectively. (Please zoom for detail look) 
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V. CONCLUSION 
In this paper, we proposed a novel GAN-based conditional 
image synthesis model that improved style representation and 
shape representations. In particular, we enhanced global and 
local style representations using a conditional normalization 
layer called IAN, and improved the shape of generated images 
using a shape enhancing loss. In comparative experiments with 
two popular image-to-image transformation models on three 
popular datasets, the proposed model performed better in terms 

of style and shape representation. We also showed in the 
ablation study that IAN and the shape enhancing loss are 
combined together to achieve the best image quality without 
interfering with each other.  
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