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Abstract—In recent years, some advances have been achieved
in classification and object detection related to animation. How-
ever, these works do not take full advantage of the tags and
text description content attached to the anime data when they
are created, which restricts both the related methods and data to
unimodality, consequently leading to unsatisfactory performance.
In this paper, we propose a novel multimodal deep learning
network for Anime character identification and tag prediction by
exploiting multimodal data. Considering that in many realistic
scenarios, text annotations accompanying anime may be missing,
we introduce the concept of curriculum learning in transformers
to enable inference with only one modality. Another challenge lies
in that the existing dataset does not meet our demand for large-
scale multimodal deep learning. To train the proposed network,
we construct a new anime dataset Dan: mul that contains over
1.6M images spread across more than 14K categories, with an
average of 24 tags per image. To the best of our knowledge,
this is the first dataset specifically designed for multimodal
anime character identification. With the trained network, we can
identify the anime characters in images and generate the related
tags. Experiments show that our method achieves state-of-the-art
performance on Dan: mul in animation identification.

Index Terms—Anime character identification; Multimodal net-
work; Dataset; Tag prediction: Curriculum learning.

I. INTRODUCTION

Thanks to the transformer architecture [1] and large image-

text datasets [2]–[7], multimodal learning, especially vision-

language network has become a paradigm in various computer

vision (CV) fields. However, multimodal learning seems to be

underexplored when it comes to the animation domain.

In the literature, there are several works of image un-

derstanding related to animation. The earliest works [8]–

[10] focus on feature extraction of unimodal anime images.

However, both the fusion of different poses of the same anime

character or sketch-based methods to extract image features,

the performance is relatively poor. Subsequent works [11],

[12] study object detection in anime images based on facial

features, which have obvious limitations. Later, Nguyen et

al. [13] pioneered the multimodal approach, but its fusion

method is inefficient. Recently, Rios et al. [14] used a unified

structure to fuse modalities, but lacked modal alignment and

achieved only modest performance. In summary, even though

some attempts have been reported, there is no effective method

of modality fusion in the field of animation.

From another perspective, one major reason for the lack

of multimodal approaches in the field of animation is the

shortage of data. Recently, several anime datasets have been

proposed. However, there are still some problems with these

datasets. Some of them contain only images and lack text

description information, while others have difficulty in reach-

ing the number of image-text pairs required for large-scale

multimodal training. For example, Cartoon-11k [15] contains

11,120 images of 146 classes and each class having at

least 35 images. WebCaricature [16] is a dataset of 252

subjects with a total of 6,042 caricatures and 5,974 photos.

Manga109 [17] is a dataset containing 109 Japanese comic

books, up to 21,142 pages in total. Besides the lack of text

description information, these datasets are restricted to time-

honored animation and collect a limited number of images.

Some recent datasets, though may meet the demands of the

number and quality of images, have different focuses and

are not suitable for multimodal character identification. For

example, iCartoonFace [18], consisting of 389,678 images

of 5,013 identities, aims at cartoon face recognition, which

favors the application of object detection methods and is not

accompanied with appropriate text description information. To

solve these problems, we try to construct a general and large-

scale multimodal anime dataset.

In this paper, we build a new multimodal anime dataset

called Dan:mul and propose a Multimodal Fusion and Decou-

pling Network called MFDN for anime character identification

and tag prediction. As shown in Fig. 1, there are some critical

differences between our model and the existing unimodal

models, including the fusion of multiple modalities and the

tag prediction task. We focus on anime character identification

and our goal is to boost the accuracy using a large-scale mul-

timodal dataset and to find ways to help the model decouple

its dependence on text data, i.e., using multimodal data for

training, while using only images as input for inference in

line with the original unimodal task. In summary, our major

contributions are as follows:

First, we propose a general multimodal character identifica-

tion model MFDN by using anime data as raw vision and text

input. As shown in Fig. 1(b), in the training phase, the model

takes images and the corresponding tags as input. We use a

transformer-based encoder for both vision and text modalities
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(a) Existing unimodal learning framework. (b) Our multimodal fusion network.

Fig. 1. Comparison between the existing unimodal learning framework and our multimodal fusion network.

and also utilize a transformer block as the multimodal encoder

for modality fusion. The model is trained by recognizing the

identity of the anime character in the image and reconstructing

part of the tags. The introduction of Masked Language Model

(MLM) loss and the concept of curriculum learning [19]

stably increase the proportion of masked text information,

making the model progressively decouple the dependence on

text modality. As a result, the model achieves relatively high

performance in the inference phase with only vision modality

input, which is significant in real-life scenarios.

Second, we construct a large multimodal anime dataset

Dan:mul, which contains 1,616,238 images of 14,413 cat-

egories. There are 25,404 tag categories in total and an

average of 24 tags per image. In order to avoid long-tail

distribution, we eliminate image categories with less than 10

images and filter the tags in terms of content and quantity

to ensure the quality and generality of the dataset. Overall,

MFDN achieves better performance by utilizing Dan:mul

than DanbooruAnimeFaces:revamped (DAF:re) [20]. To the

best of our knowledge, Dan:mul is the first dataset designed

specifically for multimodal anime character identification with

an unprecedented number of image categories.

Last but not least, we furthre use MFDN to predict anime

character tags. As mentioned above, MFDN can use only

images as input in the inference phase, which enables it to

handle multi-label classification tasks. In addition, compared

to other transformer-based multi-label classification methods,

MFDN can predict much more tag categories to achieve a

generation-like effect. For example, traditional transformer-

based methods usually predict up to hundreds of tags due

to memory limitation, while the number of tags our method

can predict is determined by the tag categories of the dataset,

which can be thousands.

II. RELATED WORK

A. Multimodal Learning

Original multimodal learning mainly considers representa-

tion learning and modality fusion to achieve some performance

improvements. Most of them are discriminative models [21]–

[26] belonging to supervised learning. While discriminative

models perform well in the task of classification or regression,

they cannot work when there are missing data or patterns.

Discriminative models also require a large amount of labeled

data, which can be costly to obtain in some applications.

Subsequently, with the popularity of Transformer [1], the

emergence of Vision Transformer (ViT) [27] and the suc-

cess of pre-training in NLP, e.g., BERT [28], multimodal

learning also shifted to self-supervised learning and stepped

into the pre-training model. Whether it is the single-stream

models UNIMO [29], ViLT [30], the dual-stream models

ViLBERT [31], LXMERT [31], or eventually, the most popular

dual-encoder models CLIP [32], ALBEF [33], BLIP [34],

VLmo [35], they all have in common the need for large-

scale datasets such as COCO [4], VG [5], SBU [3], CC [2],

CC12M [6], LAION [7]. Although pre-training decouples the

dependence on a single modality and enables downstream

tasks such as image-text retrieval, such models are more

demanding on the language modality during training, requiring

the input of coherent sentences with semantic meaning.

However, if the text of the dataset has only tags but

no syntactic structure and semantic relations, pre-training is

difficult to work. Our approach combines the advantages of the

above two types of methods, re-adopts supervised multimodal

learning to reduce the textual requirements of the dataset and

improves the model performance by borrowing the modality

fusion method from multimodal pre-training models.

B. Anime Character Identification

Anime character identification is a more challenging image

classification task, due to its multiple categories and similar

image features. The earliest work focused on feature extraction

on unimodal anime images, e.g. [8] fused different pose

features of unified anime characters for retrieval, [9] and [10]

both used sketch-based approach to extract image features.

Later work [11], [12] focused on extracting local representative

features, i.e. object detection for face features, for subsequent

tasks. Recent work [13] started to use textual information as

an aid for the initial fusion of vision-language modality, but

the fusion was rather simple and inefficient due to the lack of

suitable image encoders like ViT at that time. After that, [14]
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used Transformer as an encoder for both modalities, achieving

structural unification, but lacking the task of modal alignment

and with average performance. Inspired by this model, we add

MLM task and the concept of curriculum learning to propose

the Multimodal Fusion and Decoupling Network.

C. Multi-Attribute Recognition

Multi-Attribute Recognition also has a wide range of appli-

cations in different domains, such as fashion search [36] and

product retrieval [37]. Due to the properties of our approach,

MFDN can also be derived for the task of tag prediction,

which also belongs to multi-attribute recognition. To our best

knowledge, this is the first implementation of multi-attribute

recognition in the field of animation. In addition, the tradi-

tional transformer-based method [38] occupies one transformer

embedding length for each attribute to be predicted, which

leads to limited scalability and can only cope with dozens

of attributes, compared to our method, which has the same

number of scalability as the dataset tag categories and can

achieve the effect of pseudo-generation.

D. Curriculum Learning

When curriculum learning [19] was first proposed, it was an

optimization strategy that centered on training from simple to

difficult. Subsequent work [39] has defined it as increasing the

diversity and information of the data as training advances, i.e.,

adding more new training samples and adjusting the weights

accordingly. However, curriculum learning is adopted only as a

concept in our approach, and the actual operation is somewhat

contrary to the definition, because the proportion of masked

text information is gradually increased, so the amount of

input information obtained by the model is actually gradually

reduced, but the training difficulty still maintains a gradual

increase. Whatever, with the help of the concept of curriculum

learning, MFDN has a more generalized application.

III. DATASET

The key to multimodal learning is the richness of the images

and their corresponding text. Thus, a large-scale image-text

anime dataset with a large number of character categories and

tag categories is necessary for training a general model that

can identify anime characters. However, the available datasets

are limited in terms of image categories and numbers or lack

rich text labels. For these reasons, we constructed a new

multimodal anime dataset called Dan:mul.

A. Dataset construction

We build Dan:mul from an existing large online anime

database Danbooru [40]. To ensure the generality and quality

of the dataset, we collect the latest version (2021) of the

database and use only images under the 512px subset. To

simplify character identification into a classification task,

we keep those images in which only one anime character

appears. In addition, since our method is based on supervised

multimodal learning, image classes with fewer than 10 images

are removed to avoid the long-tail distribution problem. Based

TABLE I
DAN:MUL SUMMARY OF TRAIN, TEST, VAL.

Train Test Val

No.Image 1,125,100 398,412 92,726

Min No. Image / Class 7 2 1

Max No. Image / Class 29,807 10,645 2,130

Avg No. Image / Class 78.06 27.64 6.43

Min No. Tags / Image 0 0 0

Max No. Tags / Image 327 265 194

Avg No. Tags / Image 24.067 24.074 23.904

on these processes, we construct the image part of the dataset,

containing 1,616,238 images with 14,413 categories.

As an important part of the multimodal dataset, text data

are collected and filtered strictly by the following methods.

Firstly, we get the tags associated with the image features from

the database, and filter out some of the facial expressions that

have no real meaning using regular expressions, such as ’>_<’,

’=_=’, ’ˆ3ˆ’, ’s.m.s.’. The next essential step is to measure

the importance of the tags, which is composed of two steps. a)

Count all tags that appear only once in the dataset and remove

them. b) Use the TF-IDF metric to measure the importance and

value of tags. Since a word or phrase is bound to appear only

once as a tag in the text of a single sample, the TF of all tags

in a single sample is consistent. In this case, the fewer the total

number of a tag occurring in the entire dataset, the larger the

IDF, and the larger the TF-IDF, the more representative it is in

this sample. However, this cannot account for the importance

of this tag in the whole dataset, so we count the TF-IDF of

each sample and accumulate the same tags as:

TF−IDFsum−i =

ci∑
TF×IDFi = (

ci∑ 1

ki
)×log

C

ci
, (1)

where ci is the number of samples in which tag i appears, ki
is the total number of tags for samples in which tag i appears,

and C is the total sample size.

We set a threshold value of 0.2 as a benchmark to remove

the less representative tags and finally obtained the textual part

of the dataset, containing 25,404 categories.

Then we divide the whole dataset into training set, testing

set, and validation set on the scale of 0.7, 0.25, and 0.05. In

all, we construct a large-scale multimodal anime dataset.

B. Dataset Analysis

As shown in Fig. 2(a), it is clear that the distribution of

samples corresponding to each image category is long-tailed,

with one class having more than 40,000 images, about twenty

classes having more than 10,000 images, and the rest of the

classes having less than 5,000 images. In Table I, we present

the statistics under three divisions of the dataset. Since the

minimum number of samples for a single category is 10,

even for the smallest category, at least 1 image is kept in the

validation set, which ensures reliability in verifying the model

capability. In the training set, the average number of images

for the categories is close to 80, ensuring the generality of
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(a) Distribution of the number of images per category. (b) Distribution of the number of tags in the sample on Train, Test, Val.

Fig. 2. The dataset statistics of Dan:mul. (a) The number of images per category is distributed long-tailed. The top 20 categories have a large number of
images, and the subsequent categories are more evenly spread. (b) The distribution of the number of tags in the sample under all three sets is relatively
approximate, close to the normal distribution of µ = 20.

TABLE II
COMPARISON OF DATASET STATISTICS.

Dataset Total Train Test Val

DAF:re [20] 463,437 322,947 94,440 46,050
Dan:mul 1,616,238 1,125,100 398,412 92,726

Dataset Size Class Tags

DAF:re [20] 128px 3,263 13,505
Dan:mul 512px 14,413 25,404

the dataset. Of course, due to the existence of the long-tailed

distribution, the classification and recognition of categories

with fewer samples is still challenging.

Regarding the tag analysis in Table I and Fig. 2(b), we

can find that the minimum number of tags corresponding to

each image is 0 in either division, which means that even if

Dan:mul is large-scale, the problem of missing modalities is

still unavoidable in some samples. This also motivates us to

improve our model framework with the goal of decoupling

language modality from vision modality and even going fur-

ther to achieve tag prediction, which allows us to complement

this missing textual information with this model. In addition,

each sample has 24 tags on average, and we can also see

the distribution of the number of tags in the samples under

each division in Fig. 2(b). The training set and testing set are

basically the same, and the validation set is relatively less. The

number of tags in most samples is concentrated between 10

and 30, which also gives us a reference for the length of text

sequences used in our subsequent multimodal models.

Dan:mul and DAF:re [20] are both constructed on the basis

of the Danbooru database [40], and their statistics are shown

in Table II. There are several main changes:

• Dan:mul is much more expanded in the order of dataset

size, close to 4 times.

• Our image resolution is 4 times higher than DAF:re

and the number of categories has doubled over 4 times,

making it more general and challenging in comparison.

TABLE III
SHARED DATASET SUMMARY.

Dataset Test Class

Dan:share 22,629 2,623

• Our tags, even after comprehensive importance filtering,

are still 2 times larger than DAF:re, meaning we can com-

bine more textual information for multimodal learning.

Dan:mul and DAF:re come from different versions of the

Danbooru database, the former is the 2021 version and the

latter is the 2018 version, and this database is expanded

year by year, so these images are homologous. Disregarding

the images and text that are filtered out in the process of

constructing the dataset, DAF:re can be regarded as a subset

of Dan:mul. Based on this, we filter out the shared part of

the testing set of these two datasets as a common testing set

Dan:share, as shown in Table III, so that it is easy to compare

the differences in training effects using different datasets.

IV. METHOD

A. Problem Definition

Given an image vi with several tags ti that describe some

features of the image, the task is to identify the anime character

appearing in the image, assuming that the number of tags is ki.

In addition, this problem is further extended to use multimodal

inputs in the training phase but only images as inputs in the

inference phase, achieving good performance as well.

B. Multimodal Fusion and Decoupling Network

We propose Multimodal Fusion and Decoupling Network

(MFDN), an end-to-end vision-language transformer model

that accepts visual and textual inputs, as shown in Fig. 3.

1) Vision Embedding: We adopt ViT-L [27]-style architec-

ture to extract vision features, using only a 12-layer encoder

with pre-trained parameters. Each input sample is resized

to 128 × 128 and normalized after data augmentation with
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Fig. 3. The network architecture of MFDN. Images and text are encoded by ViT [27] and BERT [28] respectively. The concatenation of the two modality
embeddings is fused by Transformer and then split. The CLS is responsible for image classification. The visual modality is used as Key and Value, and the
language modality is used as Query of the decoder, and the decoded result is passed through the multi-classification head to get the prediction tags. MLM
with curriculum learning strategy is added before the encoding of tags.

random cropping, flipping, attribute changes, etc. The sample

is then divided into a list of 16 × 16-sized patches. A linear

projection layer is used to project these patches into the

required embedding dimension of ViT, which for ViT-L is a

1024-dimensional embedding. Taking a resized image as an

example, an input tensor of shape 128 × 128 × 3 (height ×
width × channel) will result in an embedding of 8 × 8 ×
1024. Of course, we need to flatten and then add CLS, which

means we get a 65 × 1024 vision embedding Vi ∈ R
lv×d.

2) Language Embedding: A tag (word or phrase) differs

from a sentence in that it does not need to consider the

relationship with other texts and has more complete semantic

information as a whole. Since our text data are tags, the pre-

trained BERT [28] WordPiece (WP) tokenizer is too fine-

grained and inappropriate, so we make our own word tokenizer

to tokenize tokens in terms of tags, i.e., a tag as a token for

input. Since Dan:mul has an average of 24 tags for a sample,

we choose lt = 32 as the default sequence length, and the

embedding is 1024-dimensional consistent with ViT-L. If ki
exceeds the default length, random sampling will be performed

among ti, and the rest of the structure is the same as BERT-

base, which means given the input ti we will get Ti ∈ R
lt×d.

3) Multimodal Encoder: Our Multimodal Encoder is refer-

enced from ViLT [30] and consists of a 12-layer (hidden size

1024) transformer, with an overall structure similar to giving

the first half of ViT-L to Vision Encoder and the second half to

Multimodal Encoder. The input of the encoder is M ∈ R
lm×d,

which is the concatenation of vision embedding and language

embedding, lm is the sequence length, obviously lm = lv+ lt,

and d is the dimension of the hidden space embedding. Let

WQ,WK ,WV ∈ R
d×dk be the projection matrices to project

M to the key space, query space, and value space, respectively:

Q = MWQ,K = MWK , V = MWV . (2)

The embedding matrix M is updated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3)

Consistent with ViT-L, we set dk to 1024, and we also

use a multi-head self-attention (MSA) layer with 16 heads,

an MLP layer with the intermediate size 4096, and add layer

normalization (LN) to the input of each layer. This multimodal

encoder implements the fusion of vision and language modal-

ities in a single-stream manner and captures the fine-grained

relationship between each image patch and text token.

4) Multi-category Classification: We use a Multi-category

classification objective to learn global multimodal represen-

tations. Following the vision-language transformer described

above, a linear layer with softmax is used as a classification

head and applied to the [CLS] of encoder output to obtain

the character identification result. Then we compute a cross-

entropy loss as:

losscls = −
N∑

i

pi log qi, (4)

where N is the number of categories, pi is the target value

of the i-th category, and qi is the predicted probability value

of the i-th category.

5) Masked Language Model: In addition to the classifica-

tion objective, we also use the MLM objective to enhance

the language modality encoder and further align the vision

and language modalities. Specifically, we randomly discard a

portion of the tags and feed the remaining token embeddings
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into the BERT encoder. We replace the discarded tags with

trainable vectors [MASK] added to the same locations as the

original input, as the gray boxes in Fig. 3, in such a way

as to create the complete input for the Transformer Decoder.

In the 4-layer decoder, we use the language embedding as

Query, the vision embedding as Key and Value for cross

attention computation, and finally get embedding T ′ ∈ R
lt×d.

T ′ is processed through lt classification headers to get the

tag classification corresponding to each token, and the loss is

calculated using cross-entropy:

lossmlm = −

∑

tp∈SM

K∑

i

ypi log xpi

|SM | . (5)

SM is a dynamic set containing the tags that are masked in

this sample, but excluding [CLStext], [SEP ], and [PAD] that

fills the sequence when ti < lt − 2 (minus fixed occurrences

of [CLStext] and [SEP ]). In addition, tp is the tag on the

p-th token, K is the number of tag categories, ypi is the target

value of the i-th category on the p-th token, xpi is the predicted

probability value of the i-th category on the p-th token.

We can find that during the execution of the MLM task,

there are actually many language modality tokens that are

not involved in the calculation of the loss, but these tokens

still provide predictions for some tags that may be outside the

ground truth, which can be defined as new. It is interesting

that some of these new tags also describe some features of

the image very well. In all, the final loss is shown below,

where λcls = 1, λmlm = 1:

loss = λclslosscls + λmlmlossmlm. (6)

6) Curriculum Learning: We use the concept of curriculum

learning to gradually decouple the dependence of our model

on language modalities in order to meet the problem of the

lack of language modalities in practical applications. As shown

in Fig. 3, we do not fix the proportion of masking during the

execution of the MLM, but gradually increase it from zero

according to the progress of training steps. After that, we mask

and hold all the language modality inputs when the training

process reaches the halfway point. The masking proportion

referenced to the cosine decay, scur is the current number of

training steps, sall is the total number of training steps:

ratio = 1−max(0,
1

2
(1 + cos

2× scur

sall
π)). (7)

V. EXPERIMENTS

A. Training Details

MFDN is trained end-to-end for 50 epochs with a batchsize

of 64. For the optimization, we use an SGD optimizer with

a base learning rate of 0.001 and a learning schedule with

warmup and then two-stage cosine decay, which sets a learning

rate threshold of 6e-4, and lets the model do a cosine decay

from 1e-3 to 6e-4 in the first 30 epochs and from 6e-4 to 1e-12

in the last 20 epochs. The model can use a larger learning rate

TABLE IV
DATASET COMPARISON ON DAN:SHARE.

Dataset
Single Modality

Top-1 Accuracy Top-5 Accuracy

DAF:re [20] 82.68% 91.93%
Dan:mul 84.16% 92.13%

Dataset
Multi Modality

Top-1 Accuracy Top-5 Accuracy

DAF:re [20] 87.93% 95.09%
Dan:mul 90.89% 96.31%

for a better local search in the early stage and use a smaller

learning rate to converge to a better optimization result. This

greatly mitigates the consequence of large batchsize.

B. Comparison of datasets

In Table IV, we compare the dataset Dan:mul with the

similar dataset DAF:re [20] by training the model using these

two datasets separately. To be fair and to avoid the distribution

gap between training and testing, we use the corresponding

versions of the images in the DAF:re and Dan:mul testing sets

for the experiments conducted on Dan:share, respectively, i.e.,

the images are from the same source, but the preprocessing

follows the original dataset’s pipeline, respectively.

We use a unimodal version of the model, equivalent to ViT-

L, and a multimodal version of the model, without MLM on

both datasets for training and testing. As shown in Table IV,

the model trained on Dan:mul achieves a 1.5% improvement in

unimodality and even a 3.0% improvement in multimodality.

These results provide evidence that Dan:mul has improved in

image quality, generality, and especially in tag selection.

C. Character Identification

In Table V, we compare our approach with ViT-L [27] on

the testing set of Dan:mul and Dan:share. Dan:share must

satisfy both Dan:mul and DAF:re filtering conditions, and

DAF:re only retains images that appear at least 20 times, which

means that the samples in Dan:share see more samples of the

same category during training, so the difficulty of this testing

set is relatively low. The Dan:mul testing set is more difficult

because there are more samples and more categories, but fewer

average samples of each category used in training. We would

like to test the difference in the performance of the different

methods in these two settings.

MFDN without MLM has a very large improvement of

10.7% and 6.7% compared to ViT-L on the two datasets,

indicating that multimodal fusion can be very helpful for the

character identification task. However, this model performs

poorly with only image input and is far inferior to the unimodal

trained ViT-L, which confirms that simple modality fusion

makes the model overly dependent on language modality, and

the addition of our MLM task and the concept of curriculum

learning is essential to solve this problem.

As can be seen, with the full configuration, MFDN achieves

a certain improvement of 2.0% and 1.7% on the two datasets

compared to simple multimodal fusion, indicating that the
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TABLE V
COMPARISON OF MFDN AND ITS VARIANTS ON ANIME CHARACTER IDENTIFICATION.

Method
Train Input

Modality

Test Input

Modality
MLM

Dan:mul Dan:share

Top-1 Accuracy Top-5 Accuracy Top-1 Accuracy Top-5 Accuracy

ViT-L [27] Single Single - 77.16% 86.92% 84.16% 92.13%
MFDN Multi Multi - 87.86% 94.35% 90.89% 96.31%
MFDN Multi Multi ✓ 89.87% 95.51% 92.67% 97.19%

MFDN Multi Single - 41.22% 56.96% 50.11% 67.02%
MFDN Multi Single ✓ 78.33% 87.42% 85.21% 92.63%

TABLE VI
COMPARISON OF PERFORMANCE, OVERHEAD, AND SCALABILITY OF TAG

PREDICTION METHODS.

Method Error
Epoch

Time

Prediction

Category

L2L [38]
Top-25 Attritube 24.64% 75min 25
Top-200 Attribute 24.94% 240min 200

MFDN
Top-25 Subset 26.42% 180min 25K

Top-200 Subset 28.73% 180min 25K

MLM task is helpful in aligning the two modalities and

promoting fusion, while the concept of curriculum learning

allows our method to rely only on image input to achieve

outstanding performance. The 1.2% and 1.1% improvements

are still obtained on both datasets compared to the unimodal

training ViT-L. In addition, the performance improvement of

MFDN on the Dan:mul test set is slightly more significant than

that of Dan:share, implying that our method may be more

suitable for handling some more difficult image categories,

which is meaningful in practical usage scenarios.

D. Tag Prediction

Given that MFDN uses a curriculum-learning MLM task,

we can compare the tag prediction task with L2L [38]. As

shown in Table VI, since L2L is based on Transformer

structure and does binary classification for each attribute, it

cannot support the prediction for too many tags, so we only

select the 25 and 200 tags with the most occurrences in the

dataset as two tasks for comparison. It can be found that

even though our method is slightly inferior to the current

state-of-the-art method in terms of error rate, the difference

is not great. Our model can support prediction for any subset

of 25K tag types, while what L2L can predict is based on

the tag categories specified during training. In addition, L2L

is difficult to expand due to the memory limitation, and the

training time overhead is already 1.5 times larger than our

method when the number of tag categories is 200. From this

point of view, MDFN has strong scalability, and due to its

wider classification head and millions of training samples, it

can predict some tags that do not conform to the ground truth

but can describe the image features well, which achieves the

effect of pseudo-generation.

E. Generation Application

We apply MFDN to several randomly selected images to

demonstrate the significance of our tag generation application.

(a) Case of Wakasagihime.

(b) Case of Kitakami.

Fig. 4. Our application results on Dan:mul testing set. Tags that appear in
both the ground truth and the prediction are bolded, tags that are valuable
in the ground truth but not generated are marked blue, and meaningful tags
outside the ground truth are marked red.

In Fig.4(a), this is an anthropomorphic little mermaid, and the

overall dress is blue tones. Some important parts of the labeled

features such as “blue eyes”, “blue hair”, and “kimono” are

generated, but several obvious features such as “head fins”,

“smile”, and “solo” are missed. Last but not the least, MFDN

generates tags such as “bangs”, “eyebrows visible through

hair”, and “long sleeves” that precisely describe the image

features. The generation of these tags will raise the error rate of

tag prediction, but is practical and can help us better recognize

images, and even as high-quality annotations for some images.

Similarly, for the girl in Fig.4(b), MFDN identifies the color

and style of the skirt, generating “green skirt” and “pleated

skirt”. It also identifies the style of the clothing, generating

“serafuku”, “neckerchief”, and “long sleeves”. In addition,

some features of the face, such as “blush” and “closed mouth”,

are finely identified, but unfortunately, the recognition of the

two facial features “purple eyes” and “smile” fails, indicating

that the prediction of facial features may need to be improved.
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VI. CONCLUSION

In this paper, we propose a novel anime character iden-

tification network MDFN using multimodal fusion, MLM,

and curriculum learning strategies. We also contribute a new

multimodal anime dataset, Dan:mul, which contains over 1.6M

images of 14,413 classes, and 25,404 tag categories. MDFN

trained on Dan:mul is shown to have good performance in both

anime character identification and tag prediction. Our approach

demonstrates that language modality can be decoupled from

the multimodal fusion task and MDFN can be used as a tag

generator, both of which are useful in real-world applications.

We expect that our work will inspire more research on effective

multimodal modeling in the field of animation.
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