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AN ABSTRACT

LINEAR DECISION FUNCTIONS, WITH
APPLICATION TQ, PATTERN RECOGNITION

by
Wilbur Hull Highleyman, II

Advisor: Arthur E, Laemmel

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Electrical Engineering

A pattern recognition machine may be considered to
consist of two principal parts, a receptor and a categorizer,
The receptor makes certain measurements on the unknown
pattern to be recognized; the categorizer determines from
these measurements the particular allowable pattern class
to which the unknown pattern belongs.

This paper 1s concerned with the study of a
particular class of categorizera, the linear declsion function,
The optimum linear decision function is the best linear
approximation to the optimum declsion function in the

following sense:
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1. "Optimum" is taken to mean minimum loss (which
includes minimum error systems),

2. "Linear" 1s taken to mean that each pair of
pattern classes 1s separated by one and only
one hyperplane in the measurement space,

This class of categorizers 1s of practical interest

for two reasons:

l, It can be empirically designed without makilng
any assumptions whatsoever about elther the
distribution of the receptor measurements or
the a priorl probabilities of occurrence of the
pattern classes, providing an appropriate
pattern source 1s availlable,

2., Its implementation 1s quite simple and
inexpensive,

Various properties of linear decision functions
are discussed., One such property i1s that a linear decision
function ié guaranteed to perform at least as well as a
minimum distance categorizer,

Procedures are then developed for the estimation
(or design) of the optimum linear decision function based upon
an appropriate sampling from the pattern classes to be
categorized, The design procedure allows one to eliminate
certaln rédundancies in the resulting categorizer and also
in the receptor, Rejection criteria may be included 1n the

deslgn 1f desired,
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Some very general results are obtalned in a
discusslon concerning the design and analysis of pattern
recognition experiments., These results allow one to
determine how a sample of fixed size should be partitioned
between the design and test phases of a pattern recognition
machine, and show one how to place confidence intervals
on phe resulting estimate of the performance of that
machine,

A method of estimating performance bounds for a
linear decision function which is applicable to the use of
the deslign data 1s also discussed.

Finally, the concepts and procedures thus developed
are applied for illustrative purposes to two examples of
pattern recognition - the determination of the geographical
source of radio signals based on measurements made at a

monitor site, and the recognition of hand-printed numbers.
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CHAPTER I

INTRODUCTION

There has been an ever increasing interest for the
past several years ln the general problem of pattern recogni-
tion. Work 1in this fleld has ranged from commercial applica-
tions (such as the reading of machine-printed characters)[15,
45,48] to the study of adaptive networks ('"learning machines")
which have the capabllity of modifying themse%yep Sso as to per-
form a certain function better with experience.[11,16,33,34,43,
44,52,53]

For the purposes of this paper, the term "pattern
recognition'" will be taken in 1its broadest sense to refer to
any discrete classificatlon problem., That 1s, a pattern
recognition machine may be described loosely as follows. It
1s a machine which 1s "aware'" of a finite number of distinct
classlfications, or classes. These will hereafter be referred

to as the allowable pattern classes. The machine 1s presented

with an item upon which 1t makes certain measurements (or the
measurements may have been made by other means and then given
to the machine), after which 1t is required to make a
declsion., The decision usually falls into one of the two

followling categorles:



The item belongs to a certain allowable pattern
class,

The item cannot be identifled with any certainty,
and consequently the machine refuses to attempt

identificatlion. It 1s then sald that the machine
has reJected the ltem,

If the machine attempts a decision of the first type

and 1s wrong,

then 1t 1s salid that the machine has made an

error. Note that a rejection will not be considered as an

error,

The following are some examples of pattern recogni-

tlon problems whilch have either appeared in the literature

or are known to the author:

a.

The ldentification of machine-printed, hand-
printed, and hand-written [21] alpha-numeric’

characters based on various geometrical measure-

ments;

the identification of diseases from the

symptoms; [13]

The identiflcatlion of spoken words from frequency-

time spectra;[32]

the geographical location of radio stations based

on measurements of the fadlng characteristics of

the recelved wave; [30]

the decoding of messages which have been encoded

against nolse;



f. the counting of permuted blood cells in a

blood smear;

g. the identification of subatomic particles from

cloud chamber qr bubble chamber tracks.

The varlous machines (or proposals therefore)
resulting from efforts in these areas can, in general, be
dlichotomized according to their structure, 1.e., determinate
or indetermlnate. A determinate machine 18 one which 1is pre-
designed according to some criterion or procedure, and which,
when flnally constructed, 1s left unchanged. Commercially
avallable machines are all determinate; a good deal of the
exploratory work 1n more sophisticated pattern recognition
machines 1s also concerned with determinate structures (for
example, see the works of Harmon and Frishkopf [21],

Crumb and Rupe [13], Mathews and Denes [32], Bomba (5], and
Grimsdale et al [24]),

An 1ndeterminate machine 1s one in which some of the
parameters of 1ts internal structure are not specified at the
time of construction; rather, the machine has the abillty to
adjust these parameters as 1t becomes ﬁore experienced in 1ts
assigned task. Hence 1t has the capabllity of "adapting to
1ts environment"”, or of "learning". One of the outstanding
examples of such a machine 1s Rosenblatt's Perceptron [43,44];
Widrow [52,53], Mattson [33,34], Clark and Farley (11,161,

and Roberts [42] also discuss such machines.



Some of the so-called "adaptive machines" are simply

modiflications of basically determinate machines 1in which

estimates of the parameters are improved through the accumula-

tion of more and more data (for example, the proposals of

Bledsoe and Browning [4], and Baran and Estrin [3]). Con-

sequently, there 18 a somewhat hazy dividing line between

determinate and indeterminate structures.

The rest of this paper will deal with determinate ’

structures, although 1t is recognized that the sort of struc-

ture which 1s proposed could be made indeterminate through

the above device of simply allowing the machine to estimate

its own parameters through the long term accumulation of data.

Marill and Green [31] have described the general

determinate pattern recognition system in a very clear manner.

They note that 1t consists of two principal parts, a receptor

and a categorlzer:

an

"The receptor has as its input a physical sample
to be recognized, and as its output a set ...
of quantities which characterize the physical
sample. These quantities will be called

measurements of the sample ..."

"The output ... of the receptor constitutes the
input to the categorizer, The categorizer is

a device which assigns each of 1ts ... inputs

to one of a finite number ... of categories ..."



The measurements which a receptor makes on the 1nput
sample may be either continuous or discrete, and a given
receptor may be required to make measurements of both types.
For 1nstance, a character recognition machine might have a
receptor which makes the following measurements on an unknown
character: the number of closures, cusps, and straight lines
(discrete), and the length and direction of the straight
lines (continuous).

The categorizer must apply some sort of decision
criterion to the receptor output to decide to which of the
allowable pattern classes, 1f any, the input pattern belongs.
Or the categorlzer may rejJect the pattern as being unrecog-
nizable 1f the recognition decision is unreliable in some
sense.

This béper willl deal with the dbtimization of a
certaln class of categorizers. This class 1s characterized
by a certain linearity of operation which will be described
later, and which 1s of particular interest because of the
economical implementation to which 1t leads. It will be
assumed that the sort of measurements to be made have been
decided a priori, and that a receptor has been constructed
(or simulated) which will make the appropriate measurements.
The deslign of the categorizer will be based upon the receptor
measurements of samples taken from the real world of patterns

belonging to the allowable pattern classes for the machilne.



The following chapters will first deal with the
definition of "optimum". Several theorems relating to and
describlng the class of categorizers under study will be
given, after which algorithms for the actual design of the
optimum categorizer based on the previously mentioned sample
will be derived. A method to determine the "usefulness"
of a given receptor measurement will be discussed, as well as
a particular form of rejection criteria, A general discussion
of the deslign and interpretation of pattern recognition
experiments 1s followed by the results of some actual experi-
ments in which categorlzers of the above type were designed

and tested.



CHAPTER 11

THE DECISION-THEORETIC APPROACH TO
PATTERN RECOGNITION

Before describing the particular class of categorizers
of concern in this paper, 1t will be instructive to review
some results of declsion theory. This will not only lay the
groundwork for later discussion, but will provide certain
results needed 1in the development of rejection criteria,

Through the application of decision theory, one can
actually state what the structure of the optimum categorizer
should be for a particular pattern recognition problem,
However, this optimum structure is often not realizable for
two reasons. The first 18 a purely practical problem - an
optimum categorizer 1s often too complex to be economically
feasible. The second reason i1s somewhat more fundamental
and restrictive. The design of the optimum categorizer, as
will be seen, requireé the complete knowledge of certaln
probablility distributlions which are usually not available to
the designer. This is not simpi, a problem of parameter
estimation, since uéually even the form of the (often multi-
dimensional) distributions 1s not known.

2.1 The Decision Theory Model of PatternARecognition

The decision-theoretic model to be used is one
described by Middleton and Van Meter- [36] which has been

modified to sult the pattern recognition problem, (See also

-7 -
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Chernoff and Moses [9] for a very clear and complete dis-
cussion of the fundamental concepts of decision theory.)

Let the various allowable pattern.classes be
described by a discrete state space, S,'with probability
distribution w(s) (Figure 1). That is, a point s, in S
represents the ith allowable pattern class (1 1K P,
and has an a priorl probability of occurrence w(si) = .
Such a point in S willl be called an input state.

When an unknown pattern 1s presented to the recep-
tor, the receptor makes certain measurements on it. Let
there be n (discrete or continuous) different measurements
which the receptor makes on an input pattern. Then the
output of the receptor, when operating upon a particular

pattern, can be considered as a polnt in an n-dimensional

measurement space, M., The concept'bf a measurement space 1is

quite important to the development of later sections of this
paper. Any posslible input pattern results in a single point
in measurement space, the coordinates of this point being
determined by the receptor. That 1is, let the receptor out-
put for a particular input pattern be the set of numbers
(ml,mg,...,mg) = m. Then this set defines the coordinates
of the point representing the input pattern 1n the space M.
Each m, 4 1 <1< n, represents a receptor measurement; m 1is
the measurement vector and represents the set of receptor
measurements. (For briefness, m will often be called merely
a measurement when 1t 1s clear from the context whether a

particular measurement or the set 1s meant.)



(Wja)e

39VdS
NOISI03a

T IYNOId

TXION DILIHOFHL~-NOISIDIA

(siw) ¢

Y3Z1IH0931vd

3JVdS
LNIN3UNSY3IN

¥OLd303Y

(YU

3OVdS
31visS



10

Let us assume the exlstence of a probability
funetion (or density) over M, (M| S). Thus B(m | sy) 1s the
conditional probabllity that a certain measurement m will be
made, given a pattern from class 1 at the receptor; g(M| 3)
1sideterm1ned by the way the varlous patterns belonging to
an allowable pattern class 1 (input state Si) actually vary
with respect to the measurements made by the receptor. It
can then be sald that the receptor maps each of the discrete
points of S into a multitudé of points, or into a continuum,
in M depending on whether the measures are discrete or
continuous. The various regions in M occupied by the mappings
of the various points 1n S are usually overlapping; con-
sequently the ideal recognizer (i.e., error free) is usually
nonexistent. Some error will, in general, be made, since
exactly the same set of receptor measures may occasionally be
obtalned for members from more than one allowable pattern
class, |

The categorizer then must make a decision as to which
pattern class the measurement m belongs. Thils can be con-
sidered a mapping of the (discrete or continuous or mixed)
space M onto a discrete decision space, D, There 1s a point
in D for every allowable declsion; the allowable decisions
are usually

a. dj: The pattern belongs to pattern class j

(1<J<p).
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b. dO: The pattern is rejected as beilng unrecog-
nizable. (The subscript zero will denote
rejection, )

Let there also exist a probability function (or
density) 8(D | M) over the space D, which is the probability
that the categorizer will make the decision dJ, 0<J<Lop,

glven the measurement m, 6(D| M) 1s referred to as the

decision function or decision criterion. If for any measure-

ment m, 5(D | m) has a nonzero value for more than one point

in D, then the decision function 1s said to be randomized.
That 1s, a particular receptor output will not always be
classified as belonging to the same pattern class. 1If,
however, for any measurement m, 5(D | m) has a nonzero value
(actually unity) for one and only one point in D, then 5(D | M)
1s sald tobe a nonrandomized decision function. It is found
that the optimgmudecision functions discﬁssed below are always

nonrandomized. Note that the categorizer 1s nothing more

than the implementation of the decision function &(D | M).

Let a loss (or cost) function C(S,D) now be defined
such that C(Si’dj) =y 1s the loss (cost) associated with
making the decision dj when the actual inpﬁt state was Sy -
The desired decision 1s di when the input state is Sy there-

fore, the usual case requires that

13 > %10 ” %11 -
where 10 is the loss assocliated with rejection when the input

state 1s 8y - Note that cij 18 not necessarily equal to Cji'
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The probabllity of making a decision dJ when the

Input state 1s 8, 1s

i

p(dy | sy) = j B(m|s,)8(s;[m)am .
M

The loss when s, 1s the input state (called the
conditional loss) and when the decision function &(D | M)

1s used 18 then

P

6(31,6) = }:cij f B(m Isi)ﬁ(dj | m)dm . (2.1)
§=0 M

Since the distribution of states is glven by w(3),

the expected loss for the pattern recognition system is

p
C(®) = E: ii J ciJwiB(m[ Si>5(dj | m)dm . (2.2)
=1 j=0 M

The optimum categorizer 1s defined as the implementation of
that decislon function, ®*, which minimizes the expected

loss, C(®), under the appropriate a priorl distribution
w(S) (Bayes strategy).

2.2 The Solution of the Decislion Theory Model
The general solution to this problem has been given

by Chow., [10] He shows that (2.2) is minimized by using the

following decision criterion:
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N\
Let
ZJ(m) = i (cij-cio)wiﬁ(m ' si)’ J = 0’1" "Ip'
=1
Then
B*(d, |m) =1
-(2.3)
6*(dj | m) =0 for all J # k
whenever
min[ZJ(m)] = Zk(m) .
J /

Hence, given m, the optimum categorizer (in a
minimum loss sense) computes a function Zj(m) for each of
the allowable decisions, J = 0,1,2,...,p, and chooses the
smallest. (Note that Zo(m) - O from (2.3).) 1In all decision
functions of this sort, ties are arbitrarily resolved,

Ah interesting extension of Chow's result concerns
the case when all losses due to misrecognition are equal, all
losses due to rejection are equal, and all losses due to
correct recognition are zero.[25] Let ¢ be the loss due to

misrecognition and s be the loss due to rejection, such that

c > cO > 0
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Then 1t 1s shown in Appendix I that the optimum decision

rule 1s
~
5(dy, | m) =1, k #0
6(dj|m)=0, J Ak
if
e B(m|sy) > wB(m]sy) for all 1 < J < p
and
p
Cc-C
ka(mISk) Z( co> Zwia(mlsi) 3
1=1
however 2.4)
6(do |m) =1
6(dy|m) =0, J#£O
if
C-CO
wpinls,) <(—2) ) epnls)
1=1
for all 1 < j < p

7~

Chow has shown that decision criteria of this form
correspdnd to minimizing the error rate for a given rejection
rate. (The rejection rate is determined by the quantity
(c-co)/c.) Therefore, minimizing the loss in the case of con-

stant loss 1s equivalent to minimizing the error rate for a
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certain rejection rate. This paper will treat the term
"optimum" as meaning minimum loss; common practice has been
to optimize systems with respect to error rate and rejection
rate. The above development shows the simple relation between
the two.

It can be seen that all of the decision functions
Just discussed depend, aside from the loss function, only

upon comparisons between the a posteriorl probabilities,

&(si| m), that the measurement m was caused by the input

state Sy . That thls 1s true can be shown by noting that

B(m I Si)wi
®(m) ’

g(si l m) = (2-5)

where ¢(m) 1s the probability of occurrence of the measurement
m. But once a measurément has been made, the various

a posterlorl probabilities differ only by the numerator of

(2.5), and it 1s exactly this quantity which appears in the

decIsion criteria (2.3) and (2.4).

Unfortunately, however, these a posteriorl probabil-

ities are usually unknown to the designer, and therefore
categorizers based on the optimum decision function are not,
in general, practically realizable, There are at least two
ways around this difficulty:

a. Assume a certain form for the a posteriori dis-

tribution functions (or for the a priori function
B(M| S)). Then by taking a random sampling

from S, estimate the various parameters of these
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distributions. For instance, a common assump-
tion 18 that of normality and independence:

glven a certaln pattern class, assume that the
measurements made by the receptor are normally
distributed, and that each measurement is
independent of the others. Marill and Green [31],
Chow [10], and Flores and Grey [18] have dis-
cussed this sort of approach.

b. Make no assumptlons about the particular dis-
tributions involved, but rather make certain
restrictions on the structure of the categorilzer,
Then search through all possible structures of
this type to find the categorizer which 1is
optimum>with respect to a sampling of patterns
from the real world. Decision trees [5,21]
and adaptive machines [11,16,33,34,43,44,52,53]
are examples of thls sort of approach.

Clearly, nelther of these approaches will yleld a
truly optimum categorizer, the first because of questionable
assumptions, the second because of structural limitations.
However, the use of either approach now makes the problem
manageable, and optimum 1s reinterpreted to mean minimum loss
within the framework of the approach.

2.3 Linear Decision Functions

There 18 another practical advantage that is realized
by the second approach, namely one of economlc feasibility.

Even 1f the optimum declision function were known, 1ts
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implementation would require, in general, the use of a
digital computer or other complex equlipment. The cost of
such equipment may, in many cases, outwelgh the advantages
of mechanized categorization. However, if the designer
can 1limlt his search to those structures which are economically
feasible, and if the optimum structure in this class works
well enough for the given purpose, then a technically
feasible as well as an economically feasible solution has
been found.

Thls paper 1s concerned with the study of Just such
a class 6f categorizers. To describe this class, consider
a rephrasing of the optimum decision criterion (2.3). ((2.4)
1s simply a special case of (2.3).) Note that every point
In the measurement space M 1s preassigned to a particular
pattern class or to the rejection class by the decision
criterion. Thus there is a subset Mi of M corresponding to
each posslble decision di’ 0 <1< p. Further, these subsets
are nonoverlapplng i1f the decision functlon 18 nonrandomized.
The division of M into these subsets then uniquely i1dentifies
a certaln decision function. We could equally well consider

the decislon function to be represented by the boundaries

between the subsets. (Some liberty is taken here, since it
will be assumed that a continuous boundary can be passed
through a discrete space.) For instance, in Figure 2 is shown
a two-dimensional measurement space (the receptor makes only

two measurements on an input pattern) in which are shown the



18

A

OPTIMUM
LINEAR
DECISION
FUNCTION/

/
N 7

c

OPTIMUM DECISION
FUNCTION

DOMAINS OF THREE PATTERN CLASSES IN
MEASUREMENT SPACE, AS DEFINED BY OPTIMUM
AND OPTIMUM LINEAR DECISION FUNCTIONS

FIGURE 2



19

boundaries (the solid lines) between three different pattern
classes, A, B, C. (Rejection reglons are not included for
simplicity.) A boundary will, in general, be some sort of
curved surface, In fact, the domaln of a particular pattern
class may not even be s8ingly connected.

The class of categorizers to be discussed herein
may be loosely described as the optimum linear approximations
to the true boundaries, under the further constralnt of only
one boundary per pair of pattern classes (such as those shown
dotted in Figure 2). Optimum, as previously mentioned, is
taken to mean minimum loss under the above constraints. Because
of the llnear properties of this declsion criterion, a
categorizer of this class will be sald to implement a linear

decision function. Although the primary purpose of the

development 1s to study the synthesls of such a categorizer
when the probabillty distrlibutions are unknown, the problem
of finding the optimum linear decision function when these
distributions are known will also be discussed.

Of particular importance 1is the economical realiza-
tion of a categorlzer based upon a linear declision functilon.
In an n-dimensional measurement space, a linear decision func-
tion will comprise a set of n-dimensional hyperplanes. An
n-dimensional hyperplane 1s that set of all points (xl,...,xn)

in M which satisfy a linear relatlon of the form

alxl +a2x2+ +o,nx +a_ =0
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for a given set of ai's. The fact that the actual boundaries
are cnly portions of hyperplanes, 1l.e., each hyperplane
usually termlnates on other hyperplanes (Figure 2), 1s of
little consequence. As will be shown in the next chapter,
the representation of each boundary by a full hyperplane is
equlvalent,

It willl be shown later that, in order to classify
a point m in M, 1t 1s only necessary to determine which side
of each hyperplane this polnt is on. This 1s determined by

. *

phe sign of the quantilty
n
Y aygmy +ag (2.6)
1=1

In fact, the magnitude of this quantity 1s proportional to

the distance of the point m from the hyperplane, Consequently,
in order to classify a point m (that is, recognize an input
pattern), 1t 1s only necessary to evaluate a set of guantities
like (2.6). But such a calculation can be done with several
varieties of very inexpensive networks, such as the resistive
adder shown 1n Flgure 3. This supports the statement of

economy.

g = = = = = = = - = = = = = = - - - - . - - - = - - = - m = = -

Note that this llnear form equated to zero defilnes a struc-
ture which 1s commonly found in the automata fleld. It goes

by various names, such as artificial neuron [28],

assoclative unit [43,44], and Adaline [52,53]. In this

paper, it will simply be called by 1ts already well-established
name of "hyperplane".
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CHAPTER ITI

SOME PROPERTIES OF
LINEAR DECISION FUNCTIONS

3.1 The Classifying Procedure

Before discussing some of the properties of 1linear
declslon functlons, the classification procedure will first
be discussed. Figure 4 1llustrates a measurement space 1in
which the domalns of three pattern classes are shown, as
determined by a linear decision function. The boundaries,
which are really truncated hyperplanes, will be represented
by the complete hyperplanes as indicated by the dotted lines.
It will be seen that the truncation 1s automatically taken
into account by the classifying procedure. Since there is
one and only one boundary per palr of pattern classes,

Figure 4 shows three boundaries separating the three classes.

th

The boundary separating the 1 and jth classes will be

denoted Bij’ Further, in schematic representation as in
Figure 4, each hyperplane Bij will be i1dentifled by the pair
of numbers, 1,j, placed 1n such a way as to show which side
of Bij corresponds to class 1, and which to class j. Since
this 1is sufficient identification, the notation ”Bij” will
usually be left off an 11llustration.

- 22 -
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In order to classify a certain measurement, we note
which side of each boundary it is on. If it 1s on the ith
side of Bij’ then 1t 138 known that the measurement 1is not
to be ldentifled with class j. Conslder the measurement A
shown in Figure 4.

a. It 1s on the 2 side of B12; therefore 1t 1is

not to be identified with class 1.

b. It 1s on the 3 side of B13; therefore 1t 1s

not to be identified with class 1. (Here the
extension of B13 1s used.)

¢. It 1s on the 2 slde of B23; therefore 1t 1s

not to be identified with class 3.
d. It is not to be 1dentified wlth classes 1 or 3;
therefore 1t wlll be identified with class 2.

.This procedure may be represented by the following

notation:
-2
r -3
2 - 3

That 1s, [¥ - 2] indicates that a point is on the 2 side of
B12’ and therefore cannot be ldentifled as a 1.

Note that, although A was 1ln class 2, the boundary
B13 wag 8till used. In general, slnce 1t is not known in
advance to which class a measurement belongs, all boundaries

must be Interrogated. The difficulty one might get into by
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terminating the interrogation process early 1s i1llustrated

by the measurement B in Figure 4:

- 1_2
1 -3
Z -3

Since B cannot belong to any of the three classes,
1t 1s reJected. Thils is not the normal sort of rejectlon due
fo an unrellable decislion; rather it 1s a rejection inherent
in a linear decislion function. If the process had been
termlnated early, say after the second step, the measurement
B would have been identified with class 2. In fact, it would
be 80 identified with any of the three classes by taking the
hyperplanes in the proper order. Therefore, one must
reserve his decision untll all boundaries have been inter-
rogated (or until the measurement is deflnitely rejected).
This suggests, then, that a categorizer based on a linear
decislion function ought to be a parallel rather than a
sequential sort of machine, in that all boundaries might
Just as well be interrogated simultaneously.

One further comment 1s appropriate concerning the
determination of which side of a hyperplane a point 1lies.

Consider a hyperplane, B, glven by

n
ZQixi +a, =0 (3.1)
i=1



26

where
=1, (3.2)

Then the Qy l <1< n, are the direction cosines of the
hyperplane, and a, is 1ts distance from the origin. We are
Interested in determining the distance, s, of a point m from
B (Figure 5). Pass a hyperplane, say C, through m parallel

to B. It wlll be represented by
n

za‘ixi + BO = O b (3-3)
1=1

where Bo i1s the distance of C from the origin. Hence the
distance between B and C, which 1s also the distance between

m and B, 1s

But C passes through m; therefore m must be a solution of

(3.3), requiring that

rn
Po = - Ezaimi :
e

Therefore



DETERMINATION OF THE DISTANCE OF
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Hence, the distance of a point to a hyperplane (3.1) 1is
simply given by substituting the coordinates of the point
into the expression for the hyperplane (as in (3.4)), pro-
viding the expression 1s in a normalized form, that 1is, that
(3.2) holds. The point 1s on one side of the hyperplane if
(3.4) 1s positive, and on the other if (3.4) 1s negative.
Which side of the hyperplane 1s to be positive or negative
is completely arbitrary, since multiplication of (3.1) by

-1 changes the sign of (3.4), but does not change the hyper-

plane,.

3.2 Some Theorems Pertalning to Linear Decision Functions

One may rightly ask Just why he should consilder a
llnear decision function. Is there any guarantee that 1t
wlll work? In general, this questlon can only be answered
by deslgning the categorizer, and then deciding whether the
resulting system 1s good enough. However, some confldence
in linear decislon functions may be obtained from the follow-
ing theorem,

Theorem 1l: For any categorizer based upon
minimizing a Euclidean distance* to a set of reference poihts,

fthere exists a categorlzer based on a linear decisilon function

*
If x and y are two polnts with coordinates xi, yi,
1 <1 < n, then the Euclidean distance s between x and y is

n
. 2

8 = L (xi-yi)
i=1
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which 1s at least as good. This includes categorizers whibh
maximize a cross-correlation function, and those which minimize
'a Hamming distance.

Proof: Filgure ba illustrates a minimum distance
categorizer. A measurement A is identiflied with the class
represented by that reference point to which it is closest in
a Euclidean sense. Consider reference points 1 and 2 (RP1
and RP2) and the hyperplane B12 which 1s the perpendicular
blsector of the line segment Joining RP1 and RP2 (Figure 6b).
Then the statement that a point A 1s closer to RP1 than to
RP2 18 equivalent to the statement that the point lies on
the 1 side of B12. By constructing such a hyperplane for
every pair of reference points, a linear decision function
equivalent to the minimum distance decision function is
obtalned. Therefore, minimum Euclidean distance declision
functions are a subclass of linear decision functions.
(Sebestyen [46,47] has considered non-Euclidean minimum
distance decision functions, which are not a subclass of
linear decision functions.)

Next it will be shown that maximizing a cross-
correlation function 1s equivalent to minimizing a Euclidean
distance. Consilder an unknown measurement represented by
a polnt m in an n-dimensional space, which is to be compared

}, J=1,2,...,p. Let R, and

to a set of reference points {r 1

J
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™M be the vectors originating from the origin and terminating

on r, and on m respectively. Let the magnitude of each

reference vector be unity:

n 1/2
2
IRy | = Yri =1, 1<1<p (3.5)
121
Then by the law of cosines, the distance of m from Tys Sy, is
2 = |2 - 2 = =
sy =R [ +|WM|° - 2] Ry [ M| cos 6,
= Fi.ﬁi + M-M - Eﬁi'ﬁ ) (3'6)

where 6, 1s the angle between M and ﬁi' A minimum distance
categorizer will compute Sy for each 1 < 1 < p and base 1its

decision on choosing the minimum 8,. Silnce | M| 2 is common

to each s,, and |, | =1 for all 1, then minimizing s, is

i
equivalent to maximizing

n
'Ri-M = Zrim:L .
i1=1

But this 1is proportional to the cross-correlation Py between

the measurement m and the reference pattern r,:

RN F W

P — =
YOOmIR | (|
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Since for a particular categorization trial, | M|
i1s a constant common to all Py s then maximizing the cross-
correlation (3.7) between a measurement m and a set of
references {ri} 18 equivalent to minimizing the Euclidean
distance (3.6) between m and the normalized reference points
(normalized so that (3.5) holds).

That minimizing a Hamming distance 1s equivalent to
minimizing a Euclldean distance 18 easily shown by noting
that a Hamming distance 1is simply the square of a Euclidean
distance. Let x and y be two n-bit binary numbers. The
Hamming distance between x and y 1s the number of bit
positions which differ in the two blnary numbers. This may

be wriltten

n
2 2
D = Z (Xi—yi)
i=1

(assuming each Xy and Yy take on the values O or 1) which is
the Euclidean distance between the points x and y. This
completes the proof to Theorem 1.

The upper bound on the number of hyperplanes required
for a linear decision function 1is determined by noting that,
for every pattern class, there wlll be one hyperplane separat-
ing 1t from every other pattern class. If there are n pattern
classes, there will then be n(n-1) such hyperplanes. But

this has counted each hyperplané twice. Therefore,
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Theorem 2: For n pattern classes, a linear decision
function comprises n(n-1)/2 hyperplanes.

Iﬁ will Ee shown later that not all the hyperplanes
are always needed, and techniques will be developed to detect
unnecessary, or redundant, hyperplanes. Consequently we

will have occasion to refer to complete linear decision func-

tions, in which all the n(n-1)/2 hyperplanes are present, and

incomplete linear decision functions in which some hyperplanes

are not included.

Theorem 3: (Uniqueness) A complete linear deci-
slon function will classify any measurement into no more
than one allowable pattern class.

Proof: Assume that a complete linear decision
function has classified a measurement into both classes 1 and
J. But because of the completeness criterion this linear

declsion function contalns a hyperplane B which willl

1]
indicate that either the point cannot belong to class 1 or
that 1t cannot belong class J (assuming that a point 1lylng
on a boundary 1s categorized according to some convention),
thus contradicting the assumption. It has already been
demonstrated that some measurements may not be classified
into any of the allowable pattern classes by a linear
decision function, complete or otherwise; these are the
patterns which are rejected (see Figure 4). Of course, the

classificatlon determined by an incomplete linear decision

function may not be unique.
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Theorem 4: The points in a measurement space which
are 1ldentifled with a particular class by a linear decision
function form a convex set.*

Proof: This 18 a standard proof [22] which is
repeated here. The domain in measurement space corresponding
to a particular pattern class is the set of all points
satisfylng a set of linear inequalities corresponding to

the bounding hyperplanes for that class:

X + v.. + alnxn < b1

a -X, + ... + @& nxn <Db

|% p

This can be written in matrix notation as

[a] x] < p] . (3.8)

(Throughout this paper, when matrix notation 1is used, x] will
correspond to a column vector, and x, to 1its transpose, a
row vector, )

Let £] and m] be points satisfying (3.8), that is,

they are members of the pattern class defined by (3.8):

[a] £] < b]
[a] m] < b] .

*

A convex set 1s one 1in which a line segment jolning any
two points belonging to the set is contained wilthin the
set,
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Let q] be a polnt on the line segment Joining £] and m]:

al =w 2] + (1-w) m]

where 0 < w < 1. Then

[a] al

wlal 2] + (1-w)[a] m] < w p] + (1-w) b] = b] .

Therefore q] also lies 1n the domaln defined by (3.8). Since
q] may be any polnt on the line segment connecting £] and m],
then this llne segment also lies in that domaln. Therefore,
the l1line segment Jjoinling any two polnts 1n the domain defined
by (3.8) lies completely within that domain, and the domain
1s thus convex.

The suggestlon 18 sometimes made that perhaps a
linear transformation on the measurement space may group
like patterns closer together and separate unllke patterns,
80 that a linear declsion functlion may perform better under
the transformation than otherwise., That this i1s an invalid
suggestion 1s demonstrated by the next theorem. We will first
need to prove the followlng lemma.

Lemma: The relative distances of'any set of polnts
to a linear boundary are 1nvarlant under any nonsingular

*
affine transformation.

»*
A nonsingular afflne transformation is a nonsingular
linear transformatlon followed by a translation.
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That 1is, if 8, and 8, are the distances of points

’ ’
m, and My to a hyperplane, and 84 and 8, are the distances
of the images of these polnts, respectively, to the 1lmage

of this hyperplane under a nonsingular affine transformation,

then

[4
!
e S

Proof of lemma: Let M be the measurement space,

and let B be a hyperplane in M. B 1s glven by the equation

2, X} +a  =0.

Conslder the affline transformation

xt] = [U] x] + t]

or
x] = [(U]"xr] - [(U]™tte)

where [U] is nonsingular, and t] represents a translation of
origin. Then the equation for the image plane B’ 1in its

normallized form is

@ 0] - @, W) v

% =0,

where k 18 the magnitude of the vector a, [v1-t.

The image of a point m] is

m'] = [U]l m] + £] .
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The distance s of m] from B is
s =494Am] +a,
The distance s’ of m?’] from B’ is

2, (U] [U) m] + ., [U172] - @, (U726 4 a
k Ed

8! =

or

oy, m] +a
8! = O=

k

=l

Since k 1s a constant independent of the point m], the lemma
is proved. .

Theorem 5: The categorization defined by a linear
decislon function is 1nvariant under a nonsingular affine
transformatlion on the measurement space.

Proof: From the preceding lemma, any two points
which were 1nitially on the same side of a hyperplane befdre
the transformation willl sti1ll be so after the transformation,

thus proving the theorem.



CHAPTER IV

THE SEQUENTIAL SYNTHESIS OF A
LINEAR DECISION FUNCTION

4,1 Justification of Sequential Synthesis

The complete and accurate determination of a
llnear decilsion function requires the simultaneous deter-
minatlon of the several hyperplanes defining it. To see
this more clearly, conslder Figure 7 in which a linear
decislon function categorizing three classes in a measure-
ment space 1s 1llustrated. Let the closed curves shown in
this figure represent, for purposes of discussion, the
domains 1n measurement space of classes 1 and 2. 1In general,
the losses assoclated with the various possibllities for
mlsrecognition or rejection are different. Therefore the
boundary B12’ for instance, must be chosen so as to minimize
the loss (given by equation (2.2)) assoclated with various
factors, such as:

a. The misclassification of members of class 1

into class 2 (the horizontally hatched area);

b. the mlsclassificatlon of members of class 2

into class 1 (the vertically hatched area);

¢c. the misclassification of members of other

classes into class 1}
d. the mlsclassification of members of other

classes 1into class 2;

- 38 -
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e. the rejection of members of various classes
(the dotted area).

-Note that the members of classes 1 and 2 which are -
already misclassified into other classes (in this case, 1nto
class 3 as 1illustrated by the cross-hatched area in Figure 7)
are not to be considered i1n the determination of the optimum
B12; these are members which are going to be misclassified any-
way, regardless of the position of Bl?' Therefore, 1n order

-and B

to optimize B12’ the other boundaries, B in this

13 23
case, must be known. But thelr determination also depends
on B12, by the same argument. Therefore, all of the boundaries
comprising an optimum linear decislon function must be deter-
mined simultaneously.

However, for a moderate number of allowable pattern
classes, n, the number of hyperplanes, n(n-1)/2, comprising
a complete linear declislon functlion becomes large and the
problem might easlly become unmanageable. It would certainly
be a more palatable procedure if each hyperplane could be
determlned independently of the others. In particular,
consider a suboptlimum linear declsion function defined by
a set of hyperplanes, one for each palr of the allowable
pattern classes, in which each hyperplane is determined by
minimizing the loss assoclated with the total confusion
between the two particular classes which it separates. That
this 1s usually a good approximation to the optimum linear

decislon function is shown by the following argument.
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Consider an optimum complete linear decision
+*

ij°
is based on a loss function such that all losses due to

funetion L*, defined by boundaries denoted by B which

misrecognition are equal to ¢, and all losses due to rejec-

tlon are equal to ¢ < ¢. L* has an expected loss C(L*).
*

ki’
replaced by a suboptimum boundary Bkz which has been deter-

Let one of the boundaries of L*, say B be .
mined such that 1t minimizes the expected loss assoclated
with the total confusion between classes k and £. This
suboptimum linear decision function will be designated I,
and will have an expected loss C(L) > C(L*).

Let us define some speclal quantities for L;
S8imllar definitions will hold for L*. First,'#et LJ =1
for all polnts in M that are identified with class j,
0< J<p; LJ = 0 otherwise.

The expected loss assoclated with only the con-
fusion between classes k and £ under L may be denoted C

ki
and 1is

Chg =¢ J [kaza(mI sk) + wﬂLkB(m |s£)]dm .
M

This 1s illustrated in Figure 8, in which 18 shown a
linear decision function similar to that of Figure 7. This
may be consldered as representing elther L or L*. The expected
loss, Ckz’ 1s that associated with the actual confusion between
classes k and £ as 1llustrated by the diagonal hatching in
Figure 8.
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Note that, 1if Bk£ were to be extended through all
space, as shown by the dotted line in Figure 8, then one
could talk about the expected loss sz assoclated with the
confusion between the classes k and £ outside of the regions
Lk = 1 and Lz = 1, as 1Indlecated by the horlzontal and

vertical hatching in Figure 8:

Py = cti ii Ij[wkﬁ(m ]sk) + wyB(m lsz)]dm .
M j=0
JAKk, £

Let us also deflne a quantity R which 18 the loss

ki

under L assoclated with all rejectlion regions for which Bkﬂ

1s one of the boundariles:

Rig = j Lo(ke) o f(m | s,) + wp(m|s,)ldm ,
M

where Lo(kﬂ) = 1 for all rejection reglons for which B is

ki
a boundary, and 1s zero otherwise. In Figure 8, this integra-
tion 1s over the one and only rejection region,

Now,lthe suboptimum boundary Bkz was determined by
minimizing the total expected loss, Cry + Pyy» assoclated

wilth the confuslion between classes k and £. Hence,

* *

+ Py - (4.1)

ké
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The changes in the expected loss for the system
*
when Bkz is used 1in place of Bkz are due to the additional
confusion between the classes k and £, and to changes in

rejection reglons bounded by Bkz' Therefore

C(L) = C(L*) = (Cp, - Cp ) + (R, - R, ) >0 .

Then, from (4.1),
* »*
C(L) - C(1*) < (P, = Rep) = (B, =R ) >0 . (4.2)

»* *
Note that sz > Rkl and sz > sz 8ince the subspace over
which sz 1s integrated is contalned within the subspace
over which sz 1s integrated.

*
Py (or sz) represents only a portion of the sum
of the expected losses for classes k and £ under L (or L*),
*
It does not include Coy (or Ckz)’ nor does it include the

misidentified members of classes k and £ which are on the

o

»*
g (OF Byeg)e Pyy
»* 4 . %*
(or sz) is further reduced in (4.2) by Ry g (or sz). There-

correct side of the extended boundary B

fore, from (4.2), the degradation C(L) - C(L*) 18 less than
the difference between two numbers, each of which are smaller
.than the sum of the expected losses for the classes k and {
under L*,

Hence one can expect, with reasonable confidence,

that the Iincrease in the expected »oss when an optimum hyper-

plane 1s replaced by a suboptimum hyperplane will be very much
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less than the sum of the expected losses of the two classes
in question under the optimum linear decision function.

Consequently, it may be concluded that the inde-
pendent (or sequential) determination of the hyperplanes
rather than thelr simultaneous determination is a useful
approximation to the optimum linear decision function. The
degradation in system performance will be small, the savings
in computational effort great.

Even 1f 1t were deemed that this approximation 15
not good enough, the concept of sequential determination is
stl1ll valid, for the approximation may be made better by an
lterative process., First determine the hyperplanes inde-
pendently, giving an initial 1linear decision function Ll'
Then only those members of each class which are correctly
recognized by L1 are used to recompute independently the
hyperplanes, giving another linear decision function L2.
This process can be repeated until no significant improvement
1n performance 1is observed.

It will be noted that this argument assumed constant
costs for misrecognition and rejection. If this restriction
1s dropped, the situation becomes more complicated, since
all the sources of loss as mentioned earlier in the chapter
must now be considered. However, the general result will
8tl1ll obtain - that 1is, the approximation 1s still a useful
one. Therefore, the remainder of this paper willl have 1its

emphasls placed upon this sort of approximation to the optimum

llnear decision function.
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4,2 Upper Bound on the Expected System Loss, as Determined

from the Constituent Hyperplanes

When one has determined a hyperplane, Bij’ one
can assoclate with it an expected loss, CiJ(Bij)’ depending
upon 1its performance in separating the two classes 1 and J,

upon the loss coefficients ciJ and ch assoclated respectively

th

with confusing the 1% class with the j'P class and vice

versa, and upon the a prlorl probabilitiles w, and wJ of

occurrence of the classes 1 and J:

CiJ(BiJ)-= @ ¢y J B(m Isi)dm + ey j B(m Isj)dm ,

Hy(Byy) Hy (Byy) (.3)

where J ...dm indicates integration over the half space
Hy (By )

which 1includes all points identified as class i by B It

13
will be of interest later to relate the expected loss for
the hyperplanes to the expected loss for the system; this
relation 1s given by Theorem 6,

Theorem 6: The expected loss assoclated with a
linear decision function is not greater than the sum of the
expected losses assoclated with 1ts constituent hyperplanes.

Proof: Consider a particular class, say 1. The

expected loss assoclated with members of this class under the

linear declsion function L is



b7

Ci(L) = w, icij j\ B(mlsi)dm s
40 Ry

where Cyqy = 0O, and j ...dm indicates 1ntegration over that

Ry

region in measurement space for which L, = 1. Ro denotes

J

the rejection regions. The expected loss for the system 1s

c(L) = 5? 5? ®; ¢y J B(m | si)dm . (4.4)

1=1 =0

Denote the sum of the expected losses for each of the con-

stituent hyperplanes of L by CB(L); it may be written, from

(4.3),
i i iijj (mlsi)dm
1=1 J=1

i iwc I ﬁ(mlsj)dm
)

=1 J=1 (B1J

i iwicij j B(m | si)dm .

1=1 j=1 Hy(By )

Denote by I ...dm, 1 < J £ p, the integral over
Si(BiJ)

that subspace which includes all points which are identified

as class 1 by Bij’ but which are not rejected by L. Denote
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by I ...dm the integral over that subspace which includes
So(Bio)

all points rejected by L., Then 1if ciJ > Cyo2 One can write

g(L) > ﬁt 5? w;Cy J )B(m [ s4)am . (4.5)

1=1 j=0 (BiJ

But the subspace RJ, J # 0, 18 contained within the sub-
space SJ(BiJ)’ since RJ is bounded by all the hyperplanes Bkj’
1l < k < p, and does not contaln any rejection reglons,

whereas Sj(Bij) is bounded only by the hyperplane B1J and
also contains no réjection reglons. Also R = So(Bio) by

definltion. Therefore

J B(m | s;)dm < I B(m|s,)dm , 1<J<p
RJ SJ(Bij)

J B(m| s;)dm = [ B(m | sy )dm .

RO USO(Bio)

Hence, C(L), given by (4.4) 1s not greater than the right-
hand side of (4.5), thus proving the theorem.
A useful corollary i1s immediately obvious.
Corollary: If the expected loss for each of the
constituent hyperplanes >f a linear decision function L 1is

zero, then the expected loss for L is also zero.
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4.3 Some Special Cases of Optimum Hyperplanes

Before discussing some general procedures useful for
determining the optimum hyperplane separating two classes, it
18 interesting to note some speclal cases.

Theorem 7: The optimum decision function 6%, not
containihg a rejectlion decision, for the case of two classes
which

a. are equally probable a priori,

b. have ldentlcal losses assoclated with
misrecognition,

c. have probabllity distributions over the measure-
ment space which are unimodal, spherically
symmetrical, and 1ldentical except for a dis-
placement of modes,

1s a lilnear decision function comprising a hyperplane which
1s the perpendicular bisector of the line segment joining the
two modes,

Proof: Let the two classes be denoted class 1
and clagss 2. Let the probability distribution for class 1
over the measurement space be designated B(rl), where ry
1s the distance of a point r from the mode of the distribu-
tlon for class 1. Simllarly for class 2., From the optimum

decision rule given by equation (2.4), 6* is the following:
»* J—
) (dll m) =1

6*(d, [m) =0
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if
B(ry) > B(ry,) ;
6*(d1 |m) =0
B*(d, | m) =1
1f

B(r,) < B(r,)

Therefore, the boundary equivalent to 5* in the measurement

space 18 that locus of points satisfying

That 1s, the boundary equivalent to 8* is the locus of those
points which are equlidistant from the modes of the distribu-
tlons of classes 1 and 2. But this locus 1s the hyperplane
which 1s the perpendicular blsector of the line segment
Joining the modes.

An example of such a case 1s when the two classes
are described by Gausslan distributions which have the same
varlance for each variate, and which have zero covariances,
The general solution for the optimum decision funetion for the
Gaussian case 1s well known, [2,31] and the results are
repeated here 1n terms of the equivalent boundary. (Equal costs

of misrecognition and equal a priori probabililities are assumed. )
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Let two classes, 1 and j, be described 1n measure-
ment space by Gausslan distribution functions. Let ui] be
the (n-dimensional) mean of the distribution of class 1, and
[V1] be its covariance matrix. Then the boundary equivalent

to the optimum linear decision function is the set of polnts

X, such that

3o (0 - ) e (1) - v 17N))

|
o

-3 uy V17 ) 43wy V17 )+ dnk , (4.6

——d

13

where

Note that this 1s a quadratic function. However, if the two
covariance matrices are equal, then the boundary becomes
linear. Thls 1s stated in the following theorem:

Theorem 8: The optimum decision function &%, not
containing a rejectlon decisilon, for the case of two
classes which

a, are equally probable a priori,

b. have 1ldentlcal losses associated with mis-

recognition,
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c. have probabllity distributions over the measure-
ment space which are Gaussian and which have
equal covariance matrices [V],
1s a linear decision function comprising a hyperplane given

by the set of all points X, satisfying

X

&, V1T (g -ug)] - 3 (ug+uy) (VI7Hu-u)l = 0,

where ui] 1s the mean of the distribution for class 1.

In a good part of the work to follow, we will be
interested in estimating the optimum linear boundary between
two classes based upon a sampling from the two classes.
Geometrically, this can be interpreted as passing a hyper-
plane through two sets of points so as to optimally separate
them 1n some sense. We wili say that two sets of points in

measurement space are linearly separable 1f they can be

separated perfectly by a hyperplane. Following are two
theorems dealing with linear separability. (The problem of
linear separabllity of points described by Boolean functions
has receilved significant attention by other workers.[33,34,
52,53,351) )

Theorem 9: Two sets of polnts are linearly
separable 1fand only if thelr convex hulls* are noninter-

secting.

*The convex hull of a set of points S is the smallest convex
set containing S. It is the set of all convex combinations
of sets of points from S.[22]
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Proof: It 1s proved in set theory that two non-
intersecting convex sets may be separated by a'hyperplane.[ag]
This proves the "if" part of the theorem. To prove the "only
if", assume that the convex hulls of the sets S, and S'j
Intersect. There then exists at least one point p which 1s
a convex combination of sets of points from Si and also from
SJ. It was shown 1n the proof of Theorem 4 that if a set
of points satisfled a family of linear 1lnequalities (in this
case, only one such inequality), then all convex combinations
of these points also obeyed that famlly of linear inequalities.

If there exists a hyperplane, Bij’ separating S, and S

1 J’
then, since p 1s a convex combination of a set of points
from Si’ p must be on the i side of Bij' By a simllar argu-

ment, 1t must also be on the J side of B This is con-

1j°
tradictory, and therefore Si and SJ are not linearly separable.
The followlng corollary ls immediately obvious from
the proof of Theorem 9.
Corollary: If there exists at least one point
which 1is a convex combination of polnts from the set S1 and

which 1s also a convex comblnation of points from S then

3’
S1 and SJ are not llnearly separable.

An algebralc test for linear separablility can be
obtained from this corollary which leads to a set of n linear
equations 1n p unknowns, where n 1s the dimenslonality of the

space and p 1s the total number of polnts in S1 and 8 If

3

these equations have a solution, then the sets of points are
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not linearly separable. However, the difficulty of deter-
mining the existence of a solution to this set is in general
more difficult than actually trylng to find a hyperplane
which will separate the polnts (the procedure for which will
be discussed in Sectlon 5.3). Furthermore, 1f the sets are
| not linearly separable, this corollary will not indicate to
what degree this 1s true; 1i.e., perhaps the sets can be
separated with only small error. The empilrlcally deter-
mined hyperplane wlll give. an estimate of the degree of
separation of the pattern classes from which these sample
points were drawn (as wlll be discussed in Section 8.2).
Therefore thils corollary will be pursued no further.
Let us say that a set of q points in a space of n

dimensions, q < n+l, 1s nondegenerate if the points cannot be

contained in a linear subspace of g-1 dimensions. In Figure 9
are shown 3 nondegenerate points in two dimensions, and 4
nondegenerate points in 3 dimensions. Note that, in each
case, the points can be separated into any two categories
deslired by an n-dimensional hyperplane. This is generalized

in the next theorem.

Theorem 10: Let S be a set of g nondegenerate

polints 1n an n-dimensional space, g < n+l, Let S1 consist
of any k of these points, and 82 consist of the remalning

gq-k points. Then S1 and 82 are llnearly separable,
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Proof: It is obvious from Figure 9 that the theorem
is truefor n = 1,2, and 3. Let us assume that it 1is true
for n-1 dimensions and prove that it then holds for n-dimen-
sions. If q < n, the theorem follows lmmediately, since the
n-dimensional hyperplane need only contain the (n-1) dimen-
sional hyperplane which properly separated the two sets S1
and 82. The extreme case then consists of a set S of n
nondegenerate points in n-1 dimensions which is separated

into two sets, S, and 82, by a hyperplane, say B Let

1 n-1°

us now add one dimension to the space and one point, p, to S,
sueh that 8 = S Up 1is still nondegenerate, i.e., p is not
contained in the n-dimensional hyperplane containing S and Bn—l'
Then an n-dimenslional hyperplane Bn may be passed through
Bn—l such that p falls on either side of i1t. Since 1t was
assumed that Bn-l could be chosen to separate S arbitrarily,
then Bn can separate S; arbitrarily, thus proving the theorem.

This theorem and the two following corollaries will
be 1mportant later in the discussion of the practical inter-
pretation and use of linear decision functions.

Corollary 1: Let S be a set of q points in an n-
dimensional space such that any subset of S containing no
more than n+l points 1s nondegenerate, Let q < n+m-1. Then

S can be separated into m nonempty sets by a linear decision

function.
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Proof: By the corollary to Theorem 6, it is only

necessary to show that each of the m sets 1s linearly

- -

separable, Let S be separated into the sets Sl""’sm' Con-

sider the case 1in which q = n+m-1, and the sets S s S

1 m-1
each contain one point from S, leaving n points from S to
comprise Sm. Then Sm and Sk’ 1 <k ¢ m-1, are linearly
separable by Theorem 10, since thelr unlion contains n+l
points, In any other possible case, the number of polnts

contalned in the union of any two sets S, and S, will be

1 J
less than n+l, thus proving the corollary.

Corollary 2: Let S be a set of g points 1n an
n-dimensional space such that any subset of S contalning no

more than n+l points 1s nondegenerate. Let

Q<= > n even
q < mi%;ll , n odd

Then S can be separated into m subsets of equal size by a
linear declision function.

Proof: The union of any two subsets wlll contain
n nondegenerate points 1f n 1s even, n+l nondegenerate points
if n 1s odd. Therefore, each palr of subsets is linearly
separable by Theorem 10, and the corollarykis then proved by

invoking the corollary to Theorem 6,



CHAPTER V

DETERMINATION OF THE OPTIMUM LINEAR
BOUNDARY SEPARATING TWO CLASSES

This chapter will deél with the problem of deter-
mining the optimum (minimum loss) hyperplane which separates
a palr of classes. In the general case, which 1s treated
here, the loss assoclated with misrecognition of a member
from one class 1s not the same as that loss for the other
class. Recall from Chapter II, however, that when the losses
are equal, then minimum loss corresponds to minimum error.

Two cases will be dlscussed. In the first, 1t is
assumed that the pertinent condltional probability functions
over measurement space, B(m | si), are continuous, and that
these probabilities and the a priorl probabilities of
ocecurrence, wy, are known. In the second case, which 18 the
case of éractical interest, 1t 1s assumed that nothing is
known about the probabilities B(m | si), and that the a priori
probabllities w, may or may not be known. The determination
of the optimum hyperplane 1s then based upon an appropriate

sampling from the pattern classes.

5.1 The Optimum Hyperplane for the Case of Known Distributions

Let B(m | s;) be the probabllity density function of
class 1 over the measurement space, Wy be the a priori prob-

ability of occurrence of class i, and cij be the loss

- 58 -
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assoclated with misidentifying a member of class i with
class J. Denote a hyperplane which separates the classes i
and j by Bij’ and let 1t be defined in the coordinate system

(xl,...,xn) by the equation
n
X, = Eakxk +ag . (5.1)
k=2

Let v(m lsi,Bij) be the conditional probability density

functlon of class i over the boundary B, ,:

1J°
B(m l Si)
v(m | Si’Bij) =
J B(m | s,y )dm
By
for all m satisfying (5.1). I ...dm denotes integration
BiJ

over the boundary Bij‘ Define the weilghted conditional

probabllity density function of class 1 over the boundary Bij

by
T(m | Si’Bij) = cijmiv(m Isi’BiJ) .

Theorem 11l: The optimum linear boundary B

15’
separating two classes i and J which have welghted conditional

probablility density functions over Bij glven by



60

T, = T(m | si’Bij)

TJ=T(m|s

J,Bid) 2
must satisfy the following conditions:

a, The 1lntegrals of Ti and TJ over BiJ must be

equal.
b, The means of Ty and TJ must be equal,

Proof: Let BiJ be oriented such that the half-

Space ldentified as class 1 corresponds to

n
xq < ZOkak + a
k=2

The expected loss 1s then

[n [v e} r (v ] 00
C(Bij) = Cy g0y J dx_ ... J dx., B (m lsi)dx1
—~00 -00 n
Zakxk +ag
k=2

00 o0 =2
+ © 51, J ax, ... J dx., {k B(m | sj)dxl

(5.2)

We wish to find the coefficients of the hyperplane B which

1]
correspond to extreme points of (5.2). First differentiate

(5.2) with respect to I
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oC(B, ,)
_Wi_s_hj -;idm+j tan -0,
o 131‘j BiJ

which 1s condition a. of the theorem. Next, differentiate

(5.2) with respect to a,, 2 < k < n:

BC(BiJ)
——Ba;—— = - kaidm + kaJdm = 0,
By 5 By
2<k<n.,

A slmilar expression may be obtained for k = 1 by rewriting
(5.1) in terms of some other coordinate. This set of condi-
tions, 1.e., for 1 < k < n, corresponds to condition b. of the
theoremn,

In general, there will be several hyperplanes
satisfying the conditions of Theorem 11. Some of these will
correspond to maxima of C(Bij)’ others to minima. These must
then be searched to determine which corresponds to the
absolute minimum of C(Bij)'

It might also be pointed out that this theorem allows
an approach to linear decision functions using more than one
hyperplane per pair of classes by combining, with the appropri-
ate loglc, the varlous hyperplanes satisfylng the conditions
of Theorem 11. As an example of this, consider Figure 10 in

which a pair of one-dlmensional functions is shown corresponding
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to the weighted probability density functions cijwia(m Isi).
The boundaries satisfying the conditions of Theorem 11 in
one dimension are those points in Figure 10 where the dis-
tributions are equal (denoted by an x). Let all of these
boundaries be combined, logically, into a linear decision
funetlon such that the categorization 1s as shown by the
arrows. Then this also corresponds to the optimum decision
function, 6*, given by (2.3). The linear decision function
which would have been used under the constraint of one
boundary per pair of classes 1s shown by the dotted 1line;
its loss 1s significantly greater than the multiple boundary
decision function.

5.2 The Estimated Optimum Hyperplane for the Case of Unknown
Distributions

We will now assume that the designer has no knowledge
concerning the form of the probability function g(m Isi),
but he may or may not know the a priori probabllities, w, .
We wlll assume the existence of all such probabilities and
probabllity functions, whether known or'not. |

If a hyperplane BiJ is passed through M, such as to
divide classes 1 and J in some fashion, then a certain por-
tion of the members of classes 1 and J will be misidentified
by BiJ‘ Let Py be the probability of misidentification of

a member from class 1, given B1J and a member of class 1

(py is the integral of g(m | 31) over the half-space on the
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J side of Bij)‘ Then the condltlonal loss associated with
Bij (see equation (2.1)) is

c(B ! '
(Byy) = cyyoppy + €31%4Py
= Cyy8y *t Cygey (5.3)
[4 wi ’ wj ’
where (Di = (D—i-_i_'aj- and (DJ = Bi_"'a)-; s and ei = (l)ipi 1s the

probabllity of misrecognition, given Bij’ of a member from

class 1 when patterns are chosen randomly from classes 1 and

[ ?
J according to w, and w,.

J

Theorem 12: Construct a hyperplane Bij in measure-

ment space M which divides M into two half spaces, all the
polnts 1in one being identified as class 1, the points 1in the
other belng identifled as class j. Consider two sampling
procedures designed to estimate the conditional cost B(Bij):
a. The a priori probabilities w,  are unknown, Let
1t be assumed that there exists a pattern source
which will generate patterns from classes 1
and J randomly according to wi and w;. Draw
a pattern from this source, ldentify 1t, and
then determine the identification according to
Bij’ This latter identification will either be
in error or will be correct. Repeat this
expeg}ment n times. Let my be the number of

samples from class 1 which are misidentified by

Bij as class Jj, and likewise for m,.

J
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b. The a priori probabilities w  are known. Take

ny samples from class 1 and n, samples from

J
class J such that

n , (5.4)

4 [
(It will be assumed that w, and w, are such that
1 J

(5.4) can be met exactly.) Identify each of

these n samples according to B Let m, be

13" i
the number of samples from class 1 misidentified
by Bij as class J, and likewlise for mj.

Then the maximum likelihood estimate in eilther case* for

the conditional loss g(Bij) is

& C m, + ¢ m
C

(Bij) = 1J 1 0 Ji J (5-5)

Proof: Take case a, first. Three events of interest
can occur:
1. A pattern from class 1 1s misidentified with

probabllity ey .

2. A pattern from class J is misidentified with

probabllity ej.
3. A pattern is recognized correctly with

probabllity 1-ei-eJ.

*We make no further distinction here between these two cases
of sampling. They are compared further in Chapter VIII.
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These events are discrete, independen®, and mutually

exclusive, Therefore, the probability distribution for m

1
and m, 1s multinomial:
n-mi-mj
P(my,m,) =< J) e (l—ei-e )
The maximum likelihood estimate for e, is [19]
~ 4
1 T @w

and likewise for e,. Since the maximum likelihood estimate

J

of a sum of independent variables is the sum of the maximum

likellhood estimates, then from (5.3)

) Cijmi + cjimj

ij) n

¢(B

For the second case, the number of samples taken

from each class 1s fixed by (5.4). By an argument similar

to the precedling argument, my is binomiélly distributed
with parameters ny and Py and llkewise for mJ. Then the
probability function for my and m(j 1s given by

1 mi ni—mi j IT)j nj—mj

Again, the maximum likelihood estimate for Py is
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and likewlse for pj. Using the linear summation rule again

with (5.3), one obtains

c, ,o,m c.,,oo.m

Making use of (5.4), thils reduces to

s, - Lt Ty
If we take samples from a palr of classes according
to elther criterion, there will be a set of hyperplanes
(infinite 1in number) which will minimize the maximum likeli-
hood estimate of the conditional loss (5.5). It is quite
reasonable, then, to choose one of the hyperplanes from
this set as the estimate of the optimum hyperplane separat-
1ng the two classes. That 1s, 1t is clear from (5.5) that

we will search for a hyperplane which will minimlize the loss

assoclated with the sample points. This is also intultively

quite reasonable,

Note that Theorem 12 and the resulting procedure
is 1ndependent of the probability functions over the measure-
ment space, Hence one need make no assumptilons concerning

the form of these functions, nor need he concern himself

*
with the dependencles between the various measurements.

*
Another criterion for determining the optimum hyperplane is

discussed in Appendix III. It makes use of a rather weak
assumptlon concerning the probability functions over the
measurement space, and 8o is not completely nonparametric.
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5.3 A _Computation Algorithm for the Case of Unknown
Distributlions

In this section will be developed an iteration
algorithm which will be useful for determining that boundary
which minimlzes the maximum likelihood estimate of the
conditional loss for the boundary. There has been some
work by others concerning similar boundaries when the
measurement space 1s a binary space [33,34,52,53], or when
the classes are Gaussian distributed in measurement space
(discriminant functions [2,17,50] yleld a good approximation
for this case),

Flgure 1lla 1llustrates this problem for two classe
k and £. Samples from class k are shown by crosses, from
class £ by circles. A boundary, Bkz’ is indicated. Let us
number these samples from 1 to m, there being a total of m

’

Ssamples, and defihé a weight, TJ, for the Jth sample point,

1< J < m, such that

4

TJ = 0 if the point 1s on the correct side of B
4

TJ = Ciy i1f the point represents a sample from

class k on the £ side of Bkz‘

T, = C ok if the point represents a sample from

class 4 on the k side of BkZ'

It 18 clear then that minimizing the estimate of the con-

ditional loss (5.5) is equivalent to minimizing

3,

k 4?
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T'(ay) = ) T, (5.6)

where the Qo 0 <1< n, are the coefficients of the hyperplane
B, , defined by (3.1). Since there are (n+l) coefficients
for an n-dimensional hyperplane, T'(ai) can be interpreted as
an (n+l)-dimensional function for which we want to find
the absolute minimum. One powerful techniQue,for doing
this is the method of steepest descent [7], by which one
makes an initlal guess as to the solution, and then computes
the gradient of the funétion at that point. A small step
1s taken in the direction of the negative gradient (i.e.,
"downh11l"), and the gradient is recomputed at that point.
This process is repeated, thé steps being made smaller,
untll one 1is arbiltrarlly close to the minimum point.

One problem inherent in all gradient methods 1is
thaé the minimum which is finally reached 1s not necessarily
the absolute minimum. If one is in doubt as to whether the
solution obtalned actually represents an absolute minimum,
he can only try other 1initial starting points and accept
the smallest minimum which he obtains.

The problem which immedlately arises in trying to
apply this method to (5.6) 1s 1llustrated by Figure 1l1b, where

4
the form of T, 1s shown. s, is the distance of the Jth

J J
point from the boundary Bkz’ and will be considered
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to be positive 1f the polnt jJ 1s on the correct side of the
boundary. That is, polnts representing members of class k
will be a distance greater than zero from the boundary if
they are on the k side of Bkz’ and will be a distance less
than zero from the boundary if they are on the £ side. (A
technlque for handling this mathematically will be introduced

later.) The quantity ¢, in Figure 11b is equal to ¢, , if

ki
the Jth polnt represents a member from class k; c

37 %
otherwise, It 1s the cost of misrecognition for the Jth

sample. As the a,; are adjusted, the hyperplane moves

around in the measurement space, and T'(ai) makes a discrete

Jump of magnitude cJ every time the hyperplane passes through

a sample polnt. Otherwlse T'(ai) remains.constant. Consequently
it has no meaningful derivatives and no meaningful gradient

at a point, and gradient methods such as the method of steep-

est descent are not applicable.

’

J
function TJ(sJ,X) which 18 continuous everywhere, and which

However, 1t 1s posslble to approximate T, by some

has the property

[4
,A) = T

1im T ]

s
1im T4(s,
where TJ 1s written as a function of the distance of the Jth
point from the hyperplane to emphasize this continuous depend-
ence. Such a function 1s shown in Flgure 11lb. If the func-

tion
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m
T(a,,N) = ZTJ(SJ,M (5.7)
J=1

were to be minimized for some finite A wlth respect to the

@y, and then A increased and (5.7) minimized again, and this

process repeated, one would expect the hyperplane to con-

verge to one of the set of hyperplanes minimizing (5.6).

This minimization process can now make use of the method of

steepest descent, and will be developed in more detaill below.
There are many functions which would be sultable

for TJ(A). One convenient one 1s the cumulative Gaussian

distribution with zero mean and standard deviation 14/2A;"

it will be denoted G(hsJ). Then

Ti(8;,2) = cJ[l - G(xsy) ],

where
de(rs )], -(ns,)?
—T‘L_-S =T — e J . (5-8)
J VT
Then

m
T(ai,x) = ch[l - G(?\SJ)].
J=1

The gradient of T(ai,k) is determined by the derivatives
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da.’ 0<1<n,

BT(a L 5[G(7\s )1 ds,
RS :

(5.9)

Before proceeding further, we must sidetrack and discuss the
problem ralsed by the fact that sJ is defined as being
positive if the Jth polint 18 on the correct side of the
hyperplane. Let miJ be the 1th coordinate of the jth point.

Then, as developed in Chapter III, sJ is given by

n

SJ = ZQ.imiJ + ao .

i=1

Now the slgn SJ can be chosen arbitrarily, since the coef-
ficlents of the hyperplane Bkﬂ may be all multiplied by
(-1) without affecting the location of Bkz' Alternatively,

sJ may be written
n

8y = E;aimij , (5.10)
1=0

where mOJ i1s called an artificial coordinate and 1s defined
to be +1. Now 1t 1s seen that the sign of sJ may also be
reversed by reversing the signs of all of the coordinates,
mij’ of the Jth point. Thilis i1s the device that will be
used here. It will be decided a priori which class, say k,
will be positive, and the coordinates (including the

artificial coordinate) of each sample from k will be entered
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into the equation with true signs. All of the coordinates,
including the artificial coordinate, for each Ssample from
the other class will be entered with reverse sign. This
wlll satisfy the condition on the sign of sj, and allow the
equations to be written more simply.

Keepling this artifice in mind, we now return to
(5.9). PFrom (5.10), we wish to compute BsJ/&ai. However,
(5.10) holds only 1f the coefficients a, are in normalized
form, that 1s, that (3.2) holds:

=1. (3.2)

which will guarantee that (3.2) will hold even if the a,'s

are ilncremented, Then
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Applylng (3.2) and (5.10),

os
N = mij - aisJ, 1<1<n
3 (5.11)
8
=m_,.
3E§ oJ

Consequently, from (5.8) and (5.11), (5.9) may be written

3T(ay ) .(xsj)2

m
= - -
30.1 - \/— Z a Sj)e ’ 1

IA
[

IN
o

(5.12)

A (ay,) , -(st)2
L
0 T

The equations (5.12) give the gradient of T(ai,%).

To make a step along the direction of the negative gradlent

’

("downh111l"), select a new set of coefficlents ay,
0 <1< n, such that

Gi = Q-i = QE— » (5.13)

where 6 1s some constant which governs the size of the step.
According to the lterative procedure, a value of A

and an 1nitlal set of coefficlents are chosen, and the

gradlent (5.12) computed. These coefficlents are incre-

mented according to (5.13), and the process repeated. When



the process reaches a minimum, a larger value of A 1s
chosen and the lteration procedure repeated. This goes on
until some termination criterion is met.

In order to determine when a minimum for any glven
A has been passed, the value of JT/36 for the 0ld and new
coefficlents 1s computed. It will of course be negative for
the o0ld coefflclients, since the gradient 1is belng followed
in the negative direction. If a minimum is passed, however,
OT/96 willl be positive for the new coefficlents. In this
case, the minimum 1s approximated by chooslng a new 6 based
upon a linear interpolation between the two values of JT/d6
for the o0ld and new coefficients.

The expression for 90T/d6 is developed below.
aT _ oT 58
96 o8
3 J
where

n 5 n 5 o -1/2
. T T
5y = Z(F"i‘ega'i' 13 z<ak'9361;
k=1
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Then
n n -1/2
;;i_ i T ( o 3T ¥
= oy My 3 %k - o

1=0 K=1
 n n -3/2

1 3T 3T \°

-3 Z(ai - 98&;)"11 Z("‘k - % %
| 1=0 K=1
I 3 > /a1 \2
2 Z“k?)%* 26 z<3§;> . (5.14)

| k=1 k=1

os l : ST - T
35 - ) Smytey yaiF- . (5.9)
| 6=0 i=0 1 1= 1
Then
1.2 Y 0 (5.16)
= - —— e o 5-1
A JZI

The evaluation of (5.16) with (5.15) will give the

value of OT/d6 for the original coefficients a, . For the new

4
&, =a, - 6 dT/a,, the complete expression (5.14) must be
used, and the 8y appearing in the exponent of (5.16) must

be the distance of the Jth point from the new hyperplane.
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The value of 6 which is chosen 1s rather arbitrary.
If 1t 1s chosen too large the boundary may oscillate about
or diverge from the minimum, If i1t 1s chosen too small, the
lteration process will take longer than necessary. The
following value of 6 was found by experience to yleld

reasonable results

6_ 1

n 1/2 "
15 | & Z L )2
n 1
1=1

The value of A 1s also rather arbiltrary. The initial value,

xo, was chosen so that

A =1/s s
° Imax

where sJ 1s the distance of the furthest polnt from the
max

initial hyperplane., After the interpolated values of a,

which minimize T(ai,K) are determined, A is doubled. This

process contlinues untll As > 3, at which point the 1tera-

Jmin
tion termlnates., = 1s the dlstance of the closest point
'jmin 2
-(kSJ)
to the hyperplane. When Ksj > 3, then e < .0001
min

for all polnts, and the gradient becomes extremely small,
The 1nitial hyperplane was usually chosen to be
the perpendicular bisector of the line segment Joining the

sample means of the two classes. As 1indicated earlier, .-

Py
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several 1nitlal cholces ought to be made and the best
result used. It will be seen in Chapter X that this choice
of an 1initlal hyperplane is not always the best.

This lteratlve procedure 1s summarized in the flow

chart of Figure 12,

5.4 An Example of Categorization

To show the relation between these various approaches
to the problem of categorization (the optimum decision func-
tion, the optlimum linear decision function based on knowledge
of the distributions, and the optimum linear decision func-
tion based on sampling), the followlng two-class problem was
solved using each technique.

Problem: There are two pattern classes, 1 and 2,
upon which two measurements, x and y, are made. The measure-
ments are lndependent and normally distributed with the

following parameters:

Class 1: dlx = 1 ulx =1
dly = 5 uly = ]
Class 2: 62x = .1 Koy = 2
62y = 2 u2y = 0

The a priorl probabilities of occurrence and the mlsrecog-
nition losses are the same for each class. Determine the

boundaries between the classes in the measurement space X,Yy.
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Solution 1: Optimum decision function. The
boundary corresponding to the optimum decision function is

gilven by (4.6) which ylelds
2 2
-99x~ + 3.75y" + 398x - 8y - 393 =0

This 1s a hyperbollc boundary, and is shown in Figure 13.
In thls 1llustration, the 16 contours of the classes 1 and
2 are also shown. The region identified as class 2 is of
course that region between the two curves of the hyperbola.
Solution 2: Optimum linear decision function
based on knowledge of the distributions. Let the optimum

linear boundary to be given by
y =ax + b

By substituting the Gaussian forms into the conditions
given by Theorem 11, one obtalns the followlng implicit

equatlons for a and b (the detalls will not be included):

b4 V4
(62 + a262 e 1o (62 + a262 )e 2 R

ly 1x 2y 2X
and
2 2.2 2 2.2
(Gly ta 6lx _ (62y ta 62x
2 2 T2 2 ’
Glyulx + slxa(uly-b) 62y“2x + 52Xa(u2y-b)
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where

- 2
a - -b
), - [ uig (uéy2 )] , Lo 1e
Giy + a Gix

An iterative solution of these equations yields the expres-

Sion for the optimum linear hyperplane:

y = 1.04x - 1.32 . (5.17)

This 1s shown plotted 1n Figure 13 as the '"theoretical"
linear boundary.

Solution 3: Optimum linear decision functlion based
on samplling from the classes., This solution was obtained on
the IBM 7090 31gital computer. The iteration algorithm of
the previous section was programmed, as well as a "pattern
source", a random number generator which generated numbers
according to the particular normal distributions of the
problem,

One hundred sample polnts were taken from each class.
Various initial boundaries were tried:

= ]
2.5
X -1

4,2x - 6.8

SRS
N

]

Each of the final boundaries were slightly different, but

the important point 1s that each one categorized the points
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in exactly the same manner. (Thirty-nine points were always

misclassified.) An example of one of the final boundaries

is

y = .816x - 1.11 (5.18)

which 1s plotted in Figure 13 as the linear boundary marked

"experimental". Compare (5.17) to (5.18); the difference

1llustrates the sampling error.



CHAPTER VI

ELIMINATION OF REDUNDANCIES

There are at least two possible types of redun-
dancles which may occur in machines as described so far.
One of the redundancy types has to do with the receptor,
and hence may occur 1in other types of pattern recognition
machines as well. This is the redundancy of certain measure-
ments made by the receptor; that 1s, there is a possibility
that certalin measurements will contain no, or perhaps only
a little, information concerning the proper categorization
of the allowable pattern classes. Redundant measurements
are often eliminated by intuition before the design of the
receptor, but this intultive elimination is not always com-
plete, and sometimes 18 not even possible. It is an interest-
1ng property of linear decision functions that they can
help the designer locate redundant measurements.

The other type of redundancy 1s contained 1n the
linear decision function itself. It 1s qulte possible that
a particular boundary may be completely unnecessary to the
segmentation of measurement space, and therefore this boundary
need not be instrumented in the machihe. As an example,
Figure 14 shows the convex polytopes bounding two classes, 1
and j. ZEach face of a polytope enclosing, say, class 1 is a

Section of a hyperplane separating class 1 from one of the
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other classes. In Figure 14, the boundary BiJ is also shown,

It 18 not a face of either of the polytopes contalning

class 1 or class j. It adds nothing to the categorization

(1t cannot, by definitlon of the categorization process, be

a face of any other polytope), and can therefore be eliminated.
This chapter will deal with the detectlion of these

two types of redundancies.

6.1 Detection of Redundant Measurements

The detection of a redundant measurement 1is a Simple

proceas. Conslder a particular hyperplane given by
n
}:aixi +a, =0. (6.1)
1=1

Each a,, 1 <1 < n, 18 the direction cosine of the hyperplane
with respect to the 1th coordinate, providing the normalization
(3.2) holds. If o, 1s zero, then the hyperplane 1s parallel
to the Xy axis. If the measurement represented by Xy were

not made, then this would correspond to projecting the measure-
ment space onto the n-dimensional hyperplane defined by the
remalning n-l coordlnate axes, The projection of each

point into this new measurement space is in a direction
parallel to the Xy coordinate axls., If the original hyper-
plane (6.1) were parallel to this axis (a1=0), then the
projected n-l-dimensional bounding hyperplane would separate

the projected measurement space in exactly the same manner
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as 1n the original n-dimensional measurement space. This
can also be seen from (6.1)3 1if an a, is zero, then the
measurement Xy has no effect on the categorization, and 1s

redundant with respect to this hyperplane. If an a, is

i
small, it might then be expected that the measurement will
have llttle effect, and might still be deemed redundant.

These 1deas are 1llustrated graphically in
Figure 15a, where the closed curves represent the domains
of class 1 and class J. A bounding hyperplane is shown, 1in
which a, is small with respect to aq. If X, were then elimi-
nated, the new measurement space 1s as shown in Figure 15b.
In some cases, a, may have to be recomputed to obtaln a
more accurate categorization in the new space, as shown in
Figures 15c¢,d.

Now 1f a measurement Xy i1s redundant (according to
some preset .criterion pertaining to the increase in loss
when Xy 1s removed) for all of the constituent hyperplanes -
comprising a linear decision function, then i1t is reasonable
to remove that measurement from the receptor.

These concepts now give the designer some direction
in looklng for redundant measurements. He should consider
first those measurements for which the maximum absolute value
of the direction cosine over the set of hyperplanes comprising
the decision function is smallest. The maximum absolute

value of the direction cosine assocliated with a measurement
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may be sald to be an indication of the redundancy of that
measurement. The smaller thils value, the more redundant the
measurement. In particular, if all the direction cosines
assocliated with a measurement are zero, then that measurement
ls absolutely redundant and may be removed without affecting
the performance of the system at all.

6.2 Detection of Redundant Boundaries

The true'definition of a redundant boundary was
given in the introcuction to thls chapter. It 1s a boundary
which 18 not effective in the segmentation of measurement
space Into the various categories. That is, Bij 1s redundant
1f 1t 1s not a féce of at least one of the convex polytopes
bounding the classes 1 and j.

Let us modify thils definition slightly. 1In
Figure 16 is shown the range of three pattern classes in
measurement space (the closed curves). A possible linear
declslon function 1s also shown. Note that, according to the
previous definition, B1k is nonredundant. But it intersects
the polytope contalning class 1 in a region well outside the
range of the measurements, and therefore adds nothing to the
practical categorization. If, however, we enclose the set of
pattern classes wlith another set of boundaries indicating
the range of measurements, and consider these auxiliary

boundaries* along with the boundaries comprising the linear

*This 1s stlll perfectly general, since the auxiliary
boundaries may be at infinity.
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decislon function, the boundaries such as Bik will now be
redundant. For instance, 1in Figure 16, with the auxiliary
boundaries included, the polytope enclosing class 1 is
Indicated by the hatched region. B1k 18 not a face of this
polytope (nor of the polytope enclosing class k), and 1is
therefore redundant. Thls sort of redundancy will be called

geometrical redundancy. Note that the auxiliary boundaries

are nelther tested for redundancy nor bullt into the machilne,
They are included only as an artifice to make this definition
more practical.

Methods wlll be given here for determining
geometrical redundancy. However, 1t will be seen that these
methods wlll usually involve a great deal of computation,

A less accurate, but more practical definition of redundancy
1s therefore also considered. A boundary will be said to be

redundant in a sample sense 1f 1ts removal does not affect

the classification of a set of sample patterns. These sample
patterns may very well be the ones which were originally
used to determine the linear decision function.

Clearly, a boundary which is geometrically redundant
is also redundant in a sample sense. That the converse 1is
not true 1s shown in Figure 17. The boundary B1J is not
geometrically redundant (the auxillary boundaries are assumed
to contain the two polytopes shown). But 1ts removal will not
affect the classification of the sample points shown by the
crosses and circles. It 1s therefore redundant in a sample

sense.
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This example also points up another difference
between the two definitions, A linear decision function
which 1s completé except for the elimination of gecmetrically
redundant boundaries still obeys the uniqueness property of
Theorem 3 for all points contained within the auxliliary
boundarlies. However, when a boundary which is redundant in
a sample sense but which 1s not geometrically redundant is
removed, the linear decision function 1is no longer unilque,
1.e., there will be reglons 1n measurement space which will
be asslgned to more than one class. For instance, 1in
Figure 17, points 1n the area below the dotted extensions
of the two boundaries will be identified as belonging to
both classes i1 and jJ. This will be no problem providing
that no patterns can ever fall in this area, or that the
probabllity of such an occurrence is small and such patterns
rejected. If the sample size is large, one can be quilte
confident that the probability of such an occurrence (a
multiple recognition) is small.

6.2.1 Geometrical Redundancy

The determination of geometrically redundant
boundaries 1s carried out by testing the boundaries one at
a time. Each such test, as will be seen, requires a good
deal of computation. The following theorem aids in this
regard by giving a simple test which will identify some of the

geometrically nonredundant boundaries by using a set of
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correctly categorized samples. (These samples may be taken,
for instance, from the samples which were used to deslgn
the linear decision.) These boundaries then need not be

tested for redundancy.

Theorem 13! If a sample polnt, which represents a

member from pattern class 1 and which is correctly categorized
by the linear decision function, is closer to the boundary

B1J than to any other boundary Bik or to any auxiliary boun-
dary, then B1J 1s geometrically nonredundant.

Proof: Let P1 be the convex polytope in measurement
space containlng those points identified as class 1 by the
linear decision function. Let Pi be that polytope contained
in Pi which contains those polnts which are not only identified
as class 1, but which are also contained within the auxlliary
boundaries. (It is assumed impossible to obtain a set of
measurements lying outside of the auxiliary boundaries.)
Suppose a sample polnt p, which represents a member of class 1,
and which lles within the convex polytope P., 1s closer to
BiJ than to.any other boundary Bik or to any auxillary
boundary. Assume B1J 1s geometrically redundant; 1t therefore

’

1s not a face of Pi, but rather 1ies outside of P,. Then

any line segment Jolning p to BiJ must pass through one

face of Pi’ which 1s one of the other boundaries B or one

i1k
of the auxlliary boundaries. Therefore p cannot be closer to
BiJ than to any other boundary Bik or to any auxiliary boundary.
But this contradlicts the original supposition; therefore B1J
1s geometrically nonredundant.
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Boundaries which are not found to be nonredundant
by the above procedure must now be tested for geometrical
redundancy. The baslc problem may be stated as follows. If
there are m allowable pattern classes, then each polytope Pi
contalning a pattern class 1 18 defined according to a linear
decision functlon by m-1 linear ilnequalities (the bounding
hyperplanes). If there are in addition b auxlliary boundaries,
then the modified polytope Pi 1s defined by (m-1+b) linear
lnequalities. This set may be written

Qg% + ... + 4 n¥n < %40
am—l,lxl AEEER I am-l,nxn < am-l,O

(6.2)
am,lxl + ... +a X <0-mb

%m-1+p,1%1 * -er t @

m-1+b,nxn < am-1+b,n

The last b inequalities of (6.2) correspond to the auxiliary
boundaries. We wish to test a hyperplane represented by one
of the flrst m-1 inequalities for geometrical redundancy. We
will say that a boundary Bij 1s geometrically redundant with
respect to pattern class 1 if it is not a face of the polytope
Pi. If 1t 1s geometrlcally redundant wilth respect to class 1,
then 1t must be tested for such redundancy with respect to
class J. A boundary can only be eliminated i1f it is redundant

with respect to both of the classes which 1t separates.
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Following are two methods for testing for geomet-
rical redundancy with respect to one pattern class.
Method 1: Boundary Inversion*

We assume first that the set of inequalities (6.2),
defining class 1, has a solution (otherwise no patterns would
ever be categorlized into class 1). Note that if a particular
hyperplane 1s geometrically redundant with respect to class i,
then reversing its sense (reversing its inequallity sign
in (6.2)) will cause the set (6.2) to have no solution. If
the hyperplane is not geometrically redundant with respect
to class 1, then the set (6.2) will still have a solution
when the 1inequality sign corresponding to that hyperplane
1s reversed. This is illustrated in Figure 18. The arrows
Indicate the half space for each hyperplane which satisfies
the inequality; the cross-hatching indlicates the solution
space, if any. There 1s a problem 1f a redundant hyperplane
happens to pass through a vertex or a higher order edge of
Pi; we assume the likelilhood of this to be very small.

Consequently, in order to determine the redundancy
of a hyperplane with respect to a class, one need only to
reverse 1ts sense in (6.2) and see whether the resulting
set of linear inequalitles has a solution. Methods of
finding a solution to a set of linear inequalities, 1if
one exists, or of 1lndlcating that a solution does not exist

have been developed in the fleld of linear programming [22]

*
Suggested by F. W. Sinden.
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and are applicable here. Relaxatlion methods [1,37] for
s0lving a set of lilnear inequalities should be avolded,
since the& break down 1f a solution does not exist.
Method 2: Boundafy Projection

For discussional purposes, denote the boundary to
be tested as Bk’ 1 < k < m-1, where the first m-1 boundaries
are the ones assoclated wlth the linear decision functilon.
If one consliders the intersection of all the other (m+b-2)
boundarles with B, as a new set of (m+b-2) linear inequalities
iIn an (n-l-dimensional space (the surface defined by Bk)’
then if Bk 1s geometrically nonredundant with respect to
class 1, this new set of linear inequalities will have a
solution. 1In fact, the solution space 1s just that portion
'
g-
in Figure 19, where the solution space for the linear

of Bk which is a face of the polytope P This 1s 1llustrated
decislon function 1s illustrated by the cross-hatched area.
The solution space on the boundary belng tested is denoted

by a heavy line, whereas the rest of that boundary 1s drawn
dashed.

Mathematically, thils can be accomplished by
eliminating the inequality corresponding to B, from (6.2) by
eliminating one of the variables Xy 1 <1< n, which has a
nonzero coefflclent in that inequality. This glves an
augmented set of (m+b-2) linear inequalities in (n-1)
dimensions which may then be tested for the existence of a

solution as in Method 1. This will be a 1little simpler than
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In Method 1 since the number of boundaries and the dimen-
slonallty are each reduced by one.

Geometrically, the above mathematical procedure
corresponds to projecting the intersections of the (m+b-2)
hyperplanes with the hyperplane Bk onto a hyperplane which
1s perpendicular to the eliminated coordinate axis, Xy
The nondestruction of the solution space by this second
projection 1s guaranteed by the fact that the coeffilcient
of Xy 1n the linear 1lnequallty representing Bk 1s nonzero.

This leads one to another simple test for geomet-

rical nonredundancy.

Theorem 14: Consider the hyperplanes (including

the auxiliary boundaries) bounding a particular pattern
class 1. If one of these hyperplanes, say B , has a nonzero
coefficlent assoclated with a particular coordinate, and all
the other hyperplanes have zero coefficlents assoclated
wlth that coordlnate, then Bk 1s geometrically nonredundant
wlth respect to pattern class 1.

Proof: Let the coordinate in question be Xj'
Eliminate B, from (6.2) by eliminating Xy The new set 1s
then exactly like the original set (6.2), except that B,

has been removed. This i1s due to the zero coefficients of

Xy contained in all hyperplanes but B Since (6.2) had a

k.
solutlon space, then removing Bk can only enlarge that solution
space, Therefore Bk 1ls geometrically nonredundant with

respect to class 1.
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6.2.2 Redundancy in a Sample Sense

Recall that a boundary 1s redundant in a sample
sense 1f 1ts removal does not incorrectly classify any member
of a set of sample points, each of which was originally
classifled correctly. Unfortunately, each boundary cannot
be tested separately as in the determination of gevmetric
redundancy. Figure 20 1llustrates this problem. Five
pattern classes are shown, along with the ten boundaries
comprising the complete llnear declslon functlon. The reglons
which are associated with each of the pattern classes by the
linear decilsion function are shown bounded by heavy lines.
It is clear from Figure 20 that boundaries 315 and Bu5 are
geometrically redundant,

So far as redundancy in a sample sense 18 concerned,
note that if only B15 were to be removed, there would be no
change 1n the classificatlion of any posslible sample polnt

which was correctly recognized with B included. Likewilse,

15
if only B12 were to be removed, there would be no change in

classification of any such point (even though B is geomet-

12
rically nonredundant). Therefore elther By, or By may be
redundant 1n a sample sense, But if both B12 and B15 were

to be removed, then there would be points in the reglons
assocliated with classes 2 and 5 which would be also classified
as class 1; that 1s, there would be multiple recognition

errors. Thils 1illustrates that redundancy in a sample sense
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cannot be determined one hyperplane at a time, and further-
more that such an elimination 1s not unique, as in geomet -
rical redundancy.

An lterative algorithm will be described which has
been found to be useful in determining a set of boundaries
redundant in a sample sense., First, let us make some
definitions.

Def. 1: If the single removal of a boundary from
a complete llnear decision function causes confusion between

some of the samples, it 1s sald to be an unconditionally

slgnificant boundary.

Def. 2: If the single removal of a boundary from
a complete linear decision function causes no confusion

between the samples, then i1t is sald to be a condltionally

redundant boundary.
Def, 3: 1If B1J is the only boundary of class 1 and
class J which is conditionally redundant, then it is an

unconditionally redundant boundary of the first kind.

Def, 4: 1If Bj”j 1s a conditionally redundant
boundary, and 1f, after the removal of all conditionally
redundant boundaries and unconditionally redundant boundaries
of the first kind from the complete linear decision function,
samples from classes 1 and j are not confused, then B

13 is
sald to be an unconditionally redundant boundary of the

second kind.
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The algorithm is as follows

Step 1l: Remove each boundary one at a time from.
the completeAlinear decision function and determine whether
1t 1s unconditionally significant or conditionally redundant.
If 1t 1s unconditionally significant, it need never be
tested again, for it must remain in the linear decision
funetion. If a boundary is an unconditionally redundant
boundary of the first kind, 1t also need never be tested
again, since it can be eliminated permanently. That 1s, 1if
BiJ is the only conditionally redundant boundary assoclated
with either class 1 or j, then it is the only boundary of
elther class 1 or jJ about which there might be a cuesticn
of elimination. Since eliminating Bij causes no confusion
between classes 1 and j, and since the removal of other
conditionally redundant boundaries cannot affect either
class 1 or J, then Bij can be eliminated safely.

Step 2: Remove all conditionally redundant
boundaries and unconditionally redundant boundaries of the
first kind, and thus determine which are unconditionally
redundant boundaries of the second kind. These need never
be tested again since they can also be permanently removed.

Step 3: Reilnsert the boundarles which are still con-
ditlonally reduﬁdant into the linear decision function and
repeat step one with only these conditionally redundant bound-

arles and the unconditionally significant boundaries.
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Step 4: Repeat steps two and three until a steady-
state has been reached, i.e., the looping of this cycle does
not change the number of conditionally redundant boundaries.

Step 5: After the above iteration converxes, one
will usually be left with only a few, if any, conditionally
redundant boundaries. This remaining set will have the
property that any one of the conditionally redundant bound-
arles may be removed without confusing any sample points, but,
if all the conditionally redundant boundaries are removed,
then there will be confusion, Clearly, then, at least one
of these could be eliminated; perhaps more than one could
be eliminated. If the number of conditionally redundant
boundaries 1s small, the maximum number that might be
eliminated may be determined by trial and error. Alternatively,
certaln symmetries might be noted in these boundaries which
will allow an intelligent cholce of those boundaries which
can finally be eiiminated. Since thils problem will arise
falrly infrequently, and since the number of various symmetries
1s large, suffice 1t to say that such symmetries exist and
can be effectively utilized. Thelr further discussion hardly
seems warranted here.

This algorithm will allow the designer to determine
those boundarles which are redundant in a sample sense. Usually,
the computational effort involved is significantly less than
that required in the determination of geometrical redundancies,

although the methods and results are not nearly so clear cut.



CHAPTER VII

REJECTION CRITERIA

Rejectlion regilons which are inherent to linear
decision functions have already been discussed. 1In addition,
it 1s desirable to be able to introduce additional rejection
regions which will prevent recognition of patterns whose
classlification 1s doubtful. Regardless of the sort of
rejection criterion used, it should be compatible with the
economy of implementation of linear decision functions; other-
wise 1ts inclusion would hardly seem worthwhile.

Consequently we will describe,‘in rather general
terms, various "linear" rejection ceriteria, and then discuss
one of these in more detail. Throughout this discussion, 1t
wlll be assumed that the regions of doubtful recognition are
near the boundaries themselves. This seems intuitively
reasonable, and a use of the Central Limit Theorem later in
the chapter willl give one even more confidence 1in this
assumption,

7.1 Linear Rejection Criteria

There are several ways in which one might interject
a rejectlon criterion into a linear decision function. Per-
haps the most general sort of linear rejection criteria,
within the framework presented so far, would be to attempt

to find two hyperplanes separating each palr of classes.

- 107 -
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These hyperplanes would in general not be parallel. The
regions to elther slde of the two hyperplanes taken together
would be the regilons for the two classes; the region between
the two hyperplanes would be a rejection region. The problem
would then be to determine these two hyperplanes simultaneously
8o that they are optimum in some sense - for instance, to
meet a certain error rate with the minimum possible rejection
rate, or perhaps to minimize the expected loss when rejection
criteria are included.

A somewhat less general rejection criterion would
be to constrain these two hyperplanes so that they are parallel
to each other. The direction and separation of the hyper-
planes would then be chosen in some éptimum manner,

An even more restrictive case will be considered
here. We will concern ourselves with rejection criteria
which conslst of two planes per palr of pattern classes,
each parallel to and on opposite sides of the optimum linear
boundary as determined by the methods of the previous chapters.
The problem then reduces to simply finding the optimum
separation between each optimum boundary and its corresponding
rejection boundary on either side of 1it. We will continue to
define optimum as meaning minimum expected loss under the

constraints.

7.2 Optimization of a Type of Linear Rejection Criterion

Figure 21 1llustrates the sort of rejection cirterion

to be dlscussed. The dashed lines indicate the optimum linear
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declsion functlion separating three classes when rejection
criteria are not considered. The dotted region corresponds
to the rejectlion inherent in a 1linear decision function.

The actual reglons corresponding to those points which are
classified with a certain pattern class are shown cross-
hatched; the regions in the neighborhood of each of the
optimum boundaries are the rejection regions to be considered.

It might first be pointed out that the implementa-
tion of this rejection criterion 1s very simple. The device
which decides whether the distance of a point from a plane
is positive or negative (see Figure 3) will Simply have a
posltive and negative threshold built into it corresponding
to the distances of the two rejection hyperplanes from the
optimum hyperplane. If the distance of a point is between
these two thresholds, then some sort of rejection signal is
delivered to the logical circultry combining the hyperplane
outputs.

When considering one optimum boundary at a time,
the problem of the placement of the rejection hyperplanes
can be convenlently reduced exactly to a one-dimensional
problem. The one dimension 1s the distance from the optimum
hyperplane. In Flgure 22 1s shown a plot of the density of
distances from the hyperplane B1J of members from classes 1
and J. Denote such a density function for class 1 by ni(s).

If ﬂi(s) and nj(s) are known, then the results of Chapter II,



111

_+_

L _

T N

—— -

|1 | { | S

|1 || I

|1 || I

I : : W M) | :

|

R ]

| L

L1 | wj N (S)

|1 |

|| I

|| I

N | .
| L] —

N REJECTION . S
SUPERFLUOUS HYPERPLANES
BOUNDARIES OPTIMUM

HYPERPLANE :

LINEAR REJECTION

FIGURE 22



112

and 1in particular the decision function (2,3), may be used
to determine the optimum position of the two rejection
hyperplanes with respect to the optimum hyperplane.

If the sample size 1s large, ni(s) may be estimated
graphically. However, the followlng argument gilves a very
powerful alternative for approximating ﬂi(s). Recall that

the distance of a point m from a hyperplane 1s given by

n
s = }:aimi + 2,
i=1

where my is the ith coordinate of the point, and the a, are

i
the normalized coefflcients of the hyperplane. But m, is a

1

random varliable, and hence, if n is large, s 1s a welghted
sum of a large number of random variables. If the dependencies
between the random variables are weak, one may then reasonably
expect from the Central Limit Theorem [19] that the distribu-
tion of s 1s approximated by a normal distribution. Of
course, if the measurements m, are independent and normally
distributed, then the normality of s follows immediately for
any n.

Consequently, ni(s) 1s, to a good approximation
in many cases, a normal density function. Its mean and

varlance can be easlly estimated from the samples which

were used to design the linear decision function.
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The optimum decision function (2.3) can now be

solved for this case. Let the two classes be 1 and J; cij

1s the cost of misrecognizing a member of class 1 as class J;

0 is the cost of rejecting a member of class i; = Q3

€11
wy 1s the apriorl probabllity of occurrence of class 1.

From (2.3) we write
Zi = (cji-cjo)wjnj(s) = Ciowini(s) 3
ZJ = (cij-cio)wiﬂi(s) - Cjowjnj(s)

Class 1 1s chosen if Zi < Zj and Z, < 0. Class J 1s chosen

i

ir ZJ < Zi and Zi < 0. The point 1is rejected if Z, > 0 and

i
ZJ > 0. Denote by L the 1likelihood ratio

Clearly we would expect the optimum boundary (without rejec-

tion) to occur at Z, = Zj’ or the point in Figure 22 for which

Whether or not the estimated optimum linear boundary actually
falls near this position is a function of the sampling error
and the degree of approximation of the normality assumption.
The rejection region on either side of the optimum
hyperplane i1s given by the condition that Zi and Zj be

positive, This ylelds the region
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C c
sde g1t (7.2

©137%0 €io
which 1s 1llustrated in Filgure 22, The distance of the two
rejection hyperplanes from the optimum hyperplane is determined
by the equality signs of (7.1).

If one 1s interested in minimizing the error rate

for a given rejection rate, then he has only to set cij = cJi =
and cio = cjo = co< c. Letting
K = =— -1,
c
o)

then the rejection region 1is that region for which

<Lk, (7.2)

=i

where @he value of k will set the rejection rate. (Note that
if ¢ < 2¢_, k < 1, and there will be no rejection.)

Assumling that the distances of the sample points
representing classes 1 and J from the hyperplane Bij are

normally distributed with means My and uj < Moy s and standard

deviations gy and Uj’ then
w, o 8- 2 S-H 2
In L = 1n wi J + % < j> - i>
jci GJ . 04

The two rejection hyperplanes are determined by the equality

signs of (7.2) (or (7.1)); hence the separation
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between the optimum hyperplane and the rejection hyperplanes

are those values of s satisfying the following equatlons:

as® + 2bs + ¢ = 5, mo=1,] (7.3)

where

o
i

Oy
1 211’1(;:—%?3]{),

gy
6J=21n®ﬁ>.

15

The solution of (7.3) for m = 1 corresponds to the rejection
hyperplane on the negative side of the optimum boundary; for
m = J, the positive side (since uj < ui). Note, however,
that 1f the varlances are different (as 1is usually the case),
there are two values of s satisfylng the quadratic of (7.3).
This 1s illustrated in Flgure 22 (the superfluous boundaries)
and arises because there are two boundaries satisfying

L = cji/cij' Since the optlmum boundary used hereiln 1s that
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*
one lylng between the means My and uj, the rejection hyper-

planes which are chosen are those associlated with this bound-
ary, and not with the boundary which is on the far side of
the class wilth the smaller variance.

In summary, then, a rejectlon region parallel to
the hyperplanes comprising a linear decision function can be
easlly incorporated. The hyperplanes are considered
independently, and the distribution of distances of members
of a pattern class to the hyperplane is approximately normal
in many practical cases. The results of decision theory
can then be applied directly to determine the rejection
reglon on elther silde of the hyperplane, resulting in the
conditions (7.1) or (7.2). This sort of rejection region
ls easlly implemented in the equipment synthesizing a linear

decision function.

This 1s not quite an accurate statement. If the means are
close enough together, neither optimum boundary may 1lie
between them. However, a sketch of the distributions will
make the choices clear,



CHAPTER VIII

THE DESIGN AND ANALYSIS OF PATTERN
RECOGNITION EXPERIMENTS

There are two distinct and consecutive processes
usually involved in the feasibility study of a pattern
recognition method or machine. The first process is the
actual design of the machine. This might be based upon a
set of sample patterns which the experimenter has gathered,
from which he estimates the parameters of the machine [4,13,
31,32]. Alternatively, the experimenter may base his design
on some a priori knowledge concerning the pertinent charac-
terlstics of the pattern classes under study [5,21]. The
second process 1s then the testing of this machine in either
1ts hardware form or by 1ts simulation on a general burpose
computer. A different set of sample patterns from that used
In the design are usually used for this test,

These two processes will be discussed 1n this
chapter. All but the second section are generally applicable
to pattern recognition studies; Section 8.2 applies only to
linear decision functions. The general loss formulation wilil
now be dropped for the rest of this paper in favor of
considering error rates and rejection rates. Although this
is not as general as considering the loss, 1t complies more

closely wlith popular practices.
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The first section will deal with the interpretation
of test results when a pattern recognition machine is tested
with samples which were not used td design the machine. The
second section deals with a method of testing a linear
decisionﬂfunction whlch gives an estimate of an upper bound
on the error-plus-natural-rejection rate. Although this
estimate 1s not as desirable as those discussed in the first
section, it is applicable to the same sample set which was
used to design the linear decision function.

The third sectilon deals with the followlng problem.
An experimenter finds that his sample size from the real world
of patterns 1s fixed (for instance, due to economy reasons).
He wants to use some of these patterns to design a categorizer,
and the rest to test 1t. His machine will more closely
approximate the optimum machine if he uses a larger sample
size In the design stage. Likewise, the estimate of the
machine's performance will become better as-the test sample
8lze 1ncreases. Consequently the experimenter is faced wilth
the problem of deciding how to split his fixed sample set
between a deslgn sample set and a test sample set. This
problem 1s not completely solved, but an approach to it is
discussed, and some results are glven,

8.1 Performance Estimation for Pattern Recognition Machines

Usually, a pattern recognition machine should be
tested with a set of samples not used in its design. The

popular procedure for interpreting these test results is to
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take the proportion of patterns in the test data which have
been misrecognized or rejected by the machine as the estlimates
of the error probablility and rejection probability, respectively,
for the machine. There are several questions which might be
raised concerning this testing procedure, such as:

1. Are these estimates the best estimates?

2, If so, how good are these estimates?

3. How does the estimate improve as the sample size

is lncreased?

Questions such as these are discussed in this sec-
tion. Two cases are considered; one i1s the case in which
the a prilorl probabilities of class occurrence are unknown,
and the other case assumes full knowledge of the a priori
probabllities.
8.1.1 Unknown a priorl Probabilities - Random Sampling

Let the number of allowable pattern classes be p.
It will be assumed that, for each allowable class i, there

exlsts an a priorl probability of occurrence w a probability

1’

of error ey and a probabllity of rejection r The term

1-
"error" will refer to an undetected error; all detected errors
will be assumed to be rejected. These probabilities are
unknown to the experimenter, who 18 interested in estimating

the over-all probabllity of error for the machine,

e = iwiei s (8.1)
i=1
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and the over-all probabllity of rejection,

b
r = Zmiri .
i=1

Let him perform the followlng experiment, which will be

called random sampling. Consider the patterns to be randomly
generated by a "pattern source" according to the a priori
probabllitiles of occurrence. He takes a pattern from the
source, ldentlfies 1t, and then lets his pattern recognition
machine attempt ldentification. He notes which of the three
possible outcomes occur: correct recaognition, misrecognition,
or rejectlon. This experiment is repeated n times, resulting
in Mg samples whlch have been misrecognized and m, samples
which have been rejected.

Since each of these outcomes are mutually exclusive,
and each experiment 1lndependent, then the'resulting random
varliables, Mg and Mps clearly'are distributed according to
the multinomial probability distribution. That is, the Joint

probability distribution of m, and m_, P(me,mr), is given by

n m_m n-m_-m
5 i e 'r
P(me,mr) = (ﬁe mrjk r “(l-e-r)

The maximum llkelihood estimates for e and r, denoted by e

and T, are then [20]
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-~ me

€ = ——
n)
m

T = =
n’

which are the estimates in common use. Further, each of
these estimates 1s proportional to a single random variable
having a binomial distribution; therefore, ne and nT are
themselves binomially distributed. The mean value of each
estimate 1s the parameter for which it 1s an estimate; the

variance of each is [20]

2 1 2 _ e!l-e? (8 2)
o) .

e
2 _r(il-r
oz = n

Because it 1s known that ne and nT are binomially
distributed, confidence intervals can be applied to these
estimates.* These confidence intervals requlire rather involved
computations, but fortunately have been plotted for several
values of n by various people.[8,12,39] 1In Figure 23 1s shown
such a plot of intervals for a 95% confidence level computed
by C. S. Clopper and E. S. Pearson. The use of thils graph is
fairly simple. A vertical line extended upward from the
observed value of the estimate glven on the abscissa will

intersect the palr of curves pertalning to the particular

*Mattson [33] has used a similar argument for determining con-
vergence of an adaptive system. However, he used Tthebycheff's
inequallty to obtaln confidence lntervals which are necessar-
1ly larger than 1f he had used such intervals pertaining to
the blnomlal distribution.
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Sample 8lze used. Projecting these two intersections
horizontally onto the ordinate axis gives an interval for
the parameter belng estimated., The probability 1s .95 that
the actual value of the parameter lies within this interval.
For instance, if a sample size of n = 250 yielded 50 errors,
then the estimate of the probability of error is .20. Using
Flgure 23, it can be stated that, with probablility .95, the
interval from .15 to .26 contalns the true probability of
error.
8.1.2 Known a priori Probabilities - Selective Sampling

It 1s now assumed that the a priori probability
of occurrence for each class, w, , 1s known. To take advantage
of this knowledge, the experimenter takes ny samples from
each class 1 such that

2w, (8.3)

where n is the total number of samples. This process will
be referred to as selective sampling.* (It will be assumed
that the w, are such that equation (8.3) can be fulfilled
with the desired sample size, n.)

The machine 1s agaln allowed to attempt recognition
of these patterns, resulting in mei samples from class 1
being mlsrecognized, and m, samples from class 1 being

i
rejected.

- e R Em ER AR o s S R W W W WA @ e e e Er Er e we W ew we em  wv  wm wm  we  em e

*

This sort of sampling dichotomy has been noted by others.

For instance, Bowley [6] and Neyman [38] have referred to
these two methods as "unrestricted" and "stratified" sampling.
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For any class 1, the Joint probability distribution

for m and m again is multinomial:
€1 Ty

m
m n,-m_-m
ei 1 Ve

n
i r r
= 1 i i
P(mei,mri> = (mei mri>ei ry “(l-ey-ry)
(8.4)

Slnce each of these distributions is Independent of the others
in thils experiment, then the Joint probabllity of the out-

come for all p classes is the product of the individual
‘probabilities (8.4):

P(ée gevesly S yeee,m )
1 p 1 P

This 18 no longer a multinomial probabllity distribution.

i
(l-ei-ri
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However, since the maximum 1likelihood estimate of a sum of
independent variables 1s the sum of the maximum likelihood

estlmates, then these estimates for e and r are

m
- 1=1 1
D
Zm
R ri - (8.6)
- T n :

which agailn agree with the popular practice of using the
proportions as estimates. The random variables of which
né and nT are values are not now binomially distributed,

since a sum of binomially distributed varlables 1s not itself
a blnomial distribution in general,
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The mean of each estimate 1s again the particular
parameter being estimated, The variance of each of these

estimates can be computed:

re

(8.7)

in which use of equation (8.3) is made, and the prime dis-
tingulshes this variance from that for random sampling.

Similarly,

re 1
on” == iwiri(l-ri) .
i=1

It is of 1interest to compare these variances for
Sselectlive sampllng with those obtained for the case of
random sampling. Since the variance for ¥ has the same
form as € 1in both cases, 1t 1s necessary to consider only
one of them, say €. First note that cé can be written,

using (8.1) and (8.2), as

D

2 _1

% = n (Zﬁ“’i%Xl - i“lc%)
1= k=1
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From (8.7)

2 ro N e
i1 1/ ¢
%2 "% =|n Z"’iei - 'n’< “’191>

2
2
=?11. iwiei —%(iwiei . (8.8)

Noting that iwi =1, we let
: i=1

XYL X PO PO

Then (8.8) can be written
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Hence, the varlance in the case of random sampling
1s greater than the variance in the case of selective sampling,
the difference being what might be interpreted as the variance
of the class errors, That is, if ey is treated as a random
variable with probability distribution w,, then cg is the
variance of €y . (A similar derivation holds for the variance
of the rejJectlon probabllity estimates.) That the selective
sampling variance should be smaller than the random sampling
varlance might be expected, since in selective sampling more
information 1s used, namely the a priori probabilities,

Although statements have been made concerning the
mean and variance of the estimates 1n the selective sampling
case, nothing has been said yet concerning confidence intervals.
This 1s a much more complicated problem than in the case of
random sampling, since the estimates do not have a simple
distribution function. 1In fact, the confldence intervals will
in general depend on the particular set of ei's (or ri's)
pertaining to the machine, and not simply on e (or r),

However, for small probabilities, the binomial
distribution 1is quite closely approximated by the Poisson
distribution, the fit becoming perfect as the probabllity
approaches zero.[20] For any reasonable recognition machine,
one would expect the probabilities of error and rejection to
be small; consequently, the marginal form of (8.4) for mei or
m may be approximated by a Poisson distribution. The esti-

r
1
mates given by (8.5) and (8.6) are now sums of random variables
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with Polsson distributions (approximately) which are then
themselves Poilsson distributed. If the over-all error is
also small, as 1s usually the case, the binomial-Poisson
approximation can now be used in reverse, and one may state
that, for small error rates, the error and rejection estimates
(8.5) and (8.6) are approximately binomially distributed.
Consequently, one can use Figure 23 to obtain 95% confidence
intervals for the error and rejection probabilities. Further,
from (8.9), we would expect this confidence interval to be on
the safe side, that 1s, the actual 95% confidence interval
should be slightly smaller than this.
8.1.3 Application to Published Results

To 1llustrate the ease of determining these con-
fidence intervals, some published results in pattern recognition
are listed in Table 1 along with the 95% confidence intervals
as determined from Flgure 23, Three points of caution should
be noted concerning the validity of the confidence intervals
in this table. First, the author 1s not positive that the
test data 1s different from the design data in every case.
Second, to the best of the author's knowledge, in every case
the number of samples taken from each allowable pattern class
was predetermined. Thils 1s selectlve sampling; therefore,
1t 1s assumed that the proportion of samples taken from each
class represents its a priori probability of occurrence. The

third assumption is that the patterns used to test the machine
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are a reasonable sampling from the real-life world of
patterns, and are not blased toward either well-formed or
poorly-formed (noisy) patterns.

8.1.4 Summary

Two Important cases concerntng the testing of
pattern recognition methods or machines have been considered:
random sampling for the case of unknown a priori probabil-
itles of class occurrence, and seleétive sampling for the
case of known a priori probabilities.* The most predominant
form of testing in the present day art is to assume that the
pattern classes have equal a priori probablilities of occur-
rence, and consequently to use equal sample sizes for each
class; this 1s a speclal case of selective sampling.

It has been shown that, for both cases, the maximum
likelihood estimate for the error probabllity or rejection
probabllity 1s simply the proportion of samples misrecognized
or rejected. In the case of random sampling, the estimates
are binomlally distributed, and accurate confidence intervals
can be obtained. In the case of selective sampling, tighter
estimates are obtained which are approximately binomially
distributed for small error rates. Conservative confidence
limits may then be obtained for these estimates.

Using these notions, the experimenter can determine
the sample slze required to obtain results which he deems

significant. Alternatively, i1f he has a limited sample

*A more general form of sampling 1s discussed in Appendix II.
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slze, he can determine the slgnificance of his results. Note
that 1In both cases considered, the varilance is inversely
proportional to the sample size. This does not mean that

the confidence interval 1is lnversely proportional to the
square root of the sample size, however, since a blnomial
rather than a normal distribution pertains. However, perusal
of Flgure 23 seems to 1ndicate that this is a good rule of
thumb, Note also that the total number of samples required
to obtain a certain confidence in the results seems to be
independent of the number of allowable pattern classes.,.

This 1s an interesting philosophical point to ponder.

8.2 Performance Estimation for a Linear Decision Function

It has been previously stated that the sample set
used to test a pattern recognition machine should not include
samples which were used in the design of that machine. 1In
the case of linear decision functlons, the reason for this is
demonstrated by Theorem 10 and its corollaries., As was proved
there, if the number of points used in designing a linear
declsion function is less than a certain threshold value,
assuming no degeneracies among the gsample polnts, then the
optimum linear decision function would be expected to separate
these polnts perfectly. However, the actual error and
rejJection rates may very well be quite large; thus 1t clearly
1s not valid to claim that the estimate of the error rate,

for instance, 1s 0% based on this test in thls case.
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However, 1t 1s possible to estimate an upper bound
on the total error-plus-natural-rejection rate, (i.e., a lower
bound on the recognition rate) for a linear decision functioﬁ
when rejectlion criteria such as discussed in Chapter VII are
not incorporated. This procedure is based on Theorem 6 and
the normality argument of Section 7.2. By this argument,
under certain conditions, the distances of a set of sample
points from a hyperplane are approximately normally distributed.
This 1s true regardless of the hyperplane, and will hold for
any set of samples, including those used to design the linear
declision function. The parameters of this normal distribu-
tion can be estimated by computing the sample mean S and the

sample varlance v of the set of n points in question:

n
Z 3
j=1

w]|
1
S

n
v = Lo Z (s,-5)% . (8.10)
3=1

Let these points represent the samples from a
particular pattern class 1, and let the hyperplane be one
which separates thils pattern class from some other pattern
class jJ. Then the probabllity of misrecognizing a member
of class i1 as belonglng to class J can be estimated by

determining the area under that part of the normal curve with
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parameters (8.10) which falls on the j side of B Likewise,

13
the probabllity of misrecognizing a member of class J as
belonging to class 1 can be estimated. The sum of these
two probabilities, after welghting them according to the
a_priorl probabllities of occurrence of the respective
pattern classes, 1s an estimate of the probability of error
for the hyperplane Bij'

The probabllity of error for each of the hyperplanes
In the linear decision function can be estimated in this
manner. Then Theorem 6 can be interpreted as stating that
the probability of error plus the probability of (natural)
rejection for the linear decision function is equal to or
less than the sum of the probabilitiles of error for the
constituent hyperplanes, Hence, an upper bound on the total
error-plus-natural-rejection rate can be determined. This
estimate 1s valid even for the sample set used to design the
linear decision function.

It 1s possible to obtain a confidence interval for
thls estimate of the probability that one class will be mis-
recognlized as another (i,e., a confidence interval for the
estimate of the area on the wrong side of the hyperplane).
Consider a normal distribution with positive mean L,

varlance g, and variate s. The area under this curve for

8 < O (which corresponds to the above probability of error)
is
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Vare J_, V2

where x = E%& . Consequently, this area depends only upon

the ratio /¢, which is estimated by the ratio S/v. But the

random variable

<]

t =vA

1s distributed according to the noncentral t distribution
with noncentrality parameter,/n n/¢.[48] The parameters of
this distribution are only the noncentrality parameter (a
function of n and u/c), and the number of degrees of freedqm,
n-1 (a function of n). Consequently, confidence intervals
for w/g, and hence, the area of interest, can be computed
using this distribution, and will be a function of the sample
size n and the estimate 8/v.

This distribution has been tabulated,[27,40] The
curves 1n Flgure 24 for sample sizes up to and including 50
have been plotted from tables given in reference [40]. The
curves for larger sample slzes were computed from the normal
approximation to the noncentral t distribution [27] (5/v,
for large sample slzes, 1s approximately normally distributed
with mean w/¢ and variance [1 + %(u/c)gl/n). The use of

Flgure 24 1s similar to the use of the graph in Figure 23,
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except that only the upper bound has been plotted. The
reason for thls 1s that we are estimating an upper bound of

a quantity, and a lower bound on this estimate is not very
useful. To use Figure 24, compute the quantity 8/v, and
extend a vertical line upward from this value on the abscissa
axls, Determine the projection onto the ordinate axis of

the intersection of this vertical line with the curve corre-
sponding to the sample slze. It can then be stated that

thls value 18 greater than the true value of the area with
probablility .95.

Using the estimated normal distribution, one may
also compute similar estimates for the probability of rejec-
tion for each hyperplane if the rejection criterion of
Chapter VII 18 used. Consequently one may obtain an estimate
of the upper bound for the rejection probability for the
linear decislon function. However, the computation of
confidence intervals as described here will not apply.

8.3 Partitioning a Sample for Deslgn and Test Purposes

Section 8.1 was concerned with the estimation of
the performance of a given pattern recognition machine.
There 1t was shown how confidence intervals could be found
for these estimates, Two types of sampling from the real
world of patterns were dlscussed: A procedure called random
sampling was used when the a priori probabilities of pattern
class occurrence were unknown, and a somewhat different pro-

cedure called selective sampling was used when the a pgriori

Y
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probabilities were known. It was shown for both cases that
the maximum likelihood estimate of the error rate (or rejec-
tion rate) is simply the proportion of samples misrecognized
(or rejected), in agreement with popular practice. It was
further shown that the estimates in the case of random
sampling obey a binomial distribution, and that the estimates
In the case of selective sampling are approximately binomially
distributed with a somewhat smaller variance than in the
random sampling‘case. Consequently, confidence intervals

may be applied to the estimates. These results are non-
parametric in that they hold for any categorization machine
(or procedure), regardless of its structure.

We now consider the following problem., An experi-
menter desires to solve a particular pattern recognition
problem., He has at his disposal a set of different methods
for solving this problem, but it 1s not clear to him which
1s the best to use. Consequently he desires to estimate the
performance of each method when applied to his problem,
and choose the best. Let us assume that each method is
characterlized by certaln key parameters which, when known,
completely determine the recognition machine. To evaluate
any particular recognition method, the experimenter plans
to estimate 1ts parameters on the basis of one sampling
from the real world of patterns, and then to test this

machine based on another sampling.
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However, in many practical applications, the total
sample slze avallable to the experimenter for design and
test purposes is limited. For instance, he may be 1nterested
in bullding a machine to read hand-printed numbers, but he
may not have an automatic scanner available to him. Since
simulating a scanner by hand 1s very tedious, he may not
be willing to scan more than a certain number of samples.

Or he may be interested in distinguishing between.
radar returns caused by missiles and those caused by decoys.
Since 1t 1s expensive to actually run the sort of experiment
required to gather data for this problem, budget limitations
will certainly place a limit on the number of availlable
samples.

Another example 18 1in the field of automatic
dlagnosis of diseases, The experimenter may, for instance,
be interested in building a machine which would determine the
presence of cancer based on a 1list of symptoms. However,
records have been maintained for only a certain number of
people who have contracted thils disease, and the sample
size 1s thus definitely limited.

The followlng problem then arises. If the total
sample size 1s fixed, what 1is the optimum partitioning of
this sample between the deslign and test phases? This is
a rather loose, but concise, statement of the problem., A

more accurate one follows.
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Assume that the experimenter 1s concerned with the
study of a particular pattern recognition method as applied
to some particular problem. Theloptimum pattern recognition
machine based upon this method would have an error probabil-
ity e,- The experimenter 1s interested in estimating e, so
that he can decide whether the particular method under study
18 adequate for the solutlon of his problem, or alternately
whether 1t 1s better than another method. To do thils, he
takes a sample of a certain slze t from the real-life
world of patterns. He desires to use part of this sample to
design a machine according to the particular method under |
study. The machine which he thus designs willl have an
actual error probabllity e > e, (both quantities are unknown
to the experimenter). He then uses the remaining part of his
original sample to test the machine (according to the pro-
cedures of section 8.1). He thus obtains an estimate of e,
which will be denoted by €. It will be shown that & is a
blased estimate of ey and that the bias can be computed.
Consequently € can be adjusted so that 1t gives an unblased

estimate, éo,

of e,e The optimum partitlioning of the total
sample wlll be deflned as that partitioning which minimizes

the varlance of éo. Thus, if the experimenter follows this
procedure, he will obtaln an unbiased minimum variance estimate
of ey the optimum error probabllity. Of course, 1f he decldes
that a particular method 1s appllicable, he can then redesign

the corresponding machine with the entlire sample size,
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We are Interested, then, in minimizing the quantlity

o = F [€,-e0)%] = & [65] - <2, (8.11)

where E[x] and ai denotes the expected value and variance
of x, respectively,

Let us first digress and consider the biased
estimate €. Since € is discrete (1t is the proportion of

test samples misrecognized), its expected value can be written

E@%=Z%@):

where the summation is over all values of e, and p(x) denotes

the probablility of x. But

p(e) = Jp(g | e)p(e)de ,

where p(€ | e) 1s the probabllity of & given e and the integral
is over all (contlnuous) values of e (by definition e, < e < 1).

Hence

Ele]

i

E:é J;(g | e)p(e)de
J[Z@@lw]mwm

Let us hence forth consider only the case of random sampling.

Il

Then € 1s binomially distributed with parameter e. Therefore
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the term 1in brackets, which i1s the expected value of e glven

the parameter e, 18 just e. Then

E[2] = Iep(e)de = Ele] . (8.12)

Elells a function only Qf the parameters of the problem and
the deslgn sample size; it 1s not a random varlable,
We next determine E[8°], By golng through a process

analogous to the above, and by making use of (8.12), we obtain

oz = EL(8-E[e])®] = E[&®] - (5le])? - Elell=e)]
where n 1s the size of the test sample. Hence
e(e?] = Ele(l-e)] | (g[e])? . (8.13)

We now determine E[e]. .Let the optimum machlne be described
by ¢ different parameters 501, 1 <1 << c. The design of the
méchine consists of estimating the parameters 601 by making
measurements on a set of sample patterns (the design sample).
Let the estlimated parameters be denoted 61, 1 <1< c. Then
the error probabillty e of the resulting machine 1s a function

of the estimates of the true parameters:
e = e(61,62,...,6c)

One can expand e in a Taylor seriles expansion about its

minimum polint, ey Since this 1s a minimum point, all the
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coefficlents of the llnear terms will be zero. If the error
deviation, Ae = e-eo, 1s small, terms above the second order

term may be neglected:

C C
' 2
1 ¥ o e
eme,t3 ) 25'5;653 (81651 )(84-844)
1=1 §=1 5

o

The expected value of the error for the resulting machine 1is

then
¢ c 5
1 d e
E[e] = eO +§ Z Z 3‘8—1‘55— E[(ﬁi—ﬁoi)(ﬁj—a J)] ’
31 =1 J 5,
or
c c
Blel =e, +3 ) ) a0y s (8.14)
1=1 j=1
where
2
_ 0%e
aiJ a,ji Wi ] . b
o)

cij is the covariance of the estimates for 60 and 60 and

i
O;1 = cf 1s the variance of the estimate for 60

3°
1 (8.14) 1is
valid for small Ae.

Let each parameter be estimated with m samples. If
each of these estimates is an efficient estimate, and if the

estimates are independent (either because the estimates are
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statistically independent, or because different samples are--

2
Oy
wlll be proportional to 1/m. Hence one can rewrite (8.14) as

used to estimate each), then all gy = 0, 1 # 3, and all

Ele] = e_ + % , (8.15)

where b 1s some constant calculated from (8.14). (Often,
Ele] 1s in the form (8.15) even if the estimates are not
independent.)

Let t be the total sample size, and p be the number
of sets of m samples used to design the machine. p 1s chosen
to be the smallest number which insures that E[e] 1s of the
form (8.15). It is often simply the number of allowable
pattern classes, since, of course, parameters of different
classes must be estimated with different samples., If n 1s

the test sample size, then
t=n+opnm. (8.16)
From (8.12) and (8.15),

E[] = Ele]l = e, +2 . (8.17)

Consequently, € 1s a biased estimate of e,- The adjusted

estimate, éo, given by

o)
I
™)
|
gSlo
“

(8.18)
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1s an unbiased estimate of e,, with variance glven by (8.11).

This varlance can now be rewritten using (8.18):

2
2 -2 2 ~ b 2

2
~2 b ~ b 2
E[e ] - 2EE[e] + <E> - eO .

From (8.13) and (8.17),

2
o'f2~=-E—:[—e—(}]—_eL}+(E[e])2-2%e b>—62

2
= ELEL%:Ell + (Ble])® - (e + b>
Thus, from (8.17)

s = Eleli-e)]l (8.19)

e
o

If % << 1 (which will certainly be true for any reasonable
design), then

b
> E[e(l-eo)]  (1ee) e, + o
Ce = n TV n
0
e, + i%%
- (1ee) 2 (8.20)

where the relation (8.16) was used.
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We wish to choose n so that (8.20) is minimized.

Differentiating (8.20) and equating to zero, one obtains
o
eot_E—E-—l
pb 2’
(-2

where n_ 1s that value of n satisfying (8.21); 1t 1s the

(8.21)

optimum test sample size 1n the sense previously discussed,

n
O

- 1s of course the proportion of the total sample used for

the test. One interesting result is 1mmediately obvious:

n
O

£ Must be greater than .5 for all cases. The equation (8.21)
1s plotted 1in Figure 25, from which the following general
statements can be made,
1. .The proportion of the total sample that should
be used to test the machine should never be
less than 50%.
2. If eot/pb < 0.1, then the proportion used for
design should be about 50%.
3. The proportion of the total sample that should
be used to test the machlne becomes larger as:
a. The total sample size increases,
b. the error of the optimum machine increases,
c. the effectiveness of the design increases
(pb decreases).
Here 1/pb is taken as a measure of the effectiveness of the
deslgn, since pb is the product of the expected deviatlion from

optimum, E[e-eo], and the design sample size, pm,
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These results indicate Jjust how a sample should be
split between the design and test stages of a feasibility
study of a pattern recognition method. If the experime: er
follows thils procedure, he will obtain an estimate go of e,

which 1s unblased and has minimum varlance.

The value of thils minimum varlance can be expressed

as
nO
2 _%l-e) o 1'—15'>
T 7 ;

o .
min Q-E——l

which was obtained by eliminating pb between (8.20) and
(8.21). Note that this is the variance that would have been
obtalned 1f the optimum machine were tested with n samples,
increased by a factor which accounts for the design error.

As an illustration of these 1deas, consider the
following example (perhaps the simplest of the n-dimensional
problems). A pattern recognition machine 1s to be designed
using the optimum decision function (see Chapter II) which
willldistinguish between q classes. The occurrence of each
class 1s equally probably a priori, and all costs of misrecog-
nition are the same. The receptor makes a set of k measure-
ments mJ, 1 < J <k, on each input pattern. It is known that
each measurement 1s normally distributed with variance o,
and that all measurements are independent. Further, 1t is

known that the distances between the mean vectors in
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measurement space are all equal. (Consequently, there can be
no more than k+1l pattern classes. The tips of the mean
vectors are the vertices of a regular polytope.)

Consequently, the distribution of the measurements
for each of the classes 1s spherically symmetric and unimodal.
We know then, from Theorem 7, that the optimum decision func-
tion 1s a lilnear declslon function comprised of those hyper-
planes which are the perpendicular bilsectors of the line
segments Jolning all pairs of means. (This 1is true even for
the multiple class case, providing no rejection decilsion is
requlired, There will also be no natural rejection regions,
since this linear decilslion function 1s also an optimum decision
function with no rejection decision.) The hyperplane separat-
ing two classes, say classes 1 and 2, is given by Theorem 8,

and 1s the set of all points X which satisfy

X (T Hp) = (i, Sy Tp) (8.22)
where Ei is the mean vector of class 1i.

The design procedure consists of estimating each
mean vector from a sampling; denote the estimated mean vector
for class 1 by Ei. The distribution of the estimate of a
mean vector from a normal distribution with covariance matrix
[V] 1s also normal with covarlance matrix %[V], where m 1is
the sample size used in the estimate.[2] Since the measure-

ments are independent in thls case, then 80 wlill be the
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estimates of the means of the various measurements. Further-
more, each estimate will have a variance of 02/m. Consequently,
only one set of samples of size m from each pattern class is
required to insure that the form (8.15) 1s valid, and p 1is
hence equal to the number of allowable pattern classes, q.

We now determine the coefficlent b in equation (8.15).
If the mean vectors are more than about 3g apart, then on.y
a small error 1s made 1f the total error 1s approximated oy
adding the errors of each hyperplane taken alone. That is,
the integrals on the wrong slde of the hyperplane that are
counted more than once wlll be quite small compared to the
integrals counted only once (this 1s discussed 1in more detail
in the proof of Theorem 6).

Due to the symmetry of the problem, the ;fror
assoclated with each hyperplane for the optimum decision
function 1s identical, and the derivatives of (8.14) will
also be 1ldentlcal for each hyperplane. Since there are
a(gq-1)/2 hyperplanes, b may be expressed (from (8.14) and
(8.15)) as

Kk o >
o
b _ q(g-1) 1 oe et o
m o T =z N m
131 | 9%y, 90X} o
TR Mysko
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where the hyperplane separating classes 1 and 2 1s taken as
typical, and the 1ndependence of the estimates 1is used. €0
1s the error assoclated wlith thils hyperplane, by and L, are
the mean vectors of these classes, and ?1 and Eg are the
estimates of the mean vectors.

There 1s no loss 1n generality if Wy is taken as
zero, and all the components of ug(ulg,...,ukz) are taken

as zero except for Hqo- That 1s,

u, = (0,0,...,0)

u,2 = (LL,O,---,O) >

where Hqo 1s denoted pu, pw > 0, Consequently, the optimum

boundary 1s given by
Xy = /2

A sampling of size m is taken from each class, and

the mean vectors are estimated, giving

X, = (xll’x21""’xk1)

;2 (—i12,§22, * e o ’§k2) .

A boundary glven by (8.22) is computed based on the above
estimates, and thils, together wlth the other estimated

boundaries, determines the structure of the machine.
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The error e, assocliated with this particular bound-

ary for class 1 1s

X 2 X 2
£ 1° L., T )
1 =N 1 T Ao
= :H I e : de j e . dxl R
=2 V2
J - To el(xgy LA ’Xk) To
where gl(xg,...,xk) i1s the value of X, on the boundary, and
is given by (from (8.22))
k : k
il 12
gl(XQJ"OJXn) = - - X Z

125 X917%10

X, +% £ of% - (%2, =2
“1l1 712 X11” 12 i 11 712

2) - X0

”i'

1

Then

2 2
% 1/ 1761 -
S EUP O NP O VEN
= N Vo X117%p

3%y, J=2 J__/PTo
2<1<n
o 2
Sy M O
xy, J=2J__/Zmo v
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where N(%%):is the value of the standard normal denslty

function for the variate p/2q. In a like manner,

82e
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where_e2 1s the error associated with this boundary for class 2.

Since the total error for this boundary is e12 = e1 + €ns then

3% 3% 3% :
—iE - — T— =0 2<1<n
— - — — ’ — —
ox ox ox
11 11 0. 11
U-l,ug I-Ll.-ug u-l:ug
3%
A like result holds for S—?— 2 <1< n. Going through this
X
12

same procedure for xll’

L] ) o, [ 2]]
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It would also be found that
2
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Thils analysis is perfectly general for arbitrary
mean vectors, providing that p is merely lnterpreted as the
dlstance between a pailr of mean vectors (all such distances
being assumed ldentical)., This distance will henceforth be

written Ap to indicate that it is a difference of means.



155

Therefore, from (8.23), we find that

- 2t 2 a(3) -

The equation (8.21) becomes

nO
2 g -1

N(%%j - (1 _ _':c2>2 :

Le

a“(q-1)

(8.24)

ol

Some curves representing (8.24) are plotted in Figure 26 in
which the proportion of the total sample to be used in the
test, no/t, 1s shown as a function of t, the total sample
slze, with the number of allowable pattern classes, q, as a
parameter, e, was held constant at .05, which involves the
choosing of the proper value of AMu/2¢ for each dq. This 1is
done as follows. The conditional error for each class, 1if
the a priorl probabilities are equal, is e,- If there are g
classes, then the conditional error associated with this
class belng categorized as any of the other (q=1) classes
must be eo/q-l, since all of these conditional errors are
identical. Let us consider class 1, with mean Ky Let x be
in the direction of the 1line segment Joining Hq and Ko of
class 2. Then the probability of miscategorlizing a member

of class 1 as class 2 1s (approximately)

2
X~H
% 1 [ '%( 1) e
e o dx
-+ 2
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X-uy
.q
mined, given values for e, and p, fqgm_tables of the standard

where y = From this relation, Au/2g can be deter-

normal distribution.

From Figure 26 it is seen that, for many cases, the
sample should be spllt evenly between design and test, as one
might intuitively suspect. However, there are some drastic
deviations from this. For instance, if the categorizer is
to separate only two classes, and 1000 samples are available,
then only 50 of these should be used to deslign the machine,
and 950 should be used to test it. Consequently, it is seen
that intultion may go wrong in some cases.

This section has not solved the problem of sample
partitioning. One problem is the determination of b, which
in many cases will be very diffieult to find. It would also
be interesting to consider the case in which there 1is an
overlap between the design and test samples. This discussion
has, however, developed one approach to the problem and
1llustrated that intuition is often, but not always, a good
guide.



CHAPTER IX

EXPERIMENTAL APPLICATION - DETERMINATION
OF THE GEOGRAPHICAL SOURCE OF RADIO SIGNALS

This chapter and the next will describe two
experimental applications of linear decision functions to
categorization problems. The experiment described in this
chapter i1s small enough so that the data &nd results can be
described 1n detail; Chapter X discusses an application much
larger in scope, and hence only gross results are given,

Between these two experiments, most of the concepts
and procedures as discussed previously are applied. In the
application described in this chapter, the estimate to the
optimum linear decision function is found, and the upper
bound for the probability of error-plus-natural-rejection 1is
determined by the method given in Section 8.2. Also, a
linear rejection criterion 1s applied. The results of this
experiment are compared to one in which the same data was
categorized by using the optimum decision funetion based
upon an assumption of normally distributed, independent
measurements,

In the experiment described in the next chapter, the
optimum linear decision function is also estimated, and 1is
minimized by eliminating redundant boundaries and redundant
measurements. The resulting incomplete linear decision

function is then tested in two ways:

- 158 -
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1. by using an additional test sample different
from the design sample, and
2. Dby estimating the upper bound for the error-
plus-natural-rejection probability,
9.1 Description of the Application

The problem to be described here is one studied by
Professor A. E. Laemmel of the Polytechnic Institute of
Brooklyn. A radio signal is received]at a monitoring station,
and it is desired to determine from wﬁich geographical
location this signal originated. It is assumed that there are
a finite number of soﬁrces whose geographical locations are
known., Certaln measurements are made on a sampling from
these stations. The problem is to design a categorizer
based on these samples.

The measurements chosen (by Professgr Laemmel) are
based on measuring certain fading characteristics of the
recelved wave. The output of the automatic gain control (age)
of the receiver is monitored for a 50 second interval, and
the following measurements are made relative to the peak
output during this interval:

m, - number of seconds during which the age output

is greater_than one-half of its peak value;

m, - number of crossings of the half-peak level by

the agc output.

m3 - number of seconds during which the age output

is greater than three-quarters of 1ts peak value.
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my, - number of seconds during which the age output
is less than one-quarter of 1ts peak value.
mg - duration (in seconds) of the maximum interval
during which the age output 1s greater than
one-half of its peak value,
mg = number of crossings of the three-quarter level
during the maximum interval measured by m5.
Note that this 1s an example of a receptor which makes both
continuous (ml,m3,m4,m5) and discrete (mg,m6) measurements.
9.2 Results
These measurements were made on five geographical
locatlions (the allowable pattern classes): Ohio, Canada, Quito
(Ecuador), London, and Lisbon (Portugal). A sample size of
five was taken from each source over a period of time, and
the resulting measurements (furnished by Professor Laemmel)
are shown 1n Table 2,
9.2.1 The Estimated Linear Decision Function
The linear declsion function was determined by
using the algorithm of section 5.3 to estimate each of the
constituent hyperplanes. 1In all cases, the ilnitial hyperplane
was the perpendicular bisector of the line segment Joining
the means of the two classes. The ten resulting 6-dimensional
hyperplanes are shown in Table 3. X4 is the coordinate
representing the measurement my 1 <1< 6. Each hyperplane

1s identified by using the numbering arrangement of Table 2,
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m m2 m3 mu m5 m6

Ohio 1]50.0 0 50.0 0.0 50.0 0
2 1 50.0 0 50.0 0.0 50,0 0

3]50.0 0 43.0 0.0 48.0 1

4150.0 0 50.0 0.0 50.0 0

5124.6 9 19.3 10. 4 12.6 2

Canada 1 | 47.4 19 31.8 0.0 16.7 12
2149.5 2 32.7 0.0 37.7 39

3] 44,8 36 23.6 0.0 11.6 16

4150.0 0 39.7 0.0 50.0 7

51 44,4 34 26,3 0.6 25.0 25

Quito 1| 22.6 5 8.6 12.6 10.8 2
2123.2 10 8.1 5.2 11.9 2

3] 24.8 9 15.1 1.3 9.0 3

4129.3 7 10.8 5.4 16,6 5

5115.9 26 4.8 18.3 4.0 4

London 1 9.3 114 0.8 17.9 0.5 2
2138.0 51 17.7 3.6 4.3 2

*3 1 24,7 29 10.0 9.3 4,7 2
4139.3 41 15.8 2.3 14,7 20

5138.5 68 15.6 2.7 3.5 4

Lisbon 1 | 22.8 58 7.6 10.3 2.2 2
2| 40.2 39 17.5 1.0 5.6 2

3136.3 36 16.4 3.7 13.4 10

4123.0 60 8.7 13.2 3.7 6

5132.0 41 16.8 6.1 8.7 - 8

THE SAMPLE UPON WHICH THE LINEAR DECISION

FUNCTION OF CHAPTER IX IS BASED

TABLE 2
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THE ESTIMATE OF THE OPTIMUM LINEAR DECISION FUNCTION,

BASED ON THE DATA OF TABLE 2

TABLE 3



163

l.e., BMQ 1s the hyperplane which separates the sample points
for Canada from those for London. The first number in the
subscript of Bij corresponds to the plus side of the hyper-
plane. That 15, the half-space consisting of all those
polints which are a positive dlstance from Buz are classified
as belonging to Canada by B),; the other half-space (for
negative distances) contains all points classiflied as London
by B42.

No attempt was made to determine whether any of
these boundaries were redundant, nor whether any of the
measurements were redundant. Note, however, that the maximum
absolute value of the direct?®on cosine associated with each
coordinate 1s‘1arge (>0.4). Therefore, one might conclude
that all of the measurements are significant (see section 6.1).
9.2.2 Error Estimates

The complete linear decision function of Table 3
categorized all but one of the sample points from Table 2
correctly. The mlsclassified polnt was one representing
London, and was classified as coming from Lisbon. One
cannot claim, however, that this experimental error rate,
l.e., 4%, represents in any way phe actual expected error
rate for the linear decision function. Theorem 10 states
that, in 6 dimensions, 7 nondegenerate points can always
be separated by a hyperplane. In thils example, only 10

points were belng separated by each hyperplane. Since
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this 1s quite close to the "threshold" predicted by Theorem 10,
one 1s not surprised to find that the linear decision function
works well in this case.

A better estimate of the expected error probability
can be obtained by estimating the upper bound as described
in Section 8.2. These results are shown in the form of a
confusion matrix in Table 4. Each entry corresponds to the
area under the estimated normal density function N, (s) (for
distances of the polnts representing class i from the
hyperplane separating class 1 from class J) which lies on the
J side of B1J. Note that the one error (London categorized
as Lisbon) corresponds to the largest estimated upper bound
in Table 4. If each geographicai'Source 1s considered equally
probable a priorl, then the estimated upper bound for the
error-plus-natural-rejection probability is the average of
the total probabllities of error for each class. This upper
bound 1is .30. (Conversely, one may say that the estimated
lower bound for the recognition rate is 70%.) Unfortuhately,
reference to Figure 24 shows that this estimate 1s not a
very rellable one. For instance, if X/s were 3.0, one would
say that the estimate of the error rate (for that class and
hyperplane) would be».l3%. However, the 95% confidence
interval for this estimate, from Figure 24, is 0%-17.7%! The
extremely small sample size (five per class) used ylelds very

poor estimates,



RADIO SIGNAL FROM

OHIO

CANADA

QUITO

LONDON

LISBON

Estimated Upper Bound on System Error = 30%

IDENTIFIED AS

o &) (<4 = =
\ .06 .11 .71 .55
4.01 14,0 |8.69| 9.18
.51 4,65 4.95 2.94
11.9 |19.1 | 11.7 36.7
1.92 | 10.4 2.22 | 4.95

ESTIMATED UPPER BOUNDS FOR THE VARIOUS

CLASSIFICATION ERRORS IN THE GEOGRAPHICAL

LOCATION OF RADIO SIGNALS, IN PER CENT

TABLE 4
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It is 1nteresting to compare these results with
those of a trial by Professor Laemmel, in which the distribu-
tlon of a particular measurement for a particular class was
assumed to be normally distributed, and each measure was
assumed independent of the others. The various means and
variances were estimated from the sample of Table 2, and the

a posteriorl probability of each point coming from each class

was calculated. Categorlzation was based on maximlizing this
probability over the set of classes (the optimum decision rule
under the. above assumptlions 1f 1t 1s also assumed that the
a priori probabilities of occurrence and the misrecognition
costs are equal). Using this procedure, four polnts from the
sample were mlsclassified,
9.2.3 Application of a Rejection Criterion

The llnear rejection criterion as described in
Sectlon 7.2 was applied to this linear decisilon function. The
rejectlion hyperplanes were determined by the condition that
the loss assoclated with an error was ten times as large as

the loss assoclated with a rejection:

|
Q
I

01J = 10

cio = co = 1 ,

According to equation (7.2), (assuming equal a priori
probabllities wi), the rejection region around the hyperplane

BiJ corresponds to that region for which



167

n, (s)
< TTJ'(ET <9. (9.1)

O+

The equations (9.1) were solved for this case. The resulting
separatlon of the rejection hyperplanes from the estimated
optimum hyperplanes are shown in Table 5. Aao_ 1s the distance
of the rejection hyperplane on the negative (J) side of Bij;
ba . 18 the corresponding distance on the positive (1) side,
The fact that, in some cases, both rejection hyperplanes are
on the same side of Bj_‘j (1.e., those with the same sign in
Table 5) can be attributed to eilther sampling error or
deviations from normality of the distributions of the

dlistances.

Note that one rejection hyperplane (Aao_ for B21)
1s at infinity. This means physically that any attempted
categorlzation of a signal as coming from London would always
be rejected, since the 1likelihood of its originating in
London rather than in Lisbon will always be less than 9 (the
rejection condition (9.1)).

This rejectlon boundary was replaced by an arbitrary
(hence suboptimum) rejection hyperplane at ba = -.T (which
seemed not too unreasonable from a plot of the distributions).
Based on thls modified set of rejection hyperplanes, the
rejectlion and error probabilifies for each class-hyperplane

combinatlion were computed. These are shown in the confusion

matrix of Table 6, where the upper number represents the
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Boundary Aao_ Aao+
Bgy - .85+ 1.4
B53 + .10+ 1.9
B52 + 2.2 +19
B51 + 2.0 + 9,0
Bys - 5.7 |+ 2.8
B42 -17.9 +31.4
541 - 7.2 +19.0
B3o - 5.3 [+ 4.7
B3y - 2.5 |+ 3.0
Boq - ® + 1.4

SEPARATION OF REJECTION HYPERPLANES
FROM ESTIMATED OPTIMUM HYPERPLANES

TABLE 5
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(IDENTIFIED AS)

(REJECTED AS POSSIBLY BEING)

< = =
o ) a § R
[42]
i 2 5 g H
OHTO 0.0 .11 1.1 .80
1.5 .281 8.4 1.9
N
_ campa | 29 | 1.9 .99 | 5.9
& 3.4 25.5 | 63.4 |31.1
; N
§ QUITO 021 1.3 2.6 .73
2 A2 1 27.5 25.9 10.0
Q
2 roxoony | 3+2 3.8 7.4 20.6
8.1 |37.5]11.6 28,6
LISBON - 20 3. 6 '49 .05
1.0 |1 18.8| 5,6 | 20.5

Estimated Upper Bound on System Error
Estimated Upper Bound on System ReJection

o n

oV
N0
o &=
ANNR

RESULTS OF APPLICATION OF LINEAR REJECTION
CRITERION TO GEOGRAPHICAL LOCATION OF
RADIO SIGNALS, WITH c/co = 10,
UPPER NUMBERS ARE ERROR PROBABILITIESS
LOWER NUMBERS ARE REJECTION PROBABILITIES,
IN PER CENT

TABLE 6
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per cent error and the lower number the per cent rejection.
Averaging thesé (assuming equal a priorl probabilities) gives
an estimated upper bound for the system error probability

of .10, and an estimated upper bound for the system rejection
probability of .66.

If one wanted to determine the optimum linear
rejection criterion for a fixed error rate or fixed rejection
rate (for instance, design for the minimum rejection rate
which will yleld an error rate of 1%), then he would have to
try several values of the loss ratio c/co and obtaln plots
of the error rate and rejection rate versus c/co. From

these plots, the appropriate loss ratio could be determined.



CHAPTER X

EXPERIMENTAL APPLICATION - THE RECOGITION
OF HAND-PRINTED NUMBERS

The recognition of hand-printed numbers was
attempted with a linear decision function. The set of
measurements whilch was used involved quantizing the number
Into a 12 x 12 binary matrix. A matrix element was glven a
welght of one 1f it contained a mark and welght of zero if
it contained no mark. The quantized number was then
positioned in the matrix by aligning 1its center-of-gravity
with the center of the matrix.

Hence, a 144-dimensional binary measurement space
was used. This set of measurements 1s a rather unsophisticated
set 1n that the measures are not at all invariant within a
particular class. That 1s, in order for a linear decision
function to perform well, those polnts 1in measurement space
corresponding to a particular class ought to be grouped
together wilth respect to points representling other classgs.
This willl occur 1f the measurements (or at least some of the
measurements) are somewhat invariant under the varilous
distortions and noises that might affect a real 1life pattern,
In the case of hand-printing, these perturbations from ideal
include size varilations, tilt, varylng pencil width and

density, the various forms that people use to form a character,

- 171 -



172

and the effects of sloppiness. Clearly the measures used
here are 1n no way invariant under such perturbations, and
one would not be too surprised if a linear decision function
did not perform very well.* However, the attempt is still
interesting since 1t represents a more complex problem than
that discussed in the previous chapter, and will consequently
allow the testing of some of the preceding 1deas in more
detail.

10.1 Estimating the Linear Decislon Function

The data used to estimate the optimum linear
decislon function was gathered in the followlng manner. A
subject was asked to neatly print the ten numbers on a plece
of quad-ruled paper at a silze approximating the ruled boxes.
Flfty different people were so asked, resulting in a sample
slze of 50 for each of the ten pattern classes. This data
was then automatically reduced to a 12 x 12 matrix (encoded
on IBM punched cards) by an optical matrix scanner constructed
by the author,

In Figure 27 1s shown an example of some of this
design data, 1llustrating approximately the range of size and
neatness obtalned. In Figure 28 are shown examples of some

of the qguantlzed numbers.

A very effective set of measurements has been proposed by
Kamentsky [29] for the recognition of hand-printed numbers.
This 1nvolves using a "flylng-polar" scan which is capable
of determining the number of closures and cusps (partial
closures) and the orientation of cusps 1n a character,
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O ./ 2 3 # &§ 6 7 8 ¢

OC1'23 485 66718 9
1224567890

SOME EXAMPLES OF THE
HAND-PRINTING DESIGN DATA

FIGURE 27
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Q00000”00000
CO0OO0OO00000000O0
00000000000

Q00000000000
O00C0000000O0O0
O0000000000QO0

Q00000000000
0000000 —0O0
O00O00000Q\~O0 O

QOO0 00000000O0
000000000000

Q00000000000

CO00 00000 00O
Q00000000000

EXAMPLES OF QUANTIZED FORMS

OF THE HAND-PRINTED NUMBERS

FIGURE 28
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Forty-five hyperplanesvare required in the complete
linear decision function categorizing the ten numbers. These
were determined by the computation algorithm (Section 5.3)
on the IBM 7090 digital computer. About 25 seconds, on the
average, was required to determine a hyperplane, given an
initlal position.

For each palr of pattern classes, four initial
hyperplanes were tried. One of these was that hyperplane
which was the perpendlicular bisector of the line segment
Joining the means of the two classes. The other three initial
hyperplanes were parallel to this one (i.e., the direction
cosines were the same), and corresponded to an a, of 0, -5,
and +5. The number of successes* after iteration of each of
these 1nitial conditions 1s shown in Table 7, along with the
number of trials in which each initial condition produced a
unique minimum (that 1s, it separated the polnts better than
the other three 1nitilal hyperplanes, after iterating to its
minimum),

It is seen from this table that each of the initial
conditions was often successful 1n reaching at least that
absolute minimum determined by the set‘of initial conditions.
More important, however, is the fact that each initial condi-
tion was the most successful in at least one trial; therefore,

benefit was certailnly derived from trying various initial

condlitlions.

*
An 1initial condition is successful if the performance of the
resulting hyperplane 1s at least as good as the performance

of the hyperplanes corresponding to the other initial condi-
tions.



No. of No., of
Initial Condition | Successes Unique Successes
Perp. Bis. 26 4
a, = O 32 5
a, = +5 29 6
a = -5 17 1

THE SUCCESS RECORD OF
VARIOUS INITIAL HYPERPLANES

TABLE 7
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In Figure 29 is shown the estimated optimum
hyperplane, B21, which separates the numbers 2 and 1. The
coefficlents a,, 1 < 1 < n, are shown arranged in a matrix
corresponding to the receptor matrix. The positive side of
B21 corresponds to the number 2. One would then expect that
those coefficlents which corresponded to matrix elements in
which a mark from a two was likely to occur and a mark from
a one was not likely to oécur would be weighted positively,
and vice versa for those elements in which a mark from a one
1s more likely to occur. Contours are drawn around regions
of large positive and negative welght in Figure 29, and the
negative regions are shaded. One sees that the above intuitive
observation does indeed hold.

The resulting linear decision function mis-
categorized 21 patterns (4.2%) and rejected 9 patterns (1.8%)
of the total deslign sample of 500, as shown in the confusion
matrix of Table 8 (the R column indicates the number of test
patterns rejected by the inherent rejection). However, one
cannot conclude that these percentages are any sort of valid
estimate for the performance of the system, as discussed
previously. In fact, since only 100 points are being separated
in 144 dimensions by each hyperplane, one might expect from
Theorem 11 that the linear decision function ought to do well
on the deslign data; in fact, 50 samples from each class might
be tqo small a sample size for design purposes for this reason.

The saving grace here is the fact that the measurement space
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RECOGNIZED AS

o 9 8 7T 6 5 4 3 2 1 R
o | 48 1 1|
9 41| 2f 1 3 3 _
8 145 21 1 1
7 W 211
Input 6 49 1
Class 5 50
bl 14 2| 1 45 1
3 2 b} 1
2 1 4g
1 4g {1
CORRECT 470 (94 %§
ERROR 21 4. 2%
REJECT 9 1.8%

CONFUSION MATRIX FOR THE DESIGN DATA
(HAND-PRINTING RECOGNITION PROBLEM).
THE ENTRIES CORRESPOND TO THE NUMBER
OF SAMPLES RECOGNIZED CORRECTLY,
MISRECOGNIZED, OR REJECTED,

TABLE 8
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is blnary, and therefore the sample points are highly degenerate
in the sense of Theorem 10. It i1s therefore not to be expected
that any set of points, no greater in number than n+l (145

in this case), will be linearly separable in general in this
measurement space,

10.2 Minimizing the Linear Decision Function

The linear declslion function thus determined was
minimized by determining the redundant boundaries and the
redundant measurements,

The procedure used for determining the redundant
boundaries was the algorithm gilven 1in Section 6.2.2 based on
the definition of redundancy in a sample sense. According
to thls algorithm, the hyperplanes were removed one at a time,
and the conditionally redundant hyperplanes were determined
(those whose removal caused no change in the categorization
of the samples). Six hyperplanes were found to be condition-
ally redundant; they were BOl,‘Bgz, Bgys Brgs Bygs and By,
(Actually, the removal of Bg, caused a "one" which was
origlnally rejected to be correctly categorized. Since this
was an improvement, it was decided to treat this hyperplane
as conditionally redundant,)

It is seen, then, that the hyperplanes B92 and B76
are unconditlonally redundant boundaries of the first kind,
and may be definltely removed. These and the remaining four
conditionally redundant hyperplanes were removed simultaneously,

and the deslgn samples were recategorized with the remaining
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39 hyperplanes. Agailn there was no change in categorization
(except the one good change due to B81); therefore, BOl’ B81’
B43, and Bul are unconditionally redundant boundaries of the
second kind. All six boundaries can then be removed, leaving
a reduced (incomplete) linear decision function comprised of
39 boundariles.

In order to determine the redundant measurements,
recall that 1t 1s those measurements which have small magni-
tudes of the assoclated direction cosines for all the con-
stituent hyperplanes which are mest likely to be redundant.
This concept was used in the following manner. All direction
cosines with magnitude less than a certain 'redundancy level"
were set to zefo, and the sample polnts were recategorized by
this modified linear decision function (the problem of
renormallzing the cbefficients of the hyperplanes was ignored,
since the correction would be small).

A plot of the error rate, rejection rate, and
multiple recognition rate (since the linear decision function
1s now incomplete) versus the redundancy level 1s shown in
Figure 30, from which it is seen that measurements with
direction cosines of magnitude less than .04 are redundant,
l.e., thelr removal will cause no reclassification of sample
points. Thus, 1f a particular measurement has all 39 of its

direction cosines less than .04, then 1t may be removed from

the receptor, The resulting receptor, minimized by removing
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NUMBER OF SAMPLES MISRECOGNIZED,
REJECTED, OR MULTIPLY RECOGNIZED
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REDUNDANCY LEVEL

DETERMINATION OF REDUNDANT MEASUREMENTS

FIGURE 30
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these redundant measurements, consists of the 110 clear
elements of the 12 x 12 matrix shown in Figure 31. (It is
interestiﬁg to compare this procedure to that of Gill's [23]
for determining redundant binary measurements,)
Consequently, the original recognition machine has
been.. reduced from 144 measurements and 45 boundaries to 110
measurements and 39 boundaries. The reduced machine
categorizes the deslgn sample patterns exactly as the original
complete machine (save for one improvement). It remains to
be seen whether thils correspondence holds for further
sample patterns.

10.3 Testing the Linear Decision Function

The reduced linear decision function was tested
using both techniques discussed in Chapter VIII (sSections 8.1
and 8.2). The upper bound on the error-plus-natural-rejection
rate was estimated to be 21,5% (assuming equal a priori
probabilities). This can also be interpreted as a lower
bound on the recognition rate of 78.5%. The breakdown of
this estimate 18 shown as the lower numbers in the confusion
matrix of Table 9,

Both the complete and reduced systems were also
tested with 120 additional samples (12 samples of each number)
gathered 1n the same manner as the design data, Figure 30
shows this test sample: The upper two numbers in the con-

fuslon matrix of Table 9 represent the categorization of

these points for the complete machine (complete linear
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MINIMIZED RECEPTOR FOR
THE HAND-PRINTING EXAMPLE

FIGURE 31
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declsion function and complete receptor) and the minimum
machine, Note that there are a few differences, but that
the performance 1s almost exactly the same (1in fact, the
minimum machine correctly recognized one more sample than
the complete machine). Therefore, the minimization process
seems to glve reasonable results. The one point that should
be noted however, 1s that, in the minimum machine, one point
was multiply recognized (an 8 as an 8 and a 1). This

1s an 1indication that perhaps the boundary B81 should not
have been removed, and illustrates the possibility of
fallure of the definition of redundancy in a sample sense.
‘Recall, however, that the removal of B81 actually did cause
one recategorization, although it was a favorable one. Thus
B81 is a face of the polytope enclosing the class 1 and hence
1s not geometrically redundant.

The resulting estimates of the minimized system
error rate, rejection rate, and correct recognition rate,
from the results shown in Table 9, are 30.0% (36 points),
9.2% (11 points) and 60.8% (73 points) respectively. From
Filgure 32, one can then state that, with probability 0.95,
the Intervals .20-.40, .03-.16, and .52-.69 include the
system error probabllity, rejection probability, and correct
recognition probabllity respectively. The agreement between
thls performance test and the estimated upper bound is not
all that might be desired, the estimated bound indicating

somewhat better performance than that attained in the test,
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It 13 not surprising to find the estimated per-
formance of thls linear decision function to be so poor. Thils
can be blamed on two factors; 1) a poor choilce of measurements,
and 2) a design sample size which might have been too small,
leadlng to a poor estimate of the optimum hyperplanes.

However, thls i1s not so important, since this experiment
was not meant to result in the design of a practical charac-
ter recognition machine, but was rather meant to test certain

aspects of the theory previously developed.



CHAPTER XI

CONCLUSION

11.1 Summary
Thls paper has discussed the properties and design

of a partilcular class of categorizer, the linear decision
function, which 1s of practical interest for two reasons:

1. Tt can be empirically designed without making
any assumptions whatsoever about either the
distribution of the receptor measurements or the
a priorl probabilities of occurrence of the
pattern classes, providing an appropriate
pattern source is available.

2. TIts hardware realization is quite economic.

It is not guaranteed that a linear decision function will
always perform well, although it 1s guaranteed that it will
perform better than (or at least as well as) the minimum
distance categorizer which is popular 1n the present day
art. Nor 1is 1t a simple matter to predlct in advance
whether a linear decislon function has a chance of working.
The corollary to Theorem 9 may be used to set up a straight-
forward procedure to determine whether a set of polnts is
linearly separable, but this will usually involve a good
deal of computation. Besldes, if it is determined that such

a set 1s not linearly separable, there 1s no way of telling
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to what degree this 1s so; the classes may still be Separable
with small probabllity of error.
Consequently, 1f one is interested in a linear
decision function type of categorizer, his best approach
1s to actually design the categorizer and estimate its
performance. If the estimated performance 1s good enough,
then the deslgner has succeeded in designing an economic
categorizer. If the performance 1s not good enough, the
designer has two cholces:
1. Search for a better set of measurements, a
set which 1s more invariant to the natural
perturbations of patterns contained within a
class (the results of the experiment on hand-
printing illustrate the importance of invariant
measurements); or ‘
2. go to a different type (usually a more com-
plicated type) of categorizer.
A linear decision function has an interesting
property which may be used even if the performance of such
a categorlzer is not all that 1s desired. This is its
ablllty to help detect redundant measurements., For instance,
In the example of the hand-printing, the designer may be
required to use the matrix representation of the hand-
printed characters. Consequently, he would have to go to
a more sophisticated sort of categorizer. However, he can

do so with the reduced receptor (the partial matrix) of
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Figure 31. Although the linear decision function type of
categorizer may not be usable in a given situation, 1t can
in this way help to simplify a more compllcated categorizer
by simplifylng the receptor.

A very general discussion with quite practical
'results was gilven concerning the testing of pattern recogni-
tion machlnes regardless of their structure. In particular,
1t was shown how to obtain confidence intervals for such
results 1in a very simple fashion. It appears to the author
that published results for pattern recognition tests would
be greatly enhanced by the inclusion of such confldence
intervals. Although a pattern recognition machinefought to
be tested with a different set of samples than those used in
the design, 1t 1s shown that it is possible to estimate a
bound on the performance of a linear decision function with
the deslgn data. This can be very useful if the data is
limited for some reason, but does not glve as desirable an
estimate as the use of further data.

11.2 Areas of Further Work

This effort has by no means completed the study of
llnear decision functions and related topics. One interesting
problem 1s the study and design of linear decision funections
in which the constituent hyperplanes are required to do either
more or less‘work than those discussed herein. _For instance,

a hyperplane may be required to separate more than two classes;

in this manner the lower 1limit of'iéggm hyperplanes for m
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pattern classes may be approached. The computation algorithm
developed in this paper for determining an optimum hyperplane
is applicable here,.

On the other hand, one may want to use more than
one hyperplane per pair of pattern classes. In this way,
nonlinear optimum boundaries may be more closely approximated.
(Ridgway [41] is studylng this problem for a binary measure-
ment space. A possible approach is also given by Theorem 11.)
As one makes a hyperplane do less work in the categorization
process by using more of them, the categorizer will more
closely approach the optimum categorlizer, and also become more
expenslve. Consequently, the entire spectrum 1s of interest,
since performance 1s traded for cost.

Of course, the study of quadratic and hlgher order
declsion functions has hardly been started. Mattson [33] gives
a brief but enlightening discussion of this problem,

The problem of rejection criteria requlres a good
deal more study. The simplest form was analyzed in this paper;
however, two other methods for rejection which are more general
were mentloned but not analyzed. Both of these methods
would do a better job than that one analyzedj one of these
would have the same cost of implementation; the other would
requlre twice as many hyperplane implementations but is the
most general of the three discussed. There are probably other
rejection criteria which are compatible with a linear deeision

functlon which haven't even been metnioned.
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Using the normality concept of Section 7.2, which
states that 1n many cases the distribution of distances of
members of a class from a hyperplane 1s normal, one can
develop another algorithm for estimating the 6pt1mum hyper-
plane separating the two classes, We are interested in
choosing that hyperplane that minimizes the estimate of the
expected error, or confusion, between the two classes.
However, it 1s possible to estimate the error associlated
wlth a hyperplane by estimating the ﬁormal distribution of
the distance of the members of each class from the hyperplane,
and determining the area under the talls of these two distribu-
tlons falling on the wrong side of the hyperplané (as dis-
cussed 1n .Section 8.2). This might be expected to be a
better estimate of the error than the proportion of polints
misrecognlized, since more information is used 1n the estimate,

providing the assumption of normally distributed distances

is valild. ..
This 1mprovement can be seen from the confidence
interval curves of Figures 23 and 24 (keeping in mind that one
1s two-sided, the other single-sided). For 1nstance, con-
slder one class and a hyperplane. Let the gample size be

50, and the error estimate in elther case be 5%. From

Flgure 23, a 95% confildence interval for the estimate based

on the proportion of samples misrecognized is 1%-15%. From

Figure 24, a 95% confidence interval for the normal
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L

distribution estimate (obtained by moving horizontally from
the .05 value of the ordinate to the "estimated area" curve,
then up to the 50 sample curve, and back to the ordinate)

1s approximately 0%-8.5%. The latter estimate i1s obviously
significantly better in this case.

Consequently, 1t would be quite reasonable to choose
as an estimate of the optimum linear boundary that hyperplane
which minimizes the normal estimate of error rather than the
estlmate based on the proportion of misclassified samples,
providing agaln that the assumption of normality holds. An
algorithm based on minimizing this normal estimate of error,
using the method of steepest descent, 1s developed in
Appendix III. Note that the resulting hyperplane for each
local minimum 1s unique, in contrast to the previous algorithm
in which the hyperplane could be any one chosen from, in
general, an infinlte set,.

With regard to the experiments of Chapters IX and X,
i1t appears that the assumption of normality 1s a good approxi-
mation 1n elther case, and consequently that this algorithm
would have been useful. In Chapter IX, the measurements are
probably not too far from belng normally distributed’and
independent, which allows for the small dimensionality. 1In
Chapter X, the high dimensionallty ought to make the approxi-
mation good. At any rate, this assumption was made in both

chapters when the bounds on the performance were estimated.
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A discusslon of an unsolved problem, which deals
with pattern recognition in general, is given in Section 8.3.
This 1s the problem of partitioning a sample between the
design and testing phases of a pattern recognition study when
the sample size 1s limited. The case in which soﬁe of the
samples are used to deslign the machline, and only those remain-
ing are used to test the machine, seems to be reasonably
solved 1in this sectlon providing the deviation of the_result-
ing machine from the optimum 1s small. The value of b,
however, 1s 1n general difficult to calculate, and methods
for estimating it warrant further study.

This sample partitioning 1s only one possibility,
however. Perhaps more efficient use could be made of the
total sample 1f some overlap in the design and test data
were allowed. There may be an even better technique based
on some sort of sequential procedure. It would also be
advantageous to remove the restriction of small deviation
of the actual error from the optimum (minimum) error. These
various problems have yet to be investigated.

The above discussilon has geen intended to point
out some of the areas in linear decislon functions in particular
and pattern recognition systems in general in which some strong
theoretical attack can be made. It appears to the author
that the state of the pattern recognition art has come to a

polnt where less emphasls ought to be placed on gadgetry
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(an emphasis that'is certainly requilred in the early stages
of a problem such as this), and more emphasis put on good
theoretical work almed at practical results. It 18 time for

pattern recognition to grow from an art to a science.



APPENDIX I

EXTENSION OF CHOW'S RESULTS TO THE CASE
OF CONSTANT COSTS

Chow [10] has shown that, for a given rejection
rate, the error rate in a recognition system 1s minimized
1f the following decision criterion is used:

Choose class k if
ka(ml 8,) > wjﬁ(m| sJ) for all J # k

and -~

wB(m|s.) > 7 iiﬂﬁﬁ(ml sy) 071
1=1

reject the pattern 1f

wJB(m|sj)<7 iwiﬁ(m|si) for all 1 < J<p .
i=1

Here w, 1s the a priorl probabllity of the
occurrence of class i, B(m Isi) 1s the condltional probability
of making the measurement m glven that 2 member of class 1
1s present, p is the number of pattern classes, and ¥y 1s a
constant chosen to force the system to meet the given

rejectlon rate,.
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The propef value for y 1s generally difficult to
determine, and an empirical approach may often be necessary.
However, there 1s one important case in which 7.may be deter-
mlned analytically, the discussion of which followé._

Let the cost of mlsrecognizing a pattern, of reject-
ing a pattern, and of correctly recognizing a pattern be

independent of the pattern class. In particular let

ciJ = ¢ = cost of misrecognition,
Cio = €5 = cost of reject;on,
Cyy = O = cost of recognition,

where

c > co >0

(Since a Bayes criterion is being used, no

generallty 1s lost by setting Cyq = 0.[9]) The general loss
function 1s given by (2.2):

Cc(8) = i § J‘cijwiﬁs(mlsi)&(dJ | m)dm
1=1 j=0 M

where 5(dJ | m) is the probability that class j will be
declded glven the measurement m (dO is the rejection decision),

and C(8) is the loss associated with the decision function 6.

Using the above cost schedule, the loss function

may be written
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C(6) =\[ iﬁ(d’j | m) icwiﬂ(m I sy )dm
1=1 '

M J=0

- J‘ i CICH | m)ew, B (m | 84 )dm

M 1=1
- J Aﬁ(do. | m) i (c-c)wB(m| sy )dm .
M 1=1

Noting that

j 3(m| Si)dm =1,
M

the first 1ntegral can be reduced, allowlng the cost function

to be written

C(8) =c - ¢ J ii 6(di| m)w,B(m | sy )dm
M 1=]

o) |

ﬁ(dol m) iiuHB(m|asi)dm .
M i=1
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To minimize C(6), S(di | m) 1s chosen as follows:

B(dkl m) =1, 'k £ 0,

if
o8 (m|s) > w8(m]|sy)
and
wB(m|s) > (°;°°) iwiﬁ(ml s,)
1=1
5(d0| m) =1
if

T c-=e
0
ij(ml sJ) < —5 §iuﬁ6(m Isi) for all 1 < J<p
1=1
But this decision criterion is of the same -form as that

derived by Chow for the case of minimum error rate given a

fixed rejection rate, with

Therefore, minimizing the cost in the case of constant costs
also minimizes the error rate for the rejection rate which

corresponds to the above 7,



APPENDIX II

THE OPTIMUM SAMPLE STRATIFICATION FOR ESTIMATINGiTHE
PERFORMANCE OF A PATTERN RECOGNITION MACHINE

The sample stratification for selective sampling

which'gives the minimum variance for a single estimate is
derived. When the a priorl probabilities of occurrence w,
for each class are known, the maximum likelihood estimate
for, say, the total probabllity of error, as derived in

Chapter VIII, may be written

The variance of € may be written

5.2 i o €3(1-ey)
e - T

i n _ *
1=1 1

Maximize thilis wlth respect to n, under the constraint

*
Suggested by W. H, Williams.

- 201 -
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Then

2
wse, (1l-e,)
_ 112 1) 320 .

ny

where A 1s the Lagrange multiplier. Hence

A 1s chosen to satisfy the condition (A3.1). Therefore, if
one has any knowledge at all of the error rates for each
class, he willl get a better estimate 1f he adjusts the

slze of the sample taken from each class according to (A3.2).



APPENDIX TII

A COMPUTATION ALGORITHM FOR FINDING
THAT HYPERPLANE WHICH MINIMIZES THE
NORMAL ESTIMATE OF THE ERROR

If the approximation of normally distributed
distances as 1lndlcated in Sectilon 7.2 is valid, then the
estimate of the expected loss Ckﬂ for a glven hyperplane B

ki
based on thils assumption can be written (as in Section 8.2)

'S

v 1
C - X

c =‘°kkzj 2

2 1 2
e dx , (A4.1)

where W, 1s the a Eriori probabllity of the occurrence of
class k, ckz i1s the loss assoclated with misrecognizing a
member of class k as belonglng to class ¢, Crrx = 0, Ek is the
mean of the distances of the sample points of class k from
Bkz’ and Vie is the sample standard deviation of these distances.
‘Class k 1s assumed to be on the positive side of Bkﬂ’ and
class [/ on the negative side,.

We wish to determline that hyperplane which minimizes
Ckﬁ‘ To do this, we use the method of steepest descent, in
which we choose an 1nitial hyperplane, and continually adjust
1ts coefficlents along the directlion of negative gradienf

untll a local minimum 1s reached. Consequently, we need to

determine the gradient of (A4.1).

- 203 -
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Let the hyperplane be described by

n
Eaixi + a, = Z‘aixi =0 ,
i=1

where X, 18 a dummy coordinate equal to +1 (as in Section 5.3).

Then,
:°’_1.<_
aCk (_) Vk
i “%kk g dai
a@i
- w0 ch(-_>--<T ,  0gign,  (ak2)

where N(%) i1s the ordinate of the standard normal density
function for variate equal to s/v.

Conslder Sk and vk:

n K
z Z iiJk“" Z zmijk’
J=1 1=0 1=0 J=1

th th th

where m is the 1 coordinate of the j point of the k

iJk
class, there belng K sample polnts from class k, and

mOJk = +1, Let

K
1 =
K zmijk = My o
J=1
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Hik 1s the average of the 1th coordinate over all sample

polnts from class k. Then

n
S = ) ATy - (a4.3)
1=1
For Vies We write
K n 2 ;/2 _
1 —
Vk = K:-]—. Z (Zaimijk - Sk> . (ALL.LL)
J=1 1=1

When taking derivatives, it must be insured that the

coefficients remaln normalized, 1i.e

n
2

};ai =1 ,

1=1

A procedure similar to that 1in Section 5.3 can be used whereby

L

every Gy 1 <1< n, 18 divided by

However, perusal of (A4.3) and (A4.4) shows that when the
ratio Ek/vk is formed, these terms will cancel. Therefore,
- we need not concern ourselves with the normalization problem

in this algorithm (the same argument holds for N(5/v)). Then
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d Ek) 1 9 S
=) = = (3 - (v.) , 0<1<n,
o (yk v, 3y %k 2 & M <1

(A4.5)
From (A4.3),
O (E) = 4.6
E(Bk)—mik. (A.)
From (A4, 4)
K
S (¢,)) = K L 8, - s.m 0<1i<n
Sy Mk X-T)v | K Jk 1k kik |’ = - s
J=1 .
(AL, T)
th th
where sjk 1s the distance of the J point of_ the k class
8
3 ;3>
from Bkﬂ' Silmilar expressions hold for 552 <vz .

Substituting (A4.6) and (A4.7) into (A4.5), thence

into (A4.2), one obtains the gradient:

— — K .
ackﬂ = wkckoz 'Mv/.e__,.k. E - K Sk _J; 8 m - 'g ?n- >
oa, v, hw ik ~ K-T .2 \X JkiJk k'ik
i k K Vi =

— - L
w,C ] 8
2ok OO | = L_Z4(1 2 W
---N-—»} my, - ]‘ji?}':_?(f S3aMye T B/ |
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New coefficilients a; are chosen so that

a' =q, - 0 BCkE
i 1 561 ’

where 6 is some arbitrary adjustable constant chdsen to afford
a compromise between the number of iterations required and
stabllity,.

The passing of a minimum is simply detected by
computdrng (A4.1) after each iteration énd watching for an
increase in Ckﬁ (subroutines for evaluating the integrals of
(A4.1) are available for many computers). This minimum can
be estimated as closely aé desired by takling succesaively
smaller values for 6., This minimum, when determined, may
not be the absolute minimum. Several 1nitia1 hyperplanes
should be tried, and the best result used.
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