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AN ABSTRACT 

LINEAR DECISION FUNCTIONS, WITH 

APPLICATION TQ, PATTERN RECOGNITION 

by 

Wilbur Hull Highleyman, II 

Advisor: Arthur E, Laemmel 

Submitted in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Electrical Engineering 

A pattern recognition machine may be considered to 

consist of two principal parts, a receptor and a categorizer. 

The receptor makes certain measurements on the unknown 

pattern to be recognized; the categorizer determines from 

these measurements the particular allowable pattern class 

to which the unknown pattern belongs, 

This paper is concerned with the study of a 

particular class of categorizers, the linear decision function, 

The optimum linear decision function is the best linear 

approximation to the optimum decision function in the 

following sense:
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1, "Optimum" is taken to mean minimum loss (which 

includes minimum error systems). 

2. "Linear" 1s taken to mean that each pair of 

pattern classes is separated by one and only 

one hyperplane in the measurement space. 

This class of categorizers is of practical interest 

for two reasons: 

1. It can be empirically designed without making 

any assumptions whatsoever about either the 

distribution of the receptor measurements or 

the a priori probabilities of occurrence of the 

pattern classes, providing an appropriate 

pattern source is available, 

2. Its implementation is quite simple and 

inexpensive, 

Various properties of linear decision functions 

are discussed. One such property is that a linear decision 

function is guaranteed to perform at least as well as a 

minimum distance categorizer, 

Procedures are then developed for the estimation 

(or design) of the optimum linear decision function based upon 

an appropriate sampling from the pattern classes to be 

categorized, The design procedure allows one to eliminate 

certain redundancies in the resulting categorizer and also 

in the receptor, Rejection criteria may be included in the 

design if desired.
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Some very general results are obtained ina 

discussion concerning the design and analysis of pattern 

recognition experiments. These results allow one to 

determine how a sample of fixed size should be partitioned 

between the design and test phases of a pattern recognition 

machine, and show one how to place confidence intervals 

on the resulting estimate of the performance of that 

machine, 

A method of estimating performance bounds for a 

linear decision function which is applicable to the use of 

the design data is also discussed. 

Finally, the concepts and procedures thus developed 

are applied for lllustrative purposes to two examples of 

pattern recognition - the determination of the geographical 

source of radio signals based on measurements made at a 

monitor site, and the recognition of hand-printed numbers,
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CHAPTER I 

INTRODUCTION 

There has been an ever increasing interest for the 

past several years in the general problem of pattern recogni- 

tion. Work in this field has ranged from commercial applica- 

tions (such as the reading of machine-printed characters)[15, 

45,48] to the study of adaptive networks ("learning machines") 

which have the capability of modifying themselves SO as to per- 

form a certain function better with experience. [11,16, 33, 34,43, 

44 52,53] 

For the purposes of this paper, the term "pattern 

recognition" will be taken in its broadest sense to refer to 

any discrete classification problem. That is, a pattern 

recognition machine may be described loosely as follows, It 

1s a machine which is "aware" of a finite number of distinct 

classifications, or classes. These will hereafter be referred 

to as the allowable pattern classes. The machine is presented 

with an item upon which it makes certain measurements (or the 

measurements may have been made by other means and then given 

to the machine), after which it is required to make a 

decision, The decision usually falls into one of the two 

following categories:



The item belongs to a certain allowable pattern 

class, 

The item cannot be identified with any certainty, 

and consequently the machine refuses to attempt 

identification. It is then said that the machine 

has rejected the item, 

If the machine attempts a decision of the first type 

and is wrong, then it is said that the machine has made an 

error. Note that a rejection will not be considered as an 

error. 

The following are some examples of pattern recogni- 

tion problems which have either appeared in the literature 

or are known to the author: 

a. The identification of machine-printed, hand- 

printed, and hand-written [21] alpha-numeric’ 

characters based on various geometrical measure- 

ments; 

the identification of diseases from the 

symptoms; [13] 

The identification of spoken words from frequency- 

time spectra; [32] 

the geographical location of radio stations based 

on measurements of the fading characteristics of 

the received wave;([30] 

the decoding of messages which have been encoded 

against noise;



f., the counting of permuted’ blood cells in a 

blood smear; 

g. the identification of subatomic particles from 

cloud chamber qr bubble chamber tracks. 

The various machines (or proposals therefore) 

resulting from efforts in these areas can, in general, be 

dichotomized according to their structure, i.e., determinate 

or indeterminate. A determinate machine is one which ig pre- 

designed according to some criterion or procedure, and which, 

when finally constructed, is left unchanged. Commercially 

available machines are all determinate; a good deal of the 

exploratory work in more sophisticated pattern recognition 

machines is also concerned with determinate structures (for 

example, see the works of Harmon and Frishkopf [21], 

Crumb and Rupe [13], Mathews and Denes [32], Bomba [5], and 

Grimsdale et al [24]). 

An indeterminate machine is one in whieh Some of the 

parameters of its internal structure are not specified at the 

time of construction; rather, the machine has the ability to 

adjust these parameters as it becomes more experienced in its 

assigned task, Hence it has the capability of “adapting to 

its environment", or of "learning". One of the outstanding 

examples of such @ machine 1s Rosenblatt's Perceptron [43,44]; 

Widrow [52,53], Mattson [33,34], Clark and Farley [11,16], 

and Roberts [42] also discuss such machines.



Some of the so-called "adaptive machines" are simply 

modifications of basically determinate machines in which 

estimates of the parameters are improved through the accumula- 

tion of more and more data (for example, the proposals of 

Bledsoe and Browning [4], and Baran and Estrin [3]). Con- 

sequently, there is a somewhat hazy dividing line between 

determinate and indeterminate structures. 

The rest of this paper will deal with determinate ° 

Structures, although it is recognized that the sort of struc- 

ture which is proposed could be made indeterminate through 

the above device of simply allowing the machine to estimate 

its own parameters through the long term accumulation of data. 

Marill and Green [31] have described the general 

determinate pattern recognition system in a very clear manner. 

They note that it consists of two principal parts, a receptor 

and a categorizer: 

a. "The receptor has as its input a physical sample 

to be recognized, and as its output a set... 

of quantities which characterize the physical 

sample. These quantities will be called 

measurements of the sample ..." 

"The output ... of the receptor constitutes the 

input to the categorizer., The categorizer is 

a device which assigns each of its ... inputs 

to one of a finite number ... of categories ..."



The measurements which a receptor makes on the input 

sample may be either continuous or discrete, and a given 

receptor may be required to make measurements of both types. 

For instance, a character recognition machine might have a 

receptor which makes the following measurements on an unknown 

character: the number of closures, cusps, and straight lines 

(discrete), and the length and direction of the straight 

lines (continuous). 

The categorizer must apply some sort of decision 

eriterion to the receptor output to decide to which of the 

allowable pattern classes, if any, the input pattern belongs. 

Or the categorizer may reject the pattern as being unrecog- 

nizable if the recognition decision is unreliable in some 

sense. 

This paper will deal with the optimization of a 

certain class of categorizers. This class is characterized 

by a certain linearity of operation which will be described 

later, and which is of particular interest because of the 

economical implementation to which it leads. It will be 

assumed that the sort of measurements to be made have been 

decided a priori, and that a receptor has been constructed 

(or simulated) which will make the appropriate measurements. 

The design of the categorizer will be based upon the receptor 

measurements of samples taken from the real world of patterns 

belonging to the allowable pattern classes for the machine.



The following chapters will first deal with the 

definition of "optimum". Several theorems relating to and 

describing the class of categorizers under study will be 

given, after which algorithms for the actual design of the 

optimum categorizer based on the previously mentioned sample 

will be derived. A method to determine the "usefulness" 

of a given receptor measurement will be discussed, as well as 

a particular form of rejection criteria. A general discussion 

of the design and interpretation of pattern recognition 

experiments is followed by the results of some actual experi- 

ments in which categorizers of the above type were designed 

and tested,



CHAPTER II 

THE DECISION-THEORETIC APPROACH TO 

PATTERN RECOGNITION 

Before describing the particular class of categorizers 

of concern in this paper, it will be instructive to review 

some results of decision theory. This will not only lay the 

groundwork for later discussion, but will provide certain 

results needed in the development of rejection criteria. 

Through the application of decision theory, one ean 

actually state what the structure of the optimum categorizer 

should be for a particular pattern recognition problem, 

However, this optimum structure is often not realizable for 

two reasons. The first is a purely practical problem - an 

optimum categorizer is often too complex to be economically 

feasible. The second reason is somewhat more fundamental 

and restrictive. The design of the optimum categorizer, as 

will be seen, requires the complete knowledge of certain 

probability distributions which are usually not available to 

the designer, This is not simpix a problem of parameter 

estimation, since usually even the form of the (often multi- 

dimensional) distributions is not known. 

2.1 The Decision Theory Model of Pattern Recognition 

The decision-theoretic model to be used is one 

described by Middleton and Van Meter. [36] which has been 

modified to suit the pattern recognition problem. (See also 

-7-
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Chernoff and Moses [9] for a very clear and complete dis- 

cussion of the fundamental concepts of decision theory.) 

Let the various allowable pattern classes be 

described by a discrete state space, S, with probability 

distribution w(s) (Figure 1). That is, a point 8, in S 

represents the 1°) aiiowable pattern class (1 <i<p), 

and has an a priori probability of occurrence w(s, ) = O,. 

Such a point in S will be called an input state. 

When an unknown pattern is presented to the recep- 

tor, the receptor makes certain measurements on it. Let 

there be n (discrete or continuous) different measurements 

which the receptor makes on an input pattern. Then the 

output of the receptor, when operating upon a particular 

pattern, can be considered as a point in an n-dimensional 

measurement space, M. The concept of & measurement space is 

quite important to the development of later sections of this 

paper. Any possible input pattern results in a single point 

in measurement space, the coordinates of this point being 

determined by the receptor. That is, let the receptor out- 

put for a particular input pattern be the set of numbers 

(ny igy e+ est) =m. Then this set defines the coordinates 

of the point representing the input pattern in the space M, 

Each Ms l1<i<¢n, represents a receptor measurement; m is 

the measurement vector and represents the set of receptor 

measurements. (For briefness, m will often be called merely 

&@ measurement when it is clear from the context whether a 

particular measurement or the set is meant.)
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Let us assume the existence of a probability 

funetion (or density) over M, B(M|S). Thus B(m | 8,) is the 

conditional probability that a certain measurement m will be 

made, given a pattern from class 1 at the receptor; A(M |S) 

is determined by the way the various patterns belonging to 

an allowable pattern class i (input state 8, ) actually vary 

with respect to the measurements made by the receptor. It 

can then be said that the receptor maps each of the discrete 

points of S into a multitude of points, or into a continuum, 

in M depending on whether the measures are discrete or 

continuous. The various regions in M occupied by the mappings 

of the various points in S are usually overlapping; con- 

sequently the ideal recognizer (i.e., error free) is usually 

nonexistent. Some error will, in general, be made, since 

exactly the same set of receptor measures may occasionally be 

obtained for members from more than one allowable pattern 

class, | 

The categorizer then must make a decision as to which 

pattern class the measurement m belongs. This can be con- 

sidered a mapping of the (discrete or continuous or mixed) 

Space M onto a discrete decision space, D. There is a point 

in D for every allowable decision; the allowable decisions 

are usually 

a. dy: The pattern belongs to pattern class j 

(l<dj<p).



ll 

b. do: The pattern is rejected as being unrecog- 

nizable. (The subscript zero will denote 

rejection. ) 

Let there also exist a probability function (or 

density) 65(D|M) over the space D, which is the probability 

that the categorizer will make the decision dy; O< J <p, 

given the measurement m. 6(D|M) is referred to as the 

decision function or decision criterion. If for any measure~ 
  

ment m, 65(D|m) has a nonzero value for more than one point 

in D, then the decision function is said to be randomized. 

That is, a particular receptor output will not always be 

classified as belonging to the same pattern class. If, 

however, for any measurement m, 6(D | m) has a nonzero value 

(actually unity). for one and only one point in D, then 6(D | M) 

is said tobe a nonrandomized decision function. It is found 

that the optimum decision functions discussed below are always 

nonrandomized. Note that the categorizer is nothing more 

than the implementation of the decision function 6(D|M). 

Let a loss (or cost) function C(S,D) now be defined 

such that C(85 545) =c 1s the loss (cost) associated with Lj 
making the decision qa; when the actual input state was S,- 

The desired decision is qd, when the input state is S53 there- 

fore, the usual case requires that 

C13 7 S40 7 C44? 

where Cay is the loss associated with rejection when the input 

state is 8,- Note that Cry is not necessarily equal to Caae
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The probability of making a decision qd, when the 

input state is Sy is 

p(d, | s,) = | B(m|s,)5(s,| mdm . 
M 

The loss when s, is the input state (called the 

conditional loss) and when the decision function 6(D | M) 

is used is then 

Pp 

(8, ,6) = > 43 | 8(m | sy) 6(4, | m)dm . (2.1) 

$=0 M 

Since the distribution of states is given by w(S), 

the expected loss for the pattern recognition system is 

Pp 

c(5) = » \ | Cy 0,8 (m | 8, )5(d, | m)dm . (2.2) 

i=. j=0 °M 

The optimum categorizer is defined as the implementation of 

that decision function, 6*, which minimizes the expected 

loss, C(5), under the appropriate a priori distribution 

w(S) (Bayes strategy). 

2.2 The Solution of the Decision Theory Model 

The general solution to this problem has been given 

by Chow. [10] He shows that (2.2) is minimized by using the 

following decision criterion:
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\ 

Let 

Z y(m) = y (ey 5-05, )@,B(m | 8,)5 J = O,1,. oesD. 

t=1 

Then 

6*(d, | m) =1 

~( 2.3) 
b*(d, |m) =O for all j #k 

whenever 

min[{Z ,(m) ] = Z,,(m) . 

J 7 

Hence, given m, the optimum categorizer (ina 

minimum loss sense) computes a function Z 5(m) for each of 

the allowable decisions, j = 0,1,2,...,p, and chooses the 

smallest. (Note that Z ,(m) = O from (2.3).) In all decision 

functions of this sort, ties are arbitrarily resolved, 

An interesting extension of Chow's result concerns 

the case when all losses due to misrecognition are equal, all 

losses due to rejection are equal, and all losses due to 

correct recognition are zero.[25] Let ¢ be the loss due to 

misrecognition and Cy be the loss due to rejection, such that 

ec >e_>od 
oO
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Then it 1s shown in Appendix I that the optimum decision 

rule is 

if 

and 

however 

if 

B(d, | m) = 1, k 4 0 

6(d, | m) O, j #k 

8 (m | 8.) > w B(m | sj) for alll <j<p 

  

e-c PB 
w,8(m | 8,) > ( 2) ), 28 (m | 54) 3 

1=1 

5(d, | m) =1 

(a, | m) = QO, j #0 

  w,6(m|s,) < (2) Y oy5(m s,) 
i=1 

for alll< j<p 

L(2,4) 

  
a“ 

Chow has shown that decision criteria of this form 

correspond to minimizing the error rate for a given rejection 

rate. (The rejection rate is determined by the quantity 

(e-c,)/e.) Therefore, minimizing the loss in the ease of econ- 

stant loss is equivalent to minimizing the error rate for a
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certain rejection rate. This paper will treat the term 

"optimum" as meaning minimum loss; common practice has been 

to optimize systems with respect to error rate and re jection 

rate. The above development shows the simple relation between 

the two. 

It can be seen that all of the decision functions 

Just discussed depend, aside from the loss function, only 

upon comparisons between the a posteriori probabilities, 

E(s, | m), that the measurement m was caused by the input 

state S,- That this 1s true can be shown by noting that 

B(m | 8, )o, 
é(s, | m) = —stAy (2.5) 

where o(m) is the probability of occurrence of the measurement 

m. But once a measurément has been made, the various 

a posteriori probabilities differ only by the numerator of 

(2.5), and it is exactly this quantity which appears in the 

decfsion criteria (2.3) and (2.4). . 

Unfortunately, however, these a posteriori probabil- 

ities are usually unknown to the designer, and therefore 

categorizers based on the optimum decision function are not, 

in general, practically realizable. There are at least two 

wayS around this difficulty: 

a. Assume a certain form for the a posteriori dis- 

tribution functions (or for the a priori function 

B(M|S)). Then by taking a random sampling 

from S, estimate the various parameters of these
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distributions. For instance, a common assump- 

tion is that of normality and independence: 

given a certain pattern class, assume that the 

measurements made by the receptor are normally 

distributed, and that each measurement is 

independent of the others. Marill and Green [31], 

Chow [10], and Flores and Grey [18] have dis- 

cussed this sort of approach. 

b. Make no assumptions about the particular dis- 

tributions involved, but rather make certain 

restrictions on the structure of the categorizer., 

Then search through all possible structures of 

this type to find the categorizer which is 

optimum with respect to a Sampling of patterns 

from the real world. Decision trees [5,21] 

and adaptive machines [11,16,33,34,43,44,52,53] 

are examples of this sort of approach. 

Clearly, neither of these approaches will yield a 

truly optimum categorizer, the first because of questionable 

assumptions, the second because of structural limitations. 

However, the use of either approach now makes the problem 

manageable, and optimum is reinterpreted to mean minimum loss 

within the framework of the approach. 

2.3 Linear Decision Functions 

There is another practical advantage that is realized 

by the second approach, namely one of economic feasibility. 

Even if the optimum decision function were known, its
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implementation would require, in general, the use of a 

digital computer or other complex equipment. The cost of 

such equipment may, in many cases, outweigh the advantages 

of mechanized categorization. However, if the designer 

can limit his search to those structures which are economically 

feasible, and if the optimum structure in this class works 

well enough for the given purpose, then a technically 

feasible as well as an economically feasible solution has 

been found. 

This paper 1s concerned with the study of Just such 

a class of categorizers. To describe this class, consider 

a rephrasing of the optimum decision criterion (2.3). ((2.4) 

is simply a special case of (2.3).) Note that every point 

in the measurement space M is preassigned to a particular 

pattern class or to the rejection class by the decision 

criterion. Thus there is a subset M, of M corresponding to 

each possible decision dy» O<¢ig¢<¢p. Further, these subsets 

are nonoverlapping if the decision function is nonrandomized. 

The division of M into these subsets then uniquely identifies 

a certain decision function. We could equally well consider 

the decision function to be represented by the boundaries 

between the subsets. (Some liberty is taken here, since it 

will be assumed that a continuous boundary can be passed 

through a discrete space.) For instance, in Figure 2 is shown 

a two-dimensionai measurement space (the receptor makes only 

two measurements on an input pattern) in which are shown the
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boundaries (the solid lines) between three different pattern 

classes, A, B, C. (Rejection regions are not included for 

simplicity.) A boundary will, in general, be some sort of 

curved surface. In fact, the domain of a particular pattern 

class may not even be singly connected. 

The class of categorizers to be discussed herein 

may be loosely described as the optimum linear approximations 

to the true boundaries, under the further constraint of only 

one boundary per pair of pattern classes (such as those shown 

dotted in Figure 2). Optimum, as previously mentioned, is 

taken to mean minimum loss under the above constraints. Because 

of the linear properties of this decision criterion, a 

categorizer of this class will be said to implement a linear 

decision function. Although the primary purpose of the 

development is to study the synthesis of such a categorizer 

when the probability distributions are unknown, the problem 

of finding the optimum linear decision function when these 

distributions are known will also be discussed. 

Of particular importance is the economical realiza~ 

tion of a categorizer based upon a linear decision function. 

In an n-dimensional measurement space, a linear decision func- 

tion will comprise a set of n-dimensional hyperplanes. An 

n-dimensional hyperplane 1s that set of all points (x pee Xq) 
in M which satisfy a linear relation of the form 

5X4 + A5X5 + eee + ax +a_=0
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for a given set of a,'s. The fact that the actual boundaries 

are cnly portions of hyperplanes, it.e., each hyperplane 

usually terminates on other hyperplanes (Figure 2), is of 

little consequence. As will be shown in the next chapter, 

the representation of each boundary by a full hyperplane is 

equivalent, 

It wlll be shown later that, in order to classify 

a point min M, it is only necessary to determine which side 

of each hyperplane this point is on. This is determined by 

the sign of the quantity 

n 

yam +a, . (2.6) 
i=l 

In fact, the magnitude of this quantity is proportional to 

the distance of the point m from the hyperplane. Consequently, 

in order to classify a point m (that is, recognize an input 

pattern), it is only necessary to evaluate a set of quantities 

like (2.6). But such a calculation can be done with several 

varieties of very inexpensive networks, such as the resistive 

adder shown in Figure 3. This supports the statement of 

economy. 

Pe —~-- - - - = = |= --2--s = = = 

Note that this linear form equated to zero defines a struc- 
ture which is commonly found in the automata field. It goes 
by various names, such as artificial neuron [28], 
associative unit [43,44], and Adaline [52,53]. In this 
paper, it will simply be called by its already well-established 

name of "hyperplane".
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CHAPTER III 

SOME PROPERTIES OF 

LINEAR DECISION FUNCTIONS 

3.1 The Classifying Procedure 

Before discussing some of the properties of linear 

decision functions, the classification procedure will first 

be discussed. Figure 4 illustrates a measurement space in 

which the domains of three pattern classes are Shown, as 

determined by a linear decision function. The boundaries, 

which are really truncated hyperplanes, will be represented 

by the complete hyperplanes as indicated by the dotted lines. 

It will be seen that the truncation is automatically taken 

into account by the classifying procedure. Since there is 

One and only one boundary per pair of pattern classes, 

Figure 4 shows three boundaries separating the three classes. 

th 
The boundary separating the i and bh classes will be 

denoted Bay: Further, in schematic representation as in 

Figure 4, each hyperplane Bs; will be identified by the pair 

of numbers, i,j, placed in such a way as to show which side 

of Bi; corresponds to class i, and which to class j. Since 

this is sufficient identification, the notation "By! will 

usually be left off an illustration. 

- 22 -
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In order to classify a certain measurement, we note 

which side of each boundary it is on. If it is on the yvh 

side of Bay then it 13 known that the measurement is not 

to be identified with class j. Consider the measurement A 

shown in Figure 4. 

a. It is on the @ side of Bl 53 therefore it is 

not to be identified with class l. 

b. It igs on the 3 side of Bi 33 therefore it is 

not to be identified with class 1. (Here the 

extension of Bi3 is used.) 

ec. It is on the @ side of Ba33 therefore it is 

not to be identified with class 3. 

dad. It is not to be identified with classes 1 or 3; 

therefore it will be identified with class 2. 

This procedure may be represented by the following 

notation: 

x - 2 

x - 3 

2-2. 

That is, [Y - 2] indicates that a point is on the 2 side of 

Boos and therefore cannot be identified as al. 

Note that, although A was in class 2, the boundary 

B13 was still used. In general, since it 1s not known in 

advance to which class a measurement belongs, all boundaries 

must be interrogated. The difficulty one might get into by
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terminating the interrogation process early is illustrated 

by the measurement B in Figure 4: 

- x -2 

1-3 
z- 3 

Since B cannot belong to any of the three classes, 

it is rejected, This is not the normal sort of rejection due 

to an unreliable decision; rather it is a rejection inherent 

in a linear decision function. If the process had been 

terminated early, say after the second step, the measurement 

B would have been identified with class 2. In fact, it would 

be so identified with any of the three classes by taking the 

hyperplanes in the proper order. Therefore, one must 

reserve his decision until all boundaries have been inter- 

rogated (or until the measurement is definitely rejected). 

This suggests, then, that a categorizer based on a linear 

decision function ought to be a parallel rather than a 

sequential sort of machine, in that all boundaries might 

just as well be interrogated simultaneously. 

One further comment is appropriate concerning the 

determination of which side of a hyperplane a point lies. 

Consider a hyperplane, B, given by 

n 

Vi ayx, +a, = 0 (3.2) 
i=1
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where 

=l1, (3.2) 

Then the Ass 1<i<¢n, are the direction cosines of the 

hyperplane, and a, is its distance from the origin. We are 

interested in determining the distance, s, of a point m from 

B (Figure 5). Pass a hyperplane, say C, through m parallel 

to B. It will be represented by 

n 

> aX + By = 0 > (3.3) 

i=1 

where Bo is the distance of C from the origin. Hence the 

distance between B and C, which is also the distance between 

mand B, is 

But C passes through m; therefore m must be a solution of 

(3.3), requiring that 

n 

By =~ yogis . 

i=1 

Therefore



      
DETERMINATION OF THE DISTANCE OF 

A POINT FROM A HYPERPLANE 

Ry 

FIGURE 5 
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Hence, the distance of a point to a hyperplane (3.1) is 

Simply given by substituting the coordinates of the point 

into the expression for the hyperplane (as in (3.4)), pro- 

viding the expression is in a normalized form, that is, that 

(3.2) holds. The point is on one side of the hyperplane if 

(3.4) is positive, and on the other if (3.4) is negative. 

Which side of the hyperplane is to be positive or negative 

is completely arbitrary, since multiplication of (3.1) by 

-1 changes the sign of (3.4), but does not change the hyper- 

plane, 

3.2 Some Theorems Pertaining to Linear Decision Functions 

One may rightly ask just why he should consider a 

linear decision function. Is there any guarantee that it 

will work? In general, this question can only be answered 

by designing the categorizer, and then deciding whether the 

resulting system is good enough. However, some confidence 

in linear decision functions may be obtained from the follow- 

ing theoren, 

Theorem 1: For any categorizer based upon 

minimizing a Euclidean distance to a set of reference points, 

there exists a categorizer based on a linear decision function 

* 

If x and y are two points with coordinates xi, yi, 
1<¢i<¢n, then the Euclidean distance s between x and y is 

n 
~ 2 

Ss = Z, (x,-y,) 

1=1
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which is at least as good. This includes categorizers which 

maximize a cross-correlation function, and those which minimize 

‘a Hamming distance. 

Proof: Figure 6a illustrates a minimum distance 

categorizer. A measurement A is identified with the class 

represented by that reference point to which it is closest in 

a Euclidean sense. Consider reference points 1 and 2 (RP1 

and RP2) and the hyperplane B,o which is the perpendicular 

bisector of the line segment joining RP1 and RP2 (Figure 6b). 

Then the statement that a point A is closer to RPl than to 

RP2 is equivalent to the statement that the point lies on 

the 1 side of Blo- By constructing such a hyperplane for 

every pair of reference points, a linear decision function 

equivalent to the minimum distance decision function is 

obtained. Therefore, minimum Euclidean distance decision 

functions are a subclass of linear decision functions. 

(Sebestyen [46,47] has considered non-Euclidean minimum 

distance decision functions, which are not a subclass of 

linear decision functions. ) 

Next it will be shown that maximizing a cross- 

correlation function is equivalent to minimizing a Euclidean 

distance, Consider an unknown measurement represented by 

a point m in an n-dimensional space, which is to be compared 

I, j = 1,2,...,p. Let R, and to a set of reference points {r i 
J
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M be the vectors originating from the origin and terminating 

on Tr, and on m respectively. Let the magnitude of each 

reference vector be unity: 

n 1/2 

2 
[R, | = ) rs =1, l<ic<p (3.5) 

i=1 

Then by the law of cosines, the distance of m from Tye Sy> is 

2 = 2 —= 12 = — Si = | R, | +|M]“ - 2] R, || M | cos 8, 

= R,-R, + M-M - eR, M ’ (3.6) 

where @, is the angle between M and R, - A minimum distance 

eategorizer will compute S, for each 1 <1 < p and base its 

decision on choosing the minimum 8,- Since | M_| e is common 

to each s,, and |R, | © =1 for all i, then minimizing s, is 
i 

equivalent to maximizing 

n 

RM = ». rym, . 

1=] 

But this is proportional to the cross-correlation Py between 

the measurement m and the reference pattern ry: 

R,°M R,°M 
°, = —i__ -i_ . (3.7) 

IMIIR, | 18
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Since for a particular categorization trial, | M | 

is a constant common to all Py» then maximizing the cross- 

correlation (3.7) between a measurement m and a set of 

references tr,} is equivalent to minimizing the Euclidean 

distance (3.6) between m and the normalized reference points 

(normalized so that (3.5) holds). 

That minimizing a Hamming distance is equivalent to 

minimizing a Euclidean distance is easily shown by noting 

that a Hamming distance is simply the square of a Euclidean 

distance. Let x and y be two n-bit binary numbers. The 

Hamming distance between x and y is the number of bit 

positions which differ in the two binary numbers. This may 

be written 

n 

2 ec 
D = ». (x, -y,) 

1=1 

(assuming each Xs and Vy take on the values O or 1) which is 

the Euclidean distance between the points x and y. This 

completes the proof to Theorem 1. 

The upper bound on the number of hyperplanes required 

for a linear decision function is determined by noting that, 

for every pattern class, there will be one hyperplane separat- 

ing it from every other pattern class. If there are n pattern 

classes, there will then be n(n-1) such hyperplanes. But 

this has counted each hyperplané twice. Therefore,
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Theorem 2: For n pattern classes, a linear decision 

funetion comprises n(n-1)/2 hyperplanes. 

It will be Shown later that not all the hyperplanes 

are always needed, and techniques will be developed to detect 

unnecessary, or redundant, hyperplanes. Consequently we 

will have occasion to refer to complete linear decision func- 

tions, in which all the n(n-1)/2 hyperplanes are present, and 

incomplete linear decision functions in which some hyperplanes 

are not included. 

Theorem 3: (Uniqueness) A complete linear deci- 

Sion function will classify any measurement into no more 

than one allowable pattern class. 

Proof: Assume that a complete linear decision 

funetion has classified a measurement into both classes i and 

j.- But because of the completeness criterion this linear 

decision function contains a hyperplane B which will 
ij 

indicate that either the point cannot belong to class i or 

that it cannot belong class j (assuming that a point lying 

on a boundary is categorized according to some convention), 

thus contradicting the assumption. It has already been 

demonstrated that some measurements may not be classified 

into any of the allowable pattern classes by a linear 

decision function, complete or otherwise; these are the 

patterns which are rejected (see Figure 4). Of course, the 

classification determined by an incomplete linear decision 

function may not be unique.
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Theorem 4; The points in a measurement space which 

are identifled with a particular class by a linear decision 

function form a convex set. 

Proof: This is a standard pnoof [22] which is 

repeated here. The domain in measurement space corresponding 

to a particular pattern class is the set of all points 

satisfying a set of linear inequalities corresponding to 

the bounding hyperplanes for that class: 

KX, + wee + Ain*n < by 

a sX, + wee + Bon*n < Dy 

This can be written in matrix notation as 

[a] x] < b] . (3.8) 

(Throughout this paper, when matrix notation is used, x] will 

correspond to a column vector, and,x, to its transpose, a 

row vector, ) 

Let £] and m] be points satisfying (3.8), that is, 

they are members of the pattern class defined by (3.8): 

[a] £] <b] 

[a] m] < b] . 

"A convex set 1s one in which a line segment joining any 
two points belonging to the set is contained within the 
set.
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Let q] be a point on the line segment joining £]) and m}: 

qa] =w 4] + (1-w) mJ] 

where O ¢wc¢il1. Then 

fa] a] wla] £] + (1-w)[a] m] < wb] + (1-w) db) = bj]. 

Therefore q] also lies in the domain defined by (3.8). Since 

qa] may be any point on the line segment connecting 2£] and m], 

then this line segment also lies in that domain. Therefore, 

the line segment joining any two points in the domain defined 

by (3.8) lies completely within that domain, and the domain 

is thus convex. 

The suggestion is sometimes made that perhaps a 

linear transformation on the measurement space may group 

like patterns closer together and separate unlike patterns, 

so that a linear decision function may perform better under 

the transformation than otherwise. That this is an invalid 

suggestion is demonstrated by the next theorem. We will first 

need to prove the following lemma, 

Lemma: The relative distances of any set of points 

to a linear boundary are invariant under any nonsingular 

* 

affine transformation. 

* 

A nonsingular affine transformation 1s a nonsingular 
linear transformation followed by a translation.
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That is, if 8, and 8, are the distances of points 

c ‘ 

my and ms to a hyperplane, and 8, and 8, are the distances 

of the images of these points, respectively, to the image 

of this hyperplane under a nonsingular affine transformation, 

then 

a 

Sy Sy wel. 

Proof of lemma: Let M be the measurement space, 

and let B be a hyperplane in M. Bis given by the equation 

a, x] +a Oo. 
oO 

Consider the affine transformation 

xf] = (U] x] +t] 

or 

x] = (u)}"tx] - (v)74t] 

where [U] is nonsingular, and t] represents a translation of 

origin. Then the equation for the image plane B’ in its 

normalized form is 

a, (u}7? 2, x? ] - a, [U) At] +a, 
K =O; 

where k is the magnitude of the vector a, [u]7?, 

The image of a point m] is 

m?]) = [U] mM] +t].
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The distance s of m] from B is 

8 =a, m] +a, 

The distance s? of m’] from B’ is 

2, (UT TU] m) +a, (ult) - a, (ult) +a, 
s’ = k 3 
  

or 

La, m] +a, 
Cc 

8 I w/
w 

Since k 1s a constant independent of the point mJ], the lemma 

is proved. ' 

Theorem 5: The categorization defined by a linear 

decision function is invariant under a nonsingular affine 

transformation on the measurement space. 

Proof: From the preceding lemma, any two points 

which were initially on the same side of a hyperplane befsére 

the transformation will still be so after the transformation, 

thus proving the theorem.



CHAPTER IV 

THE SEQUENTIAL SYNTHESIS OF A 

LINEAR DECISION FUNCTION 

4,1 Justification of Sequential Synthesis 

The complete and accurate determination of a 

linear decision function requires the simultaneous deter- 

mination of the several hyperplanes defining it. To see 

this more clearly, consider Figure 7 in which a linear 

decision function categorizing three classes in a measure- 

ment space is illustrated. Let the closed curves shown in 

this figure represent, for purposes of discussion, the 

domains in measurement space of classes 1 and 2. In general, 

the losses associated with the various possibilities for 

misrecognition or rejection are different. Therefore the 

boundary Blo» for instance, must be shosen so as to minimize 

the loss (given by equation (2.2)) associated with various 

factors, such as: 

a. The misclassification of members of class 1 

into class 2 (the horizontally hatched area); 

b. the misclassification of members of class 2 

into class 1 (the vertically hatched area); 

ec, the misclassification of members of other 

classes into class 13 

d. the misclassification of members of other 

classes into class 2; 

- 38 -
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e, the rejection of members of various classes 

(the dotted area), 

.Note that the members of classes 1 and 2 which are. 

already misclassified into other classes (in this case, into 

class 3 as illustrated by the cross-hatched area in Figure 7) 

are not to be considered in the determination of the optimum 

Bios these are members which are going to be misclassified any- 

way, regardless of the position of Bio: Therefore, in order 

-and B to optimize Bio» the other boundaries, B in this 
13 23 

case, must be known. But their determination also depends 

on Blo» by the same argument. Therefore, all of the boundaries 

comprising an optimum linear decision function must be deter- 

mined. simultaneously. 

However, for a moderate number of allowable pattern 

classes, n, the number of hyperplanes, n(n-1)/2, comprising 

a complete linear decision function becomes large and the 

problem might easily become unmanageable. It would certainly 

be a more palatable procedure if each hyperplane could be 

determined independently of the others. In particular, 

consider a suboptimum linear decision function defined by 

a set of hyperplanes, one for each pair of the allowable 

pattern classes, in which each hyperplane is determined by 

minimizing the loss associated with the total confusion 

between the two particular classes which it separates. That 

this is usually a good approximation to the optimum linear 

decision function is shown by the following argument.
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Consider an optimum complete linear decision 

* 

ij’ 

is based on a loss function such that all losses due to 

funetion L*, defined by boundaries denoted by B which 

misrecognition are equal to ¢c, and all losses due to rejec- 

tion are equal to ec, <¢. L* has an expected loss C(L*), 
*% 

kf’ 

replaced by a suboptimum boundary Bey which has been deter- 

Let one of the boundaries of L*, say B be. 

mined such that it minimizes the expected loss associated 

with the total confusion between classes k and g. This 

Suboptimum linear decision function will be designated L, 

and will have an expected loss C(L) > C(L*). 

Let us define some special quantities for L; 

Similar definitions will hold for L*. First, let Ly = 1 

for all points in M that are identified with class j, 

O< J <P; L, = 0 otherwise. 

The expected loss associated with only the con- 

fusion between classes k and £ under L may be denoted C 
kZ£ 

and is 

Crp, =e | [w LB (m | 81) + w pL), (m | s,) ]am . 

M 

This is illustrated in Figure 8, in which is shown a 

linear decision function similar to that of Figure 7. This 

may be considered as representing either L or L*. The expected 

loss, Chg is that associated with the actual confusion between 

classes k and £ as illustrated by the diagonal hatching in 

Figure 8,
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Note that, if Big were to be extended through all 

space, as shown by the dotted line in Figure 8, then one 

could talk about the expected loss Pig assoclated with the 

confusion between the classes k and g outside of the regions 

Ly = 1 and Ly = 1, as indicated by the horizontal and 

vertical hatching in Figure 8: 

Pig = c | \ L ,[w,B (m i) + w& gB (m | 8 ,) Jam . 

M j=0 
j#kK, £ 

Let us also define a quantity R which is the loss 
ks 

under L associated with all rejection regions for which Big 

is one of the boundaries: 

Rey = % | Ly(k2) [a8 (m | s,) + o6(m|s,)}am , 
M 

where L, (kz) = 1 for all rejection regions for which B_, is 
k£ 

a boundary, and is zero otherwise. In Figure 8, this integra- 

tion is over the one and only rejection region. 

Now, the suboptimum boundary Beg was determined by 

minimizing the total expected loss, Cry + Puy» associated 

with the confusion between classes k and g. Hence, 

* * 

+ Pig (4.1) 
k£
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The changes in the expected loss for the system 

* 
when aw) is used in place of Beg are due to the additional 

confusion between the classes k and £, and to changes in 

rejection regions bounded by Big: Therefore 

C(L) - C(L*) = (C., - Ch) + (Ry) - Rey) DO. 

Then, from (4.1), 

* * 
C(L) - C(L*) < (Puy - Ruy) - (Puy - Ryy) 20. (4.2) 

Note that Peg > Rig and Pry > Ry since the subspace over 

which Rig is integrated is contained within the subspace 

over which Py 18 integrated. ~ 

Peg (or Pig) represents only a portion of the sum 

of the expected losses for classes k and g under L (or L*). 

It does not include Chey (or Cy) nor does it include the 

misidentified members of classes k and g which are on the 
_ 

kL 
* . * 

(or Pig) is further reduced in (4.2) by Rig (or Rig): There- 

* 

correct side of the extended boundary Big (or By): P 

fore, from (4.2), the degradation C(L) - C(L*) 1s less than 

the difference between two numbers, each of which are smaller 

than the sum of the expected losses for the classes k and 2 

under L*, 

Hence one can expect, with reasonable confidence, 

that the increase in the expected boss when an optimum hyper- 

plane 1s replaced by a suboptimum hyperplane will be very much
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less than the sum of the expected losses of the two classes 

in question under the optimum linear decision function. 

Consequently, it may be concluded that the inde- 

pendent (or sequential) determination of the hyperplanes 

rather than their simultaneous determination is a useful 

approximation to the optimum linear decision function. The 

degradation in system performance will be small, the savings 

in computational effort great. 

Even if it were deemed that this approximation 1s 

not good enough, the concept of sequential determination is 

still valid, for the approximation may be made better by an 

iterative process, First determine the hyperplanes inde- 

pendently, giving an initial linear decision function L,- 

Then only those members of each class which are correatly 

recognized by Ly are used to recompute independently the 

hyperplanes, giving another linear decision function Lo. 

This process can be repeated until no significant improvement 

in performance is observed. 

It will be noted that this argument assumed constant 

costs for misrecognition and rejection. If this restriction 

is dropped, the situation becomes more complicated, since 

all the sources of loss as mentioned earlier in the chapter 

must now be considered. However, the general result witl 

still obtain - that is, the approximation is still a useful 

one. Therefore, the remainder of this paper will have its 

emphasis placed upon this sort of approximation to the optimum 

linear decision function.
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4,2 Upper Bound on the Expected System Loss, as Determined 

from the Constituent Hyperplanes 

When one has determined a hyperplane, Bay one 

can associate with it an expected loss, C, (By )> depending 

upon its performance in separating the two classes i and j, 

upon the loss coefficients Cay and C4 associated respectively 

th 
with confusing the 1 class with the hh class and vice 

versa, and upon the a priori probabilities WD, and a, of 

occurrence of the classes i and j: 

Cy (Bis) = Dy Sy | 6B (m | 8, )dm + WiC yy | B(m | s,)dm ; 

Hy (By 5) Hy (By 3) (4.3) 

where | ...dm indicates integration over the half space 

Hy (By y) 
which includes all points identified as class i by B It 

ij° 

will be of interest later to relate the expected loss for 

the hyperplanes to the expected loss for the system; this 

relation is given by Theorem 6, 

Theorem 6; The expected loss associated with a 

linear decision function is not greater than the sum of the 

expected losses associated with its constituent hyperplanes. 

Proof: Consider a particular class, say 1. The 

expected loss associated with members of this class under the 

linear decision function L is
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C, (L) = W, Ch, | 8(m | s, )dm > 

40 R, 

where Cay = O, and | -..dm indicates integration over that 

Ry 
region in measurement space for which L, = 1. Ro denotes 

J 
the rejection regions. The expected loss for the system is 

C(L) = \ y oe WiC I, 8(m | s, )dm . (4.4) 

i=1 j=0 

Denote the sum of the expected losses for each of the con- 

stituent hyperplanes of L by CE(L)s it may be written, from 

(4.3), 

=) de w,¢ esa | B(m | 8, )dm 
Hy (By ,) 

y Y oy0 44 [ B(m | s,)dm 

) =l1 j=1 Hy (By, 

\ yey, | B(m | s, )dm . 

4=1 j=l H,(By 4) 

Denote by | ---dm, 1 ¢ J < p, the integral over 

S, (By 5) 

that subspace which includes all points which are identified 

as class i by By y: but which are not rejected by L. Denote



48 

by { -..dm the integral over that subspace which includes 

S, (By 4) 

all points rejected by L. Then if Cay > Cy52 One can write 

pil) > y y oye Oy Ss j pi [s,)dm. (4.5) 
1=1 j=0 8 ,(By, 

But the subspace Ry» j #0, is contained within the sub- 

space S (By 5); since R, is bounded by all the hyperplanes Bey 

1<k <p, and does not contain any rejection regions, 

whereas 85 (By 5) is bounded only by the hyperplane B and 
1j 

also contains no rejection regions. Also R, = S5(B,,) by 

definition. Therefore 

| B(m | 8, )dm < | B(m | 8, )dm , l<ji<p 

Ry S,(B, 5) 

| B(m|s,)dm = B(m|s,)dm. 
R “s_(B, .) 

oO o* Lo 

Hence, C(L), given by (4.4) is not greater than the right- 

hand side of (4.5), thus proving the theorem. 

A useful corollary is immediately obvious. 

Corollary: If the expected loss for each of the 

constituent hyperplanes of a linear decision function L is 

zero, then the expected loss for L is also zero,
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4,3 Some Special Cases of Optimum Hyperplanes 

Before discussing some general procedures useful for 

determining the optimum hyperplane separating two classes, it 

is interesting to note some special cases. 

Theorem 7: The optimum decision function 6*, not 

containing a rejection decision, for the case of two classes 

which 

a. are equally probable a priori, 

b. have identical losses associated with 

misrecognition, 

ec. have probability distributions over the measure- 

ment space which are unimodal, spherically 

Symmetrical, and identical except for a dis- 

placement of modes, 

is a linear decision function comprising a hyperplane which 

is the perpendicular bisector of the line segment joining the 

two modes. 

Proof: Let the two classes be denoted class 1 

and class 2. Let the probability distribution for class 1 

over the measurement space be designated B(r,), where ry 

is the distance of a point r from the mode of the distribu- 

tion for class 1. Similarly for class 2. From the optimum 

decision rule given by equation (2.4), 6* is the following: 

* = 5 (d, | m) 1 

6*(d,|m) = 0
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if 

B(r,) > B(ry) 3 

b*(d, [m) =0 

B*(d,, | m) =1 

if 

B(r,) < Blr5) 

Therefore, the boundary equivalent to 6&* in the measurement 

space is that locus of points satisfying 

That is, the boundary equivalent to 8* is the locus of those 

points which are equidistant from the modes of the distribu- 

tions of classes 1 and 2. But this locus is the hyperplane 

which is the perpendicular bisector of the line segment 

Joining the modes, 

An example of such @ case is when the two classes 

are described by Gaussian distributions which have the same 

variance for each variate, and which have zero covariances. 

The general solution for the optimum decision function for the 

Gaussian case is well known, [2,31] and the results are 

repeated here in terms of the equivalent boundary. (Equal costs 

of misrecognition and equal a priori probabilities are assumed. )
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Let two classes, i and j, be described in measure- 

ment space by Gaussian distribution functions. Let u, | be 

the (n-dimensional) mean of the distribution of class i, and 

[V, ] be its covariance matrix. Then the boundary equivalent 

to the optimum linear decision function is the set of points 

X%, such that 

- 3%, (tv,1 - va") xd + x ((yy1tuy) - (vy177u31) 

1 -1 1 -1 _ ; -3 u, [V,l“u,l+s uy [V5] uj] + ink, ; oO, (4.6) 

where 

Iv, | Ke = —d 
Jo ivy | 

Note that this is a quadratic function. However, if the two 

covariance matrices are equal, then the boundary becomes 

linear. This is stated in the following theorem: 

Theorem 8: The optimum decision function 6*, not 

containing a rejection decision, for the case of two 

classes which 

a. are equally probable a priori, 

b. have identical losses associated with mis- 

recognition,
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ec. have probability distributions over the measure- 

ment space which are Gaussian and which have 

equal covariance matrices [V], 

is a linear decision function comprising a hyperplane given 

by the set of all points x, satisfying 
fod 

a WIT (uy-a)1 - 3 (atu) (VI (uy-u)1 = 0, 

where u, ] is the mean of the distribution for class 1. 

In a good part of the work to follow, we will be 

interested in estimating the optimum linear boundary between 

two classes based upon a sampling from the two classes. 

Geometrically, this can be interpreted as passing a hyper- 

plane through two sets of points so as to optimally separate 

them in some sense. We will say that two sets of points in 

measurement space are linearly separable if they can be 

separated perfectly by a hyperplane. Following are two 

theorems dealing with linear separability. (The problem of 

linear separability of points described by Boolean functions 

has received significant attention by other workers, [33,34, 

52,53,35]) 
Theorem 9: Two sets of points are linearly 

separable ifand only if their convex hulls’ are noninter- 

secting. 

“The convex hull of a set of points S is the smallest convex 
set containing S. It is the set of all convex combinations 
of sets of points from S. [22]
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Proof: It is proved in set theory that two non- 

intersecting convex sets may be separated by a hyperplane. [49] 

This proves the "if" part of the theorem. To prove the "only 

if", assume that the convex hulls of the sets S, and 8 
1 J 

intersect. There then exists at least one point p which is 

a convex combination of sets of points from Sy and also from 

S;- It was shown in the proof of Theorem 4 that if a set 

of points satisfied a family of linear inequalities (in this 

case, only one such inequality), then all convex combinations 

of these points also obeyed that family of linear inequalities. 

If there exists a hyperplane, By separating S, and S$ 
i j’ 

then, since p is a convex combination of a set of points 

from Sys p must be on the i side of Bay: By a similar argu- 

ment, it must also be on the j side of B This is con- ij’ 

tradictory, and therefore Sy and 8; are not linearly separable. 

The following corollary is immediately obvious from 

the proof of Theorem 9. 

Corollary: If there exists at least one point 

which is a convex combination of points from the set Sy and 

which is also a convex combination of points from S then 
j’ 

Sy and S, are not linearly separable. 
J 

An algebraic test for linear separability can. be 

obtained from this corollary which leads to a set of n linear 

equations in p unknowns, where n is the dimensionality of the 

space and p is the total number of points in Sy and 8 If j° 

these equations have a solution, then the sets of points are
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not linearly separable. However, the difficulty of deter- 

mining the existence of a solution to this set is in general 

more difficult than actually trying to find a hyperplane 

which will separate the points (the procedure for which will 

be discussed in Section 5.3). Furthermore, if the sets are 

“not linearly separable, this corollary will not indicate to 

what degree this is true; i.e., perhaps the sets can be 

separated with only small error. The empirically deter- 

mined hyperplane will give. an estimate of the degree of 

separation of the pattern classes from which these sample 

points were drawn (as will be discussed in Section 8.2). 

Therefore this corollary will be pursued no further. 

Let us say that a set of q points in a space of n 

dimensions, q < n+l, 18 nondegenerate if the points cannot be 

contained in a linear subspace of q-1l dimensions. In Figure 9 

are shown 3 nondegenerate points in two dimensions, and 4 

nondegenerate points in 3 dimensions. Note that, in each 

case, the points can be separated into any two categories 

desired by an n-dimensional hyperplane. This is generalized 

in the next theorem, 

Theorem 10: Let S be a set of q nondegenerate 

points in an n-dimensional space, gq g n+l. Let Sy consist 

of any k of these points, and S5 consist of the remaining 

q-k points. Then Sy and So are linearly separable.
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Proof: It is obvious from Figure 9 that the theorem 

is truefor n =1,2, and 3. Let us assume that it is true 

for n-1 dimensions and prove that it then holds for n-dimen- 

Sions. If q <n, the theorem follows immediately, since the 

n-dimensional hyperplane need only contain the (n-1) dimen- 

sional hyperplane which properly separated the two sets Sy 

and So. The extreme case then consists of a set S of n 

nondegenerate points in n-1 dimensions which is separated 

into two sets, S. and Sos» by a hyperplane, say B Let 
1 n-l1°* 

us now add one dimension to the space and one point, p, to S ’ 

such that Sf’ = S$ wp is still nondegenerate, i.e., p is not 

contained in the n-dimensional hyperplane containing S and Bae. 

Then an n-dimensional hyperplane Bo may be passed through 

Bo-1 such that p falls on either side of it. Since it was 

assumed that Boel could be chosen to separate S arbitrarily, 

then B. can separate gr arbitrarily, thus proving the theorem. 

This theorem and the two following corollaries will 

be important later in the discussion of the practical inter- 

pretation and use of linear decision functions. 

Corollary 1: Let S be a set of q points in an n- 

dimensional space such that any subset of S containing no 

more than n+l points is nondegenerate, Let q < ntm-1. Then 

S can be separated into m nonempty sets by a linear decision 

funetion,
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Proof: By the corollary to Theorem 6, it is only 

necessary to show that each of the m sets is linearly 
—— = 

separable. Let S be separated into the sets Syoeees5)e Con- 

sider the case in which q = n+m-1, and the sets §$ 730 
1’°° m-1 

each contain one point from S, leaving n points from S to 

comprise Sint Then Sm and Sy 1<k¢me-1, are linearly 

separable by Theorem 10, since their union contains n+l 

points, In any other possible case, the number of points 

contained in the union of any two sets S, and S, will be 
i J 

less than n+l, thus proving the corollary. 

Corollary 2: Let S be a set of q points in an 

n-dimensional space such that any subset of S containing no 

more than n+l points is nondegenerate. Let 

a< ’ n even 

a< m(nsi) ; n odd 

Then S can be separated into m subsets of equal size by a 

linear decision function. 

Proof: The union of any two subsets wiil contain 

n nondegenerate points if n is even, n+l nondegenerate points 

if nis odd. Therefore, each pair of subsets is linearly 

separable by Theorem 10, and the corollary ts then proved by 

invoking the corollary to Theorem 6,



CHAPTER V 

DETERMINATION OF THE OPTIMUM LINEAR 

BOUNDARY SEPARATING TWO CLASSES 

This chapter will deal with the problem of deter- 

mining the optimum (minimum loss) hyperplane which separates 

a pair of classes. In the general case, which is treated 

here, the loss associated with misrecognition of a member 

from one class is not the same as that loss for the other 

class. Recall from Chapter II, however, that when the losses 

are equal, then minimum loss corresponds to minimum error, 

Two cases will be discussed. In the first, it is 

assumed that the pertinent conditional probability functions 

over measurement space, B(m | s,); are continuous, and that 

these probabilities and the a priori probabilities of 

occurrence, wW,, are known. In the second case, which is the 

case of practical interest, it is assumed that nothing is 

known about the probabilities 8(m | s,), and that the a priori 

probabilities ®, may or may not be known. The determination 

of the optimum hyperplane is then based upon an appropriate 

sampling from the pattern classes. 

5.1 The Optimum Hyperplane for the Case of Known Distributions 

Let B(m | s,) be the probability density function of 

class 1 over the measurement space, Oy be the a priori prob- 

ability of occurrence of class i, and Ch; be the loss 

- 58 -
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associated with misidentifying a member of class i with 

class j. Denote a hyperplane which separates the classes i 

and j by Bry and let it be defined in the coordinate system 

(xX,5-+++.%,) by the equation 

n 

X= YX +a. (5.1) 

k=2 

Let v(m | 8,,5B,,) be the conditional probability density 

function of class i over the boundary B 

  

1j° 

B(m | Ss, ) 
v(m | 5, >B, ,) = 

B(m | s, )dm 

Bay 

for all m satisfying (5.1). | ...-dm denotes integration 

Bi; 

over the boundary Bay: Define the weighted conditional 

probability density function of class i over the boundary Big 

by 

T(m | 84 >B, ;) = Cy @, v(m | 8, +B, ,) . 

Theorem 11: The optimum linear boundary Bry 

separating two classes i and j which have weighted conditional 

probability density functions over Bij given by
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T, = t(m | 81 >B, ;) 

tT, = t(m|s 
32? 4) ’ 

must satisfy the following conditions: 

a. The integrals of Ts and T, over Bi; must be 

equal, 

b, The means of Ty and Ts must be equal. 

Proof: Let Bi; be oriented such that the half- 

Space identified as class 1 corresponds to 

n 

x, < Ye + a, 

k=e 

The expected loss is then 

( oc r co oO 

c(B, ) = Cy sy | dx +e | dx, B(m | 8s, )dx, 
=00 —0O n 

YX +a 

k=e 

We wish to find the coefficients of the hyperplane B which 
1j 

correspond to extreme points of (5.2). First differentiate 

(5.2) with respect to ao:
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oc(B, ,) 
— =e. | v, dm + | T dm =O, 

° Bi; Bis 

which is condition a. of the theorem. Next, differentiate 

(5.2) with respect toa,, 2<k <n: 

oc(B, ,) 
sa = - X,,7, dm + Xy,T dm = 0, 

Bay Bay 

egkg¢n 

A similar expression may be obtained for k = 1 by rewriting 

(5.1) in terms of some other coordinate. This set of condi- 

tions, i.e., for l < k <n, corresponds to condition b. of the 

theorem, 

In general, there will be several hyperplanes 

satisfying the conditions of Theorem 11. Some of these will 

correspond to maxima of C(B,,), others to minima. These must 

then be searched to determine which corresponds to the 

absolute minimum of C(B,,). 

It might also be pointed out that this theorem allows 

an approach to linear decision functions using more than one 

hyperplane per pair of classes by combining, with the appropri- 

ate logic, the various hyperplanes satisfying the conditions 

of Theorem 11. As an example of this, consider Figure 10 in 

which a pair of one-dimensional functions is shown corresponding
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to the weighted probability density functions Cy 0,8 (m | s,). 

The boundaries satisfying the conditions of Theorem 11 in 

one dimension are those points in Figure 10 where the dis- 

tributions are equal (denoted by an x). Let all of these 

boundaries be combined, logically, into a linear decision 

function such that the categorization is as shown by the 

arrows. Then this also corresponds to the optimum decision 

funetion, 5*, given by (2.3). The linear decision function 

which would have been used under the constraint of one 

boundary per pair of classes is shown by the dotted line; 

its loss is significantly greater than the multiple boundary 

decision function. 

5.2 The Estimated Optimum Hyperplane for the Case of Unknown 

Distributions 

We will now assume that the designer has no knowledge 

concerning the form of the probability function 6(m ls,), 

but he may or may not know the a priori probabilities, WD, « 

We will assume the existence of all such probabilities and 

probability functions, whether known or not. | 

If a hyperplane Bis is passed through M, Such as to 

divide classes i and j in some fashion, then a certain por- 

tion of the members of classes 1 and J will be misidentified 

by Bis: Let Py be the probability of misidentification of 

a member from class i, given Bi; and a member of class 1 

(p, 1s the integral of B(m | 8,) over the half-space on the
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j side of By;): Then the conditional loss associated with 

Bay (see equation (2.1)) is 

C(B : ‘ (By) = ey 5p, + © 54 5P 5 

= 05,2, + C5424 > (5.3) 

‘ Ds ? ®; , 
where Ds = O70, and ®; = B+, » and ey = Os Py is the 

probability of misrecognition, given Bay of a member from 

class i when patterns are chosen randomly from classes i and 
, 

J according to Ds and w,. 
J 

Theorem 12: Construct a hyperplane Bi; in measure- 

ment space M which divides M into two half spaces, all the 

points in one being identified as class 1, the points in the 

other being identified as class j. Consider two sampling 

procedures designed to estimate the conditional cost C(By 5) 

a. The a priori probabilities wm, are unknown, Let 

it be assumed that there exists a pattern source 

which will generate patterns from classes i 

and j randomly according to w, and wy. Draw 

a pattern from this source, identify it, and 

then determine the identification according to 

Bry: This latter identification will either be 

in error or will be correct. Repeat this 

experiment n times. Let my be the number of 

samples from class 1 which are misidentified by 

Bi; as class j, and likewise for m,. 
J
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b. The a priori probabilities a, are known. Take 

ny Samples from class i and n, samples from 
J 

class j such that 

n, (5.4) 

? ‘ 

(It will be assumed that w, and ws are such that 

(5.4) can be met exactly.) Identify each of 

these n samples according to B Let m, be ij i 

the number of samples from class i misidentified 

by B; as class j, and likewise for ms. 

Then the maximum likelihood estimate in either case* for 

the conditional loss C(3, 5) is 

ag ce, ,m, + C,.m 

C (B, ,) = “ei Pasty (5.5) 

Proof: Take case a. first. Three events of interest 

can occur: 

1. A pattern from class i is misidentified with 

probability ey: 

e. A pattern from class j 18 misidentified with 

probability ey: 

3. A pattern is recognized correctly with 

probability 1-e,-e,. 

¥* 

We make no further distinction here between these two cases 
of sampling. They are compared further in Chapter VIII.
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These events are discrete, independent, and mutually 

exclusive. Therefore, the probability distribution for mys 

and m is multinomial: 
J 

n-m, -m n my om, 47%, 
P(m,.m,) = (my m, Jey ey (1-e,-e,) 

The maximum likelihood estimate for e, is [19] 

m ~ — my 
“14 - 4 

and likewise for e,. Since the maximum likelihood estimate 
J 

of a sum of independent variables is the sum of the maximum 

likelihood estimates, then from (5.3) 

c m, +c m ) =o age * Pais a 
C(B, 7A 

For the second case, the number of samples taken 

from each class is fixed by (5.4). By an argument similar 

to the preceding argument, ms is binomially distributed 

with parameters ny and Py> and likewise for my. Then the 

probability function for ms and m is given by 

1 ms Ayom, j m5 ns-m, 

Again, the maximum likelihood estimate for Py is
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and likewise for Pj: Using the linear summation rule again 

with (5.3), one obtains 

Cc, ,o,m c.,0,m 

Making use of (5.4), this reduces to 

Cy My + C yam, 

ij n 

If we take samples from a pair of classes according 

to either criterion, there will be a set of hyperplanes 

(infinite in number) which will minimize the maximum likeli- 

hood estimate of the conditional loss (5.5). It is quite 

reasonable, then, to choose one of the hyperplanes from 

this set as the estimate of the optimum hyperplane separat- 

ing the two classes. That is, it is clear from (5.5) that 

we will search for a hyperplane which will minimize the loss 

associated with the sample points. This is also intuitively 

quite reasonable. 

Note that Theorem 12 and the resulting procedure 

is independent of the probability functions over the measure- 

ment space. Hence one need make no assumptions concerning 

the form of these functions, nor need he concern himself 

* 
with the dependencies between the various measurements. 

* 

Another criterion for determining the optimum hyperplane is 
discussed in Appendix III. It makes use of a rather weak 
assumption concerning the probability functions over the 
measurement space, and so is not completely nonparametric.
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5.3 A Computation Algorithm for the Case of Unknown 

Distributions 

In this section will be developed an iteration 

algorithm which will be useful for determining that boundary 

which minimizes the maximum likelihood estimate of the 

conditional loss for the boundary. There has been some 

work by others concerning similar boundaries when the 

measurement space is a binary space [33,34,52,53], or when 

the classes are Gaussian distributed in measurement space 

(discriminant functions [2,17,50] yield a good approximation 

for this case), 

Figure lla illustrates this problem for two classes, 

k and £. Samples from class k are shown by crosses, from 

class £ by circles. A boundary, Big? is indicated. Let us 

number these samples from 1 to m, there being a total of m 

? 
samples, and define a weight, Ty? for the jth sample point, 

1<j<¢m, such that 

c 

T; = O if the point is on the correct side of Bi. 3 
é 

T; = Cheep if the point represents a sample from 

class k on the g side of Bigs 
? 

Ty = Cp, if the point represents a sample from 

class £ on the k side of Big: 

It is clear then that minimizing the estimate of the con- 

ditional loss (5.5) 1s equivalent to minimizing
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(a) 

  
  

  

(b) Sj 

ILLUSTRATING THE ITERATIVE ALGORITHM 
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T’(a,) = Ty (5,6) 

where the Ass O<i<n, are the coefficients of the hyperplane 

Big defined by (3.1). Since there are (n+l) coefficients 

for an n-dimensional hyperplane, T’(a,) can be interpreted as 

an (n+1)-dimensional function for which we want to find 

the absolute minimum. One powerful technique for doing 

this is the method of steepest descent [7], by which one 

makes an initial guess as to the solution, and then computes 

the gradient of the function at that point. A small step 

is taken in the direction of the negative gradient (i.e., 

"downhil1l"), and the gradient is recomputed at that point. 

This process is repeated, thé steps being made smaller, 

until one is arbitrarily close to the minimum point. 

One problem inherent in all gradient methods is 

that the minimum which is finally reached is not necessarily 

the absolute minimum. If one is in doubt as to whether the 

Solution obtained actually represents an absolute minimun, 

he can only try other initial starting points and accept 

the smallest minimum which he obtains, 

The problem which immediately arises in trying to 

apply this method to (5.6) is illustrated by ‘Figure llb, where 
e 

the form of T, is shown. s, is the distance of the j*? 
J J 

point from the boundary Big and will be considered
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to be positive if the point j 1s on the correct side of the 

boundary. That is, points representing members of class k 

will be a distance greater than zero from the boundary if 

they are on the k side of Bip and will be a distance less 

than zero from the boundary if they are on the £ side. (A 

technique for handling this mathematically will be introduced 

later.) The quantity Cy in Figure 1lb is equal to c,, if 
k£ 

the yuh point represents a member from class k; c j 7 oa 
otherwise. It is the cost of misrecognition for the yuh 

sample. As the a, are adjusted, the hyperplane moves 

around in the measurement space, and T'(a, ) makes a discrete 

jump of magnitude cy every time the hyperplane passes through 

a sample point. Otherwise T’(a,) remains.constant. Consequently 

it has no meaningful derivatives and no meaningful gradient 

at a point, and gradient methods such as the method of steep- 

est descent are not applicable. 

s 

J 
funetion T (855%) which is continuous everywhere, and which 

However, it is possible to approximate T, by some 

has the property 

? 

s\) =T lim T j 3s 3 Lim T (85 

where Ts is written as a function of the distance of the yuh 

point from the hyperplane to emphasize this continuous depend- 

ence. Such a function is shown in Figure llb. If the func- 

tion
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m 

T(a,,) = ) 748459) (5.7) 
j=l 

were to be minimized for some finite A with respect to the 

a,» and then A increased and (5.7) minimized again, and this 

process repeated, one would expect the hyperplane to con- 

verge to one of the set of hyperplanes minimizing (5.6). 

This minimization process can now make use of the method of 

steepest descent, and will be developed in more detail below. 

There are many functions which would be suitable 

for TA). One convenient one is the cumulative Gaussian 

distribution with zero mean and standard deviation 1f/2);3°' 

it will be denoted G(As ;). Then 

T5 (8452) = etl - G(rs 5) ] , 

where 

SLG(A -(rs.)* 
~ d =r e 3) . (5.8) 

j JT 

Then 

m 

T(a, 5) = ) e,l2 - G(rs,)]. 

j=l 

The gradient of T(a, 5A) is determined by the derivatives



73 

oT (a, A) aG(as,)] as we 
oy ».°3 —a, , O<ic¢n. 

j=l 

(5.9) 

Before proceeding further, we must sidetrack and discuss the 

problem raised by the fact that s, is defined as being 

positive if the yuh point is on the correct side of the 

th hyperplane. Let m coordinate of the yeh point. be the 1 
ij 

Then, as developed in Chapter I, 8, is given by 

n 

8; = Yam, +a, . 

i=1 

Now the sign 8, can be chosen arbitrarily, since the coef- 

ficients of the hyperplane Beg may be all multiplied by 

(-1) without affecting the location of Big: Alternatively, 

8, may be written 

n 

8, = > 24% 5 , (5.10) 

1=0 

where m3 is called an artificial coordinate and is defined 

to be +1. Now it is seen that the sign of 8, may also be 

reversed by reversing the signs of all of the coordinates, 

mj, of the jv" point. This 1s the device that will be 

used here. It will be decided a priori which class, say k, 

will be positive, and the coordinates (including the 

artificial coordinate) of each sample from k will be entered
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into the equation with true signs. All of the coordinates, 

including the artificial coordinate, for each Sample from 

the other class will be entered with reverse sign. This 

will satisfy the condition on the sign of 84> and allow the 

equations to be written more simply. 

Keeping this artifice in mind, we now return to 

(5.9). From (5.10), we wish to compute Os ,/Oa,. However, 

(5.10) holds only if the coefficients a, are in normalized 

form, that is, that (3.2) holds: 

». 24 =l1, (3.2) 

i] 

Assume that (3.2) holds and write (5.10) as 

n 

y o5m 
_ 1=0 

7 pe’ 
2% k 

kK=1 

which will guarantee that (3.2) will hold even if the a,'s 

are incremented. Then
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Applying (3.2) and (5.10), 

0s 
7 = ms; - 2,85, l<gig¢n 

5 (5.11) 
8 

=m_,. oat oj 

Consequently, from (5.8) and (5.11), (5.9) may be written 

aT (a, ,r) ~(r8,)° m 

-_A»~ - 
oa, Jt 2, (ms a 18, )e s 1 lA

 *
 

IA
 DD 

(5.12) 
aT (a, +r) ~n B -(as,)? se » Mos? 

° 

The equations (5.12) give the gradient of T(a,,A). 

To make a step along the direction of the negative gradient 

("downhill"), select a new set of coefficients a, 

O<¢i<¢n, such that 

where @ 1s some constant which governs the size of the step. 

According to the iterative procedure, a value of A 

and an initial set of coefficients are chosen, and the 

gradient (5.12) computed. These coefficients are incre- 

mented according to (5.13), and the process repeated. When



the process reaches a minimum, a larger value of A is 

chosen and the iteration procedure repeated. This goes on 

until some termination criterion is met. 

In order to determine when a minimum for any given 

\ has been passed, the value of oT/d@ for the old and new 

coefficients 1s computed. It will of course be negative for 

the old coefficients, since the gradient is being followed 

in the negative direction. If a minimum is passed, however, 

OT/O8 will be positive for the new coefficients. In this 

case, the minimum is approximated by choosing a new @ based 

upon a linear interpolation between the two values of dT/d@ 

for the old and new coefficients. 

The expression for dT/d@ is developed below. 

oT, Os B-m 
j J 

where
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Then 
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The evaluation of (5.16) with (5.15) will give the 

value of oT/d@ for the original coefficients a,- For the new 

a, = a, - 6 oT/a,, the complete expression (5.14) must be 

used, and the s, appearing in the exponent of (5.16) must 

be the distance of the yuh point from the new hyperplane.
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The value of 6 which is chosen is rather arbitrary. 

If it is chosen too large the boundary may oscillate about 

or diverge from the minimum. If it 1s chosen too small, the 

iteration process will take longer than necessary. The 

following value of 6 was found by experience to yield 

reasonable results 

@6= 1 

- n 1/2 i 

15 |= ) an)" n Oa, 
i=1 

The value of A is also rather arbitrary. The initial value, 

Le was chosen so that 

A. = 1/s ’ 
° Imax 

where s, is the distance of the furthest point from the 
max 

initial hyperplane. After the interpolated values of a, 

which minimize T(a, 5A) are determined, A is doubled. This 

process continues until As > 3, at which point the itera- 
Jmin 

tion terminates. s is the distance of the closest point 
Jin 2 

-Os 5) 
to the hyperplane. When As, > 3, then e < .0001 

min 
for all points, and the gradient becomes extremely small. 

The initial hyperplane was usually chosen to be 

the perpendicular bisector of the line segment joining the 

sample means of the two classes. As indicated earlier, - 

a
t
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several initial choices ought to be made and the best 

result used. It will be seen in Chapter X that this choice 

of an initial hyperplane is not always the best. 

This iterative procedure is summarized in the flow 

chart of Figure 12. 

5.4 An Example of Categorization 

To show the relation between these various approaches 

to the problem of categorization (the optimum decision func- 

tion, the optimum linear decision function based on knowledge 

of the distributions, and the optimum linear decision func- 

tion based on sampling), the following two-class problem was 

solved using each technique. 

Problem: There are two pattern classes, 1 and 2, 

upon which two measurements, x and y, are made. The measure- 

ments are independent and normally distributed with the 

following parameters: 

Class l: O15 = 1 Wi, = 1 

Oly = 5 Hoy =] 

Class 2: Oo, = .l Loy = 2 

Coy = 2 Hoy = QO 

The a priori probabilities of occurrence and the misrecog- 

nition losses are the same for each class. Determine the 

boundaries between the classes in the measurement space x,y.
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Solution 1: Optimum decision function. The 

boundary corresponding to the optimum decision function 1s 

given by (4.6) which yields 

2 2 
-99x" + 3.75y" + 398x - 8y - 393 =0 

This is a hyperbolic boundary, and is shown in Figure 13. 

In this illustration, the 16 contours of the classes 1 and 

2 are also shown. The region identified as class 2 is of 

course that region between the two curves of the hyperbola. 

Solution 2: Optimum linear decision function 

based on knowledge of the distributions. Let the optimum 

linear boundary to be given by 

y=zax tb 

By substituting the Gaussian forms into the conditions 

given by Theorem 11, one obtains the following implicit 

equations for a and b (the details will not be included): 

Y Y 
G + aoe e a (02 + aoe je e ’ 

  

ly 1x ey ox 

and 

2 Ce 2 2Le 
(of + a 01, _ (05, + 8 O5y 

2 2 ~ Le 2 , 07 bay + 67,2(H1-b) C5 oy + O5y8(Uoy-b)
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where 

: 2 
a - -b y [ Ha Maye )] . 122 

Ory +a Ory 

  

An iterative solution of these equations yields the expres- 

Sion for the optimum linear hyperplane: 

y = 1.04% - 1.32. (5.17) 

This is shown plotted in Figure 13 as the "theoretical" 

linear boundary. 

Solution 3: Optimum linear decision function based 

on sampling from the classes, This solution was obtained on 

the IBM 7090 digital computer. The iteration algorithm of 

the previous section was programmed, as well as a "pattern 

source", a random number generator which generated numbers 

according to the particular normal distributions of the 

problem, 

One hundred sample points were taken from each class. 

Various initial boundaries were tried: 

= 1 

2.5 

x - 1 

4,2x - 6.8 cS 
S
M
 O

M 

t
o
d
 

Il 

Each of the final boundaries were slightly different, but 

the important point is that each one categorized the points
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in exactly the same manner, (Thirty-nine points were always 

misclassified.) An example of one of the final boundaries 

is 

y = .816x - 1.11 (5.18) 

which is plotted in Figure 13 as the linear boundary marked 

"experimental". Compare (5.17) to (5.18); the difference 

illustrates the sampling error.



CHAPTER VI 

ELIMINATION OF REDUNDANCIES 

There are at least two possible types of redun- 

danecies which may occur in machines as described so far. 

One of the redundancy types has to do with the receptor, 

and hence may occur in other types of pattern recognition 

machines as well. This is the redundancy of certain measure- 

ments made by the receptor; that is, there is a possibility 

that certain measurements will contain no, or perhaps only 

a little, information concerning the proper categorization 

of the allowable pattern classes. Redundant measurements 

are often eliminated by intuition before the design of the 

receptor, but this intuitive elimination is not always com- 

plete, and sometimes is not even possible. It is an interest- 

ing property of linear decision functions that they can 

help the designer locate redundant measurements. 

The other type of redundancy is contained in the 

linear decision function itself. It is quite possible that 

a particular boundary may be completely unnecessary to the 

segmentation of measurement space, and therefore this boundary 

need not be instrumented in the machine. As an example, 

Figure 14 shows the convex polytopes bounding two classes, i 

and j. Each face of a polytope enclosing, say,class i is a 

section of a hyperplane separating class 1 from one of the 

- 85 -
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other classes, In Figure 14, the boundary Bis is also shown, 

It 1s not a face of either of the polytopes containing 

class i or class j. It adds nothing to the categorization 

(it cannot, by definition of the categorization process, be 

a face of any other polytope), and can therefore be eliminated, 

This chapter will deal with the detection of these 

two types of redundancies, 

6.1 Detection of Redundant Measurements 

The detection of a redundant measurement is a simple 

process. Consider a particular hyperplane given by 

n 

> 4 ta, =O. (6.1) 
i=l 

Each Ass 1<¢i<¢n, is the direction cosine of the hyperplane 

with respect to the 4th coordinate, providing the normalization 

(3.2) holds. If a, is zero, then the hyperplane is parallel 

to the Xy axis. If the measurement represented by xX, were 

not made, then this would correspond to projecting the measure- 

ment space onto the n-dimensional hyperplane defined by the 

remaining n-1 coordinate axes, The projection of each 

point into this new measurement space is in a direction 

parallel to the Xy coordinate axis. If the original hyper- 

plane (6.1) were parallel to this axis (a,=0), then the 

projected n-1-dimensional bounding hyperplane would separate 

the projected measurement space in exactly the same manner
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as in the original n-dimensional measurement space, This 

can also be seen from (6.1)3 if an a, is zero, then the 

measurement X, has no effect on the categorization, and is 

redundant with respect to this hyperplane. If ana, is i 

small, it might then be expected that the measurement will 

have little effect, and might still be deemed redundant. 

These ideas are illustrated graphically in 

Figure 15a, where the closed curves represent the domains 

of class 1 and class j. A bounding hyperplane is shown, in 

which a5 is small with respect to Ay: If Xo were then elimit- 

nated, the new measurement space is as shown in Figure 15b. 

In some cases, a, may have to be recomputed to obtain a 

more accurate categorization in the new space, as shown in 

Figures 15c,d. 

Now if a@ measurement Xy is redundant (according to 

some preset .criterion pertaining to the increase in loss 

when Xy is removed) for all of the constituent hyperplanes - 

comprising a linear decision function, then it 1s reasonable 

to remove that measurement from the receptor. 

These concepts now give the designer some direction 

in looking for redundant measurements. He should consider 

first those measurements for which the maximum absolute value 

of the direction cosine over the set of hyperplanes comprising 

the decision function is smallest. The maximum absolute 

value of the direction cosine associated with a measurement
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may be said to be an indication of the redundancy of that 

measurement. The smaller this value, the more redundant the 

measurement. In particular, if all the direction cosines 

associated with a measurement are zero, then that measurement 

is absolutely redundant and may be removed without affecting 

the performance of the system at all. 

6.2 Detection of Redundant Boundaries 

The true definition of a redundant boundary was 

given in the introcuction to this chapter. It is a boundary 

which is not effective in the segmentation of measurement 

space into the various categories. That is, Bij is redundant 

if it is not a face of at least one of the convex polytopes 

bounding the classes i and j. 

Let us modify this definition slightly. [In 

Figure 16 is shown the range of three pattern classes in 

measurement space (the closed curves). A possible linear 

decision function is also shown. Note that, according to the 

previous definition, Bry is nonredundant. But it intersects 

the polytope containing class i in a region well outside the 

range of the measurements, and therefore adds nothing to the 

practical categorization. If, however, we enclose the set of 

pattern classes with another set of boundaries indicating 

the range of measurements, and consider these auxiliary 

boundaries along with the boundaries comprising the linear 

“This is still perfectly general, since the auxiliary 
boundaries may be at infinity.
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decision function, the boundaries such as Boy will now be 

redundant. For instance, in Figure 16, with the auxiliary 

boundaries ineluded, the polytope enclosing class i is 

indicated by the hatched region. Bey is not a face of this 

polytope (nor of the polytope enclosing class k), and is 

therefore redundant. This sort of redundancy will be called 

geometrical redundancy. Note that the auxiliary boundaries 

are neither tested for redundancy nor built into the machine, 

They are included only as an artifice to make this definition 

more practical, 

Methods will be given here for determining 

geometrical redundancy. However, it will be seen that these 

methods will usually involve a great deal of computation. 

A less accurate, but more practical definition of redundancy 

is therefore also considered. A boundary will be said to be 

redundant ina sample sense if its removal does not affect 

the classification of a set of sample patterns. These sample 

patterns may very well be the ones which were originally 

used to determine the linear decision funetion. 

Clearly, a boundary which is geometrically redundant 

is also redundant in a sample sense. That the converse is 

not true is shown in Figure 17. The boundary By is not 

geometrically redundant (the auxiliary boundaries are assumed 

to contain the two polytopes shown). But its removal will not 

affect the Classification of the sample points shown by the 

crosses and circles. It is therefore redundant in a sample 

sense.
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This example also points up another difference 

between the two definitions. A linear decision function 

which is complete except for the elimination of gecmetrically 

redundant boundaries still obeys the uniqueness property of 

Theorem 3 for all points contained within the auxiliary 

boundaries, However, when a boundary which is redundant in 

a sample sense but which is not geometrically redundant is 

removed, the linear decision function is no longer unique, 

i.e., there will be regions in measurement space which will 

be assigned to more than one class. For instance, in 

Figure 17, points in the area below the dotted extensions 

of the two boundaries will be identified as belonging to 

both classes 1 and j. This will be no problem providing 

that no patterns can ever fall in this area, or that the 

probability of such an occurrence is small and such patterns 

rejected. If the sample size is large, one can be quite 

confident that the probability of such an occurrence (a 

multiple recognition) is small. 

6.2.1 Geometrical Redundancy 

The determination of geometrically redundant 

boundaries is carried out by testing the boundaries one at 

a time. Each such test, as will be seen, requires a good 

deal of computation. The following theorem aids in this 

regard by giving a simple test which will identify some of the 

geometrically nonredundant boundaries by uSing a set of
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correctly categorized samples. (These samples may be taken, 

for instance, from the samples which were used to design 

the linear decision.) These boundaries then need not be 

tested for redundancy. 

Theorem 13: If a sample point, which represents a 

member from pattern class i and which is correctly categorized 

by the linear decision function, is closer to the boundary 

Bis than to any other boundary Buy or to any auxiliary boun- 

dary, then Bi; is geometrically nonredundant. 

Proof: Let Py be the convex polytope in measurement 

Space containing those points identified as class i by the 

linear decision function. Let Py be that polytope contained 

in Py which contains those points which are not only identified 

as class 1, but which are also contained within the auxiliary 

boundaries. (It 1s assumed impossible to obtain a set of 

measurements lying outside of the auxiliary boundaries. ) 

Suppose a sample point p, which represents a member of class i, 

and which lies within the convex polytope P,, is closer to 

By; than to.any other boundary By or to any auxiltary 

boundary. Assume Bij is geometrically redundant; it therefore 

; is not a face of Pye but rather lies outside of P,. Then 

any line segment joining p to By; must pass through one 

face of Pie which is one of the other boundaries Bsy or one 

of the auxiliary boundaries. Therefore p cannot be closer to 

By than to any other boundary Bax or to any auxiliary boundary. 

But this contradicts the original supposition; therefore Bij 

is geometrically nonredundant,
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Boundaries which are not found to be nonredundant 

by the above procedure must now be tested for geometrical 

redundancy. The basic problem may be stated as follows. If 

there are m allowable pattern classes, then each polytope Ps 

containing a pattern class i is defined according to a linear 

decision function by m-l linear inequalities (the bounding 

hyperplanes). If there are in addition b auxiliary boundaries, 
‘ 

then the modified polytope P, 1s defined by (m-1+b) linear 

inequalities. This set may be written 

144% t+... + Ai nk, < A509 

Om-1, 1%) + ae + On-1, n*n < Om-1,0 

(6.2) 
an, 1*1 +... + On, n*n < a 

a 
m-1+b,1*1 Fores + tm-1+b,n*n < Om-1+b,n 

The last b inequalities of (6.2) correspond to the auxiliary 

boundaries. We wish to test a hyperplane represented by one 

of the first m-l inequalities for geometrical redundancy. We 

will say that a boundary By; is geometrically redundant with 

respect to pattern class 1 if it is not a face of the polytope 

P,. If it is geometrically redundant with respect to class i, 

then it must be tested for such redundancy with respect to 

class j. A boundary can only be eliminated if it is redundant 

with respect to both of the classes which it separates.
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Following are two methods for testing for geomet- 

rical redundancy with respect to one pattern class. 

Method 1: Boundary Inversion. 

We assume first that the set of inequalities (6.2), 

defining class 1, has a solution (otherwise no patterns would 

ever be categorized into class 1). Note that if a particular 

hyperplane is geometrically redundant with respect to class i, 

then reversing its sense (reversing its inequality sign 

in (6.2)) will cause the set (6.2) to have no solution. If 

the hyperplane is not geometrically redundant with respect 

to class 1, then the set (6.2) will still have a solution 

when the inequality sign corresponding to that hyperplane 

is reversed. This is illustrated in Figure 18. The arrows 

indicate the half space for each hyperplane which satisfies 

the inequality; the cross-hatching indicates the solution 

Space, if any. There is a problem if a redundant hyperplane 

happens to pass through a vertex or a higher order edge of 

Pas we assume the likelihood of this to be very small. 

Consequently, in order to determine the redundancy 

of a hyperplane with respect toa class, one need only to 

reverse its sense in (6.2) and see whether the resulting 

set of linear inequalities has a solution. Methods of 

finding a2 solution to a set of linear inequalities, if 

one exists, or of indicating that a solution does not exist 

have been developed in the field of linear programming [22] 

* 

Suggested by F. W. Sinden.
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and are applicable here. Relaxation methods [1,37] for 

solving a set of linear inequalities should be avoided, 

since they break down if a solution does not exist. 

Method 2: Boundary Projection 

For discussional purposes, denote the boundary to 

be tested as Bus 1 <¢k < m-1, where the first m-l boundaries 

are the ones associated with the linear decision function. 

If one considers the intersection of all the other (m+b-2) 

boundaries with B. as a new set of (m+b-2) linear inequalities 

in an (n-1-dimensional space (the surface defined by B.)s 

then if B,. is geometrically nonredundant with respect to 

class i, this new set of linear inequalities will have a 

solution. In fact, the solution space is just that portion 

' 
4° 

in Figure 19, where the solution space for the linear 

of Be which is a face of the polytope P This is illustrated 

decision function is illustrated by the cross-hatched area, 

The solution space on the boundary being tested is denoted 

by a heavy line, whereas the rest of that boundary is drawn 

dashed, 

Mathematically, this can be accomplished by 

eliminating the inequality corresponding to B, from (6.2) by 

eliminating one of the variables Ky 1<i<n, which has a 

nonzero coefficient in that inequality. This gives an 

augmented set of (m+b-2) linear inequalities in (n-1) 

dimensions which may then be tested for the existence of a 

Solution as in Method 1. This will be a little simpler than
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in Method 1 since the number of boundaries and the dimen- 

Sionality are each reduced by one. 

Geometrically, the above mathematical procedure 

corresponds to projecting the intersections of the (m+b-2) 

hyperplanes with the hyperplane B. onto a hyperplane which 

1s perpendicular to the eliminated coordinate axis, X4- 

The nondestruction of the solution space by this second 

projection is guaranteed by the fact that the coefficient 

of Xs in the linear inequality representing B is nonzero, 

This leads one to another simple test for geomet- 

rical nonredundancy. 

Theorem 14: Consider the hyperplanes (including 

the auxiliary boundaries) bounding a particular pattern 

class i. If one of these hyperplanes, say B,, has a nonzero 

coefficient assoclated with a particular coordinate, and all 

the other hyperplanes have zero coefficients associated 

with that coordinate, then B. is geometrically nonredundant 

with respect to pattern class i. 

Proof: Let the coordinate in question be Ky 

Eliminate B, from (6,2) by eliminating Xs The new set is 

then exactly like the original set (6.2), except that B, 

has been removed. This is due to the zero coefficients of 

Xs contained in all hyperplanes but B Since (6.2) had a kK" 

solution space, then removing By. can only enlarge that solution 

space, Therefore BL is geometrically nonredundant with 

respect to class i.
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6.2.2 Redundancy in a Sample Sense 

Recall that a boundary is redundant in a sample 

sense if its removal does not incorrectly classify any member 

of a set of sample points, each of which was originally 

classified correctly. Unfortunately, each boundary cannot 

be tested separately as in the determination of geometric 

redundancy. Figure 20 illustrates this problem. Five 

pattern classes are shown, along with the ten boundaries 

comprising the complete linear decision function. The regions 

which are associated with each of the pattern classes by the 

linear decision function are shown bounded by heavy lines. 

It is clear from Figure 20 that boundaries Bis and Buys are 

geometrically redundant, 

So far as redundancy in a sample sense is concerned, 

note that if only Bis were to be removed, there would be no 

change in the classification of any possible sample point 

which was correctly recognized with B included. Likewise, 
15 

if only Bio were to be removed, there would be no change in 

classification of any such point (even though B 1s geomet- 
le 

rically nonredundant). Therefore either Bio or By, may be 

redundant in a sample sense. But if both Bio and Bis were 

to be removed, then there would be points in the regions 

associated with classes 2 and 5 which would be also classified 

as class 1; that is, there would be multiple recognition 

errors. This illustrates that redundancy in a sample sense
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cannot be determined one hyperplane at a time, and further- 

more that such an elimination is not unique, as in geomet - 

rical redundancy. 

An iterative algorithm will be described which has 

been found to be useful in determining a set of boundaries 

redundant in a sample sense. First, let us make some 

definitions. 

Def. 1: If the single removal of a boundary from 

a complete linear decision function causes confusion between 

some of the samples, it is said to be an unconditionally 

significant boundary. 

Def. 2: If the single removal of a boundary from 

a complete linear decision function causes no confusion 
. 

between the samples, then it is said to be a conditionally 

redundant boundary. 

Def. 3: If B,; is the only boundary of class i and 

class j which is conditionally redundant, then it is an 

unconditionally redundant boundary of the first kind. 

Def. 4: If Bis is a conditionally redundant 

boundary, and if, after the removal of all conditionally 

redundant boundaries and unconditionally redundant boundaries 

of the first kind from the complete linear decision function, 

samples from classes 1 and j are not confused, then B 14 is 

Said to be an unconditionally redundant boundary of the 

second kind.



105 

The algorithm is as follows 

Step 1: Remove each boundary one at a time from. 

the complete linear decision function and determine whether 

it is unconditionally significant or conditionally redundant. 

If it 1s unconditionally significant, it need never be 

tested again, for it must remain in the linear decision 

function. If a boundary is an unconditionally redundant 

boundary of the first kind, it also need never be tested 

again, since it can be eliminated permanently. That is, if 

Bi; is the only conditionally redundant boundary associated 

with either class 1 or j, then it is the only boundary of 

either class 1 or j about which there might be a cuestion 

of elimination. Since eliminating Bi; causes no confusion 

between classes 1 and j, and since the removal of other 

conditionally redundant boundaries cannot affect either 

class i or Jj, then Bay can be eliminated safely. 

Step 2: Remove all conditionally redundant 

boundaries and unconditionally redundant boundaries of the 

first kind, and thus determine which are unconditionally 

redundant boundaries of the second kind. These need never 

be tested again since they can also be permanently removed, 

Step 3: Reinsert the boundaries which are still con- 

ditionally redundant into the linear decision function and 

repeat step one with only these conditionally redundant bound- 

aries and the unconditionally significant boundaries.
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Step 4: Repeat steps two and three until a steady- 

state has been reached, i.e., the looping of this cycle does 

not change the number of conditionally redundant boundaries. 

Step 5: After the above iteration conver~es, one 

will usually be left with only a few, if any, conditionally 

redundant boundaries. This remaining set will have the 

property that any one of the conditionally redundant bound- 

aries may be removed without confusing any sample points, but, 

if all the conditionally redundant boundaries are removed, 

then there will be confusion, Clearly, then, at least one 

of these could be eliminated; perhaps more than one could 

be eliminated. If the number of conditionally redundant 

boundaries is small, the maximum number that might be 

eliminated may be determined by trial and error. Alternatively, 

certain symmetries might be noted in these boundaries which 

will allow an intelligent choice of those boundaries which 

can finally be eiiminated. Since this problem will arise 

fairly infrequently, and since the number of various symmetries 

is large, suffice it to say that such symmetries exist and 

can be effectively utilized. Their further discussion hardly 

seemsS warranted here. 

This algorithm will allow the designer to determine 

those boundaries which are redundant in a sample sense. Usually, 

the computational effort involved is significantly less than 

that required in the determination of geometrical redundancies, 

although the methods and results are not nearly so clear cut.



CHAPTER VII 

REJECTION CRITERIA 

Rejection regions which are inherent to linear 

decision functions have already been discussed. In addition, 

it is desirable to be able to introduce additional rejection 

regions which will prevent recognition of patterns whose 

classification is doubtful. Regardiess of the sort of 

rejection criterion used, it should be compatible with the 

economy of implementation of linear decision functions; other- 

wise its inclusion would hardly seem worthwhile. 

Consequently we will describe, in rather general 

terms, various "linear" rejection criteria, and then discuss 

one of these in more detail. Throughout this discussion, it 

will be assumed that the regions of doubtful recognition are 

near the boundaries themselves. This seems intuitively 

reasonable, and a use of the Central Limit Theorem later in 

the chapter will give one even more confidence in this 

assumption. 

7.1 Linear Rejection Criteria 

There are several ways in which one might interject 

a rejection criterion into a linear decision function. Per- 

haps the most general sort of linear rejection criteria, 

within the framework presented so far, would be to attempt 

to find two hyperplanes separating each pair of classes. 

- 107 -
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These hyperplanes would in general not be parallel. The 

regions to either side of the two hyperplanes taken together 

would be the regions for the two classes; the region between 

the two hyperplanes would be a rejection region. The problem 

would then be to determine these two hyperplanes simultaneously 

so that they are optimum in some sense - for instance, to 

meet a certain error rate with the minimum possible rejection 

rate, or perhaps to minimize the expected loss when rejection 

criteria are included. 

A somewhat less general rejection criterion would 

be to constrain these two hyperplanes so that they are parallel 

to each other, The direction and separation of the hyper- 

planes would then be chosen in some optimum manner, 

An even more restrictive case will be considered 

here. We will concern ourselves with rejection criteria 

which consist of two planes per pair of pattern classes, 

each parallel to and on opposite sides of the optimum linear 

boundary as determined by the methods of the previous chapters. 

The problem then reduces to simply finding the optimum 

separation between each optimum boundary and its corresponding 

rejection boundary on either side of it. We will continue to 

define optimum as meaning minimum expected loss under the 

constraints. 

7.2 Optimization of a Type of Linear Rejection Criterion 

Figure 21 lllustrates the sort of rejection cirterion 

to be discussed. The dashed lines indicate the optimum linear
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decision function separating three classes when rejection 

criteria are not considered. The dotted region corresponds 

to the rejection inherent in a linear decision function. 

The actual regions corresponding to those points which are 

classified with a certain pattern class are shown cross- 

hatched; the regions in the neighborhood of each of the 

optimum boundaries are the rejection regions to be considered. 

It might first be pointed out that the implementa- 

tion of this rejection criterion is very simple. The device 

which decides whether the distance of a point from a plane 

is positive or negative (see Figure 3) will simply have a 

positive and negative threshold built into it corresponding 

to the distances of the two rejection hyperplanes from the 

optimum hyperplane. If the distance of a point is between 

these two thresholds, then some sort of rejection signal is 

delivered to the logical circuitry combining the hyperplane 

outputs. 

When considering one optimum boundary at a time, 

the problem of the placement of the rejection hyperplanes 

can be conveniently reduced exactly to a one-dimensional 

problem. The one dimension is the distance from the optimum 

hyperplane. In Figure 22 1s shown a plot of the density of 

distances from the hyperplane Bi; of members from classes 1 

and j. Denote such a density function for class i by nN, (s). 

If nN, (s) and n,(s) are known, then the results of Chapter II,
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and in particular the decision function (2.3), may be used 

to determine the optimum position of the two rejection 

hyperplanes with respect to the optimum hyperplane. 

If the sample size is large, nN, (s) may be estimated 

graphically. However, the following argument gives a very 

powerful alternative for approximating nN, (s). Recall that 

the distance of a point m from a hyperplane is given by 

n 

S = > aym, + aos 

i=1 

where m, is the oh coordinate of the point, and the a, are 
1 

the normalized coefficients of the hyperplane. But m, is a 
i 

random variable, and hence, if n is large, s is a weighted 

Sum of a large number of random variables. If the dependencies 

between the random variables are weak, one may then reasonably 

expect from the Central Limit Theorem [19] that the distribu- 

tion of s is approximated by a normal distribution. Of 

course, if the measurements m, are independent and normally 

distributed, then the normality of s follows immediately for 

any n, 

Consequently, n, (s) is, to a good approximation 

in many cases, a normal density function. Its mean and 

variance can be easily estimated from the samples which 

were used to design the linear decision function.
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The optimum decision function (2.3) can now be 

solved for this case. Let the two classes be i and Jd3 C15 

is the cost of misrecognizing a member of class i as class J3 

Cio is the cost of rejecting a member of class i; c = O03 
ii 

Os is the apriori probability of occurrence of class i. 

From (2.3) we write 

Zs = (¢ 54-¢ 5,)0,7,(s) - Cy 4, 1, (s) 3 

zy = (cy 5-4, )@, TN, (s) - © 59%5,715(8) 

Class i is chosen if as < 2, and Zs < 0. Class j is chosen 

if a, < Ze and 4. < 0. The point is rejected if Z, > O and 
i 

4; > 0. Denote by L the likelihood ratio 

Clearly we would expect the optimum boundary (without rejec- 

tion) to occur at Z, = Z4> or the point in Figure 22 for which 

  

Whether or not the estimated optimum linear boundary actually 

falls near this position is a function of the sampling error 

and the degree of approximation of the normality assumption. 

Tne rejection region on either side of the optimum 

hyperplane is given by the condition that 2 and Zs be 

positive. This yields the region
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c c 

oe << He, (7.2) “1 57°40 S10 

which is illustrated in Figure 22. The distance of the two 

rejection hyperplanes from the optimum hyperplane is determined 

by the equality signs of (7.1). 

If one is interested in minimizing the error rate 

for a given rejection rate, then he has only to set Chy = C54 = C, 

and Cay = C46 = Co< ec. Letting 

k=l -1, 
e 

oO 

then the rejection region is that region for which 

g<u<k, (7.2) R
i
e
 

where the value of k will set the rejection rate. (Note that 

ife < 2c,, k ¢ 1, and there will be no rejection.) 

Assuming that the distances of the sample points 

representing classes i and j from the hyperplane Bi; are 

normally distributed with means Ls and Ms < La» and standard 

    

  

deviations Oy and o> then 

wb. oO 8-L e S-u e 
in L = In —* J + s ( 1 - + 

3 Oo; . OF 

The two rejection hyperplanes are determined by the equality 

Signs of (7.2) (or (7.1)); hence the separation
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between the optimum hyperplane and the rejection hyperplanes 

are those values of s satisfying the following equations: 

as* + 2bs +c = Bas m=4,4 (7.3) 

where 

2 
Ms, - LO be ed et 

0,05 

ee 22 
HO, - Wed 

eo = tid , 

0,0 
J 

2 inf Joh k 
i O10, ? 

Oy 
By = 2 nla) 

inj 

mn
 

il 

The solution of (7.3) for m =i corresponds to the rejection 

hyperplane on the negative side of the optimum boundary; for 

m= j, the positive side (since Ms < U,). Note, however, 

that if the variances are different (as is usually the case), 

there are two values of s satisfying the quadratic of (7.3). 

This is illustrated in Figure 22 (the superfluous boundaries) 

and arises because there are two boundaries satisfying 

L = C54 Cys: Since the optimum boundary used herein is that
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* 

one lying between the means Ls and Mss the rejection hyper- 

planes which are chosen are those associated with this bound- 

ary, and not with the boundary which is on the far side of 

the class with the smaller variance. 

In summary, then, a rejection region parallel to 

the hyperplanes comprising a linear decision funétion can be 

easily incorporated. The hyperplanes are considered 

independently, and the distribution of distances of members 

of a pattern class to the hyperplane is approximately normal 

in many practical cases. The results of decision theory 

can then be applied directly to determine the rejection 

region on either side of the hyperplane, resulting in the 

conditions (7.1) or (7.2). This sort of rejection region 

is easily implemented in the equipment synthesizing a linear 

decision function. 

This 1s not quite an accurate statement. If the means are 
close enough together, neither optimum boundary may lie 
between them. However, a sketch of the distributions will 
make the choices clear,



CHAPTER VIII 

THE DESIGN AND ANALYSIS OF PATTERN 

RECOGNITION EXPERIMENTS 

There are two distinct and consecutive processes 

usually involved in the feasibility study of a pattern 

recognition method or machine. The first process is the 

actual design of the machine. This might be based upon a 

set of sample patterns which the experimenter has gathered, 

from which he estimates the parameters of the machine [4,13, 

31,32]. Alternatively, the experimenter may base his design 

on some a4 priori knowledge concerning the pertinent charac- 

teristics of the pattern classes under study [5,21]. The 

second process is then the testing of this machine in either 

its hardware form or by its simulation on a general purpose 

computer. A different set of sample patterns from that used 

in the design are usually used for this test, 

These two processes will be discussed in this 

chapter. All but the second section are generally applicable 

to pattern recognition studies; Section 8.2 applies only to 

linear decision functions. The general loss formulation will 

now be dropped for the rest of this paper in favor of 

considering error rates and rejection rates. Although this 

is not as general as considering the loss, it complies more 

closely with popular practices. 
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The first section will deal with the interpretation 

of test results when a pattern recognition machine is tested 

with samples which were not used t6 design the machine. The 

second section deals with a method of testing a linear 

decision function which gives an estimate of an upper bound 

on the error-plus-natural-rejection rate. Although this 

estimate is not as desirable as those discussed in the first 

section, it is applicable to the same Sample set which was 

used to design the linear decision function. 

The third section deals with the following problem. 

An experimenter finds that his sample size from the real world 

of patterns is fixed (for instance, due to economy reasons). 

He wants to use some of these patterns to design a categorizer, 

and the rest to test 1t. His machine will more closely 

approximate the optimum machine if he uses a larger sample 

Size in the design stage. Likewise, the estimate of the 

machine's performance will become better as the test sample 

Size increases. Consequently the experimenter is faced with 

the problem of deciding how to split his fixed sample set 

between a design sample set and a test Sample set. This 

problem is not completely solved, but an approach to it is 

discussed, and some results are given. 

8.1 Performance Estimation for Pattern Recognition Machines 

Usually, a pattern recognition machine should be 

tested with a set of samples not used in its design. The 

popular procedure for interpreting these test results is to
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take the proportion of patterns in the test data which have 

been misrecognized or rejected by the machine as the estimates 

of the error probability and rejection probability, respectively, 

for the machine. There are several questions which might be 

raised concerning this testing procedure, such as; 

1. Are these estimates the best estimates? 

2. If so, how good are these estimates? 

3. How does the estimate improve as the sample size 

is increased? 

Questions such as these are discussed in this sec- 

tion. Two cases are considered; one is the case in which 

the apriori probabilities of class occurrence are unknown, 

and the other case assumes full knowledge of the a priori 

probabilities. 

8.1.1 Unknown a priori Probabilities - Random Sampling 

Let the number of allowable pattern classes be p. 

It will be assumed that, for each allowable class i, there 

exists an a priori probability of occurrence w a probability 
4? 

of error Cys and @ probability of rejection r The term 4° 

"error" will refer to an undetected error; all detected errors 

will be assumed to be rejected. These probabilities are 

unknown to the experimenter, who is interested in estimating 

the over-all probability of error for the machine,



120 

and the over-all probability of rejection, 

Pp 

r= YP) . 

i=1 

Let him perform the following experiment, which will be 

called random sampling. Consider the patterns to be randomly 

generated by a "pattern source" according to the a priori 

probabilities of occurrence. He takes a pattern from the 

Source, identifies it, and then lets his pattern recognition 

machine attempt identification. He notes which of the three 

possible outcomes occur: correct recagnition, misrecognition, 

or rejection. This experiment is repeated n times, resulting 

in Me Samples which have been misrecognized and my, samples 

which have been rejected. 

Since each of these outcomes are mutually exclusive, 

and each experiment independent, then the resulting random 

variables, Me and m9 clearly are distributed according to 

the multinomial probability distribution. That is, the joint 

probability distribution of m, and m,,, P(m,sm,,), is given by 

n mm n-m,-m _ er er P(m,,m,,) = (m, tty r ~(l-e-r) 

The maximum likelihood estimates for e and r, denoted by @ 

and Tr, are then [20]
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~ me 
e=>— 

n ’? 

m 
Ps 

n ? 

which are the estimates in common use. Further, each of 

these estimates is proportional to a single random variable 

having a binomial distribution; therefore, né and nr are 

themselves binomially distributed. The mean value of each 

estimate is the parameter for which it is an estimate; the 

variance of each is [20] 

ec 12 e _ eli-e) 
73 Oo Hn (8.2) n e 

2 _r(i-r 
on * n 

Because it is known that né and nr are binomially 

distributed, confidence intervals can be applied to these 

estimates. These confidence intervals require rather involved 

computations, but fortunately have been plotted for several 

values of n by various people.[8,12,39] In Figure 23 is shown 

such a plot of intervals for a 95% confidence level computed 

by C. S. Clopper and E. S. Pearson. The use of this graph is 

fairly simple. A vertical line extended upward from the 

observed value of the estimate given on the abscissa will 

intersect the pair of curves pertaining to the particular 

“Mattson [33] has used a simtlar argument for determining con- 
vergence of an adaptive system. However, he used Tehebycheff's 
inequality to obtain confidence intervals which are necessar- 
ily larger than if he had used such intervals pertaining to 
the binomial distribution.
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sample size used. Projecting these two intersections 

horizontally onto the ordinate axis gives an interval for 

the parameter being estimated, The probability is .95 that 

the actual value of the parameter lies within this interval, 

For instance, if a sample size of n = 250 yielded 50 errors, 

then the estimate of the probability of error is .20. Using 

Figure 23, it can be stated that, with probability .95, the 

interval from .15 to .26 contains the true probability of 

error, 

8.1.2 Known a priori Probabilities - Selective Sampling 

It 1s now assumed that the a priori probability 

of occurrence for each class, WD, s is known. To take advantage 

of this knowledge, the experimenter takes ny samples from 

each class i such that 

tw, , (8.3) 
where n is the total number of samples. This process will 

be referred to as selective sampling. (It will be assumed 

that the w, are such that equation (8.3) can be fulfilled 

with the desired sample size, n.) 

The machine is again allowed to attempt recognition 

of these patterns, resulting in m, samples from class i 

being misrecognized, and m,, Samples from class 1 being 
i 

rejected, 

mm TT meee ii es as aie le 

* 

This sort of sampling dichotomy has been noted by others. 
For instance, Bowley [6] and Neyman [38] have referred to 
these two methods as "unrestricted" and "stratified" sampling.
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For any class 1, the joint probability distribution 

for m and m again is multinomial: 
Sy Ta 

n 
1 r e r 

1 1 1 Pm sm ) = (m m e r (l-e,-r, ) O° Ty ey ry/i i ii 

(8.4) 

Since each of these distributions is independent of the others 

in this experiment, then the joint probability of the out- 

come for all p classes is the product of the individual 

‘probabilities (8.4); 

(nm, geeesM, 9M yee ym ) 
1 Bp 1 Pp 

This is no longer a multinomial probability distribution, 

i (l-e,-r, a 

1 b
 s
o
o
™
N
 

5 
m 

v 

ph:
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wn
 

N
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ty 

However, since the maximum likelihood estimate of a sum of 

independent variables is the sum of the maximum likelihood 

estimates, then these estimates for e and r are 

m 

a 1=1 “4 
e= = (8.5) 

Pp 
0 

¢.islt a (8,6) - = ; . 

which again agree with the popular practice of using the 

proportions as estimates. The random variables of which 

né and nf are values are not now binomially distributed, 

Since a sum of binomlally distributed variables is not itself 

a binomial distribution in general,
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The mean of each estimate is again the particular 

parameter being estimated. The variance of each of these 

estimates can be computed: 

’2 

(8.7) 

in which use of equation (8.3) is made, and the prime dis- 

tinguishes this variance from that for random sampling. 

Similarly, 

1 
om = S y ayn (try) . 

i1=1 

It is of interest to compare these variances for 

selective sampling with those obtained for the case of 

random sampling. Since the variance for f has the same 

form as € in both cases, it is necessary to consider only 

one of them, say @. First note that of can be written, 

using (8.1) and (8.2), as 

P 
21 

=a deo - ya,5,) 
i= K=1
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From (8.7) 

1=1 1=1 

1X 1 2 
~In er ~ FH Ores 

i=1 4=1 

2 1 2 1 == y oe! -2(¥ oe.) . (8.8) 

t=] i=]
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Hence, the variance in the case of random sampling 

is greater than the variance in the case of selective sampling, 

the difference being what might be interpreted as the variance 

of the class errors. That is, if ey is treated as a random 

variable with probability distribution w,, then of is the 

variance of ey (A similar derivation holds for the variance 

of the rejection probability estimates.) That the selective 

sampling variance should be smaller than the random sampling 

varlance might be expected, since in selective sampling more 

information is used, namely the a priori probabilities. 

Although statements have been made concerning the 

mean and variance of the estimates in the selective sampling 

case, nothing has been said yet concerning confidence intervals. 

This is a much more complicated problem than in the case of 

random sampling, since the estimates do not have a Simple 

distribution function. In fact, the confidence intervals will 

in general depend on the particular set of e,'s (or r,'s) 
i 

pertaining to the machine, and not simply one (or r), 

However, for small probabilities, the binomial 

distribution is quite closely approximated by the Poisson 

distribution, the fit becoming perfect as the probability 

approaches zero.[20] For any reasonable recognition machine, 

one would expect the probabilities of error and rejection to 

be small; consequently, the marginal form of (8.4) for Me, or 

mr, may be approximated by a Poisson distribution. The esti- 

mates given by (8.5) and (8.6) are now sums of random vartables
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with Poisson distributions (approximately) which are then 

themselves Poisson distributed. If the over-all error is 

also small, as is usually the case, the binomial-Poisson 

approximation can now be used in reverse, and one may state 

that, for small error rates, the error and rejection estimates 

(8.5) and (8.6) are approximately binomially distributed. 

Consequently, one can use Figure 23 to obtain 95% confidence 

intervals for the error and rejection probabilities. Further, 

from (8.9), we would expect this confidence interval to be on 

the safe side, that is, the actual 95% confidence interval 

Should be slightly smaller than this. 

8.1.3 Application to Published Results 

To illustrate the ease of determining these con- 

fidence intervals, some published results in pattern recognition 

are listed in Table 1 along with the 95% confidence intervals 

as determined from Figure 23. Three points of caution should 

be noted concerning the validity of the confidence intervals 

in this table. First, the author is not positive that the 

test data is different from the design data in every case. 

Second, to the best of the author's knowledge, in every case 

the number of samples taken from each allowable pattern class 

was predetermined. This is selective sampling; therefore, 

it is assumed that the proportion of samples taken from each 

class represents its a priori probability of occurrence. The 

third assumption is that the patterns used to test the machine
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are a reasonable sampling from the real-life world of 

patterns, and are not biased toward either well-formed or 

poorly-formed (noisy) patterns. 

8.1.4 Summary 

Two important cases concerntng the testing of 

pattern recognition methods or machines have been considered: 

random sampling for the case of unknown a priori probabil- 

ities of class occurrence, and selective sampling for the 

ease of known a4 priori probabilities. The most predominant 

form of testing in the present day art is to assume that the 

pattern classes have equal a priori probabilities of occur- 

rence, and consequently to use equal sample sizes for each 

class; this is a special case of selective sampling. 

It has been shown that, for both cases, the maximum 

likellhood estimate for the error probability or rejection 

probability 1s simply the proportion of Samples misrecognized 

or rejected. In the case of random sampling, the estimates 

are binomially distributed, and accurate confidence intervals 

can be obtained. In the case of selective sampling, tighter 

estimates are obtained which are approximately binomially 

distributed for small error rates. Conservative confidence 

limits may then be obtained for these estimates. 

Using these notions, the experimenter can determine 

the sample size required to obtain results which he deems 

Slgnificant. Alternatively, if he has a limited sample 

“A more general form of sampling is discussed in Appendix II.
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size, he can determine the Significance of his results. Note 

that in both cases considered, the variance is inversely 

proportional to the sample size. This does not mean that 

the confidence interval is inversely proportional to the 

Square root of the sample size, however, since a binomial 

rather than a normal distribution pertains. However, perusal 

of Figure 23 seems to indicate that this is a good rule of 

thumb, Note also that the total number of Samples required 

to obtain a certain confidence in the results seems to be 

independent of the number of allowable pattern classes, 

This is an interesting philosophical point to ponder. 

8.2 Performance Estimation for a Linear Decision Function 

It has been previously stated that the sample set 

used to test a pattern recognition machine should not include 

Samples which were used in the design of that machine. [In 

the case of linear decision functions, the reason for this is 

demonstrated by Theorem 10 and its corollaries, As was proved 

there, if the number of points used in designing a linear 

decision function is less than a certain threshold value, 

assuming no degeneracies among the sample points, then the 

optimum linear decision function would be expected to separate 

these points perfectly. However, the actual error and 

rejection rates may very well be quite large; thus it clearly 

is not valid to claim that the estimate of the error rate, 

for instance, is 0% based on this test in this case,
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However, it is possible to estimate an upper bound 

on the total error-plus-natural-rejection rate, (i.e., a lower 

bound on the recognition rate) for a linear decision function 

when rejection criteria such as discussed in Chapter VII are 

not incorporated. This procedure is based on Theorem 6 and 

the normality argument of Section 7.2. By this argument, 

under certain conditions, the distances of a set of sample 

points from a hyperplane are approximately normally distributed. 

This is true regardless of the hyperplane, and will hold for 

any set of samples, including those used to design the linear 

decision function. The parameters of this normal distribu- 

tion can be estimated by computing the sample mean S and the 

sample variance v of the set of n points in question: 

n 

), Py? 
j= 

a
 i 

S
i
h
 

n 

veo \ (s,-8)° (8.10) 
j=l 

Let these points represent the samples from a 

particular pattern class i, and let the hyperplane be one 

which separates this pattern class from some other pattern 

class j. Then the probability of misrecognizing a member 

of class i as belonging to class j can be estimated by 

determining the area under that part of the normal curve with
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parameters (8,10) which falls on the j side of B Likewise, ij’ 
the probability of misrecognizing a member of class j as 

belonging to class 1 can be estimated, The sum of these 

two probabilities, after weighting them according to the 

a priori probabilities of occurrence of the respective 

pattern classes, is an estimate of the probability of error 

for the hyperplane Biy: 

The probability of error for each of the hyperplanes 

in the linear decision function can be estimated in this 

manner. Then Theorem 6 can be interpreted as stating that 

the probability of error plus the probability of (natural) 

rejection for the linear decision function is equal to or 

less than the sum of the probabilities of error for the 

constituent hyperplanes. Hence, an upper bound on the total 

error-plus-natural-rejection rate can be determined. This 

estimate 1s valid even for the sample set used to design the 

linear decision function. 

It is possible to obtain a confidence interval for 

this estimate of the probability that one class will be mis- 

recognized as another (i,e., a confidence interval for the 

estimate of the area on the wrong side of the hyperplane). 

Consider a normal distribution with positive mean LL 

variance go, and variate s. The area under this curve for 

8 < 0 (which corresponds to the above probability of error) 

is
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Vere J _., Jer 

where x = => - Consequently, this area depends only upon 

the ratio w/o, which is estimated by the ratio 3/v. But the 

random variable 

<l
a]
 

t =i 

is distributed according to the noncentral t distribution 

with noncentrality parameter ./n u/o.[48] The parameters of 

this distribution are only the noncentrality parameter (a 

function of n and u/a)s and the number of degrees of freedom, 

n=-1 (a funetion of n). Consequently, confidence intervals 

for w/o, and hence, the area of interest, can be computed 

using this distribution, and will be a function of the sample 

size n and the estimate s/v. 

This distribution has been tabulated.[27,40] The 

curves in Figure 24 for sample sizes up to and including 50 

have been plotted from tables given in reference [40]. The 

curves for larger sample sizes were computed from the normal 

approximation to the noncentral t distribution [27] (s/v, 

for large sample sizes, is approximately normally distributed 

with mean w/o and variance [1 + 3(u/o)°]/n). The use of 

Figure 24 1s similar to the use of the graph in Figure 23,
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except that only the upper bound has been plotted. The 

reason for this is that we are estimating an upper bound of 

a quantity, and a lower bound on this estimate is not very 

useful. To use Figure 24, compute the quantity 8/v, and 

extend a vertical line upward from this value on the abscissa 

axis. Determine the projection onto the ordinate axis of 

the intersection of this vertical line with the curve corre- 

sponding to the sample size. It can then be stated that 

this value is greater than the true value of the area with 

probability .95. 

Using the estimated normal distribution, one may 

also compute similar estimates for the probability of rejec- 

tion for each hyperplane if the rejection criterion of 

Chapter VII is used. Consequently one may obtain an estimate 

of the upper bound for the rejection probability for the 

linear decision function. However, the computation of 

confidence intervals as described here will not apply. 

8.3 Partitioning a Sample for Design and Test Purposes 

Section 8.1 was concerned with the estimation of 

the performance of a given pattern recognition machine. 

There it was shown how confidence intervals could be found 

for these estimates. Two types of sampling from the real 

world of patterns were discussed: A procedure called random 

sampling was used when the a priori probabilities of pattern 

class occurrence were unknown, and a somewhat different pro- 

cedure called selective sampling was used when thea priori 

ay
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probabilities were known. It was shown for both cases that 

the maximum likelihood estimate of the error rate (or rejec- 

tion rate) is simply the proportion of samples misrecognized 

(or rejected), in agreement with popular practice, It was 

further shown that the estimates in the case of random 

sampling obey a binomial distribution, and that the estimates 

in the case of selective sampling are approximately binomially 

distributed with a somewhat smaller variance than in the 

random sampling case. Consequently, confidence intervals 

may be applied to the estimates. These results are non- 

parametric in that they hold for any categorization machine 

(or procedure), regardless of its structure. 

We now consider the following problem. An experi- 

menter desires to solve a particular pattern recognition 

problem. He has at his disposal a set of different methods 

for solving this problem, but it is not clear to him which 

is the best to use. Consequently he desires to estimate the 

performance of each method when applied to his problem, 

and choose the best. Let us assume that each method is 

characterized by certain key parameters which, when known, 

completely determine the recognition machine. To evaluate 

any particular recognition method, the experimenter plans 

to estimate its parameters on the basis of one sampling 

from the real world of patterns, and then to test this 

machine based on another sampling.
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However, in many practical applications, the total 

Sample size available to the experimenter for design and 

test purposes is limited. For instance, he may be interested 

in building a machine to read hand-printed numbers, but he 

may not have an automatic scanner avatlable to him. Since 

Simulating a scanner by hand is very tedious, he may not 

be willing to scan more than a certain number of Samples. 

Or he may be interested in distinguishing between. 

radar returns caused by missiles and those caused by decoys. 

Since it is expensive to actually run the sort of experiment 

required to gather data for this problem, budget limitations 

will certainly place a limit on the number of available 

Samples, 

Another example is in the field of automatic 

diagnosis of diseases. The experimenter may, for instance, 

be interested in building a machine which would determine the 

presence of cancer based on a list of symptoms. However, 

records have been maintained for only a certain number of 

people who have contracted this disease, and the sample 

size is thus definitely limited. 

The following problem then arises. If the total 

Sample size is fixed, what is the optimum partitioning of 

this sample between the design and test phases? This is 

a rather loose, but concise, statement of the problem. A 

more accurate one follows,
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Assume that the experimenter is concerned with the 

Study of a particular pattern recognition method as applied 

to some particular problem. The optimum pattern recognition 

machine based upon this method would have an error probabil- 

ity Go The experimenter is interested in estimating e, 80 

that he can decide whether the particular method under study 

is adequate for the solution of his problem, or alternately 

whether it is better than another method. To do this, he 

takes a sample of a certain size t from the real-life 

world of patterns. He desires to use part of this sample to 

design a machine according to the particular method under | 

study. The machine which he thus designs will have an 

actual error probability e > ey (both quantities are unknown 

to the experimenter). He then uses the remaining part of his 

original sample to test the machine (according to the pro- 

cedures of section 8.1). He thus obtains an estimate of e, 

which will be denoted by 6. It will be shown that @ is a 

biased estimate of ey» and that the bias can be computed. 

Consequently € can be adjusted so that it gives an unbiased 

estimate, é€ of eo The optimum partitioning of the total 0? 

Sample will be defined as that partitioning which minimizes 

the variance of eo: Thus, if the experimenter follows this 

procedure, he will obtain an unbiased minimum variance estimate 

of eu» the optimum error probability. Of course, if he decides 

that a particular method is applicable, he can then redesign 

the corresponding machine with the entire sample size.
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We are interested, then, in minimizing the quantity 

8. = E [@,-¢,)7| =£ [ @ | -e, (8.11) 

where E[x] and on denotes the expected value and variance 

of x, respectively. 

Let us first digress and consider the biased 

estimate €, Since @ is discrete (it is the proportion of 

test samples misrecognized), its expected value can be written 

B(é] = ) &p(8) , 

where the summation is over all values of é, and p(x) denotes 

the probability of x. But 

p(é) = (ee [e)p(e)de , 

where p(e |e) is the probability of € given e and the integral 

is over all (continuous) values of e (by definition e,< es). 

Hence 

E[é] Ii »é fore | e)p(e)de 

F] Yee 10) | pteyee 

Let us hence forth consider only the case of random sampling. 

I 

Then € is binomially distributed with parameter e. Therefore
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the term in brackets, which is the expected value of é given 

the parameter e, is just e. Then 

E[é] = [ep(e)ae = Efe] . (8,12) 

Ele]is a function only of the parameters of the problem and 

the design sample size; it is not a random variable, 

We next determine E[6°], By going through a process 

analogous to the above, and by making use of (8.12), we obtain 

os = El(6-Ele])°] = E[8°] - (zle])® - Hle(i-e)) | 

where n is the size of the test sample. Hence 

elé*] = Ele(i-e)) 4 (gfe)? , (8.13) 

We now determine E[e]. .Let the optimum machine be described 

by c different parameters re l1<i<c. The design of the 

machine consists of estimating the parameters Oot by making 

measurements on a set of sample patterns (the design sample). 

Let the estimated parameters be denoted 5,5 l<ig<¢e. Then 

the error probability e of the resulting machine is a funetion 

of the estimates of the true parameters; 

e = e(5,,55,---55,) 

One can expand e in a Taylor series expansion about its 

minimum point, eo Since this is a minimum point, all the
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coefficients of the linear terms will be zero. If the error 

deviation, Ae = e-e is small, terms above the second order 

term may be neglected: 

  

(55 -5,5) (65-5, 5) 
6 

oO 

The expected value of the error for the resulting machine is 

  

then 

eC c 
1 d“e 

Ele] = ey +s » » 35,58, EL (6,-5.4) (5,-6 yo} ’ 

f=. ja J Bo 

or 

Cc Cc 

Blel=e,+3 ) Vaso, . (8.14) 
1=1 j=l 

where 

2 
ave 

ass = B54 36,58, ; 

Jl5 

  

O54 is the covariance of the estimates for ar and Coy and 

Os; = O° is the variance of the estimate for Boa: (8.14) is 

valid for small Ae, 

Let each parameter be estimated with m samples. If 

each of these estimates is an efficient estimate, and if the 

estimates are independent (either because the estimates are
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statistically independent, or because different samples are-- 

2 

5 
wlll be proportional to 1/m. Hence one can rewrite (8.14) as 

used to estimate each), then all Oy5 = O, 1 # j, and all 

Ele] =e +2 ; (8.15) 

where b 1s some constant calculated from (8.14). (Often, 

E[e] is in the form (8.15) even if the estimates are not 

independent.) 

Let t be the total sample size, and p be the number 

of sets of m samples used to design the machine, p is chosen 

to be the smallest number which insures that E[e] is of the 

form (8.15). It is often simply the number of allowable 

pattern classes, since, of course, parameters of different 

classes must be estimated with different samples. If n is 

the test sample size, then 

t=n+pm, (8.16) 

From (8.12) and (8.15), 

BLé] = Ble] =e, +2. (8.17) 

Consequently, € is a biased estimate of ey: The adjusted 

estimate, eye given by 

@)
 

HW @)
 

' 

Bl
o ‘ (8.18)
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is an unbiased estimate of ey» with variance given by (8.11). 

This variance can now be rewritten using (8.18): 

2 

é-8[8] -S-2[@-)] -3 
2 

ELé"] - 2 ® ELé] + (2) - ef 

From (8.13) and (8.17), 

2 
os = Ele(1-e)} + (ELe])° - 2 B e 2) - ee 

2 
= Ele(1-e)} + (ELe])° - (< + 2) . 

Thus, from (8.17) 

of - Ble(1-e)] (8.19) 
e 

oO 

If 2 << 1 (which will certainly be true for any reasonable 

design), then 

b an Ele(1-e,)] - (1-2) eo ta 

Se * n ~ LATS 9 n o 

e, + Pe 
= (1-e,) 2 (8.20) 

where the relation (8.16) was used.
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We wish to choose n so that (8.20) is minimized, 

Differentiating (8.20) and equating to zero, one obtains 

n 
a) 

eo¢ Fe - i (8.2 
3p .21) 

0-8) . 

where n, is that value of n satisfying (8.21); 1t is the 

optimum test sample size in the sense previously discussed, 
n 

oO 
e is of course the proportion of the total sample used for 

the test. One interesting result is immediately obvious: 
n 

oO | must be greater than .5 for all cases. The equation (8.21) 

is plotted in Figure 25, from which the following general 

statements can be made, 

1. The proportion of the total sample that should 

be used to test the machine should never be 

less than 50%. 

2. If e,t/pb < 0.1, then the proportion used for 

design should be about 50%, 

3. The proportion of the total sample that should 

be used to test the machine becomes larger as: 

a. The total sample size increases, 

b. the error of the optimum machine increases, 

c. the effectiveness of the design increases 

(pb decreases). 

Here 1/pb is taken as a measure of the effectiveness of the 

design, since pb is the product of the expected deviation from 

optimum, Ele-e.], and the design sample size, pm.
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These results indicate just how a sample should be 

split between the design and test stages of a feasibility 

study of a pattern recognition method. If the experime: ¢r 

follows this procedure, he will obtain an estimate ey of ey 

which is unbiased and has minimum variance. 

The value of this minimum variance can be expressed 

as 

Mo 2 . e,(1-e,) 4 1- = ) 

"e , ~ n ’ 
Oo . 

min ez - il 

which was obtained by eliminating pb between (8.20) and 

(8.21). Note that this is the variance that would have been 

obtained if the optimum machine were tested with n samples, 

increased by a factor which accounts for the design error. 

As an illustration of these ideas, consider the 

following example (perhaps the simplest of the n-dimensional 

problems). A pattern recognition machine is to be designed 

using the optimum decision function (see Chapter II) which 

will distinguish between q classes. The occurrence of each 

class 1s equally probably a priori, and all costs of misrecog- 

nition, are the same. The receptor makes a set of k measure- 

ments m4. 1<JjJ< k, on each input pattern, It is known that 

each measurement is normally distributed with variance ga, 

and that all measurements are independent. Further, it is 

known that the distances between the mean vectors in
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measurement space are all equal. (Consequently, there can be 

no more than k+l pattern classes. The tips of the mean 

vectors are the vertices of a regular polytope. ) 

Consequently, the distribution of the measurements 

for each of the classes is spherically symmetric and unimodal. 

We know then, from Theorem 7, that the optimum decision func- 

tion is a linear decision function comprised of those hyper- 

planes which are the perpendicular bisectors of the line 

segments joining all pairs of means. (This is true even for 

the multiple class case, providing no rejection decision is 

required. There will also be no natural rejection regions, 

since this linear decision function is also an optimum decision 

function with no rejection decision.) The hyperplane separat- 

ing two classes, say classes 1 and 2, is given by Theorem 8, 

and is the set of all points X which satisfy 

R (GB) = (Ey, -By-T,) , (8.22) 

where My is the mean vector of class i. 

The design procedure consists of estimating each 

mean vector from a sampling; denote the estimated mean vector 

for class i by X,- The distribution of the estimate of a 

mean vector from a normal distribution with covariance matrix 

[V] 1s also normal with covariance matrix 4tvl, where m is 

the sample size used in the estimate.[2] Since the measure- 

ments are independent in this case, then so will be the
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estimates of the means of the various measurements. Further- 

more, each estimate will have a variance of o° /m. Consequently, 

only one set of samples of size m from each pattern class is 

required to insure that the form (8.15) is valid, and p is 

hence equal to the number of allowable pattern classes, q. 

We now determine the coefficient b in equation (8.15). 

If the mean vectors are more than about 36 apart, then ony 

a small error is made if the total error is approximated poy 

adding the errors of each hyperplane taken alone. That is, 

the Integrals on the wrong side of the hyperplane that are 

counted more than once will be quite small compared to the 

integrals counted only once (this is discussed in more detail 

in the proof of Theorem 6). 

Due to the symmetry of the problem, the error 

associated with each hyperplane for the optimum decision 

funetion is identical, and the derivatives of (8.14) will 

also be identical for each hyperplane. Since there are 

a(q-1)/2 hyperplanes, b may be expressed (from (8.14) and 

(8.15)) as 

k 2 2 
2 b _ a(q-1) 1 ove , 2 £22 o 

nm. 2 a re m ? 
121 | 9X43 OX4 5 

by oo Ly obo



151 

where the hyperplane separating classes 1 and 2 is taken as 

typical, and the independence of the estimates is used, C19 

is the error associated with this hyperplane, Ly and Ho are 

the mean vectors of these classes, and xy and Xo are the 

estimates of the mean vectors. 

There is no loss in generality if by is taken as 

zero, and all the components of Ho(Hyos++ + sty) are taken 

as zero except for Hao That is, 

Hy = (0,0,...,0) 

Ms = (u,0,...,0) ’ 

where Hoo is denoted nu, ub > 0. Consequently, the optimum 

boundary is given by 

xX, = w/e 

A sampling of size m is taken from each class, and 

the mean vectors are estimated, giving 

xX, = (X14 2Xope+ +X) 

Xo (Xj) 59Xo0s eee Xo) e 

A boundary given by (8.22) is computed based on the above 

estimates, and this, together with the other estimated 

boundaries, determines the structure of the machine.
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The error ey associated with this particular bound- 

ary for class 1 is 

  

  

x 2 x 2 Lace f 4) ey = II | i e oO ax | i e 9 dx, ; 
=2 Jon Jor 

J -% TO E41 (Xoe++-sX,) To 

where €1(Xoe-- 5 X,) is the value of x, on the boundary, and 

is given by (from (8.22)) 

k k 
Xy47 X11 7*42 

by (Xos---5X,) = - > = Xy 2). 

1=2 *117-*12 1=1 

  

X, 4+ S o(%,,-% - (xe, xe “ll “12 *41 ié i il “ie 

2 - X10 

E 

ey 

Then 

  

2 2 
00 if* 1/4 — 

ee) = if | a o a) ax ( i o A+) Ya ) ’ 

- ‘\ Eira *117*y2 

  

6x,, J=2Jd_. M210 

ecgcig¢gn 

x 2 

a. fi = Nas 1 Xe) ) 
Oxy, Ja2 J_. eo v
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where ne) is the value of the standard normal density 

function for the variate u/2q,. In a like manner, 

2 
o“e 

2 =. ~-#H)\)._ti a we, ~~ us M- de) - de Mts)? B<tsn, Xaq 
Me she, 

where e€, is the error associated with this boundary for class 2, 

Since the total error for this boundary is C15 = ey + Gos then 

a°e de de 12 1 a2 =o 2 =- == + =O, signa Ox ox axe, til 11]. il 
Mey sto Masts Mysto 

a“e 
A like result holds for yee? e<cig¢n. Going through this 

x 
12 

same procedure for X11 

Beh ae 8) 6 Tap)   
 



  

2 
2 oo if* oe) i 1 - X24), 1(*14("2 Ts = - {] € DT OR] eS 0X74 j=e _o Vong 3 

2 
3 e, a N ) 

eo - Bo 2o/° 0X74 . 
Mysto 

Similarly 

2 
3 en _1 W(t.) 

axe BB Po) 11 
Me slo 

Hence 

2 
o°e15 _lu n(#.) 
ox Tip -\26 

Ms sto 

It would also be found that 

2 
o"e19 1 n() me | tS XE). 22 

Hy sto 

This analysis is perfectly general for arbitrary 

mean vectors, providing that w is merely interpreted as the 

distance between a pair of mean vectors (all such distances 

being assumed identical). This distance will henceforth be 

written Au to indicate that it is a difference of means.
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Therefore, from (8.23), we find that 

p = aged) 25 (35) - 
The equation (8.21) becomes 

n 
oO 

2 Fr 7 i 

n( $4 ) ~ (. "3 , 
He 

(8.24) 
a“(q-1) al

e]
 Pcs
 

Some curves representing (8.24) are plotted in Figure 26 in 

which the proportion of the total sample to be used in the 

test, n/t, 1s shown as a function of t, the total sample 

size, with the number of allowable pattern classes, q, as a 

parameter. e, was held constant at .05, which involves the 

choosing of the proper value of Au/2q for each q. This is 

done as follows. The conditional error for each class, if 

the a priori probabilities are equal, is eo: If there are q 

classes, then the conditional error associated with this 

class being categorized as any of the other (q-1) classes 

must be e/a-l, Since all of these conditional errors are 

identical. Let us consider class 1, with mean Hs. Let x be 

in the direction of the line segment joining Wy and Lo of 

class 2, Then the probability of miscategorizing a member 

of class 1 as class 2 is (approximately) 

  

  

2 
Xow 

& 1 " HX L) _ 3 ye >-1 = e o ax 

> 3
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X-Hy 

Oo 

mined, given values for ey and p, from tables of the standard 

  where y = From this relation, Au/2g¢ can be deter~ 

normal distribution. 

From Figure 26 it is seen that, for many cases, the 

Sample should be split evenly between design and test, as one 

might intuitively suspect. However, there are some drastic 

deviations from this. For instance, if the categorizer is 

to separate only two classes, and 1000 Bamples are available, 

then only 50 of these should be used to design the machine, 

and 950 should be used to test it. Consequently, it is seen 

that intuition may go wrong in some cases, 

This section has not solved the problem of sample 

partitioning. One problem is the determination of b, which 

in many cases will be very diffieult to find. It would also 

be interesting to consider the case in which there is an 

overlap between the design and test samples. This discussion 

has, however, developed one approach to the problem and 

illustrated that intuition is often, but not always, a good 

guide.



CHAPTER IX 

EXPERIMENTAL APPLICATION - DETERMINATION 

OF THE GEOGRAPHICAL SOURCE OF RADIO SIGNALS 

This chapter and the next will describe two 

experimental applications of linear decision functions to 

categorization problems. The experiment described in this 

chapter is small enough so that the data dnd results can be 

described in detail; Chapter X discusses an application much 

larger in scope, and hence only gross results are given. 

Between these two experiments, most of the concepts 

and procedures as discussed previously are applied. In the 

application described in this chapter, the estimate to the 

optimum linear decision function is found, and the upper 

bound for the probability of error-plus-natural-rejection is 

determined by the method given in Section 8.2. Also, a 

linear rejection criterion is applied. The results of this 

experiment are compared to one in which the same data was 

categorized by using the optimum decision function based 

upon an assumption of normally distributed, independent 

measurements, 

In the experiment described in the next chapter, the 

optimum linear decision function is also estimated, and is 

minimized by eliminating redundant boundaries and redundant 

measurements. The resulting incomplete linear decision 

function is then tested in two ways: 
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1. by using an additional test sample different 

from the design sample, and 

2. by estimating the upper bound for the error- 

plus-natural-rejection probability. 

9.1 Description of the Application 

The problem to be described here is one studied by 

Professor A. E. Laemmel of the Polytechnic Institute of 

Brooklyn. A radio signal is received jat a monitoring station, 

and.it is desired to determine from which geographical 

location this signal originated. It is assumed that there are 

a finite number of sources whose geographical locations are 

known. Certain measurements are made on a sampling from 

these stations. The problem is to design a categorizer 

based on these samples. 

The measurements chosen (by Professor Laemmel) are 

based on measuring certain fading characteristics of the 

received wave. The output of the automatic gain control (agc) 

of the receiver is monitored for a 50 second interval, and 

the following measurements are made relative to the peak 

output during this interval: 

m, - number of seconds during which the age output 

is Greater than one-half of its peak values 

My - number of crossings of the half-peak level by 

the age output. | 

m3 - number of seconds during which the age output 

is greater than three-quarters of its peak value.
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my - number of seconds during which the age output 

is less than one-quarter of its peak value. 

m,; - duration (in seconds) of the maximum interval 

during which the age output is greater than 

one-half of its peak value. 

me - number of crossings of the three-quarter level 

during the maximum interval measured by me. 

Note that this is an example of a receptor which makes both 

continuous (m,,m3,my,m,) and discrete (m5,mg) measurements. 

9.2 Results 

These measurements were made on five geographical 

locations (the allowable pattern classes): Ohio, Canada, Quito 

(Ecuador), London, and Lisbon (Portugal). A sample size of 

five was taken from each source over a period of time, and 

the resulting measurements (furnished by Professor Laemmel ) 

are shown in Table 2, 

9.2.1 The Estimated Linear Decision Function 

The linear decision function was determined by 

using the algorithm of section 5.3 to estimate each of the 

constituent hyperplanes. In all cases, the initial hyperplane 

was the perpendicular bisector of the line segment joiLning 

the means of the two classes. The ten resulting 6-dimensional 

hyperplanes are shown in Table 3. Ky is the coordinate 

representing the measurement My » 1<ic<¢ 6. Each hyperplane 

is identified by using the numbering arrangement of Table 2,
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my ms 5 m6 

Ohio 1} 50.0 0 50.0 0.0 50.0 0 
2} 50.0 0 50.0 0.0 50.0 oO 
3] 50.0 0 43.0 0.0 48.0 1 
4 150.0 0 50.0 0.0 50.0 0 

5] 24.6 9 19.3 10.4 12.6 2 

Canada 11]47.4 19 31.8 0.0 16.7 12 

2149.5 2 32.7 0.0 37.7 39 
3) 44.8 36 23.6 0.0 11.6 16 
4 | 50.0 0 39.7 0.0 50.0 7 
5] 44,4 34 26.3 0.6 25.0 25 

Quito 1 | 22.6 5 8.6 12.6 10.8 2 

2 | 23.2 10 8.1 .2 11.9 2 
3} 24,8 9 15.1 1.3 9.0 3 
41 29,3 7 10.8 5.4 16.6 5 

5]15.9 26 4.8 18.3 4.0 4 

London 1] 9.3 114 0.8 17.9 0.5 2 

2] 38.0 51 17.7 3.6 4,3 2 

*3 | 24,7 29 10.0 9.3 4.7 2 

4 | 39.3 41 15.8 2.3 14.7 20 

5 | 38.5 68 15.6 2.7 3.5 4 

Lisbon 1 ]| 22.8 58 7.6 10.3 2.2 2 

2] 40,2 39 17.5 1.0 5.6 2 
3 | 36.3 36 16,4 3.7 13.4 10 
4 | 23.0 60 8.7 13.2 3.7 6 
5 | 32.0 Ay 16.8 6.1 8.7 - 8 
  

THE SAMPLE UPON WHICH THE LINEAR DECISION 

FUNCTION OF CHAPTER IX IS BASED 

TABLE 2
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BASED ON THE DATA OF TABLE 2 

TABLE 3
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i.e., Bio is the hyperplane which separates the sample points 

for Canada from those for London. The first number in the 

subscript of Bi; corresponds to the plus side of the hyper- 

plane, That is, the half-space consisting of all those 

points which are a positive distance from Bus are classified 

as belonging to Canada by Bios the other half-space (for 

negative distances) contains all points classified as London 

by Buo- 

No attempt was made to determine whether any of 

these boundaries were redundant, nor whether any of the 

measurements were redundant. Note, however, that the maximum 

absolute value of the directton cosine associated with each 

coordinate is large (>0.4). Therefore, one might conclude 

that all of the measurements are significant (see section 6.1). 

9.2.2 Error Estimates 

The complete linear decision function of Table 3 

categorized all but one of the sample points from Table 2 

correctly. The misclassified point was one representing 

London, and was classified as coming from Lisbon. One 

cannot claim, however, that this experimental error rate, 

1.e., 4%, represents in any way the actual expected error 

rate for the linear decision function. Theorem 10 states 

that, in 6 dimensions, 7 nondegenerate points can always 

be separated by a hyperplane. In this example, only 10 

points were being separated by each hyperplane. Since
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this 1s quite close to the "threshold" predicted by Theorem 10, 

one is not surprised to find that the linear decision function 

works well in this case. 

A better estimate of the expected error probability 

can be obtained by estimating the upper bound as described 

in Section 8.2, These results are shown in the form of a 

confusion matrix in Table 4, Each entry corresponds to the 

area under the estimated normal density function N,(s) (for 

distances of the points representing class i from the 

hyperplane separating class i from class j) which lies on the 

j side of Bry: Note that the one error (London categorized 

as Lisbon) corresponds to the largest estimated upper bound 

in Table 4, If each geographical source is considered equally 

probable a priori, then the estimated upper bound for the 

error-plus-natural-rejection probability is the average of 

the total probabilities of error for each class. This upper 

bound is .30. (Conversely, one may say that the estimated 

lower bound for the recognition rate is 70%.) Unfortunately, 

reference to Figure 24 shows that this estimate is not a 

very reliable one. For instance, if x/s were 3.0, one would 

say that the estimate of the error rate (for that class and 

hyperplane) would be .13%. However, the 95% confidence 

interval for this estimate, from Figure 24, is O%-17.7%! The 

extremely small sample size (five per class) used yields very 

poor estimates.
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Oo oO oe 4 eI 

~\ .06 .11 fl 55 

4,01 14.0 | 8.69] 9.18 

51 4.65 4.95 2.94 

11.9 | 19.1 {11.7 36.7 

1.92] 10.4 2,22 | 4.95     

ESTIMATED UPPER BOUNDS FOR THE VARIOUS 

CLASSIFICATION ERRORS IN THE GEOGRAPHICAL 

LOCATION OF RADIO SIGNALS, IN PER CENT 

TABLE 4 
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It is interesting to compare these results with 

those of a trial by Professor Laemmel, in which the distribu- 

tion of a particular measurement for a particular class was 

assumed to be normally distributed, and each measure was 

assumed independent of the others. The various means and 

variances were estimated from the sample of Table 2, and the 

a posteriori probability of each point coming from each class 

was calculated. Categorization was based on maximizing this 

probability over the set of classes (the optimum decision rule 

under the. above assumptions if it is also assumed that the 

a@ priori probabilities of occurrence and the misrecognition 

costs are equal). Using this procedure, four points from the 

Sample were misclassified. 

9.2.3 Application of a Rejection Criterion 

The linear rejection criterion as described in 

Section 7.2 was applied to this linear decision function. The 

rejection hyperplanes were determined by the condition that 

the loss associated with an error was ten times as large as 

the loss associated with a rejection: 

H Q II Cry = 10 

C56 = cy = J], 

According to equation (7.2), (assuming equal a priori 

probabilities w,); the rejection region around the hyperplane 

Bs corresponds to that region for which
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T, (8) 
< 71,087 <9. (9.1) \o

|r
H 

The equations (9.1) were solved for this case. The resulting 

separation of the rejection hyperplanes from the estimated 

optimum hyperplanes are shown in Table 5, Aa. is the distance 

of the rejection hyperplane on the negative (Jj) side of By 43 

4a, is the corresponding distance on the positive (i) side. 

The fact that, in some cases, both rejection hyperplanes are 

on the same side of Bry (1.e., those with the same sign in 

Table 5) can be attributed to either sampling error or 

deviations from normality of the distributions of the 

distances. 

Note that one rejection hyperplane (Aa 5. for Boy) 

is at infinity. This means physically that any attempted 

categorization of a signal as coming from London would always 

be rejected, since the likelihood of its originating in 

London rather than in Lisbon will always be less than 9 (the 

rejection condition (9.1)). 

This rejection boundary was replaced by an arbitrary 

(hence suboptimum) rejection hyperplane at fa, = --7 (which 

seemed not too unreasonable from a plot of the distributions). 

Based on this modified set of rejection hyperplanes, the 

rejection and error probabilities for each class-hyperplane 

combination were computed. These are shown in the confusion 

matrix of Table 6, where the upper number represents the
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Boundary Aa. Aa 4 

Boy - ,85)+ 1.4 

B53 + .10/+ 1.9 

Beo + 2.2 +19 

Bs + 2.0 + 9,0 

Bug - 5.7 | + 2.8 

Bio -17.9 | +31.4 

Byy - 7.2 +19.0 

B35 - 5.3 [+ 4.7 

By - 2.5 | + 3.0 

Boy - + 1.4           

SEPARATION OF REJECTION HYPERPLANES 

FROM ESTIMATED OPTIMUM HYPERPLANES 

TABLE 5
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RESULTS OF APPLICATION OF LINEAR REJECTION 

CRITERION TO GEOGRAPHICAL LOCATION OF 

RADIO SIGNALS, WITH e/e, = 10. 

UPPER NUMBERS ARE ERROR PROBABILITIES; 

LOWER NUMBERS ARE REJECTION PROBABILITIES, 

IN PER CENT 

TABLE 6 

Or
 

AR
 

169



170 

per cent error and the lower number the per cent rejection. 

Averaging these (assuming equal a priori probabilities) gives 

an estimated upper bound for the system error probability 

of .10, and an estimated upper bound for the system rejection 

probability of .66. 

If one wanted to determine the optimum linear 

rejection criterion for a fixed error rate or fixed rejection 

rate (for instance, design for the minimum rejection rate 

which will yield an error rate of 1%), then he would have to 

try several values of the loss ratio c/e, and obtain plots 

of the error rate and rejection rate versus c/c.. From 

these plots, the appropriate loss ratio could be determined.



CHAPTER X 

EXPERIMENTAL APPLICATION - THE RECOGNITION 

OF HAND-PRINTED NUMBERS 

The recognition of hand-printed numbers was 

attempted with a linear decision function. The set of 

measurements which was used involved quantizing the number 

into a 12 x 12 binary matrix. A matrix element was given a 

weight of one if it contained a mark and weight of zero if 

it contained no mark. The quantized number was then 

positioned in the matrix by aligning its center-of-gravity 

with the center of the matrix. 

Hence, a 144-dimensional binary measurement space 

was used. This set of measurements is a rather unsophisticated 

set in that the measures are not at all invariant within a 

particular class. That is, in order for a linear decision 

function to perform well, those points in measurement space 

corresponding to a particular class ought to be grouped 

together with respect to points representing other classes. 

This will occur if the measurements (or at least some of the 

measurements) are somewhat invariant under the various 

distortions and noises that might affect a real life pattern, 

In the case of hand-printing, these perturbations from ideal 

include size variations, tilt, varying pencil width and 

density, the various forms that people use to form a character, 

-17l1- =
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and the effects of sloppiness. Clearly the measures used 

here are in no way invariant under such perturbations, and 

one would not be too surprised if a linear decision function 

did not perform very well.” However, the attempt is still 

interesting since it represents a more complex problem than 

that discussed in the previous chapter, and will consequently 

allow the testing of some of the preceding ideas in more 

detail. 

10.1 Estimating the Linear Decision Function 

The data used to estimate the optimum linear 

decision function was gathered in the following manner, A 

Subject was asked to neatly print the ten numbers on a piece 

of quad-ruled paper at a size approximating the ruled boxes. 

Fifty different people were so asked, resulting in a sample 

size of 50 for each of the ten pattern classes, This data 

was then automatically reduced to a 12 x 12 matrix (encoded 

on IBM punched cards) by an optical matrix scanner constructed 

by the author. 

In Figure 27 is shown an example of some of this 

design data, illustrating approximately the range of size and 

neatness obtained. In Figure 28 are shown examples of some 

of the quantized numbers, 

A very effective set of measurements has been proposed by 
Kamentsky [29] for the recognition of hand-printed numbers, 
This involves using a '"flying-polar" scan which is capable 
of determining the number of closures and cusps (partial 
closures) and the orientation of cusps in a character.
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Forty-five hyperplanes are required in the complete 

linear decision function categorizing the ten numbers. These 

were determined by the computation algorithm (Stction 5.3) 

on the IBM 7090 digital computer. About 25 seconds, on the 

average, was required to determine a hyperplane, given an 

initial position. 

For each pair of pattern classes, four initial 

hyperplanes were tried. One of these was that hyperplane 

which was the perpendicular bisector of the line segment 

joining the means of the two classes. The other three initial 

hyperplanes were parallel to this one (1i.e., the direction 

cosines were the same), and corresponded to an a, of O, -5, 

and +5. The number of successes. after iteration of each of 

these initial conditions is shown in Table 7, along with the 

number of trials in which each initial condition produced a 

unique minimum (that is, it separated the points better than 

the other three initial hyperplanes, after iterating to its 

minimum). 

It is seen from this table that each of the initial 

conditions was often successful in reaching at least that 

absolute minimum determined by the set of initial conditions, 

More important, however, is the fact that each initial condi- 

tion was the most successful in at least one trial; therefore, 

benefit was certainly derived from trying various initial 

conditions. 

* 

An initial condition is successful if the performance of the 
resulting hyperplane is at least as good as the performance 
of the hyperplanes corresponding to the other initial condi- 
tions.



  

  

  

No. of No. of 
Initial Condition | Successes Unique Successes 

Perp. Bis. 26 4 

ay = 0 32 5 

aos +5 29 6 

Qa = -5 17 1         

THE SUCCESS RECORD OF 

VARIOUS INITIAL HYPERPLANES 

TABLE 7 
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In Figure 29 is shown the estimated optimum 

hyperplane, Boy» which separates the numbers 2 and 1, The 

coefficients a,, 1 <1 <n, are shown arranged in a matrix 

corresponding to the receptor matrix. The positive side of 

Boy corresponds to the number 2. One would then expect that 

those coefficients which corresponded to matrix elements in 

which a mark from a two was likely to occur and a mark from 

a one was not likely to occur would be weighted positively, 

and vice versa for those elements in which a mark from a one 

1s more likely to occur. Contours are drawn around regions 

of large positive and negative weight in Figure 29, and the 

negative regions are shaded. One sees that the above intuitive 

observation does indeed hold. 

The resulting linear decision function mis- 

categorized 21 patterns (4.2%) and rejected 9 patterns (1.8%) 

of the total design sample of 500, as shown in the confusion 

matrix of Table 8 (the R column indicates the number of test 

patterns rejected by the inherent rejection). However, one 

cannot conclude that these percentages are any sort of valid 

estimate for the performance of the system, as discussed 

previously. In fact, since only 100 points are being separated 

in 144 dimensions by each hyperplane, one might expect from 

Theorem 11 that the linear decision function ought to do well 

on the design data; in fact, 50 samples from each class might 

be too small a sample size for design purposes for this reason. 

The saving grace here is the fact that the measurement space
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Input 6 49 1 
Class 5 50 

Yi ri ef 1 45 1 

3 2 M7} 1 

2 1 49 

1 49} 1 

CORRECT 470 (94 s 
ERROR 21 4, 2% 
REJECT 9 1.8% 

  

CONFUSION MATRIX FOR THE DESIGN DATA 

(HAND-PRINTING RECOGNITION PROBLEM). 

THE ENTRIES CORRESPOND TO THE NUMBER 

OF SAMPLES RECOGNIZED CORRECTLY, 

MISRECOGNIZED, OR REJECTED. 

TABLE 8
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is binary, and therefore the sample points are highly degenerate 

in the sense of Theorem 10. It is therefore not to be expected 

that any set of points, no greater in number than n+l (145 

in this case), will be linearly separable in general in this 

measurement space, 

10.2 Minimizing the Linear Decision Function 

The linear decision function thus determined was 

minimized by determining the redundant boundaries and the 

redundant measurements. 

The procedure used for determining the redundant 

boundaries was the algorithm given in Section 6.2.2 based on 

the definition of redundancy in a sample sense. According 

to this algorithm, the hyperplanes were removed one at a time, 

and the conditionally redundant hyperplanes were determined 

(those whose removal caused no change in the categorization 

of the samples). Six hyperplanes were found to be condition- 

ally redundant; they were Boys Bgos Bg,» Bog, Byz, and By,. 

(Actually, the removal of Bg, caused a "one" which was 

originally rejected to be correctly categorized. Since this 

was an improvement, it was decided to treat this hyperplane 

as conditionally redundant. ) 

It is seen, then, that the hyperplanes Boo and BIG 

are unconditionally redundant boundaries of the first kind, 

and may be definitely removed. These and the remaining four 

conditionally redundant hyperplanes were removed simultaneously, 

and the design samples were recategorized with the remaining
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39 hyperplanes. Again there was no change in categorization 

(except the one good change due to Bg, )3 therefore, Bo. Ba> 

By» and Bua are unconditionally redundant boundaries of the 

second kind. All six boundaries can then be removed, leaving 

a reduced (incomplete) linear decision function comprised of 

39 boundaries, 

In order to determine the redundant measurements, 

recall that it is those measurements which have small magni- 

tudes of the associated direction cosines for all the con- 

stituent hyperplanes which are most likely to be redundant. 

This concept was used in the following manner. All direction 

cosines with magnitude less than a certain ‘redundancy level" 

were set to zero, and the sample points were recategorized by 

this modified linear decision function (the problem of 

renormalizing the coefficients of the hyperplanes was ignored, 

since the correction would be small). 

A plot of the error rate, rejection rate, and 

multiple recognition rate (since the linear decision function 

is now incomplete) versus the redundancy level is shown in 

Figure 30, from which it is seen that measurements with 

direction cosines of magnitude less than .04 are redundant, 

1.e., their removal will cause no reclassification of sample 

points. Thus, if a particular measurement has all 39 of its 

direction cosines less than .O4, then it may be removed from 

the receptor, The resulting receptor, minimized by removing
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these redundant measurements, consists of the 110 clear 

elements of the 12 x 12 matrix shown in Figure 31. (It is 

interesting to compare this procedure to that of Gill's [23] 

for determining redundant binary measurements. ) 

Consequently, the original recognition machine nas 

been.. reduced from 144 measurements and 45 boundaries to 110 

measurements and 39 boundaries. The reduced machine 

categorizes the design sample patterns exactly as the original 

complete machine (save for one improvement). It remains to 

be seen whether this correspondence holds for further 

Sample patterns. 

10.3 Testing the Linear Deciston Function 

The reduced linear decision function was tested 

using both techniques discussed in Chapter VIII (Sections 8.1 

and 8.2). The upper bound on the error-plus-natural-rejection 

rate was estimated to be 21.5% (assuming equal a priori 

probabilities). This can also be interpreted as a lower 

bound on the recognition rate of 78.5%. The breakdown of 

this estimate 1s shown as the lower numbers in the confusion 

matrix of Table 9, 

Both the complete and reduced systems were also 

tested with 120 additional samples (12 samples of each number) 

gathered in the same manner as the design data. Figure 30 

shows this test sample. The upper two numbers in the con- 

fusion matrix of Table 9 represent the categorization of 

these points for the complete machine (complete linear
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0 1 2 3 4 5 6 7 8 9 
8 1 1 

Oo! 9 1 1 
-~ 2.33 11.33 -26 | 3.10 | 3.29 | 2.38 53 | 2.68 

12 
1 12 

-- 37) .39]) -- OL}; .0O} .57] -- 229 

6 y 1 
2 6 4 1 

-7T4 | 1.39 \ 5.94) 2.22) .8717.08|5.4845.27} -- 
N 

8 3 
3 Né 2 

2.28 -99 $10.20 -- |1.97}2.56 | 3.00 14.56 -40 

zs 1 K3 1 y 1 ei 4 1 5 1 
Ed 5.83 -- k.Ol | -- 2.87 | 2.68 -92 | 3.59} 9.68 
Ay 

EA 2 1 8 1 
B 5] 1 1 1 -, 7 1 
rH 75 .28 | 1.70 | 2.22 .16 84) 5011.70 | .36 

1 1 7 1 
6 1 7, 

1.02] .4L 9411.22} .92 | 4.37 \ -- $1.08] .34 

1 1 ] 7 
7 1 1 NZ 

-91 | 4.27} 1.88 | 2.68 | 3.22 hf -- 2.07 } 7.08 

0 3 1 1 1 6 
8 1 3 1 1 1 \é 

534 -- 3.68 | 5.71 | 2.81 | 1.97 | 3.59 | 2.50 \ 2.9) 

2 2 {1 JAeB 
9 2 1 1 1 7 

54 -30 -- | 1.83 113.35 | 1.62 11.97 | 7.08 | 9.52 

For minimum machine: 

Estimated Recognition Rate 
Using Test Sample (95% Conf. Int.) = 52%-69% 

Estimated Lower Bound on 

Recognition Rate = 78.5% 

CONFUSION MATRIX FOR TEST SAMPLE. R IS REJECTION COLUMN. UPPER NUMBER 
IS FOR COMPLETE MACHINE; MIDDLE NUMBER IS FOR MINIMIZED MACHINE. 
IN NO. OF SAMPLES.) LOWER NUMBER IS ESTIMATED PERFORMANCE BOUND (PER 
CENT) FOR THE MINIMUM MACHINE. 

TABLE 9 

(BOTH
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decision function and complete receptor) and the minimum 

machine. Note that there are a few differences, but that 

the performance is almost exactly the same (in fact, the 

minimum machine correctly recognized one more sample than 

the complete machine). Therefore, the minimization process 

seems to give reasonable results. The one point that should 

be noted however, is that, in the minimum machine, one point 

was multiply recognized (an 8 as an 8 and al). This 

is an indication that perhaps the boundary Bai should not 

have been removed, and illustrates the possibility of 

failure of the definition of redundancy in a Sample sense. 

Recall, however, that the removal of Bg, actually did cause 

one recategorization, although it was a favorable one. Thus 

Be, is a face of the polytope enclosing the class 1 and hence 

is not geometrically redundant, 

The resulting estimates of the minimized system 

error rate, rejection rate, and correct recognition rate, 

from the results shown in Table 9, are 30.0% (36 points), 

9.2% (11 points) and 60.8% (73 points) respectively. From 

Figure 32, one can then state that, with probability 0.95, 

the intervals .20-.40, .03-.16, and .52-.69 include the 

system error probability, rejection probability, and correct 

recognition probability respectively. The agreement between 

this performance test and the estimated upper bound is not 

all that might be desired, the estimated bound indicating 

Somewhat better performance than that attained in the test.
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It 1s not surprising to find the estimated per- 

formance of this linear decision function to be go poor, This 

can be blamed on two factors; 1) a poor choice of measurements, 

and 2) a design sample size which might have been too small, 

leading to a poor estimate of the optimum hyperplanes. 

However, this 1s not so important, since this experiment 

was not meant to result in the design of a practical charac- 

ter recognition machine, but was rather meant to test certain 

aspects of the theory previously developed.



CHAPTER XI 

CONCLUSION 

11.1 Summary 

This paper has discussed the properties and design 

of a particular class of categorizer, the linear decision 

function, which is of practical interest for two reasons: 

1. It can be empirically designed without making 

any assumptions whatsoever about either the 

distribution of the receptor measurements or the 

a priori probabilities of occurrence of the 

pattern classes, providing an appropriate 

pattern source is available. 

2. Its hardware realization is quite economic. 

It is not guaranteed that a linear decision function will 

always perform well, although it is guaranteed that it will 

perform better than (or at least as well as) the minimum 

distance categorizer which is popular in the present day 

art. Nor is it a simple matter to predict in advance 

whether a linear decision function has a chance of working. 

The corollary to Theorem 9 may be used to set up a straight- 

forward procedure to determine whether a set of points is 

linearly separable, but this will usually involve a good 

deal of computation. Besides, if it is determined that such 

a set is not linearly separable, there is no way of telling 

- 189 -
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to what degree this is so; the classes may still be separable 

with small probability of error. 

Consequently, if one is interested in a linear 

decision function type of categorizer, his best approach 

is to actually design the categorizer and estimate its 

performance, If the estimated performance is good enough, 

then the designer has succeeded in designing an economic 

categorizer, If the performance is not good enough, the 

designer has two choices: 

1. Search for a better set of measurements, a 

set which is more invariant to the natural 

perturbations of patterns contained within a 

class (the results of the experiment on hand- 

printing illustrate the importance of invariant 

measurements); or 

2. go to a different type (usually a more com- 

plicated type) of categorizer. 

A linear decision function has an interesting 

property which may be used even if the performance of such 

a categorizer is not all that is desired. This is its 

ability to help detect redundant measurements. For instance, 

in the example of the hand-printing, the designer may be 

required to use the matrix representation of the hand- 

printed characters. Consequently, he would have to go to 

a more sophisticated sort of categorizer. However, he can 

do so with the reduced receptor (the partial matrix): of
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Figure 31. Although the linear decision function type of 

categorizer may not be usable in a given situation, it can 

in this way help to simplify a more complicated categorizer 

by simplifying the receptor. 

A very general discussion with quite practical 

results was given concerning the testing of pattern recogni- 

tion machines regardless of their structure. [In particular, 

it was shown how to obtain confidence intervals for such 

results in a very simple fashion. It appears to the author 

that published results for pattern recognition tests would 

be greatly enhanced by the inclusion of such confidence 

intervals. Although a pattern recognition machine ought to 

be tested with a different set of Samples than those used in 

the design, it is shown that it is possible to estimate a 

bound on the performance of a linear decision function with 

the design data. This can be very useful if the data is 

limited for some reason, but does not give as desirable an 

estimate as the use of further data, 

11.2 Areas of Further Work 
  

This effort has by no means completed the study of 

linear decision functions and related topics. One interesting 

problem is the study and design of linear decision functions 

in which the constituent hyperplanes are required to do either 

more or less work than those discussed herein. For instance, 

a hyperplane may be required to separate more than two classes; 

in this manner the lower limit of logom hyperplanes for m
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pattern classes may be approached. The computation algorithm 

developed in this paper for determining an optimum hyperplane 

is applicable here, 

On the other hand, one may want to use more than 

one hyperplane per pair of pattern classes. In this way, 

nonlinear optimum boundaries may be more closely approximated. 

(Ridgway [41] 1s studying this problem for a binary measure- 

ment space. A possible approach is also given by Theorem 11.) 

As one makes a hyperplane do less work in the categorization 

process by using more of them, the categorizer will more 

closely approach the optimum categorizer, and also become more 

expensive. Consequently, the entire spectrum is of interest, 

Since performance is traded for cost. 

Of course, the study of quadratic and higher order 

decision functions has hardly been started. Mattson [33] gives 

a brief but enlightening discussion of this problem. 

The problem of rejection criteria requires a good 

deal more study. The simplest form was analyzed in this paper; 

however, two other methods for rejection which are more general 

were mentioned but not analyzed. Both of these methods 

would do a better job than that one analyzedg one of these 

would have the same cost of implementation; the other would 

require twice as many hyperplane implementations but is the 

most general of the three discussed. There are probably other 

rejection criteria which are compatible with a linear deeision 

function which haven't even been metnioned,
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Using the normality concept of Section 7.2, which 

states that in many cases the distribution of distances of 

members of a class from a hyperplane is normal, one can 

develop another algorithm for estimating the optimum hyper- 

plane separating the two classes, We are interested in 

choosing that hyperplane that minimizes the estimate of the 

expected error, or confusion, between the two classes, 

However, it is possible to estimate the error associated 

with a hyperplane by estimating the normal distribution of 

the distance of the members of each class from the hyperplane, 

and determining the area under the tails of these two distribu- 

tions falling on the wrong side of the hyperplane (as dis- 

cussed in Section 8.2). This might be expected to be a 

better estimate of the error than the proportion of points 

misrecognized, since more information is used in the estimate, 

providing the assumption of normally distributed distances 

is valid. -. 

This improvement can be seen from the confidence 

interval curves of Figures 23 and 24 (keeping in mind that one 

is two-sided, the other single-sided). For instance, con- 

Sider one class and a hyperplane. Let the sample size be 

50, and the error estimate in either case be 5%. From 

Figure 23, a 95% confidence interval for the estimate based 

on the proportion of samples misrecognized is 1%-15%. From 

Figure 24, a 95% confidence interval for the normal
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distribution estimate (obtained by moving horizontally from 

the .05 value of the ordinate to the "estimated area" curve, 

then up to the 50 sample curve, and back to the ordinate) 

is approximately 0%-8.5%. The latter estimate is obviously 

Significantly better in this case. 

Consequently, it would be quite reasonable to choose 

as an estimate of the optimum linear boundary that hyperplane 

which minimizes the normal estimate of error rather than the 

estimate based on the proportion of misclassified samples, 

providing again that the assumption of normality holds. An 

algorithm based on minimizing this normal estimate of error, 

using the method of steepest descent, is developed in 

Appendix III. Note that the resulting hyperplane for each 

local minimum is unique, in contrast to the previous algorithm 

in which the hyperplane could be any one chosen from, in 

general, an infinite set. 

With regard to the experiments of Chapters IX and Xx, 

it appears that the assumption of normality is a good approxi- 

mation in either case, and consequently that this algorithm 

would have been useful. In Chapter IX, the measurements are 

probably not too far from being normally distributed and 

independent, which allows for the small dimensionality. In 

Chapter X, the high dimensionality ought to make the approxi- 

mation good. At any rate, this assumption was made in both 

chapters when the bounds on the performance were estimated.
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A discussion of an unsolved problem, which deals 

with pattern recognition in general, is given in Section 8.3. 

This is the problem of partitioning a sample between the 

design and testing phases of a pattern recognition study when 

the sample size is limited. The case in which some of the 

Samples are used to design the machine, and only those remain- 

ing are used to test the machine, seems to be reasonably 

solved in this section providing the deviation of the result- 

ing machine from the optimum is small. The value of b, 

however, is in general difficult to calculate, and methods 

for estimating it warrant further study. 

This sample partitioning is only one possibility, 

however. Perhaps more efficient use could be made of the 

total sample if some overlap in the design and test data 

were allowed. There may be an even better technique based 

on some sort of sequential procedure. It would also be 

advantageous to remove the restriction of small deviation 

of the actual error from the optimum (minimum) error, These 

various problems have yet to be investigated. 

The above discussion has been intended to point 

out some of the areas in linear decision functions in particular 

and pattern recognition systems in general in which some strong 

theoretical attack can be made. It appears to the author 

that the state of the pattern recognition art has come to a 

point where less emphasis ought to be placed on gadgetry
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(an emphasis that is certainly required in the early stages 

of a problem such as this), and more emphasis put on good 

theoretical work aimed at practical results, It is time for 

pattern recognition to grow from an art to a science,



APPENDIX I 

EXTENSION OF CHOW'S RESULTS TO THE CASE 
OF CONSTANT COSTS 

Chow [10] has shown that, for a given rejection 

rate, the error rate in a recognition system is minimized 

if the following decision criterion is used: 

Choose class k if 

w,68(m|s,) > 8 (m | 8 ,) for all j #k 

and 

aelm|s,) 27 Y aBlml ay) O< 7¥< 13 

i=1 

reject the pattern if 

@,6(m | S ;) <7 wie | s,) foralll<j<p. 
1=1 

Here O, is the a priori probability of the 

occurrence of class i, A(m | s,) is the conditional probability 

of making the measurement m given that a member of class i 

is present, p is the number of pattern classes, and y isa 

constant chosen to force the system to meet the given 

rejection rate. 

- 197 -
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The proper value for y is generally difficult to 

determine, and an empirical approach may often be necessary. 

However, there is one important case in which y may be deter- 

mined analytically, the discussion of which follows. — 

Let the cost of misrecognizing a pattern, of reject- 

ing a pattern, and of correctly recognizing a pattern be 

independent of the pattern class. In particular let 

Chy =c = cost of misrecognition, 

Cin = fG F cost of rejection, 

Cry = O = cost of recognition, 

where 

c > Cy > 0 

(Since a Bayes criterion is being used, no 

generality is lost by setting c,, = O.{9]) The general loss 

function is given by (2.2): 

C(8) = \ y | ex yayem | 9,866, | m)dm 

1=1 f=0 “Mm 

where B(d, [|m) is the probability that class j will be 

decided given the measurement m (d, is the rejection decision), 

and C(6) is the loss associated with the decision function 6. 

Using the above cost schedule, the loss function 

may be written
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C(6) - | yaa, | m) y cays (n | s,)dm 

i=1 M j=0 

- | \ 6(d, | m) cw, (1m | 8, )dm 

M 1=1 

- | -B(a, | m) (c-c, )w,B(m|s,)dm . 
M i=l 

Noting that 

the first integral can be reduced, allowing the cost function 

to be written 

C(S) =e -e | \ 5(d, | m)w,6(m | s, )dm 

M i=l 

- (c-c.) | B(d, | m) y opB(m [94 am . 

M i=l
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To minimize C(5), 6(d, | m) 1s chosen as follows: 

6(d, [m) = 1, k #0, 

  

if 

a8 (m| 8.) > 0,6(m| 85) 

and 

w,8(m | s) > (2) wae | s,) 5 
i=1 

(4, |m) =1 

if 

  

_ Ga 
oO »,B(m | 8 ;) << Y aBln | s,) foralll<j<p 

i=1 

But this decision criterion is of the same form as that 

derived by Chow for the case of minimum error rate given a 

fixed rejection rate, with 

  

Therefore, minimizing the cost in the case of constant costs 

also minimizes the error rate for the rejection rate which 

corresponds to the above y¥,



APPENDIX II 

THE OPTIMUM SAMPLE STRATIFICATION FOR ESTIMATING THE 

PERFORMANCE OF A PATTERN RECOGNITION MACHINE 

The sample stratification for selective sampling 

which gives the minimum variance for a single estimate is 

derived. When the a priori probabilities of occurrence ws 

for each class are known, the maximum likelihood estimate 

for, say, the total probability of error, as derived in 

Chapter VIII, may be written 

The variance of @ may be written 

62 \ 2 &y(1-e,) 
e ~ 1 a, 1 n , 

{=1 4 

Maximize this with respect to ny under the constraint 

* 

Suggested by W. H. Williams. 

- 201 -



202 

Then 

where A is the Lagrange multiplier. Hence 

A is chosen to satisfy the condition (A3.1). Therefore, if 

one has any knowledge at all of the error rates for each 

class, he will get a better estimate if he adjusts the 

Size of the sample taken from each class according to (A3.2).



APPENDIX III 

A COMPUTATION ALGORITHM FOR FINDING 

THAT HYPERPLANE WHICH MINIMIZES THE 

NORMAL ESTIMATE OF THE ERROR 

If the approximation of normally distributed 

distances as indicated in Section 7.2 is valid, then the 

estimate of the expected loss Chey for a given hyperplane B 
kL 

based on this assumption can be written (as in Section 8.2) 

=k 
c . -i, - Se | 2 2 

2 1.2 

e dx , (A4,1) 

  

  

where a is the a priori probability of the occurrence of 

class k, Chey is the loss associated with misrecognizing a 

member of class k as belonging to class @, Cl = 0, 8, is the 

mean of the distances of the sample points of class k from 

By and Vie is the sample standard deviation of these distances, 

Class k is assumed to be on the positive side of By» and 

class £ on the negative side. 

We wish to determine that hyperplane which minimizes 

CLeg: To do this, we use the method of steepest descent, in 

which we choose an initial hyperplane, and continually adjust 

its coefficients along the direction of negative gradient 

until a local minimum is reached. Consequently, we need to 

determine the gradient of (A4.1). 
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Let the hyperplane be described by 

n 

\ ag, + a, \ ax, =O, 

1=1 

where x, is a dummy coordinate equal to +1 (as in Section 5.3). 

Then, 

(. 2x 
oC ) Ye 

Oa, Ok g = 

og 
- @yc © Mo wt) ae O<¢i<¢n, (A4,2) 

where n(2) is the ordinate of the standard normal density 

function for variate equal to 3/v. 

Consider 8, and Vi! 

n K 

2 y Ys AM ne =F des Ye se > 
j=l 1=0 1=0 jel 

th th th where m is the i coordinate of the j point of the k ijk 

class, there being K sample points from class k, and 

Mo 5k = +1. Let 

K 

i x = mM 
K ijk ik ° 

j=l
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My y is the average of the bh coordinate over all sample 

points from class k. Then 

n 

3, = > afin (A‘.3) 
i=l 

For Vues we write 

K n 2 1fe 
1 —_— 

Vie = X-1 ». CY ag 1, - 5.) ‘ (A4,4) 

j=l ‘151 

When taking derivatives, it must be insured that the 

coefficients remain normalized, i.e 

n 
2 

of =1., 

i=l 

A procedure similar to that in Section 5.3 can be used whereby 

*3 

every Gy; 1<i<on, is divided by 

  

However, perusal of (A4.3) and (A4.4) shows that when the 

ratio 8,/V_ is formed, these terms will cancel. Therefore, 

-we need not concern ourselves with the normalization problem 

in this algorithm (the same argument holds for N(S8/v)). Then



206 

3 =) 1 924 3) 3 — = s - (v ) 3 QO < 1 < oa, (FE v, oa, '8x) e aa, ‘YK gis 

(A4.5) 

From (A4,3), 

o. (5) =m AL.6 Gaz SPk? * Mik * (A4.6) 

From (A4.4) 

K 

9 (y) = x a ee Oo<i< oa, Sk’ ~ (K=I)v, | K jk ijk kik |’ SZ? sh, 
j=l 

(A4.7) 

where S 3k is the distance of the jun point of the van class 
8 3 £) from Bigs Similar expressions hold for 3a, (A . 

Substituting (A4.6) and (A4.7) into (A4.5), thence 

into (A4.2), one obtains the gradient: 

  

—, — K . 

Cig Ke “EY | a «(1 Se om. Se ) 
oa, v. OMF ik ~ K-I “2 \K jk ijk k' ik i k SK Ve jm 

— L 
dw ,c 8 8 

——Tr N 7) Mag ~ ExT 72 é ) Sye™i ya ~ Saag) |?
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New coefficients a, are chosen so that 

a, =a, - @ reg 
1 1 da, ; 

where 6 is some arbitrary adjustable constant chosen to afford 

a compromise between the number of iterations required and 

stability. 

The passing of a minimum is simply detected by 

computing (A4.1) after each iteration and watching for an 

increase in Chey (subroutines for evaluating the integrals of 

(A4.1) are available for many computers). This minimum can 

be estimated as closely as desired by taking successively 

smaller values for 6. This minimum, when determined, may 

not be the absolute minimum. Several initial hyperplanes 

Should be tried, and the best result used.
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