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An Analog Method for Character Recognition”

W. H. HIGHLEYMANT, MEMBER, IRE

Summary—A method for character recognition which is capable
of an analog implementation has been studied by simulation on a
digital computer. In essence, this method involves maximizing the
cross-correlation value between the unknown character and a set
of average characters, there being one average character for each
allowed character class. An average character is represented by a
two-dimensional function. The value of this function at a point is the
probability of occurrence of a mark at that point for the character
class represented by the average character. Negative weights are
given to areas of low probability in each average character to im-
prove discriminability.

The simulation results indicate that this method is applicable to
the recognition of machine printing, and perhaps to the recognition
of constrained hand printing. The method can be implemented in an
economical manner using electro-optical techniques.

INTRODUCTION

Y AND LARGE, the pattern-recognition ma-
B chines of today, whether in use or merely pro-
posed, are digital in nature. That is, the pattern
to be recognized is generally quantized in both position
and density before any of the procedures for recognition
are applied. The recognition procedure is generally then
implemented by using binary logical circuitry. There
are several advantages that might be gained if the
pattern and all pertinent or derived information is
kept in an analog form®2 for as long as possible. Prom-
inent among these advantages are low cost and lack of
quantizing error. In addition, a speed advantage may
sometimes be realized.

A particular method for character recognition which
is capable of an analog implementation has been
studied by simulation on the IBM 704 digital computer.
The results of the simulation indicate that this method
is applicable to the recognition of machine printing,
and perhaps to the recognition of constrained hand
printing. The method can be implemented with simple
optics for the most part, yielding an economic machine.

This method of character recognition is described in
this paper. Simultation parameters and results are pre-
sented, and a means for optically implementing the
method is discussed.

DEescrirTiON OF METHOD

The character recognition method to be described de-
pends upon a set of average characters, there being one
average character for each of the allowable character

* Received by the PGEC, December 8, 1960.
t Bell Telephone Labs., Inc., Murray Hill, N. J.

1 K. R. Eldridge, F. J. Kamphoefner, and P. H. Werdt, “Auto- .

matic input for business data-processing systems,” Proc. EJCC, New
York, N. Y., December 10-12, 1956, pp. 69-73.

2 W. K. Taylor, “Pattern recognition by means of automatic ana-
log apparatus,” Proc. IEE, vol. 106, pt. B, pp. 198-209; March,
1959.

classes. (A character class is the collection of all the
symbols that are identified as a particular character.)
For instance, if the allowable input characters are the
alphabetics 4 through Z, then there will be an average
character for an 4, one for a B, etc. An unknown charac-
ter is identified by comparing it to this set of average
characters and determining that average character to
which it most closely corresponds (the meastre of corre-
spondence will be defined below).

The unknown character is represented by the dis-
tribution of marks in two dimensions. An average
character is likewise represented by a two-dimensional
function. The value of this function at a point is the
frequency of occurrence of a mark at that point com-
puted over the character class of the average character.
Fig. 1 shows an example of functions representing an
average character and an unknown character.
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Fig. 1-—Two-dimensional functions representing: (a) An average L.
(b) An input (unknown) character (an L).

The measure of correspondence between an unknown
character and a particular average character is the
cross-correlation value between the two. An unknown
character is identified with that character class repre-
sented by the average character with which the greatest
cross-correlation value is obtained. Since this is a posi-
tion-sensitive identification criterion, the unknown
character must be shifted in two dimensions with re-
spect to each average character. A cross-correlation
function (a function of this two-dimensional shift) is
computed between the unknown character and each
average character. The maximum of each such func-
tion is chosen to represent the correspondence between
the unknown character and that average character.
The absolute maximum of these local maxima then
forms the recognition criterion.

The above statements are formulized below:

The cross-correlation function between the unknown
character and the jth average character as used here
can be defined as?

3 C. K. Chow, “An optimum character recognition system using
decision functions,” IRE Trans. ox ELEcTRONIC COMPUTERS, vol.
EC-6, pp. 247-254; December, 1957.



1961
q)j(‘f) P)

f ff(x + o, ¥y + p)CJ/(x, y)dady
- S ()

[f f”p(x’ y)dxdyfz fy C/(, y)dxdy]w

where

C;(x, y) =the two-dimensional function repre-
senting the average character,
I(x+0, y+p) =the two-dimensional function repre-
senting the unknown (Input) char-
acter, shifted with respect to C;'(x, ¥)
by distances ¢, p in the x, y directions,
®,(o, p) =the cross-correlation function be-
tween C;/(x, y) and I{x+o, y+p), as
a function of the two-dimensional
shift, ¢, p,
Jof,( )dxdy =integral over the two-dimensional
character field.

The integral [.f,C;'*(x,y) dxdy is the norm of
Ci(x,y). If C;/(x,v) is normalized by the square root
of its norm, then the resulting function C;(x, ) is

Cfl Ay
i, y) = (.2 )

[ [ere y)dxdy]w
fx fny(x, y)dxdy = 1. (3)

and

Then,

f [ 16+ 0,3+ 9C,tx, iy
z Yy
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For the remainder of this paper, the average character
function, C;(x, v), will always be assumed to be nor-
malized so that (3) holds.

Note that the norm of I(x, y), [f.[,[*(x, y) dxdy, is
common to all ®;(s, p) for a particular input pattern;
hence, neglecting it causes no reordering of the ®;(a, p).
Hence, maximizing the modified cross-correlation func-
tion ®;'(o, p), given by

®;(0, p) = 4)

¥/(0,0) = [ [ 1+ 03+ Ciw ixdy, )

is an equally valid recognition criterion. The true corre-
lation value given by (4) will be used in the description
of the simulation study of this method so that com-
parisons between recognition attempts can be easily
made. However, the simplified form (5) will be used to
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advantage in the discussion of the optical implementa-
tion.

A modification to the C;(x, y) was studied. This is the
addition of penalty areas to the average characters. A
penalty area is an area of low probability to which a
negative penalty weight is assigned. In each average
character, the penalty weight for all penalty areas is a
constant. It is arbitrarily chosen so that the integral of
the penalty weight over all penalty areas in a given
average character is unity.

Although the final machine using this method does
not necessarily require quantization, the simulation of
the method on a digital computer does. For purposes of
simulation, an unknown character is represented by a
12X12 matrix of ones and zeroes. (This is both a
spatial and a mark-intensity quantization.) A one corre-
sponds to a mark in an element, a zero to no mark. The
decision concerning the presence of a mark is based
upon an appropriate threshold level. Each average
character is also represented by a 12X 12 matrix, with
the value assigned to each element being proportional
to the probability of occurrence of a mark in that ele-
ment. The integrals in (3), (4), and (5) must then be
replaced by the appropriate sums:

Z Z I(m+v),(n+p)ijn

(0, p) = ——" e (6)
[ =% 1]
®; (0, 0) =2 2 Tomtor, nre)Comny (7

where

202 Coma? = 1. (8)

The notation is the same as that used previously, ex-
cept that the discrete subscripts m, # replace the con-
tinuous variables x, y. ¢ and p are also discrete in this
case. Note that ®,/(o, p) in the quantized case above
is simply the sum of the weights of the marked ele-
ments of C;, since each I,, can only be zero or one.
Likewise, the norm of I, 2., 2., I is simply the
sum of the marked elements in the matrix representing
the input character.

A simple example will illustrate the mechanics of this
method. Assume that the unknown and average char-
acters are represented by 3 X3 matrices. Fig. 2(a) and
(b) shows hypothetical unnormalized and normalized
average characters (hereafter called probability ma-
trices) for a C and an 0. Penalty weights have been
added to areas of near-zero probability. An input char-
acter (an 0) is shown in Fig. 2(c). Shifting is not per-
formed in this simple example since the optimum posi-
tions are obvious. The pertinent modified correlation
values are shown, the maximum of which clearly iden-
tifies the input character properly.
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Fig. 2—A recognition example.

SIMULATION

This character recognition method was studied by
simulation on the IBM 704 computer. As previously
discussed, the characters were represented by 12X12
matrices of one’s and zero’s. This degree of quantization
introduced a quantizing error affecting the results, but
was necessary to maintain reasonable computer time.

The method was applied to two different sets of data:
a set of hand-printed alphanumeric characters and a
set of machine-printed numbers. The hand printing
consisted of 1800 characters (50 alphabets of the 36
alphanumeric characters) printed by 50 different people.
This printing was somewhat constrained by requiring
the writer to print on one-quarter inch quadruled
paper, asking him to print neatly and at a size ap-
proximating the ruled boxes on the paper.

The source of the machine printing was an IBM 407
line printer. 1000 numbers were studied representing 100
samples of each of the ten numerals. These were taken
from 80 different type wheels.

The samples were scanned and converted to matrix
form by the use of the generalized scanner,* an optical
scanner that can be programmed to generate any type
of scan within its resolution capabilities. The scanner
output is a magnetic tape compatible with the IBM
704 computer.

The primary value of the study of hand printing was
the sensitivity of the recognition results to various
parameters (such as various methods of centering,
penalty area variations, etc.). Since the hand-printed
data was not as “handicapped” by high percentage
recognition as the machine-printed data (recognition
rates for the former were in the order of 60-80 per
cent), this data furnished a sensitive test to evaluate
variations in the recognition methods.

The particular parameter ranges which were deter-
mined to be best were then applied to the recognition
of machine-printed characters.

Parameters of Investigation

One parameter of the simulation study was the
method of centering. Two methods were investigated:

¢+ W. H. Highleyman and L. A. Kamentsky, “A generalized scanner
for pattern- and character-recognition studies,” Proc. WJCC,
San Francisco, Calif., March 3-5, 1959; pp. 291-294.
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centering by center of gravity alignment, and centering
by maximizing the cross-correlation value as a function
of position (centering by shifting). In the former, the
center of gravity of the input pattern is aligned with
the center of gravity of the probability matrix (average
character). In the latter method, the input pattern is
shifted in two dimensions with respect to each prob-
ability matrix, and the cross-correlation value is com-
puted for each position. Hence, the correlation obtained
with a particular probability matrix is a function of in-
put pattern position. The maximum value of this corre-
lation function is used as the measure of fit between the
input pattern and that probability matrix. Although
centering by shifting seems to be intuitively better,
center-of-gravity centering has some advantages. For
one, it requires much less computer time for simulation.
In addition, there was the possibility that centering in
this manner would eliminate the tendency of a char-
acter to find a false maximum correlation, when com-
pared to a probability matrix other than its own, by
finding some opportune misalignment.

A second parameter involved the question of penalty
weights. Penalty weights are negative numbers assigned
to elements of low probability. Hence if an unknown
character falls in a region of low probability with re-
spect to a particular probability matrix, then the corre-
sponding cross-correlation value is reduced, or “pena-
lized.” Penalty weights then have the possibility of in-
creasing the discrimination between characters. In this
study, a penalty threshold level was chosen so that any
elements with a probability less than the penalty
threshold would be assigned the penalty weight. All
penalty elements were assigned identical weights, and
these weights in each matrix were arbitrarily normalized
so that the sum of the squares of the weights was unity
(the same normalized value of the matrix) as previously
discussed. The value of the penalty threshold level was
varied to determine the effect on error rate. The effect
of nonuniform penalty weights and the effect of other
normalizing criteria were not studied.

The third parameter studied was that of rejection
criteria. Here we are interested in setting certain cri-
teria for the final cross-correlation values in order that
the recognition be acceptable. If the recognition is not
acceptable, the character is rejected as being unreadable.
Through the use of rejection criteria, the undetected
error rate (substitutional errors) can be made as small
as desired by making the rejection rate as large as
necessary. The particular rejection criteria considered
required that the maximum correlation value exceed a
particular threshold level and, further, that it be greater
than the next highest correlation value by a prescribed
discrimination level.

In summary, then, the parameters of this study in-
cluded:

1) Centering methods.

2) Penalty areas.

3) Rejection criteria.
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Construction of Probability Matrices

An unnormalized probability matrix for a particular
character is constructed by determining the probability
of occurrence of a mark in each of the elements of the
matrix when the input pattern is that character. In this
study, 50 samples of the pertinent character were used
to construct each probability matrix. Different prob-
ability matrices were, of course, used for the machine
printing and for the hand printing.

Since there is no mechanism for properly centering
the characters in the matrix scanning process, care must
be taken to assure that they are properly centered
before constructing the probability matrix. First,
though, one must decide just what constitutes proper
centering. Since all of the recognition methods con-
cerned maximize a function which is monotonically in-
creasing with the cross-correlation function, it seems
reasonable to define proper centering of an input pat-
tern with respect to the probability matrix as that posi-
tion which maximizes the cross-correlation function be-
tween the two.

However, in initially constructing the probability
matrices, there exist no such matrices which can be
used to center the patterns. Therefore, the process of
construction must be an iterative one. Considering the
case of a particular character, the first step is to con-
struct a probability matrix for that character from the
unshifted sample members. Then the cross-correlation
function (as a function of two-dimensional shift of a
maximum of +5 elements in each direction, or 121
positions) is computed for each sample member com-
pared with the first probability matrix, and its optimum
position with respect to the first probability matrix is
determined by the maximum of the correlation func-
tion. When all of the optimum positions of the sample
members have been found, they are shifted to these
positions, and a new probability matrix is constructed.
This process is repeated between the sample members
and the probability matrix until the elements of the
probability matrix converge to their final values. The
IBM 704 computer was utilized to carry out the itera-
tions.

It seems reasonable that a test of convergence of the
elements of such a matrix might be the auto-correlation
value (the sum of the squares of the probabilities) of
that matrix. That is, the final probability matrix is
that matrix which maximizes the cross-correlation
values of all of the component matrices (the sample
members) with itself; therefore, one might expect that
this also maximizes the auto-correlation value of the
probability matrix.

The auto-correlation value was used to test the con-
vergence of this iteration process. It was indeed a valid
test, as most of the matrix elements for the hand print-
ing converged after seven or eight iterations, and the
machine printing matrix elements converged after three
or four iterations. Each iteration took 30 seconds on
the IBM 704 computer,
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Fig. 3 shows some typical convergence curves for some
of the characters. Figs. 4 and 5 show examples of the
first and final unnormalized probability matrices for a
hand-printed character and for a machine-printed char-
acter. The numbers in these matrices are the actual
number of sample members which contained a mark in
that element; division by 50 yields the probability of
occurrence of a mark.

1.00
/
0.95 l \/
A/ \\\—MACHINE—PRINTED 4
0.90 "
/ -~HAND-PRINTED U
0.85 Jl

—-+-HAND-PRINTED C

OF PROBABILITY MATRIX

o o
N ®
o o
\
——T—

RELATIVE AUTOCORRELATION VALUE

0.70

—

0.65
Q 1 2 3 4 5 6 7 8 9 10

NUMBER OF ITERATIONS

Fig. 3—Convergence curves for probability matrix iteration.

000 0 0 f 23 32 1 1 0 000 0 0 1 0 02 0 {0
000 2 2 841 1212 6 { 1 0 000 4 1 1 9 1818 9 4 3 2
0 4 7 1425323233 20 6 3 f 0 0 1 73744 39322 6 2 2
0 620 20 26 16 11 16 3 6 2 0 0 018 4630 6 8 10 9 & 2 f
3525 2 1 6 2 3 4 3 20 0 8472 0 1 3 1 2 4 0 0
7252442 2 4 1 0 0 0 0 0 0274 3 0 1 0 0 0 0 0 0
5203 12 1 1§ 0 3 2 2 0 023 2 1 f 3 2 2 4 2 0
616 19 12 15 15 14 11 13 § 3 | 0 1626 1510 9 41 8 7 7 4 |
4 9 14 15 {7 15 17 16 12 4 3 0 0 516 23 25 25 24 23 16 9 4 0
2 37 71310 8 6 6 5 0 0 0 4 240 4 1010 8 6§ 2 0 0
2 0 1 2 4 4 5 4 4 1 0 0 0 0 0 2 1 2 21 2 0 0 0
10 1 1 3 1 1 00 1 00 0 0 00 0 00000 0 0
(@) (b)
Fig. 4-—(a) Initial probability matrix for hand-printed C. (b) Final
probability matrix for hand-printed C.
0 0 0 03232 0 0 0 0 0 0 0 0 0 03038 { 0 0 0 0 0
0 0 325392 3 0 0 0 0 0 0 0 02 49 22 0 0 0 0 0 0
0 1133833 8 2 8 1 0 0 0 0 0 94340 1 040 2 0 0 0
0 536 4 12 2 1524 8 0 0 0 0 1395 6 0 930 11 0 0 0
3194331 2 021 4313 0 0 o0 2205 3 0 0134 14 0 0 0
22 44 49 31 20 19 36 48 37T 2 H 0 24 49 50 26 22 21 40 50 36 22 16 0
28 47 49 45 47 46 48 50 4T 46 32 O 35 50 50 50 50 S0 50 S0 50 50 33 0
T 19 17 18 24 19 37 49 34 20 5 0 6 13 41 16 20 16 32 50 37 43 1 0
0 1 0 2 2 11946 23 1 0 0 0 0 0 0 0 0134 2 0 0 0
0 0 0 0 0 0 315 6 0 0 0 000 0 0 0 0 3143 1 0 0 0
0 0 00 0 0D0 00 0 0 O 0 0 0 0 00000 0 0 0
0 0 00 000 0 0 0 0 O 00 0 00 00 00 00 0
() (b)

Fig. 5—(a) Initial probability matrix for machine-printed 4. (b)
Final probability matrix for machine-printed 4,
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Recognition of Hand Printing

As mentioned previously, the primary purpose of
studying hand-printed characters was to determine the
effects of the various parameters. It was found early in
the study that the use of all of the 1800 hand-printed
characters for all of the tests was prohibited by the
computing time required. For instance, a recognition
trial using these characters in which centering is ac-
complished by shifting the input pattern a maximum
of two elements in each direction required six hours of
704 time. Therefore, the determination of the effect of
these parameters was deduced from just the hand-
printed numbers (the same 500 characters which were
used to construct the probability matrices). To process
this subset of the hand-printed characters required
about fifty minutes of computer time under the above
conditions. The optimum values thus found were then
applied to the total set of hand-printed characters and
to the machine-printed numbers.

The graph of Fig. 6 presents the error rates as a func-
tion of the method of centering and the penalty criteria
for the hand-printed numbers.

40
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CENTERING
30
[
r4
w
Q
[ 4
w
S 20}
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« CENTERING
g BY SHIFTING
['4
w
1ol
o | ! | | ! |
o 002 004 006 0.08 0.0 012 014

PENALTY THRESHOLD

Fig. 6—Error rate for various parameters using hand-printed
numbers (500 samples).

Penalty Criteria

The abcissa of Fig. 6 represents the penalty threshold
used in the various tests. Each element with a prob-
ability less than the penalty threshold is assigned a
penalty weight. Hence, the ordinate axis of the graph
corresponds to error rates in which penalty areas were
not used. As discussed earlier, these penalty weights
are negative numbers which are constant in each
matrix, and which are adjusted so that the sum of their
squares in a particular matrix is unity.

In Fig. 6 the effect is shown of the penalty threshold
on the per cent error. Note that the error is a minimum
for a penalty threshold of 0.04,
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Centering

The two methods of centering which were studied
were described earlier. The particulars of centering by
shifting warrant comment. In this case, to minimize
simulation time, the input pattern was first roughly
aligned with a probability matrix by using center-of-
gravity alignment. Then the input pattern was shifted
a maximum of two elements in all horizontal and ver-
tical directions (25 positions). The maximum value of
of the correlation function (a function of position) was
chosen to represent the degree of match between the
input pattern and that probability matrix to which it
was being compared.

The two methods of centering were studied for the
case of zero penalty threshold. The results are shown
in Fig. 6, in which it is seen that centering by shifting
is significantly better. Hence, whatever advantages
center-of-gravity centering might have had (as dis-
cussed earlier) were not borne out by these results.

Rejection Criteria

The two rejection criteria studied, in review, are cri-
teria applied to the resulting correlation values which
determine an acceptable recognition. One criterion is a
threshold level below which a score is rejected. The
other is a discrimination level which requires that the
top score and the next highest score be separated by a
certain amount. The effect of various recognition criteria
on hand-printed numbers was studied in detail for the
case of a penalty threshold of 0.1 and centering by
shifting.

Fig. 7(a) shows the dependence of the over-all rejec-
tion rate on the threshold level (7°) and the discrimina-
tion level (D). Fig. 7(b) illustrates the dependence of
the undetected (substitutional) error rate on the rejec-
tion parameters (the per cent undetected error rate is
the per cent of the whole sample).

It is of interest to plot the loci of constant unde-
tected error rate on these graphs so that the rejection
rate which is required to achieve a desired maximum
undetected error rate can be discovered. In Fig. 7(b),
these loci are simply horizontal lines. Some loci for
particular error rates are shown dotted. The intersec-
tions of these loci with lines of constant D can be used
to plot similar loci on the graph of Fig. 7(a), where they
are shown again with dotted lines.

The interesting result of this construction, as seen
from Fig. 7(a), is that the minimum rejection rate for
a prescribed error rate occurs for 77=0 and D a particu-
lar value. That is, for this particular set of samples, the
threshold level is meaningless as a criterion for rejec-
tion. Evidently, characters with very low maximum
correlation values should still be accepted as long as
the difference between the highest and next highest cor-
relation value is sufficient.

Using, then, the optimum values of the recognition
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Fig. 7—Per cent rejection and per cent undetected errors as a function
of the rejection parameters. D =discrimination. Penalty thresh-
old=0.1.

criteria (i.e., T'=0), the dependence of undetected
error rate on rejection rate can be determined. This
relation, for a penalty threshold of 0.1, is shown in the
graph of Fig. 8 by the points enclosed in circles. Note
that the resulting curve is approximately a straight line
in the region considered.

Assuming then a linear dependence between error
rate and rejection rate, similar curves for other penalty
thresholds were determined. Shown in Fig. 8 as a heavy
line are those particular values which give a minimum
rejection rate for a particular error rate, and also the
curve for a penalty threshold of 0.04. It was this latter
value that yielded the lowest error rate before rejection
criteria were applied (see Fig. 6).

Some interesting points can be noted from Fig. 8:

1) The relation between undetected error rate and
rejection rate for a given penalty threshold is
approximately linear in regions of low error rate,
as previously noted.
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2) The penalty threshold value for which the lowest
real error rate is attained is not necessarily opti-
mum when one considers rejection criteria.

3) The particular penalty threshold which is opti-
mum when rejection criteria are used is a function
of the undetected error rate desired.

Examples of Hand-Printed Samples

Although the primary purpose of studying hand
printing was to ascertain the effects of certain parame-
ters on the recognition ability of this method, it is of
interest to determine just how well the optimum
parameters would do on hand printing. Consequently,
this method, with centering by shifting and a penalty
threshold of 0.04, was applied to the hand-printed
alphanumeric alphabet of 1800 samples. No rejection
criteria were applied. The total recognition rate was
77.2 per cent.

In Fig. 9 are shown some of the actual input data
used. Shown in Fig. 10(a) are some matrix forms of
high quality and degraded characters which were read
correctly. In Fig. 10(b) are matrix forms of some char-
acters read incorrectly. The entries beneath the ma-
trices in Fig. 10(a) show the first and second choices
and their correlation values (the first choices are all
correct). Below the matrices in Fig. 10(b) are the first
choices and their correlation values, as well as the
actual identity of the characters with their associated
correlation values.

A note of caution is necessary here. These results for
the hand printing are based on the same data which were
used to determine the probability matrices. It is quite
doubtful that 50 alphabets comprise a large sample of
hand-printed characters. Hence, one would expect a
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Fig. 9—Some samples of the hand-printed data.

0000000000O0O 00000000O0O0O0O
00000000000 O 000000000O00O0O0
0oo0ft 111411 1\0o0O 000000/t 1100 OO0
oof|tfoooo0o0)1 1loo 00000/1/6 01000
0011100 00 0/1 1 oft 1o oo
oot t11111(0ooo oot 10ooifoooo
oot 1000\t & 100 00J1 11 11i1loooo0
oot 1jlo0 00t 1fOO oft 1f/0 00010000
00t 1l000ft 1 /000 1t 1{0000/1/00 000
oo\l 1 111 1/0000 1t 1l000/i/000000
0000000000O0GOO 111110000000
B 0.782 00000000O0O0GO0O
D 0.713 B 0.705
N 0.673
000000O0OO(foo0O 0o 00
00000000 o 00 00
00000 000(io oo 00
oo ojijooo oo 00
00 000 00 00
00 000 00 oo
0o 0000 0o 00
0 00000 0o 00
0 000000 o 00
0000000 o 0o
0000000000O0O0O 0 00
0000000O0O0OOO
B 0.636 B 0.656
N 0.619 D 0.582

000000000000 000000000000
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ooffflooooooffoo 0000111111 1o
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oojiJjoooo(l(@ooo 00004140
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0 oo(\%@ooooo 00111000
ocooo(ifoocoooo oot 111 ifoooo0o0
0C00000000O0GOGO 0000000000OO
000000000D0ODO 000000000000

U 0.500 R 0.804

B 0.474 B 0.802
000000000000 00000000000 O
0000000000OO 000000000O0OCO
00t 1111 NooOO 00000000000OC O
00I|1000 o)oooo 000
001@o/i 11 1ooo 0000 oooi:ooo
ooft 1 11 1folyo®o 0000 00000
oolt (00000000 000 00000
oot t 11000011 000 06000
oolt 1 1 171 1 11 4fo 00 0000
00000000000 O 00 000
000000000000 00 0000
000000000000O 0000000000O0O

Z 0.749 Z 0.596

B 0.742 B 0.577

(a)

(b)

Fig. 10—(a) Hand-printed B’s recognized correctly. (b) Hand-printed B’s recognized incorrectly.

Fig. 11—Sample of IBM 407 printing.

significantly lower recognition rate for input characters
other than the original data. However, it is possible that
sufficient writing constraints on the originator may exist
which would yield a usable recognition rate with this
method. A finer quantization might also give some im-
provement.

Machine Printing

Parameters: As a consequence of the above investiga-
tion, recognition with centering by shifting was applied
to the 1000 machine-printed numbers, a sample of
which is shown in Fig. 11. The penalty threshold was

varied from 0 to 0.06 to find an optimum value, since
there was no optimum value clearly indicated by the
previous investigation. The minimum rejection criteria
required to detect all errors was applied. In this case,
the number of errors was so small that a perusal of the
data showed that a rejection threshold 7" of zero was
still optimum.

Results

The results of using the above parameters are shown
in Fig. 12. The discrimination level D (7°=0) required
at each point is shown. It is clear from this graph that
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0.08

Fig. 12—Error and rejection rates for machine-printed numbers.
D =discrimination level.

the optimum penalty threshold is 0.02, for which a re-
jection rate of 0.7 per cent guarantees no errors. With-
out rejection, the error rate is 0.3 per cent at this point.

Of the set of 1000 machine-printed members studied,
500 were used to construct the probability matrices.
Since one might expect these characters to do better in
the recognition process than the remaining 500, it is of
interest to compare the results of the two sample sub-
sets. For the subset used to construct the probability
matrices, the per cent error was 0.2 per cent and the
per cent rejection was 0.8 per cent. For the remaining
samples, the per cent error was 0.4 per cent and the per
cent rejection was 0.6 per cent. Since there is little
difference between these results, the results of either
subset or of the complete set should be valid.

Error Analysts

Because of the small number of errors in the optimum
case for machine printing, each one can be examined in
detail. The matrix forms of some normal characters
are shown in Fig. 13. In Figs. 14 and 15 are shown the
seven rejected numbers, the ones in Fig. 14 being the
ones which were incorrectly recognized. Below these
matrix forms are correlation values similar to those of
Fig. 10.

The errors in Figs. 14(c) and 15) are explainable as
centering or quantizing errors. The reasons for the
errors shown in Fig. 14(a) and (b) are not clearly under-
stood.

Fig. 16 (next page) shows some degraded characters
which were recognized correctly, along with the first and
second choice correlation values.
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F0000000000DO 000000000000
0000t 111 1\000 000 00
000 0jt 11111 1)0 000 00
ooo|1|1o 000 00
ooolt tloooojt t)o 000 00
0000)t 1 111 1(00 000 00
000/T 1 1 111100 000 o
00fi 1foc o000 0]t 10 000 0
ot 1 1looooojt t]o 000 00
oolu t Noooft t 1jo 0 0o
o000\l 1 t11fo0o0 000000000000
©000000000000O 00000000000CO
8 5
Fig. 13—Examples of normal machine-printed characters.
00
0.0
0000 0
0000 0o
0000 00
0000 000
0000 000
0000 0000
0000 0000
0000 0000
000000000000O
000000000000
2 0.695
7 0,675
(a)
000000000000 ) 0000
0oo0o00000ft 1 1)oo o 0000
oooo0ft111fooo00 ) 0000
0000j11f000000O 0 0000
0001 10000000 0 0000
000J1 t 4111000 0 1100
oft 1 1fooo\t 1t T\0o0 [ 1 1joo
o[1 100000 0]t 1]0 ) 1fo oo
olt 110000001 1)o0 ) 5000
oo\ttt 1111100 0 0000
000000000000 0 0000
000000000000 ) 0000
8 0709
6 0690
(b)
Fig. 14—Machine-printed numbers recognized incorrectly.
000000000000 oo 000
0o/t 1 110 NOOCOO oo 000
o 1 1t 111 14 11)0 00 000
ocoo\foo ool 1 Yo 00 0o0o
000000000100 00 000
ooo(i 1)oo0ofifoo0o0 ol fo o
0000000/f HfOOO o1 1joo
000000/7T1/0000 ol 1joo
(Moo 1 rifooooo ) 000
0000) 1100000 0o 000
coooll 1 1Jjooooo 00 000
(Doooooocoo0o000 00 000
7 0.528
2 0515
000000000000 0] 00000
oo(o 0000 Of1 0 00000
@ooooo::)oooo1 o 00000
00000000O0O0O|t 0 00000
000000000 O0O0] 0 00000
00000000O0OO|[ 0 00000
000000/9)0 o0 0\t o 00000
ooooorooooo ©ooo00o0
00 00000 0o 00000000
600000000000 00000000000 O
000000000000 0C000000000O0O
000000000000O 000000000000
0 0.238 0 0.603
2 o0.218 3 0.591

Fig. 15—Machine-printed numbers recognized correctly but rejected
along with the numbers of Fig. 14.
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000000000000 0000j1 1l000CO0O0CO
ocoof1 11 1t 1 1000 oft 1t 111100000
00O0|tjf0 00O\l 1)JOO 1/0 0000000000
000(1|/0 0000000 100000000000
000yl 0o 000000 1 N0 O O O0OQJ1l0 00O
0000)1 11111000 o\l 1t t1 111000
00|t 1/JOO OO\ 1©OO 0 0 0 0\lIfO 0)1f0O O OO
00|I10 000O0O0Oft 1t 1JOO OO
0 oll 1\0O OO0 O0O0jJ1/0 O 000j1 11/OO0OO0OO0O0CO
oooit 11t t11f0o0O0 ool ' 1/OOOO0O0O0O
0000000000O0O 00000000CO0O0CO0O
000000000000 0000000000O0O0

8 0.791 9 o.811

6 0.628 3 0.556
0 00O00CO 0 0o/1\Q/t 1| 0/T 110 0 O
égj 00000 o/t t 1 1111 11000
o 00000 t1 111111 1yoo0o
o 000O00O0 t1 1111110000
o] 00000 Tt 111 1111 \NOODO
o 00000 111ttt 11100
0 00000 0 0O0O\1fOOOC\t 1t 110 O
00000 00000000t 1{0OO
000000 000000/ 1 I 1/JOO
0000 00000O0OO0O o4+t 111 1t 1/f0o00O0
00000000000 O0 oo\t t 1 1Jooooo0o0
00000000O0OCO0O 00000000O00O0O

0 o.681 5 0.615

3 0.593 3 0.560

Fig. 16—Some degraded machine-printed numbers
recognized correctly.

Summary of Results

The important results of this study are summarized
in Table 1. It seems that this method should be ap-
plicable to the reading of machine-printed characters,
and that, with proper engineering effort, the error rate
and rejection rate could be traded for one another and
could be made quite small. The economical implementa-
tion which can be obtained by using analog techniques
is described in the next section.

TABLE 1
SUMMARY OF MAJOR RECOGNITION RESULTS

Hand Printing (Alphanumerics)*

Per Cent Recognition, Alphanumerics 77.2
Per Cent Recognition, Numbers 83.0
Machine Printing (Numerics)t
Per Cent Recognition 99.7
Per Cent Rejection for no
Undetected Errors 0.7

* Results based on the same data used to determine the probabil-
ity matrices (1800 characters total).

1 Results based partly on data used to determine the probability
matrices, and partly on additional data (1000 characters total).

AN OprTIiCcAL IMPLEMENTATION

Optical Correlation

The character recognition method described in this
paper can be economically implemented by electro-
optical techniques. The implementation consists es-
sentially of a transparency-photomultiplier combina-~
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tion for each character. The transparency represents
the average character. When the image of the un-
known character is focused upon the transparency, the
transmitted light, measured by the photomultiplier, is
a function of the desired cross-correlation value. (This
is similar to comparison techniques described by Davis
and Norwine® and by Bozeman.?)

Consider a piece of film in which the transparency at
each point is proportional to the probability of occur-
rence of a mark at that point for a particular character.
That is, the transparency of the film represents an
average character as previously described. Let some
input character be focused upon the transparency (Fig.
17). Then the light transmitted through the transpar-
ency at a point is a function of the product of the re-
flectance of the paper and the transmittance of the film
at that point. That is, let

a(x, y) =absorption distribution of input pattern,

r(x, v) =reflection distribution of input pattern
=1 _a(xv y)y

t(x, y) = transmission distribution of film,

i(x, y) =light intensity transmitted through film.

PHOTOMULT IPLIER

DOCUMENT

(
TRANSPARENCY”

ILLUMINATING
SOURCE
Fig. 17—An optical correlation channel.

Then,
i(x, y) ~ r(x, y)t(x, y). 9)

If the input pattern is shifted an amount x=0, y=p
with respect to the film then the total light flux, I(e, p),
transmitted through the film is

1o, 0~ [ f r(x+ 0,y + p)ix, dxdy  (10)

or

I(o, p) ~ f f (x, y)dxdy

5 K. H. Davis and A. C. Norwine, U. S. Patent No. 2,646,465

July 21, 1953.
¢ J. W. Bozeman, U. S. Patent No. 2,898,576; August 4, 1959.
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— ff a(x + o,y + p)t(x, y)dxdy, (9)

I(U, P) o~ T = @’(o', P), (10)

where

T=a constant, different for each character
(actually the sum of the probabilities of the
probability matrix).

P’ (o, p) =the modified cross-correlation function be-
tween a(x, y) and t(x, y) as a function of

the two-dimensional shift ¢, $, analogous
to (5).

Since a(x, y) represents the mark distribution of the
input pattern and #(x, y) represents a probability ma-
trix, we are interested in ®’(s, p), the cross-correla-
tion function between the input pattern and a given
probability matrix.

I(g, p) can be measured by a photomultiplier (Fig. 17)
which views the entire field of the film. Subtracting T°
from the output of the photomultiplier will then cause
the output to be proportional to the cross-correlation
function ®. This adjustment is easily made by placing
a white piece of paper in the field of view. Then I~T,
a(x, y) being arbitrarily taken as zero for white paper.
The compensating voltage is then adjusted to make the
photocell output zero, making /~®’ thereafter.

Another normalization is required. It is important
that the probability matrices be normalized to some
common value, as discussed previously, such that

ff t*(x, y)dxdy = N.

This normalization is made (once the previous com-
pensation for 7" has been made) by adjusting the gain
of the photochannel.

Penalty Areas

One problem which appears is that of handling
penalty areas. Penalty areas are regions of low prob-
ability in the probability matrix to which negative
weights are assigned. Obviously, one cannot obtain a
negative transmittance with a piece of film.

However, note that a constant can be added to every
element of every probability matrix in the system. If C
is the value of this constant, and P the number of
marked elements in the input pattern, then this modi-
fication simply causes a constant (PC) to be added to
every cross-correlation value. The ordering of the cross-
correlation values is not affected and the recognition is
still valid.

Therefore, a positive C can be chosen so that its
magnitude is equal to that of the greatest penalty
weight. The elements of all probability matrices are
then assured to be positive after the addition of C.
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A Film Correlator

In Fig. 18 a transparency which might be used in an
optical correlator is shown. It represents the prob-
ability matrix for a machine-printed “2” (from the
IBM 704 line printer) with penalty weights in areas of
zero probability.

Fig. 18—A transparency for an optical correlator.

It was constructed by extending a 12 X 12 probability
matrix (determined by the IBM 704 computer) to a
36 X 36 matrix by interpolation. A constant was added
to each element so that the penalty areas all had zero
weight. Then each element in the matrix was filled in
with ink so that the proportion of area left unfilled was
the ratio of the weight of that element to the largest
weight in the matrix. Hence, unit probability elements
are completely open, whereas zero probability elements
are filled in completely. Note that, although this ex-
ample indicates quantization, the quantization can be
made arbitrarily small at the expense of additional
computer time.

A Recognition System

The basic components of a character recognition
system using optical correlation are shown in Fig. 19 for
the case of four channels. The extension to z channels is
obvious. The combination of the document motion and
rotating mirror creates the required two-dimensional
shift of the input pattern with respect to each prob-
ability matrix. The optical correlator has been dis-
cussed above. Each feeds an analog storage device,
which, in turn, drives the comparator. The analog
storage consists simply of a diode fed capacitor. A
possible basic form of the comparator is shown in Fig.
19; briefly only that transistor with the largest base
voltage will be conducting when gated. Note that the
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PHOTOMULTIPLIER i
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Fig. 19—A character-recognition system using optical
correlation.
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optics are arranged so that each light path goes through
the same number of half-silvered mirrors and lenses to
equalize loss, although this is not a fundamental re-
quirement. Additional circuitry is of course required for
the various control functions, such as timing, rejection
decisions, and resetting the analog store.

CONCLUSION

A character recognition method capable of an eco-
nomical analog implementation using optical techniques
has been proposed. This method has been simulated on
the IBM 704 computer and has been shown to be ap-
plicable to machine printing and perhaps to con-
strained hand printing. The author feels that this
recognition method exemplifies some of the many ad-
vantages (such as low cost and lack of quantizing
error) that can be gained by considering analog im-
plementation in the construction of recognition and
allied equipment.
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The Hall-Effect Analog Multiplier’

G. KOVATCH{, STUDENT MEMBER, IRE, AND W. E. MESERVE{, SENIOR MEMBER, IRE

Summary—The application of the Hall effect to a general-purpose
four-quadrant multiplier is discussed. Circuit diagrams for the tran-
sistor amplifiers are given. An evaluation of the experimental results
is given for a breadboard model of the multiplier. Static accuracies
on the order of 1 per cent to 3 per cent are obtained for the Hall chan-
nel and the magnetic channel, respectively. Bandwidths of 25 kc and
1.3 ke are achieved for the Hall channel and the magnetic channel,
respectively.

INTRODUCTION

HIS PAPER discusses an analog multiplier
T which was constructed using an indium arsenide
Hall-effect element as the basic multiplying de-
vice. As is widely known today, a direct means of
analog multiplication is obtained by subjecting the
charge carriers in a current-carrying semiconductor or

* Received by the PGEC, February 16, 1961.
T Cornell University, Ithaca, N.Y.

conductor to the action of a magnetic field.!=® The volt-
age which is developed in the material (the Hall volt-
age) is in a direction mutually perpendicular to the

1'W. Shockley, “Electrons and Holes in Semiconductors,” D. Van
Nostrand Co., Inc., Princeton, N. J.; 1950.

2 Q. Lindberg, “Hall effect,” Proc IRE, vol. 40, pp. 1414-1419;
November, 1952.

3]. M. Ross, E. W. Saker, and N. A. C. Thompson, “The Hall
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