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fore been carried out with signals simulating the worst- The performance of the circuit as described above is
case SNR conditions' in large-capacity matrices, in limited primarily by the frequency characteristics of
order to assess the limits in the capability of the cir- the transistors used. Employing transistors with higher
cuit. It has been found that, with fixed-level clipping cutoff frequencies and adequate current-amplification
and with the buffer-register loading as in normal opera- factors, the circuit should be able to exhibit the same
tion, the circuit should be capable of processing re- advantages at higher repetition rates and shorter cycle
liably (with considerable margin) a matrix with 16,384 times.
or more cores.9 With noise-matched clipping, it should
be able to sense a matrix with 32,768 or more cores.10 CONCLUSION
(Intermediate mnatrix sizes were not tested because of The paper has discussed in detail the practicability of
their obvious lack of practical significance.) With a improving the performance of the sense-amplifier cir-
simulated matrix size of 65,536 cores, the circuit fails cuit for conventional ferrite-core memories through
to read reliably, and it has been found that here the the principles of pre-amplification strobing and noise-
worst-case SNR has practically reached the theoretical matched clipping. A circuit incorporating these prin-
absolute lower-limit value of 1:1. Measurements have ciples and achieving notable reliability and economy
indicated that the circuit requires a minimum usable has been described. It has shown that the circuit is
signal area of about 5 mv4psec for the reliable setting of suitable for working with short cycle times and low
the buffer register," and that the worst-case SNR's in SNR values, and can be used to process matrices of
the tested cases of simulation for 16,384 and 32,768 much larger sizes than the currently-accepted apparent
cores are about 2.2: 1 and 1.8:1 respectively. upper limit of about 4096 cores. It is believed that the

application of these principles, as illustrated by the
9 This is simulated with 1 fully-excited and 254 (in two groups of sense-amplifier circuit described here, can also be ex-

127) partially-excited cores. The most critical discrimination is be- tended with advantage to other types of circuits which
tween the signal of a "1" superposed by opposing noises from 127 have the similar task of retrieving information from
partially-excited cores containing "1" and supporting noises from 127
others containing "0", and that of an "0" superposed by supporting signals containing nonsporadic disturbances with cri-
noises from 127 cores containing "1" and opposing noises from 127 tical SNR values.
others containing "O".

'0 This is simulated with 1 fully-excited and 382 (in two groups of
191) partially-excited cores, in a similar manner as above. ACKNOWLEDGMENT
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A Recognition Method Using NeighborDependence*
C. K. CHOWt, MEMBER, IRE

Summary-Within the framework of an early paper' which con- work consists of three levels-a layer of AND gates, a set of linear
siders character recognition as a statistical decision problem, the summing networks in parallel, and a maximum selection circuit.
detailed stucture of a recognition system can be systematically Formulas for weights or recognition parameters are also derived, as
derived from the functional form of probability distributions. A logarithms of ratios of conditional probabilities. These formulas lead
binary matrix representation of signal is used in this paper. A near- to a straightforward procedure of estimating weights from sample
est-neighbor dependence method is obtained by going beyond the characters, which are then used in subsequent recognition.
usual assumption of statistical independence. The recognition net- Simulation of the recognition method is performed on a digital

computer. The program consists of two main operations-estimation
of parameters from sample characters, and recognition using these
estimated values. The experimental results indicate that the effect

* Received April 21, 1962. of neighbor dependence upon recognition performance is significant.
t Burroughs Corporation, Paoli, Pa. On the basis of a rather small sample of 50 sets of hand-printed
lC. K. Chow, "An optimum character recognition system using

decision functions," IRE TRANS. ON ELECTRONIC COMPUTERS, vol. alphanumeric characters, the recognition performance of the nearest-
EC-6, pp. 247-254; December, 1957. neighbor method compares favorably with other recognition schemes.
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INTRODUCTION ample, if the noise is additive and Gaussian, then the

I N THE DESIGN of recognition systems, there are correlation system with proper bias' has the miaximum
two principal areas of investigation: the extraction rate of correct recognition. This paper derives from the
of characteristic features from patterns and the functional form of probability distributions a recogni-

synthesis of recognition networks. For any given rec- tion method which utilizes the nonlinear relations
ognition task, system performance depends upon effec- among signals. Specifically, the detailed structure of a

tive solution of both areas. recognition network using neighbor dependence is ob-

The first problemn, that of deriving efficient sets of tained. Some experimiiental results are reported.
features, not only lhas not been solved, but has not as ASSITMPTIONS AND NOTATIONS
yet been properly formiiulated with sufficient clarity
and completeness. A good general discussion of this The recognition problem iS considered here to be a
subject has been given, among other topics of artificial problem of testing multiple hypotheses in statistical
intelligence, by 1insky.2 (A large number of pattern inference. Common to all decision problems, the es-

recognition references is included in a bibliography also sential elements are: 1) a priori information, 2) a de-
compiled by Minsky.3) In mnany studies on character cision space or set of admissible decisions, 3) observa-
recognition, the design of features is based primarily tion, or signal derived from the input pattern, 4) a

upon the engineer's ingenuity and intuition. Recently, decision rule, and 5) a measure of performance, or

Lewis4 considered the problem of selecting features criterion of opti mality.
from a set of features supplied bv the designer; one The basic problems in recognition are proper choices
major restriction on the application of his work is that of a signal space and its coordinate system (namiiely,
"the selection and the decision process both assume the characteristic measurement of characters), and of a

characteristics to be statistically independent." decision rule. Generally speaking, a decision rule is a

The present paper considers the problemi of syn- map from the signal space to the decision space; the

thesizing recognition networks; the principal concern decision rule associates a unique decision with each
is the derivation of the network structure by going signal. Equivalently, the rule partitions the signal space

beyond the usual assumption of statistical independ- into disjoint regions, and recognition is achieved by
ence anmong the characteristic features. Not onlv is the ascertaining in which region the signal representing the
problem itself of interest, but, in addition, the results unknown pattern lies. The structure of recognition net-

are useful in the selection of features, in that the virtue works is of principal concern in this paper.
of features for reliable recognition must be ultimatelv For convenience, the problem of rejection is not
evaluated in conjunction with some recognition net- elaborated upon here; the only admissible decisions
work. are those identifying an unknown character as one of

Since the underlying principle and mathematical der- the given alphabet. Signal preprocessings, which are

ivation do not intrinsically depend upon the nature of uniform with respect to all characters, or are independ-
the given features, a most primiiitive representation of ent of the class to which the pattern belongs, are not

pattern is used in this paper. It is also believed that considered here. In effect, the assumption is made that
the use of primitive features provides a more stringent such preprocessings as size normalization and registra-
test of the recognition method. A pattern is represented tionIhave already been performed.
here by a two-dimensional array of elements, each ele- Consider an alphabet of c characters, ay a2, ,at.
ment denoting the presence or absence of an ink mark A character is represented in this paper by a two-dimen-
at a particular location. The adoption of binary fea- sional array of elements, with each of which a binary
tures is essential here to achieve relatively simple random variable vii is associated. Arbitrarily, let ONE
networks. and ZERO denote the presence and absence, respec-
The recognition problem is considered as a statistical tively, of an ink mark at a particular location. The

decision problem. The functional structure of optimum signal space, therefore, consists of all vertices of an

systems has been previously derived,' and the detailed n-dimensional cube, each pattern being represented by
structure of the recognition network depends upon the a vertex of the cube. Each character as (i = 1, 2, . , c)
a priori distribution of characters and conditional prob- is a subset of the vertices, or a class of patterns.
ability distributions of patterns. (A character is con- Let rXs be the size of the array. The signal corre-
sidered here as a class of patterns such that all patterns sponding to a spatial pattern is represented by a binary
in that class are identified as that character.) For ex- matrix v; v= [vi1], 1 .i<r and 1 .j.s. The joint

probability distribution of v,<'s depends upon which

2 M Ml1SY,SteS OWad rt;SCaI llellgeCeSPRC. RE character the pattern is dlerived from. Let P(v|a) e
vol. 49, pp. 8-30; January, 1961. note the (discrete) condlitional probability of pattern v,

3 I. Minsky, "A selected descriptor-indexed bibliography to the
literature on artificial intelligence," IRE TRANS. ON HUMAN FACTORS
IN ELE:CTRONICS, VOl. HFE-2, PP. 39-55; March, 1961.

4P. M. Lewis, "The characteristic selection problem in recognition 5C. K. Chow, "Comments on optimum character recognition
systemTs," IR{E TRANS. ON INFORMATION THEORY, vol. ITr-8, pp. 171- systems," IRE TRANS. ON ELECTRONIC COMPUTERS (Correspondence),
178; February, 1962. vol. EC-8, p. 230; June, 1959.
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given that the character is at. Let p = (PI, P2, PC) OBSERVED SIGNAL v

be the distribution of characters; Pi is the a priori 1 t ; X
probability that character at occurs. Evidently,
P1±P2 +P,,=t1, and pi>O. Information concern-T
ing the distribution p and the conditional probabilities P(v a1) . . P(vla) . . P(vic)d
P(v| ai)'s constitutes the a priori information of the
recognition system. The designer's knowledge of these
must be built into the optimunm system. The criterion 4. . . . (
of minimum error rate is used. The functional diagramn
of the optimum system, which has been derived pre- pPi (vI1) Pip (VIa1) PC(v a')
viously, is depicted in Fig. 1. The system first computes, 4 4 4
based upon a priori information, the set of conditional MAXIMUM DETECTION
probabilities P(v aj)'s for the input signal v, weights the l l
results by the corresponding a priori probabilities, pi's, di di d*
selects the largest one of the piP(vI a)'s, and, finally,
identifies the pattern as the character ak, if PkP(VI ak) is Fig. 1-Minimum error-rate system.
the largest.
The detailed structure of the network depends upon

the functional form of the conditional distributions, i-1j)
P(va|a)'s. For example, if the vij's (the elements of
matrix v), given the character, are statistically inde-
pendent, then P(v ak) is simply the product of P(vij| ak), (i,j-1I ( i.i ) (ij
and, consequently, after a logarithmic transformiation,
the recognition network consists of a set of linear sum- +1.,
ming networks.

In general, the point signals, vii's, are not independ- Fig. 2 Nearest neighbors.
ent, but depend upon each other as well as upon their
locations in the matrix and the character class. The
resultant structure, therefore, is more complicated. To (north and west) boundary points of the character.
illustrate how recognition networks and formulas for The assumption of nearest-neighbor dependence is
weights may be derived from the functional form of prompted by an intuition that this type of dependence
probability distributions, it is assumed that each point is dominant in characters. Of course, a larger neighbor-
signal may depend upon its nearest neighboring points hood could be used, thus extending the range of de-
as well as upon the character class and the location of pendence. The derivation of recognition networks for a
the point within that character. Fig. 2 illustrates larger range of neighbor dependence is the same as that
graphically the location (i, j) and its four nearest for the nearest-neighbor model. Both networks have
neighbors. the same structure, which consists of a layer of AND
To be more precise, it is assumed that the conditional gates, a set of weighting and summing networks, and a

distribution is of the following form: maximum selection network. The size of the networks
increases exponentially with the size of the neighbor-

P(z' | Uk) = rI P(vt | vt,,j-; v -1,,j; ak) (1) hood (or the range of dependence); however, for a given
i<j<r range of dependence, the size of the networks increases

linearly with the size of the signal matrix. In practice,
with the definition that the exact probability distributions are generally un-

7'0j = 1i = 0, for all i and j known; one of the designer's tasks is to collect statis-
tical information on these distributions. The use of a

and neighbor-dependence model should be considered as an

P(vi,j vi,j-l; rvij; ak) approximation to the unknown distribution. By varying
P( I ) f - - 1 ~~~~therange of dependence, a sequence of successive ap-P(viUk)1 if a 1 1- - proximating structures can be obtained. Using the

= lP(vli~ vi,>i; Uk) if i = 1 andj1 > 1 F. (2) available statistical data, thae designer can thlen select a

LP(vri z1,1; ak) if i > 1 andj = 1J particular structure from this sequence to achieve a
reasonable compromise between the size or cost of the

The general term in (1) includes only the north and system and the recognition performance required.
west neighbors (above and to the left); the other two
neighbors are not explicitly needed. The dependence DERIVATION OF NEAREST-NEIGHBOR MIODEL
propagates through the neighbors in this fashion. Eq. For a given character (k) and location (i, j), the
(2) is simply a convenient notation to describe the general term P(vij| vi_1,j; vt , l; ak) assumes one of
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eight possible values, depending upon the states of selects the algebraically largest. Using (1) and (4), the
v j and the neighbors v_- j and vj,, . These eight following expression, after some algebraic manipula-
values, summarized in Table I, are denoted as 3m(i, j, k) tions, is obtained:
and Pym(i, j, k), with m = 0, 1, 2, or 3. Subscript m is used
to designate the state of the two neighbors, and is T(v ak) = In PkP(V ak)
arbitrarily chosen as the decimal equivalent of the = b(k) + E w1(i,j, k)v,j
binary code formed by the states of the two neighbors. j

The values .3m(i, j, k) and ym(i, j, k) are, respectively, + E w2(i,j, k)vij,zvij,l
the conditional probabilities that vij is ZERO (or white) ij

and ONE (or black), given that the character is ak, + E W3(i,j, k)vz,jv&iij , (5)
and given that the states of two neighbors are m. i,j

+ E W4(i, j, k)v,j_1vj_,j
TABLE I ij

DEFINITION OF PARAMETERS + E w5(i, j, k) Vi,ji,;jVj-,j|
i,j

Poit Nearest Neighbor m vi,-, ak) where summation indices i and j run through the entire

____ _,-_1 character field from 1 to r and s, respectively. The bias
O 0 0 0 L o(i, j, k) b(k) and weights w's are given by the following equa-
o 0 1 1 01(i, j, k) tion:o 1 0 2 _2(i, j, k)
o i 3 33(i, j, k)
1 0 0 0 yo(i, j, k) b(k) =lnpk +E Inl0((i,j, k)

I 0 1 1 ~~~~~~yiij,k)i,
I1 0 2 7~~~~~~2(i,j, k)y(ijk)3(,j+ 1k) i(--1,, )
I 3 7~~~~~~~~3(i,j, k) wi(i,Ij, k) In 0i,k2ij+1k0(i t k

/3o(i,j, k)3oo(i,j + 1, k)o3o(i + 1,], k)
Paramleters ,B's and zy's are probabilities, and there- fo(i,j, k)>,2(i,j, k)

fore non-negative, and are related as w2(i,j, k) =In 70(i j, k)ln2(ij k)
/3m(i, j, k) + -ym(i, j, k) = 1, (3) yo(i,j, k)-y3(i,j, k) (6)

for all m, i, j, and k. In general, the values of /3m and Ty W3(i,J, k) In

-0(ij k)-1(ij k)
vary from character to character and from point to do(i j k)f3(i j, k)
point. W4(i, j, k) In

Since all vij's are either 0 or 1, the probability func- /1(i, j, k)/2(i, j, k)
tion may be expressed as a product of four factors: 70(ij, k)01(i,j, k)#2(ij, k)Y3(ij, k)

P(vij |vj,j_,; v£_- j; ak)
w5i j,k I

o(i,j, k)yj(i, j, k)Y2(i, j, k),03(i, j, k) J

ij, k) [7(it, k) ]L (l-vijil) (1-v L,j) l'To accommodate the boundary points, the following
L/o(i jy k) i definitions are used in (6):

j, k) F 71(i, j, k) 1-i t(1_Nij-i)vri-ij /2(i,S+ 1, k) =

*<,BI(l, k) i j,k) (4) '30(i, s + 1, k)
7

fr.. Fy~_7(i,j~k) ]vijj' viJ-1(--V)ij1- and (7){p2 , L /32(i, vi, k) ] } and k1(r + 1,j, k)

j,k)[3(i,j, k) ]-ii)j Vj,j-1
ViI

j30(r + 1,j, k) =*{3(i, j, k) [3(i, .j k) -]}- - =1

for all i, j, and k.
T'he recognition system is to compute, for the uni- Because of neighbor depenidence, T(v ak) is not a

known pattern v, the conditional probabilities PkP(v ak), linear function of v's, but, as indicated in (5), is a
k= 1, 2, 3, , c, and then select the largest probabil- weighted sum ofvI" is and the double and triple prod-
ity. Eqs. (1) and (4) (or Table I) may be used directly, ucts of vi1's. The weights are logarithms of ratios of
or equivalently, any monotonic function of pkP(v ak) conditional probabilities /3's and y's. The first term on
may be computed, and the (algebraically) largest the right-hand side of (5) represents a constant bias.
probability selected. An inspection of (4) suggests the If the assumption of nearest-neighbor dependence is
use of a logarithmic transformation to facilitate net- valid, then the decision rule given in (5) with the weights
work mechanization. Since ln X is a monotonically inf given in (6) is optimum. On the other hand, if the
creasing function of x, the system remains optimum, nearest-neighbor model serves merely as an approxima-
if it computes in pkP(v| ak)'s denoted as T(vUka)'5, and tion to the unknown distribution, then the formulas (6)



1962 Chow: A Recognition Method Using Neighbor Dependence 687

do not necessarily yield the best possible values. It is to SIGNAL MATRIX
be noted that, if the range of dependence were to be
increased, products of higher orders would appear in

0 lo*

the expression for T. AND GATES

A NEAREST-NEIGHBOR NETWORK l l 4

A mechanization of the nearest-neighbor system,
based upon (5), is shown in Fig. 3. (The mechanization, BIAS BIAS BAS
as shown in the figure, is sufficiently general to be WEIGHTING WEIGHTING WEIGHTING
representative of the larger class of neighbor depen-
dence systems.) The mechanization consists of three lInpP(VIo1)I lPIPvIa!) InpPIvIo,)
layers, as follows.
The first layer receives the binary signal matrix MAXIMUM DETECTION

[vij] as input, and forms products of neighboring point . . .
signals. Since the signal is binary, only AND gates dI di dc
are required. Each signal point, except those at the . ..
north and west boundaries, requires three two-input
gates and one three-input gate. The configuration of
these gates is shown in the two diagrams in Fig. 4. Each 0 -0-?- 0 0 0 0 0° °
circle in Fig. 4 denotes a signal point. Each line segment I//I /1
(Fig. 4(a)) represents a two-input gate fed by the point -0....° 0 0°0°o..
signals which the line segment connects. Similarly, each _______- Z.IZIL./I
triangle (Fig. 4(b)) represents a three-input gate. I/ AA A
The outputs of the first layer are the input signals, -1 ** 0L L.J0**

vio's, and the double and triple products of neighboring
signals, as indicated in (5). These outputs are binary,
and feed the second layer.
The second layer consists of a set of weighting and 0 DENOTES POINT SIGNAL

summing networks, one for each character of the DENOTES TWO-INPUT GATE
alphabet. The outputs of the first layer feed these net- J DENOTES THREE-INPUT GATE
works in parallel. In addition, each summing network
has a constant bias, to realize term b(k) of (5). The Fig. 4-Arrangement of AND gates.
weights, given in (6), may be negative as well as posi-
tive. The weighted sum is, therefore, the T(v|ak) of fa I' s . f~~~~~~for m=O, 1, 2, and 3. Now 0 (i, j, k) iS simply the prob-
(5). The set of T(v ak), k = 1, 2, * , c, constitutes the ability that the (i, j)th element of character ak is 0;
outputs, which are analog. -y(i, j, k) is the corresponding probability that the ele-
The final layer consists of the usual process of select- ment is 1.

ing the (algebraically) largest output of the second By virtue of (9), all of the weights, except b(k) and
layer. Since T's are nonpositive, the selection may Wl(l, j, k), as defined in (6), vanish, and (5) becomes
simiply be based upon the least nmagnitude. The output
of the final layer is the recognition decision. T(v ak) = b(k) + E wi(i,j, k)vij, (10)

SPECIAL CASE OF INDEPENDENCE

For comparison, a special case where the point signals w

are mutually independent may be considered. Eq. (1) b(k) = ln pk ± E ln 3(i, j, k),
then reduces to the following form:

P(v ak) = 1 P(vti ak), (8) and (11)

which amounts to stating that parameter m('ibj, k) wi(i,j, k) = ln ( )

and, consequently, paramneter zym(i j, k), are inde-
pendent of the index m. The subscript m can then be For this special case, T(v|aUk) is linear in vij's, and the
dropped. Thus corresponding recognition network consists of a set of

/3m(i, I, k) = A3(i, j, k) weighting and summing networks and a maximum
selection circuit. The diagram iS the same as that in

and S (9)~~~~~~~Fig. 3, except that the layer of AND gates is no longer
Ym(i,j, k) = y(i,j, k) = 1 - (i,j, k)J required.
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A GEOMETRIC INTERPRU TATION and the separating hlyperplane in this extended space
Consider the case of independence. The decision rule is mechanizable by the dependence model. Loosely

(10) partitions the rXs dimensional space, where the speaking, by generating the combined features, the
discrete signal space v is imbedded, with a set of original pattern classes are spread further in the ex-
c(c-t1)2 hyperplanes: tended space, thus enhancing the possibility of linear

separation.
E lwi(i,j, k) - zvi(i,j, m)}vij + b(k) - b(m) = 0 (12) A COMPUTER SIMULATION
i,j

Some simulations of the recognition networks were
for all k ad m, with k#m. T1here is one hYperplane be- performied on a digital computer (the Burroughs 220)
tween the memiibers of each pair of characters. The to obtain a relative evaluation. The comiiputer programn
hyperplane separating the kth and mth pattern classes consists of two main operations statistical estimation
is perpendicular to the vector joining the vectors which and recognition-which are described here briefly. A
represent the sets of weights {wi(i, j, k) and {wi,(, flow chart of the simulation program is shown in Fig. 6.
m) } and is at a distance of [b(m) - b(k) ] . (the length of For statistical estimation, the computer is provided
that joining vector). All of these hyperplanes are not with binary quantizations of samples of each character
independent; a change in any set of weights alters the in the alphabet that it is later expected to recognize,
c-1 hyperplanes associated with that set. each sample accompanied by proper identification of

For the dependence model, the set of weighting and the character represented by the sample. The parame-
summing networks and the maximium selection circuit
similarly nechanize a set of c(c- 1)/2 partitioning ters to be estimated are the probabilities f3m(i, j, k) (orsimilarly~~~ ~~~~tncaieaseyfcc1/ pr.lnn (i, j, k)), as clefined in TIable 1. TIhese probalbilities,
hyperplanes. However, these hvperplanes are in a dif- -'(,j ),a eie nTal .Teepoaiiisin turn, determine the values of weights as stated by
ferent space. They are not hvperplanes in the original (6). The relative frequencies of occurrence of the
rXs space, but rather are in an extended space, thef f ~~~~~~~~~~~vario)ussaiiiples alre iised aIs estnlators for the paratme-
extension being introd uced bvr coii bi niiig the signal -extension being introdcedbycomters. For example, the ratio of the numfllber of sanmples of

as mechanized by the AND gates. 'This interpreta- character a2 having ZERo at location (4, 6), ONE t
tion miiay be made clearer by, considering a simple ex- location (3, 7), an(d ZERO) at location (4, 7) to the
ample. An alphabet of two characters consists of sets of number of samples of character a2 having ZERO andpatterns/(0, (t\/1)fIland f (0, t) (1o 0) of rerpec-patLternls {(O, O), (1, 1I} 4 {), t), (1, 0;, respec- (TONE, respectively, at location (4, 6) aTl(l (3, 7) is the
tively, as shown in Fig. 5(a). TIhese two sets are not estimated value of d (4, 7, 2).
linearlyr separable. By introducing the coImlbined signal
Vr'V2, the given pattern classes are now represented by
{(0, 0, 0), (1, 1, 1)} and {(0, 1, 0), (1, 0, 0)}, respec- start start
tively, as shown in Fig. 5(b). 'I'This new configuration in
the three-dimensiolnal space is nlow linearly separable, Set frequency counting Read in one character in

matrices to zero. binary matrix form (v).

Read in one character in Compute PlvJai)Ji1l2-c,
using stored probabilitybinary matrix form. matrices.

440-
Add individual elements of

character matrix to Find Ok for which
relevant frequency P(YvI k) Max {P(vlai)1

1V4 counter locations. i

(a) Original Space Print out:
chNo ast Recognition decision ak

Yst Probabilities P(v1ai) ,iti,2r-c

probability matrIces character?Ja . ~~~~~~~~~~~~~~~~~~fromstored frequencies._

es~~~~~~~~e

F.... EsimteVleenstop slop

lL/' ~~~~~~~~~~~ESTIMATIONPHASE RECOGNITION PHASE

1,e/; > ~V1 The sequence of operations is the same for methods 1 and 2;
3 the programn can carry out the computations for either one of

(b) Extended Space the methods singly, or for both simultaneously.

Fig. 5-Extension of signal space. Fig. 6-Flow chart of computer simulation.
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However, the following exceptions are made (pri- program. Conmputer printouts of two sets of the quan-
marily for small sample sizes) to avoid the appearance tized data of Highleyman are reproduced in Fig. 7 (next
of zero factors in the products of (1), when evaluating page.) (The characters have been repositioned in the
probabilities during the recognition phase. If the es- figure to conserve space.)
timated value of a d is ON (or NIN), where N denotes For simulation of the recognition methods discussed,
the number of samples pertinent to estimating that ,3, the data all 50 sets were read into the computer to
then the f3 is replaced by E/N(or 1 - IN). (Here, e is a establish the weights of the recognition network. The
small positive constant.) If the estimate of a ,B is 0/0 same 1800 patterns were then read, one by one, into
that is, there is no sample pertinent to estimating this the computer for recognition. No rejection option was
conditional probability -then this i is taken as 1/2. allowed in the simulation reported here. Two computer
For a matrix of size rXs, the number of parameters to runs were made, one for numerals, the other for nu-
be estimated is 4rs-2(r+s)+1 per character of the merals and letters. For the numerals alone, the nearest-
alphabet. The occurrence of characters is taken as neighbor method yields a recognition rate of 97.2 per
equally probable (P1=P2 -P,) in the simulation. cent and an error rate of 2.8 per cent. For the alpha-
If desired, other distribution can be used, and, if neces- nunmeric case, the corresponding rates are 93.3 per cent
sary, the values can be estimated from the samlple. and 6.7 per cent. The distribution of errors for the

Recognition is based upon the stored paramneter alphanumeric case is tabulated in Table II.
values obtained in the estimation phase. The program In any experiment of this sort, the absolute per-
computes, for each input pattern, the associated con- formance is not too significant. Rather, relative per-
ditional probabilities PkP(v ak) or T(v| a), k = 1, formance is usually more imneaningful. To provide a

2, c, then selects the largest probability, and reference for comparison, and to ascertain the effect of
classifies the input pattern as the character correspond- neighbor dependence upon recognition performance,
ing to the largest conditional probability. the linear system as characterized by (10) was also

simulated, and operated upon the same data (numerals

EXAMPLES OF HAND-PRINTED ALPHANUTMERIC only). The resultant error rate of 20.4 per cent is ap-

CHARACTERS preciablv higher than that of the nearest-neighbor
method. The effect of dependence is significant. The use

The performance of any recognition mlethod depends of (1) offers a better approximiiation to the unknown
not only upoIn the systemii itself, but also upon the class distribution than does that of (8).
of characters encounitered by the systemi. Comparisons Another simulation trial was made. Arbitrarily, the
among various recognition methods are difficult, es- first 40 sets of alphanumeric data were used in the es-
pecially if the imethods do not operate on the same data timation phase to establish the weights of the recogni-
and the sam-fe patterni representationi. To establish a tion network. The remaining ten sets of data were then
reference for comparisotn, the results reported here are read as unknown, for recognition. The resultant recog-
based upon the set of hand-printed characters prepared nition rate was 58.3 per cent. The two contributing
anid used by WV. H. Highleyman67 of the Bell Telephone factors in the decrease in performance are the smallness
Laboratories. of the design sample size and the primitiveness of the
The data consist of 50 sets of 36 hand-printed charac- pattern representation.

ters (ten arabic nuinerals and 26 tipper-case alphabetic No accurate account of computer timne was kept; the
letters), each set printed by a different person. These calculation of weights for the entire alphabet of 36
persons were required to print neatly on '-inch quad- characters frolni 1800 samples took approximately one-
rilled paper at a size approximating the ruled boxes oln half hour, and the recognition took about 45 seconds
the paper. (Somie samples of the data are given by per samlple. No special effort was made to minimize
Highleyman7 in Figs. 9 and 10.) The data were then conmputation timiie, and the calculation of conditional
automnatically reduced to a 12 X 12 binary matrix by an probabilities in the recognition phase was carried out
optical matrix scanner, and encoded on punched cards. sequentially, one pattern class at a tinme.
The characters were roughly centered by using center The sanmple is too small to pernmit coonclusive coini-
of gravity alignment. However, the character size was parisons anmong various mnethods, but it is hoped that
not normalized; the size variation is about two to one. the results do provide some indication of relative per-
These data cards, employed through the courtesy of formance. Admitting the inadequacy of sample size,
WJ. H. Highleyman, are the input to the simulation it is of interest to compare the recognition results of

several methods operating upon the same data. Results
6 XV. H. Highleyman, "Linear Decision Funactions with Applica- are summarized in Table III. M/ethods 1 and 2 refer,

tion1 to Pattern Recognition," Ph.D. dissertation, Elec. Engrg. Dept., respectively, to the nearest-neighbor model (1) and
Brooklyn Polytechnic Institute, Brooklyn, N. Y.; June, 1961. A .'
summary appears in PROC. IRE, vol. 50, pp. 1501-1514; June, 1962. the independence model (8), described in this paper.

7XV. H. Highleyman, "An analog method for character recog- AIVethods 3 and 4 are described by Highleyman6'7, only
nition1," IRE TRANS. ON ELECTRONIC COMPUTERS, vol. EC-lO, PP. nuei reut ar eote nHghemn
502-512; September, 1961. uecreutarrpoednHghym .
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TABLE II
DISTRIBUTION OF ERRORS, 50 SETS OF

36 HAND-PRINTED CHARACTERS

Characters Nuimber of Errors Distribution of Errors.. . .: .- .... *- .: .... . ~~~~~~~~~A1R
....* .. ..... : .B 1 6

C 2 L, 6
D 4 P, Q, U, 0

- .: . : FIE 2 F, 0.** ~~F 3 J, T, Z
G 3 J, 6(2)

:: ........ .. ':. . .. .: ... . .. . . .:H3N(3). . . ... I ~~~~~~~~~~~~~~20J, 1(19)
....... : ..5 1, L, T(2), U

K 0
... .. . ... ..: . ; .... ... .L2I,XM 2 A, H* : N 3 K, 0, 4

(a) 0 6 D)(2), 0(4)P 3 F(2), R
Q 2 0, 9
R 3 H,0, P

. ~~~ ~ ~~~~~~~~~~~~~~~~T27(2)
U 2 V, 4

.: ::.' ..-.. ...... .-.---:V 1 Y
XV 2 N,V
X 3 K, Y(2)
Y 3 IJ, V,1I
z 1I

.. .:........... 0 10 0(5),P,Q,3,4,6
1 ~~~~0

2 3 E, I
3 18
4 2 A, 8
5 5 B, S(3), 6

(b) 6 4 L(2), X(2)
Fig. 7-Computer printouts of two sets of quanltized alphanumeric 8 6 (2), J, X, 2 9

characters, read from pUnched cards SUpplied bY W. H. Highley- 9 4 A, J, 7, 8
man. ___ __ _

TABLE III
COMPARISON OF RECOGNITION RESULTS (BASED UPON 50 SETS OF HAND-PRINTED CHARACTERS)

Numeric Alphanumeric*
Method

Recognition Rate Error Rate Rejection Rate Recognition Rate Error Rate

1) Nearest-Neighbor; Eq. (1) 97.2 per cent 2.8 per cent none* 93.3 per cent 6.7 per cent
2) Linear; Eq. (8) 79.6 per cent 20.4 per cent none* (not simulated)
3) Highleyman6 94.0 per cent 4.2 per cent 1.8 per cenit (not given)
4) Highleyman7 83.0 per cent 17.0 per cent none* 77.2 per cent 22.8 per cenit

* Rejection parameter set at zero; error rate is reduced if rejection is uLsed.

CONCLUSIONS performance is significant, and performance results
The statistical approach of an earlier paper' is fol- based upon a rather small sample of hand-printed

lowed here. This paper illustrates the manner in which characters are compared with simulation results of some
the detailed structure of a recognition network can be previously published methods.
systematically derived from the a priori knowledge of
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