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Xo1 %3, %)= 2.(3, 6,8, 10,13, 15)

Fig. 3.

A threshold-logic realization of the threshold-product function
f(x1, x2, x3, x3) = = (3, 6, 8, 10, 13, 15).

from (61a), (61b), (61c), and (61f). These are all the restrictions
on the lb.v‘ specified by (61a) through (61h). Hence, if we pick
|bo] =2, we can have |bs] =|8| =1 from (62) and (63), |&| =2
from (64), and lb3| =2 from (65). Therefore, (—%, —2, —1, 2, —1)
is a constrained solution for (57). Using the realization method de-
scribed in Section IV, we need three threshold-logic elements for
realizing (57). The realization based on the above constrained solu-
tion is shown in Fig. 3.

VI. CONCLUSIONS

In this note, a class of switching functions, called threshold-
product functions, has been studied in detail. We have shown that
both threshold-sum functions (threshold functions) and parity func-
tions are special cases of threshold-product functions. A simple
threshold-logic realization technique requiring 2+ log; p 1 threshold-
logic elements has been found for a threshold-product function with
a solution of index p. In order to reduce the number of threshold-
logic elements in the realization, a constrained solution is desired. A
systematic method for finding a constrained solution, when a switch-
ing function is a threshold-product function, has been established.
This method can be employed for testing whether a switching func-
tion is a threshold-product function as well. When the number of
variables in a switching function is not large, say no more than 6, a
simpler method for the above purposes has been found. Furthermore,
when a threshold-product function has a constrained solution of
index 2, a minimal threshold-logic realization method has been ob-
tained. Further study along this line is to find a minimal threshold-
logic realization technique for any threshold-product function. If we
could find an efficient way to decompose any switching function into
a combination of a minimal number of threshold-product functions,
then an economical threshold-logic realization method for an arbitrary
switching function would be obtained.
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Experiments with Highleyman’s Data
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Abstract—The results of three experiments with Highleyman’s
hand-printed characters are reported. Nearest-neighbor classifica~
tion is used to explain the high error rates (42 to 60 percent) ob-
tained by general statistical procedures. An error rate of 32 percent
is obtained by preceding piecewise-linear classification by edge-
detecting preprocessing. The minimum human error rate is esti-
mated, and suggested as a performance standard.

Index Terms—Character recognition, classification, feature ex-
traction, human performance, nearest-neighbor classification, pat-
tern recognition, preprocessing.

INTRODUCTION

The problem of recognizing hand-printed characters has attracted
the attention of researchers for more than a decade. Among the many
experiments that have been reported, the only ones that can be
directly compared are those that used a set of data collected, quan-
tized, and encoded by Highleyman.[-[¢]

In 1963, in response to several requests for the use of his data,
Highleyman offered to make the set available as an “ ... unintended,
incomplete, yet interesting, available, and temporary standard.”l]
The data consisted of 50 alphabets of hand-printed characters. Each
alphabet consisted of the 10 numerals and 26 upper-case letters
printed by a particular individual, and each character was quantized
and represented as a 12X 12 binary (black-white) array.

The great amount of variability encountered in the data has
tended to rule out the simpler approaches, such as the use of decision
trees, and the methods used have been more or less statistical in
spirit. One common characteristic of these methods has been the use
of some or all of the patterns to fix the values of free parameters in
the classifier. In those cases where the first 40 alphabets (called the
training data) were used to determine parameters and the last 10
alphabets (called the testing data) were used to provide an indepen-
dent test, the performance on the test data was always much worse
than the performance on the training data. For example, Chow!4]
obtained a 2.1 percent error rate on the training data, but a 41.7
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percent error rate on independent test, and this represents the best
‘performance reported to date.

Similar discrepancies have been noted by other investiga-
tors, [2I'[41-18] and have usually been attributed to the small number of
samples available for characters having so much variability. There is
no doubt that a larger number of samples would reduce the size of this
‘discrepancy, for in the case of infinite training and testing sets, the
error rates should be the same. It is not clear, however, how much
the test error rate would be reduced, or how many samples would be
needed to estimate the best achievable performance.

The purpose of this note is to describe the results of three differ-
ent experiments with Highleyman'’s data. The first used a nonpara-
metric classification procedure that exchanges the need for assump-
tions about the pattern distributions for the need for a large number
of patterns. The second used edge-detecting preprocessing prior to
classification to remove some of the variability in the characters
and to exploit simple a priori knowledge about the data. In the third
experiment, the ability of people to recognize the test data was mea-
sured to provide an objective performance standard.

NEAREST-NEIGHBOR CLASSIFICATION

The nearest-neighbor decision rule (NN rule) is a nonparametric
decision rule that assigns an unclassified pattern to the class of the
nearest pattern of a set of correctly classified reference patterns.[®]
When the set of reference patterns is large, the error rate of the NN
rule is less than twice the minimum possible error rate. Specifically,
if

Po=Bayes probability of error,
P =Large-sample NN probability of error,
N =Number of classes,

then, under very weak regularity conditions,

Py< P 2P —

No17%
and these bounds can be shown to be the tightest possibe.(8!-[¢]

When the NN rule was applied to Highleyman's data, the training
patterns were used as the reference patterns for the classification of
the testing data. Each pattern was viewed as a 144-component binary
vector. A test pattern was classified by measuring the Hamming
distance between it and each of the 1440 training patterns, and by
assigning it to the class of the nearest pattern; ties with patterns in
different classes were broken arbitrarily.

The error rate resulting from applying this procedure to the test-
ing data was 47.5 percent. If the training set were large enough for
the large sample results to hold, this would mean that the minimum

. error rate would lie somewhere between 27.6 and 47.5 percent. We
shall see that the minimum error rate is probably less than 11.4 per-
cent, and, hence, that the training data is not a sufficiently large
sample in the nearest-neighbor sense.

PREPROCESSING AND PIECEWISE-LINEAR CLASSIFICATION

The purpose of preprocessing is to simplify the classification prob-
lem by extracting from the input data only that information which
is needed for classification. In designing a preprocessor, the designer
in effect tries to give the classifier the benefit of his knowledge of the
problem. His goal is to find features which discriminate between
characters in different classes, and are relatively insensitive to normal
variations among characters in the same class.

We have investigated several preprocessing techniques in the
course of a project to recognize hand-printed text.["] Among these
techniques are the use of feature templates, which look for the pres-
ence of such features as edges, corners, line segments, etc., and the
extraction of descriptions of topological and geometrical character-
istics such as enclosures, concavities, stroke tips, etc. While these
latter are among the most useful features, it is quite difficult to ex-
tract them from characters that are as frequently broken and frag-
mented as are Highleyman's characters. Thus, the only preprocessing
that we attempted was the use of simple edge-detecting templates.
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The preprocessing/classification method we used has been de-
scribed in detail by Munson.[11'[12] The only operation we had to
perform to use existing computer programs with Highleyman's data
was to expand the 12X12 figures to 24 X24 figures to match our
standard format. This was done merely by copying each row and
column twice. Edge detection was accomplished by the use of edge-
detecting mask pairs, or templates. Each mask pair consisted of two
2X8 rectangles of points, adjacent to each other along their long
edges. One of the masks was given positive weight, the other, nega-
tive, and a threshold was set such that if the positive mask encoun-
tered six more figure points than the negative one, the binary response
of the mask pair was oON.

To provide a limited degree of translation invariance, the responses
of five such mask pairs were ored together to give a single binary
component of the output feature vector. The five mask pairs in a
group had the same orientation and were in the same region of the
24X24 field. Nine regions were allotted to each of the four major
compass directions, and six regions were allotted to each of the
eight secondary directions. Thus, the complete feature vector con-
sisted of 84 binary components, and the significance of a typical
component was “An edge oriented north-of-west has been detected
in the left central region of the field.”

These 84-bit feature vectors, augmented by an 85th threshold
bit, formed the input to the classifier, which was a piecewise-linear
machine.[®] This classifier formed 72 dot products of the feature
vector with 72 stored weight vectors, 2 for each of the 36 classes.
It classified a pattern by assigning it to the class corresponding to
the largest dot product. The weight values were determined by fixed-
increment error-correction training.(®] The training margin was set
to 85 so that a correction was made whenever the dot product for
the correct class failed to exceed all dot products in other classes by
this amount; no margin was used during testing.

During training, the training patterns were viewed in any of nine
different positions, a nominal position in which the character was
centered, and eight other positions obtained by displacing the figure
by two elements vertically and/or horizontally. After 18 training
iterations (by which time all views of all of the training patterns
had been encountered twice), testing was performed. All nine views
of each test pattern were presented, and the class appearing most
often among the nine individual responses was selected for the pat-
tern. The resulting error rate for all 36 classes was 31.7 percent.
Repetition of this experiment using the ten numerals alone yielded
an error rate of 12.0 percent. Both of these results are significantly
better than previously reported results, but this performance still
falls short of human performance.

HuMAN PERFORMANCE

In 1960, Neisser and Weene reported an average error rate of 4.1
percent made by a group of nine people in recognizing hand-printed
upper-case letters and numerals, and indicated that 3.2 percent was
probably a good estimate of the minimum possible error rate for
their data.[’®] These results apply to a 34-category alphabet, since
confusions between I and 1 or between 0 and § were not counted as
errors. More importantly, the characters used were reproduced
photographically with high resolution and apparently with good gray
scale, whereas Highleyman's data are low-resolution figures with
two-level gray scale; thus, these numbers do not apply to Highley-
man’s data.

To estimate human error rates on Highleyman’s data, we per-
formed a simple, computer-controlled experiment involving ten
people, who, though aware of the existence of Highleyman’s data,
had not seen the test data before. The experimental procedure had
two phases, a training phase in which the subjects familiarized them-
selves with both the equipment and the data by viewing the training
data under test conditions, and a testing phase in which performance
was recorded. In both phases, the characters were selected randomly
without replacement from ten alphabets printed by ten different
writers; the training phase used the first ten alphabets, while the
testing phase used the last ten.
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The characters were displayed as a 12 X12 array of points (bright
points for the figure) occupying a 0.3-inch square centered in a
3X4.5-inch oscilloscope screen. Each subject was free to take as long
as he wished in making up his mind, and when a decision was reached
he recorded it by striking the corresponding typewriter key. This
caused the subject’s decision to be recorded, the correct character to
be typed out if a mistake had been made, and the next character to
be displayed. We chose to maintain the error response during the
testing phase due to its very noticeable ability to sustain the sub-
ject’s attention and to induce him to perform well.

Most subjects were satisfied with the training phase after they
had seen 75 to 100 characters, and volunteered to move on to the
testing phase. On the test data, their error rates ranged from 13.6
percent to 18.3 percent, with an average error rate of 15.7 percent.
Assuming a normal distribution of scores, this indicates that, with
95 percent confidence, the true mean error rate is 15.7 percent + .9
percent.

These numbers include a fair proportion of errors due to con-
fusions between I and 1 and 0 and @. If these errors are not counted,
the mean error rate drops to 11.5 percent, which is still consider-
ably greater than the 4.1 percent reported by Neisser and Weene for
their unquantized characters. If the I-1 and 0-¢ distinctions are
retained, but if a plurality vote of the ten separate responses is used
to classify the characters (ties being broken arbitrarily), then an
error rate of 11.4 percent results. We believe that this value is close
to the minimum error rate that can be achieved with Highleyman’s
data, and that the performance of other methods on the 36-character
test data should be viewed relative to this standard.

DiscussioNn

If 11.4 percent is the minimum achievable error rate for Highley-
man'’s data, then the 47.5 percent error rate obtained by nearest-
neighbor classification indicates that the amount of training data is
much too small for such a general nonparametric technique. We sus-
pect that any statistical technique that makes use of little a priori
knowledge of the distributions will experience this same difficulty,
and that this explains, at least in part, the discrepancies reported
elsewhere between training and testing performance. (2" [41~[6]

If it is not practical to obtain enough training data to allow the
use of such general techniques, then some preprocessing must be
done to exploit the investigator’s a priori knowledge of the problem.
By using edge-detecting preprocessing followed by nine-view classi-
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fication by a piecewise-linear machine, we obtained an error rate of
31.7 percent. While this represents a significant improvement over
previously reported results, it is still far too high to be practical.

While the development of more effective preprocessing and classi-
fication techniques for Highleyman’s data may be a challenging
problem in itself, we feel that larger and higher-quality data sets
are needed for work aimed at achieving useful results. Such data
sets may contain hundreds, or even thousands, of samples in each
class. We know, for example, that investigators at SRI and IBM
have used data sets containing over ten thousand samples, and we
expect that even larger data sets will be collected.

Experience with such data suggests that an array size of at least
20X 20 is needed, with an optimum size of perhaps 30X30. Multi-
level gray scale or adaptive two-level quantization may be valuable.
In any case, the data (whether in its original or quantized form)
should be recognizable to humans with no more than a few percent
errors. No machine recognizer should be expected to exceed human
performance on the original characters viewed out of context, and
progress beyond this point will have to depend on the effective ex-
ploitation of contextual relations.
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