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Abstract

Algorithmic music composition involves the use of rules to generate melodies. One simple but

interesting technique is to select notes sequentially according to a transition table that specifies the proba-

bility of the next note as a function of the previous context. I describe an extension of this transition table

approach using a recurrent connectionist network called CONCERT. CONCERTis trained on a set of melo-

dies written in a certain style and then is able to compose new melodies in the samestyle. A central

ingredient of CONCERTis the incorporation of a psychologically-grounded representation of pitch. CON-

CERT was tested on sets of examplesartificially generated according to simple rules and was shownto

learn the underlying structure, even where other approachesfailed. In a larger experiment, CONCERT was

trained on a set of J. S. Bach minuets and marches and was then allowed to compose novel melodies.

Although the compositions are pleasant, I don’t forsee a Grammyin the near future. The main problem is

a lack of global coherence. Some ideas are presented about how a network can be madeto inducestruc-

ture at both local and globalscales.
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In creating music, composers bring to bear a wealth of knowledge of musical conventions. Some

of this knowledge is based on the experience of the individual, some is culture specific, and perhaps some

is universal. No matter what the source, this knowledge acts to constrain the composition process, speci-

fying, for example, the musical pitches that form a scale, the pitch or chord progressions that are agree-

able, and stylistic conventions like the division of a symphony into movements and the AABB form of a

gavotte. If we hope to build automatic music composition systems that can mimic the abilities of a

human composer,it will be necessary to incorporate knowledge of musical conventionsinto the systems.

The difficulty is in deriving this knowledge in an explicit form: even human composersare unaware of

many of the constraints under which they operate (Loy,in press).

In this chapter, I describe a connectionist network that composes melodies. The networkis called

CONCERT,an acronym for connectionist composer of erudite tunes. (The "er" may also be read aserratic

or ersatz, depending on whatthe listener thinks of its creations.) Musical knowledgeis incorporated into

CONCERTvia two routes. First, CONCERT is trained on a set of sample melodies from which it extracts

rules of note and phrase progressions, which I call melodic and stylistic constraints. Second, I have built

a representation of pitch into CONCERT, and have proposed an analogous representation of duration, that

is based on psychological studies of human perception. This representation, and an associated theory of

generalization proposed by Shepard (1987), provides CONCERT with a basis for judging the similarity

among notes, for selecting a response, and forrestricting the set of alternatives that can be consideredat

any time. I call these constraints imposed by the representation psychophysical constraints.

My experiments have been with single-voice melodies, most having 10-20 notes, but I also report

on preliminary work with longer pieces having about 150 notes. A complete model of music composition

should describe each note by a variety of properties — pitch, duration, phrasing, accent — along with

moreglobal properties such as tempo and dynamics. In most of the experiments reported here, the prob-

lem has been stripped to its bare bones, describing a melody simply as a sequenceof pitches. Extending

the work to notes that vary in duration or other properties is a relatively straightforward once the viability

of the approach has been established. The burden of the present work has been to demonstrate that CON-

CERT can discover the appropriate structure in a set of pitch sequences presented to it.

Onepotential pitfall in the research area of connectionist music composition is the uncritical accep-

tance of a network’s performance. It is absolutely essential that a network be evaluated according to

some objective criterion. One cannot judge the enterprise to be a success simply because the network is

creating novel output. Even random note sequences played through a synthesizer sound interesting to

many observers. Although Todd’s (1989) seminal work on connectionist composition shows great prom-

ise, it suffers by the lack of evaluation; consequently, one cannot verify that his network architecture and

learning algorithm have the computational power to succeed. In contrast, CONCERT is motivated by

well-defined computational goals, which provide the meansfor evaluating its performance.

Anotherserious pitfall in connectionist research, and artificial intelligence research in general, is

the assumption that if a system peforms well on small problems, it can readily be scaled up to handle

larger problems of the same type. In the music composition domain, this assumption might lead to the

tenuousbelief that a network capable of composing ten-note melodies could, simply by adding morehid-

den units and connections, compose symphonies. A symphony, however, has structure at many levels:

within a phrase, between phrases within a movement, between movements, etc. To discover rules of

composition for notes within a phrase, only local temporal contingencies need to be examined. To

1 Because my work to date considers primarily the pitch of a note, I use the terms "note" and "pitch" interchangeably.
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discover rules of composition at a more global level, the network may need to examinethe relationships

among many thousands of notes. The sort of learning procedure used to discover local structure in music

has no guarantee of success in discovering more global structure. A central focus of my work has been on

this issue of dealing with structure at different levels. I have developed specialized network dynamics to

addressthis issue.

Before turning to the details of my approach, I begin by describing a traditional approach to algo-

rithmic music composition using Markovtransition tables, the limitations of this approach, and how these

limitations may be overcome using connectionist learning techniques.

Transition Table Approaches to Algorithmic Music Composition

One simple but interesting technique in algorithmic music composition is to select notes sequen-

tially according to a transition table that specifies the probability of the next note as a function of the

current note (Dodge & Jerse, 1985; Jones, 1981; Lorrain, 1980). For example, the transition probabilities

depicted in Table 1 constrain the next pitch to be one step up or down the C major scale from the current

pitch. Generating a sequence according to this probability distribution therefore results in a musical ran-

dom walk. Transition tables may be hand-constructed according to certain criteria, as in Table 1, or they

may be set up to embody a particular musical style. In the latter case, statistics are collected over a set of

examples (hereafter, the training set) and the transition table entries are defined to be the transition proba-

bilities in these examples.

The transition table is a statistical description of the training set. In mostcases,the transition table

will lose information about the training set. To illustrate, consider the two sequences A B Cand E F

G. Thetransition table constructed from these examples will indicate that A goes to B with probability

1, Bto C with probability 1, and so forth. Consequently, given the first note of each sequence,the table

can be used to recover the complete sequence. However, with two sequences like B A Cand D A &,

the transition table can only say that following an A either an E ora C occurs, each with a 50% likeli-

hood. Thus, the table cannot be used to unambiguously reconstruct the examples.

Clearly, in melodies of any complexity, musical structure cannotbe fully described by the pairwise

Statistics. To capture additional structure, the transition table can be generalized from a two-dimensional

array to n dimensions. In the n-dimensionaltable, often referred to as a table of order n—1, the probabil-

ity of the next note is indicated as a function of the previous n—1 notes. By increasing the numberofpre-

vious notes taken into consideration, the table becomes more context sensitive, and therefore serves as a

Table 1: Transition probability from current pitch to the next

 

 

  

next current pitch

pith C D E F G A _B

Cc 0 5 O O ) 0. 45

D 5 0 5 O 0 0 0

E Oo 5 0 5 O 0 0

F 0 0O 5 O 5 O 0

G 0 0 O 5 O 5 O

A 0 0 O 0 5 O 5

B 5 0 0 0 0 5 O  
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more faithful representation of the training set. Unfortunately, extending the transition table in this

mannergives rise to two problems. First, the size of the table explodes exponentially with the amountof

context and rapidly becomes unmanageable. With, say, 50 alternative notes and a third-ordertransition

table — modest sizes on both counts — 6.25 million entries would be required. Second, a table

representing the high-order structure masks the tremendous amount of low-order structure present. To

elaborate, consider the sequence

AFGBFGCFGODF G#EFG.

One would need to construct a third-order table to faithfully represent this sequence. Such a table would

indicate that, for example, the sequence G B F is always followed by G. However,there are first-order

regularities in the sequence that a third-order table does not make explicit, namely the fact that an F is

almost always followed by a G. The third-order table is thus unable to predict what will follow, say, A

A F, although a first-order table would sensibly predict G. There is a tradeoff between the ability to

faithfully represent the training set, which usually requires a high-ordertable, andthe ability to generalize

in novel contexts, which profits from a low-order table. What one wouldreally like is a scheme by which

only the relevant high-orderstructure is represented.

Kohonen (1989; Kohonen,Laine, Tiits, & Torkkola, in press) has proposed exactly such a scheme.

The scheme is symbolic algorithm that, given a training set of examples, produces a collection of rules —

a context-sensitive grammar — sufficient for reproducing mostorall of the structure inherentin the set.

These rules are of the form context—>next_note, where context is a string of one or more notes, and

next_note is the next note implied by the context. Because the context length can vary from onerule to

the next, the algorithm allows for varying amounts of generality and specificity in the rules. The algo-

rithm attempts to produce deterministic rules — rules that always apply in the given context. Thus, the

algorithm will not discover the regularity F — G in the above sequencebecauseit is not absolute. One

could conceivably extend the algorithm to generate simple rules like F - G along with exceptions(e.g.,

D F- G#), but the symbolic nature of the algorithm still leaves it poorly equipped to deal with statisti-

cal properties of the data. Such an ability is not critical if the algorithm’s goal is to construct a set of

rules from which the training set can be exactly reconstructed. However, my view is that music composi-

tion is an intrinsically random process and it is therefore inappropriate to model every detail of the train-

ing set. Instead, the goal ought to be to capture the most important — ie., statistically regular — struc-

tural properties of the training set.

Both the transition table approach and Kohonen’s musical grammar suffer from two further draw-

backs. First, both algorithms are designed so that a particular note, n, cannot be used to predict note n+i

unless all intervening notes, n+1--+n+i-1, are also considered. In general, one would expect that the

most useful predictor of a note is the immediately preceding note, but cases exist where notes n ---n+k

are more useful predictors of note n+i than notes n+k+1---n+i-1 (e.g., a melody in which high pitch and

low pitch phrases alternate such as the solo violin partitas of J. S. Bach). The second drawbackis that a

symbolic representation of notes does not facilitate generalization. For instance, invariance under tran-

sposition is not directly representable. In addition, other similarities are not encoded, for example, the

congruity of octaves.

2 Following Smolensky (1988), I use the phrase faithful representation to mean that the represented items can be accurately

reconstructed from the representation. A faithful transition-table representation of a set of examples would be onethat, given the
first few notes of any example, could unambiguously determine the remainderof the example.
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Connectionist learning algorithms offer the potential of overcoming the various limitations of tran-

sition table approaches and Kohonen musical grammars. Connectionist algorithms are able to discover

relevant structure andstatistical regularities in sequences (e.g., Elman, 1990; Mozer, 1989). Indeed, con-

nectionist algorithms can be viewed as an extension ofthe transition table approach, a point also noted by

Dolson (1989). Just as the transition table approach usesa training set to calculate the probability of the

next note in a sequence as a function of the previous notes, so does CONCERT. The connectionist

approach, however, is far more flexible: The form ofthe transition function can permit the consideration

of varying amounts of context, the consideration of noncontiguous context, and the combination of low-

order and high-order regularities.

The connectionist approach also promises better generalization through the use of distributed

representations (Hinton, McClelland, & Rumelhart, 1986). In a local representation, where each note is

represented by a discrete symbol, the sort of statistical contingencies that can be discovered are among

notes. However, in a distributed representation, where each note is represented by a set of continuous

feature values, the sort of contingencies that can be discovered are among features. To the extent that two

notes share features, featural regularities discovered for one note maytransfer to the other note.

The CONCERT Architecture

CONCERTis a recurrent network architecture of the sort studied by Elman (1990). A melodyis

presented to it, one note at a time, and its task at each point in time is to predict the next note in the

melody. Using a training procedure described below, CONCERT’s connection strengths are adjusted so

that it can perform this task correctly for a set of training examples. Each example consists of a sequence

of notes. The current note in the sequence is represented in the input layer of CONCERT, and the predic-

tion of the next note is represented in the output layer. As Figure 1 indicates, the next note is encoded in

two different ways: The next-note-distributed (or NND)layer contains CONCERT’s internal representation

of the note, while the next-note-local (or NNL) layer contains one unit for each alternative. The represen-

tation of a note in the NND layer, as well as in the input layer, is based on a psychological analysis of

human pitch perception (Shepard, 1982), which I explain in detail in a following section. For now,it

should suffice to say that this representation is distributed, i.e., a note is indicated by a pattern ofactivity

across the units. Because such patterns of activity can be quite difficult to interpret, the NNL layer pro-

vides an alternative, explicit representation of the possibilities.

The context layer can represent relevant aspects of the input history, that is, the temporal context in

which a prediction is made. When a new noteis presented in the input layer, the activity pattern currently

in the context layer is integrated with the new note to form a new context representation. In general

terms,

e(n)=f(e(n-), x(n),

where x(n) is a vector representing the nth note in the input sequence,c(n) is the context activity pattern

following processing of input note n —- which I refer to as step n —- and f is a memberofthe class of

functions that can be implemented by the connectionist hardware. At the start of each sequence the con-

text layer is cleared,i.e., c(0) = 0.

CONCERTcouldreadily be wired up to behave as a k-th ordertransition table. In this case, the func-

tion f is defined to implement a k elementstack in the context layer. This stack would hold on to notes

n—-k+1 through n. The connections from the context layer to the output layer would then have to beset

up to realize a look-up table in which each combination of previous notes maps to the appropriate proba-

bility distribution over the next note. However, the architecture is more general than a transition table
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Figure 1. The CONCERT architecture. Rectangles indicate a layer of units, directed lines indicate full connectivity from one layer

to another. The selection process is external to CONCERT andis used to choose among the altematives proposed by the network
during composition.
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because f is not limited to implementing a stack and the mapping from the context layer to the output is

not limited to being a simple look-up table. From myriad possibilities, the training procedure attempts to

find a set of connections that are adequate for performing the next-note prediction task. This involves

determining which aspects of the input sequenceare relevant for making future predictions and construct-

ing the function f appropriately. Subsequently, the context layer will retain only task-relevant informa-

tion. This contrasts with Todd’s (1989) work on connectionist composition in which the recurrent con-

text connections are prewired and fixed, which makes the nature of the information Todd’s modelretains

independent of the examples on whichit is trained.

Once CONCERT has been trained, it can be run in composition mode to create new pieces. This

involves first seeding CONCERT with a short sequence of notes, perhaps the initial notes of one of the

training examples. From this point on, the output of CONCERT can be fed back to the input, allowing CON-

CERT to continue generating notes without further external input. Generally, the output of CONCERT does

not specify a single note with absolute certainty; instead, the output is a probability distribution over the

set of candidates. It is thus necessary to select a particular note in accordance with this distribution. This

is the role of the selection process depicted in Figure 1.

Unit activation rules

Theactivation rule for the context units is

co) =4|Sms)“rye ; (1)

j j

where c;(n) is the activity of context unit 7 at step n, x;(7) is the activity of input unit j at step 1, w,; is

the connection strength from unit j of the input to unit i of the context layer, and v,; is the connection

strength from unit j to unit i within the context layer, and s is the standard logistic activation function

rescaled to the range (-1,1). Units in the NND layer follow a similarrule:

nnd;(n) = Bnet ;

J

where nnd,(n) is the activity of NND unit i at step » and u,; is the strength of connection from context

unit j to NND unit i.

The transformation from the NND layer to the NNL layer is achieved by first computing the dis-

tance between the NND representation, nnd(n), and the target (distributed) representation of each pitch 7,

Pi:

d; = ||nnd(n)— p;|| ,

where||-|| denotes the length of a vector. This distance is an indication of how well the NND represen-

tation matchesa particular pitch. The activation of the NNL unit corresponding to pitch i, nnl,;, increases

as the distance decreases:

ed
 nnl;(n) = a .

j
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This normalized exponential transform wasfirst proposed by Bridle (1990) and Rumelhart (in prepara-

tion). It produces anactivity pattern over the NNL units in whicheach unit has activity in the range (0,1)

and the activity of all units sums to 1. Consequently, the NNL activity pattern can be interpreted as a pro-

bability distribution — in this case, the probability that the next note has a particular pitch. The distance

measure and the exponential function also have a basis in psychological theory (Shepard, 1987), a point I

elaborate on shortly.

Training procedure

CONCERTis trained using a variation of the back propagation algorithm (Rumelhart, Hinton, &

Williams, 1986). Back propagation is a methodfor adjusting the connection strengths within CONCERTso

that the network can perform the next-note prediction task for a set of training examples. The algorithm

requires first defining a measure of the network’s performance — of how good a job the network does at

predicting eachnote in each of the training examples. Commonly, a squared difference measure of error

is used:

Eims = Y, (nal;(n,p)— 8, t(,p))y,
PN J

where p is an index over pieces in the training set, n an index over notes within a piece, and j an index

over units in the NNL layer; t(n,p) is the target pitch for note n of piece p; d(a,b) =1 if a =b or O other-

wise; andthe additional p in nnl;(n,p) specifies the activity for piece p. This measure is minimized when

the output of the unit corresponding to the correct prediction is 1 and the outputofall otherunitsis 0.

Another performance measure is sensible in the context of output units that have a probabilistic
interpretation (Bridle, 1990; Rumelhart, in preparation). Because each NNL unit’s output represents the

probabilistic expectation of a pitch, performance depends on predicting the appropriate notes with high

probability. This suggests the performance measure

L=[[rlapy™p),
Prt

whichis the joint probability of making the correct prediction for all notes ofall pieces." Equivalently, a

new error measure can be defined based on the logarithm of L,

=-logL = -» log ANI¢y,p(s

P

) ’
Pn

because the logarithm is a monotonic function. E is somewhateasier to work with than L.

Back propagation specifies how the weights in the network should be changed to reduce E. This

involves computing the gradient of E with respect to the weights in the network: dE/dW, dE/dV,and
dE/dU. Thefirst step in this process is computing the gradient with respect to the activity of units in the

NND layer, and then propagating this gradient back to the weights in layers below. For the error measure

E and the NNL-unit activation rule,

3 Of course, this interpretation assumes independenceof the predictions, which is certainly not true in CONCERT. However, Bridle
(1990) provides anotherjustification, somewhatless intuitive, for this performance measure in terms of an information theoretic

criterion.
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nnd(1, — Pim nnd(1, — p;dE _ (1,P) Pin, p) ~Ynnl, (np) (n,p)-p .

dnnd(n,p ) d, (1, p) i d;

Back propagation still cannot be used to train CONCERT directly, because CONCERT contains recurrent

connections and the algorithm applies only to feedforward networks. Several variations of the algorithm

have been proposed for dealing with recurrent networks (Williams & Zipser, in press). I’ve used the

"unfolding in time” procedure of Rumelhart et al. (1986), which transforms a recurrent network into an
equivalent feedforward network. The basic trick involves making a copy of the units in the network for

each step in the sequence (Figure 2). If the sequence has ten notes, there will be ten copies of the input

units, x(1)---x(10), as for the other pools of units. Thus, x(n) refers to a particular set of input units, in

contrast to the original architecture where x(n) refers to the input activities at a particular point in time.

The weights in each copy of the network are set to be equal to the weights in the original architecture.

For example, the weights W connect x(n) to c(n) for each n. Consequently, the dynamicsof the unfolded

network are identical to those of the original network: x(n) is integrated with c(n—1) to form c(n), and so

forth. The difference is that the unfolded network is feedforward; that is, activity in Figure 2 flowsstrictly

upwards, whereas in Figure 1 activity flows from the context layer backto itself.

Applying back propagation to the unfolded architecture is therefore straightforward. The error gra-

dient dE/dnnd(n,p) is computed at step n. This error is propagated through the copy of the network

corresponding to step n, back to the copy corresponding to step n—1, and so on. For each copyofthe net-

work, this procedure produces a set of suggested weight changes, {AW(i), AV(i), AU(i)}, where the index

i specifies to which step the weight changes correspond. Because there is only one set of underlying

weights —- the weights in the original network — the weight changes for each step must be summed

together to determine the overall change to the underlying weights:

AW = SAW(),
t=]

and similarly for AV and AU. The actual weight update is performed only after the entire sequence has

been presented.*

A practical consideration is that in long sequences, the unfolded architecture is deeply layered, and

error propagation is computationally expensive. One solution is to simply terminate error propagation

after a certain number of steps. However, my simulations were small enough that such a short cut was

unnecessary.

Examining the unfolded architecture in Figure 2, one gains a sense of how CONCERT can discover

contingencies far apart in time. Consider, for instance, the input at step 1, x(1), which is linked to the

prediction at step n, nnl(n), via a series of intermediate layers: c(1), ¢(2), ---, e(n), and nnd(n). The

weights along this path are adjusted via back propagation so that input note 1, if it has any predictive util-

ity, will influence CONCERT’s output at step n. This is ensured by preservingcritical aspects of x(1) in the

context layer until step n. If the propagation of error in the network is limited to a certain number of

steps (e.g., Elman, 1990), there is no assurance that CONCERT will retain information early in the

sequence specifically to make a predictionat a muchlaterstep.

4 An unforgivable pun: Rob Goldstone suggested calling CONCERT’s training procedure Bach propagation.
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Figure 2. The CONCERTarchitecture unfolded in time. For each step in the input sequence there is a complete copy ofall units in
the network. The labels in the boxes indicate the activity vector corresponding to the units: x for the input (current note), ¢ for

the context, nnd for the NND units, layer, and nnl for the NNL units. The numberin parenthesesindicates the step.
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Capturing higher-order musical organization

In principle, CONCERT should be capable of learning to predict an event from correlated events

occurring earlier in the sequence. In my experience, however, back propagation is not sufficiently power-

ful to discover arbitrary contingencies, in particular those which span long temporal intervals. For exam-

ple, if a network is trained on sequences in which one event predicts another, the relationship is not hard

to learn if the two events are separated by only a few unrelated intervening events, but as the numberof

intervening events grows, a point is often reached where the relationship cannot be learned (Mozer,

1989).

This presents a serious limitation of using back propagation to induce musical structure because

critical structure can be found at long time scales as well as short. A musical piece is more than a linear

string of notes. Minimally, a piece should be characterized as a set of musical phrases, each of whichis

composed of a sequence of notes. Within a phrase, local structure can probably be captured by a transi-

tion table, e.g., the fact that the next note is likely to be close in frequencyto the current, or thatif the past

few notes have been in ascending order, the next note is likely to follow this pattern. Across phrases,

however, a more global view of the organization is necessary. Toillustrate, consider perhaps the simplest

phrase structure, AABA. A and B each represent a musical phrase of, say, 20 notes; the piece is thus

composed of two repetitions of phrase A, followed by phrase B, followed by a final repetition of A. To

correctly predict the third repetition of individual notes in A, it is necessary to remember notes that
occurred 40 steps back. Moreover,little of the intervening information is relevant. It is exactly in cir-

cumstances such as these that back propagation in time appears to perform poorly. Only the blindest of

optimists would claimthat the learning procedure for CONCERTjust proposed would scale well as the size

of the pieces growsand as the amountof global structure increases.

To give a sense of the magnitude of the problem, consider an analogy to analyzing a written text.

The task is to predict the next letter in the text based on the previous context. Knowledge of English

orthography is one type of information that can be used; for example, a "u" is almost certain to follow a

"q'". Not only can oneletter be predicted from other letters of a word, but one word can be predicted from
other words in a sentence, and one sentence from other sentences in a paragraph, etc. To take advantage

of the many levels of structure, nothing short of an understanding of orthography, syntax, semantics, and

pragmatics is required. While orthographic constraints involve local structure — the last couple ofletters

in the input sequence — other aspects of language demand a more global view ofthe text.

Thedifficult problem of learning global as well as local structure hasn’t been specifically addressed

by connectionist learning theoreticians. I propose a relatively simple first step towards a solution. The

basic idea involves building a reduced description (Hinton, 1988) of the sequence that makes global

aspects more explicit or more readily detectable. In the case of the AABAstructure, this might involve

taking the sequence of notes composing A and redescribing them simply as "A". Based on this reduced

description, recognizing the phrase structure AABA would involve little more than recognizing the

sequence AABA. By constructing the reduced description, the problem of detecting global structure has

been turned into the simpler problem of detecting local structure.

The challenge of this approach is to devise an appropriate reduced description. Thus far in my

work, I’ve experimented with a crude scheme that has shown some merits. This scheme constructs a

reduced description that is a bird’s eye view of the musical piece, sacrificing a representation of indivi-

dual notes for the overall contour of the piece. Imagine playing back a song on a tape recorder at double

the regular speed. The notes are to some extent blended together and indistinguishable. However, events

at a coarser time scale become moreexplicit, such as a general ascending trend in pitch or a repeated pro-

gression of notes. Figure 3 illustrates the idea. The curve in the top graph, depicting a sequence of
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Figure 3. (a) A sequence of individual notes. The vertical axis indicates the pitch, the horizontal axis time. Each point

correspondsto a particular note. (b) A smoothed, compact view of the sequence.
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individual pitches, has been smoothed and compressed to produce the bottom graph. Mathematically,

“smoothed and compressed" means that the waveform has been low-passfiltered and sampled at a lower

rate. The result is a waveform in which the alternating upwards and downwardsflow is unmistakable.

Multiple views of the sequence are realized in CONCERT using context units that operate with dif-

ferent time constants. With a simple modification to the context unit activation rule (Equation 1),

c;(n)= UC; (n-1) + (1-1; )s Dwiyjyxj™) + Drie; —1)| , (2)

j J

where each context unit i has an associated time constant, t,;, that ranges from 0 to 1 and determines the

responsiveness of the unit — the rate at which its activity changes. With t; =0, the activation rule

reduces to Equation 1 and the unit can sharply change its response based on a new input. With large 7,,

the unit is sluggish, holding on to much ofits previous value and thereby averaging the responseto the

net input over time. At the extreme of 1; =1, the second term drops out and the unit’s activity becomes

fixed. Thus, large t; smooth out the response of a context unit over time. This is one property of the

waveform in Figure 3b relative to the waveform in Figure 3a.

The other property, the compactness of the waveform, is also achieved by a large 1;, although

somewhatindirectly. The key benefit of the compact waveform in Figure 3b is that it allows a longer

period of time to be viewed in a single glance, thereby explicating contingencies occurring during this

interval. Equation 2 also facilitates the learning of contingencies over longer periods of time. To see

why this is the case, consider the relation between the error derivative with respect to the context units at

step n, dE/dc(n), and the error back propagated to the previous step, n—1. One contribution to

dE /dc;(n—1), from the first term in Equation2,is

JE 0
dc; (n) Oc; (n-1)

 | gei(n-1)) = 7; 5a) .

This means that when 1; is large, most of the error signal in context unit i at note n is carried back to note

n~1. Thus, the back propagated error signal can make contact with points further back in time,facilitat-

ing the learning of more global structure in the input sequence.

Several comments regarding this approach.

e Time constants have been incorporated into the activation rules of other connectionist architec-

tures. McClelland’s (1979) cascade model makes use of time constants in a feedforward net-

work. The continous-time networks of Pearlmutter (1989) and Pineda (1987) are based on a dif-

ferential equation update rule, of which Equation 2 is a discrete time version. However, none of

this work has exploited time constants to control the temporal responsivity of individual units.

e Although Figure 3 depicts only two timescales, context units can operate at many different time

scales, with smaller values of t; specializing the units to be sensitive to local properties of the

sequence and larger values specializing the units to be more sensitive to global properties.

e Equation 2 suggests one particular type of reduced description, consisting of a smoothed and

compressed representation of the context unit response over time. This is a simple-minded

reduced description; ideally, one would like the reduced description to characterize meaningful

"chunks" or events in the input sequence. Yoshiro Miyata and David Burr (personal communica-

tion, 1990) havetaken step in this direction with a two-level hierarchical architecture in which

the lower level detects local structure in the input sequence and the higher level detects more
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global structure in the output of the lowerlevel.

Pitch representation

Having described CONCERT’s architecture and training procedure, I turn to the representation of

pitch. To accomodate a variety of music, CONCERT needsthe ability to represent a range of about four

octaves. Using standard musical notation, these pitches are labeled as follows: C1, D1,.., B1, C2,

D2,.. B2, C3,.. C5, where C1 is the lowest pitch and C5 the highest. Sharps andflats are denoted

with # and b, respectively, e.g., C#3 and Gb2. Within an octave, there are twelve chromatic steps; the

range C1-C5 thus includes 49 pitches.

Perhaps the simplest representation of pitch is to have one unit for each possibility. The pitch C1

would be represented by the activity vector [100 ---]’, C#1 by the vector [010 ---]’, and so forth.

An alternative would be to represent pitch by a single unit whose activity was proportional to the fre-

quency of the pitch. One might argue that the choice of a pitch representation is not critical because back

propagation can, in principle, discover an alternative representation well suited to the task (Hinton, 1987).

In practice, however, researchers have found that the choice of external representation is a critical deter-

minant of the network’s ultimate performance (e.g., Denkeret al., 1987; Mozer, 1987). Quite simply, the

more task-appropriate information that is built into the network, the easier the job the learning algorithm

has.

Laden and Keefe (1989) advocate the approach of including as much information as possible from

psychoacoustics into the design of networks for music perception and cognition. They have developed a

model of chord classification that categorizes triads as major, minor, or diminished chords. Classification

performance is superior with the use of a representation that explicitly encodes harmonics of the funda-

mental pitches.

In accord with this approach, and because I am asking the network to makepredictions about melo-

dies that people have composed or to generate melodies that people perceive as pleasant, a central

ingredient of my work has been to furnish CONCERT with a psychologically-motivated representation of

pitch. By this, I mean that notes that people judge to be similar should have similar representations in the

network, indicating that the representation in the head matches the representation in the network. The

local representation scheme proposedearlier clearly does not meetthis criterion. In the local represen-

tion, every pair of pitches is equally similar (using either the distance or angle between vectors as a meas-

ure of similarity), yet people perceive pairs of notes like C1 and C#1 to be more similar than, say, C1

and A4. Other obvious representations of pitch do not meetthe criterion either. For example, a direct

encoding of frequency does not capture the similarity that people hear between octaves.

Shepard (1982) has systematically studied the similarity of pitches by asking people to judge the

perceived similarity of pairs of pitches. He has proposed a theory of generalization (Shepard, 1987) in

which the similarity of two items is exponentially related to their distance in an internal or "psychologi-

cal" representational space. > For the internal representation of pitch, Shepard has proposed a five-

dimensional space, depicted in Figure 4. In this space, each pitch specifies a point along the pitch height

(or PH) dimension, an (x,y) coordinate on the chromatic circle (or CC), and an (x,y) coordinate on the

circle offifths (or CF). I will refer to this representation as PHCCCF,after its three components. The

pitch height component specifies the logarithm of the frequency of a pitch; this logarithmic transform

places tonal half-steps at equal spacing from one another along the pitch height axis. In the chromatic

5 This is one justification for the exponential function in the NNL layer.
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Figure 4. Shepard’s (1982) pitch representation.
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circle, neighboring pitches are a tonal half-step apart. In the circle of fifths, the perfect fifth of a pitch is

the next pitch immediately counterclockwise. °® The proximity of two pitches in the five-dimensional

PHCCCEspace can be determined simply by computing the Euclidean distance between their representa-

tions.

Shepard substantiates the psychological validity of the PHCCCFrepresentation in detail. I will

briefly point out some of its benefits. Consider first the PH and CC components. In this three-

dimensional subspace, pitches form a helix in which the winding of the helix is due to the chromaticcir-

cle and the height is due to the pitch height. As pitches proceed up the chromatic scale, they wind up the

helix. Pitches exactly one octave apart are directly above one another on the helix; that is, they have the

same locus on the chromatic circle but different values of pitch height. For this reason, octaves have

similar representations. Depending on how the PH componentis scaled relative to the CC (i.e., how

elongated the helix is), pitches like Cl and C2 may even be closer in the representational space than

pitches like Cl and Bl, eventhough C1 is closer to B1 in frequency.

Thecircle of fifths endows the representation with other desirable properties. First, the circle local-

izes the tones in a musical key. Any seven adjacent tones correspondto a particular key. For instance,

the tones of the C major and A minor diatonic scales — C, D, E, F, G, A, and B — are grouped

together on the circle of fifths. The most commonpentatonic keys are similarly localized. Second, and

perhaps morecritical, the circle of fifths can explain the subjective equality of the intervals of the diatonic

scale. To elaborate, Shepard points out that people tend to hear the successive steps of the major scale as

equivalent, although with respect to log frequency, some of the intervals are only half as large as others.

For example, in C major, the E-F and B-C steps are half tones apart (minor seconds) while all others are

a whole tone apart (major seconds). The combination of the pitch height and circle of fifths permits a

representation in which the distance between all major and minor seconds is the same. This is achieved

by using a scale ratio of approximately 3:1 for the chromatic circle relative to the circle of fifths.

Onedesireable property of the overall PHCCCFrepresentation is that distances between pitches are

invariant under transposition. Consider any two pitches, say, D2 and G#4. Transposing the pitches

preserves the distance between them in the PHCCCFrepresentation. Thus, the distance from D2 to

G#4 is the same as from E2 to A#4, from D1 to G#3, and so forth. See Bharucha(in press) for a

further discussion of the psychological issues involved in the representation of musicalpitch.

The relative importance of the PH, CC, and CF components can be varied by adjusting the diame-

ters of the chromatic circle and circle of fifths. For example, if the two circles have the same diameter,

then, in terms of the CC and CF components, the distance between C and is the same as the distance

between C and B. This is because B is one notch from the C on the chromatic circle and five notches

on the circle of fifths, while the G is five notches away on the chromatic circle and one on the circle of

fifths. However, if the diameter of the chromatic circle is increased, then C is closer to B than to G

(based on the distance in the four-dimensional CC and CF subspace); if the diameter is decreased, C is

closer to G than to B. If the diameters of both circles are decreased relative to the pitch height scale,

then pitch frequency becomes the most important determinant of similarity. Shepard argues that the

weighting of the various components depends on the particular musical task and the listener’s expertise.

Based on Shepard’s evidence, a reasonable representation for expert musicians is to weigh the CF and CC

components equally, and to set the diameter of the CC and CF components equal to the distance of one

octave in PH. This is the scale shown in Figure 4.

6 The perfectfifth is a musically significant interval. The frequencyratio of a note to its perfect fifth is 2:3, just as the frequency

ratio of a noteto its octave is 1:2.
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Thefinal issue to discuss is how the PHCCCFrepresentation translates into an activity vector over

a set of connectionist units. A straightforward schemeis to use five units, one for pitch height and two

pairs to encode the (x,y) coordinates of the pitch on the two circles. One problem with this scheme is

that, if the units have the usual sigmoidal activation function, equal spacing of tones in pitch height or on

the circles in unit activity space is not preserved in unit net input space. This means that context units

attempting to activate NND units do not reap the full benefit of the representation (e.g., transposition

invariance). A second problem with the simple five-unit schemeis that the activity of each unit encodesa

coordinate value directly; there are 7 discrete values for the x- and y-coordinates of the circles, 49 for the

pitch height. Consequently, minor perturbations of the activity vector could lead to misinterpretations.

Due to these problems, I have opted for an alternative representation of the CC and CF com-

ponents. The representation involves 6 binary-valued units to represent a tone on each circle; the

representation for chromatic circle tones is shown in Table 2. This representation preserves the essential

distance relationships among tones on the chromatic circle: the distance between two tones is monotoni-

cally related to the angle between the tones. Because each unit has to encode only twodistinct values, the

representation is less sensitive to noise than is one in which each unit encodesa real value.

Unfortunately, I do not believe there is a similar scheme that can be used to encode pitch height in

a boolean space of reasonably low dimensionality that preserves intrinsic distance relationships. Conse-

quently, I have stayed with a single linear unit for pitch height. Its activity is scaled to range from -9.798

for C1 to +9.798 for C5. This scaling achieves the desired property previously described that the dis-

tance in the CC or CF component between pitches on opposite sides of the circle equals the distance

between pitches one octave apart in the PH component.’

The PHCCCFrepresentation consists of 13 units altogether. Sample activity patterns for some

pitches are shown in Table 3. Rests (silence) are assigned a code,listed in the last row of the Table, that

distinguish them from all pitches. The end of a piece is coded by seriesofrests.

Table 2: Representation of tones on chromatic circle

 

tone representation

Cc -l -1l -1 -1 -1 -l

c# -l -1 -1l -1 -1 #1

 

D -l1 -1 -1 +1 +1 «+41

D# -l1 -1 -1 +1 #+1~« «+4421

E -1 -1 +1 +1 #+21~~«+441

F -1 +1 +1 #+1 «+1 «+41

FH +1 +1 +1 #+1 &#+1 «+441

G +1 +1 +1 #+1 «441 =«-1

Gt +1 +1 #4+1 #4+10«:;-1~«~-'I

A +1 +1 +1 #+-1 #-1 #-!1

AF +1 +1 -1 -1 -1 |!

B +1 -1 -1 -1 -1 -l    
7 Although a PH scale factor of 9.798 was used for the target NND representation, p;, a PH scale factor of 1.0 was used for the

input representation. This was based on empirical studies of what scale factors yielded the best performance. The primary rea-
son that a PH scale factor other than 1.0 on the inputs causes difficulties is that gradient descent in the error surface becomes
messier when different units have different activity ranges (Widrow & Stearns, 1985).
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Table 3: PHCCCFrepresentation for selected pitches

 

 

 

     

pitch PH CC CF

cl —9.798 +1 +41 41 #-1 -1 -1 -1 -1 -1 +1 «#«+1«~~«421

F#F1 -~7.349 -~1 -1 -1 +1 #41 #421 +1 °&«2=-421 «41 4-1 #«-1—~=(-l1

G2 —2.041 -1 -1 -1 -1 +1 #+1;-1 +-1 4-1 #-1 #+1«— «+4!

C3 0 +1 41 +1 #-1 -1 -1 -1 -1 -1 41 #41 ~—~«=441

D#3 1.225 +1 +1 +1 #41 «#41 #4210 «4102 «2421 «41 «410 0©«6410~—~—~«6421

E3 1.633 -1 +1 +1 +1 #+1 «4+1 41 #+-1 =#-1 =-1 =#-1 =#=-l

A4 8.573 -l1 -1 -l --1 -1 -1j;-1 #-1 -1 -1 -1 «=-il

c5 9.798 +1 +1 41 #-1 -1 #-1/ -1 #-1 #-21 #«4+10~0~«641~—~—~«C4z/1

rest 0 +1 -1 +1 #-1 +1 #-~1 +1 #-1 #«+106-10~=6+1~« -+«ézé   
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Aswith any distributed representation, there are limitations as to how many and which pitches can

be represented simultaneously. The issue arises because the NND layer needs to be able to encodea set

of alternatives, not just a single pitch. If, say, Al, D2, and E2 are equally likely as the next note, the

NND layer must indicate all three possibilities. To do so, it must produce an activity vector that is nearer

tO Pai, Pp2, and p,. than to other possibilities. The point in PHCCCFspacethat is simultaneously closest

to the three pitches is simply the average vector, (pa 1+Pp2t+Pz2)/3. Table 4 showsthe pitches nearest to

the average vector. As hoped for, Al, D2, and E2 are the nearest three. This is not always the case,

though. Table 5 shows the pitches nearest to the average vector which represents the set {Al, D2,

D#2}. This illustrates the fact that certain clusters of pitches are more compact in the PHCCCF space

than others. The PHCCCFrepresentation not only introduces a similarity structure over the pitches, but

also a limit on the combinations of pitches that can be considered simultaneously. Arbitrary limitations

are a bad thing in general, but here, the limitations are theoretically motivated.®

Oneserious shortcoming of the PHCCCFrepresentationis that it is based on the similarity between

pairs of notes presented in isolation. Listeners of music do not process individualnotesin isolation; notes

appear in a musical context which suggests a musical key which in turn contributes to an interpretation of

the note. Some psychologically-motivated work has considered the effects of context or musical key on

pitch representation (Krumhansl, 1990; Krumhans! & Kessler, 1982; Longuet-Higgins, 1976, 1979). I

Table 4: Distance from representation of {A1,D2,E2} to nearest 10 pitches

8 T hope this isn’t too reminiscentof the old saying, "It’s not a bug;it’s a feature.”

Table 5: Distance from representation of {A1,D2,D#2} to nearest 10 pitches

 

 

  

rank pitch distance rank pitch distance

1 D2 2.528 6 C#2 4.422

2 E2 2.779 7 A2 4.422

3 Al 3,399 8 El 4.441

4 Bl 3.859 9 G1 4.497

5 C2 4.130 10 G2 4.497   

 

 

  

rank pitch distance rank pitch distance

1 D2 2.373 6 D#2 3.774

2 c2 3.277 7 Al 3.946

3 E2 3.538 8 F2 4.057

4 C#2 3.654 9 A#¥1 4.146

5 Bl 3.714 10 G1 4,323   
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believe that CONCERT could be improved considerably by incorporating the ideas in this work. For-

tunately, it does not require discarding the PHCCCFrepresentation altogether, because the PHCCCF

representation shares many properties in common with the representations suggested by Krumhansl and

Kessler and by Longuet-Higgens.

Simulation Experiments

Extending a C major diatonic scale

To start with a simple experiment, CONCERT wastrained on a single sequence consisting of three

octaves of a C major diatonic scale: Cl Dl El F1--- B3. Thetarget at each step wasthe next note

in the scale: D1 El F1 G1 --- C4. CONCERTis said to have learned the sequence when, at each

step, the activity of the NNL unit representing the target at that step is more active than any other NNL

unit. In 10 replications of the simulation with different initial random weights, 15 context units, a learn-

ing rate of .005, and no momentum, CONCERTlearned the sequence in about 30 passes. Following train-

ing, CONCERT wastested on four octaves of the scale. CONCERT correctly extended its predictions to the

fourth octave, except that in 4 of the 10 replications, the final note, C5, was transposed down an octave.

Table 6 shows the CONCERT’s output for two octaves of the scale. Octave 3 was part of the training

sequence, but octave 4 was not. Activities of the three most active output units are shown. Becausethe

output activities can be interpreted as probabilities, one can see that the target is selected with high confi-

dence.

CONCERT wasable to learn the training set with as few as 2 context units, although surprisingly,

generalization performance tended to improve as the number of context units was increased. CONCERT

was also able to generalize from a 2 octave training sequence, but it often transposed notes down an

octave.

Learning the structure ofdiatonic scales

In this simulation, I trained CONCERT ona set of diatonic scales in various keys over a one octave

range,e.g., D1 El F#1 Gl Al Bl C#2 D2. Thirty-seven such scales can be made using pitches in

the C1-C5 range. The training set consisted of 28 scales — roughly 75% of the corpus — selected at

random, and the test set consisted of the remaining 9. In 10 replications of the simulation using 20 con-

text units, CONCERT mastered the training set in approximately 55 passes. Generalization performance

Table 6: Performance on octaves 3 and 4 of C major diatonic scale

 

 

   

input pitch output unit activities

c3 D3 0.961 C3 0.017 E3 0.014

D3 E3 0.972 D3 0.012 F3 0.007

E3 F3 0.982 D#3 0.008 G3 0.006

F3 G3 0.963 F3 0.015 A3 0.010

G3 A3 60.961 G3 0.024 B3 0.012

A3 B3 0.972 A3 0.025 C4 0.002

B3 c4 0.979 A#3 0.010 c#4 0.005

C4 D4 0.939 C4 0.040 E4 0.009

D4 E4 0.968 D4 0.018 F4 0.006

E4 F4 0.971 D#4 0.016 E4 0.005

F4 G4 0.931 F4 0.037 F#4 0.015

G4 A4 0.938 G4 0.044 B4 0.007

A4 B4 0.915 A4 0.080 A#4 0.003

B4 c5 0.946 A#4 0.040 B4 0.011
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wastested by presenting the scales in the test set one note at a time and examining CONCERT’sprediction.

This is not the same as running CONCERT in composition mode because CONCERT’S output was not fed

back to the input; instead, the input was a predetermined sequence. Of the 63 notesto be predicted in the

test set, CONCERT achieved remarkable performance: 98.4% correct. The few errors were caused by tran-

sposing notes one full octave or one tonal half step.

To compare CONCERT with a transition table approach, I built a second-ordertransition table from

the training set data and measured its performance onthe test set. The transition table prediction (i.e., the

note with highest probability) was correct only 26.6% of the time. The transition table is somewhat of a

straw man in this environment: A transition table that is based on absolute pitches is simply unable to

generalize correctly. Even if the transition table encoded relative pitches, a third-order table would be

required to master the environment. Kohonen’s musical grammar faces the same difficulties as a transi-

tion table.

Learning random walk sequences

In this simulation, I generated ten-element sequences according to a simple rule: The first pitch

was selected at random, and then successive pitches were either one step up or down the C majorscale

from the previous pitch, the direction chosen at random. Thepitch transitions can easily be described by

a transition table, as illustrated in Table 1. CONCERT, with 15 context units, was trained for 50 passes

through a set of 100 such sequences. If CONCERT has correctly inferred the underlyingrule, its predic-

tions should reflect the plausible alternatives at each point in a sequence. Totest this, a set of 100 novel

random walk sequences was presented. After each note n of a sequence, CONCERT’s performance was

evaluated by matching the top two predictions —- the two pitches with highest activity — against the

actual note n+1 of the sequence. If note n+1 was not one of the top two predictions, the prediction was

considered to be erroneous. In ten replications of the simulation, the mean performance was 99.95%

correct. Thus, CONCERT was clearly able to infer the structure present in the patterns. CONCERT per-

formed equally well, if not better, on random walks in which chromatic steps (up or down a tonal half

step) were taken.

Learning interspersed random walk sequences

The sequences in this simulation were generated by interspersing the elements of two simple ran-

dom walk sequences of the sort just described. Each interspersed sequence had the following form: a,,

bi, 42, ba, +++, 4s, bs, where a, and b, are randomly selected pitches, a;,, is one step up or down from a;

on the C majorscale, and likewise for b;,, and b;. Each sequence consisted of ten notes. CONCERT, with

25 context units, was trained on 50 passes through a set of 200 examples and was then tested on an addi-

tional 100. In contrast to the simple random walk sequences,it is impossible to predict the second note in

the interspersed sequences (b,) from the first (a,). Thus, this prediction was ignored for the purpose of

evaluating CONCERT’s performance. CONCERT achieved a performance of 91.7% correct. About half the

errors were ones in which CONCERTtransposed a correct prediction by an octave. Excluding theseerrors,

performance improved to 95.8% correct.

To capture the structure in this environment, a transition table approach would need to considerat

least the previous two notes. However, such a transition table is not likely to generalize well because,if it

is to be assured of predicting a note at step n correctly, it must observe the note at step n—2 in the context

of every possible note at step n—1. I constructed a second-order transition table from CONCERT’straining

set. Using a testing criterion analogousto that used to evaluate CONCERT,the transition table achieved a

performance level on the test set of only 67.1% correct. Kohonen’s musical grammar would face the

same difficulty as the transition table in this environment.
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Learning AABA phrase patterns

The melodies in this simulation were formed by generating two random walk phrases, call them A

and B, and concatenating the phrases in an AABApattern. The A and B phrases consisted of five-note

ascending or descending chromatic scales, respectively, the first note selected at random. The complete

melody then consisted of 21 elements — four phrasesof five notes followed by a rest marker— an exam-

ple of whichis:

F#2 G2 G#2 A2 A#2 F#2 G2 G#2 A2 A#2 C4 B3 A#3 A3 G#3 FH2 G2

G#2 A2 A#2 REST.

These melodies are simple examples of sequences that have both local and global structure. The

local structure is derived from the relations among notes within a phrase, the global structure is derived

from the relations among phrases. This environment was designed to examine: (1) how well CONCERT

could cope with multiple levels of structure and (2) the utility of varying the rate of temporal integration

of the context units (the parameter t in Equation 2).

Two versions of CONCERT weretested, each with 35 context units. In the standard version, all 35

units had t=0; in the reduced description or RD version, 30 had t=0 and 5 had t=.8. The training set

consisted of 200 examples and the test set another 100 examples. Tenreplications of each simulation

were run for 300 passes through the training set.

Because of the way that the sequences were organized, certain notes could be predicted based on

local structure whereas other notes required a more global memory of the sequence. In particular, the

second through fifth notes within a phrase could be predicted based on knowledge of the immediately

preceeding note.” To predict the first note in the repeated A phrases andto predict the rest at the end of a

sequence, more global information is necessary. Thus, the analysis, summarized in Table 7, was split to

distinguish between notes that required only local structure and notes that required more globalstructure.

Performance requiring global structure was significantly better for the RD version (F(1,9)=20.7, p<.001),

but there was noreliable difference for performance requiring only local structure (F(1,9)<1). A large

part of the performance enhancementfor the RD version on global structure was due to its improved abil-

ity at predicting the rest at the end of a sequence: 62.2% for the standard version versus 82.6% for the RD

version (F(1,9)=32.4, p<.001). However, there was also a modest improvement in the ability to predict

the first note of the repeated A phrases: 71.3% for the standard version versus 75.1% for the RD version

(F(1,9)=4.85, p=.055).

Table 7: Performance on AABA phrases

 

structure standard version RD version

local 92.2% 92.1%
global 68.3% 77.6%

 

     

9 This is not quite correct because the A phrases were ascending and the B phrases descending. Thus, to predict the second note
of a phraseit is also necessary to know whetherthe current phrase is A or B, a global property of the sequence. However,for the
third through fifth notes in a phrase, the prediction can be based solely on the two immediately preceeding notes — local infor-

mation.
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Experiments with different values of t in the range .7—.95 yielded qualitatively similar results, as

did experiments in which the A and B phrases were formed by random walksin the key of C. Overall,

modest improvements in performanceare observed,yet it is somewhat disappointing that the global struc-

ture is never learned as well as the local.

Generating new melodiesin the style ofBach

In a final experiment, I trained CONCERT on the melody line of a set of ten simple piano piecesby J.

S. Bach (Table 8). The set of pieces is not particularly coherent; it includes a variety of musicalstyles.

The primary thing that the pieces have in commonis their composer. The pieces had several voices, but

the melody generally appeared in the treble voice. Importantly, to naive listeners the extracted melodies

sounded pleasant and coherent without the accompaniment.

In the training data, each piece was terminated with a rest marker (the only rests in the pieces).

This allowed CONCERTto learn not only the notes within a piece but also when the end of the piece was

reached. Further, each major piece was transposed to the key of C major and each minorpiece to the key

of A minor. This was done to facilitate learning because the pitch representation does not take into

account the notion of musical key; hopefully, a more sophisticated pitch representation would avoid the

necessity of this step.

In this simulation, each note was represented by a duration as well as a pitch. The duration

representation consisted of five units and was somewhat analogous the PHCCCFrepresentation for pitch.

It allowed for the representation of sixteenth, eighth, quarter, and half notes, as well as triplets. Also

included in this simulation were two additional input ones. One indicated whether the piece was in a

major versus minor key, the other indicated whether the piece was in 3/4 meter versus 2/4 or 4/4. These

inputs were fixed for a given piece.

Learning the examples involves predicting a total of 1,260 notes altogether, no small feat. CON-

CERTwastrained with 40 hidden units, 35 with t= 0 and 5 with t= 8, for 3000 passes throughthe training

set. The learning rate was gradually lowered from .0004 to .0002. By the completion of training, CON-

CERT could correctly predict about 95% of the pitches and 95% of the durations correctly. New pieces

can be created by presenting a few notes to start and then running CONCERT in composition mode. Two

examples of compositions produced by CONCERTare shownin Figure 5 Thefirst four notes of each com-

position, used to seed CONCERT,are from one of the training examples. CONCERTspecifies the end of a

composition by producing a rest marker. The compositions often contain brief excerpts from the training

examples. This is because CONCERT has learned the training examples so well that in many contexts,it

produces a prediction of one note with probability 1. This meansthat the selection process does not have

Table 8: Bach training examples

 

 

   

piece numberofnotes

Minuet in G major (no. 1) 126

Minuet in G major (no. 2) 166

Minuet in D minor 70

Minuet in A minor 84

Minuet in C minor 80

March in G major 153

March in D major 122

March in Eb major 190

Musette in D major 128

Little prelude in C major 121
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Figure 5. Two sample compositions produced by CONCERTbased on the Bach training set.
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the opportunity to follow an alternative direction.

The primary deficiency of CONCERT’s compositions is that they are lacking in global coherence. A

composition might flip back and forth between C major and A minor, or it might incorporate aspects of

both the marches and the minuets. Because the shorter compositions have less chance of wandering in

this manner, they tend to be more agreeable.

Discussion

Initial results from CONCERT are encouraging. CONCERTis able to learn musical structure of vary-

ing complexity, from simple random walk sequences to Bach pieces containing nearly 200 notes. I

presented two examples of structure that CONCERTcanlearn but that cannot be captured by a simple tran-

sition table or by Kohonen’s musical grammar. One example involved diatonic scales in various keys,

the other involved interspersed random walks.

I have motivated CONCERT’s architecture primarily from psychological and computational perspec-

tives, but have yet to provide empirical support for this architecture over other possibilities. Is the

PHCCCFrepresentation warranted, or would a simpler, perhaps even a local, representation of pitch suf-

fice? Is the NNL layer and the log likelihood performance measure necessary, or could the NNL layer be

eliminated and the error be computed directly by comparing the NND activity pattern with the target

pitch representation? These questions need to be answered systematically, but informal experiments with

alternative architectures and representations have convinced me that CONCERT’s performance is remark-

ably good. These experiments included: (1) the use of localist pitch representations, (2) variants in the

PHCCCFrepresentation, such as using two units to represent the circles instead of six, and (3) alternative

error measures, such as computing the sequared difference between the NND andtarget activity patterns.

Eachvariant yielded significantly poorer results in many of the simulations.

Beyond a more systematic examination of alternative architectures, work on CONCERTis heading in

three directions. First, the pitch representation is being expanded to account for the perceptual effects of

musical context and musical key. Second, CONCERTis being elaborated to include a representation of

note duration as well as pitch. The duration representation, as the PHCCCFrepresentation, is based on

characteristics of human perception. Preliminary experiments using this duration representation were

reported in the Bach simulation. Third, CONCERT is being extended to better handle the processing of

global structure in music using the idea of context units that operate at several different temporal resolu-

tions simultaneously. The experiments described in this report have shown modest success using this

technique, but much further work remains.
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