
Computer, cognitive, 
and neurological 
researchers who 
seek to mimic the 
mind are returning 
to wiring that 
imitates the brain’s 
as an alternative to 
expert systems, 
which try to find and 
follow the rules by 
which people appear 
to reason. 

ive a computer the right instruc- 
tions and, some say, it will act 
like a brain. Those “right in- 

structions” are artificial-intelligence pro- 
grams that run according to the rules 
and procedures that minds follow. But 
in fact, what al programs do well—rea- 
soning logically—people do badly. On 
the other hand, what human brains do 
well—generalizing from examples, 
making associations where none ex- 
isted—ai cannot do at all. 

A second way to offer a computer the 
attributes of a brain is to build it like one 
in layers of interconnected electronic 
surrogate neurons whose organization 
mimics the brain's. These computers, 
called neural networks, seem more apt 
than A! programs at functioning like the 
brain does. They make generalizations 
and original associations, and they have 
trouble with the multiplication table. 

The difference between artificial in- 
telligence and neural networks is, at bot- 
tom, the familiar debate over how best 

to describe the mind. Investigators of 
artificial intelligence and neural net- 
works find themselves on opposite sides 
of the argument. 

The ai side of the debate argues that 
the mind is best described by the rules 
it follows, especially the rules of logical 
reasoning. To reproduce the mind, a 
computer is programmed to follow the 
rules of logical reasoning. According to 
Tomaso Poggio and Anya Hurlbert, Al 
researchers at the Massachusetts Insti- 
tute of Technology, rules include “logic, 
mathematical proofs, legal debates, and 
the systematic elimination of all possible 
bugs in computer code.” 

The neural network side holds that 
because the mind is the brain’s behavior, 
any description of the mind must be 
grounded in the mechanics of the brain. 
To reproduce the mind, the structure and 
wiring of the brain are imitated. The 
neural networks that emerge from this 
approach seem to replicate abilities that 
are uniquely human. 
Humans are astonishingly good at 

dealing with an unorganized world. The 
world presents sights, sounds, smells, 
textures—all in disarray. From these, 
humans learn to associate, to recognize 
people and things as related to each other 

and as familiar. “We wade through the 
quicksand of multiple constraints,”’ Pog- 
gio and Hurlbert have written, “talking, 
humming, driving cars, reaching for cof- 
fee cups, recognizing faces in the crowd.” 
Human associative learning, moreover, 
seems effortless: Something seen a few 
times is somehow, mysteriously, rec- 
ognized. “The things that we're com- 
putationally most powerful at,” says John 
Hopfield, a physicist at the California 
Institute of Technology, “are the things 
we can’t explain at all.” 

On the other hand, humans are pretty 
bad at math and logic. “Logical thought,” 
says physicist Edward Teller, “‘is so rare 
in humans that it is almost a perversity.”” 
For example, cognitive scientist James 
Anderson at Brown University tried out 
that excellent example of logical, linear 
thinking, the multiplication table, on a 
neural network. His finding: “It did fine, 
if an acceptable answer is ‘7 x Sis 40ish.’ 
Otherwise, it did a terrible job.” 

Neural networks are designed to rep- 
licate associative learning. Larry Jackel, 
a physicist at At&T Bell Laboratories, pre- 
sents a neural network with handwrit- 
ten numerals and it can pick out the 
number 9. When Demetri Psaltis, an 
electrical engineer at the California In- 
stitute of Technology, presents exam- 
ples of faces to a network, it recognizes 
his. Terry Sejnowski, a biophysicist at 
Johns Hopkins University, presents ex- 
amples of words to a network, and it 
learns to pronounce aloud. Christof Koch, 
a biophysicist at Caltech, designs and 
builds simple networks that enable a ro- 
bot to navigate through a room or, he 
says, across a Martian landscape. Neural 
networks now play backgammon, rec- 
ognize faces from parts of photos, clas- 
sify animals, learn irregular verbs, 
recognize airplanes, and even evaluate 

credit for loans. 

To understand the brain 

Neural networks began with attempts 
to understand the mind by understand- 
ing the brain. In 1943, Warren Mc- 
Culloch, a psychiatrist at the Universities 
of Illinois and Chicago, proposed a theory 
of the mind in collaboration with Walter 
Pitts (“a brilliant and unstable under- 

graduate,” according to Anderson, “who 
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Sejnowski. His neural nets learned to pronounce English, corrected their own errors. 

never graduated”). Their joint article in 

The Bulletin of Mathematical Biophysics bore 
the title “A Logical Calculus of the Ideas 
Immanent in Nervous Activity.” Mc- 
Culloch and Pitts argued that a cure for 
“diseased mentalities” had to begin with 
a rigorous, scientific description of the 
mind—that is, the mind defined as the 
workings of the brain’s most basic units, 
the neurons. Neurons could be seen as 
logic devices, they wrote: “Neural events 
and the relations among them can be 
treated by means of propositional logic.” 

By the phrase “neural events and re- 
lations,” McCulloch and Pitts meant the 
rules under which neurons operate when 

Finkbeiner wrote ‘Demographics or Market 
Forces,’ on problems related to the supply 
of scientists and engineers, in Mosaic Vol- 
ume 18 Number 1 1987. 
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they communicate with each other, The 
communication is done electrochemi- 
cally. An electric current triggered in a 
neuron travels through the cell’s long 
axon to a gap, the synapse. Into the syn- 
apse, then, the neuron deposits chem- 
ical neurotransmitters; these cross to the 
next neurons and provoke other electro- 
chemical events. The brain has about 10" 
neurons, each one communicating with 
some 10* other neurons. 

The process, however, is not a simple 
domino-like line of electrochemical trig- 
gers and responses. It follows certain 
rules. Neurons fire only if the signal is 
strong enough; every neuron has a 
threshold, below which it is silent and 
above which it fires. Furthermore, neu- 
rons fire only if the current is positive. 
A negative current will not only inhibit 
the neuron from firing but also prevent 

any other stimulus from exciting it. Each 
neuron sums up all the exciting and in- 
hibiting signals from its thousands of 
connections. Then, depending on its 
threshold, it decides whether to fire. The 
neuron will either fire or not fire, will 

be either on or off. 
McCulloch and Pitts stated that this 

two-state neuron could be treated as a 
logic device. For instance, they declared, 
it can compute the logical and operation. 
If it is assumed that a neuron has a 
threshold of 2 and has two connections, 
A and B; then if A and B are off, the 
neuron is off; if either A or B is on, the 

neuron remains off, Only if both A and 
B are on is the neuron on. If the thresh- 
old is changed to 1, the neuron instead 

computes the inclusive or operation: if 
either A or B is on, the neuron is on. If 
both A and B are on, the neuron is also 

on. Neurons that behave so are now 

called McCulloch-Pitts neurons. 
Two years later, in 1945, John von 

Neumann—the mathematician who 
(among other things) designed the first 
digital computers—wrote, “Following 
W. Pitts and W. S. McCulloch, . . . it 

can easily be seen that these simplified 
neuron functions can be imitated by tel- 
egraph relays or by vacuum tubes.” In 
this view, devices like relays, or tubes, 
or transistors are substituted for neu- 
rons; each device is given a certain 
threshold, and then the devices are con- 
nected by wires. The result is the skel- 
eton of a simple computer: a brain 
machine with electronic analogues for 
neurons, thresholds, and synapses. 

Perceptrons 

In 1958, Frank Rosenblatt, a psychol- 
ogist at Cornell Aeronautics Laboratory, 
reduced von Neumann's idea to hard- 
ware. Rosenblatt built a machine that 
made its own associations—specifically, 
a machine that learned to classify shapes. 
He called it a perceptron. 

The perceptron imitated the brain’s 
organization, though not its complexity. 
In this machine, neurons are arranged 
in a rough three-level hierarchy accord- 
ing to function: sensory neurons take in 
information, motor neurons control the 
body’s response to the information, and 
interneurons (by far the most numer- 
ous) communicate between the other two 

types. Rosenblatt’s Mark I Perceptron had 
only two layers. In one layer were 512 
relaylike associator units, triggered by 
light sensors. In the second layer were 
eight response units, each correspond-



ing to one of eight classifications. All 
associator units were connected to all 
response units. 

Simple devices with thresholds and 
wires, arranged in layers, however, do 

not learn. Neurons “learn,” or are mod- 

ified, when somehow conversations be- 
tween certain neurons become more 
important, when signals pass between 
them more readily. Neurologists say the 
synapse modifies, or synaptic strength 
changes. Exactly how this happens no 
one knows: “At the moment,”’ says Cal- 
tech’s Christof Koch, “the question of 
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A short enough path. A neural network in the process of solving a traveling salesman 
problem (left) and the final solution (right), The size of each square (or neuron) represents the 
activity of that neuron, City J has been placed arbitrarily in location 10 in the intermediate 
solution; thus, the square at location J-10 is of maximum size. During the decision-making 
process, many neurons may be partially on. In the final form, however, each of the outputs is 
either on or off. The final state represents the path AEGFIHDBCV. 

what makes the synapse stronger is very 
open, very controversial.” (See “Learn- 

ing at the Sub-Neural Level” by Robert 
Kanigel, Mosaic Volume 18 Number 3 
Fall 1987.) 

A machine that can learn, then, needs 
a modifiable synapse. The electronic an- 
alogue to a synapse is a device, attached 
to the wires between transistors, called 
a resistor. Resistors specify the amount 
of current leaving one transistor that will 
reach the next one—much the way a 
volume control turns a radio up or down. 
A resistor set to a low value makes for 
a strong connection. 

Mechanical analogues 

Finding mechanical 

To decide how to change the strength 
of the connections between units in the 
perceptron, Rosenblatt used a variation 
on an old rule. In 1949, Donald Hebb, 
psychologist and chancellor at McGill 
University, had stated in Organization of 
Behavior what is now called Hebb's rule: 
When two connected nerve cells fire si- 
multaneously, the connection between 
them becomes stronger. The idea, ex- 
plains Koch, is that “neurons detect co- 
incidences, correlations. Probably if event 
1 and event 2 happen at the same time 
very often, they're related.” For exam- 
ple: Event 1 triggers cell A; event 2 trig- 

analogues for the brain has a long tradition, In 1664, 
René Descartes compared the brain to hydraulic systems driving the water- 
works at Versailles, A century later, Denis Diderot described the brain as a 
network of little threads that resonate to the touch like the quill-plucked 
strings of a harpsichord; the threads of a well-educated person's brain res- 
onate in particular harmony. The nineteenth century discovered electrical 
analogues: Herbert Spencer, the Victorian philosopher, compared the ner- 
vous system to telegraph relays; and philosopher of science Karl Pearson said 
the brain was like the central exchange of a telephone system. The twentieth 
century has two analogues, both actually capable of behaving enough like 
the brain to convince many humans: One is the conventional digital computer, 
the other the neural network. e 
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gers cell B. When events 1 and 2 happen 
at the same time, the connection be- 
tween A and B gets stronger. The next 
time A is on, B is more likely to go on 
too. Furthermore, if cells Y and Z are 
connected to A and B, then by exten- 
sion, the connections between cells Y 
and Z should be strengthened as well. 
This is one possible basis—in theory 
anyway—of associative learning. 

Perceptrons, then, learned because 
they were constructed of devices that 
behaved like McCulloch-Pitts neurons 
and obeyed Hebb’s rule, For example, 
an investigator can “show” a perceptron 
a square. If it responds by indicating a 
circle, the investigator can lower the val- 
ues of the resistors, strengthening the 
signal between circle and the units rep- 
resenting square. If the resistors between 
the two concepts are lowered, the next 
time the perceptron sees a square, it is 
less likely to respond with a circle. If it 
responds with a square, the investigator 
will leave the values alone: perceptrons 
punish failure and ignore success. The 
next square a perceptron encounters, it 

will be able to recognize. 
At first, Rosenblatt’s perceptron and 

his book outlining other perceptrons were 
a success. Following psychologists 
McCulloch, Hebb, and Rosenblatt, who 
worked with ideas from neurology, en- 
gineers then tried similar problems on 
similar machines. Bernard Widrow, an 
electrical engineer at Stanford Univer- 
sity, had a machine he called Adaline (for 
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adaptive linear neurons), which could give 

“reliable, reasonable responses to new 
patterns; that is, it could generalize.” 
Widrow trained Adaline to identify 

simple patterns that were first held ver- 
tically, then rotated by 90 degrees, 180 
degrees, and 270 degrees. After train- 
ing, Adaline could recognize other pat- 

terns similarly rotated. After further 
training, it recognized patterns trans- 
lated from left to right, from up to down, 
or from large to small. Electrical engi- 
neers at the Massachusetts Institute of 

    
Training laser beams. Psaltis (left) and his 
optical memory system, simulating a neura 
network of 10,000 neurons. The inter- 
connecting holograms can store images: 

when presented with a partial image, the 

system can retrieve the complete version 

Technology, building on research with 
cells in frogs’ eyes that responded to 
moving black spots, proposed sending 
an artificial frog, equipped with a per- 
ceptron, to Mars to detect Martian flies. 
At the time, as Anderson notes in a 
forthcoming book, ‘‘it seemed as if [per- 
ceptrons] could do anything. A hundred 
algorithms bloomed, a hundred schools 
of learning machines contended.” 

Limits 

“Unfortunately,” says Hopfield, 
“though perceptrons were an interest- 
ing thing to try, they ran into a wall.” 
The wall had several components. One 
was that research into perceptrons was 
not producing practical applications. 
Another was that the alternative ap- 
proach to making machines act like 
brains—artificial intelligence—was hav- 
ing remarkable success. A third was a 
book written in 1969 by Marvin Minsky 
and Seymour Papert, who were the co- 
directors of the Massachusetts Institute 
of Technology’s Artificial Intelligence 
Laboratory and founders of artificial in- 
telligence. Their book, Perceptrons, out- 
lined the reasons perceptrons could go 
no farther than they had.



  

  

One problem with perceptrons was 
that they were structured less like the 
brain than like the spinal cord. Whereas 
the brain has three general layers of neu- 
rons—input, connections, and output— 
the two-layer spinal cord handles only 
reflexes, in which input leads directly to 
output. Two-layered machines are lim- 
ited that way in the kinds of learning 
they can achieve. 
Another limitation was that percep- 

trons were able to handle only certain 
kinds of logic. To go beyond those lim- 
its, perceptrons would have to be 
equipped either with more layers or with 
more logic operations—specifically the 
exclusive or operation, which requires it 
to turn on if either A or B is on but not 
if both are on. 

Moreover, as Minsky and Papert ex- 
plained in a 1987 update of Perceptrons, 
“when failure occurred, neither pro- 
longing the training experiments nor 
building larger machines helped. All 
perceptrons would fail to learn to do those 
things. . . .” The result of all this was 
what Anderson called the dark ages, 
“where suddenly research on neural 
networks was unloved, unwanted—and 
most importantly—unfunded,” 

For the next 15 years, ai flourished. 
The first Al programs, written in the mid- 
1950s by Allen Newell and Herbert Si- 
mon at Carnegie Mellon University and 
Clifford Shaw at the Rand Corporation, 
were mathematical proofs that were 
neater and shorter than the standard 
proofs. By the late 1960s, Newell and 
Simon had written one of the first pro- 
grams for an expert system. Such pro- 
grams include precisely the hundreds of 
steps, in sequence, that human experts 
seemed to follow in solving problems. 
Thanks to sophisticated programs, Al ex- 
pert systems can now play chess, read 
texts, analyze the structure of chemical 
compounds, diagnose diseases, and 
prescribe medication. (See “Before They 

Can Speak, They Must Know” by Wil- 
liam J. Cromie and Lee Edson, and other 
articles in Mosaic Volume 15 Number 1 
1984, a special issue on advanced com- 

puter research.) 
But al, however successful, has a blind 

spot: Real-world problems, like recog- 
nizing a tree or translating a foreign lan- 
guage, entail endless variants and 
possibilities. Hopfield points out that at 
“is strictly logic-based, and so, with real- 
world problems and better data bases, 
it tends to fall apart.” For example, he 
says, “since most words can be trans- 

lated in a number of different ways, by 
the time the expert system has a ten- 
word sentence, it’s in trouble. You've 
got a combinatorial explosion.” 

Combinatorial explosions, although 
they disable al systems, make the rea- 
soning process easier for humans. “Eng- 
lish has a lot of ambiguous words,” says 
Anderson, “Bat, ball, and diamond have 
three or four different meanings apiece. 
The correct meaning depends on the 
context. So if I group bat, ball, and dia- 
mond together, you know what I'm talk- 
ing about. If I tell you game, you won't 
have any doubt. 

“People are terrific at this. But sup- 
pose we're doing an Al search. To dis- 
ambiguate the meanings, [the expert 
system] has to check all possible asso- 
ciations and look for the one that agrees 
with all of them. With al, the more in- 
formation you have, the longer the search 
takes. People work just the other way. 
If 1 give you more associations, your re- 
action time speeds up.” In short, says 
Anderson, ‘ai expert systems work like 
human novices. Human experts not only 
follow rules, they have connections be- 

tween the rules—intuition, hunches.” 
The neural approach, which had been 

plugging along at a low but steady level, 
revived in the early 1980s, this time un- 
der the name connectionism. One rea- 
son for this revival was that the new 
neural, or connectionist, networks 

seemed to promise things that neither 
perceptrons nor AI could. “If you give a 
neural net only the word ball, it floun- 

ders around, [then] chooses a possible 
association in about 100 iterations,” says 
Anderson. “If you give it ball and bat, it 
disambiguates and gets baseball in 30 it- 
erations. Put in bat, ball, and diamond, 
[and] it gets baseball in 14." Neural nets 
seem to have some of the same talents 
as human beings. 

Networks revisited 

The new neural networks have had 
several incarnations: as especially wired 
computers linked to conventional digital 
computers, as custom-built visi chips, 

and as simulations on a more conven- 
tional computer. 

Neural networks use the perceptron’s 
basic principles but make two changes. 

Nineteenth-century prescience 

Connectionism could conceivably be said to date from the ideas of William 
James. In his treatise called Psychology: The Briefer Course (1892), James de- 
scribed the process as follows: 

The manner in which trains of imagery and consideration follow each other 
through our thinking, the restless flight of one idea before the next, the 
transitions our minds make between things wide as the poles asunder, 
transitions which at first sight startle us by their abruptness, but which, 
when scrutinized closely, often reveal intermediating links of perfect nat- 
uralness and propriety—all this magical, imponderable streaming has from 
time immemorial excited the admiration of all whose attention happened 
to be caught by its omnipresent mystery. [Therefore we should ascertain] 
between the thoughts which thus appear to sprout one out of the other, 
principles of connection. . . . 

James also anticipated the rule on reinforced synapses that psychologist 
Donald Hebb would develop 50 years later. In The Briefer Course James pos- 
tulated, “Let us then assume as the basis of all our subsequent reasoning 
this law: When two elementary brain-processes have been active together or 
in immediate succession, one of them, on recurring, tends to propagate its 
excitement into the other.” 

At the same time, James described a mechanism for association that is 
uncannily like neural networks. Thought A, of a dinner party, is composed 
of details a, b, c, d, and e. Thought B, of walking home afterward, is similarly 
composed of details J, m, n, 0, and p. All details connect all other details, 
“discharging into each other,” according to James. As a result, then, “the 
thought of A must awaken that of B, because a, b, c, d, and ¢ will each and 
all discharge into]. . ."; and ! “vibrates in unison” with m, n, 0, and p. @   
   



      
One is in the networks’ architecture. 
Terry Sejnowski of Johns Hopkins and 
Geoffrey Hinton, a computer scientist 
now at the University of Toronto, added 

to the two-layered perceptron a third 
layer they call the hidden layer. The hid- 
den layer corresponds to the brain's in- 
terneurons, the neurons in the middle 
that handle neither input nor output but 
only communicate, In three-layered net- 
works, the input units all talk to the hid- 
den units—which in turn talk to the 
output units. (See “Inside the Hidden 
Layers” accompanying this article.) 

Another change is in the learning rules, 
or algorithms. Sejnowski and Hinton 
developed extensions of Hebb’s rule that 
allow the networks to correct their own 
errors. Others independently developed 
a similarly self-correcting algorithm, now 
called back-propagation. Among them 
were David Rumelhart and Ronald Wil- 

8 MOSAIC Volume 19 Number 2 Summer 1988 

liams at the University of California at 
San Diego, working with Geoffrey Hin- 
ton; David Parker at Stanford; and Paul 
Werbos (now at the Energy Information 
Agency of the Department of Energy in 
Washington, D.C.) in his Ph.D. thesis 
at Harvard. What the algorithms do is 
allow the networks to compare their out- 
put to a standard, note the extent of the 
rightness or wrongness, and adjust the 
connection strengths in the hidden layer 
accordingly. The most powerful of the 
new algorithms, Anderson says, is back- 
propagation, 

Back-propagation is like hide-and-seek 
with clues—like when someone tells the 
seeker he is getting either warmer, or 
cooler; now cold, now hot. For every 
occurrence of the signal “warmer,” the 
connections along a particular path 
become stronger; for every instance of 
“cooler,”’ the connections become 

Neuron chip. Jacke! and (left) a small 
section of chip used to recognize 
handwritten numbers. 

  

weaker. Because the algorithm tells the 
network nothing more than that, the new 
networks are self-teaching. They also 
contain many paths (some more direct 
than others) to the same answer. 

So to speak 

For example: Sejnowski, with Charles 
Rosenberg at Princeton University, ran 
a neural network simulation they called 
NetTalk that learned to pronounce Eng- 
lish. That is, NetTalk, when presented 
with the letter » (embedded in a word) 

learned to come up with the sound nnn. 
The letter n was represented by the start- 
up of a certain input unit. When the N 
unit turned on in the input layer, a cor- 
responding set of units then lit up in the 
hidden layer. 

The first time through, the N unit ac- 
tivated a random pattern of units in the 
hidden layer. That pattern happened to 
trigger the unit in the output layer that 
corresponded to the phoneme ah. (Each 
output unit represented one of the 55 
possible phonemes in the English lan- 
guage.) A teacher—a program with the 

correct letter-to-phoneme relation- 
ships—sent back a message to the hid- 
den layer: Wrong. So the next time the 
hidden layer encountered input from the 
N unit, it knew it had to avoid the output 
unit for ah. 

In less anthropomorphic terms, the 
learning algorithm reduced the strengths



of the connections between the pattern 
in the hidden layer that corresponded 
to N and the output phoneme ah. In ef- 
fect, the connections between N and ah 
weakened. After several more itera- 
tions, the output layer tried mmm. This 
time the teacher sent back another mes- 
sage: Slightly Right. Now the connec- 
tions between the pattern in the hidden 
layer corresponding to N and the pho- 
neme mmm were strengthened, but only 
a little. When the hidden layer finally 
got around to triggering nnn, those con- 
nections were simply left alone: Don’t 
argue with success! The next time the 
network saw N, it had several ways (some 
better than others) to get to nnn. 

The recipe is fairly simple. For ex- 
ample, to get a network to recognize a 
cat, assign each input unit some feature 
of animals. Assign each output unit an 
animal. Then tweak the connections be- 
tween the units. Large size, inhibit 
strongly; four legs, excite weakly; whis- 
ker, excite strongly; color, excite weakly. 

Paths to “Grandmother” 

This recipe, simple though it is, has 
interesting implications. One is that be- 
cause neural networks make decisions 
by means of a multiplicity of connections 
(some stronger, some weaker), concepts 
or memories are spread throughout the 
network. Researchers call this phenom- 
enon distributed processing. The image 
or concept of “grandmother,” for ex- 
ample, does not reside in the triggering 
of a certain processing unit. Nobody, re- 
searchers say, has yet found a “grand- 
mother neuron” in the brain. 

Just as “cat’’ could be reached via 
component concepts such as “‘whis- 
kers” and even “large size,’ “Grand- 
mother” can be reached by paths that 
might include “Sunday-night popcorn,” 
“gray gloves,” and “leaky ball-point 
pens.” If the path via gray gloves were 
somehow blocked, ways to “‘Grand- 
mother’—though fewer—would still 
exist. After Bernard Widrow had suc- 
cessfully demonstrated his network 
Adaline in 1960, he found out that 25 

percent of the circuitry had been defec- 
tive. Researchers call this ability to op- 
erate despite impairments “‘graceful 
degradation”: network performance, in- 
stead of toppling over dead, degrades 
gracefully, instead. 

Another implication of the way neural 
nets operate is that some networks can 
suggest associations that they have not 
been taught to make. Says Hopfield, 

  a . D 4 ee, 

“You put memories into [some net- 
works], and they develop other mem- 
ories. A network that holds a memory 
of John-red-hat, and John-green-ball, and 
Bill-red-ball, will also be able to concep- 
tualize John-red-ball. If you give it John 
and ball, it might give you red.” 

A third implication of the way neural 
networks operate is that they reach an- 
swers through a series of connections 
that are strong, but not necessarily the 
strongest possible. As a result, the an- 
swer will be pretty good but not the best. 

Hopfield’s network solves the classic 
traveling-salesman problem: 20 cities— 

Terminology 

Anderson. Tried hard to fool a hard-to-fool network. 

J. 
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each one visited once only—by the 
shortest possible route. Out of the 10% 
possible paths, Hopfield’s network finds 
not the shortest path, but one that is 
short enough, 

One of Anderson's neural-network 
simulations has learned, if given the 
concepts of a general pathogen and a 
disease, to specify the exact pathogen 
involved and to prescribe medication. 
This network is hard to fool. 

Anderson tried, for instance, to stump 
the network with a trick question. He 
linked a Gram-positive bacillus with 
meningitis—a combination the data base 

Terminology in the field of neural networks has not settled into a pattern 
of consistent usage yet. The networks are variously called connectionist ma- 
chines, adaptive resonance machines, neural networks, neural computers, 
and parallel distributed processors. The electronic analogues to neurons, the 
transistors, are called units, processors, or even “neurons” (with quotation 
marks). The electronic analogues to synapses—the resistors (or in simula- 
tions, the values of stored numbers)—are referred to as connection strengths 
or weights, or synaptic weights. The tendency to use physiological terms to 
refer to electronics, however, annoys some researchers, 

Certain machines decide by consensus on solutions that are not perfect, 
but are good enough for current purposes. These machines are said to operate 
on a principle denoted as any of the following: optimization, constraint sat- 
isfaction, global energy minima, goodness, or harmony. e 
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had never been shown. Then he asked 
it for a prescription and a pathogen. 

After about 30 iterations, the machine 
came up with what Anderson calls a 
consensus prescription: penicillin. After 
100 or so iterations, the network iden- 
tified the organism as Corynebacterium, a 
Gram-positive bacillus that is in fact not 
likely to cause meningitis. “The machine 
guessed,” Anderson declares, “and 
penicillin is a pretty reasonable guess. 
The other guess is not so good, and also 
took more time—which usually means 
the system is unsure of its answer.” 

More experiments 

Neural networks, or simulations of 
them, or neural chips, all differ in their 
architectures and their learning algo- 

rithms. In some networks, like NetTalk, 
the connections are changed by a mech- 
anism in the network's program. Other 
networks have their connection strengths 
preset by the researchers. “Presetting the 
weights can be done with clearly spec- 
ified problems,” says John Hopkins's 
Terry Sejnowski, “‘like the rules for the 
traveling-salesman problem.” 

Neural networks also differ in the types 
of problems they are designed to han- 
dle. Physicist Alan Lapedes and com- 
puter scientist Robert Farber, both at Los 
Alamos National Laboratory, used a 
neural-network simulation to determine 
whether a given sequence of base pairs 
ona strand of DNA could be responsible 
for producing a protein. 

Conventional methods can reliably 

predict protein production only when a 
strand is long. However, the strands that 
produce proteins are short. Lapedes and 
Farber trained a neural net by showing © 
it short strands that do make proteins 
and short strands that do not. Not only 
could the neural net predict whether a 
new strand would produce proteins but 
it also found a mistake in GenBank, a 
library of protein-producing DNA strands 
at Los Alamos National Laboratory. 

Electrical engineer Demetri Psaltis has 
built what he calls an optical neural com- 
puter. The advantage of optical neural 
networks, says Psaltis, is that a one-cen- 
timeter crystal cube can store a million 
connections—storage that requires some 
100 chips to achieve. Instead of using 
transistors triggered by electric current, 

Inside the hidden layers 

Hidden layers, processing units between input and out- 
put layers and analogues to the brain’s interneurons, are 
something of a black box. Researchers are sure of what 
ought to happen inside them, but vague on what actually 
does happen. In general, says Caltech’s John Hopfield, 
researchers think that “hidden layers detect broad classes 
of features of things that are present in the input data. 
Hidden layers represent structure in the stimulus.”’ 

After the machines have learned and generalized, some 
researchers have gone back inside to find out exactly what 
features of the world the hidden units responded to: 
Grandma‘s gray gloves? popcorn?—or something else al- 
together? To investigate the various features, in simula- 
tions of neural networks for instance, researchers make 
use of a program that monitors how active each of the 
hidden units is. 

To analyze hidden units is tricky, and it is not routinely 
done, For one thing, specifying exact features is a pains- 
taking process. At Johns Hopkins, Terry Sejnowski's NetTalk 
has 18,000 connections to analyze—a year's work. For 
another, the difficulty depends on the nature and com- 
plexity of the problem. In harder problems, says James 
Anderson at Brown University, ‘units turn out to respond 
to all kinds of things.” ; 

If the researcher understands the problem and knows 
how a stimulus ought to break down under analysis, the 
features that hidden units map or correspond to make 
sense, Sejnowski and Princeton's Charles Rosenberg found 
that NetTalk’s hidden layer performed coding for particular 
letter-to-sound relationships—some consonants, some 
vowels. Within each vowel or consonant, NetTalk had also 
isolated individual clusters of phonemes. That kind of 
obviousness, said Anderson, ‘‘gives the researcher the 
warm, toasty feeling that the net operates the way you 
do and you understand it.” 

Sometimes the hidden units see features that are sen- 
sible but less obvious. David Rumelhart, Geoffrey Hinton, 
and Ronald Williams (all of the University of California at 
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San Diego) fashioned an experiment that gave a five-layer 
network two family trees of the same shape—one Italian, 
one English. They trained the network in the people's 
names and such relationships as “Colin is the son of Vic- 
toria,”” “Victoria is the sister of Arthur.” 

The network, if given Colin and “nephew of,” could 
supply the name of Victoria’s brother, Arthur. Because of 
the similarity between family trees, the network could 
generalize from English family relationships to Italian ones: 
If Alfonso is the son of Lucia, he must also be the nephew 
of Lucia’s brother, Emilio. When the researchers looked 
at the connections between the input layer and the first 
of the hidden layers, they found a unit that distinguished 
between Italian and English, one that identified the par- 
ticular generation, and one that identified the branch (left 
or right) of the family. 

Sometimes, however, if the researcher does not know 
the answer to the problem or if the answer is one of several 
good possibilities, the features to which the hidden units 
respond do not make much sense. In the case of the Eng- 
lish-Italian family problem, the network has many layers. 
Researchers could analyze the connections between the 
input layer and the first hidden layer. But after that, says 
Hinton, “the connections between the input layer and the 
second hidden layer are hard to even figure out, let alone 
see if they make sense. Obviously it’s something sensible, 
because the network learns. It’s just hard to see what 
connections are being made.” 

On the whole, says Anderson, ‘‘what happens in the 
hidden layer is a little mysterious. Loose thinking about 
hidden units has always haunted the field of learning 
systems. It’s a mysticism I’m not happy with.” 

Sejnowski, by contrast, views the prospects less bleakly. 
“In every problem that I've looked at,”” he says, “from 
NetTalk to sonar target identification, not only have we 
been able to understand the hidden units but we have 
also learned a lot about the nature of the problem. There 
is nothing mysterious about it.” e  



  

  

the optical neural net contains what 
Psaltis calls a “threshold device,” whose 
10,000 sensors are triggered by a light 
beam. Instead of using resistors to vary 
the strength of connection, the optical 
neural net compares an input image— 
such as a slide projection of a ginkgo 
tree—to images of several trees stored 
in a hologram. The closer the match be- 
tween the patterns of light and dark in 
the ginkgo tree and those of a tree in the 
hologram, the more intense the light that 
is allowed to leave the threshold device. 
After being trained, the optical neural 
computer can recognize a ginkgo tree 
even when shown only its parts. It could 
not, however, recognize a different 
ginkgo, nor could it identify the same 
tree from another angle. 

Larry Jackel, an electrical engineer, 

working with Hans Peter Graf, a phy- 
sicist also at Bell Laboratories, has built 
a neural chip that recognizes handwrit- 
ten numbers from zero to nine. “You 
write on ordinary paper with an ordi- 
nary pen in ordinary handwriting,” Jackel 
explains. “The network looks for the 
distinguishing features of the number: a 
three is three horizontal lines, three stops, 
and two vertical lines. If the handwriting 
is sloppy,” says Jackel, “the net gets it 
with 80 percent accuracy; with neat writ- 
ing, around 95 percent.” 

Toy problems 

Once again, as they did with percep- 
trons, Minsky and Papert are poised to 
pounce. They are reissuing their book 
Perceptrons, with a new prologue and an 
epilogue to address directly the devel- 
opment of neural networks. “Our po- 
sition remains what it was when we wrote 
the book,” they write. ‘We believe this 
realm of work to be immensely impor- 
tant and rich, but we expect its growth 

to require a degree of critical analysis 
that its more romantic advocates have 
always been reluctant to pursue—per- 
haps because the spirit of connectionism 
seems itself to go somewhat against the 
grain of analytic rigor.” 

One problem with neural networks, 
say Minsky and Papert, is that neither 
the networks nor the problems they work 
through can be scaled up. Neural net- 
works have solved only what Minsky 
and Papert call “toy problems”: A given 
neural net can recognize a particular cat, 
but no neural network is equal to gen- 
eralized pattern recognition. “A net can 
be tailored to do anything particular,” 
said Minsky. ‘When someone says, ‘I 

have a net that will solve this specific 
problem,’ I stop listening.”’ 

Nor does anyone know, according to 
Minsky and Papert, the conditions un- 
der which bigger nets with more units 
arranged in more layers would solve 
harder problems. Part of the reason is 
that currently available learning algo- 
rithms will work on larger networks only 
if the tasks are, in the mit authors’ words, 
“of low order.” 

At the heart of the difficulty is the field’s 
lack of a theory. The need is for a theory 
that “‘classifies the problems, then pre- 
dicts what types of problems different 
machines can learn most efficiently,” says 
Minsky. The problems that neural net- 
works solve seem to defy classification. 
Learning to pronounce words seems to 
have little to do with finding the shortest 
route among 20 cities, which in turn 
seems unrelated to recognizing a ginkgo 
tree by its branches. 
Tomaso Poggio, at it’s Artificial In- 

telligence Laboratory, points out that 
neural networks cannot yet solve any 
problems that conventional computers 
could not also solve. “Neural networks 
are accompanied by a lot of irritating 
hype,” Poggio declares. “Some comes 
from the press, a little of it from the sci- 
entists in the field. Neural nets point out 
interesting problems but have not solved 
the big problems of vision or speech. 

A theory from physics 

  

Minsky. A cerebral role for toy problems? 

Ultimately, in my view, when the hype 
disappears, there's a good possibility they 
will go the way of perceptrons.” 

Neural-network researchers do not 
dispute the scaling problems, the hype 
problem, or the fact that (as Hopfield 
says) “right now we can’t do anything 
with neural networks that digital com- 
puters can’t do.” Or in Anderson's 
words, “It’s a lot of fun, messing with 

Most of the work in neural networks has been experimental—trying out 
various problems on various architectures, applying various learning algo- 
rithms. Theoretical understanding of what goes on in the networks, however, 
is harder to come by. So far, the best theory is Hopfield’s. Hopfield applied 
to networks the most basic of all sciences: physics. According to psychologist 
Anderson, until Hopfield’s entry into the field “nobody paid much attention 

to the psychologists—psychologists are ‘squishy.’ A Caltech physicist, though, 
is impressive. 

To describe what happens in neural networks as they learn, Hopfield used 
a model that physicists know well: the Ising. Ising models describe such 
systems as magnets or spin glasses in which large numbers of two-state units 
change their states in dependence on their neighbors’ states. “Hidden in the 
mathematics of the Ising model,”” says Hopfield, “is a quantity which, as 
processing units change their firing, always decreases.” For lack of a better 
name, Hopfield calls that quantity energy: ‘The quantity simply somehow 
drives the change, just as entropy increase drives the expansion of a gas. It’s 
a mathematical construct of ‘downhill.’ ’” 
The energy in the whole system goes downhill whenever the units change 

states. The units stop changing, says Hopfield, when “each unit agrees with 
all of its inputs.” If a unit's inputs are positive, the unit is on; if negative, it 
is off. “After changes toward consensus, the system doesn’t change any more, 
the energy gets no lower. Once at the lowest state, you don’t go ony ner 

else because there’s nowhere else to go, no more reason to roll.’   
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Biological neural networks 

Connectionists, those computer scientists and engineers 
devising what they metaphorically call neural networks, 
define their networks as collections of electronic surrogate 
neurons connected in ways that are designed to achieve 
some specified function: They can solve the traveling 
salesman problem; they can learn to pronounce words. 

Neurobiologists accept this definition, but with reser- 
vations; specific networks indeed should be responsible 
for specific functions: digestion or spatial orientation to 
name two. In practice, however, the practical relationship 
between network and function in neurobiology is neither 
necessary nor clear, and battle lines do get drawn. ‘To a 
neurobiologist,” says David Hubel, Nobel Prize winner 
and Harvard University neurobiologist, ‘‘network is just 
a gimmicky term to mean connected neurons.” If a net- 
work's identity is constrained to include its function, says 
Larry Cohen of the Yale University School of Medicine, 
“we're still trying to define network and, depending on 
the scale, sometimes we're not even close.” 

Largest and smallest 

In a sense, all neurobiologists who study collections of 
connected neurons can be said to be studying neural net- 
works. The scales, however, can range from pairs of neu- 
rons to millions of neurons in animals ranging from 
nematodes to humans, and differences in scale can pro- 
duce differences in perspective. 

Neurobiologists studying the largest scales in the most 
complex animals do know function: The 10 billion neurons 
in the human cerebellum coordinate the initiation and 
control of movement. (John Kauer, neurobiologist at Tufts 
Medical School, advises care in talking about numbers of 
neurons. “Nobody’s done a good count in the human 
brain—one number often used is 10 billion. The counts 
in the cerebellum have been more careful, and that’s 10 
billion, too. So we tell our students the brain has 10 billion 
neurons, 10 billion of which are in the cerebellum.”’) 

Kauer and his colleagues relate structure to function by 
presenting a subject with a stimulus—a moving black 
speck—and then watching to see which area of the brain 
becomes most active. Activity is measured with electro- 
encephalograms that trace electrical responses in areas of 
the brain, or with positron emission tomography that traces 
the areas of the brain that most take up radioactive glucose 
and therefore use the most energy. The oldest method for 
finding the functions of areas of the brain is to see what 
happens when something goes wrong with one area. Neu- 
robiologists studying the largest scales, however, do not 
say they are studying networks of neurons; on this scale, 
connections between neurons are impossibly labyrinthine 
and numerous. 

Neurobiologists studying the smallest scales in the sim- 
plest animals know the functions of some of the net- 
works—the 14 neurons in a ganglion in a lobster’s stomach, 
for example, that move the stomach back and forth to 
grind food. Neurobiologists working on this scale relate 

12 MOSAIC Volume 19 Number 2 Summer 1988 

structure to function in the most direct way possible: by 
presenting a stimulus using an electrode to detect a spe- 
cific neuron’s response, and then inserting other elec- 
trodes and watching other neurons’ responses. 

They have found neurons in frogs that discriminate be- 
tween a small black moving object and a large one, and 

neurons in rats that respond to one smell or to being in 
a particular place. They have found that neurons respond- 
ing to movement do not also respond to color, They have 
charted all 300 neurons in the nematode C. elegans. One 
hundred of the 10,000 neurons in the well-studied sea slug 
Aplysia have names. 

“Only the single-cell guys,” says Larry Cohen, “can say 
an action potential in cell X causes a synaptic potential in 
cell Y, which causes a muscle to contract.” Single-cell re- 
search provides the most compelling link between struc- 
ture and function, says David Hubel. “‘It is what 
neurobiology can with most justification call a network.” 

The drawback of single-cell research is size. Electrodes 
can be inserted only in tens of neurons at a time, Hundreds 
of electrodes in hundreds of neurons, says Cohen, “would 
make scrambled eggs of the brain. But try as it will the 
14-cell network in the lobster’s stomach can’t do the trav- 
eling salesman problem.” 

The midrange networks in humans are most likely to 
be the ones solving the traveling salesman problem and 
learning to pronounce. Unlike single-cell networks, mid- 
range networks can be related to specific functions only 
indirectly. If a puff of odor excites a salamander’s olfactory 
bulb, then a network of neurons in the olfactory bulb 
probably has something to do with smell. Midrange re- 
searchers study networks on the order of thousands to 
millions of cells situated in the visual, motor, and olfactory 
areas of brains of animals including salamanders, rattle- 
snakes, gerbils, opossums, rats, cats, and monkeys. 

Patricia Goldman-Rakic, neurobiologist at the Yale School 
of Medicine, studies monkey-brain networks that proba- 
bly are responsible for processing information on the mon- 
key’s position in space. Goldman-Rakic uses a combination 
of radioactive tracers that are taken up by cells in the 
region in which they are injected. The tracers travel along 
axons, marking where the axons end. After the tracers 
have reached their destinations, the animals are sacrificed 
and slices of their brains are studied. 

Goldman-Rakic and her colleagues have identified a net- 
work connecting some 17 different areas of the cortex. 
These areas include the prefrontal cortex, responsible for 
memories of spatial information; the posterior parietal cor- 
tex, responsible for the monkey’s knowing where it is in 
space relative to its environment; and the parahippocam- 
pal gyrus, responsible for the long-term storage of mem- 
ory. Some areas in the same network are responsible for 
sensory information, others have access to motor centers. 

“Several brain centers may be interconnected in the net-



  

   

  

Neural network. Connections traced between the dorsolateral prefrontal (at left) and posterior parietal cortices of a rhesus 
monkey's brain, Neuronal bundles link regions of the brain that contribute to the monkey's ability to locate itself in space. 

work such that function is distributed among the inter- 
connected areas,” Goldman-Rakic writes in a forthcoming 
issue of the Journal of Neuroscience. “Furthermore, we sug- 
gest that this network is involved in all aspects of spatial 
perception and behavior, including attention, perception, 
memory, and motor control.” 

John Kauer also works on midrange networks, but in 
salamanders and in real time. Kauer exposes a salaman- 
der’s olfactory bulb and applies to it a dye that fluoresces 
when it encounters electrical voltage. Then Kauer shocks 
the nerve leading to the olfactory bulb and, as successive 
neurons fire, the fluorescence spreads, “It’s like having 
electrodes everywhere throughout the tissue,” he says. 

Kauer’s videotape shows differing areas of the olfactory 
bulb fluorescing with differing intensities. Each intensity 
may represent activity in a different network, But because 

  

specifics about the way a salamander’s olfactory bulb han- 
dles odors are less well known than specifics about the 
way a primate’s motor cortex handles movement, Kauer 
cannot determine exactly what these networks do. 

Although the tracers and dyes used by both Goldman- 
Rakic and Kauer spread neuron by neuron, neither re- 
searcher is detecting networks of single neurons. Instead, 
each point of the spread probably represents hundreds to 
thousands of neurons. What the researcher sees are net- 
works of networks; David Hubel says they should be called 
supernetworks. 

Goldman-Rakic says she hopes that connectionists will 
use the results of research in midrange networks in their 
models. “It should be useful to the modelers that there 
are 17 areas in a monkey's cortex dealing with spatial 
information,” she says. —Ann Finkbeiner 
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these models. These little straightfor- 
ward simulations are provocative. But 
now we have to do the hard stuff.”” That 
includes the finding of more powerful 
learning algorithms, solutions to more 
general problems, development of big- 
ger machines, and the invention of some 
sort of unifying concept. “We're just 
starting to realize how hard the hard stuff 
is,’" says Anderson. 

Cui bono? 

In the end, neural networks as a field 
seems more suggestive than substan- 

tive. Part of the reason is that the field 
is young. Another part of the reason is 
that, like Al, neural networks look two 
ways simultaneously: toward building 
better computers and toward under- 
standing the mind and/or brain. So the 
irresistible question arises: What drives 
research into neural networks? or: Of all 
the researchers in all the fields that work 
on neural networks, who benefits? 

So far, not neurobiologists; but that is 
beginning to change. Some neurobiol- 
ogists find that neurons behave accord- 
ing to more-or-less Hebbian models of 
synaptic modification and that the brain 
does indeed store information in mod- 
ified synapses. Others use neural-net- 
work techniques to study the way the 
olfactory system recognizes different 
smells. But for neurobiologists, says An- 
derson, “neural networks are so ex- 
treme a stylization of the brain it's like 
describing the Rockies by saying they're 
higher than the surrounding land.”’ On 
the whole, says Bell’s Larry Jackel, “no 
one really believes electronics can liter- 
ally imitate biology.” 

Neural-net researchers would reply 
that duplicating the brain is not their 
goal. They do not use silicon to mimic 
biology, Hopfield and David Tank of Bell 
Laboratories have written, for the same 
reason that carmakers do not make me- 
chanical horses and airplanes do not flap 
their wings. What silicon can mimic, says 
Sejnowski, are the principles behind the 
biology. And that work, he says, “is 
teaching us more and more about styles 
of computation.” 

So maybe computer science is the ben- 
eficiary. The technology of neural net- 
works may apply to the next generation 
of computers. The programs, the math- 
ematics required to write the programs, 
the arrangement of the processing units, 
and the connections between them—all 
present alternatives to today’s digital 
computers. Several companies are al- 
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ready manufacturing commercial neural 
networks that can identify vehicles by 
their sonar or radar images and can read 
handwriting not only in cursive English, 
but in Japanese. Other companies man- 
ufacture prototype neural chips. Jackel 
says that computer science pays atten- 
tion to neural-net research, but is wait- 
ing: “The issue now is delivering the 
goods, seeing what works.” 

For cognitive science, the resemblance 
of neural networks to minds, though 

inexact, is also fascinating. People learn 

without consciously applying logic. They 
routinely wipe out neurons with alco- 
hol, drugs, and accidents, but rarely lose 
their memories of Grandmother. They 
find answers that are good enough, if 
not the best possible. They come up with 
associations they never learned. 

For example, James McClelland, a 

cognitive psychologist at Carnegie Mel- 
lon University, compared the perfor- 
mance of children to that of a neural 
network on the same problem, The 
problem: A balance beam is divided 
evenly along its length by several pins. 
If equal weights are laid on the pins third 
from the fulcrum on both sides, the beam 
will balance. What will happen if two 
weights are placed on the second pin out 
on the left, and one weight on the fourth 
pin out on the right? “Both the kids and 
the nets were confused,” McClelland re- 
ports, “and like the kid who never goes 
on to take general physics, [the network] 
never learns to say that one weight on 
the fourth pin equals two weights on the 
second.” In other words, general-phys- 
ics students, like Al programs, can solve 
the problem by multiplying. Neural net- 
works and (presumably) English ma- 
jors, remain confused and, says 
McClelland, ‘favor the weight cue from 
the beginning.” 

But the resemblances between neural- 
network performances and human men- 
tal abilities, however intriguing, point to 
no general principles of cognition. Neural 
networks have given cognitive scientists 
interesting things to think about, Mc- 
Clelland says: “how we might represent 
the world, how we might learn from ex- 
perience, how we might apply past ex- 
perience to new information in a world 
where inputs are ambiguous and con- 
straints are soft.’ Nevertheless, neural 
networks can only suggest questions. 
Resemblance is not identity; analogy is 
never proof, 

The future of neural networks will cer- 
tainly hold benefits for computer sci- 

ence, probably for cognitive science, 
maybe even for neurobiology. But for 
now the field has an atmosphere of play- 
fulness and curiosity, of trying to see, 
in McClelland’s words, “how much we 
can squeeze out of this idea,” If science 
is the process of finding precise and use- 
ful metaphors, then, says McClelland, 

“we're looking for the extent to which 
reality is mirrored in the metaphor.” 

Weighing the metaphor 

Both neural-network and A! research- 
ers agree that a binding choice among 
brain-machine models need not be made. 
“Conventional computers are so good at 
what they do,” says atet’s Larry Jackel, 
“you'd be crazy not to use them, to use 
only the neural approach. You need to 
suit the machine to the problem.” 

Marvin Minsky and Seymour Papert, 
Al researchers at Mit, agree. They have 
criticized neural networks as limited to 

  

solving what they call “toy problems” 
as opposed to having a more general 
pattern-recognition ability. Neverthe- 
less, Minsky and Papert propose, “toy 
problems” may be less a limitation than 
a prototype: ‘Perhaps the scale of the 
toy problem is that on which, in phys- 
iological actuality, much of the function- 
ing of intelligence operates.” 

In the epilogue to their reissued Per- 
ceptrons, Minsky and Papert argue that 
the human brain is more or less built up 
of many small neural networks. Each 
small network solves a few interrelated 
“toy problems.” Late in the develop- 
ment of the embryo, nature adds a “‘se-
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Defining movement. Koch (left) and an example of his neural net (above). (A) and (B) are before-and-after video images of moving people. 

(C) is a grid of vectors representing movement. The application of a neural net to the grid produces an image with well-defined lines (D). 

rial system,” like an At program, that 
directs the smaller networks. “And that 
leads us to ask,” write Minsky and Pap- 
ert, “how such systems could develop 
managers for deciding, in different cir- 
cumstances, which of those diverse pro- 
cedures to use.” 

So the proper focus of research in brain 
machines, they contend, is not the search 
for universal principles but the search 
for what kinds of processing best serve 
which kinds of problems: “In fact, re- 
search on networks in which different 
parts do different things—and learn those 

things in different ways—has become 
our principal personal concern.” 

Ultimately, Minsky and Papert con- 

clude, they see no need to choose be- 
tween Aland neural networks: “Both are 
partial and manifestly useful views of a 
reality of which science is still far from 

a comprehensive understanding. . . . 
Maybe, since the brain is a hierarchy of 
systems the best machine will be too.” 

Herbert Simon, who won a Nobel Prize 
for his work with computers, agrees with 

Minsky and Papert: “Any valid theory 
of how the mind works will have to ex- 

plain what part neurons play in symbol 
processing. That's a lot like asking what 
part quarks play in hydrogen bonds. The 
field of neural networks might help do 
that. It's certainly not there yet. But we 
have to push it to get it there.” e 
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