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connectionist framework . stressin~ how hasic aspects of cognition represen-
tation. p~ocessing, knowledge, and learning ",arc c;lptured in ihe connec-
tionist framework. Next , the framework is applied to fundamental questions
about the development of human thought. and some of the implications that
the framework has for basic questions about cognition and development areillustrated. Pafallel distributed processing: implications'

for ,cognition and development'
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The connectionist framework
.-I

The term 'connectionist models' was introduced by Feldman (1981: Feldman
and Ballard 1982). In these papers, the term w~s used to refer to a class of
models that compute by way of connections among simple processing units.
Another phrase often used to describe some connectionist models is parallel
d;.~tr;huted pr(l('es.~;nll or PIJP models (Rumclharl , M,,'Clelland, and the POP
ReSearch Group 1986; McClelland, Rumclhart, and the POP Research
Group 1986). POP models are instances of connectionist models that stress
the notion that processing activity results/from the processing interactions
occurring among rather large numbers of processing units.

In this article I intend the phrase ' the connectionist framework' to
encompass all kinds of connectionist models. The framework may be thought,
of as providing a set of general assumptions about basic aspects of information
processing, and a set of soft constraints on the range of specific assumptions
that might be'made. In what follows I consider each of several aspects of an
information processing system; I describe the general assumptions. connec-
tionist models make aboutthese aspects and I characterize some of the specific

assumptions that might be made. The presentation draws heavily on
Rumelhart, Hinton, and McClelland (1986), which can be consulted for
further details.

Introduction

Wh;ltkind of processing mechanism is the mind? Is it a sequential information

proce~!iing machine, like the von Neumann computer? Or is it a massively
parall~1 processor? The fact that human thought takes place in a device
consisting of some tens of billions of neurons seems to support the parallel
view. Yet until recently, there has been little attention to this fact among those

who study the higher mental processes, and little convergence in the study of
mind itnd brain,

Feldman (1981) has pointed out that the human brain places constraints on

the methods thaI might be used 10 implement human thought. Neurons are
relati~ely sluggish. noisy processing devices, compared to today s computers.
Yet people can perceive a visual scene at a glance and recognize an object in
about: hat( a second. Feldman estimates that this leaves time for perhaps a
hundred pioCessing steps; but sequential algorithms for perception generally
require hundreds of thousands. The facts imply that we exploit the brain
obvious capacity for parallel processing.

In view of this, researchers have begun to work toward theories of mental

processes that rely on these parallel capabilities. These models are variously

known as parallel distributed processing (POP) models, neural models, or,
perhaps most generally, connectionist models. Work is proceeding in several
directions. Cognitive scientists seeking to provide a characterization of the

nature of human thought have turned to building computational models in
which a number of interconnected processors work in concert in performing
some information processing task. Meanwhile, neuroscientists seeking to
understand the functional properties of neural circuits are also building
computational models, exploring the collective properties of ensembles o~
neuron-.like processing units; These enterprises often have somewhat different
goals: yet each informs and enriches the other, and each is pursued with the

hope that someday these two directions of research will converge upon a
shared. understanding of brain and mind.

In t~is chapter, I take primarily II congitive perspective. First , I review the

Primitives aad their organization

Like all cognitive models, connectionist models must propose some building

blocks and some organization of these building blocks, In connectionist
models, the primitives are "nits and ('Onnect;ons. Units are simple processing
devices which take on activation values based on a weighted sum of their
inputs Croin the environment and Crom other units. Connections provide: the
medium whereby the units interact with each other: they are weighted, and the

weights may be positive or negative, so that a particular input will tend to
excite or inhibit the unit that receives it , depending on the sign of the weight

. (we shaD return to these matters when we consider the dynamics of processing
below). 

Any particular . connectionist model will make assumptions about the
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number of units. their pallern of connectivity to other units. and their
interactions with the environment. These assumptions define the architecture
of a connectionist model. The set of units and their connections is typically

called a network. 

It should be noted that a very wide variety of architectures is possible. Two
are shown in Figs 2, 1 and 2.2. One of these, in Fig. 2. 1 (from the distribuled

Input

Fig. 2.2 A sketch of the network used in the inleraclive activation model. of visual
word recognition (McClelland and Rumelhart 19RI), Units within the same rectangle
stand for incompalible alternative hypotheses aboul an input pallern. and are
mutually inhibilory. Oi-directional excitatory connections between levels are indicated
for one word and itsconstituenls, /From J. L. McClelland, 1985, ' Pulling knowledge in
its place: a scheme for programming parallel processing structures on the lIy CognitiVt'

Science 9, tiS. Copyright 1985 by Ablex Publishing, Reprinted by permission.
Fig. 2.1 A fully connected autoassociator network, with connections from each unit

to every other unit. Each unit receives input from outside the nelwork . and sends
output outside the network. All connections may be either positive or negalive in this
very general formulalion. (From J. L. McClelland and D. E. Rumelharl, 1985,

Distributed memory and the representation of general and specific information

Journal of Experim/!ntal P.~)'clwltlg,\': General. 114, 162, Copyright 1985 by the
American Psychological Association. Reprinled by Permission.
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between mutually consistent units on adjacent levels, and inhibitory
connections between mutually inconsistent units within the same level. Thus

the unit for T in the firstleller position excites and is excited by the units for
features of the letter T, as well as the units for words that begin with T. This
unit also inhibits, and is inhibited by. units for other letters in the same letter
position.

model of memory examined by McClelland and Rumelhart 1985) shows a set

of completely interconnected units, each receiving input from the environ-
ment, and each projecting back to the environment. In some sense, the

network in this diagram is the most general possible connectionist architec-
ture, in that all others involve restrictions of this general case. For example

some units may receive no input from the environment: some may send no
output outside the net; and some of the interconnections among units in the

network may be deleted. There may. furthermore, be restrictions on the values

of some of the connections. In the general case, each may be positive or
negative, bul the architecture may prescribe, for example, that a certain group
of units have mutually inhibitory connections of fixed strength. .

Figure 2.2 gives an example of a more restricted architecture, from the
interactive act.ivation model of visual word recognition (McClelland and
Rumelhart 1981). In this model, units stand for hypotheses about displays of

letter strings at each ofthree levels of description: a feature level al~~~er!evel,
and a word level. There are excitatory connections (in both directions)

Active representation

Representations in connectionist models are pallerns of activation over the
units in the network. In some ways, these kinds of patterns are similar to
representations in other frameworks; after all. representations in a computer
are ultimately patterns of Os and Is. There are differences, however. For one
thing it is quite natural for connectionist representations to be graded, in the
sense that each unit's activation need not be one of two binary values. In some
models, activations are restricted to binary or some other number of discrete
values , but more typically each unit may take on a continuous activation value
between some maximum and minimum. A more important difference is this:

conneCtionist representations are truly active, in the sense that they give rise to

further processing activity directly, without any need for a cenlral processor or

produdion-matching-and-application mechanism Ihat examines them and

takes action on the basis of the results of this examination.

I I
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Models differ in terms of the extent to which individual processing units can

be identified with particular conceptual objects, such as letters, words,
concepts, etc. The models illustrated in Figs 2. 1 and 2.2 represent endpoints on
a continuum. In the distributed model of memory, each conceptual object is
thooght of as a pattern of activation over a number of simple processing units.

, In the interactive activation model of word perception, on the other hand
eadl unit stands for a primitive conceptual object, such as a letter, a word, or It
distinct v,isual feature. A large number of models lie between these two
extr~mes (see Hinton, McClelland, and Rumelhart 1986, and Feldman 1988

for general discussions of the issue of distributed representation).

Processing

1.10

1.00

.0,

;;..

0 -

!;,

O - 0 - 0 - 0 - 0 0.0 1,
Net input

Processing in connectionist models occurs through the evolution of patterns of

activation over time. This process is governed by assumptions about the exact
way in which the activations of units are updated , as a function of their inputs.
Updating can be synchronous (all units updated simultaneously) or
asynFhronous (units updated in random order). Updating generally occurs as
follows. First, a net input is computed for each unit to be updated. The net
input is the sum of the activations of all of the units that project to it , with each
contributing activation weighted by the weight on the connection from the
contributing unit to the receiving unit. 2 The net input may also include a bias
term associated with the unit, as well as a term for input arising from outside

the network. Thus for unit i, the net input is given by:

net jl'j +bias +input

Fig. l.J . The logistic function , a smooth non- linear function that is frequently used in
relating activations of units to Iheir net inputs. This function is often used to set the
activation of a unit to a value between 0 and I, or to set Ihe activation ofthe unit to 1 or
0 probabilistically, with the probabilily determined by the value of the function.

computational power over that offered by a single layer (see Rumelhart,
Hinton, and McClelland 1986; for further explanation). 

Knowledge

Here) runs over all the units with connections projecting to unit i. The net
input can then be used to set the new activation of the unit according to some

monotonic but non- linear function such as the one shown in Fig. 2.
Alternatively, the net input can be used to set the activation of the unit
probabilistically to one of two discrete values (usually I or 0). Another

possibility is that the net input may act as a force, tending to drive the
activation of the unit up or down a small amount in each time step. 

It is typical to use some form of non-linear activation function, so that the
activation of a unit is not simply set equal to the net input or some weighted
average of the net input and the previous activation of the unit. Non-linearities
are typically necessary for two reasons, I. Linear networks are subject to
explosive growth of activation due to positive feedback Joops unless the

weights are severely constrained (see Shrager, Hogg, and Huberman 1987).
Many computations require a layer of non-linear units between input and
output. Without non-linearities, multiple layers of units add no additional

Crucial to the very idea of cognition is the. notion that information processing
is guided by knowledge. We recognize the word THE as a definite article
because of knowledge we have about the relation between letter strings and
linguistic forms. We infer that a spoon may have been used if we hear ' the man
stirred the coffee' because ' of knowledge we have about the kinds of
instruments that are used for stirring. In many models, these kinds of
knowledge would be stored in tables. For example, information about THE
would be stored in a table called a lexicon , listing correspondences of letter
strings and , the linguistic objects they represent.

In connectionist models, knowledge is stored in the connections among the
processing units. This assumption works together with the assunlptions that
connectionist models make about representations. An active representation
on a set of units, together with the knowledge stored in connections, will give
rise to new, patterns of activation on the same or on other units.

Typically in connectionist models, connection strengths are real-valued. In

models whose connections are set by assumption, it is typical to assume
homogeneity of connection strengths as much as possible, to avoid excessive
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degrees of freedom. In models that learn, however, connection strengths are
typically allowed to take on whatever values the learning process gives them;

parsimony arises from the use of a homogeneous principle of learning.

temporal structure, or course; each event may consist of a sequence of evenls,
or of a graded progression of input activations.

For networks with fixed connections, the environment simply defines the
domain of inputs on which the network might be tested. For networks in
which the connections are adjusted as a result of processing experience,
however, the environment plays a crucial role in determining exactly what is

learned. Thus models that aim to capture aspects of cognitive development
through connectionist learning include among their assumptions a specifica-
tion of the details of the experience that gives rise to the resulting
developmental sequence. Inmany cases, these assumptions playa major role
in determining the success or failure of the modelling effort.

Leal1lilll

If knowledge is in the connection weights, learning must occur through the
adjustment of these weights. This weight adjustment process is assumed to
occur as a by-product of processing activity. Some knowledge can in fact be
built into connectionist models, in the form of initial connection strengths,
before there has been any learning, but it is common to explore the limits of
what can be acquired through connection strength adjustment with minimal
pre-wiring. The initial architecture of the network serves to impose constraints

on the learning process; these can in many cases greatly facilitate learning and

generalization, ifthese constraints are appropriate to the problem the network

is given to learn.

A wide variety of 'learning rules' for tuning connections has been proposed.

A rea:nt review is provided by Hinton (in press). Generally, these rules state

that the adjustment that is made to each connection should be based on the
product of a 'pre-synaptic' term , associated with the unit that is sending input

through the connection, and a ' post-synaptic' term, associated with the unit
that is receiving input through the connection. For example, the Hebb rule
used by Anderson (1977), . makes the change in the strength of a connection
proportional to the product of the activation . of the sending unit and the
receiving unit.. Learning through connection strength adjustment ' is very
different from learning processes in most other types of models. I t is governed
by simple mathematical expressions, and results in knowledge that is
completely implicit, in that it is embedded inextricably in the machinery of
processing, and is completely inaccessible to introspection or report.
However, it should be noted, that while the connection ch.mges themselves are

not accessible, the patterns of activation whose construction they make

possible cim be accessible to other parts of the ' processing system.

The spirit of the thing

The connectionist framework is cast, not as a list of specific detailed
assumptions, but as a set of general principles and some guidelines that provide
weak constraints on the range of variants that fall within the scope of these

principles. Indeed, as Rumelhart, Hinton, and McClelland (1986) noted, it is

possible to build a von Neumann computer out of connectionist primitives, if
they are organized in accordance with the von Neumann architecture. It thus

becomes important to focus on the spirit of the connectionist framework.
Generally, connectionist models of cognitive processes have been constructed

expressly to exploit the capability for parallelism inherent in the approach, to
make use of the graded capabilities of patterns of activation, and to capture the
incremental nature of human learning in many tasks through the adjustment

of connection strengths based on signals arising in the course of processing.

The microstructure of cognition

TIle eaYiroament

Finally, it is worth pointing out that the connectionist framework is not
incompatible with other levels of description in cognitive science. Thus, there

is nothing inCi:onsistent with connecti"nist models in the claim that a cognitive
system may traverse a sequence of states in a temporally extended cognitive

task such as solving an arithmetic problem. According to the connectionist
approach one would tend to view each such step in the process of solving the
problem as a new state of the processing network. Indeed, Rumelhart et al.
(1986) describe a network that performs a mental tic-tac-toe simulation,
settling into a sequence of states representing the results of the successive

mentally simulated moves made by each player.

There are important differences between conventional and connectionist

models of sequential behaviour. In connectionist models, the states need not

Though it has been implicit in what I have said already, there is another asPect

of connectionist models that deserves comment, namely their environment.
The environment consists of an ensemble of possible patterns that might be

presented to the network, In most cases, these patterns are thought of as

separate events; each one presented when the network is in a resting state, then
left on until processing is complete, However, input patterns can have a richer
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be so discrete as they generally are in other models (Rumelhart and Norman
1982; Jordan 1986; Smolensky 1986). Furthermore, the powerful constraint-
satisfaction characteristics inherent in the connectionist framework are not
typically exploited by conventional models of sequential processing. The idea

that each step is a sequential process involves a massively ' parallel
constraint-satisfaction process seems like a promising starting place for'a new
way of thinking about the macrostructure of cognition. 

The point that connectionist models characterize the microstructure of.

cognition applies not only in respect oftimc, but also in respect of the structure

of the processing system and in respect of the description of the computational
operations that the system is performing. Structurally, a processing system
may consist of many parts, and for some purposes it may be adequate to
de~ribe its structure in terms of these parts and the flow of information
be~ween them. Computationally, too , it may often be useful and illuminating
to describe what a part of such a system computes without referring
specifically to the role in this computation that is played by the specific units
and connections. The claim is, though , that it will be necessary to delve more
deeply than this to provide a full description of the mechanisms of cognition.

Ani connectionist models mere implementations?

In allowing that there may be a macrostructure to thought, connectionists

mar seem to suggest that their models merely describe the implementation
det.ils of a processing system that would be best characterized more
abstraet.!f. However, we simply do not know exactly what level of description

is the appropriate one for characterizing many behavioural phenomena.
Many who have turned to connectionist models have done so because these

models have seemed to provide exactly the right level of description for
characterizing certain kinds of cognitive processes. Just where the bounds of
usefulness of the connectionist framework may lie seems at this point to be one

of the very open questions. Since there is little in cognitive psychology that we

undtrstand perfectly at present, we are not in a position to say which aspects of
cognition might be explainable without recourse to a model of the
microstructure.

Coanectionist models .nd cognitive development

In the preceding part of this chapter, I have tried to give an overview of the

connectionist framework for cognitive modelling. Here, I consider the
question: Does the connectionist framework have any implications for the
answers that we give to basic questions about human cognition? I will argue

PDP: implications for cognition and development 

that it does. The questions are ones that arise within the fiCld of cognitive
develop~ent; the~ are motivated by dramatic behavioural phenomena.
Several different kinds of answers have been given to these questions. We will

see how the connectionist framework opens them anew and suggests what may

be different, answers in many cases.

The phenomena

The field of cognitive development is replete with examples of dramatic
changes in children s thinking as they grow older. Here I give three examples:
(I) failures of conservation and compensation; (2) progressive differentiation

ofknowledge about different kinds of things; and (3) V-shaped learning curves

in language acquisition. 

Failures olconservation and compensation

Perhaps the best-known phenomena in cognitive development are the
~amatic failures of cOnservation that Piaget has reported in a wide range 

different domains. One domain is the domain of liquid quantity. A child of
3 years is shown two glasses of water. The glasses are the same and each
contains the same amount of water, and the child sees that the am~unt is the

, same. But when the contents of one of the glasses is poured into a wider
container, the child will say that there is less liquid in the wider container.

It is typical to say that this answer given by the young child reflects a failure

10 recognize two things: (I) that quantity is conserved under the
transformation of pouring from one container to another; and (2) that greater
width can compensate for less height. Many tasks are specifically designed to

" tap into the child's ability to cope with these kinds of compensation relations
between variables.

One such task developed by Inhelder and Piaget (1958), the so-called
balance-beam task is illustrated in Fig. 2.4. In this task , the child is shown a

FiI. Balance beam ofthe kind first used by Inhelder and Piagel (l9S8), and later
used extensively by Siegler (t976, 1981; Siegler and Klahr 1982). (Reprinted from
Siegler 1976, Fig. I , with permission.
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balance beam with pegs placed at evenly spaced intervals to left and right of a

fulcrum. On one peg on the left are several weights; on one peg on the right are

several weights. The beam is immobilized, and the child is asked to judge
which side will go down, or whether they will balance. -We will have occasion
to examine performance in this task at length below; for now it suffices to note
that young children (up to about 6or 7 years in this case) typically respond as if
the distance from the fulcrum was completely irrelevant. They will say the
beam should balance if the weight is the same on both sides, regardless 

distance. Otherwise they say the side with the greater weight will go down.
These children , then, appear to miss the fact that lesser weight can be'
compensated for by greater distance, Typically by the age of II years or 

children have some appreciation for this trade off; the details of the
developmental progression are quite interesting. as we shall see below.
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Other researchers, studying different domains, have noticed other kinds 

develOpn.ental progressions, Keil (1979) studied children s judgements about
whether y~u could say things like 'A rabbit is an hour long , He supposed such
judgements tapped children s knowledge about different kinds of things, In
these judgements, Keil was interested not in whether the chil~ saw a sentence

as true or false, but in whether the child felt that one could make certain kinds

of predictions (e.g. that something is an hour long) when the something is a
member of a certain 'ontological category ' (e, g. living thing). Keil found that
children were much more permissive in their acceptance of statements than
adults were, but their permissiveness was not simply random. Rather, children
would accept statements that overextended predicates to categories near the
ones that they typically apply to, but would not extend them further. Thus
some children will accept predications like 'The rock is asleep , but not 'The
rock is an hour long , It was as though children s knowledge of what predicates
apply to particular categories becomes progressively more and more
differentiated, as illustrated in Fig. 2.5.
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Fig, l.5 Four dill'erent 'predictability trees ' illustrating the progressive dill'erentiation
of concepls as a function of age. Terms in capitals al internal nodm in the trees
n:present predicates, and terms in lower case al terminal nodes in the trees represent
concepts Ihat are spanned by all the predicales written on nodes Ihal dominate the
terminal. A predicate spans a concept if the child reporls that it is nolsilly to apply
either the predicate or ils negation or both 10 the concept. Thus the first tree indicates
thaI the child will accept ' The man is (not) alive , and 'The chair is (not tall' , bul will not
accepl ' e chair is (not) alive . Parentheses indicate uncertainty about the application
of a predicate. (Redrawn from Keil. t979, Appendix C, with permission.

Early on, children often get certain kinds of linguistic constructions correct
which they later get wrong; only much later do they recover their former
correct performance. One example is the passive construction, applied to
semantically biased materials, such as 'The man was bitten by the dog . (See
Bever, 1970, for a discussion of the, development of the use of'tbe passive
construction.) Early in development: children correctly interpret such
sentences; they appear to be using information about what roles the different

nouns typically play in the action described by the verb, since they tend to be

correct only when the correct interpretation assigns the nouns to their typical
roles. At an older age, children respond differently to such sentences, treating
the firstnoun-phrase as the subject; semantic constraints are over-ridden, and
there is a tendency to interpret 'The man was bitten by the dog' as meaning
'The man bit the dog . Finally, children interpret the sentence correctly again,
but for a different reason. It would appear that they now understand passives
in general, since at this stage they can also interpret semantically neutral 

and
even reverse-biased sentences (such as 'The dog was: bitten by the man
correctly.

Shaped learning curves in language development

"" '
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The questions

~he phenomena reviewed above raise basic questions about cognitive
development. Three of these questions are:

I. Are these different phenomena simply unrelated facts about development in

different domains?

2. Are there principles that all of these phenomena exemplify?

3: If there are principles, are they domain specific, or are they generalprinciples about development? 
. Different kinds of developmental theorists have answered such questions in

very different ways. To Piaget, each failure of compensation or conservation

r~flected a single common developmental stage; the phenomena were
intrinsically related by the characteristics ofthe stage, and these characteristics
provided the basis for explanation.
Others have taken a very different approach. Keil (1979), following

Chomsky s analogous argument for language, argues for domain specific
principles of development. His view is that each cognitive domain has its own
laws that provide constraints on what can be learned. These constraints limit
the hypotheses that the child can entertain, thereby making it dramatically
easier for the child to acquire adult abilities in the fa~ of the impoverished
information that is provided by experience with the world.

The main thrust of the remainder of this chapter is to argue that recent
developments in connectionist learning procedures suggest a dramatic
alt~mative to these kinds of views. The alternative is simply the hypothesis
that these diverse developmental phenomena all reflect the operation of a
single basic learning principle, operating in different tasks and different parts

of the cognitive system.

The learning principle

The principle can be stated in fairly abstract terms as follows:

Adjust the parameters of the millll in proportion to the extent to which theiratljustmeni can
produce a reduC'lion in the discrepanCJi between expected and observed events. 

This principle is not new. It might well be seen as capturing the residue of
Piaget s accommodation process, in that accommodation involves an
adjustment of mental structures in response to discrepancies. (See Flavell
1963, for a discussion of Piaget's theory. ) I t is also very similar to the principle
that governs learning in the Rescorla- Wagner model of classical conditioning

(ReScorla and Wagner 1972). What is new is that there exists a learning
pr~dure for multilayer connectionist networks that implements this
principle. Here , the parameters of the mind are the connections among the

POP: implications for cognition and development 

units in the network, and the procedure is the back-propagation procedure of
Rumelhart, Hinton, and Williams (1986; see Hinton, this volume).

The learning principle lies at the heart of a number of connectionist models

that learn how to do various different kinds of information processing tasks,
and that have applications to phenomena in cognitive and/or language
development. Perhaps the simplest such model is the past-tense model of
Rumelhart and McClelland (1986). The development ofthiit model pre-dated
the discovery of the back-propagation learning procedure, thereby forcing
certain simplifications for the sake of developing an illustration of the basic

point that lawful behaviour might emerge from the application of a simple
principleoflearning to a connectionist network. Subsequent models have used
back-propagation to overcome some of these limitations. Included in this class

are NETtaik (Sejnowski and Rosenberg 1987) and a more recent model of
word reading (Seidenberg, Patterson, and McClelland, this volume). The
present effort grew out of two observations of similarities between the
developmental courses seen in models embodying this principle, and the
courses of development seen in children: First , the course of learning in a
recent model of concept learning by Rumelhart (in preparation) is similar to
aspects of the progressive differentiation of concepts reflected in Keil's (1979)

studies of predictability. Second, the course of learning in a recent model of
sentence comprehension by St John and McClelland (1988) mirrors aspects of

the progression from reliance on semantic constraints, 10 reliance on word
order, to, finally~ reliance on complex syntactic patterning such as the passive
voice. I do not mean to claim that the models in question are fully adequate
models ofthe developmental progression in either case; I only claim that they

seemed suggestive: they raised the possibility that part of the explanation of
these and other developmental phenomena might be found in the operation of

the learning principle as it adjusts connection strenglhs in a net work subjected

to patterns arising in its environment.

The remainder of this chapter presents an experimenl assessing the
applicability of this conjecture to another developmental phenomenon,
namely the acquisition of the ability to take both weight and distance into
account in the balance beam task described above. The task has been studied

extensively by Siegler and his colleagues (Siegler 1976, 1981; Siegler and Klahr
1982), and quite a bit is known about it. I will first review the developmental
findings. Then I will describe a connectionist model that captures these
phenomena by applying the learning principle stated above.

Development 'of judgements of halance

In an important monograph , Siegler (1981) studied children s performance in
the balance beam task and three other tasks in which two cues had to be taken
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into account for correct performance. In all cases, as in the balance beam task
the correct procedure requires multiplication. For example, in the balance
beam task , to determine which side will go down, one must multiply the
amount of weight on a given side of the beam by the distance of that weight
from the fulcrum. The side with the greater product will go down; when the
products are the same, the beam will balance. 

Siegler studied children in several age groups, as well as young adults. Each

child was asked to judge 24 balance problems. In each case, the beam was
immobilized so that there was no feedback. The 24 probtems could be divided

into four of each of six types:

I. Balan(' ln this class of problem, the weight is the same on both sides of the

beam and the weight is the same distance from the fulcrum on both sides.

2. Weight. In these problems, the weights differ but distance from the fulcrum

is the same on both sides.

J. Distam' e. Here the weight is the same on both sides, but the distance from
the fulcrum differs. 

4. Co,ylict. Here both weight and distance differ and are in conflict, in that the
weight is greater on one side but the distance from the fulcrum is greater on

the other. There are three types of conflict problems:

(a) conftict-weight. In these cases, the side with the greater weight has the

greater torque (j,e. the greater value of the product of weight times
distance).

(b) conflict-distance. In these cases , the side with the greater distance has
the greater torque.

(c) conflict-balance. Uere the torques are the same on both sides.

Rule II

Rule'

equal dimension greater dimension- grealer

Rule III

equal subordinale dimension-grealer through

dimension - greater

...

Siegler s analysis of children s performance assumed that children use rule-
governed procedures. Four such procedures or rule. as Siegler called them are
shown in Fig. 2.6. Each of these rules corresponds to a distinct pattern of
performance over the six problem types. For example, children using.Rule I
should say the side with the greater weight will go down in weight problems

and in all three types of conftict proble~s. They should think the beam will

balance on balance problems and distance problems. In general, the mapping
from the rules to expected performance is extemely straightforward. The only

point that needs explication is the instruction muddle through when weight and
distance confti~t in Rule 3. In practice it is assumed to mean ' guess randomly
among the alternatives , so that l of the responses would be left-side-down; !
right-s~de-down, and l balance. 

Siegler compared the performance of each child tested with each rule, and

counted discrepancies from predicted performance based on the rule. Children

who scored less than four discrepancies from a given rule were scored as usingthat rule. 

Rule IV

equal subordlna" dominanl dimensions

dimension dimension correctly

greatar -gr88ler

FiII. 2.6 Siegler s (1976, 198t) four ' rules' for answering balance beam problems. Each
rule is in fact a full procedure, rather than a single rule. (Reprinled with permission
from Siegler (1981), Fig. I.
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For our purposes. there are four hasic findings that emerge from Siegler
analysis:

I. Lawful bl.'ha,';our. In general, performance of children over the age of 5
years is extremely regular in the balance beam task. Overall, about90per
cent of children tested conform to one of the four rules. 

2. Developmental progress;on., As children get older, they appear to progress
through the use of the different rules. The progression from Rule I to Rule 3
can be thought of as a progression in which at first the weight cue is relied

on exclusively, while at the end distance and weight are both taken into
account. In between (Rule 2), distance is taken into account only if it does

not conflict with the weight cue. Children aged 5,- 7 years typically use Rule
I, and college students typically use Rules 3 or 4. Many college students do

not have explicit knowledge of the torque principle. Children younger than

age 5 years tend not to be scorable strictly in terms of one of the rules;

however, they appear to show an increasing tendency to behave in
accordance with Rule I.

3. Generaliiy. The same four rules appear to be adequate to characterize
performance in all three of the domains that Siegler studied. Though the
developmental progression was not identical across cases, there was in all
eases a trend from simpler to more complex rules with development.

4. ~ck of correlation between domains. Even though children seem to
progress through the same rules in different domains, they do not do so in
lock-step; the correlation across domains is low, particularly in terms of the
higher.:-numbered rules, so that children who are showing Rule 3 behaviour
in one task may be showing Rule I behaviour in another and Rule 4 in a

third.

Weigh' Distance
00080 08000

Fig. 7 The network used in the simulation of the development of performance in Ihebalance beam lask. 
represent information about weight and the other is used to represent
information about distance. In , each case I , have chosen to use an input
representation that imposes as little structure as possible on the input patterns.

Each. possible value of weight or distance from the fulcrum is assigned a
separate unit. The ordering of values from low to high is not given in this
representation; the network will have to learn this ordering. . For the
convenience of the reader, the units are arranged in rows according to which
side of the beam they arefrom, and withineach row they are arranged from left
to right in order of increasing weight or distance from the fulcrum; but this
ordering is unknown to the model before iris trained, as we shall see.

Though the two dimensions are not intrinsically structured for the model,
the design ofthe network does impose a separate analysis of each dimension.

This separation turns out to be critical; I will consider the implications of this
architectural simplification below. The separation is implemented 

itS follows:
Ihere are separate pairs of hidden units for each dimension. Two hidden units
receive input from the weight input units and two reCeive input from the
distance input units. 

Each of ,the four hidden units projects to each of the two output units. The
left output unit can be thought of as a ' Ieft-side-down ' unit, and the right one as
a 'right-side-down unit'. Thus a correct network for the task would turn on the

output unit corresponding to the side with the greater torque, and would turn
off the unit for the other side. For balance problems, I assume that the network

should turn both units on half-way. Note that this coding of the output

The simulation model

The model I have developed to capture Siegler s findings is sketched in Fig.
5 Of course, the modef is a drastic oversimplification of the human mind

and 9fthe task; but as we shall see it allows us to capture the essence orSiesler
findi"gs, and to see them emerge from the operation of the learning principledescribed above. 

The model consists of a set of input units, to which balance problems can be
presented as patterns of inputs; a set of output units, over which the answer to
each problem can be represented; and a set of hidden units

, between the input
and t;he output. Connections run from input units to hidden units and from
hidden units to output units,

The input units can be divided into two groups of 10, One group is used to
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patterns does tell the network that balance is between lefl-side-down and
right-side-down.

POP: implications for cognition and development 

random patterns of activity over both Ihe hidden and output units. The
activations ofthe output units fluctuate approximately randomly between
about 0.4 and 0.6 for different input patterns. The network comes to respond
correctly only as a result of training. Conceptually, training is thought of as
occurring as a result of a series of experiences in which the network is shown a

balance problem as input; computes activations of output patterns based on
its existing connection weights; and is then shown the correct answer. The

signal that drives learning is the difference between the obtained activation 
each output unit and the correct or target activation for that unit. The back-
propagation procedure of Rumelhart, Hinton, and Williams (1986) is 

then
used to determine how each connection 

s,.trength' in the network should be
adjusted to reduce these differences. The procedure is described in Hinton
chapter in this volume, and it would be redundant to describe it here. 

Suffice it
to say that it exactly implements the learning principle stated above, and,
restated here in network terminology:

Proce.uing
Balance' problems of the kind studied by Siegler 

Ciln be!: processed by thenetwork by simply turning on (i.e. setting to I) the input units corresponding
to a particular problem and turning off (i.e. setting to 0) all other input units.
The input from the problem illustrated in Fig. 2.7 is shown by using black to
indicate those input units whose activations are 1.

0, and white for the unitswhose activations are O. 
The inputs are propagated forward to the hidden units. Each hidden unit

~imply, computes a net input:

net = L w +bias

Here ranges over the input units. Each hidden unit then sets its activation
according to the logistic function:

/ I+e

In these equations, w is the strength oft he connection to hidden unit ifrom
input unitj, is the activation of input unitj, and bias is the modifiable bias of
hidden unit i. This bias is equivalent to a weight to unit from a special unit
that is always on,

Once activations of the hidden units are determined, the activations of the
output units are determined by the same procedure. That is, the net input to
each output unit is determined based on the activations oft he hidden units, the
weights from the hidden unils to the output units

, and the biases of the output
units. Then the activations oft he OUlput units are determined using the logistic

function,

Adju.fl each weight in rhe network in proportion to (he e.ttent W which its adjustment can
produce a reduction in the discrepancy between the exfH!cted event and the observed event,

in the present context,

Here the 'expected event' is the pattern of activation over the output 
unitsthat is computed by the network; the observed event is the pattern of

activation that the environment indicates these units have; and the present
context is the pattern of activation over the input units. Note that the direction

of change to a connection (positive or negative) is simply the direction that
lends to reduce the discrepancy between computed output and the correct 
target output.

Re,"ponse.
The activations of the output units are real numbers between Oand I; to relate

the model's performance to the balance beam task
, these real-valued outputs

must be translated into discrete responses. , used the 
following simple

translation: if the activation of one output unit exceeded the activation of the
other by 0.333 1 took the answer to be ' more active side down . Otherwise theanswer was assumed ~o be 'both sides equal'.

Environment

As I pointed out at the beginning of this chapter . the environmenl in which a
network learns plays a very strong role in determining what it learns, and
particularly the developmental course of learning. The simulations reported
here were based on the assumption that the environment for learning about
balance problems consists of experiences that vary more frequently on 

the
weight dimension than they do on the distance dimension. Of course,

' do not
mean to suggest that all the learning that children do and that is relevant to
their understanding of balance takes the form of explicit balance problems of
the kind my network sees. Rather, my assumption that the experience on
balance problems is dominated by problems in which there is no variability in

weight is meant as a proxy for the more general assumption that children

generally have more experience with weight than with distance as a factor in
determining the relative heaviness of something.6 The specific assumptions
about the sequence of learning experiences were as follows. The environment

consisted of a list of training examples containing the full set of 625 possible

Learning

Before training begins, the strengths ofthese connections from input to hidden
units and from hidden to output units are initialized to random valuesuniformly distributed between +0,5 and - 5. In this state, inputs lead to
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activations) and structuredness of the dimensions might also produce similarresults., 
The issue of structuredness of the dimensions is a key point tha

t l'leeds to be
considered as it relates to the present simulation. For both dimensions

, the
input representations encode different weights and distances from the fulcrum

using distinct units. This means that different values are distinguishable by the
model, but they are not structured for it; for example, the input 

it~lf provides
no indication that a distance or weight of 3 is between 2 and 4. The network
must learn to represent the wcights and distances in, structured ways in order
10 solve the balance problem. Below we will see that it does so.

problems involving 25 combinations of possible weights (1.,5 on the left
crossed with 1,-5 on tf1e right) crossed with 25 combinations of possible
distances (I- 5 steps from the fulcrum on the left crossed with 1--5 steps from
the fulcrum on the right). Two corpuses were set up. Problems in which the
distance from the fulcrum was the same on both sides were listed five times
each in one corpus, and 10 times each in the other corpus. Other problems
were listed only ,once in each corpus.

Training and It?.~ting regime

Four simulation runs were carried out , two with each of the two corpora just
described. In each run, training consisted of a series of epochs. In each epoch
100 patterns were chosen randomly from the full list of patterns in the corpus.

In each epoch , weight increments were accumulated over the 100 training
trials and then added into the weights at the end of the epoch , according to the
momentum method described in Rumelhart, Hinton , and Williams (1986,
p. 330); parameters were ,,=0.075, 1%=0.9).

After weight updating at the end of each epoch, the network was given a 24-
item test, containing four problems of each of the six types described above,

taken from an experiment of Siegler s. (A few of the examples had to be
modified since Siegler s experiment had used up to six pegs.

Result.

A comment on the simulation model

In general, performance of the model conformed to one of the 
four rules

described by Siegler. Over the four runs, the model fit the criteria of one of
Siegler s four rules on 85 per cent of the occasions, not counting an 

initial, pre-
Rule I period discussed below (in Siegler , 1981 , the conformity figure is about
90 per cent). Of course, the model was not consulting these rules or following

the step-by-step procedures indicated in them; rather its behaviour was simply
scorable by Siegler s criteria as consistent with the succession of rules.
Excluding the initial period , failures to fit the rules were of three types: (I) cases
in which a rule fit except for a position bias that gave difficulty on balance
problems; (2) cases in which performance was borderline between Rules I 

and
2; and (3) combinations of these two problems. (Siegler (personal communi-
cation) does find some borderline cases between Rule I and Rule 2, 

but the
position bia~ cases are not typical of children s performance.

The model described above obviously simplifies the task that the learner faces
and structures it for him to some degree. In particular, it embodies two
principal assumptions which are crucial to the successful simulations we will
consider below:

I. Environme"t auumption, The model assumes that the environment is
biased, so that one dimension-in this case weight- is more frequently
available as a basis for predicting outcome than the other.

2. Anhitec.ture assumption. The model assumes that the weight and distance
dimensions are analysed separately, before information about the two
dimensions is combined.

Both these assumptions are crucial to the success of the model. In an unbiased

. .

'Mvironment, both cues would be learned equally rapidly. Effects of
combining the cues from the start, as prescribed by the architecture
assumption, are more complex , but suffice it to say for now that the apparent
stagelike character of performance is much less clear unless this assumption is

adopted.

An important topic for further research will be to examine what variants of
these assumptions might still allow the; model to be successful. For example
regarding the environment , differences in salience (i.e. strength of input

Overall development trends

Epoch by epoch performance in each of the four runs is shown in Figs 2.
8 and

9. One generally observes the expected developmental progression. Each

simulation run is slightly different, due to differences in the random starting

weights and the sequence of actual training experiences, but tberearc; clear

common trends. Over the first 10 epochs or so, the output of the l1)odcl was
close to 0.5 on all test patterns; by our scoring criteria, all these outputs count
as 'balance' responses , but of course they really represent a stage in which
neither weight nor distance governs performance. 

The next few epochs
represent ,a transhion to Rule I, in that in this phase themode~isshowingsome
tendency to activate the output unit on the side with the greater weight, but
this tendency is variable across patterns and the discrepancy 

between the
activations , of the output units is not reliably greater than 0.33 when theweights differ. 

After this brief transition , performance of the model had generally reached
the point where it was responding consistently to the weight cue while
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ig. 1.8 Epoch-by-epoch performance oflhe simulalion model in Ihe two runs with a

510 I bias favouring problems in which dislance did nul vary. Performance is scored by

rule. Cases marked by . missed a rule due 10 posilion bias. Rule 0 corresponds Ii)
, always saying 'balance , and occurs allhe beginning of Iraining. Rule 1,5 corresponds

10 performance on the borderline belweeri Rules I and 2.

ig. 9 Epoch.by-epoch performance oflhe simulalion model in Ihe Iwo runs wilh a
1010 1 bias favouring problems in which distance did nol vary, Performance is scored

by rule. as in Fig. 2,

systematically ignoring the distance dimension. This paUern continued for
several more epochs. There was a brief transitional period, in which the model
behaved inconsistently on the distant' problems crucial to distinguishing
between Rule I and Rule 2 behaviour. After several epochs in this phase, use of
the distance cue reached the point where performance on all types of conflict
problems become variable. The model generally continued in this phase
indefinitely, sometimes reaching the point where its performance was
generally scorable as fitting Rule 4 and sometimes not. 

The variability in the model' s performance from epoch to epoch is actually

quite consistent with test re-test data reporled in Siegler (1981). Rule 2
behaviour is highlYlJnstable. and there is some instability of behaviour in
other rules as well.

PerfQrmance in ea('h phase

Seigler s criteria for conformity to his rules allow for some deviations from
perfect conformity; in fact only 83 per cent of test problems must be scorable as
consistent with the rule, Given this, it is interesting . to see whether the
discrepancies from the rules that are exhibited by the model are consistent with
human subects' performances. In general, they,seem to be quite consistent, as
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Fig. 2.10 indicates. Each panel shows percentage correct performance by the,
model averaged over the tests on which the model scored in accordance with

one of the.four rules. Also shown are data from two groups of human subjects
as well as the pattern of performance that would be expected frpm a perfectrule user, 

For Rule i, the model differs very little from human data. For Rule 2, again

the correspondence to hu~an data is very close. Both the model and the
humans show some slight tendency to get conflict-distance problems correct,

and to occasionally miss distance and balance problems. For both Rule I and
Rule 2, the tendency to miss balance problems is slightly greater in the model

thanin the children s data. For Rule 3, the model exaggerates a tendency seen

in the human data to be correct on conflict-weight problems more often than

on conjlict-di.~tance problems. The major discrepancy in the data is that the

model is too accurate on conflict-balance problems. For Rule 4, the model

again exaggerates a tendency seen in the human data to have residual

difficulties with conflict problems.

With the exception of the conflict-balance problems in Rule 3, the human
data seem to fall about half-way between the model and perfect correspon-

dence to the rules. It is tempting to speculate that some human subjects-par-
ticularly Rule 4 subjects-may in fact use explicit rules such as the torque rule

some ofthe time. It is, indeed, easy for the adult subjects who contribute to th~

Rule 4 results to follow the torque rule if instructed specifically in this rule.
However, it is evident that the subjects who fall under the Rule 4 scoring
criteria do not in fact adhere exactly to the rule. Perhaps this group includes
sollie individuals performing on the basis of implicit knowledge of the trade-off

of wcig"hNtnd distance as well as some who explicitly use the torque rule, and

perhaps some individuals use a mixture of the two strategies.

Rule 1

POP: implications for cognition and development 

Rule 3
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Fig. IO Children s p:rformance by problem Iype on the balance beam task, tolether
with the p:rformance of the simulation model and expected performanc:e based on each

rule. The heavy line with diamonds indicates children s performance. 11Ie model'

performance is siven by the lilht line with, x s, while performance predictedrrom the
rule is given by the lilht line with squares. For each child and each test. or the
simulation, perfol1l18llCC was pre-catelorized according '0 the best. fininl rule. Then,
percentase correct responses by problem type were calculated averasinl over children
or simulation lests falling into each rule.

2. Foi c'-ildren who exhibit Rule 3 on Siegler s 24-item test, careful assessment
with a larger number of conflict problems indicates the use of cue
compensation strategies, rather than random guessing (Ferretti et al. 1985).
Thus children are not simply totally confused about conflict problems
during this stage but have soine sensitivity of relative magnitudes of cues. as

does the model. . The c;xact degree of correspondence of the model'
performafJQe and human performance on these larger tests remains to beexplored. ,

Further correspondences between the model and child development

So far we have seen that the balance beam model captures the pattern of
development seen in the studies of Siegler (1976, 1981). There are two further

aspects of the developmental data which are consistent with the gradual
buildup of strength on the distance dimension that we see in the model: ,

I, Wilkenina and Anderson (in press) present subjects with one side of a
balance beam, and allow them to adjust the weight on the other side at a
fixed distance from the fulcrum to make the beam balance: Over ' the age

range of 9-20 years. in which children are generally progressing from late

Rule I or Rule 2 to Rule 3 or Rule. 4, according to Siegler s methods, they
find an increasing sensitivity to the distance cue. Unfortunately. it is
difficult to be sure whether this reflects different numbers of subjects relying

on the distance cue, or (as we see in the model) differences in degree of
reliance among those who show some sensitivity to the distance cue.

The meclulnism for developmental change
Given the generally Close correspondence between model and data, it is

important ' to understand just how the model performs, and how its
performance changes, To do this, it is helpful to examine the connections in the '
network at several different points in the learning process; Figure 2. 11 displays
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the conhc;ctions from Ihe run thai produced the res",lts shown in the top panel

of Fig. 2.9. at four different points during learning. At epoch 0, before any
learning; at epoch 20, early in the Rule I phase; at epoch 40, at the end of the
Rule I phase; and at epoch 100, when the simulalion was terminated. Each of
the four subrectangles in each panel shows the weights coming into and out of

one of the four hidden units. The two on the left receive input from the weighi

dimension, and the two on the right receive input from the distance dimension,

In the first panel, before learning begins. all the connection strengths have

small random, values. In this situation, the output ;of the hidden units is not

systematically related to magnitudes of the weights or distances, and is
therefore of no use in predicting the correct output; At this point, the hidden

units are Rot encoding either relative weight or relative distance, and are
therefore providing no useful information for predicting whether the left or
right side should go down.

The first phase of learning consists of the gradual organization of the
connections that process the amount of weight on each side of the balance
beam. Recall that the network receives problems in which the distance cue
varies much less frequently than problems in which the weight cue varies,
Learning to rely on the weight cue proceeds more quickly than learning to rely

on the distance cue as a simple result of this fact. The rate of learning with
respect to each type of cue is relatively gradual at first, but then speeds up, for
reasons that we will explore below. The relatively rapid transition from
virtually unresponsive output to fairly strong reliance on the weight cue
represents the brief transition to Rule I responding. The result of this phase, in

the second panel of the diagram, is a set of connections that allow the hidden
units on the left to ref1cct the relative amount of weight on the left v. the right
side of the balance beam. The leftmosl hidden unit is most strongly excited by

large weights on the left and small weights on the right, and most strongly
inhibited by large weights on the right and small weights on the left. The
activation of this unit, then, ranges from near () to near I as the relative
magnitude of weight ranges from much more on the right to much more on Ihe
left. Correspondingly, this unit has an excitatory connection to the left-side-

down output unit, and an inhibitory connection 10 the right-side-down outpul
unit. The second hidden unit mirrors these relationships in reverse. At this

point. then, the hidden units can be said to have learned to represenl
something they were nol representing before, namely Ihe relative magnitude of

the inputs, Note that this information is not explicitly contained in the inputs

which simply distinguish but do not order the different possible values of
weight on the two sides of the balance beam.

At this point, the connection strengths in the distance part of the network

remain virtually unchanged; thus, at the hidden unit level. the network has not

yet learned to encode the distance dimension.

Over the next 20 epochs, connections get much stronger on the weight
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dimension. and we begin to see some organization of the distance dimension,

Wllile this is going on, the overt behaviour of the network remains Rule I
behaviour. The network is getting ready for the relatively rapid transition to
Rule 2 and then to Rule 3 which occurs over the next several e'poch~_oft91ining
(as shown in the top panel of Fig. 2.9), but at epoch 40, the end otthe :~,!Ie I
phase, the distance connections are still not quite strong enough to push
activations of the output units out of the balance range. With further learning,
the distance cue becomes stronger and stronger; this first causes the distance

cue;to govern performance when the weights are in balance, giving rise to Rule
2 behaviour. Further strengthening causes the distance cue to win out in some

conflict problems, giving rise to behaviour consistent with Rules 3 and 4. At
epoch 100 of this particular run, the weight dimension maintains a slight
ascendancy, so that with the conflict-balance problem illustrated, the model
activates the left-side-down unit most , corresponding to the side with the
greater weight.

A couple of aspects of the developmental progression deserve comment.
Learning is slow at first and then accelerates, as shown in Fig. 2. 12. As the,
diagram illustrates, the connection strengths are largely insensitive to
differences early on, then go through a fairly rapid transition in sensitivity. and
then level off again. The acceleration seen in learning is a result of an inherent

characteristic of the gradient descent learning procedure coupled with the
architecture of the network. The procedure adjusts each connection in
proportion to the magnitude of the effect that adjusting it will have on the
discrepancy between correct and actual output. But the effect of a given
connection depends on the strengths of other connections. Consider the
connection coming into a hidden unit from one of the input units. An
adjustment of the strength of this input connection will have a small effect on
the output if the connections from the hidden unit to the output units are
weak. In this case, the input conneCtion will only receive a small adjustment. If

owever, the connections from the hidden units to the output units are strong,
an adjustment of the strength of the input connection will have a much larger
effect; consequently the learning procedure makes a much larger adjustment in

this case. A slightly different-story applies to the connections from the hidden

units to the output units. When the connections from the input to the hidden
uniture weak and random, the activations ofthe hidden units are only weakly
related to the correct output. Under these circumstances, the adjustments
made to the output weights tend to cancel each other out, and leaming
progress is very slow. It is only after the input weights become organized that
learning can proceed efficiently on the output side of the hidden units.

The story I am telling would be a very sad one, were it not for the fact that it
is not all or none. It is not that there is no learning at all at first; if there were
there would be no gradual change .to the point where learning becomes more
rapid, Rather. it is simply that initially learning is 

fIery gradual; so gradual that
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it does not show up in overt behaviour. Gradually, thou8h, this initially slowly
learning accelerates, producing an increasing readiness to learn.

This differential readiness to learn allows the model to 
acCount for the

results of an experiment described in Siegler and Klahr (1982), on the effects of

training for young v. old Rule I children; They showed 
S- and 8-year-old Rule

I children a series of conflict problems. The children were allowed to try to

predict w~ich side would go down, and were then shown what actually
happens. The results were striking. The older Rule I children were very likely

to exhibit Rule 2 behaviour on a post-test. The younger children either
continued to behave in acCordance with Rule I or became inconsistent in their
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each unit responded to a range of similar values so that neighbouring weights
and distances produced overlapping input representations; furthermore, the
inputs could well make use of a relative code of magnitude to keep values
within a fixed range. This would probably overcome the interpolation and

extrapolation problems (I have no stand on whether such codings are learnedor pre-wired). 
These kinds of fixes would not allow the model to truly master Rule 4. This

is as it should be, since I believe Rule 4 (unlike the other rules) can only be
adhered to strictly as an explicit (arithmetic) ru~e. Indeed, it must 
ackoowledged that there is a conscious, verbally accessible component to the
problem-solving activity that children and adults engage in when they
confront a problem like the balance beam problem. The model does not
address this activity itself. However, it is tempting to imagine that the model
captures the gradual acquisition mechanisms wh~ch establish the possible
contents of these conscious processes. One can view the model as making
available representations of differing salience as a function of experience; these
representations might serve as the raw material used by the more explicit
reasoning processes that appear to playa role, This is of course sheer
speculation at this point. It will be an important part of the business of my
ongoing exploration of cognitive development to make these speculations
explicit and testable.

responses. In further experiments on early Rule I children, Siegler and Klahr
reported that these children do not represent the distance dimension correclly:

when asked to reproduce a balance beam configuration, they could usually get

the number of weights correct, but could rarely place them 0n the correct pegs.

These findings are in complete conformity with the model: as we have seen, the

model does not represent distance information early in Rule I. Further

simulations reported in McClelland and Jenkins (in preparation) show that
the model can profit from conftict training of the sort used by Siegler and
Klahr at the end of.the Rule I phase but not at the beginning.

ShtJrtcoming.~ of the model

The model exhibits a striking correspondence with many aspects of the
developmental facts, but does have a few shortcomings. Three failures to fit

aspects of Siegler s data must be acknowledged. First, the model can never
actually master Rule 4, though some subjects clearly do. Second, its behaviour

during Rule 3 is slightly different from that of humans (though it should be
noted ' that the 'human' Rule 3 pattern is actually a mixture of different
strategies according to Klahr and Siegler 1978). Third it can exhibit position
biases which are uncharacteristic of humans, who seem (at least , from the age
of S years on) to 'know' that there is no reason to prefer left over right.

There are other shortcomings as well. Perhaps the most serious is in the

input representations, that use distinct units to represent different amounts of

weight and distance. This representation was chosen because it does not
inherently encode the structure of each dimension, thereby forcing the
network to discover the ordering of each dimension. But it has the drawback

that it prevents the network from extrapolating or even interpolating beyond
the range of the discrete values that it has experienced.

Finally, Siegler has reported protocol data that indicate that subjects are
often able to describe what they are doing verbally in ways that correspond

fairly well to their actual performance. It is not true that all subjeCt's
verbalizations correctly characterize the rule they are using, but it is true, for

example, that subjects who are sensitive to the distance cue mention that they

are using this cue and those who are not tend not to mention it. The model is of

course completely mute.

What are we tomake of these shortcomings in the light of the overall success
of the model? Obviously, we cannot take it as the final word on development

of ability to perform the balance scale task. I would suggest that the model'
shortcomings may lie in two places: first, in details of the encoding of ioputs

and of the network architecture; and second, in the fact that the model only

deals with acquisition of implicit knowledge.

Regarding the first point, it would be reasonable to allow t~e input to
encode similarity on each dimension by using input representatiOns irhvhich

Implications of the balance simulation

The model captures several of the more intriguing aspects of cognitive
development. It captures a stage-like character, while at the same time
exhibiting an underlying continuity which accounts for gradual change in
readiness to move on to the next stage. It captures that fact that behaviour can
often seem very much to be under the control of very simple and narrow rules
(e.g. Rule I), yet to exhibit symptoms of gradedness and continuity when
tested in different ways. It captures the fact that development, in a large
number of different domains, progresses from an initial over-focusing on the
most salient dimension of a task or problem-to the point where other
dimensions are not even encoded-followed by a sequence of further steps in
which the reliance on the initially unattended dimension gradually increases.
As mentioned ' previously, the model can be seen as implementing the

accommodation process that lies at . the heart of Piaget's theory of
developmental change; Accommodation essentially amounts to adjusting
mental structures to reduce the discrepancy between observed events and
expectations derived from the existing mental structures. According to Flavell

(1963), Piaget stressed the continuity of the accommodation process, in spite

of the overtly stage-like character of development, though he never gave a



40 McClelland POP: Implications for cognItIon and development 

particularly clear account of how stages arise from continuous learning (see
Flavell 1963, pp. 2449 for a description of one attempt). The model provides
such a description: it shows clearly how a continuous accommodation-like
proce;ss can lead to a stage-like progression in development.

Rumelhart, in preparation), This observation underscores that fact 
thallhc

learning principle, in itself, is not the only principle that needs to be taken into

account. There probably are additional principles that are exploited by the
brain to facilitate learning and generalization. Just what these additional
principles are and the extent to which they are domain-specific remains to be
understood in more detail.

Extending this observation a step further, we can see the connectionist
framewor~ as anew paradigm in which to explore basi~g.uestions about the
relations of nature and nurture. We may find that successful simulation of
developmental processes depends on building in domain-sPecific constraints

inconsiderable detail; if so this would support a more nativist view of the basis

of domain-specific skills. On the other hand, it may turn out that a few other

general principles in addition to the learning principle are sufficient to allow us

to capture a wide range of developmental phenomena. In this case we would be

led toward a much more experience-based description of development, In
either case, it seems very likely that connectionist models will help us take a

new look at these important basic questions.

Changes in repre.~entalion and attention through the course of development
When a balance beam problem is presented to the model, it sees .it ,~ dilfet~nt
ways, depending on its developmental state. At all times, information is in
some sense present in the input for determining what is the correct response.
However, at first this information produces no real impression; weak , random
activ~tions occur at the hidden level and these make weak, random
impressions at the output level. At the beginning of the Rule I behavioural
phase, the model has learned to represent the relative amount of weight. The
pattern of activation over the hidden units captures relative weight, since one
unit will be more activated if there is more weight to the right , and the other
will be more activated if there is more weight to the left; both units take on
intermediate activations when the weights balance. At this point, we can see

the mooel as encoding weight, but not distance, information. Indeed, as we

have seen at this point the network could be said to be ignoring the distance
cue; it makes little impact on activation, and learning about distance is very
slow at this point. At the cnd of the Rule I phase, in spite of its lack of impact
on overt behaviour. the network has learned to represent relative distances; at

this po.nt it is extremely sensitive to feedback about distance; it is ready to slip

over the fairly sharp boundary in performance between Rule I and Rule 2.
Thus. we can see the Rule I stage as one in which overt behaviour fails 
mirror ' a gradual developmental progression that carries the model from
extreme unreadiness to learn about distance at the beginning of this phase to a

high degr~rreadiness at the end.
Thisidevelopmental progression seems to resolve the apparent paradoxical

relation between observed stage-likebehavioural development and assumed
continuity of learning. To me this is the most impressive achievement of the
model: it provides a simple. explicit alternative, to maturational accounts of
stage-like progression in development.

It must be noted , however, that the success of the model depends crucially
on its structure. In fact the results are less compeUingif either of the following
changes are made: (I) if balance is treated as a separate category, rather than
being treated as the intermediate case between left-side-down and right-side-
down; and (2) if the connections from input to hidden units are not restricted

as they are here so that weight is processed separately from distance before the

two are; combined. 
MorC generally, it is becoming clear that architectural restrictions on

connectionist networks are crucial if they are to discover the regularities we
humans discover from a limited range of 

experiences (Denker et al. 1987;

Conclusions

Th~ exploration of connectionist models of human cognition and develop-
ment is still at an early stage. Yet. already, these models have begun to capture

a new way of thinking about processing. about learning and, I hope the
present paper shows, about development. Several further challenges lie ahead.

One of these is to build stronger bridges between what might be called
cognitive-level models and our evolving understanding of the details of
neuronal computation. Another will be to develop more fully the application
of congitive models to higher-level aspects of cognition. The hope is that the
attempt to meet these and other challenges will continue to lead to new
discoveries about the mechanisms of human thought and the principles that
govern their operation and adaptation to experience.

Notes

I. The author would like 10 thank Eric Jenkins for showing Ihe way toward a
connectionistmodeJ of learning to perform the balance beam task. Thanks are due as
well to Robert Siegler and Dave Klahr for useful discussions. This research was
supported by ONR contracts NOOOI4-86-K-OI67 and NOOOI4-86- 0678. as well as
NIMH Career Development Award MHOO38S.

2. In it slightly more general formulation, the net input may be the sum of 

products the activations of groups of contributing units. In Ihis formulation there is a weiJht
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associated with each product, ralher than each individual contributing activalion.
These product terms have no special computalional significance, since the effects of
multiplicative interactions among inpuls can be accomplished by extra layers of units;

see Williams (1986).

3. Some variants of conneclionisl models (e.g. Grossberg 197811reallhe excitatory and
inhibitory inputs as separate forces, ralher than aggregaling Ihem together in a singte

lerm.

4. The Hebb rule is aboullhe simplest connectionist learning rule, and il is limited in

what il can do:so it has recently been somewhat less popular Ihan other learning rules

(but see Linsker 19860, b, and c). Three learning rules frequently used in current

connectionist models are the eompetiti/lf.' learning rule, the delta rule or leas/-mean-

squared prm'eJure, and the generalized delta rule or back-propagation procedure (see
Hinton 19117. for detailsl.

5. This model builds on an earlier model of stagetransilions in the balance beam task
by Jenkins (19116), 1 am indebled 10 Eric for indicating the applicability of connectionist
models 10 cognilive development, 
6. An alternative assumption which might account for the devetopmental datajusl as

well is the assumption that the weight dimension is pre-structured before the child

comes to consider balance problems, while the distance dimension is not, The
assumption that distance varies less frequently than weight but that ncilher dimension

is initially slructurcd allows us to observe the structuring process for bolh dimensions.
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