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Introduction

RTIFICIAL neural networks (sometimes called connec-
tionist, parallel distributed processing, or adaptive net-
works) are experiencing a dramatic renaissance this decade.

The roots of this subject can be traced to research into
perceptrons, led by Frank Rosenblatt, and into adaptive linear
filters, spearheaded by Bernard Widrow, in the late 1950s.
These early neural-network researchers and their enthusiastic
followers equated intelligence with pattern discrimination and
association abilities acquired through learning from experi-
ence of concrete cases. Then, suddenly, neural-net research
became relatively inactive in about 1965 and remained so until
the early 1980s. During this interval, research on intelligent
systems focused on what has become conventional artificial
intelligence, a discipline that defines intelligence as problem
solving based on reasoning.'

The concurrence of two events probably played a major
role in the neural-net resurgence of the 1980s. First, by 1980
it had become increasingly apparent that conventional infer-
ence-based artificial intelligence was unable to deal success-
fully with most practical problems. It appeared that learned
pattern discrimination and association abilities, not reasoning,
underlay not only common-sense understanding but also most
skills. Even the choice of which rules to apply when forced to
resort to reasoning, and when to break these rules, seemed to
require pattern recognition.? Second, a formulational and
computational procedure was advanced that seemed to sur-
mount certain technical roadblocks that were recognized but
not successfully dealt with by the researchers of the 1950s and
1960s. This procedure is called back propagation (BP) (of
errors) and is the subject of this Note.

To fully appreciate BP, we must first briefly examine some
groundbreaking work done during the late 1950s. At Cornell,
Frank Rosenblatt designed various neurally inspired learning
devices and simulated them on a digital computer. He called

- these designs ‘‘perceptrons’’ to emphasize their perceptive,

rather than logical, abilities. The aim of many of his devices
was to learn through example to distinguish whether an input
was a member of one class of inputs, called class A, or of a
different class, called class B, by being presented with exam-
ples of members of each class together with the correct classi-
fication. The cléss members, any finite number being allowed,
were represented by (n —1) vectors where x{ denotes the ith
element of the cth such vector. Given a vector, the simplest
perceptron would compute

n—1\

Y owxf —t

i=1

where w; werewiewed as weights, adjustable during learning
and similar in role to synapses in the brain, applied to the
input elements xf, and ¢, also adjustable, was called a
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threshold. Hence the weighted sum of the input’s elements was
compared to a threshold. Letting net® denote the amount by
which the weighted input exceeds the threshold ¢ (where net¢
can be negative), the output unit (artificial neuron) would
output a 1 if net® exceeded 0, and a —1 otherwise. One can
describe this threshold linear unit mathematically by the input-
output relation for case ¢

n—1
o¢=f (net)=f (E wixf —t> (n

i=1

where the function f takes on value 1 for strictly positive
argument and — 1 otherwise.

To avoid always distinguishing the threshold variable from
the weights in formulas, it is conventional to consider the
input vectors to be of dimension n (rather than » — 1) with the
nth component always 1. Then —¢ is written as w, and Eq. (1)

becomes simply
n
o‘=f E Wi xic
i=1

We shall adopt this convention in what follows.

Suppose that all members of class A of inputs are associated
with a desired output d of 1 and of class B with an output of
— 1. Then, weights (the nth of which is really the negative of
the threshold) are sought during learning that correctly give
the desired output for all training cases.

Rosenblatt, with embellishments added by others, proved
the perceptron convergence theorem, which asserts that if
there exist any weights that yield the desired output for all
training cases, one such set will be found in a finite number of
steps if one starts with all weights at zero and iterates over and
over through the training set, and at each presentation of an
input vector x¢ w is modified by the rule

wi(new) = w;(old) +—Z— (@ —09xf @

where 7 is any positive constant.

A simple perceptron is, unfortunately, able to correctly
classify cases into two classes only if the cases are linearly
separable, This led in the early 1960s to a search for a way to
accomplish classification using multilayer devices that would
work even when the cases were not linearly separable. It was
found that a feedforward perceptron with two adjustable lay-
ers of weights, using on layer 1 threshold linear units acting on
the weighted linear combination of layer-zero input data and
another such unit on layer 2 acting on the weighted linear
combination of layer-1 outputs, is able to classify correctly
any finite number of cases if there are a sufficient number of
“‘hidden units’’ in the layer 1 of units mediating between the
input vector and the output unit. A multilayer network with
more than two layers can sometimes do the same job with
fewer hidden units or with hidden units that can be interpreted
as higher-order feature detectors. Therefore, in what follows,
we shall consider N-layer devices for arbitrary N. Unfortu-
nately, for fewer hidden nodes than cases to be learned, no
even moderately efficient algorithm for systematically discov-
ering connection weights to do the job could be found. BP
represents significant progress toward resolution of this diffi-
culty.

Multilayer Network Learning as a Discrete-Stage
Optimal Control Problem
The key idea is to turn the problem of finding connection
weights satisfying the classification requirements into a non-
linear, discrete-stage optimal control problem with connection
weights as control variables. Since the standard control prob-
lem assumes differentiable dynamical equations, the threshold
linear unit will no longer do. Instead, researchers addressing
this problem recently began to propose using a differentiable
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nonlinéar function rather than a threshold function to map
net{ (k) (the net input inito unit i of layer k for case c) into its
output xf (k). A commonly used furiction, when the output is
restricted to the range —1 to 1, is

l—e —net§ (k)

xf(k)= f[ net;'(k)] =tanh [neti(k )] Tlte @ @)

n

net{ (k)= E wy(k —Dxf(k—1) @

where w;;(k —1) is the weight of the connection t6 unit / of
layer k from unit j of layer £ —1. In what follows we shall
restrict ourselves to the particular form of Eq. (4), but we shall
make no assumption about f except differentiability. The pre-
ceding commonly used tanh function f has the property- that
the output of a unit approaches 1 orily as its input approaches
infinity, and 1 only as.its input approaches minus infinity.
Recognizing that these formulas can achieve outputs of 1 or
— 1 only with infinite welghts, the classification goal is modi-
fied. We shall consider the goal to be to find weights that
cause the output of the output unit to équal 0.9 when the input
is from class A and to equal —0.9 when the input is from class
B, where A and B are the two input classes that the network is
to learn to distinguish.

We can now state the. multlstage optlmal control problem
that the classification tdsk requires us to solve. First, we define
the following: .

N =number of layers of adjustablée weights in the network

w;; (k) = weight on connection from unit j of layer k to unit i of
layer k +1, k=0,..., N—1

ny =number of units in layer k [1ncludmg unit z,, which
has output of 1 on each layer; hence w;,, (k) is the
negative of the threshold of unit i of layer k + 1]; for
classification into two cldsses ny = 1 ‘

x{ (k) =net output of unit / of layer & for case c; x;, =1 for

k=0,...,.N—1

d¢  =desired output (0.9 or —0.9) of unit 1 of layer N for
case ¢

C =number of cases

x{(0) =ith element of the input vector for case ¢

Our control problem is of the Mayer type and has terminé.l
criterion

1 & . )

J=3 Lld—xiP )
which measures the squared errof of the deviation of the
actual output from its desired value summed over all cases.
The dynamical relations that map the input (the state at stage
0) for case ¢ into the output (the state at stage N) are, by Eqgs.
(3) and (4),

xi(k + l)=f[net?(k + l)] =f[ Zli Wij(k)xf(k)]
j=1
k=0,...., N—1 6)

@ <@

wig) ¥ (@

2, .
1 xl(l)

'xi(()) x; (V] 1

xf(o) xg(o) 1

Fig. 1 The 12-input, 4-output dynamical system resulting from concatenation.
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The initial condition x{(0) is given, with x; (0)=1 for all .

To render this a completely standard control problem with
one initial state vector, rather than one input vector for each
case to be learned, we simply concatenate the C state vectors,
each of length n, at stage k, into one vector of length Cn, and
duplicate the network for each case. Figure 1 shows the result-
ing two-layer network for four cases with three inputs (the last
of which is always 1) per case.

Solution by Back Propagation— Kelley-Bryson
Gradient Method

The gradient-solution procedure for optimal control prob-
lems was developed by Kelley? in 1960 and; independently, by
Bryson? at about the same time. These airplane and rocket
trajectory researchers generally considered continuous-time
dynamics and more complex terminal conditions than we have
here. Bryson did, however, present a gradient solution of a
multistage problem in Ref. 5 and Bryson and Ho explicitly
gave in their 1969 book® gradient formulas for exactly the
multistage, free-terminal-state problem we are considering.
Kelley used adjoint equations and Green’s theorem in his
derivation, and Bryson used Lagrange multipliers. Dreyfus,’
in 1962, used a simple, new recursive derivation based on the
chain rule of differentiation to obtain results of known Kelley-
Bryson type and dealt explicitly with the optimal control prob-
lem in its discrete-stage form. Though neural-net researchers
have come to recognize that multistage feedforward nets fit
into the optimal control theory mold and that BP is a gradient
procedure, proper credit for the BP method of solution has
not been accorded to Kelley and Bryson. Often the 1974
doctoral dissertation of Werbos? is citéd as the earliest refer-
ence. Werbos independently developed a derivation similar to
that of Dreyfus, and considered feedforward dynamics more
general than the multistage model usually used in optimal
control problems and neural network design that we are con-
sidering here. _

The discrete-stage form of the Kelley-Bryson formulas,
when applied to the case of N adjustable-weight layers and C
cases, yields

N)=xf(N)—d* c=1,..,C Q)
S,?(k)=n§lle,~(k e+ DBk +1) P=1,,m~1;
" c=1,..,C; k=0,..,N-1 ®)
VJwU(k,=§1xf(k ik + DSk +1) i=1,..., meq—1;
J=ly.,ng k=0,.,N-1 ©

From the Dreyfus derivation, it is obvious that the symbol
8¢ (k) represents 0E,/dxf (k) where E; is defined as the termi-
nal cost, given the weights, and is viewed as a function of the
initial condition vector at stage k, x{(k), and the weights at
stage k, w;(k). The gradient VJ, ) is Ex/dw;(k).

Examining these results we see that we can decompose the
computation and perform it on a case-by-case basis, using

S 50

output = f(input)
output units
summation

w1t w13

output = f(input)
hidden units
summation
Woa(0)

layer 0

SO 1 Lo Go 1 i
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Egs. (7) and (8) to compute & (k) and one term of the summa-
tion on the right-hand side of Eq. (9) for case ¢, and then sum-
ming over the cases to obtain the gradient given by Eq. (9).

Once the first-order effects on the terminal cost of weight
changes have been determined, a variety of procedures have
been proposed in the control and neural-net literature for
actually modifying the weights prior to a repetition of the
preceding procedure.

The best-known BP results® look different from ours but are
equivalent. They are stated in terms of quantities &{(k) [in-
stead of our & (k)], and these quantities are interpretable as
the negative of the partial derivative of the criterion value with
respect to the nef input to unit i on layer k for case ¢ rather
than the positive partial derivative with respect to the output.

_Sometimes classification of cases into more than two
classes, or the mapping of input vectors into associated output
vectors, is-desired. Then more than one unit is located on the
output level for each case. In both instances only a minor
modification of the preceding results is required, with the
squared-error criterion now involving a summation over all
output uhits for each case.

In a strict mathematical sense, BP has not solved the prob-
lem of efficiently determining weights in multilayer networks
such that a net will produce stipulated results for a training set
of cases. Like any gradient procedure applied to nonlinear and
generally nonconvex problems, convergence to local minima
(or other stationary points) with nonzero error is possible,
even when weights yielding zero error exist. A mathematician
would demand a procedure known to yield a solution if one
exists [which is the case for the one-layer perceptron using the
perceptron learning rule of Eq. (2)] before he or she would
consider the problem solved. Additionally, the error function
viewed as a function of the weights sometimes has many
saddle points that, even if the gradient procedure never exactly
reaches one, cause the procedure to take many thousands of
steps before convergence on a local minimum. This possibility
renders the procedure’s efficiency poor and also, thus far,
unanalyzable.
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Conclusion

Once all of the cases to be learned in a neural-net mapping
problem are concatenated into one large network with a vector
output, one component for each case, a standard discrete-time
optimal-control problem results. The Kelley-Bryson gradient
formulas for such problems have been rediscovered by neural-
network researchers and termed back propagation. The recur-
sive derivation of these formulas using the chain rule, com-
monly seen in the neural-network literature, was first used for
optimal-conirol problems by Dreyfus.
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