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Exhaustive exploration of an ensemble of networks is used to model 
learning and generalization in layered neural networks. A simple 
Boolean learning problem involving networks with binary weights is 
numerically solved to obtain the entropy S,, and the average gener- 
alization ability G, as a function of the size m of the training set. 
Learning curves G, vs rn are shown to depend solely on the distribu- 
tion of generalization abilities over the ensemble of networks. Such 
distribution is determined prior to learning, and provides a novel theo- 
retical tool for the prediction of network performance on a specific task. 

1 Introduction 

Layered networks are useful in their ability to implement input-output 
maps y = f(x). The problem that arises is that of designing networks to 
implement a desired map i. Supervised learning searches for networks 
that satisfy the map f on a restricted set of points, the training examples. 
An outstanding theoretical question is that of predicting the generaliza- 
tion ability of the resulting networks, defined as the ability to correctly 
extend the domain of the function beyond the training set. 

Theoretical and predictive analysis of the performance of networks 
that are trained from examples are few (Denker et al. 1987; Carnevali 
and Patarnello 1987; Baum and Haussler 19891, in contrast to the large ef- 
fort devoted to the experimental application and optimization of various 
learning algorithms. Such experimental results offer useful solutions to 
specific problems but shed little light on general theoretical issues, since 
the solutions are heavily influenced by the intrinsic dynamics of the cho- 
sen algorithm. A theoretical analysis based on the global and statistical 
properties of an ensemble of networks (Denker et al. 1987; Carnavali and 
Patarnello 1987) requires reliable information about such ensemble, un- 
biased by the peculiarities of the specific strategy adopted to search for 
appropriate networks within the ensemble. 

Neural Computation 2, 374-385 (1990) @ 1990 Massachusetts Institute of Technology 



Exhaustive Learning 375 

Progress in the theoretical understanding of complex systems is of- 
ten triggered by intuition obtained through carefully designed numerical 
experiments. We have therefore chosen a Boolean classification task in- 
volving low resolution weights, which enables us to explore the network 
ensemble exhaustively. Such unbiased search, although hardly useful as 
a practical tool, is free from the constraints intrinsic to current learning 
algorithms. It reveals the true properties of the network ensemble as 
determined by the choice of architecture, and is used here to monitor, 
without introducing any additional bias, the evolution of the ensemble 
through training with examples of the desired task. 

The insight gained from the numerical experiments led to a theoreti- 
cal analysis of supervised learning and the emergence of generalization 
ability, presented in Section 2 of this paper. The numerical experiments 
that motivated the theoretical framework are described in Section 3. An 
analysis of the numerical results according to the theory, as well as some 
applications of the theory to more realistic problems, are provided in 
Section 4. 

2 Theoretical Framework 

Consider an ensemble of layered networks with fixed architecture and 
varying couplings. Such ensemble is described by its configuration space 
{W}: every point W is a list of values for all couplings needed to select 
a network design within the chosen architecture. The resulting network 
realizes a specific input-output function, y = fw(x). For simplicity, con- 
sider Boolean functions y E ( 0 , l )  on a Boolean x E (0, l}N or real x E RN 
domain. 

A prior density po(W) constrains the effective volume of configuration 
space to 

2 0  = f dfVPo(W) (2.1) 

Regions corresponding to the implementation of the function f are iden- 
tified by the masking function 

1 if f w = f  
0 if f w # f  Of(W) = 

and occupy a volume 

The specification of an architecture and its corresponding configuration 
space thus defines a probability on the space of functions: 
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which results from a full exploration of configuration space. P'(f) is the 
probability that a randomly chosen network in configuration space will 
realize the function f .  The class of functions implementable by a given 
architecture is 

(2.4) 3 = {flPo(f) 7J 0) 

The entropy of the prior distribution 

(2.5) 

is a measure of the functional diversity of the chosen architecture. The 
maximum value of SO = ln(nF) , where n~ is the number of functions in 
class 3, is attained when all realizable functions are equally likely, and 
corresponds to the uniform distribution, P'( f) = l / n F  for a11 f E 3. 

Supervised learning results in a monotonic reduction of the effective 
volume of configuration space. An example I" = (x", y") of the desired 
function f is learned by removing from 3 every function that contradicts 
it. A sequence of m input-output pairs 6" = (x", y"), 1 5 LY 5 m, which 
are examples of f thus defines a sequence of classes of functions, 

where every function f E Fm correctly classifies all of the training ex- 
amples I", 1 I a 5 rn. The effective volume of configuration space is 
reduced to 

by learning a training set of size m. 

becomes 
The probability on the space of functions is modified by learning and 

(2.7) 

P,(f) is the probability that f has not been eliminated by one of the m 
examples and is thus a member of Fm. The total volume of configuration 
space occupied by functions f E Fn2 is 2,. 

The entropy of the posterior distribution, 

(2.8) 
{f } 

reflects the narrowing of the probability distribution: S, < So. The 
entropy decrease q, = Sm-l - S, defines the efficiency of learning the 
mth example. 

Learning corresponds to a monotonic contraction of the effective vol- 
ume of configuration space: Zm _C Zm-l. Exhaustive learning, as defined 
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here, leads to the complete exclusion of networks incompatible with each 
training example. Such error-free learning excludes the possibility of data 
so noisy as to contain intrinsic incompatibilities in the training set. A re- 
cent extension of the theory (Tishby et al. 1989) provides the tools to 
analyze the case of learning with error. 

The entropy decrease (So - S,,,) is the information gain, that is, the 
information extracted from the examples in the training set. The residual 
entropy S,, measures the functional diversity of the ensemble of trained 
networks. The optimal case of S,,, = 0 corresponds to the elimination of 
all ambiguity about the function to be implemented. In general S, # 0, 
and its value measures the lack of generalization ability of the trained 
networks. 

A more detailed description of the generalization ability achieved by 
supervised learning is based on the generalization ability g(f) of the 
individual functions f E 3, defined as the probability that f will correctly 
classify a randomly chosen example of the desired function f. As an 
illustration of the intrinsic ability of f to reproduce f, consider the simple 
case of a Boolean function from N inputs onto 1 output. The function f 
is specified by 2N bits, indicating the output for every possible input. In 
this case 

(2.9) 

where d ~ ( f , f )  is the Hamming distance between f and f ,  that is, the 
number of bits by which their truth tables differ. 

The survival probability P,(f) can be expressed recursively by noting 
that the probability of surviving a single additional example is on average 
just g(f). Thus 

(2.10) 

where the denominator is required to maintain proper normalization. 
The recursion relation equation 2.10 is based on the assumption that 
g(f) is independent of m, and thus it is valid provided m remains small 
compared to the total number of possible inputs {x}. Such limitation is 
not severe: learning experiments are of interest when the network can 
indeed be trained with a set of examples that is a small subset of the 
total space. 

The generalization ability of trained networks is an ensemble property 
described by the probability density 

(2.11) 
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The product pm(g)dg  is the probability of generating networks with gen- 
eralization ability in the range [g ,  g + dg] by training with m examples. 
The average generalization ability 

given by 

(2.12) 

(2.13) 

is the probability that a randomly chosen surviving network will correctly 
classify an arbitrary test example, distinct from the m training examples. 

The recursion relation equation 2.10 for Pm(f) can be rewritten as 

and- substituted onto equation 2.11 to yield 
1 

or 

(2.14) 

(2.15) 

(2.16) 

The recursion relation equation 2.16 is a crucial result of this the- 
oretical analysis, since it provides a fundamental tool to both analyze 
and predict the outcome of supervised learning. Iterative applications of 
equation 2.16 lead to the relation 

(2.17) 

The probability density pm(g)  is thus fully determined by the initial dis- 
tribution po(g).  Its average value G, (equation 2.12), given by 

(2.18) 

is simply the ratio between the (m + 1)th and the mth moments of po(g ) ,  
and can be computed if po(g)  is given or estimated. 

The entropy S, (equation 2.8) and average generalization ability Gm 
(equation 2.12) are the fundamental tools to monitor the learning process. 
The picture that emerges is that of learning as a monotonic decrease of 



Exhaustive Learning 379 

the effective volume of configuration space, measured by a monotonic 
entropy decrease with increasing m. The contraction is not arbitrary: it 
emphasizes regions of configuration space with intrinsically high gener- 
alization ability. The iterated convolution with g to obtain p m ( g )  from 
po(g) (equation 2.17) results in an increasing bias toward g = 1, and a 
monotonic increase of the average generalization ability with increas- 
ing m. 

3 Numerical Experiments 

Consider a layered network with L levels of processing. The network 
architecture is specified by the number {N!} ,  0 5 ! 5 L of units per 
layer, and its configuration by the weights {W:’} and biases {W,’e’} for 
1 5 e 5 L, 1 5 i 5 Ne, 1 5 j 5 The configuration space {W}, of 
dimensionality Dw = xi=, Nl(1 + NtP1), describes a canonical ensemble 
of networks with fixed architecture and varying couplings. 

Full explorations of configuration space are in general impractical due 
to the vast number of possible networks in { W} and the correspondingly 
large number nF of realizable functions. Statistical sampling techniques 
are thus needed to extract reliable information on the prior distributions 
Po( f) and po(g). Simplified problems with restricted architectures and 
binary weights W::) = f l  result in ensembles amenable to exhaustive 
exploration. Ensembles containing about a million networks have al- 
lowed here for the accurate computation of various ensemble averaged 
quantities, and led to the theoretical insight described in the preceding 
section. 

Consider the contiguity problem (Denker et al. 1987; Solla 1989), a 
classification of binary input patterns x = (XI,. . . , ZN), 2, = 0 , l  for all 
1 5 i 5 N .  Periodic boundary conditions are imposed on the N-bit 
input vectors, so that the last bit is adjacent to the first. The patterns 
are classified according to the number k of blocks of 1’s in the pattern. 
For example, for N = 10, x = (1110001111) corresponds to k = 1, x = 
(0110110111) to k = 3, and x = (0010011111) to k = 2. The task is 
simplified into a dichotomy: the two categories correspond to k 5 ICo 
and k > ko. This problem can be solved by an L = 2 layered network 
(Denker et al. 1987) with NO = Nl = N and N2 = 1, and receptive fields 
of size 2. 

In the numerical results reported here all processing units are thresh- 
olding units: their output is 1 or 0 according to whether their input is 
positive or negative. The bias W(2’1 of the output unit, the biases W(l)z of 
the hidden units, and the weights W(2’1z between hidden units and output 
unit are fixed at the values determined by the solution to the contiguity 
problem for ICo = 2 W(2’1 = -2.5, and W(l’z = -0.5, W(2)lz = 1 for all 
1 5 i 5 N. The only degrees of freedom are thus the couplings between 
input units and hidden units. A receptive field of size 2 corresponds to 
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the only nonzero couplings being W(')2,2 and W(l)z,z-l, providing input to 
each hidden unit 1 5 i 5 N from two input units: the one immediately 
below, and the adjacent one to the left. 

The configuration space corresponds to W(ljZ3 = f l  for j = 2, i - 1 and 
1 5 i 5 N .  Even for such a simple example the configuration space is 
large: it consists of 22N distinct points. Two of them correspond to equiv- 
alent solutions to the contiguity problem: W(1)z,2 = +1, W(1)z,2-l = -1, 
based on left-edge detection; and W(l)r,z = -1, W(l)z,z-l = +1, based on 
right-edge detection. The degeneracy of the remaining (22N - 2) net- 
works, that is to say to which extent they implement distinct functions, 
has not been investigated in depth. 

The learning experiments are performed as follows: an explicit rep- 
resentation of the ensemble is constructed by listing all possible ZZN net- 
works. To generate a training set, randomly distributed examples within 
the 2N points in input space are obtained by blocking in groups of N bits 
the output of a high quality random number generator. A training set is 
prepared by labeling subsequent examples (x", y"). The ath example is 
learned by eliminating from the listing all the networks that misclassify 
it. The entropy S, is estimated by the logarithm of the number of sur- 
viving networks. The number of surviving networks is an upper bound 
to the number of surviving functions, and the two quantities are mono- 
tonically related. The average generalization ability G, is computed by 
testing each surviving network on a representative set of examples not 
included in the training set. The size of the testing set is chosen so as to 
guarantee a precision of at least 1% in the determination of G,. 

Results reported here correspond to N = 9, 10, and 11. Smaller values 
of N yield poor results due to limits in the available number of examples: 
there are only 256 possible inputs for N=8. Values of N larger than 11 
exceed reasonable requirements in computer time and memory, even on 
a 64-Mbyte machine capable of 5 x lo7 connections/sec. 

Curves for the entropy S, and the prediction error Em = 1 - G, as a 
function of the size m of the training set are shown in Figure 1 (for N=9) 
and Figure 2 (for N=9 and ll), respectively. The curves are averages over 
1000 separate runs, the runs being distinguished by different sequences 
of training examples. 

The prior distribution of generalization abilities po(g) is computed by 
testing all networks in the initial list on a randomly chosen set of 300 ex- 
amples, large enough to obtain the intrinsic generalization ability of each 
network with a precision of at least 6%. The accumulated histograms 
are shown in Figure 3 (for N =  9 and 11). The dependence of the av- 
erage generalization ability G, on the number m of training examples 
can be predicted from po(g) according to equation 2.18. The predicted 
curve for N=ll is shown in Figure 4, and compared to the curve com- 
puted through direct measurement of the average generalization ability. 
Discrepancies are to be expected, since uncertainties in the estimation of 
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Figure 1: Numerical estimate of the ensemble entropy S, as function of the 
size m of the training set for the contiguity problem, N = 9. The entropy is 
computed as the logarithm of the number of surviving networks. 
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Examples 

Figure 2 Numerical evaluation of the prediction error &, as function of the 
size m of the training set for the contiguity problem, N=9 and 11. 
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Figure 3: Initial distribution po(g) for the generalization ability of the chosen 
network architecture to solve the contiguity problem, N=9 and 11. 

po(g) affect the prediction of G,. Lack of accuracy in the determination 
of g for the individual networks results in a systematic broadening of 
po(g) and overestimation of the prediction error €, = 1 - G,. A more 
detailed analysis of such effects will be reported in a subsequent paper 
(Samalam and Schwartz 1989). 

4 Discussion of Results 

Results for the ensemble entropy S,  and the generalization ability G, 
shown in Figures 1 and 2 as function of the size rn of the training set 
confirm that supervised learning results in a monotonic decrease of the 
ensemble entropy and the prediction error. 

The rate of entropy decrease vm = S,-l -S, measures the information 
content of the mth training example. The continuous decrease in the 
slope of the entropy in Figure 1 indicates that the effective information 
content of each new example is a decreasing function of m. The early 
stages of learning rapidly eliminate networks implementing functions 
with a very low intrinsic generalization ability g( f ) .  Such functions can 
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Figure 4: Prediction error En, = 1 - G, as function of the size m of the train- 
ing set for the contiguity problem, N = 11. The numerical result of Figure 2 
is compared to the prediction resulting from applying the recursion relation 
equation 2.18 to the initial histogram of Figure 3. 

be eliminated with a small number of examples, and learning is very 
efficient. As learning proceeds, the surviving functions are characterized 
by g(f) close to one. Such functions require a large number of examples, 
of order (1 - g)- ' ,  to be eliminated. The decrease in learning efficiency is 
intimately tied to the decrease in prediction error: an additional example 
carries new information and results in further entropy reduction to the 
extent to which it is unpredictable (Tishby et al. 1989). 

The monotonic decrease of the prediction error €, with m shown in 
Figure 2 is characterized by an exponential tail for sufficiently large m. 
Such exponential tail has also been observed in learning experiments on 
one layer ( L  = 1) networks using gradient descent (Ahmad and Tesauro 
1989). The theoretical formalism presented here predicts such exponential 
decay for the learning of any Boolean function. Consider the case of 
Boolean functions from N inputs onto 1 output. There are 2N possible 
inputs, and the intrinsic generalization ability can only be of the form 
gv = r / 2 N ,  with r an integer in the range 0 5 r <_ 2N.  Then 
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where p, is the probability of g = gT. The average generalization ability 
of equation 2.18 is easily computed for a density of the form equation 4.1: 

and it is dominated at large m by the by the two largest values of T for 
which p, # 0. If g=1 is attainable with probability p, and the next highest 
value g = 1 - i is attainable with probability Q, then for large m 

(4.3) 

indicating an exponential decay of the form C - ~ ~ W ,  with mi1 = -In 
g M i. 

The parameter r n o  controlling the rate of exponential decay is in- 
versely proportional to the gap i between g=l and g = g. If i 4 0 
the exponential decay is replaced by a power law of the form 

4 
P 

€, = I - G, N - <gm 

(4.4) 

Such asymptotic form follows from the moment ratio equation 2.18 for 
G, whenever po(g) N (1 - g)"o as g + 1 (Tishby et al. 1989). 

As a simple example of the continuous case, consider learning to 
separate points in RN with a plane through the origin using an L = 1 
network. Restricting the weights to the unit sphere results in an initial 
distribution of the form 

po(g) sinN-2(v) (4.5) 

as follows from the Jacobian of a spherical coordinate system in N dimen- 
sions. The average generalization ability equation 2.18 is computed to be 

with mo controlled by the dimension N of the input. 
It is intuitively obvious that the outcome of supervised learning is 

hard to predict, in that the dependence of the generalization ability of a 
trained network on the number of training examples is determined by 
both the problem and the architecture. The fundamental result of this 
paper is to demonstrate that knowledge of the initial distribution po(g) 
suffices to predict network performance (equation 2.18). The specific de- 
tails of the chosen architecture and the desired map y = J(x) matter only 
to the extent that they influence and determine po(g). The asymptotic 
form of learning curves &, vs. m is controlled by the properties of po(g) 
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close to g=1: the existence of a gap results in exponential decay, while 
the continuous case leads to power-law decay. 

The approach is based on analyzing the statistical properties of an 
ensemble of networks (Gardner 1988) at fixed architecture. In contrast 
to more general analysis based on the VC dimension of the network 
(Baum and Haussler 1989; Devroye 19881, which produce bounds on the 
prediction error, the performance of the ensemble is evaluated here in 
reference to a specific task. The question being asked is not how difficult 
it is to train a given network architecture in general, but how difficult it 
is to train it for the specific task of interest. It is in this ability to yield 
specific predictions that resides the potential power of the method. 
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