Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

International Journal of Neural Systems, Vol. 2, No. 4 (1992) 291-301

© World Scientific Publishing Company

BACKPROPAGATION LEARNING FOR
MULTILAYER FEED-FORWARD NEURAL NETWORKS USING THE
CONJUGATE GRADIENT METHOD

E. M. Johansson, F. U. Dowla and D. M. Goodman
Lawrence Livermore National Laboratory, University of California, P.O. Box 808,
L-495, Livermore, CA 94550, USA

Received 22 April 1991
Revised 9 January 1992

In many applications, the number of interconnects or weights in a neural network is so large that the learning
time for the conventional backpropagation algorithm can become excessively long. Numerical optimization
theory offers a rich and robust set of techniques which can be applied to neural networks to improve learning
rates. In particular, the conjugate gradient method is easily adapted to the backpropagation learning problem.
This paper describes the conjugate gradient method, its application to the backpropagation learning problem and
presents results of numerical tests which compare conventional backpropagation, steepest descent and the
conjugate gradient methods. For the parity problem, we find that the conjugate gradient method is an order of
magnitude faster than conventional backpropagation with momentum.

1. Introduction

The backpropagation algorithm':? is probably the most
widely used supervised learning algorithm in neural
network applications. For many problems, however,
the number of interconnects or weights in a network
can be so large that the backpropagation learning time
is excessively long and use of the algorithm becomes
impractical. There are several solutions to this prob-
lem. One is to reduce the size of the problem by
pre-processing the data: employ some form of decima-
tion, projection or feature extraction algorithms to
reduce the dimensions of the input. Another is to use
faster computers or machines with parallel archi-
tectures. A third approach, the underlying motivation
for this paper, is to apply numerical optimization
theory to make the backpropagation method signifi-
cantly faster. Numerical optimization theory offers a
rich and robust set of techniques which can be applied
to neural networks in an attempt to improve learning
rates. In particular, the conjugate gradient method>~’
is easily adapted to the backpropagation learning
problem.

The major advantages of the conjugate gradient
method are its speed and simplicity. It is much faster
than steepest descent and does not suffer from the
inefficiencies and possible instabilities that arise from
using a fixed step size, as in the conventional backpro-
pagation method. Although it is slower than the

291

second order Newton and quasi-Newton minimization
methods, it is considerably less complex. The second
order methods usually require that the Hessian (the
matrix of second order partial derivatives of the error
function) be evaluated and inverted or that an approx-
imation to its inverse be evaluated at each iteration.
This poses a problem for neural networks, which are
often quite large. Consider an application in which
256 X 256 images are used as inputs to a multi-layer
neural network. The input layer alone would have
2562 weights. A second order method would require
the evaluation (and possibly the inversion) of a 2564
element Hessian at each iteration! Although second
order methods may be faster for small and moderate
sized problems, it is clear that storage and computation
requirements render them not feasible for applications
of this magnitude. This is compounded by the fact that
256 X 256 is not considered a large size for an image.
For problems such as these, the method of conjugate
gradients is one of the few alternatives. The conjugate
gradient method is well suited for the peural network
learning problem because it is fast, simple and requires
little additional storage space (only the current and
previous gradient and search vectors must be stored in
addition to the weights).

Improving the speed of backpropagation is currently
quite an important problem. Consequently, other re-
searchers have also applied optimization techniques to
this problem. In particular, the reader is referred to the

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

292 E. M. Johansson et al.

works of Becker and Cun,® and Kramer and San-
giovanni— Vincentelli.® Becker and Cun use variations
of a quasi-Newton method to speed up backpropaga-
tion by approximating the second order derivatives.
They report mixed results and note that the approxima-
tion might result in oscillations during convergence.
Kramer and Sangiovanni—Vincentelli compare parallel
implementations of backpropagation, steepest descent
and conjugate gradient technique using the Polak—
Ribiere method. They report the Polak—Ribiere
method to be superior to conventional backpropagation
and steepest descent for small boolean encoder prob-
lems and for the parity problem. The results of our
paper support the conclusions of Kramer and San-
giovanni— Vincentelli. However, our paper considers
several different conjugate gradient techniques ap-
plying a wide range of optimization parameters to each
of these methods.

In this study, we have found the conjugate gradient
method to be an order of magnitude faster than conven-
tional backpropagation with momentum. Since we have
found the conjugate gradient method to be quite success-
ful and because it appears not to be widely known among
neural network researchers, a major goal of this paper is
to provide a detailed tutorial introduction to the conju-
gate gradient method. We discuss many issues which
will aid the reader in implementing this algorithm for his
particular application.

This paper is organized as follows: We begin in
Sec. 2 with a tutorial introduction to the conjugate
gradient optimization method. Section 3 discusses the
application of the conjugate gradient method to the
backpropagation learning problem. Finally, results of
numerical tests comparing backpropagation, steepest
descent and the conjugate gradient training methods
are presented in Sec. 4.

2. The Conjugate Gradient Method

The learning phase of a backpropagation network can
easily be viewed as a classical unconstrained nonlinear
optimization problem. The solution of such a problem
typically involves modifying a set of independent
variables in a systematic fashion to minimize or
maximize some objective function. The multilayer
feed-forward neural network fits this model quite
nicely: the weights are the independent variables and
the normalized sum of the output errors from the
training set is the objective function. The goal of
training the network is to modify the weights in such a
manner that the network outputs for each pattern
match the desired outputs.

An integral part of applying an optimization tool
such as the conjugate gradient method is an under-
standing of how the algorithm works, what its limita-
tions are and when it can best be applied. We have
chosen to address these issues in the form of a detailed
tutorial. We begin by introducing the theory of conju-
gate directions and show how it can be used to solve a
simple quadratic problem. Next we explain how the
conjugate gradient algorithm is derived from conjugate
direction theory. This is followed by a discussion of
the extension to generalized non-quadratic problems.
We conclude with a short discussion about line search
techniques.

2.1. Conjugate directions

Suppose we wish to minimize the quadratic function
1 T, T
f&x) =5x'Qx = b'x,)

where x is of size n, and Q is of size n X n,
symmetric and positive definite. The unique minimum
of f(x) occurs at the point of zero gradient: the
solution to Vf(x) = Qx — b = 0. In other words, the
minimum point, x*, is the solution to the linear
equations

Qx*=bh. 2)

Finding the minimam of the quadratic or equivalently,
the solution to the linear equations is simplified con-
siderably if we have available a set of n non-zero
vectors which are Q-conjugate.
Definition: The vectors dg, dy, . . . , d,,_, are said
to be Q-conjugate if

d’Qd,; =0, i#j. (3)

It is easily shown that a set of non-zero Q-conjugate
vectors are linearly independent and form a basis
which spans the vector space of x; we omit the proof.

Assume that we are given a starting point X and a
Q-conjugate set do, d;, . . ., d,_; and that we wish
to move to the solution x*. Since the vectors
do,d,,...,d,_, are a basis, we can write the
vector representing the move from X, to x* as a linear
combination of these vectors;

n—1

X* — X0 = > a;d;, 4
=0

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

where aq, a;, . .., «,_, are scalars which must be
determined. Multiplying this equation by d/Q and
substituting b for Qx* gives

n—1

d7lb — Qxol = >, ,d7Qd, . ®)

=0

Here the advantage of having the Q-conjugate vectors
becomes clear. If do,d,,...,d,_, were not Q-
conjugate, then determining ag, a4, . .
would involve solving n linear equations in n un-
knowns. However, Q-conjugacy eliminates the cross
terms and gives a closed form equation for these
scalars;

< Uy

djT[b — Qxol
o, = 6)
/ d7Qd,
If we define
k—1
Xe=Xo+ O a;d,,)
7=0
then we can write an iterative expression for x;
Xi+1 = Xi + akdk (8)

and we note that x, = x*. Thus, we can interpret the
move from X, to x* as a series of n separate moves
along n different ‘‘direction’” vectors, dg, d;, . . .,
d, . Using (3) and (7) to show that d1Qx, = d7Qx,
and using (6) and the notation g, = Vf(x;) =
Qx; — b, we arrive at the following expression for
(A1

_ dig.
diQd,

€)]

ay =

Equations (8) and (9) define the general form of the
conjugate directions algorithm. Using this algorithm, a
positive definite quadratic function or set of linear
equations can be solved in exactly n steps.

An important property of the algorithm is that the
current gradient is orthogonal to the previous direction
vectors. We begin the proof of this property by
computing the difference of the gradients at successive
points. Using (8), it can be shown that

i1 — 8k = Qlxpi — x¢]
(10)

adek .

Backpropagation Learning Using Conjugate Gradient Method 293

Taking the inner product with d, and using (9) gives

gide = dige + o, dfQd,

(11)
=0.
It also follows from (10) and (3) that
[8c+1 — 817d, =0, forj=1,2,...,k—1.
(12)

A simple inductive argument applied to the last two
equations gives the desired result

gid,; =0, forj<k<n. (13)
This orthogonality property is important because it
shows that at each step, the x,., defined by (7), (8)
and (9) minimizes f(x) over the entire subspace
spanned by do, d,, . . . , di. Furthermore, it leads us
to a fact that we shall need shortly; because
gl d, = 0, ay is the solution to

min f(xk + adk) . (14)

The minimum of f(x, + ad,) occurs at the point
where 3f(x; + ad,)/da = 0. Differentiating with re-
spect to a yields

a—fg%@ = VF(xe + ady)Td, = g7d, . (15)
This dot product is known as the directional derivative
(the derivative of f(x,) along the direction d;) and
vanishes when f(x; + ad,) is minimized with respect
to a (i.e. when a = a;). We will encounter the
directional derivative again during our discussion of
line search techniques.

2.2. The conjugate gradient algorithm

The obvious question at this point is: ‘“Where does
one get the direction vectors?”’ There are several
conjugate directions algorithms that generate these
vectors as part of the iteration. By far the most
important is the method of conjugate gradients. The
initial direction vector is chosen as the negative gra-
dient at the initial point: dg = —g,. Successive direc-
tions are obtained from a linear combination of the
current gradient and the previous direction;

divy = —8rsr + Bidy . (16)

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

294 E. M Johansson et al.

The requirement that successive directions be Q-
conjugate or

401Qd; = [~gi+1 + Bid)"Qd,
amn
=0

gives

gi.1Qd,
Be = da7Qd, (18)
Fortunately, using (16) and (18) to force conjuga-
cy between successive directions suffices to make
dg, dy, . .., d,_; a Q-conjugate set. We will prove
this by induction. The scalar B, is selected to force
d7Qd, = 0. Assume that for some k<n — 2 we
have d7Qd, = 0 for all j <i =k We must then
show that d7Qd, = 0 for all j < i <k + 1. First we
show that under our assumption the first k£ + 1 gra-
dients form an orthogonal set. Equation (16) shows
that d, is a linear combination of the first p + 1
gradients

p—1

dp = —8p + 20 Yr.q8q - (19)
q=

Because the first k directions are assumed to be
Q-conjugate, it follows from (13) that for
p <m=k+ 1, taking the inner product of g, with
(19) gives

p—1

gle, = 20 Yp.q8h8q - (20)
=

Now glg, = 0 because dy = —g, and it follows from
an inductive argument applied to (20) that the first
k + 1 gradients are orthogonal;

glg, =0, foralp<m=k+1. (21
Recall we selected By to force df,,Qd, = 0. We can
now complete the proof by showing that d7,,Qd, = 0

for j < k. Taking the inner product of Qd; with (16)
gives

di.1Qd;, = —gi.,Qd; + B:d[Qd, . (22)

The second term on the right hand side is zero from
our assumption and (10) shows that the first term is
—gl.1[g,+1 — g1/ ax, which is zero because the gra-
dients are orthogonal.

The algorithm is summarized below:

1. Set k = 0, select the initial point x,. (23a)
2. go=Vf(x0).
If go =0, stop, else set do= —go. (23b)
dig:
3. = - . 23c
(277 dZQdk ()
4. Xp+1 = Xy + akdk. (23d)

5. kvt = Vf(Xps1).

If g1 = 0, stop. (23e)
T
8i+1Qd;
6. = =——— 23f
Bk dz‘Qdk ()
7. digv1 = =8k + Budy. (23g)

8. f k=n—1, stop, else k — k+1,goto3. (23h)

2.3. Extensions to non-quadratic problems

We have shown that the conjugate gradient algorithm
is indeed a conjugate directions method that minimizes
a positive definite quadratic function in n steps. The
algorithm can be extended to general nonlinear func-
tions by interpreting (1) as a second order Taylor
series expansion of the objective function. The justi-
fication for this is, near the solution, the Taylor series
expansion shows that such functions behave approx-
imately as quadratics. Furthermore, much computa-
tional experience has shown that the conjugate gradient
algorithm outperforms steepest descent methods at
points far from the solution.’* For a quadratic, Q is
the matrix of second partial derivatives (i.e. the Hes-
sian) and is constant. However, for a general nonlinear
function, the Hessian is a function of x; and is very
CPU intensive to compute. An efficient implementa-
tion of the conjugate gradient method would be possi-
ble with the elimination of the calculation of the
Hessian. Note that Q appears only in the computation
of the scalars a; and B,. Eliminating Q from the
calculation of these scalars results in an algorithm
which depends only on the function and gradient
values at each iteration. We begin our discussion by
considering how to modify the algorithm for a quadra-
tic function in the case where Q is not known but
function values and gradients are available.

Recall from our earlier discussion that «; minimizes
f(Xk + adk), i.e.

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com
by ACADEMIA SINICA on 06/22/15. For personal use only.

oy = argmin, { f(x; + ad,)} . 24)

Therefore, the closed form solution for a; in (9) can
be replaced by a numerical one-dimensional mini-
mization or line search procedure. In addition, using
(10) we can eliminate Q from (18), which gives

- gii g — 84

P dflgis, ~ g

(25)

This is the Hestenes—Stiefel formula for 8.3 The
orthogonality relationships (13) and (20) provide two
alternate expressions for fB;; the Polak—Ribiére
formula®

_ giiilgi — gl

(26)
gl 8«

Bi

and the Fletcher-Reeves formula®

T
_ Sk+18k+1

(27)
gig:

Bi

We now have a conjugate gradient algorithm which
does not require an explicit knowledge of Q, only
function and gradient values at each iteration.

With a few slight modifications, the algorithm can
be applied to general nonlinear functions. The termina-
tion criterion in (23e) is not a good one, since the
numerical computation of the gradient will most likely
never be identically equal to zero. In practice, the
algorithm is terminated if the function is less than a
pre-set maximum allowable value or if the maximum
number of iterations have been reached. Furthermore,
for non-quadratic problems, the algorithm will not
successfully converge in exactly n steps (from a
numerical viewpoint, this is true of the quadratic case
also). As the algorithm progresses, the Q-conjugacy of
the direction vectors deteriorates. Hence, it is common
practice to reinitialize the direction vector to the
negative gradient at every nth iteration and continue
until the algorithm converges or the maximum number
of iterations is reached. The reinitialization is known
as a ‘‘restart”’ and effectively restarts the entire algor-
ithm at the current point. This is a relatively simple
method of performing a restart. However, other more
sophisticated methods exist.!'%-!!

2.4. Line search

The purpose of the line search is to minimize
f(x + ad) with respect to a. That is, given fixed

Backpropagation Learming Using Conjugate Gradient Method 295

vectors X and d, we must vary a such that f(x + ad)
is minimized. As « varies, X + ad forms a line in the
n dimensional vector space of x, hence the name line
search. Typically, a line search involves bracketing or
straddling the minimum (ensuring that two points on
either side of the minimum are known), then using
function and gradient information to fit a second or
third order curve to the data and estimating the
minimum point (quadratic or cubic approximation).
The curve fit approximation is iterated until the proper
termination criteria are reached.

The accuracy of the line search plays a critical role
in the performance of the conjugate gradient algor-
ithm. Determining a very accurate approximation to
the minimum is usually inefficient because it requires
many function and gradient evaluations. Consequently,
it is desirable to have criteria that terminate the line
search when a ‘‘reasonably’’ accurate estimate has
been obtained.® In the case of inaccurate line search,
analysis of the quadratic problem suggests that the
Hestenes—Stiefel formula for B8, may be preferable.
Without exact values for ay, the direction vectors
do,d,,...,d,—, will not be a Q-conjugate set,
even in the quadratic case but the Hestenes—Stiefel
formula at least forces Q-conjugacy between succes-
sive directions as in (17). For the general nonlinear
problem, one indication that the algorithm is getting
stuck is that very small steps are being taken, orthogo-
nality between successive gradients is lost and
8r+1 =~ . In this case, the Polak—Ribiére formula
has an advantage because it yields a B, that is nearly
zero and forces the algorithm to take what is approx-
imately a steepest descent step. The best formula for
Bx is highly problem-dependent; we provide compari-
sons for all three formulas in Sec. 4.

Shanno has shown that use of an inaccurate line
search with the Polak—Ribitre or Fletcher—Reeves
methods may yield a di.; which is not necessarily a
descent direction, and numerical instability may
result.’> He derives a method for calculating dy.,
which guarantees a descent direction;

T ToT
devr = —gev1 — [(1 + —yl;y’() p’;gk
PiYi/ Pi¥Ye
T T
Yi8i P8«
- + =Yy, 28
PZ)’J g Py« Y (25)

where py = aid; and y; = (gr+; — g4). Shanno’s
method is included in the comparisons presented in
Sec. 4.

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

296 E. M. Johansson et al

3. Conjugate Gradient Backpropagation

To apply the conjugate gradient method to backpro-
pagation, we first view backpropagation learning as an
unconstrained non-linear optimization problem. Thus,
we require a vector of independent variables, x, and
an objective function, f, defined on the vector space
of x, which is to be minimized. We must be able to
evaluate f(x) and its gradient g(x) = Vf(x) at any
point x. Recall that the goal of training the network is
to modify the weights in such a manner that the
network outputs for each pattern match the desired
outputs. Therefore, the weights will be the vector of
independent variables. Although each weight is associ-
ated with a layer in the network and a particular
neuron within that layer, for the purposes of the
conjugate gradient minimization they are considered to
be a single one-dimensional vector. The weights are
ordered in the vector by layer and then by neuron and
number within the neuron. The normalized sum of the
output errors over the training set will be the objective
function.
More formally, we define

1
ﬂm=;2E, (29)
P

where P is the number of patterns in the training set
and E, is the output error for each pattern p. E, is
defined as

1
E, == (t,, — 0,/(x)?, (30)

2 J
where o0,,(x) and t,,; are the actual and desired outputs
of the jth output neuron for pth pattern, respectively.
We have denoted o,; as a function of x to indicate the
dependency of the network outputs on the weight
vector X. Thus, the objective function is

1
fO0 =552 2ty = 0p(x0* . BD
P J

A single function evaluation requires that the entire
training set be passed through the network, the errors
be calculated for each pattern and the results summed
and normalized. As the size of the weight vector and
number of patterns in the training set increase, the cost
of computing f(x) also increases.

To compute the gradient of the objective function,
Vf(x), we differentiate (29) with respect to x, which
gives

1
am=;2vaw- (32)
P

The derivation of VE,(x) is nearly identical to the
derivation of (0E,/dw,;) in Rumelhart' and is summa-
rized briefly here. The vector VE,(x) is composed of
elements (3E,/dx;,), where x,; is the weight element
from the ith to the jth neuron. We now write the
derivative as a product of two parts

d0E, OE, Onety;

8x],~ anetpj ij'

: (33)

where (3E,/dnet,;) represents the change in E, due to
a change in the input of the jth neuron and
(dnet,,/9x,,) represents the change in the input of the
Jjth neuron due to a change in the weight x;;. The
input to the jth neuron, net,;, is defined as

netp; = 3 X;i0p,(%) (34)

where o0,,(x) is the output of the ith neuron (0,;(x) is
the ith input when i is an input neuron). Using (34), it
can be shown that

dnet
Tj:” = 0,(x) . (35)
We now define
oE
6pj = L . (36)
dnet,;

Note that this differs from the 3,; of Rumelhart by a
minus sign. Thus,

IE,
g_' = 5pj0pi(x) . (37)

Ji

Using this definition of 8,; and following the same
arguments as Rumelhart, we arrive at the following
relationships. For output neurons,

8y, = —(tp, — 0,,(x))s;(nety;) , (38)
where sj(net,;) is the derivative of the semi-linear

activation or squashing function and for hidden layer
neurons

Op; = sj(nety,;) 2 OpiXyj - (39
X

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

Therefore, evaluating the gradient requires forward
propagating each pattern in the training set through the
network to generate the neuron outputs and then
propagating the values of 8,, backwards through the
network. The final gradient is computed by summing
VE,(x) over all the patterns. Since the conjugate
gradient method requires evaluating both the function
and gradient values, the calculations should be per-
formed together to maximize efficiency.

4. Comparison with Conventional
Backpropagation

This section describes the implementation of the conju-
gate gradient and conventional backpropagation algor-
ithms, the basis for comparing the two, the details of
the comparison test and concludes with the results of
the test.

4.1. Conjugate gradient backpropagation
implementation

The following conjugate gradient algorithm was im-
plemented:

1. A starting point, X, is selected by initializing the
weights randomly, uniformly distributed between
—0.5 and +0.5. The gradient, g,, is computed at
this point (as described above) and an initial direc-
tion vector, do = —go is selected.

2. The constant a;, which minimizes f(x; + a,d;) is
computed by line search. The weight vector is
updated to the new point: Xer; = Xz + a,dy.

3. The termination criteria are evaluated at the new
point. If the error at this point is acceptable or if
the maximum number of iterations have been
reached, the algorithm terminates.

4. A new direction vector, dz4, is computed. If
k + 1 is an integral multiple of n, then d;\, =
—g 4. Otherwise, d; . = ~g;41 + Bidy, where
Bx is computed according to the method selected by
the wuser: Fletcher—Reeves, Polak—Ribiére or
Hestenes—Stiefel.

5. k is replaced by k + 1 and the algorithm continues
in Step 2.

The line search implemented is an adaptation of the
line search in Shanno’s CONMIN conjugate gradient
code'? and is summarized below:

1. The directional derivative for & = 0 is computed.

2. An initial guess for a is made.

3. The point f(x + ad) is evaluated and the direction-
al derivative computed.

Backpropagation Learning Using Conjugate Gradient Method 297

4. If the minimum is bracketed, the algorithm pro-
ceeds, else a is increased or decreased as required
and Step 3 is repeated.

5. A cubic approximation to the minimum is gener-
ated and adjusted if necessary to ensure that it falls
sufficiently within the bracketed interval. The new
point and the directional derivative are evaluated.

6. If the new point meets the termination criteria
(discussed below), the algorithm terminates, else
the two points which are closest to the minimum
and bracket it are kept and Step 5 is repeated.

The following criteria are used to judge if the line
search should terminate:

lg(x + ad)’d] = —ng(x)"d, 0=n<1 (40

and

f&) ~ fx+ ad) = —pag®’d, 0<p=1/2.
(41)

The first requires that there be a sufficient decrease in
the value of the directional derivative, the second that
there be a suitable reduction in the value of f.5 We
implemented . = 107 and left 7 to be specified by
the user.

Due to the extreme nonlinear nature of the neural
network error surface, it is necessary to implement
limits on the number of function and gradient evalua-
tions used in the initial search for an a which brackets
the minimum and in the cubic approximation. This
prevents the line search from getting ‘‘stuck’ near
extreme non-linearities in the surface. The limits are
specified by the user at run time. A flag is set when
the line search fails and a restart is attempted upon
return to the main program (providing this was not
already a restart iteration).

4.2, Conventional backpropagation
implementation

The backpropagation algorithm we implemented is
commonly referred to as ‘‘off-line’’ backpropagation.
That is, the weights are updated after all of the
patterns in the training set have been passed through
the network. A momentum term is used in addition to
the standard negative gradient learning rate term. The
weight update equation is

K+ = X =~ NEr — 0Br—1 » 42)

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

298 E. M. Johansson et al.

Table }. Number of function evaluations required to achieve a final error <107° on the parity problem using the conventional backpropagation

method. Optimizations which did not converge are noted with an asterisk (*).

Learning Rate/Momentum
Architecture 0.1/0.1 0.1/0.9 0.3/0.3 0.5/0.5 0.7/0.7 0.9/0.1 0.9/0.9
3-3-1 16572 3317 5526 3316 2370 3316 1843
4-4-1 50000* 50000* 50000* 50000* 50000* 50000* 50000*
5-5-1 50000* 50000* 50000* 50000* 50000* 28468 25087
3-3-3-1 28451 5593 9499 5496 3918 5677 3078
4-4-4-1 50000* 32039 30115 18358 13462 18345 50000*
5-5-5-1 50000* 50000* 50000* 50000* 50000* 50000* 50000 *

where the learning rate, 7, and the momentum rate, «,
are specified by the user. The function and gradient
values are computed as described previously.

4.3. Comparison metric

To compare conjugate gradient backpropagation with
conventional backpropagation we require some kind of
metric with which to judge algorithm performance.
The number of iterations or cycles is not a valid
metric, since in backpropagation the training set is
passed through the network once per iteration, whereas
in the conjugate gradient method the training set can
be passed through several times in a single iteration.
The majority of CPU time required to train a backpro-
pagation network is spent computing the error function
and its gradient. Computing the error function requires
forward propagating the entire training set through the
network. Computing the gradient requires backpropa-
gating the outputs from each pattern in the training set
(computed during the forward propagation) through the
network.

Conventional backpropagation requires one forward
propagation and one backpropagation per iteration.
The conjugate gradient method will have several for-
ward and backpropagations at each iteration. The
number of forward and back propagations may or may
not be the same, depending on the type of line search
used. Some line searches use both the function value
and the gradient at each step, some use only the
function value and some use a combination of the
two. Since most of the CPU time is spent computing
the error function and gradient, the logical metric for
comparison is the total number of function calculations
and the total number of gradient calculations required
to train a network. For the conjugate gradient algor-
ithm we implemented, the number of function calcula-
tions and gradient calculations are the same. There-
fore, the comparison metric is simply the number of
function evaluations required to train the network.

4.4, The benchmark test

The parity problem was chosen as the benchmark test
for comparing the conjugate gradient backpropagation
and conventional backpropagation methods. It was
chosen because it is simple, well known in the
literature and presents quite a difficult problem for
neural networks to solve. Both one and tweo hidden
layer networks were tested on three, four and five bit
parity problems (i.e. 3-3-1, 4-4-1, 5-5-1, 3-3-3-1,
4-4-4-1 and 5-5-5-1 architectures). A full training set
was used for each test (2" patterns), with a stopping
criterion of 107 for the normalized system error (the
average of the pattern errors). The number of function
evaluations were limited to 50000; the test terminated
if this limit was reached. The weights were initialized
to random numbers uniformly distributed between
—0.5 and +0.5. Several combinations of learning rate
and momentum rate were used to test the conventional
backpropagation method, while each of the different
conjugate gradient methods was tested using various
values of the line search convergence parameter.

5. Results

The test results for the conventional backpropagation
method are shown in Table 7. The test results for the
conjugate gradient backpropagation method and
steepest descent with line search (included for com-
parison purposes) are shown in Tables 1-7. The four
and five bit parity problems proved to be the most
difficult of the tests, with the single hidden layer
problems being more difficult than the two hidden
layer problems. This is evidenced by the higher num-
ber of convergence failures on the single hidden layer
problems for both the conventional and conjugate
gradient backpropagation methods. Of the conjugate
gradient backpropagation methods, the Polak—Ribiére
and Hestenes—Stiefel formulas gave the best results
overall. Although Shanno’s method was somewhat

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com
by ACADEMIA SINICA on 06/22/15. For personal use only.

Table 2. Number of function evaluations required to achieve a final
error <107 on the parity problem using the Fletcher—Reeves
conjugate gradient backpropagation method. Optimizations which
did not converge are noted with an asterisk (*).

Convergence Parameter 7
Architecture 0.01 0.1 0.5 0.9
3-3-1 656 331 388 264
4-4-1 8555* 50000* 3465 1617
5-5-1 2641* 3745* 2145 3921
3-3-3-1 710 473 452 372
4-4-4-1 737 2238 1791 1544
5-5-5-1 50000* 1561 3421 4224

Table 3. Number of function evaluations required to achieve a final
error =107° on the parity problem using the Polak—Ribigre conju-
gate gradient backpropagation method. Optimizations which did not
converge are noted with an asterisk (*).

Convergence Parameter 7

Architecture 0.01 0.1 0.5 0.9

3-3-1 195 116 128 123
4-4-1 461 7068 12928 5256*
5-5-1 1966 9244 21633 6633*
3-3-3-1 275 244 200 200
4-4-4-1 415 401 430 1834
5-5-5-1 1385 1343 1849 1643

Table 4. Number of function evaluations required to achieve a final
error <107% on the parity problem using the Hestenes—Stiefel
conjugate gradient backpropagation method. Optimizations which
did not converge are noted with an asterisk (*).

Convergence Parameter 5

Architecture 0.01 0.1 Q.5 0.9

3-3-1 148 150 121 147

4-4-1 2289 45510* 8731 306
5-5-1 3249 50000* 12342 10752

3-3-3-1 335 523 239 243

4-4-4-1 521 50000* 468 429
5-5-5-1 1314 1661 1165 50000*

Table 5. Number of function evaluations required to achieve a final
error =107% on the panty problem using the Shanno conjugate
gradient backpropagation method. Optimizations which did not
converge are noted with an asterisk (*).

Convergence Parameter 7

Architecture 0.01 0.1 Q.5 0.9
3-3-1 512 191 249 396
4-4-1 2079 2651 3247 2482
5-5-1 3372 750 11728 2251
3-3-3-1 306 275 308 368
4-4-4-1 568 792 763 801
5-5-5-1 1890 4348 1985 7254

Backpropagation Learning Using Conjugate Gradient Method 299

Table 6. Number of function evaluations required to achieve a final
error =107 on the parity problem using the steepest descent with
line search backpropagation method. Optimizations which did not
converge are noted with an asterisk (*).

Convergence Parameter 7
Architecture 0.01 0.1 0.5 0.9

3-3-1 978 1834 616 624

4-4-1 50000* 5505 17913 18340

5-5-1 50000* 50000* 14289 11894
3-3-3-1 3357 2542 1178 1148
4-4-4-1 4487 4588 3321 1840
5-5-5-1 50000* 50000* 11853 9500

Table 7. Comparison of best test results for conjugate gradient,
steepest descent and conventional backpropagation. Abbreviations:
FR: Fletcher-Reeves, PR: Polak-Ribiére, HS: Hestenes—Stiefel,
SH: Shanno, SD: steepest descent with line search, BP: conventional
backpropagation.

Function Speed-up over
Architecture Method Evaluations Backpropagation
3-3-1 FR 264 6.98
3-3-1 PR 116 15.88
3-3-1 HS 121 15.23
3-3-1 SH 191 9.64
3-3-1 SD 616 2.99
3-3-1 BP 1843 N/A
4-4-1 FR 1617 N/A
4-4-1 PR 461 N/A
4-4-1 HS 306 N/A
4-4-1 SH 2079 N/A
4-4-1 SD 5505 N/A
4-4-1 BP 50000 N/A
5-5-1 FR 2145 11.70
5-5-1 PR 1966 12.76
5-5-1 HS 3249 1.72
5-5-1 SH 750 33.45
5-5-1 SD 11894 2.11
5-5-1 BP 25087 N/A
3-3-3-1 FR 372 8.27
3-3-3-1 PR 200 15.39
3-3-3-1 HS 239 12.88
3-3-3-1 SH 275 11.19
3-3-31 SD 1148 2.68
3-3-3-1 BP 3078 N/A
4-4-4-1 FR 737 18.27
4-4-4-1 PR 401 33.57
4-4-4-1 HS 429 31.38
4-4-4-1 SH 568 23.70
4-4-4-1 SD 1840 7.32
4.4-4-1 BP 13462 N/A
5-5-5-1 FR 1561 N/A
5-5-5-1 PR 1343 N/A
5-5-5-1 HS 1165 N/A
5-5-5-1 SH 1890 N/A
5-5-5-1 SD 9500 N/A
5-5-5-1 BP 50000 N/A

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

300 E. M. Johansson et al.

slower than Polak—Ribiere and Hestenes—Stiefel, it
never failed to converge, as did all the others on
occasion. It is interesting to note that the method of
steepest descent with line search is in general faster
than conventional backpropagation.

The choice of conjugate gradient method and line
search parameter which gives the best results appears
to be highly problem dependent. There is no single
parameter value or conjugate gradient method which
gives the best results overall or favors a particular
architecture or layer structure. Indeed, our experience
using conjugate gradient techniques has shown that the
user must experiment to determine the optimum com-
bination of conjugate gradient method and line search
termination criteria for a particular application.
However, for most of the applications we have en-
countered, the Hestenes—Stiefel or Polak—Ribiere
methods used with a line search termination parameter
of m = 0.1 are quite satisfactory.

The best results for each problem are summarized
in Table 7, which also includes the relative speed-up
of each method over conventional backpropagation.
We see that for each problem, the conjugate gradient
methods are an order of magnitude faster than conven-
tional backpropagation. Although the statistical accura-
cy of these results could be improved by averaging the
tests over a number of trials, our intent here has been
to show that the conjugate gradient method can easily
be used as a neural network learning algorithm and to
demonstrate the approximate level of speedup of which
it is capable. Furthermore, the relative successes of
optimization algorithms are highly problem dependent
and one difficulty with comparing algorithms is that it
is never clear how to best choose an ensemble of
representative problems over which to average.
However, our experience using the conjugate gradient
method to solve neural network as well as other
problems indicates that these results are typical.

6. Conclusions

In this paper, we have successfully applied the conju-
gate gradient minimization method to the neural net-
work learning problem. We have tested conjugate
gradient backpropagation and conventional backpro-
pagation using three, four and five bit parity problems
on neural network architectures with both one and two
hidden layers. In all test cases, the conjugate gradient
methods are an order of magnitude faster than conven-
tional backpropagation. Moreover, the conjugate gra-
dient method’s combination of unique direction vectors
and line search minimization results in an algorithm

which is not susceptible to the possible instabilities
and oscillatory behavior associated with the use of a
fixed step size as in the conventional backpropagation
method. Furthermore, our experience applying neural
networks to a wide variety of problems'* '® has shown
that conjugate gradient backpropagation is clearly su-
perior in overall performance to conventional backpro-
pagation.

7. Acknowledgements

We would like to thank the LLNL Engineering Re-
search Program and Bob Glass of the LLNL Chemistry
Department for their support of this work. We would
also like to thank the members of the Artificial Neural
Network Interest Group at LLNL for their input and
comments on this work and Sean K. Lehman for his
software development work.

This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Liver-
more National Laboratory under contract number
W-7405-ENG-48.

References

1. D. E. Rumeihart, G. E. Hinton and R. J. Williams,
“‘Learning internal representations by error propaga-
tion,”” in Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1. Foundations,
eds. D. E. Rumelhart and J. L. McClelland (MIT Press,
1986).

2. Y. Pao, Adaptive Pattern Recognition and Neural Net-
works (Addison-Wesley, 1989).

3. M. R. Hestenes and E. L. Stiefel, ‘‘Methods of conju-
gate gradients for solving linear systems,”” Journal of
Research of the National Bureau of Standards, 49(6),
409-436 (1952).

4. R. Fletcher and C. M. Reeves, ‘‘Function minimization
by conjugate gradients,”” Computer Journal 7, 149—154
(1964).

5. E. Polak and G. Ribi¢re, ‘‘Note sur la convergence de
methods de directions conjures,’”” Revue Francaise In-
formation Recherche Operationnelle 16, 35-43 (1969).

6. P. E. Gill, W. Murray and M. H. Wright, Practical
Optimization (Academic Press, 1981).

7. D. G. Luenberger, Linear and Nonlinear Programming
(Addison-Wesley, 1984).

8. S. Becker and Y. L. Cun, ‘‘Improving the convergence
of back-propagation learning with second order
methods,”” Proc. 1988 Connectionist Models Summer
School, ed. Morgan Kaufman (1989), pp. 29-37.

9. A. H. Kramer and A. Sangiovanni— Vincentelli, *‘Effi-
cient parallel learning algorithms for neural networks,”
in Advances in Neural Information Processing Systems
I, ed. D. S. Touretzky, Morgan Kaufman (1989),
pp. 40-48.

Int. J. Neur. Syst. 1991.02:291-301. Downloaded from www.worldscientific.com

by ACADEMIA SINICA on 06/22/15. For personal use only.

10.

11.

12.

13.

E. M. L. Beale, **A derivation of conjugate gradients,”’
in Numerical Methods for Non-linear Optimization, ed.
F. A. Lootsma (1972), pp. 39-43.

M. J. D. Powell, ‘‘Restart procedures for the conjugate
gradient method,” Mathematical Programming 12,
241-254 (1977).

D. F. Shanno and K. Phua, ‘‘Remark on algorithm
500, ACM Transactions on Mathematical Software 6,
618—622 (1980).

D. F. Shanno, ‘‘Conjugate gradient methods with inex-
act line searches,”” Mathematics of Operations Re-
search, 3 244-256 (1978).

Backpropagation Learning Using Conjugate Gradient Method 301

14.

15.

16.

D. M. Goodman, T. W. Lawrence, J. P. Fitch, and E.
M. Johansson, ‘‘Bispectral-based optimization algor-
ithms for speckle imaging,’’ in Digital Image Synthesis
and Inverse Optics, eds. A. F. Gmitro, P. S. Idell,
I. J. LaHaie, Proc. SPIE 1351, (1990) 546—550.

F. U. Dowla, S. R. Taylor and R. W. Anderson,
“‘Seismic discrimination with artificial neural net-
works,’” Bulletin of the Seismological Soc. of America,
80(5), 13461373 (1990).

J. P. Fitch, S. K. Lehman, F. U. Dowla, S. Y. Lu,
E. M. Johansson and D. M. Goodman, ‘‘Ship wake
detection procedure using conjugate gradient trained
artificial neural networks,”” IEEE Transactions on
Geoscience and Remote Sensing, 29(5), 718-726
(1991).

