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Learning from examples in feedforward neural networks is studied within a statistical-mechanical 

framework. Training is assumed to be stochastic, leading to a Gibbs distribution of networks char- 

acterized by a temperature parameter 7. Learning of realizable rules as well as of unrealizable rules 

is considered. In the latter case, the target rule cannot be perfectly realized by a network of the 

given architecture. Two useful approximate theories of learning from examples are studied: the 

high-temperature limit and the annealed approximation. Exact treatment of the quenched disor- 

der generated by the random sampling of the examples leads to the use of the replica theory. Of 

primary interest is the generalization curve, namely, the average generalization error €g versus the 

number of examples P used for training. The theory implies that, for a reduction in eg that remains 

finite in the large-N limit, P should generally scale as aN, where N is the number of independently 

adjustable weights in the network. We show that for smooth networks, i.e., those with continuously 

varying weights and smooth transfer functions, the generalization curve asymptotically obeys an 

inverse power law. In contrast, for nonsmooth networks other behaviors can appear, depending on 

the nature of the nonlinearities as well as the realizability of the rule. In particular, a discontinuous 

learning transition from a state of poor to a state of perfect generalization can occur in nonsmooth 

networks learning realizable rules. We illustrate both gradual and continuous learning with a de- 

tailed analytical and numerical study of several single-layer perceptron models. Comparing with the 

exact replica theory of perceptron learning, we find that for realizable rules the high-temperature 

and annealed theories provide very good approximations to the generalization performance. Assum- 

ing this to hold for multilayer networks as well, we propose a classification of possible asymptotic 

forms of learning curves in general realizable models. For unrealizable rules we find that the above 

approximations fail in general to predict correctly the shapes of the generalization curves. Another 

indication of the important role of quenched disorder for unrealizable rules is that the generalization 

error is not necessarily a monotonically increasing function of temperature. Also, unrealizable rules 

Can possess genuine spin-glass phases indicative of degenerate minima separated by high barriers. 

PACS number(s): 87.10+e, 02.50+s, 05.20—y 

I. INTRODUCTION 
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In recent years, many attempts have been made to 

train layered feedforward neural networks to perform 
computational tasks, such as speech recognition [1] and 
generation [2], handwriting recognition [3], and protein 
structure prediction [4]. These networks have also been 
used as models for neurobiological systems [5, 6], and 
have been employed as metaphors for cognitive processes 
such as learning, generalization, and concept formation 
[7]. 

Learning in neural networks, as well as in other para- 
metric models [8], has also attracted considerable theo- 
retical interest. The activity in this area has centered on 

two issues. The first is the question of representation, or 

realizability. Given a network of some architecture and 

size, is there a set of weights that makes the network 
perform the desired task? The second is the question of 
learning. Given that such a network exists, can its struc- 
ture and parameters be found with a reasonable amount 

of time, computational resources, and training data? 

Here we focus on the question of learning. We further 
restrict our scope to supervised learning from examples, 
which relies on a training set consisting of examples of 
the target task. The training algorithm uses the exam- 
ples to find a set of network weight values that perform 
the task well. The most widely used class of training 
algorithms works by optimizing a suitable cost function 
that quantifies the error on the training set. 

Such learning algorithms have several potential diffi- 
culties. The algorithms may become trapped in local 
minima that are far from optimal. Furthermore, finding 
good minima may require prohibitively long convergence 

times. Finally, there is no guarantee that good perfor- 
mance on a training set also leads to good performance 
on novel inputs. This last issue, the ability of adaptive 
systems to generalize from a limited number of exam- 
ples, is the focus of the present work. Understanding the 
determinants of generalization ability is crucial for devis- 
ing machine learning strategies, as well as for obtaining 
insight into learning processes in biological systems. 

Our study is based on a statistical-mechanical (SM) 

6056 ©1992 The American Physical Society



45 STATISTICAL MECHANICS OF LEARNING FROM EXAMPLES 

formulation of learning in neural networks. The training 
procedure is assumed to be stochastic, leading to a Gibbs 
distribution of network weights. The performances of the 
system on the training set as well as on novel inputs are 
calculated as appropriate thermal averages on the Gibbs 
distribution in weight space and quenched averages on 
the sampling of examples. These averages provide an ac- 
curate account of the typical behavior of large networks. 

The currently dominant approach in computational 
learning theory is based on Valiant’s learning model and 
on the notion of probably almost correct (PAC) learning 
[9,10]. The main achievements of this approach are gen- 
eral bounds on the probability of error on a novel input 
for a given size of the training set [11, 12], as well as clas- 
sification of learning problems according to their time 
complexity [9, 13]. Most of these (sample complexity) 
combinatorial bounds depend on the specific structure of 
the model and the complexity of the task through only 
a single number, known as the Vapnik-Chervonenkis di- 
mension [14-16]. Generally, they are independent of the 
specific learning algorithm or distribution of examples. 
The generality of the PAC approach is also its main de- 
ficiency, since it is dominated by the worst case, atypical 
behavior. Our statistical-mechanical approach thus dif- 
fers considerably from the PAC learning theory in that it 
can provide precise quantitative predictions for the typi- 
cal behavior of specific learning models. 

The SM formalism can also be applied to certain learn- 
ing models for which few PAC results are yet known. De- 
spite recent works which extend the original PAC frame- 
work [12,17], most PAC theorems apply to realizable 
tasks, namely tasks that can be performed perfectly by 
the network, given enough examples. In many real life 
problems the target task can only be approximated by 
the assumed architecture of the network, so the task is 

unrealizable. In addition, many of the PAC learning re- 
sults are limited to networks with threshold decision el- 
ements, although in many applications analog neurons 

are used. The SM approach is close in its spirit, though 
not in its scope and results, to the Bayesian information- 
theoretic approach, recently applied also to continuous 

networks [17, 18]. 
A SM approach to learning from examples was first 

proposed by Carnevali and Patarnello [19], and further 
elaborated by Tishby, Levin, and Solla [20,21]. Del Giu- 
dice, Franz, and Virasoro, and Hansel and Sompolinsky 
applied spin-glass theory to study perceptron learning of 
a classification task [22]. Gardner and Derrida [23] and 
Gyorgyi and Tishby [24, 25] have used these methods for 
studying learning of a perceptron rule. Related models 
have been studied in Refs. [26,27]. However the extent 
of applicability of results gained from these specific toy 
models to more general circumstances has remained un- 
known. 

Recently an interesting attempt to characterize generic 
generalization performance has been put forward by 
Schwartz et al. [28]. This work suffers from two basic 
deficiencies. First, the analysis relies on an approxima- 
tion whose validity has not been addressed. In fact this 
approximation is closely related to the well-known an- 
nealed approzimation (AA) in the statistical mechanics of 
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random systems. Although the AA simplifies enormously 
the theoretical analysis of these complex systems, in most 
interesting cases it is known to be unreliable, sometimes 
even in its qualitative predictions. The second problem 
is that no attention has been given to the dependence 
of performance on system size. In fact, the behavior of 
large systems may be quite different from that of small- 
size ones, and its analysis is more involved. 

In the present study we attempt to characterize the 
generic behaviors of learning from examples in large lay- 
ered networks. In particular we investigate the expected 
rate of improvement of the generalization with an in- 
creasing number of examples, denoted by the generaliza- 
tion curve. The PAC theory bounds the generalization 
curve by an inverse power law. Such a gradual improve- 
ment has also been observed in computer experiments 
of supervised learning [20,29]. In other cases, however, 
one observes a rather sharp improvement when a critical 

number of examples is reached [20, 28, 30]. 
These seemingly conflicting behaviors have analogies in 

psychological studies of animal learning. The dichotomy 
between gradual and sudden learning is at the heart of 
the long-standing controversy between the behaviorist 
[31] and the gestalt [32] approaches to learning in the cog- 
nitive sciences. In this debate the underlying assumption 
has been that a learning process that is based on incre- 
mental modifications of the internal structure of the sys- 
tem can yield only gradual improvements in performance. 
The sudden appearance of concept understanding was 
therefore related to preexisting strong biases towards the 
learned concept, or to mysterious holistic learning mech- 

anisms. 
In the present study we show that in large systems, a 

sudden emergence of good generalization ability can arise 
even within the framework of incremental microscopic 
training algorithms. We analyze the conditions under 
which such discontinuous transitions to perfect learning 
occur. Also, we study the asymptotic forms of learn- 
ing curves in cases where they are smooth. Other is- 
sues addressed in this work include (i) the consequences 
of the annealed approximation for learning in large net- 
works and the scope of its validity, (11) the properties of 
learning unrealizable rules, (iii) the possible emergence 
of spin-glass phenomena associated with the frustration 
and randomness induced by the random sampling of ex- 
amples, (iv) how the nonlinearities inherent in the net- 
work operation affect its performance, and (v) the effect 
of stochastic training (noise in the learning dynamics) on 
generalization performance. 

We address these issues by combining general results 
from the SM formulation of learning with detailed an- 
alytical and numerical studies of specific models. The 
specific examples studied here are all of learning in a 
single-layer perceptron models, which are significantly 
poorer in computational capabilities than multilayer net- 
works. Even these simple models exhibit nontrivial gen- 
eralization properties. Indeed, even the realization of 
random dichotomies in a perceptron with binary weights 
is a hard problem both theoretically and computationally 
(see, e.g., Krauth and Mézard [33] and also [34]). Here 
we study learning from examples in a perceptron with
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real-valued weights as well as with binary weights. Some 
of the results found here for the perceptron models have 
been recently shown to exist in two-layer models also [35, 
36]. Furthermore, a perceptron with strong constraints 

on the range of values of its weights can be thought of 
as representing a nonlinearity generated by a multilayer 
system. 

In Sec. II we present two useful approximations to the 
SM of learning from examples: a high-temperature the- 
ory, and the above-mentioned annealed approximation. 

Several general consequences of these approximations as 
well as their range of validity are discussed. We then 
present the full theory, based on the replica method of av- 

eraging over quenched disorder, and derive from it some 
general results. In Sec. III we derive an inverse power law 
for the learning curves in the case of smooth networks, 
where the training energy is a differentiable function of 
the weights. 

Learning curves of nonsmooth networks do not have a 
single universal shape. In order to elucidate the possible 
behavior of such networks, we study in Sec. IV percep- 
tron learning models where both the target rules and the 
trained networks are single-layer perceptrons. In Sec. V 
we focus on specific examples of realizable perceptron 
rules. We study in detail the case of perceptrons with 
binary weights, where discontinuous transitions in learn- 
ing performance occur. In addition, we investigate the 
spin-glass phases that exist in these models at low tem- 
peratures and small number of examples per weight. 

The annealed approximation has proved to yield qual- 
itatively correct predictions for most of the properties of 
the realizable perceptron models. In Sec. VI we show that 
this is not the case for unrealizable rules. We investigate 
two models of unrealizable perceptron rules where the 
architecture of the trained perceptron is not compatible 
with the target rule. Spin-glass phases are found in the 
unrealizable models, even at large number of examples 
per weight. Also the generalization error as a function of 
temperature may have a minimum at nonzero 7’, demon- 
strating the phenomenon of overtraining. Section VII 
summarizes the results and their implications. A prelim- 
inary report on some of this work appeared previously in 
Ref. [37]. 

Il. GENERAL THEORY 

A. Learning from examples 

We consider a network with M input nodes S; (2 = 
1,...,M), N synaptic weights W; (¢=1,...,N), anda 
single output node o = o(W;S). The quantities S and 
W are M- and N-component vectors denoting the input 
states and the weight states, respectively. For every W, 

the network defines a map from S to o. Thus the weight 
space corresponds to a class of functions, constrained by 

the architecture of the network. Learning can be thought 
of as asearch through weight space to find a network with 

desired properties. 
In supervised learning, the weights of the network are 

tuned so that it approximates as closely as possible a 
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target function oo(S). One way of achieving this is to 
provide a set of ezamples consisting of P input-output 
pairs (S',o9(S')), with | = 1,...,P. We assume that 
each input S! is chosen at random from the entire input 
space according to some normalized a priori measure de- 
noted du(S). The examples can be used to construct a 
training energy 

P 

E(W) = > 7 <(W;S') , 
i=1 

(2.1) 

where the error function e(W;S) is some measure of the 
deviation of the network’s output o(W;S) from the tar- 
get output oo(S). The error function should be zero 
whenever the two agree, and positive everywhere else. 

A popular choice is the quadratic error function 

1 
e(W;S) = 5[o(W;S) — oo(S)]° . (2.2) 

Training is usually accomplished by minimizing the en- 
ergy, for example via gradient descent 

OW 

Ot 

The training energy measures the network’s perfor- 
mance on a limited set of examples, whereas the ultimate 
goal is to find a network that performs well on all inputs, 
not just those in the training set. The performance of a 

given network W on the whole input space is measured 
by the generalization function. It is defined as the av- 
erage error of the network over the whole input space, 

1.€., 

= —VwE(W). (2.3) 

¢(W) = / dy(S) «(W;S) . (2.4) 

We distinguish between learning of realizable rules and 
unrealizable rules. Realizable rules are those target func- 
tions o9(S) that can be completely realized by at least 
one of the networks in the weight space. Thus in a real- 
izable rule there exists a weight vector W* such that 

e(W*,S)=0 forall S , (2.5) 

or, equivalently, «(W*) = 0. An unrealizable rule is a 

target function for which 

€min = Min e(W)>0. (2.6) 

Unrealizable rules occur in two basic situations. In the 
first, the data available for training are corrupted with 
noise, making it impossible for the network to reproduce 

the data exactly, even with a large training set. This 
case has been considered by several authors, including 
Refs. [24] and [25]. Here we will not address this case 
explicitly. A second situation, which will be considered, 
is when the network architecture is restricted in a manner 
that does not allow an exact reproduction of the target 
rule itself.
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B. Learning at finite temperature 

We consider a stochastic learning dynamics that is a 
generalization of Eq. (2.3). The weights evolve according 
to a relaxational Langevin equation 

OW 
> = —Vw E(W) — VwV(W) + (2), (2.7) 

where 77 is a white noise with variance 

(ni(t)n; (t’)) = 276; 6(t — t’) . (2.8) 

We have added also a potential V(W) that represents 
possible constraints on the range of weights. This term 
depends on the assumptions about the a priori distribu- 
tion of W and does not depend on the examples. The 
above dynamics tends to decrease the energy, but occa- 
sionally the energy may increase due to the influence of 
the thermal noise. At J’ = 0, the noise term drops out, 

leaving the simple gradient descent equation (2.3). The 
above equations are appropriate for continuously vary- 
ing weights. We will also consider weights that are con- 
strained to discrete values. In such cases the analog of 
(2.7) is a discrete-time Monte Carlo algorithm, similar to 
that used in simulating Ising systems [38]. 

In simulated annealing algorithms for optimization 
problems, thermal noise has been used to prevent trap- 
ping in local minima of the energy [39]. The temperature 
is decreased slowly so that eventually at JT’ ~ 0 the sys- 
tem settles to a state with energy near the global energy 
minimum. Although thermal noise could play the same 
role in the present training dynamics, it may play a more 
essential role in achieving good learning. Since the ul- 
timate goal is to achieve good generalization, reaching 
the global minimum of the training energy may not be 
necessary. In fact, in some cases training at fixed finite 
temperature may be advantageous, as it may prevent the 
system from overtraining, namely finding an accurate fit 
to the training data at the expense of good generalization 
ability. Finally, often there are many nearly degenerate 
minima of the training error, particularly when the avail- 

able data set is limited in size. In these cases it is of inter- 
est to know the properties of the ensemble of solutions. 
The stochastic dynamics provides a way of generating 
a useful measure, namely a Gibbs distribution, over the 
space of the solutions. 

In the present work, we study only long-time proper- 
ties. As is well known, Eq. (2.7) generates at long times 
a Gibbs probability distribution. In our case it is 

P(W) = Z71¢e- FEW) | (2.9) 

where the variance of the noise in the training procedure 
now becomes the temperature T = 1/8 of the Gibbs 
distribution. The normalization factor Z is the partition 
function 

Z= | du(w)expl-BE(W)), (2.10) 

and we have incorporated the contribution from V(W) 
into the a priori normalized measure in weight space, 
du(W). The powerful formalism of equilibrium statisti- 
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cal mechanics may now be applied to calculate thermal 
averages, l.e., averages with respect to P(W). They will 
be denoted by ()7. In the thermodynamic limit, such av- 
erage quantities yield information about the typical per- 
formance of a network, governed by the above measure, 
independent of the initial conditions of the learning dy- 
namics. 

Even after the thermal average is done, there is still 
a dependence on the P examples S'. Since the exam- 
ples are chosen randomly and then fixed, they represent 
quenched disorder. Thus to explore the typical behavior 
we must perform a second, quenched average over the dis- 
tribution of example sets, denoted by ()) = f [], du(S’). 

The average training and generalization errors are 
given by 

e(T,P) = P-'((E(W))r)) , 
ég(T, P) = ((e(W))r )) - 

The free energy F and entropy S of the network are given 

by 

(2.11) 
(2.12) 

F(T, P) = -T(nZ)), (2.13) 
S(T, P) = -(( / du(W) P(W) In P(W) )) (2.14) 

They are related by the identity 
F = Pe —TS. (2.15) 

Knowing F’, the expected training error can be evaluated 
vila 

1 0(6F) = 2.16 C4 P dB ’ ( ) 

and the entropy by 

OF 
S= oF: (2.17) 

The graphs of €,(7', P) and €;(T, P) as functions of P will 
be called learning curves. 

Formally our results will be exact in the thermody- 
namic limit, i.e., when the size of the network approaches 
infinity. The relevant scale is the total number of degrees 
of freedom, namely the total number of (independently 
determined) synaptic weights N. For the limit N — oo 
to be well defined we envisage that the problem at hand 
as well as the network architecture allow for a uniform 
scaleup of N. However, our results should provide a good 

approximation to the behavior of networks with a fixed 
large size. 

The correct thermodynamic limit requires that the en- 
ergy function be extensive, i.e., proportional to N. The 
consequences of this requirement can be realized by av- 

eraging Eq. (2.1) over the example sets, yielding 

( E(W) )) = Pe(W). (2.18) 

Hence, assuming that «(W) is of order 1, the number of 
examples should scale as 

P=aN, (2.19)
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where the proportionality constant @ remains finite as 
N grows. This scaling guarantees that both the entropy 
and the energy are proportional to N. The balance be- 
tween the two is controlled by the noise parameter T, 
which remains finite in the thermodynamic limit. A for- 
mal derivation of this scaling is given below using the 
replica method. 

Using the definitions Eqs. (2.11) and (2.12) and the 
convexity of the free energy, one can show that 

éx(T, a) < €,(T, a) (2.20) 

for all J’ and a@ (see Appendix A). We will show below 
that, as the number of examples P increases, the de- 
viations of the energy function from its average form, 
Eq. (2.18), become increasingly small. This implies 
that for any fixed temperature, increasing a@ leads to 

€g — €min» &t — €miny ATWO. 

C. High-temperature limit 

A simple and interesting limit of the learning theory is 
that of high temperatures. This limit is defined so that 
both J’ and @ approach infinity, but their ratio remains 
constant: 

Ga=finite, a-o, Too. (2.21) 

In this limit & can simply be replaced by its average 
Eq. (2.18), and the fluctuations 6£, coming from the 
finite sample of randomly chosen examples, can be ig- 
nored. To see this we note that 6E is of order VP. The 
leading contribution to GF from the term @6£F in Z is 
proportional to 8?(( (SE)? \) » NaB*. This is down by a 

factor of @ compared to the contribution of the average 
term, which is of the order Naf. Thus, in this limit, the 
equilibrium distribution of weights is given simply by 

Po(W) = Z~* exp[—N Bae(W))] , (2.22) 

where 

Zo = [aucw) exp[—N Bae(W)] . (2.23) 

The subscript 0 signifies that the high-temperature limit 
is the zeroth order term of a complete high-temperature 

expansion, derived in Appendix B. 
In the high-T limit, it is clear from Eq. (2.22) that all 

thermodynamic quantities, including the average train- 
ing and generalization errors, are functions only of the 
effective temperature T/a. It should be emphasized that 
the present case is different from most high-temperature 

limits in statistical mechanics, in which all states become 
equally likely, regardless of energy. Here the simultane- 
ous a — oo limit guarantees nontrivial behavior, with 

contributions from both energy and entropy. In par- 
ticular, as the effective temperature T'/a decreases, the 

network approaches the optimal (“ground state”) weight 
vector W*, which minimizes e(W). This behavior is sim- 
ilar to the T' = finite, a — oo limit of (2.58) below. 

It is sometimes useful to discuss the microcanonical 
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version of the statistical mechanics of learning in the 
high-T’ limit. Equation (2.23) can be written as 

Zo = | acexpl-NBaS(0) , (2.24) 

where the free energy per weight of all networks whose 
generalization error equals € is 

T 
fie)=e- ~ s(€) , (2.25) 

The function s(¢€) is the entropy per weight of all the 
networks with e(W) = «¢, ie., 

s(e) = n~tin f du(w)6((W) —e). (2.26) 

In the large-N limit the expected generalization error is 
simply given by 

_ Os 

(Oe | 

Thus the properties of the system in the high-T limit are 
determined by the dependence of the entropy on gener- 
alization error. 

From the theoretical point of view, the high-7" limit 
simply characterizes models in terms of an effective en- 
ergy function e(W) which is often a rather smooth func- 
tion of W. The smoothness of the effective energy func- 
tion also implies that the learning process at high temper- 
ature is relatively fast. One does not expect to encounter 
many local minima, although a few large local minima 
may still remain, as will be seen in some of the models 
below. Another feature of learning at high temperature 
is the lack of a difference between the expected training 
and generalization errors, i.e., €g — €:. From Eq. (2.22) 
and the definitions Eqs. (2.11) and (2.12) it follows that 
€, = €, in the high-T’ limit. Of course the price that one 
pays for learning at high temperature is the necessity of 
a large training set, as aw must be at least of order 7’. 

Ba (2.27) 

D. The annealed approximation 

Another useful approximate method for investigating 
learning in neural networks is the annealed approxima- 

tion, or AA for short. It consists of replacing the average 
of the logarithm of Z, Eq. (2.13), by the logarithm of the 
average of Z itself. Thus the annealed approximation for 
the average free energy Fan 1s 

— BFan = In Z)) . 

Using the convexity of the logarithm function, it can be 
shown that the annealed free energy is a lower bound for 
the true quenched value, 

Fin < F . 

(2.28) 

(2.29) 

Whether this lower bound can actually serve as a good 

approximation will be examined critically in this work. 
Using Eqs. (2.10) and (2.1) one obtains 

(Z)) = / du(W)eWP Ga) , (2.30)
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Gan(W) = —In | du(S) e~ PWS) (2.31) 

The generalization and training errors are approximated 

by 

Ey = TZ / dp(W )e(W)e7PGanW) (2.32) 

= TZ / dy(Ww) Se) --Poacw . (2.33) 

1. Single Boolean output 

A particularly simple case is that of an output layer 
consisting of a single Boolean output unit. In this case 
e(W;S) = 1 or 0 only, so that 

Gan(W) = —In{1 — (1 — e7* )e(W)] . (2.34) 

Since Ga, depends on W only through e(W), which is 
of order 1, we can write a microcanonical form of the 

AA, analogous to what was done for the high-T limit 
in Eqs. (2.24)-(2.27). The annealed partition function 
( Z )) takes the form 

(2)) = f de exp N{Go(e)- aGan(0)], (2.35) 
where 

Gan(€) = —In{1 — (1 —e7”)e] (2.36) 

Go(e) = N7*In / duu(W)6(e — e(W)) . (2.37) 

The function NGo(e) is the logarithm of the density of 
networks with generalization error ¢. At finite temper- 
ature, it is different from the annealed entropy San = 
—OF,,/0T, which is the logarithm of the density of net- 
works with training error ¢«. However, since €; = €, in the 
high-temperature limit, NG approaches S,, as T' > oo. 

In the thermodynamic limit (NV — oo), the integral 
(2.35) is dominated by its saddle point. Thus at any 
given a and TJ’ the value of the average generalization 
error is given by minimizing the free energy f(€), where 
—Bf = Go — aGan. This leads to the implicit equation 

Go _  a(1—e7F) 

de ; ~ 1-(l—-ePye, ’ 
e=€ 

  (2.38) 

which is analogous to the high-T result Eq. (2.27). It is 
interesting to note that in this case the AA predicts a 
simple relation between the training and generalization 
errors. Using Eq. (2.33) above, one obtains 

  

—p e~ "ey 
= 2.39 

“t 1—(1—e-®)e,’ (2.39) 

where ¢€, is the average generalization error given by 
(2.38), or, equivalently, 

Ct 

“9 ~ E-B 4 (1 —e7Pye, 
  (2.40) 

To the extent that the annealed approximation is valid, 
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this relation could be used in actual applications to esti- 
mate the generalization error from the measured training 
error. 

2. The annealed approximation as a dynamics 

an example space 

The above annealed results only approximate the 

learning procedure described in Eq. (2.7). However, they 
can be viewed as the exact theory for a dynamic process 
where both the weights and the examples are updated by 
a stochastic dynamics, similar to Eq. (2.7), involving the 
same energy function, L.e., 

OW 
a = —-Vwk4+n(t) , (2.41) 

gs! 

Here E is a function of both W and S!. This dynamic 

process leads to a Gibbs probability distribution both in 
weight space and in input space 

Pan(W;S') = Zzie7P BOWS) , (2.43) 
where 

P 

Zon = | du) f TI au(s!)exp[-SECW)], (2.44) 

which is exactly the annealed partition function. 
From the perspective of Eqs. (2.41) and (2.42) the AA 

represents the behavior of a system with a distorted mea- 
sure of the input space. The fact that we will find it to 
be a good approximation in several nontrivial cases re- 
flects the robustness of the performance of the networks 
in these cases to moderate distortions of the input mea- 
sure. The effect of reducing temperature is also clear. 
The larger £ is, the larger the distortion of the a priori 
input measure due to the Gibbs factor. Consequently, 
one expects that deviations from the AA may be impor- 
tant at low 7’. 

3. How good is the annealed approximation? 

First we note that Gan — Be(W) as G — 0. Thus 
the AA is valid at high temperatures, since it reduces to 
the high-T limit described above. At lower temperatures 
the AA does seems to incorporate some of the effects of 
quenched disorder, in that e is generally less than €,, in 
accord with Eq. (2.20). This is in contrast to the high-T 
limit, in which €g = €;. On the other hand, the results of 
the AA are in general not exact at finite temperature. 

To obtain some insight into the quality of the AA at 

finite temperatures we examine its behavior in the limit 

of large a. From Eq. (2.34) it follows that in the AA the 
asymptotic value of the generalization error is 

lim ¢€,(T,a) = «(W‘) , (2.45) 

where W! minimizes Gn. In general, this vector is not 

necessarily the same as the vector W*, which minimizes
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e(W). Hence there is no guarantee that the AA correctly 
predicts the value of the optimal generalization error or 
the values of the optimal weights, except for two spe- 
cial cases. One is the case of a realizable rule for which 
e(W*;S) = 0 for all inputs S. Clearly the minimum of 
Gan in Eq. (2.31) then occurs at Ga,(W*) = 0. The 
second is the case of a network whose output layer con- 
sists of a single Boolean output unit, as discussed above. 
From (2.34) it is evident that the minimum of Gan, in 

this case, coincides with the minimum of €,, and hence 
Wwt= Ww. 

With respect to the training error, the AA for unrealiz- 
able rules is also inadequate: the correct limit €; — €min 

is typically violated, even for the Boolean case, and the 
limit €, —+ €g does not hold either. In particular, in the 
T — 0 lhmit the annealed training error approaches 

iim é(T,a) = mn e(W;S) (2.46) 

since annealing both the weights and examples at zero 
temperature minimizes the training energy with respect 
to all variables. Often the right-hand side is zero, so that 
the AA predicts spuriously «(7 = 0,a@) = 0 for all a. 

E. The replica method 

To evaluate the correct behavior at all T' one has to 
evaluate quenched averages such as Eq. (2.13) and its 
derivatives. Such averages are commonly studied using 

the replica method [40]. The average free energy is writ- 
ten as 

~ BF = ((InZ)) = lim =In(Z")) . 
n—O0O”n 

(2.47) 

One first evaluates Eq. (2.47) for integral n and then 
analytically continues to n = 0. Using Eqs. (2.1) and 
(2.10) we obtain 

(2°) = f TT qucwe)exp(—Nag,[W']), (248) 

where the replicated Hamiltonian is 

G,(W?] =—In f du(S)exp (-» So «wess)] , 

(2.49) 

The average generalization error (2.12) can be rewritten 
using replicas as 

ca(Tya) = him (( 2"! [ aucw)ecwye##™) )) 

—_ 1 o 1)\,—-NaG,[W7] = tim | il dp(W? )e(W! Je 

(2.50) 

and the average training error (2.11) as 
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éx(T,a) = tim =f ducwey SE woot 

(2.51) 

The simplicity of the replica formulation lies in the fact 

that only the number of examples remains as a simple 
prefactor in Eq. (2.48). All other example dependence 
has been removed, so that the replicated Hamiltonian G, 
depends only on the form of e(W; S) and on the nature of 
the a@ priort measure on the input space du(S). Equations 
(2.48) and (2.49) also make explicit the scaling of the 
problem. Since «(W;S) is defined to be of order 1, G, 
itself is of order 1 times n. Thus, as the integral on the 
weight space in Eq. (2.48) is nN dimensional, where N 
is the number of degrees of freedom in weight space, P 
must scale as N. 

The AA can be obtained from Eq. (2.47) by setting 
n = 1 instead of taking the limit n — 0. The replicated 
Hamiltonian G,[W] with n = 1 reduces to the annealed 

expression Ga,(W), Eq. (2.31). 

1. Replica theory and the high-T limit 

The replica theory provides a simple derivation of the 
high-T limit described in Sec. IIC. Since G, is an in- 

tensive quantity independent of P, the high-T limit can 
be derived by simply expanding it in powers of 8. The 
leading terms are 

Pg,[W?] = N ( af S~ e(W?) 
o=l1 

~ 5a s sew" Ww) +0109) 

” (2.52) 

where 

awe, W?) = f du(S) (W";8)e(W?:S) 

—e(W°® )e(W?) . (2.53) 

Note that g measures the correlations in the errors of two 
different weights on the same example. 

The general form of Eq. (2.52) is similar to that of a 
spin-glass replica Hamiltonian [41, 42]. The first term 
is the one that survives the high-T limit. It represents 
the nonrandom part of the training energy. ‘Taking into 

account only this contribution leaves the different replicas 
uncoupled, and hence F reduces to its high-T’ hmit 

— BF sin | ducwye-NOee™ ; (2.54) 

in which the training energy becomes proportional to the 
generalization function, i.e., E(W) — Pe(W). As T de- 
creases the second term of Eq. (2.52) becomes important. 
This term is a coupling between different replicas which 
originates from the randomness of the examples.
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2. Spin glasses and replica symmetry breaking 

In some cases, the coupling between replicas produce 
only minor changes in the learning curves. In others, 
such terms can lead to the appearance of qualitatively 
different phases at low temperatures. These phases are 
conveniently described by the properties of the matrix 

1 Q pv = yw" -W’) ; 

which measures the expected overlap of the weights of 
two copies of the system. Since the replicated Hamilto- 
nian (2.49) is invariant under permutation of the replica 
indices, one naively would expect that Q,, = q for all 
pi #v. The physical interpretation of g would then be 

qg=N'((W)r -(W)r) 

It is known as the Edwards-Anderson parameter in spin- 
glass theory [40]. The high-temperature phase indeed 
possesses this replica symmetry. However, as the temper- 
ature is lowered, aspontaneous replica symmetry breaking 
(RSB) can occur, signaling the appearance of a spin-glass 
phase. In this phase, the expected values of correlations 
among different replicas do depend on the replica indices. 

Formally, the spin-glass phase is characterized by a 
nontrivial dependence of quantities such as Q,,, on the 
replica indices. Physically, the spin-glass phase is marked 
by the existence of many degenerate ground states of the 

energy (or free energy) which are well separated in con- 
figuration space. The different values of Q,, represent 
the distribution of overlaps among pairs of these ground 
states. This degeneracy is not connected with any simple 
physical symmetry, but is a result of strong frustration in 
the system. Furthermore, these degenerate ground states 
occupy disconnected regions in configuration space that 
are separated by energy barriers that diverge with N. 
Such barriers are important in the context of learning, 
since they lead to anomalously slow learning dynamics 
[43-45]. 

(2.55) 

(2.56) 

F. The large-aq@ limit 

The replica formalism can also be used to investigate 
the behavior at a large number of examples, i.e., the a — 

oo limit. From Eq. (2.48) it is clear that the free energy 
and the training and generalization errors are all weight 
space integrals that are dominated by the minimum of 
G,, as @ — oo. Denoting this minimum by W? = W’%, 
we find 

grim =—In | dy(S) exp[—Bne(W":S) 

= Bne(W*) + O(n’). 

This implies that W* minimizes both the generalization 
error «(W) and G, in the n — 0 limit. Hence we con- 
clude that for any fixed temperature the training and 
generalization errors both approach the optimal value 

Emin = €(W*) as a — oo, 

(2.57) 
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€g 7 €min, €t 7 €min, A — CO. (2.58) 

In the following section, a will be used as a control pa- 
rameter in a saddle-point expansion to calculate the ap- 
proach to the optimum for smooth networks. 

Til. SMOOTH NETWORKS 

We define smooth networks to be those with continu- 
ously varying weights and error functions e(W;S) that 
are at least twice differentiable with respect to W in the 

vicinity of the optimal weight vector W*. According to 
this definition, whether a network is smooth depends on 
both the smoothness of the weight space and the smooth- 
ness of the error function «(W;S). In a smooth network, 

neither the output neuron nor the hidden neurons are 
saturated at the optimal W*. We now use the replica 
formalism to derive the asymptotic shape of the learning 
curves in these networks. 

As stated above, the integrals over the weight space 
are dominated, as a — oo, by the optimal weight vector 
W*, which minimizes both G, (in the n — 0 limit) and 
e(W). At finite large a, the leading corrections to €, 
come from the immediate neighborhood of W*. Ina 
smooth network we can expand G, in powers of 

6bW? =W?7 -W; . (3.1) 

The lnear terms vanish since W* is a minimum of G,. 

The leading corrections are 

min 1 o Ao Gm Grn + >» 5We AZ? OWE , (3.2) 
t,j,0,p 

where 

Al? = BU,;6°? — BPVi; . (3.3) 

The matrix Uj; is the Hessian of the error function at the 

optimal weight vector W”, i.e., 

U,; = / du(S) 0:0;¢(W", 8) . (3.4) 

The symbol 0; denotes 0/0W,. The matrix V;; is 

Vij = / du(S) d:e(W", S)0;«(W",S) . (3.5) 

Since NaG, defines a Gaussian measure in weight 
space, it is straightforward to calculate the average devi- 
ations of the weights from W*. They are 

(6wW’) =0, (3.6) 

(5W? 6WP) = (Na)? (Au1)fP 
1 a | op —1 —1l)., =5,, ITU )ig6°? + (UT VU Dis] , 

(3.7) 

where we have already taken the n —> 0 limit. Equations 
(3.6) and (3.7) have a simple meaning in terms of the 
physical system. Equation (3.6) reads
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((6W)r ) = ((W)r )) — W* = 0. 

The diagonal element (in the replica indices) of Eq. (3.7) 
yields the average correlations 

Caz = ((SWibW; )r )) 
1 ~1 -1 -1 

=F lPU ig + (UV Dig) 

The first term, which is proportional to T, represents 
the contribution of the thermal fluctuations about W*. 
The second term represents the quenched fluctuations 
due to the random sampling of examples. This interpre- 
tation is confirmed by inspecting the off-diagonal element 
of Eq. (3.7), which is 

(3.8) 

(3.9) 

( (6W:)r(6W3)r) = —(UVU™ ay. (3.10) 
To evaluate the corrections to the generalization error, 

we expand Eq. (2.12) in powers of &6W, yielding 

1 
€9=€mnt-> Truc. ; (3.11) 

Substituting Eq. (3.9) one obtains 

T TTrvVU"'\ 1 _ 

eg(Ty0) = twin + (F 4) 2 +00), 
(3.12) 

The 1/a expansion for the average training error can 
be evaluated by calculating first the corrections to the 
average free energy. Substituting Eq. (3.2) in Eq. (2.48) 
yields, after taking the n — 0 limit 

BF = NaGemin + lit In(BU) — @ Tr VU-"] 
2 

1 Na 

Using Eq. (2.16) one obtains 

T TrvVU-!\ 1 _ 
(7, @) = €min + é — a) S + O(a 2) , 

(3.14) 

The above results predict an important relationship be- 
tween the expected training and generalization errors at 
TL’ = 0. According to Eqs. (3.12) and (3.14) both er- 
rors approach the same limit €min with a 1/a@ power law. 
The coefficients of 1/a in the two errors are identical in 
magnitude but different in sign yielding 

Oe _ _ eg 
das Oa’ 

a-oco, T=0. (3.15) 

This result can be used to estimate the expected general- 
ization error from the measured training error in smooth 
networks. 

A special case occurs when the rule to be learned by the 
smooth network is realizable. This means that there ex- 
ists a weight vector W* within the allowed weight space 
that has zero generalization error, 1.e., 

Emin = €(W") = Jews) e(W*;S)=0. (3.16) 

This is equivalent to the statement that «(W*;S) = 0 
for all input vectors S, because the error function was 
defined to be non-negative. Since W* minimizes «(W), 
we can also assume 0;¢€(W*) = 0, as long as W”% lies in 
the interior of the weight space. 

We have «(W*;S) < «(W;S), since the left-hand side 
is zero, and the right-hand side is non-negative. This 
imphes that 

0;«(W";S) > 0 (3.17) 

for all S, but also 

J eu(s)aiecwrss) = 0;e(W*) =0. (3.18) 

Equations (3.17) and (3.18) together imply that 
J;e(W*;S) = 0 for all S, which in turn implies V;; = 0. 
Finally, we have the result 

€g(T,a) = = + O(a~*). 
ao 

(3.19) 

The same holds for e;. 

At zero temperature, the coefficient of 1/a@ vanishes for 
€, and «;. Furthermore, for a smooth network learning 
a realizable rule, the higher-order terms also vanish at 
T’ = 0. This implies that there is a finite value a, for 

which €, = €¢¢ = 0 for alla > a,, at T = 0. An example 

of such behavior will be presented in Sec. VA below. 
Such a state we call a state of perfect learning. 

It should be noted, however, that a realizable rule 
with a smooth network is an unrealistic situation. The 
smoothness requirement, as defined above, implies that 
the measure of error involves equalities and not inequali- 
ties. Therefore to realize a rule would necessitate infinite 
precision in determining the optimal weights. Unlike the 
case of discrete problems, learning tasks in smooth net- 
works are generically unrealizable. 

IV. LEARNING OF A PERCEPTRON RULE 

A. General formulation 

The perceptron is a network which sums a single layer 
of inputs S; with synaptic weights W;, and passes the 
result through a transfer function o 

N 

og N7V?N °W;S; =9(N-?w.s) (4.1) 

j=l 

where g(z) is a sigmoidal function of x. The normaliza- 

tion 1/VN in Eq. (4.1) is included to make the argument 
of the transfer function be of order unity. Learning is a 
search through weight space for the perceptron that best 
approximates a target rule. We assume for simplicity 

that the network space is restricted to vectors that sat- 
isfy the normalization
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N 

Yowe=N. (4.2) 
t=1 

The a priori distribution on the input space is assumed 
to be Gaussian, 

N 

du(S) =|] DS; , (4.3) 

where Dz denotes the normalized Gaussian measure 

dz e-2?/2 . 

20 

We consider only the case where the target rule is another 
perceptron of the form 

(8) =9(saw'ss) , 
and W° is a fixed set of N weights W?. We assume that 
the teacher weights W° also satisfy the normalization 
condition (4.2). 

Training is performed by a stochastic dynamics of the 

form (2.7) with the training energy function (2.1). For 
each example the error function is taken to be 

Dz=   (4.4) 

(4.5) 

e(W;S) = 5 lg (N-?2w-S) — 9 (Nowe s)|" 

(4.6) 
The generalization function is 

e(W) = Jes e(W;S) 

= jp: [ry slalev 1— R2+ yR)—- g(y))° 

(4.7) 

where R# is the overlap of the student network with the 
teacher network, 1.e., 

1 
R=—W-wW°? 

N 
(4.8) 

(see Appendix C). The relationship between (4.6) and 
(4.7) is plain, since in both cases the arguments of g are 
Gaussian random variables with unit variance and cross 
correlation R. 

It is important to note that in perceptron learning, the 
generalization function of a network depends only on its 

—Bf = Go(R) — aGan(F) , 

Gan(R) = -mm | De | dy me (5 lg (2Vi— FR? + yk) - a(v)}") , 

Go(R) = N7! in f du(w) 6(R—- NW. Ww?) ; 
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overlap with the teacher, i.e., e(W) = e«(R). Learning 
can be visualized very easily since R = cos@, where 0 
is the angle between W and W°. The generalization 
function goes to zero as the angle between the student 
and the teacher weight vectors vanishes. Perfect learning 
corresponds to an overlap R = 1 or @= 0. 

In the following we discuss perceptrons with either lin- 
ear or Boolean outputs, and weights that are either bi- 
nary or obey a spherical constraint. 

For the linear perceptron, the transfer function 1s 
g(x) = x. The error function, Eq. (4.6), is in this case a 
quadratic function in weight space, 

«(W;S) = slew —W°)-S]?. (4.9) 

Averaging this function over the whole input space, we 

find 

e(W) =l- R, (4.10) 

in accord with Eq. (4.7) with a lear g. 
A second output function to be considered is the 

Boolean output g(x) = sgn(zx), which corresponds to 
the original perceptron model studied by Rosenblatt [46]. 
The Boolean perceptron o = sgn(W -S) separates the in- 
put space in half via a hyperplane perpendicular to the 
weight vector. The error function, Eq. (4.6), is (up to a 

factor of 2) 

e(W;S) = O(—(W-S)(W® -S)) , (4.11) 

which is 1 when the student and teacher agree, and 0 
otherwise. The generalization error 

1 
e(W) = - cos"' R (4.12) 

is simply proportional to the angle between the student 
and teacher weight vectors. 

B. The annealed approximation for perceptron 

learning 

The annealed free energy of perceptron learning is 
shown in Appendix C to be 

(4.13) 

(4.14) 

(4.15)
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The function NGo(#) is the logarithm of the density of 
networks with overlap R, so we will sometimes refer to 
it as the “entropy,” even though it is not the same as 
the thermodynamic entropy s = —O0f/0T. The proper- 
ties of the system in the large-N limit are obtained by 
minimizing the free energy f, which yields 

dR OR | 
Solving for R one then evaluates the average generaliza- 
tion error via (4.7). Likewise the average training error 
is evaluated by differentiating Gz, with respect to f, as 
in Eq. (2.33). 

We will consider the case of a spherical constraint and 
that of an Ising constraint. In the perceptron with a 
spherical constraint, the a priori measure du(W) is uni- 
form on the sphere of radius VN, given by the normal- 
ization condition, Eq. (4.2). We may write the measure 
more formally as 

(4.16) 

du(W) = 6(W- WN), (4.17) Ie 
which is normalized to { du(W) = 1. In this case, the 
fraction of weight space with an overlap R is simply the 
volume of the (N — 2)-dimensional sphere with radius 
V1—R?. Hence the entropy Go(R), Eq. (4.15), is (in 
the limit of large NV) 

Go(R) = 5 In( — R°) , (4.18) 

a result that is derived in more detail in Appendix C. 
The entropy diverges as R — 1, as the fraction of weight 
space with overlap R approaches zero. Such a divergence 
is typical of a continuous weight space. 

The Ising perceptron corresponds to a network with 
binary valued weights W; = +1, or 

N 

du(W) = [| dwi[6(W; — 1) + 6(W; +1) . 
t=1 

(4.19) 

The entropy of Ising networks with an overlap R is given 

by 

l1—-~RkR, 1-R 14+RF, 14+R 
Go(R) = - 9 In 9 _ 9 In 9 ;     (4.20) 

a result derived in Appendix C. It approaches zero as 

R — 1, meaning that there is exactly one state with 
R= 1. This nondivergent behavior is typical of discrete 
weight spaces. 

To conclude, the picture emerging from the AA is ex- 

Go = -5(1 —~q)@-RR+ = [ov In f du(W) explW (2\/G+ W°R)) , 

=~ | ptf dyn [ Deexp (-38 \9 («Vi=a+ uR+tVa—F) ~ a(v)] ) ; 
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tremely simple. The properties of the system can be 
expressed in terms of a single order parameter, namely, 
the overlap R. The stochastic fluctuations in the value 
of R can be neglected in the limit of large N. Hence 
the system almost always converges to a unique value of 
R given by the minimum of the free energy f(R). De- 
pending on the details of the problem, f(.) can have 
more than one local minimum. If this happens, the equi- 
librium properties of the system are determined by the 
unique global minimum of f. The local minima represent 
metastable states. Starting from a value of R near one 
of these minima the system is likely to converge rapidly 
to the local minimum. It will remain in this state for 
a time that scales exponentially with the network size. 
Hence for large networks the local minima of f can be 
considered as stable states. 

C. The replica theory of perceptron learning 

The calculation of G,, (2.49), for perceptron learning is 

presented in Appendix D. The dependence of G, on the 
weights is through the order parameters Q,,, Eq. (2.55), 
and 

Ry = 5; W" WW? (4.21) 

which measures the overlap of the networks with the 
teacher. The values of these order parameters are ob- 
tained by extremizing G,. 

In general, evaluating the saddle-point equations for 
Qu, and R, requires making an ansatz about the sym- 
metry of the order parameters at the saddle point. The 

simplest ansatz is the replica symmetric (RS) one, 

Quv = boyy +(1—6 

Ryz=R. 

(4.22) 
(4.23) 

uv) ; 

In this case the order parameters of the replica theory 
have simple meanings in terms of thermal and quenched 
averages. The order parameter gq is given by Eq. (2.56), 
and R is the expected value of the overlap with the 
teacher, 

1 
R= —((W)r) We. (4.24) 

The RS free energy of perceptron learning is (see Ap- 
pendix D) 

Go(q, R, q; R) — aG,(q, R) } - Bf =5(nZ)) = 
(4.25) 

where 

(4.26) 

(4.27)
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and z is a vector of Gaussian variables {z;}_, with 
Dz = II, Dz;. The free energy has to be extremized 

with respect to the order parameters q and R, and their 
“conjugate” counterparts g and R. Differentiating with 
respect to g and R yields the saddle-point equations 

a= 5 | Da(W).-(W), | 

R= x [ Da(w).-We. 

(4.28) 

(4.29) 

The definition of the average (W), in these two equations 

reveals the meaning of the parameters g and R, 

/ du(W) W exp[W - (2/9 + W°R)] 
(W), = : 

/ dy(W) exp[W - (2/9 + WR)] 
  

(4.30) 
In this equation, the local field z./g + W°R acting upon 
W consists of two parts. The first is a Gaussian random 
field with variance q originating from the random fluctu- 
ations of the examples. The second is the bias towards 
the teacher weights W°, with an amplitude R. 

In general, we know from Eq. (2.58) that W must ap- 
proach the optimal weight vector W* as a — oo. Fora 
realizable perceptron rule (W* = W°), this means that 
R— 1. If W% is unique, the Gibbs distribution in weight 
space contracts about it as @ — oo, which means that 
q — 1. The approach to the optimum is reflected in a 
competition between the two terms of the local field: the 

strength of the ordering term diverges (R — oo) and the 

relative strength of the disorder goes to zero (./q/R — 0). 
One criterion for the validity of the RS ansatz is the lo- 

cal stability of the RS saddle point. Often one finds that 
the RS solution becomes locally unstable at low temper- 
atures, and hence invalid. In the phase diagram, the line 
at which the instability appears is known as the Almeida- 
Thouless line [47]. To find the true solution beyond this 
line, one must break replica symmetry. 

For systems with discrete-valued degrees of freedom, 
a simpler diagnostic for RSB is available, based on the 
fact that such systems must have non-negative entropy. 
Below the zero-entropy line, the entropy is negative and 
hence the RS ansatz must be incorrect. Hence the zero- 
entropy line provides a lower bound for the temperature 
at which RSB first occurs. Since the zero entropy line 
is easier to calculate than the Almeida-Thouless line, we 

will rely on it to estimate the location of the RSB region. 

Since it is generally extremely difficult to find the cor- 
rect RSB solution, we will consider only the RS solutions. 
The only exceptions are the models of Secs. V D and VIC 
below, for which we analyze the first step of RSB. Oth- 
erwise, we expect that the RS solution will still serve as 
a good approximation in the RSB region. 

V. PERCEPTRON LEARNING OF 

REALIZABLE RULES 

A. Linear output with continuous weights 

The case of a perceptron with the quadratic error func- 
tion Eq. (4.9) defined on a continuous weight space is 
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particularly simple. Krogh and Hertz [48] have done 
a complete analysis of the training dynamics for this 
model. Here we derive the equilibrium properties using 
the replica theory. 

Applying Eqs. (4.25)-(4.27), yields —@f = Go — aG,, 
with 

  

  

11. ~ 4 . 1R?+G 1 
Go= grA+599-RR-SmMA+H +5555 ~ 5? 

(5.1) 

1 1 B(q-—2R+4+1) 
| 1 1— _ 5.2 

The additional order parameter A is the Lagrange multi- 
plier associated with the spherical constraint. Extremiz- 
ing f with respect to the order parameters and eliminat- 

ing A yields 

  

gq=(¢t+ R*\(1—4q)’ , (5.4) 

ae af 

R= TaRISo (5.5) 

j= op? Sot (5.6) 
[t+ BU -)]? 

First we consider the simple case of zero temperature. 
Only those weight vectors with zero training energy are 
allowed, i.e., those that satisfy 

(W-—Ww’)-S'=0, l=1,...,P. (5.7) 

For P < N these homogeneous linear equations deter- 
mine only the projection of W — W° on the subspace 
spanned by the P random examples S!. This implies 
that the subspace of ground states of E has a huge de- 
generacy; it is N — P dimensional. As P — N this degen- 
eracy shrinks and for P > N there is a unique solution 
to Eq. (5.7), W = W®, for almost every random choice 
of examples. 

At T = 0 the saddle-point equations reduce to 

a<l 
a> 1. (5.8) a, 

g=R={t 

For a < 1, the fact that q < 1 reflects the degeneracy of 
the ground states, according to the definition Eq. (2.56). 
When a reaches the critical value 

a,=1, (5.9) 

the degeneracy is finally broken (q = 1), and the training 
energy possesses a unique minimum W = W, (Ff = 1), 
in agreement with the simple arguments presented above. 

Thus there is a continuous transition to perfect learning 
at a = 1. 

However, this transition does not exist at any finite 
temperature, because of thermal fluctuations about the 
global minimum. From the saddle-point equations, one 
can calculate that the asymptotic generalization curve is 
given by
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T 
€g = 2a + O(a’) ) 

in accord with the general result (3.19) for smooth net- 
works learning realizable rules. This means that at any 
finite temperature, perfect generalization is attained only 
in the limit of infinite a. The above results are in agree- 
ment with the dynamic theory of Krogh and Hertz [48]. 

It is interesting to compare the above exact results with 
those of the AA. Evaluating Eq. (4.14), with g(z) = z 
yields 

(5.10) 

Gan = sin 1 +26(1—R)) . (5.11) 

Adding this to (4.18) yields the annealed free energy of 
Eq. (4.13), 

—Bf(R) = = n(1 — R*) - 5 In[1 + 26(1 — RY] 

    

(5.12) 

which is extremized when 

R ap 
= , 5.13 

1—-R? 14 26(1- R) (5-18) 

The training error is given by 

_ 10pf _ 1—R (5.14)   
~~ OB  14+280—R)- 

The asymptotic behavior of ¢, = 1 — R agrees with the 
correct result Eq. (5.10). 

At T = 0, the AA predicts 

2—2a 
€y =   a<l. (5.15) 

2-—a ’ 

in contrast to the true quenched result ¢, = 1—a, a < 1. 
Although the value of €, is incorrect, the second-order 
transition to perfect learning at a, = 1 is correctly pre- 
dicted. 

B. Boolean output with continuous weights 

The Boolean perceptron with continuous weights cor- 
responds to the original perceptron studied in [46, 49]. 
At zero temperature, weight vectors with zero training 
energy satisfy the inequalities 

(W-S‘)(W®.S')>0. (5.16) 

Since these inequalities do not constrain the weight space 
as much as the equalities (5.7), this model requires more 
examples for good generalization than did the preceding 
linear model. The quenched theory of this model has 
been previously studied in detail [24]. We present below 
a few of the results for completeness. 

Since the a priori measure du(W) is the same as in the 
linear-continuous model of Sec. VC above, Go is again 
given by (5.1). For a Boolean output, G, equals 

G.=-2 f° dy| dein le? + (1—e-*)A(u)| 

(5.17) 
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where 

t/q—R2—-—yR 

V1l—4q 

and H(z) is defined as in (5.54). The saddle-point equa- 
tions are 

U (5.18) 

  

  

  

R= R(1-4q), (5.19) 

g=(¢+ R*)(1—q)’, (5.20) 

. aw oO env /2 

= +___— Dt 21 
« wal. (cP —1)-* + A(v) © O21) 

a °° oe ew 
j= — D Dt 
, ana I Vf (fe? — Io + Au)? 

(5.22) 

where wu is defined in Eq. (5.18) above, and 

1/2 
q— Re =t , v ( Ing ) (5.23) 

The solution of these equations leads to a learning 
curve with a 1/a@ tail for all JT. Note that this power 
law is not a consequence of the general 1/a@ law derived 
in Sec. III, since a network with a Boolean output is not 
a smooth network. At T = 0, the asymptotic learning 
curve is 

ég=2 (/ Dew-v2)) ~ +O(a7?) (5.24) 

0.62 
— Ubeo + O(a7~*) . (5.25) 

om 

Unlike the previous models, there is no transition at finite 

a to perfect learning at 7’ = 0. In fact, there is no phase 

transition at any T' and a. 

The AA for this model is [Eq. (4.14)] 

  

1—e7? 4 
Gan( R) = —In | 1 - ——— cos ° R (5.26) 

1s 

yielding for the free energy 

] 9 l—e-? 1 
Bf = 5 in(l — #°) + an 1 — cos R). 

(5.27) 

Evaluating & by minimizing the free energy, we find that 

{9 = Toons, t Ole ). (5.28) 

This agrees with the correct power law, but does not 
predict correctly the prefactor; see Eq. (5.24). 

Finally, it has been recently shown using the replica 

method that the above 1/a@ law can be improved by at 

most a factor of 2, using a Bayes optimal learning al- 
gorithm for the perceptron [50, 51].



45 STATISTICAL MECHANICS OF LEARNING FROM EXAMPLES 

C. Linear output with discrete weights 

Imposing binary constraints on the weights of a per- 
ceptron with a linear output modifies its learning per- 
formance drastically. Let us first consider the zero- 

temperature behavior. The weight vector must satisfy 
the same P homogeneous linear equations as_ before, 
Eq. (5.7), but now it is constrained to W; = +1. For al- 
most every continuous input S, the equation (W — W°)- 

S = 0 cannot be satisfied unless W = W°. Hence just 
one example guarantees perfect learning at zero temper- 
ature, 1.e., 

ae=0. (5.29) 
However, this argument does not exclude the existence 
of local minima of &. In this case the main effect of in- 
creasing the number of examples is to smooth the energy 
surface, in order to make the unique global minimum 
dynamically accessible for large networks. In order to 
investigate these aspects, study of the finite-7' version of 
the problem is extremely useful. 

1. Annealed approximation 

As the phase diagram of the model at low T is rather 
complex, it is instructive to first analyze the relatively 

simple AA, which captures most of the qualitative behav- 
ior. Using Eqs. (4.14), (4.15), and (4.20), the annealed 
free energy is 

—Bf= — Saint +26(1—- R)] 

    

  

1-R, 1-R 14+R, 14+R 
5 In 5 9 In yO (5.30) 

which is extremized when 

tanh"! R= of , 5.31 
“ 1 + 28(1 — R) (5:31) 

For large a, the learning curve 

€g =1—Rw 2720/7 (5.32) 

has an exponential tail. This decay is much faster than 
the inverse power law of the linear or continuous model 
(5.10), reflecting the severe constraints on the weight 
space. Also, the prefactor of a in the exponent diverges 
as T — 0, signaling the fact that 

ég=0 , T=0 (5.33) 

for all a > 0, in agreement with Eq. (5.29). 
Evaluating Eqs. (5.30) and (5.31) one finds that at 

low T and small @ there are two solutions for R. The 
full AA phase diagram is drawn in Fig. 1 with solid thin 
lines. The lines marked a and 6 bound the region where 
there are two locally stable states. These lines are called 
spinodal lines. The thermodynamic transition line in the 
middle marks the points where the free energies of the 
two solutions are the same. All three lines terminate at 
T’ = 0.40, a = 0.87. The appearance of two free-energy 

minima is demonstrated in Fig. 2 where graphs of the free 
energy for J’ = 0.3 and various values of @ are displayed. 
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FIG. 1. Phase diagram of the linear-discrete model in the 

(a,T) plane. The bold dashed lines are from the replica sym- 

metric theory, and the solid thin lines from the annealed ap- 

proximation. The spinodal lines, marked a and b, demarcate 

the region where there are two metastable phases. The line 

running between them is the thermodynamic transition line, 

at which the two phases have equal free energies. In the RS 

phase diagram there is a fourth line, running from the origin 

to spinodal b. This is the RS zero-entropy line of the low-R 

metastable state. 

For a < 0.730 there is only a single local minimum. At 
a = 0.730 another local minimum appears at higher R. 
This is called a spinodal point of the full spinodal line a 
in Fig. 1. At a > 0.756 the high-R minimum becomes 
the global minimum of f. However, the local minimum 
of lower R still exists for 0.756 < a < 0.781. Only above 
a = 0.781, a second spinodal point, does the low R min- 
imum vanish, leaving only the high-R one. 

If the system can be truly equilibrated then the tran- 
sition to a state with high generalization will occur along 
the middle line in Fig. 1, which is therefore the thermo- 
dynamic transition line. Note that this line starts from 
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FIG. 2. Annealed free energy of the linear-discrete model 

as a function of the overlap R at T = 0.3 and a = 0.730 

(spinodal), a = 0.756 (thermodynamic transition), and a = 
0.781 (spinodal).
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the origin a = T = 0, implying that for any a as T — 0 
the equilibrium state is the high-R state. Since in this 
state R — 1 as T' — 0 the equilibrium state at T — 0 
is always R = 1, in agreement with Eq. (5.29). However, 
the line approaches the origin as 

T.(a) we7 V2 ag 0. (5.34) 

This imphes that for a small number of examples even a 
small noise in the dynamics will generate a transition to 
the low-R state. 

For training in large networks the most important tran- 
sition is, in general, not the thermodynamic one, but 
rather the spinodal line 6. This is because starting from 
initially random weights (R = 0), the system converges 
quickly to the nearest metastable state, which is the state 
with low R as long as such a state exists. The time 
required to cross the free-energy barrier to the thermo- 
dynamic high-F phase is prohibitively large, scaling as 
t ~ e®N4F where Af is the height of the free-energy bar- 
rier (per weight) between the two states. It is important 
to note that, unlike the equilibrium transition line, the 
spinodal line terminates at T = 0 at a finite value of a, 

a = 0.556. This implies that in spite of Eq. (5.29), a 
finite value of @ is required to learn in a finite time. Ac- 
cording to the AA the minimal value of a for learning at 
T’ = 0 in finite time, denoted by ao, is a, = 0.556. 

2. Replica symmetric theory 

The replica symmetric free energy is given by 
Eq. (4.25) where Go, Eq. (4.26), is 

1 ns . 
Go = 50 —q)g-—RR+ | Dz\n2cosh(.\/gz + R) . 

(5.35) 

The replicated Hamiltonian G,, Eq. (4.27), which de- 
pends on the error function but not on the weight con- 
straints, remains the same as in Eq. (5.2). The resulting 
saddle-point equations are 

R= Jo: tanh(./@z + R), (5.36) 

q= Jv: tanh?(./gz + R) , (5.37) 

s a8 
R= TRG ; (5.38) 

@= ap? tt (5.39)   

[1+ BQ — 4)? | 
For any fixed temperature, R — 1 and q—lasa— oo. 
To investigate this approach to the optimum, we note 
that for large a 

g ~ af*[2(.1—- R)—-(1-g)], 
Rr~af. 

(5.40) 
(5.41) 

Clearly there is a divergence of R, the strength of the 
ordering term in the local field of Eq. (4.30). At the 
same time, Va/R — 0, so that the relative strength of 

the disordering term is going to zero. This means that 

H. S. SEUNG, H. SOMPOLINSKY, AND N. TISHBY 45 

the saddle-point equations for q and R, Eqs. (5.36) and 
(5.387), behave like 

R~ tanh R & tanh(a) , (5.42) 

q ~ tanh? R x tanh?(af) . (5.43) 

Hence the generalization curve has the same exponential 
tail €, © 2e—2°/T as given by the AA in Eq. (5.32). 

The RS phase diagram is drawn with bold dashed lines 
in Fig. 1. The similarity of the RS phase boundaries to 
those of the AA (thin solid lines) is remarkable. Between 
the spinodal lines marked a and 8, there are two locally 
stable solutions of the saddle-point equations. The ther- 
modynamic transition line runs between the two spin- 
odals. The line running from the origin to spinodal 6 is 
the RS zero entropy line of the low R metastable state. 

At T' = 0 the thermodynamic transition line and the 
spinodal line 6 intersect the @ axis at 

a. =0, (5.44) 
a = 0.48, (5.45) 

respectively. The result a, = 0 implies that for any a > 
0, the training energy possesses a unique global minimum 
FR = 1. However, the training energy may still possess 
low-R metastable states. These states vanish above the 
spinodal point a, = 0.48. 

3. Numerical simulations 

We have used the Metropolis Monte Carlo algorithm to 
simulate learning in the linear-discrete perceptron. This 
algorithm is a standard technique for calculating ther- 
mal averages over Gibbs distributions [38]. The simu- 
lations were performed for multiple samples, i.e., differ- 
ent training sets drawn randomly from a common in- 
put distribution. Here the inputs were chosen to be 

S; = +1 at random, i.e., S was drawn randomly from 
the vertices of the N-dimensional hypercube. This dis- 
crete input distribution allowed us to take advantage of 
the speedup offered by integer arithmetic, yet leads to 
the same learning curves as the Gaussian input distribu- 
tion (4.3) in the thermodynamic limit (see Appendix C). 
The quenched average was performed over these samples, 
and error bars were calculated from the standard error of 
measurement of the sample distribution. In the figures 
of this paper, when a Monte Carlo data point lacks an 
error bar, it means that the error bar would have been 
smaller than the symbol used to draw that point. In gen- 
eral, fewer samples were required for larger N, because 
of self-averaging. 

In Fig. 3 we present the numerical results as well as the 
RS theoretical predictions for the training and generaliza- 
tion errors as a function of a. The results of the RS the- 
ory are in very good quantitative agreement with Monte 
Carlo simulations of the model at least for 7’ > 0.2. At 

= 0.2 [Fig. 3(a)] the prominent feature is the rapid 
transition to R + 1 near a = 0.65. This is in agreement 
with the spinodal point a, = 0.66 for this temperature, 

which can be read from line 6 in Fig. 1. The location 
of the thermodynamic transition is shown by a dotted 
vertical line, and the first spinodal (corresponding to line
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ain Fig. 1) is marked by an arrow on the a axis. The 
roundness of the transition in the simulations is consis- 
tent with the expected smearing of the discontinuity in 
a finite system. At T = 1.0 [Fig. 3(b)] the generaliza- 
tion curve decreases smoothly to zero with an exponen- 
tial tail. The dependence of €, on N is also shown; the 

training error did not vary appreciably. It is interesting 
that the finite-size effects are much more noticeable for 
the simulations at T = 1.0 than at T = 0.2. 

4. Sptin-glass phase 

The above theoretical results, which were based on the 
replica symmetric ansatz described by Eqs. (4.22) and 
(4.23), are not exact, at least for sufficiently low T and 
a. This is indicated by the fact that the RS entropy of the 
metastable state with low R becomes negative in the re- 
gion marked SG in Fig. 1. The zero entropy line is a lower 
bound for the temperature below which the metastable 
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FIG. 3. Learning curves for the linear-discrete model. (a) 

Monte Carlo simulations at T = 0.2 for N = 100, averaged 

over 64 training sets. The generalization and training curves 

are from the replica symmetric theory, and portray the tran- 

sition at spinodal bin Fig. 1. The thermodynamic transition 

is marked by the dotted vertical line, and spinodal a by the 

arrow on the a axis. (b) Monte Carlo simulations at T = 1 
for N = 20, 50, and 600. 

state must be described by a theory with replica sym- 
metry breaking. The interpretation of the RSB is that 
for small a the energy surface far away from the optimal 
overlap R = 1 is rough. On the other hand, we expect 
that the energy surface in the neighborhood of the op- 
timal state is rather smooth. Hence the high-R phase 
is probably described correctly by the RS theory, and 

does not exhibit spin-glass properties. This is substanti- 
ated by our calculation of the number of local minima in 

Sec. VC5. Because of RSB, we expect the true location 
of the spinodal line at low T and a to differ from the RS 
results, but this difference, and in particular the value of 

>, may not be large. 

5. Local minima 

The above finite-T statistical-mechanical results ac- 
count for the equilibrium state, as well as for metastable 
states that are separated by barriers that diverge as 
N — oo. However, the system may in addition possess 
states that are local minima of the energy (2.1), but are 
separated by barriers that remain finite in the N — oo 
limit. Although these states are washed away by thermal 
fluctuations at any finite temperature, they may domi- 
nate the dynamics at T = 0. Even at finite low T these 
barriers may be high enough to prevent equilibration in 
a reasonable amount of time. 

Following Gardner [52], we calculate an upper bound 
for the number of local minima as a function of the over- 
lap R. Defining the outer product matrix of the examples 

by 

(5.46) 
I=1 

the energy can be written as 

1 ~ 1 
B=5 > 1; Wi W; ALA + gNa, 

tfj=1 1,j=1 

(5.47) 

with W; = +1. This has the standard form of an Ising 

Hamiltonian. The condition for a local minimum is 

h;W; > 0 (5.48) 

for all z, where the local fields h; are defined by 

N 

hi = D> Ty (WP — Wj) + Wy; . (5.49) 
j=l 

The number of local minima is then 

(5.50) N = Trw [[ (iW) . 

For a typical sample of examples we expect the loga- 
rithm of the number of local minima In.NV(N, R) to be 
extensive and hence self-averaging. We instead perform 
the simpler annealed average 

NF(R,a) =In(N(N, R))) , (5.51) 
which yields an upper bound for the typical number of 
such states (In N(N,R))). A saddle-point expansion



  

  

6072 

yields 

F(R=1,a) =0 (5.52) 
and (for R < 1) 

1 F(R,a) = +t in Ay) 
1-R 1 +S (nie) 4 Se +0?) 

2 2 

_ 2 _o (= amc fy +In2) 
2\y a 

1-R, 1-R 14+R, 14R _ 
a In 5 TD In J (5.53) 

Here we have defined 

H(a)= | Dt , (5.54) 

and F has to be extremized with respect to z and y. 
Figure 4 shows graphs of F(R,qa) as a function of R 

for various values of a, obtained by solving the saddle- 
point equations for x and y numerically. Wherever F 
is negative, then there are no local minima in the ther- 
modynamic limit, since the annealed average is an upper 

bound. As seen in the figure, F is negative near R = 1 
for all values of a. In fact, it can be shown that as R — 1, 

F — —a(¥%In2—4) = —0.0966a. This implies that there 
are no local minima in the neighborhood of the optimal 
W , and the energy surface there is smooth. Note that at 
R=1, F=0,i.e., NV = 1 as expected. 

Figure 4 also shows that as a increases the size of the 
hole in the number of local minima increases, until a = 
2.39, above which F' is everywhere negative, so that there 
are no local minima at all. The implication for learning 
dynamics is that there exists some a, < 2.39 above which 
learning is fast even for T = 0. This prediction has been 
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FIG. 4. Annealed upper bound for the logarithm of the 

density of local minima in the linear-discrete model as a func- 

tion of R. For a = 1.0 there is a small gap around R = 1.0. 

As q@ increases, the density of local minima decreases, until 

above a = 2.39 there are no local minima at all, except the 

isolated minimum at R = 1 (marked with a solid dot). 
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confirmed by numerical simulations of the model at T = 

0. We have found that the system converges rapidly to 

FR = 1 from almost all initial conditions for 

a21.0. (5.55) 

D. Boolean output with discrete weights 

This Boolean-discrete model, first studied by Gardner 
and Derrida [23], exhibits a first-order transition from 
a state of poor learning to a state of perfect learning 
(37, 53]. Unlike the linear-discrete perceptron discussed 
above, this model’s transition persists at all tempera- 
tures. The occurrence of this remarkable transition can 
be understood using the high-temperature limit. 

1. The high-temperature limit 

In the high-T limit the energy of the system is given 
simply as Nae(R). Hence, using Eq. (4.12) for e(R), the 
free energy is simply 

    

1-R, 1- 1 1+R 
—6f = —F cos! R- 5 In —— tain 5 ; 

(5.56) 

This free energy is shown in Fig. 5 for various values of 
a/T. In contrast to previous models, the state R = 1 is 
a local minimum of f for all values of T and a. For small 
values of a/T the state R = 1 is only a local minimum of 
f, as can be seen in Fig. 5. The global minimum Is given 
by the solution of the saddle-point equation 

R= tanh ( (5.57) 
af ) 

amJ/1— R? 

This state of poor learning R < 1 is the equilibrium state 
for 
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FIG. 5. High temperature limit of the free energy @f of 

the Boolean-discrete model as a function of the overlap R for 

a/T = 1.4, 1.7 (thermodynamic transition), 2.08 (spinodal), 
and 2.5. The vertical dashed line at R = 1 marks the upper 

bound of the allowed range of R.
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T > 0.59a . (5.58) 

In this regime the optimal state R = 1 is only metastable. 
If the initial network has R which is close to 1 the learning 
dynamics will converge fast to the state R = 1. However 
starting from a random initial weight vector R + 0 the 
system will not converge to the optimal state. 

For T'/a < 0.59 the equilibrium state is R = 1, al- 
though there is still a local minimum, 1.e., a solution of 
Eq. (5.57) with R < 1. Finally for 

T < 0.48 , (5.59) 

there is no solution with R < 1 to Eq. (5.57). In this 
regime (beyond the spinodal), starting from any initial 
condition the system converges fast to the optimal state. 

The collapse of the system to the energy ground state 
at finite temperature is an unusual phenomenon. The 
origin of this behavior is the square-root singularity of 
e(R) at R = 1. This singularity implies that a state 
characterized by 6R = 1—R <1 has an energy which is 
proportional to 

Ex NVO6R. (5.60) 

This big increase in energy cannot be offset by the gain 
in entropy, which is proportional to 

6NGo(R) « N(6R)In(6R) . (5.61) 

This effect can be nicely seen using the microcanonical 
description. According to Eq. (2.27) above, a smooth 
low-temperature limit exists provided that 

clin Ge =. (5.9) 
On the other hand, Eq. (4.20) implies that in the present 
case 

  e—(Q. (5.63) 

Thus the rate of increase in entropy is too small to give 
rise to thermal fluctuations below some critical temper- 
ature. 

It is instructive to apply the above argument to the 
case of states that differ from the ground state by a flip 
of a single weight. According to Eq. (5.60) the energy of 
such states is 

E«VN , (5.64) 

whereas the entropy associated with such an excitation 
is only 

dbNGo(R) axlnN . (5.65) 

It should be emphasized, however, that examining the 
spectrum of the first excitations is not generally sufficient 
for determining the thermodynamic behavior at any fi- 
nite TJ’, where the relevant states are those with energy 
of order NT. 
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2. Replica symmetric theory 

Because of the unusual features of the transition in 
this model we will analyze the quenched theory in some 
detail. We first study the replica symmetric theory and 

then investigate the replica symmetry breaking in this 
system. 

The RS free energy is given by combining Go of the 
perceptron with discrete weights, Eq. (5.35), with G, for 
a Boolean output, Eq. (5.17), yielding 

1 0 . 
—bf=—-50 - ag Ri+ | Dz 2cosh( Viz + B) 

+20 [ by [ Dtin [e~? +(1—e7*)H(u)] , 

(5.66) 
where the function H(z) is as defined in (5.54). The 
saddle-point equations are 

  

  

R= [ve tanh(./gz + R) , (5.67) 

q= Jo: tanh?(,/gz + R) , (5.68) 

- a oe e7v'/2 

al wap OM 

1= 30-9) f Du | | OR 1) + AE 
(5.70) 

where u and v are given by Eggs. (5.18) and (5.23) above. 
At T' = 0, the equations simplify somewhat, since q = 

Rand g =R. For a less than 

Q@_ = 1.245 , (5.71) 

there are two solutions, one with R = 1 (perfect gen- 

eralization), and one with R < 1 (poor generalization). 
The R < 1 saddle point has the lower free energy, and 
is therefore the equilibrium phase. Upon crossing this 
critical a, the balance of free energy shifts, and there 
is a first-order transition to the R = 1 state. Hence at 
@_ = 1.245 there is a discontinuity in the generalization 
curve, a sudden transition to perfect learning. However, 
the R < 1 state still remains as a metastable phase until 
the spinodal point 

a, = 1.492. (5.72) 

At any fixed T,, there is the same sequence of thermo- 
dynamic transition followed by spinodal transition with 
increasing @. The RS phase diagram is shown in Fig. 6. 
To the left of the dashed thermodynamic transition line, 

the state of poor generalization R < 1 is the equilibrium 

state, and the state of perfect generalization R = 1 is 
metastable. In the region between the dashed line and 
the solid spinodal line, the situation reverses, with R = 1 
becoming the equilibrium state and R < 1 the metastable 
state. To the right of the spinodal line, there is no low R 

metastable state.
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FIG. 6. RS and one-step RSB phase diagram for the 

Boolean-discrete model. To the left of the dashed thermody- 

namic transition line, the equilibrium state has R < 1 (poor 

generalization), while the perfect generalization state (R = 1) 
is metastable. Between the dashed line and the solid spinodal 

line the R = 1 state is the equilibrium one, while the R < 1 

state is metastable. To the right of the spinodal line, there 

is no R < 1 phase. In the region marked “SG,” the one-step 

RSB calculation predicts a metastable spin-glass state. 

3. Replica symmetry breaking 

and metastable spin-glass phase 

The line 7,(q@) in the T-a@ plane, where the RS “poor 
generalization” state (R < 1) has zero entropy, is the up- 
per border of the region marked SG in Fig. 6. It should 
be noted that this line T,(a) is to the right of the ther- 
modynamic transition line and coincides with it only at 
T = 0 (at a = 1.24). This implies that the RS theory is 
invalid for this metastable phase only. To find the cor- 
rect metastable state (with poor generalization) at low T 
we must search for saddle-point solutions to the replica 
theory that break the replica symmetry. 

To gain a better understanding of this metastable 
state, we have studied a solution to the replica mean- 
field theory with a one-step replica symmetry breaking 

ansatz. Our study is based on the work of Krauth and 

Mézard [33] concerning the problem of loading random 
dichotomies on a perceptron with discrete weights. The 
formal derivation of the mean-field equations is presented 
in Appendix E. Here we present the main results and 
their physical meaning. 

In the one-step ansatz of replica symmetry breaking, 

the n x n order parameter matrix Q,, acquires two off- 

diagonal values gg and q; arranged in a block structure of 
m xX m submatrices (see Appendix E). This block struc- 
ture reflects the existence of many, almost degenerate, 

spin-glass (SG) states [45]. These states are valleys in 
the free-energy surface that are separated by barriers that 
diverge with the system size [43]. The parameter q; rep- 
resents the overlap of each state with itself, i.e., it is the 
order parameter g, Eq. (2.56), measured within a single 

valley denoted a, 
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qa = N~'((Wa)r)) - 

The parameter go represents the average overlap between 
a pair of two different states a and ), Le., 

go = N~'((Wa)r- (Ws)r)) . 

When the n — 0 limit is taken, the size m of the step in 
q(x) (see Appendix E) must be determined variationally, 
like qg and q,. Denoting the Gibbs probabilities of the 
different states by P, = exp(—@F;,), it can be shown [45] 
that 

m=1-—) > P?. 

Hence m is the probability of finding two copies of the 
system in two different states. 

In the present model, a one-step RSB solution exists 
in the regime marked SG in Fig. 6, below the line T,(q). 
This SG phase is special in that q; = 1, independent of 
both T and a. From Eq. (5.73) it follows that each of 
the different valleys is completely frozen, i.e., there are no 
fluctuations in W within each valley. Indeed, the entropy 

of this phase is zero (to linear order in N). For fixed a, 
the order parameter gg does not vary with temperature 
within the SG phase; it is frozen at its value on the phase 
boundary T,(a@). The same holds true for €; and R, ie., 

(5.73) 

(5.74) 

(5.75) 

qo(T, a) = qo(Ty(@), a) ; (5.76) 

(7, a) = 6 (T,(a@), a) , (5.77) 

R(T, a) = R(T, (a), a) , (5.78) 

everywhere in the SG phase. The values of e&(a@) and 
€g(q@) in this phase are shown in Fig. 7. The parameter 
m is linear in T, m = T/T,(a). Near the transition 
temperature T,, the degeneracy is very severe so that 
m 2&1. At T = 0 the degeneracy is broken, and the 
Gibbs weight concentrates in the SG metastable state 
with minimal energy, resulting in m = 0. 
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FIG. 7. Training and generalization errors of metastable 

spin glass phase in the Boolean-discrete model, according to 

the one-step RSB ansatz. In this phase, the errors are inde- 

pendent of temperature, and are given by their RS values on 

the zero-entropy line T(a) of Fig. 6.
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A similar frozen SG phase exists in the perceptron 
model of Krauth and Mézard [33], and was first discov- 
ered by Derrida in the random-energy model [54]. How- 
ever, unlike these other examples, the SG phase in the 
present model is only a metastable phase, as evidenced 
by the nonzero e; in Fig. 7. Hence the one-step RSB 
theory does not alter the RS prediction that the zero 
temperature thermodynamic transition is at a = 1.245. 
However, it raises to 

a, = 1.628 (5.79) 

the spinodal line for the vanishing of the metastable SG 
phase in Fig. 6. 

4. Numerical simulations 

Figure 8 shows learning curves for Monte Carlo sim- 
ulations with N = 75, averaged over 32 samples. At 
T = 1, there is quite a good fit if the transition is taken 
to occur at the spinodal line. At lower temperatures, the 
Metropolis algorithm tends to become trapped in local 
minima, making equilibration difficult. Hence we cannot 
use it to check the T = 0 predictions of the quenched 

theory. 
The Metropolis algorithm produces a random walk 

through weight space that samples the Gibbs distribu- 
tion. For small system sizes, we do not have to sample 
the weight space; we can explore it exhaustively. Gard- 

ner and Derrida [23] applied this idea to compute a, at 
T = 0. Starting with all 2% possible student vectors, 
an example is chosen at random, and all student vectors 
that “disagree” with the teacher are eliminated. Eventu- 
ally some number of examples P is reached such that the 
addition of one more example produces perfect learning. 
Then a,(N) = P/N for this sample. The procedure is 
then repeated with a different set of examples, so that a, 
can be sample averaged. 
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FIG. 8. Learning curves for the Boolean-discrete model. 

Monte Carlo simulations at T = 1.0 and N = 75, averaged 

over 32 samples. The solid line and dashed lines are the RS 

generalization and training curves for the spinodal transition. 

The thermodynamic transition is marked by the dotted ver- 
tical line. 
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FIG. 9. Graph of a, vs 1/N at T = 0 for the Boolean- 

discrete model from exhaustive search. Each data point is the 

average of roughly 10° or 10° random samples of examples. 

The error bars are the standard error of measurement over 

the sample distribution. A least-squares fit to a quadratic 

function yields the extrapolation a,(N = oo) = 1.30 + 0.03. 
The replica symmetric prediction a, = 1.24 is also marked. 

We have extended the results of Gardner and Derrida 
up to the size N = 23. With the discrete inputs S; = 
+1, only odd N were used, so as to avoid the situation 

W -S=0. Figure 9 exhibits a, as a function of 1/N, 
with each data point an average of from 10° (large N) to 
10° (small N) samples. Fitting to a quadratic function 
and extrapolating to N = oo yields the estimate a, = 
1.30 + 0.03, which is fairly close to the prediction 1.245 
of the quenched theory. It is possible that the quadratic 
function assumed here may be a poor approximation to 
the true finite-size scaling. This would account for the 

remaining disagreement between the numerics and the 
theory. See Ref. [55] for more simulations and an attempt 
at addressing the question of finite-size scaling. 

VI. PERCEPTRON LEARNING 

OF UNREALIZABLE RULES 

So far we have studied examples of perceptron learning 

of realizable rules. In this section we study three rules 
that are unrealizable because of architectural mismatch. 
In the first model, the student and teacher perceptrons 
are mismatched due to their different transfer functions. 
In the second and third models, the teacher’s weight vec- 
tor is not included in the weight space of the student. 

A. Linear-continuous perceptron 

with unrealizable threshold 

In this model, the perceptrons of the student and 

teacher both have linear outputs and continuous weights, 
as in the model of Sec. V A. However, in the present case 
the transfer function of the teacher has a threshold, i-e., 

the rule is given by Eq. (4.5) with a transfer function 
g(z) = go(x), where 

go(e)=x2+6. (6.1)
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The output of the trained network is given by Eq. (4.1) 

with 

(6.2) 
The realizable linear-continuous model of Sec. V A cor- 

responds to the case 0 = 0. 
The average of the error function 

g(v) =a. 

1 
e(W;S) = sy i(W — Wo) -S— VNO6)? (6.3) 

over the input distribution, Eq. (4.3), yields the general- 
ization error 

1 
e((W)=1-—R+ 59 . (6.4) 

At R = 1, the generalization error takes on its minimum 
value €min = 07/2. Recall that according to Eq. (2.58), 
the average training and generalization errors both ap- 
proach €min aS @ — 00, at all T. 

As in the linear-continuous model, the T' = 0 behavior 
can be understood from geometric arguments. Weight 
vectors with zero training error must satisfy P linear 
equations 

(W-—W°)-S'=VNO, 1=1...P (6.5) 

and the spherical constraint W-W = N. There exists 
an a. < 1 such that for a < a,, these equations have 
solutions. For a > a,, the equations have no solution, so 
that the training error rises from zero, and asymptotically 

approaches €min aS @ — OO. 

The RS free energy is 

1 BO" 
—Bf = —Bfe=o - 3°14 80 -® ; (6.6) 

where fg—o is the RS free energy of the realizable case; 

see Eqs. (5.1) and (5.2). The saddle-point equations are 
the same as (5.3)-(5.6), except that Eq. (5.6) for ¢ must 
be modified to 

q-2R4+1+06° 

[1+ 6-4)? - 

For fixed temperature and a — oo, we find the asymp- 
totic learning curves 

  a3? (6.7) q 

  

  

G2 

€g = €min + a + O(a~*), (6.8) 

T — ¢? 
€t = €min + + O(a7*). (6.9) 

2a 

To compare with the general results Eqs. (3.12) and 
(3.14) for smooth networks, we note that in the present 
case O;e(W°,S) = —N-/26S; and 6;0;«(W°,S) = 
N~'S;S;, so that the matrices defined in Eqs. (3.4) and 
(3.5) are 

Uij = N~"6;; , (6.10) 

Vij = N71076;; . (6.11) 

Hence the coefficient N~!TrVU7~! in Eqs. (3.12) and 
(3.14) equals 6%, in agreement with Eq. (6.8) above. 
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In the T’ — 0 limit there is a critical a below which 
the examples can be loaded with zero training error. This 
value is 

= 2+ 67 —6V2+ 0? 
Cc 9 . 

For a < a, q 1s less than 1 and the values of the order 
parameters are given by the saddle-point equations 

  (6.12) 

R=a, (6.13) 

ad? 

l-a_ 
  q=act+ (6.14) 

In this regime the minimum of & is highly degenerate 
with an extensive zero-temperature entropy. Note that 

for any threshold @, the critical a@ satisfies the bounds 

1/2 <a, <1. Fora > a, q— 1as T — 0, with 
G(1 — q) approaching a finite value. Thus at 7T' = 0 the 
order parameters are given above a, by 

2R° =(2+a4+0*)R?—a, 
R 

BIL —q) = ——; - 

(6.15) 

(6.16) 

The zero temperature a, of this and other unrealiz- 
able models is similar to the a, defined for the prob- 
lem of loading random patterns onto a network. In both 
cases a, 1s the limit of storage capacity above which no 
weight vectors can achieve zero training error. This is in 
contrast to the a, that we defined for realizable models, 
above which there is exactly one weight vector which can 
achieve zero training error. 

As in the zero-threshold linear-continuous model, we 

expect that in this linear model the RS theory is exact for 
all T’ and a. Furthermore, the learning dynamics should 
be quick, since there are no spurious local minima in the 
training energy. 

In Sec. IID we noted that the AA may yield the wrong 

a@ — oo limit, for unrealizable, non-Boolean rules. The 

present model is a simple example of this phenomenon. 

In the present case, Gan, Eq. (4.14), is 

166 
214+28(1—R)- 

(6.17) 

  

Gan(R) = : In{l + 26(1 — R)} + 

The resulting annealed free energy, Eq. (4.13), is 

1 —A(R) = 5 In(1— R?)— 5 n[1 +2801 — B)] 

a___ Be" 
—21426(1— R)/ 
  (6.18) 

In the a — co limit R is determined by minimizing Gan, 

yielding 

1, e<T 
n={ —3(@?-T), T< 0? <T+4 (6.19) 

—-1, T+4< 6. 

According to these results, when 6? > 4 and T = 0, the 
weight vector W approaches —W°® as a — oo.
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To understand the origin of this gross failure of the 
annealed approximation we recall from Sec. II D that the 
annealed approximation can be viewed as the exact the- 
ory for a stochastic training dynamics in both weight and 
input space, leading to the Gibbs distribution (2.43) in 
both W and S space. The magnitude of the resulting 
distortion in the posterior distribution of the inputs rel- 
ative to their a priort one determines the quality of the 
approximation. In the present case we can obtain a mea- 
sure of this distortion by calculating the average of an 
input vector, e.g., (S')an. In the a priori Gaussian dis- 
tribution of inputs (4.3), the average value of an input is 
of course zero. On the other hand, evaluating this aver- 
age using the posterior Gibbs distribution (2.43), implied 

by the AA, we find 

VN 1+ 26(1 — R) 

implying that the inputs are biased towards —@9W°. It 
is important to note that the magnitude of the bias is 
small—down by VN from the magnitude of S. However, 
it is enough to push W towards —W°, leading to overlaps 
as low as R = —1. Finally, note that in the realizable case 
6 = 0, the average of S is zero. However, even in this 
case the second moments of S are in general distorted, 
except when R = 1. This is consistent with the general 
expectation that the distortions of the input distribution, 
implied by the AA, are relatively small in realizable rules. 

But they vanish only in the limit of a —- oo. 

  (6.20) 

B. Linear output with weight mismatch 

In this model, the unrealizability is due to a mismatch 
in weight space between teacher and student. We as- 
sume that the weights of the teacher network W°® are 
real valued whereas the trained network is restricted to 
W; = +1. For simplicity we consider here the case where 
the individual teacher weights W,? are drawn from a con- 
tinuous Gaussian distribution P(W7,), 

P(W2) = (20) 2e-G/20W2)? (6.21) 

As in the previous linear perceptron models the error 
function is given by Eq. (4.9), and the generalization er- 
ror for a given network by Eq. (4.10). In the present 
model the optimal weights for the restricted architecture 
of the trained network are 

Wi" = sgn(W;’) , (6.22) 

which corresponds to the maximal overlap 

1 0 Roo = FF X [Wi 

= [awe P(W°) |W°| = /2/z . (6.23) 

The second equality holds in the thermodynamic limit. 
The minimal generalization error, achieved in the limit 
Qa — ©, Is 

Emin = 1— Reo = 0.202 . (6.24) 

Before we present the replica solution we note that 
both the high-T and the annealed approximations predict 
for this model €,(@) — €min & @7~*, @ — oo. As we shall 
see below, this is not the correct asymptotic behavior. 

1. Replica symmetric theory 

Here the replicated Hamiltonian G;, is that of the pre- 
vious linear models, Eq. (5.2). From Eq. (4.26) Go may 
be calculated for the case of mismatched weight spaces. 
Making the change of variables ¢ + R? = g, and then 
eliminating R mhogenen © one obtains the free energy 

  

  

—Bf= -5(1 — 04-5 -~——- 7 — + | DeIn2eosh( /Gz) 

a oy * a Bg 2R + 1) 
“5 = In[1 + 6(1 — q)] 2 14+B0-o (6.25) 

The saddle-point equations are 

.. » g-2R41 
1=q_p + af i+sa—o)° (6.26) 

_ afl — 4) 
R= 1+80-0)” (6.27) 

q= [> tanh?(./@z) (6.28) 

To obtain the asymptotic form of the learning curves we 
have expanded the solutions in powers of a~! keeping T 
fixed. We find 

    

€g — €min + Cont 

3 3 3 
+ Boo —5 7 3 7 t Ae 

nr? 6Roo\7| 1 _3 
+34 (7 = ) a2 + O(a ), (6.29) 

Emin too 

€t = €min — 
a 

1 i 1 
Roo “7? — 8). + (5+ — Roo co + ) +00 ) 

(6.30) 

Thus for any fixed 7 the leading behavior of the errors is 
an a~! power law. This power law is not a consequence 
of the general results (3.12) and (3.14), since the present 
network is not smooth. Note that in the high-T limit, 
only the term T?a~? survives. Thus for this unrealizable 
rule the behavior predicted by the high-T limit (as well 
as by the annealed approximation) does not reflect the 
correct behavior at large a for any fixed T’. 

In the T — 0 limit with 1 — q finite the saddle-point 
equations reduce to 

R=a, 

gl- 9)? = 
(6.31) 

—a* + a(1+q), (6.32)
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l-q= J Desech*( Jaz) , 

Criticality is reached when g — oo, and 1— q — 0, which 
happens at 

9\ 1/2 
a.=1-(1-=) = 0.397. 

us 

Above a,, the limit @ — oo must be taken with @(1 — q) 
constant, yielding 

(6.33) 

(6.34) 

0 = 2R3—(24+a)R24 2%, 
Tv 

R 
1— =e :_C—=#» BQ — 4) = ——> 

At a, B(1 — q) diverges, indicating that the finite 1 — q¢ 
solution takes over. 

(6.35) 

(6.36) 

2. Optimal temperature 

We define the optimal temperature Top(a@) as the tem- 
perature that minimizes €,(T, a). For our models of real- 
izable rules, the optimal generalization error was at T = 0 
for all values of a. But in general, T,,, may be greater 
than zero, although the convexity of the free energy guar- 
antees that the training error is a nondecreasing function 
of T. This is the case in the present model, as can be 
seen from Eq. (6.29), which implies that 

Topt(a) > “ = 0.485   oe (6.37) 

as a — oo. Note, however, that the leading term of 
Eq. (6.29) is independent of T, implying that in the 
present model the effect on €, of optimizing with respect 
to T is relatively small. 

8. Replica symmetry breaking 

The above RS theory is not exact at low T. First, 
the prediction of a finite value of a, is probably incor- 
rect. As in the corresponding realizable discrete model 
of Sec. V B, we expect that 

(6.38) a,.=0, 

1.e., there is no vector of discrete weights that satisfies or- 
der N real, random linear equations. Second, the entropy 
of the RS solution becomes negative at low 7’, as shown 
in Fig. 10. The asymptotic form of the zero-entropy line 

can be calculated by expanding the entropy in powers of 
ana}, 

v 3. Reo 1 —2 
= T — _ , s= 5 Re ( 3 ) 7 + O(a“) 

The s = 0 temperature approaches the finite limit 

3.BRoo 
72 

    (6.39) 

  T,=0(a) > = 0.242 (6.40) 

as a — oo. The full line is drawn in Fig. 10 for all a. This 

H. S. SEUNG, H. SOMPOLINSKY, AND N. TISHBY 45 

  

0.25 Fo 

0.20 + 

0.15 F 

0.10 | Spin Glass 

0.05 +     0.00 i j L i 

0.0 0.5 1 5 10 50 
a 

  

FIG. 10. The RS zero-entropy line for the _ linear- 

mismatched model, which is a lower bound for the temper- 

ature at which RSB occurs. The line approaches the limit 

T = 0.242 (dashed line) as a — oo. 

temperature gives a lower bound on the temperature at 
which replica symmetry is broken. Below this tempera- 
ture, a spin-glass phase with replica symmetry breaking 
occurs. As T — 0, the zero-entropy line approaches the 
origin, i.e., the RS entropy is negative for all a at 7’ = 0. 

This means that the RS solution is incorrect at T’ = 0 for 
any a, and in particular that the RS prediction (6.34) for 
@- 1s incorrect, which is consistent with our prediction, 

Eq. (6.38). 
Below T = 0.242, the system never escapes from the 

spin-glass phase even as @ — oo (see Fig. 10). Note, 
however, that the entropy (6.39) approaches zero from 
below. This suggests that the effects of RSB become less 
severe aS @ —> OO. 

4. Numerical simulations 

Figure 11 exhibits Monte Carlo simulations at T’ = 0.5 
and 0.1 with N = 100 and 64 samples. Even at T' = 0.1 
[Fig. 11(b)] the fit to the RS theory is very good, even 
though for a > 0.76 the curves are in the RSB region. 
This suggests that the effects of RSB in this system are 
weak. The RS TJ’ = 0 learning curves are also plotted for 
comparison. Note that above a > 0.6, the generalization 
error for JT = 0.1 is less than that at JT = 0. At least 
in this range, we may thus conclude that the optimal 
generalization temperature T.,¢ > 0, assuming that the 
RS theory is a good approximation for the true behavior 
in the RSB region. 

C. Boolean output with weight mismatch 

As in the previous model, the teacher weights are again 
drawn from a continuous Gaussian distribution, whereas 

the student weights are constrained to +1. However, here 
we consider the case where the perceptron transfer func- 

tions of both the teacher and the student are Boolean. 
The maximal overlap is still Ry = 2/7, but the opti- 
mal generalization error is now
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1 
Emin = — cos! Roo = 0.206 . (6.41) 

7 

As in the previous model, both the high-T and the an- 
nealed approximations predict €,(@) — €min & aW?, 
co. We shall see below that the true asymptotics are 
quite different. 

a 

1. Replhica symmetric theory 

For this model, Go is the same as that of the previous 
section, and G, is that of the previous Boolean models 
Eq. (5.17). Hence the RS free energy is given by 

  

2 co 

~8f =-3(1- 94-5 + | Dz \n 2cosh(./@z) 
— 4 — oo 

+20 fo Dy [- Dt In [e~? + (1—e7?)A(u)] , 

(6.42) 
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FIG. 11. Learning curves for the linear-mismatched 

model. (a) Monte Carlo simulations at T = 0.5 with N = 100 
and 64 samples, with lines from RS theory. The dotted hor- 

izontal line is the asymptotic error €min. (b) Simulations at 
TL = 0.1. Note that the RS curves (solid lines) fit the data 
even beyond the zero-entropy point a = 0.76, where there 

is RSB. The dashed line is the JT = 0 RS curve, shown for 

comparison. 
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where the function H(z) is as defined in (5.54) above. 
The saddle-point equations are 

2 en /2 R a [~~ 

Fag ea 
  (6.43) 

  

_ R? re 0° emu 

*~ (— 9? +f vy I. oe [(e — 1)-* + H(u)f? ° 
(6.44) 

q= Jv: tanh?(./@z) : 

The quantities u and v are given by Eqs. (5.18) and (5.23) 
above. 

The large-a limit of the RS theory is derived by ex- 

pansion in 1/,/a keeping f fixed, 

a (3-1) pe +0007), 

(6.45) 

  

€9 = €min + > Te 5 B32? Ja 

(6.46) 

where we have defined the integral 

r 
= , 6.47 10) = | DS TAS (6.47) 

As B > c, I(8) & (28)7/7/8, so that 

1 7 1/4] 4 
ég(T = 0,4) = €min tg V2/™ (= -1) Ja tO ). 

(6.48) 

Thus for any fixed temperature, the RS generalization 
curve possesses a 1/,/qa tail. 

At T = 0, one solution of the RS equations is obtained 
by taking the limit @ — co with 1—q finite. This solution 
ceases to exist when g — 1, which happens at the point 

Re Oe 
SS —— = — = cCot— (6.49) 
/1— R? 7 Oe 

or 

a,-= 1.99, R, = 0.534. (6.50) 

Above ae, the limit T — 0 must be taken with @(1 — q) 
finite, yielding 

R ag = (1 _ e~ ACL-a)/(-R*)) | (6.51) 

— — R? = 2a [O° owen (ae) 
(6.52) 

The RS theory predicts that the optimal tempera- 
ture for generalization Top¢(@) is nonzero for a above 
Qth = 1.27. The shape of Topt(@) for large a can be de- 
rived using the high-temperature expansion of Appendix
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F. The dominant terms are 

1 sa 1/4 J a? / 7 1/2 [7 

€g = Emin +7 (5-1) pV Tlot+s5 (5-1) ae 
(6.53) 

The 1/,/a term comes from expanding the coefficient of 
the quenched result (6.46) in @. Thus it represents the 
result of first taking the T'/a — 0 limit and then the 

6 — 0 limit. The 1/a? term is just the leading term 
from the high-7' limit, which amounts to taking first the 
8 — 0 mit and then the T/a — 0 limit. The optimal T 
at large a is obtained by minimizing with respect to T, 

yielding 

Topt ~ 0.239 a/® . (6.54) 

However, as we will see below, this RS optimal temper- 
ature lies below the zero temperature line, i.e., in the 
regime where the RS solution is unstable. 

2. Spin-glass phase 

The RS entropy vanishes on the line shown in Fig. 12. 
Here again the s = 0 line provides a lower bound for 
the spin-glass transition temperature. Comparing with 
Fig. 10 two differences should be noted. First, the line 
intersects the @ axis at a finite value, at 

a. = 1.106. (6.55) 

Second, T;=o(a@) diverges with a. The asymptotic be- 
havior can be calculated using a double expansion in the 
variables @ and T'/a. In Appendix F, we discuss the ex- 
pansion, and how to locate the dominant terms through 
power counting. They are 

1 1/4 J 2 1/2 T s=-—(=-1) = a/T +— (2-1) 2 

  

      

An \2 T 6 \2 a 

(6.56) 

5 

1 

T 0.5 F 

Spin Glass 

0.1 

0.05 ! 

0.5 1 5 10 50 
a 

FIG. 12. RS zero-entropy line for the Boolean-mis- 

matched model. The line intersects the a axis at the finite 

value a = 1.106. 
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which leads to the power law 

Ts=0 ~ 0.315 a3/®, (6.57) 

Equation (6.56) also reveals that at fixed T, the RS en- 
tropy goes to —co as a — o, indicating that replica 
symmetry is violated more and more severely. 

Like the realizable Boolean model with discrete 
weights, this model possesses a frozen one-step RSB so- 
lution (see Appendix E). However, in contrast to the 
Boolean or discrete model, this one-step solution is the 
equilibrium, not the metastable phase, and exists for ar- 
bitrarily high a. According to this RSB solution there is 
spin-glass phase everywhere below the s = 0 line. The 
training and generalization errors in the SG phase are 
given by their values on the phase boundary T, = T;=o 
at the same a [see Eq. (5.76)]. This is shown in the plot 
of €, in Fig. 13. Since Tj(a@) is above the RS Topt(a@), 
there is no minimum in ¢€,(7') for any a. Instead there is 

a whole regime of temperatures where €, does not change 
with 7, implying that optimal generalization can be ob- 
tained anywhere on or below the zero entropy line. 

For any fixed JT, the a — oo limit enters the RSB 
regime. Hence the large a limit of €, for any fixed T' is 
given by substituting Eq. (6.57) in Eq. (6.53), yielding 

Aa eC. 

€g(T, &) — €min ~ 0.185a7*/° | (6.58) 

which is independent of T. This power-law decrease is 
faster than the RS prediction 1/,./a, Eq. (6.48). 

3. Numerical simulations 

Figure 14 shows Monte Carlo simulations at JT = 0.5 
and 1.0 with N = 75, averaged over 64 samples. Be- 
low T' = 1 the training curve is significantly different 
from the RS result. These deviations for T = 0.5 are 
significantly larger than those observed for the linear- 
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FIG. 13. Generalization error for fixed a = 1.2, 1.6, 

2.0, 2.4, 2.8, and 3.2 as a function of 7 for the Boolean- 

mismatched model. Each curve is a combination of the one- 
step RSB solution below T,(a@) (marked with a dot on each 
curve) and the RS solution above. The light dotted lines are 

the continuation of the RS curves below T,(a). Note that the 
minimum of each of the RS curves is below T,(a@).
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FIG. 14. Learning curves for the Boolean-mismatched 

model. (a) Simulations at T = 1.0 with N = 100 and 32 
samples. Each learning curve is a combination of the RS so- 

lution below the zero-entropy point a = 6.4 and the one-step 

RSB solution above. The light dotted lines are the contin- 

uation of the RS curves above a = 6.4. (b) Simulations at 

T= 0.5. 

mismatched model, indicating the importance of RSB for 
this model. The RSB solution fits fairly well at large qa, 
but in the vicinity of the transition, there are still some 
deviations between the theory and simulations. These 
deviations may be the result of difficulties in equilibrat- 
ing the system near the transition. 

VII. DISCUSSION 

A. Learning at finite temperature 

In this paper we have studied the process of learning 

from examples with a stochastic training dynamics. The 
level of noise in the dynamics is denoted by the tem- 

perature 7’. One of the most important results of our 
analysis is that learning at finite temperature is possi- 
ble, and sometimes advantageous. For any finite JT, as 
the number of examples increases, the network weights 
approach their optimal values, namely the values that 
minimize the generalization error. Thus even when the 
generalization error increases with T it may be profitable 

in certain circumstances to train the system at finite T 
because convergence times may be prohibitively long at 
T = 0. This is particularly true for highly nonlinear 
models, such as the Boolean perceptron with discrete 
weights. Although the critical number of examples per 
weight a,(T) increases with T' in this model, we have 
found in our simulations that the time it takes to con- 
verge to the optimal state in this model, increases dra- 
matically as T is lowered. It should be stressed however 
that we have used only a simple Monte Carlo algorithm. 
Recently several heuristic training algorithms for percep- 
trons with binary weights have been proposed [34, 56]. It 
would be interesting to study their dynamic and gener- 
alization properties. 

B. The high-temperature 

and annealed approximations 

We have presented two approximate theoretical ap- 
proaches to the problem of learning from examples in 
layered networks. The first approximation replaces the 
training energy by the number of examples times the gen- 
eralization error, and becomes exact in the limit of learn- 
ing with high thermal noise level. The dependence on T' 
and a is only through the effective temperature T'/a. 
Even in this simple approximation, perceptron models 
exhibit a rich spectrum of generalization behaviors. 

The second approximation, the annealed approxima- 
tion, reduces to the proper high-7' limit, but deviates 
from it significantly at finite @ and 7’, where the behav- 
ior is no longer a function of only the ratio of the two 
parameters. | 
In all four realizable perceptron rules studied here, 

these approximations have predicted correctly the shapes 
of the learning curves at finite 7’ and large a. Further- 
more, the AA has yielded interesting results at finite T 
and a that are qualitatively correct. For instance, the 
first-order transitions predicted by the AA for the per- 
ceptrons with discrete weights are clearly observed in the 
simulations, Figs. 3 and 8, and are in agreement with the 
full quenched theory. 

On the basis of our general arguments in Secs. II and 
III, we expect that these approximations will also hold for 
realizable rules in the more complex cases of multilayer 
networks. This is borne out in recent studies of two-layer 
networks of local feature detectors [35], and other mul- 
tilayer systems [36]. Thus these approximations provide 
powerful theoretical tools for the study of learning from 
examples, at least for realizable rules. 

Our treatment should be contrasted with the difficult 
problems of the capacity of single- and multilayer net- 

works [57-59]. The capacity problems usually deal with 
loading random sets of data. In this case the system 
is highly frustrated and one has to employ the complex 

methods of spin-glass theory, such as replica symmetry 

breaking [33, 60]. In the learning problems of the present 
work, the training set consists of very structured data, 

generated by a well-defined rule. The underlying struc- 
ture is represented in our formulation by the general- 

ization function «(W), Eq. (2.4), which dominates the
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behavior of the system at least when the number of ex- 

amples is large. This function would be completely flat, 
and therefore meaningless, in the case of random training 
sets. 

In fact, the high-T’ limit ignores completely the fluc- 
tuations due to finite sampling of the rule. It is thus 
useful in studying how learning is affected by the na- 
ture of the target rule [e.g., through the function e(W)] 
as well as by the network architecture [e.g., the entropy 
s(€), Eq. (2.26)]. As has been explained in Sec. III the 
AA does take into account the effect of randomness in- 
duced by the examples, though only approximately. The 
reasonable results generated by the AA even at finite a 
and JT’ imply that this randomness may not have major 
effects (e.g., frustration and other spin-glass phenomena), 
at least in models where the chosen architecture is com- 
patible with the rule to be learned. This may explain 
why, in many applications of supervised learning, simple 
local gradient algorithms seem to yield good results. 

It should be emphasized that the above approxima- 
tions may be useful not only for studying specific “toy” 
models, but also in generating general approximate pre- 
dictions that could perhaps be useful in applied research 
on neural networks. An example is Eq. (2.40), which pro- 
vides a way of estimating the generalization error from 
the observed training error for a multilayer network with 
a Boolean output. 

C. Inverse power law for smooth networks 

The most important general result is the inverse power 
law for the asymptotic behavior of both the generaliza- 
tion and training errors, Eqs. (3.12) and (3.14) of Sec. III. 
These results also provide a simple relationship between 
the two errors, namely Eq. (3.15). This power law is 
consistent with the general bound obtained within PAC 
learning theory. However, our theory is not distribution- 
free and holds only for smooth networks. On the other 
hand, it holds for general unrealizable rules, whereas the 
PAC bounds are essentially for realizable rules. 

The results regarding smooth networks were derived 
using a perturbative approach, 1.e., assuming that essen- 
tially all the components of W deviate only slightly from 
W* for sufficiently large a. Of course in reality there 
can also be contributions coming from W far away from 
W*, leading to nonperturbative terms to €,. However, we 

expect that for sufficiently large a the nonperturbative 
terms will be negligible (e.g., exponentially dependent on 

a) relative to the power-law contribution of the smooth 
fluctuations. On the other hand, these localized non- 

perturbative errors may be important for the dynamics 
of the training, since their relaxation may be extremely 
slow compared with the continuous fluctuations. 

In nonsmooth networks the generalization performance 
depends on the nature of the task as well as the network 
architecture, as the results of Secs. V and VI demon- 

strate. These results also indicate that there is a qual- 
itative difference between the learning of realizable and 
unrealizable rules, as discussed below. 
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D. Learning realizable rules 

The results of the specific models studied here indicate 
that the shapes of learning curves may be very different 
from the PAC learning bound of an inverse power law. 
The shape of the generalization curve depends strongly 
on the degree of constraint imposed on the network space. 
In the case of a linear output, the imposition of binary 
constraints changes a T'/a tail [Eq. (5.10)| into an expo- 
nential exp(—2a/T) (Eq. (5.32)]. In addition, at low T 
there is a discontinuous transition at finite a from poor 
to good generalization; see Figs. 1 and 3. The superior 
generalization ability of the constrained network is not 
surprising. Since the target rule itself was assumed to be 
realizable in the constrained architecture, imposing the 
constraints is essentially using prior knowledge (or as- 
sumptions) of the nature of the rule to restrict the space 
of possible networks. 

The most dramatic effect of constraining the network is 
found for the conventional perceptron rule, i1.e., one with 
a Boolean output. In the unconstrained network the gen- 
eralization error again behaves as an inverse power law 
[this time even at T = 0, Eq. (5.28)]. On the other hand, 
in the case of binary weights there is a discontinuous tran- 
sition at a critical a from poor to perfect learning (see 

Fig. 6). This transition is unique in that it exists even 

in learning at high temperatures. The collapse of a ther- 
modynamic system at finite T' to its ground state above 
some a, stems from the singular spectrum of excitations 
above this state, as discussed in Sec. VD. 

In all the realizable models studied in this work, the 

quenched RS behavior at finite Tis qualitatively similar 
to that given by the AA. Furthermore, the asymptotic 
shapes of the RS learning curves in the different mod- 
els agree with those of the AA. This suggests that for 
realizable rules the effect of disorder is minor for large a. 

The main qualitatively different result of the quenched 
theory is the appearance of spin-glass phases, as shown in 
Figs. 1 and 6. These phases result from the randomness 

and frustration associated with optimizing for a particu- 
lar realization of examples, and cannot be predicted by 

the high-T or the annealed approximations. Two special 
features distinguish the SG phases of realizable models. 
First, it exists only at low T and in restricted regime of a, 
typically a < 1. Second, it is only metastable, i.e., its free 
energy (as well as training energy) is higher than that of 
the optimal state, which is therefore the true equilibrium 
state in that regime of a. 

The absence of SG phases at large a indicates that 
as q@ increases, the relative scale of fluctuations in the 

training energy becomes smaller, i.e., the training en- 
ergy surface gets smoother as the number of examples 

increases. This is indeed demonstrated by the analytical 
bounds of Sec. V B on the number of local minima for the 
linear perceptron with discrete weights (Fig. 4). These 
bounds exhibit two important, and possibly general, fea- 
tures. First, the energy surface in the neighborhood of 
the optimal state R = 1 is smooth. Second, the number 
of local minima is exponentially large for small a, but 
decreases monotonically with a. In the linear-discrete 
model there are no local minima above a critical value of
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a. Fontanari and Koberle [61] have studied numerically 
the local minima of the Boolean-discrete model for small 
system sizes. The number of local minima was found to 
scale exponentially with N and to decrease monotonically 
with a. No critical value of a for the disappearance of 
local minima in the Boolean model was found. However, 
a definitive conclusion would require the investigation of 
larger sizes. 

Finally, in all our realizable models the generalization 
error decreases monotonically with 7’, so that the optimal 
temperature for learning is 

Topt —= 0 : (7.1) 

Of course this refers to the equilibrium properties, 
whereas from dynamic point of view the optimal tem- 
peratures may be finite even in realizable rules, as has 
been pointed out above. 

E. Classification of learning curves 

for realizable rules 

The discontinuous behavior of the Boolean percep- 
tron with discrete weights calls for an understanding of 
the general conditions which determine whether a given 
learning task will be achieved gradually or not. Insight 
into this question is provided by the high-7' limit of 

sec. ITC. According to Eqs. (2.25)-(2.27), a system can 
be classified according to the behavior of its entropy s(e). 
Recall that es) is defined as the number of networks 
that yield a given generalization error ¢«. The general 
form of s(€) for small € is expected to be 

s(e)x e* Ine, €0. (7.2) 

For a smooth weight space we expect s to diverge log- 
arithmically to —oo, i.e., x = 0. This naturally leads, 
via Eq. (2.27), to the inverse power law. For a discrete 
weight space, we expect the entropy to approach a finite 
value, i.e., z > 0. When 0 < x < 1 the generalization 
curve obeys a nontrivial power law 

€g &(aB)7/C-7), aB—o, O<e2<1. (7.3) 

up to logarithmic corrections. When z = 1 this law turns 
into an exponential, 

Inegx—-af, aBoo, r=1. (7.4) 

An example of this case is the perceptron with discrete 

weights and linear output; see Eq. (5.32). When z > 
1, 0s/O€ remains finite at small €, so there must be a 
discontinuous transition at some (af), to €, = 0, 

ég=0, aB>(afP)., «>1. (7.5) 

The Boolean perceptron with discrete weights is an ex- 
ample of an entropy with x = 2; see Eqs. (5.62) and 
(5.63). 

In our perceptron models, nontrivial shapes of learning 

curves resulted only when the weights were constrained 
to discrete values. In contrast, for multilayer networks we 
expect that the exponent z in Eq. (7.2) may be nontrivial 
even when the weights are allowed to vary continuously, 
possibly leading to Eq. (7.4) or (7.5). This will occur, for 
example, if the optimal solution involves discrete internal 
representations of the hidden neurons, as demonstrated 
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in the two-layer model network for the contiguity problem 
[35]. 

The above classification requires knowledge of the be- 
havior of s(€) near ¢ = 0. In general, evaluating s may be 
difficult even in relatively simple models, since the pri- 
mary interest is its behavior in the limit N — oo. For 
this reason, the simple existence of a gap in the spec- 
trum of € is an insufficient basis for classification. At the 
very least, the scaling of the gap with N must be deter- 
mined (see Sec. IVF). Finally, it should be stressed that 
the classification of the asymptotic shapes of the learn- 
ing curves according to the properties of s(e) has been 
justified so far only in the high-T limit. It may be, how- 
ever, that in many classes of realizable rules these results 
apply also to finite T or even T' = 0. If this is true then 
our results may provide useful hints for understanding or 
even predicting the behavior of some real-world learning 
problems. 

F. Unrealizable rules 

For unrealizable rules the optimal weight vector W* 
is reached only in the limit a — oo. This is true at all 
temperatures. As T' — 0 the generic shape of the learn- 

ing curves is roughly that shown in Fig. 11(b). There 
is a critical value a, which marks the loading capacity, 
1.e., the point below which the examples are memorized 

perfectly. Above a, the training error increases, and ap- 
proaches the same limit as the generalization error, 1.e., 
approaches €min from below as a — oo. Also, in some 

unrealizable models (not encountered in this work, but 
see Refs. [22, 24]) there is a local maximum in €, near ae. 

One of the important results of our study is that for un- 
realizable rules the learning curves are substantially dif- 
ferent from the high-T and AA predictions at any fixed T. 
For example, for the models with weight mismatch, these 
approximations predict a7? tails for fixed T, whereas the 

RS theory yields [see Eqs. (6.29)] 

€g(T,@) — Emin ~ a" (7.6) 

for the case of a linear output. In the Boolean output 
case the full spin-glass theory predicts 

€g(T, @) — Emin © qa 4/5, (7.7) 

An a—*/? tail in €, has also been found in Boolean per- 
ceptrons with continuous weights where the rule is unre- 

alizable due to corruption of the examples by noise [24] 

or due to the random nature of the rule itself [22]. 
The RS theory of perceptrons with unrealizable rules 

predicts that, for sufficiently large a, €, is nonmonotonic 
with T, but possesses a nonzero optimal temperature. 
Similar results have been obtained in (22, 24]. In the case 
of a Boolean perceptron with weight mismatch, where 
the corrections to RS theory could be calculated, it has 
been found that rather than having a minimum at finite 
I’, €g 1s independent of T at low T; see Fig. 13. Whether 
correction to the RS theory will modify substantially the 
conclusions regarding Topt of the RS theory in the other 
models remains to be studied. 

Another feature of unrealizable rules is the prevalence
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of spin-glass phases even at large a. In the present work 
we have evaluated the JT’ at which the entropy vanishes. 
This provides a lower bound for the onset of the spin-glass 
phase. Here again the linear and Boolean perceptrons 
differ. In the linear case this temperature levels off at a 
finite value as a@ increases, as shown in Fig. 10. In the 
Boolean case it grows with the same power law as Topt; 
see Eq. (6.57) and Fig. 12. These results suggest that 
spin-glass effects are strong in unrealizable cases. 

The fact that the spin-glass phase exists also for large a 
suggests that the fluctuations in the training energy do 
not necessarily shrink as @ increases. Nevertheless, we 
believe that their relative scale does indeed vanish. This 
is because the energy itself grows linearly with a. This 
conjecture 1s supported by the observation that the tem- 
perature that marks the onset of spin-glass phenomena 
grows only sublinearly with a [see Eq. (6.57)]. The effect 
of increasing the number of examples on the roughness of 
the training energy surface (particularly in unrealizable 
rules) is an important issue which deserves further study. 

G. Uniqueness of the optimal solution 

Throughout this paper we have assumed that the opti- 
mal network weights, i.e., the components of the weight 
vector W* that globally minimizes the generalization 
function e(W), are unique. If they are nonunique, we 
assume that the degenerate global minima are at least 
widely separated in network space, forming a discrete 
set. This is related to our assumption that the training 
dynamics searches for the values of the network weights 
within a well-defined architecture. Under these condi- 
tions it is reasonable to expect that the optimal solution 
is generally unique up to obvious symmetries. For in- 
stance, in multilayer networks the solution may be unique 
only up to permutation of the hidden neurons [62]. Other 
symmetries may result from the nature of the rule itself. 
An example is the up-down degeneracy of the optimal 
solution of the two layer network of edge detectors in 
Ref. [35]. This uniqueness does not hold if the architec- 
ture of the network, e.g., the number of neurons or the 
number of layers, is allowed to vary significantly. The 
important issue of learning under these circumstances is 
planned to be discussed elsewhere. 
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APPENDIX A: TRAINING-GENERALIZATION 

INEQUALITY 

Let Eo denote the average value of the training energy 

Pe(W), as in Eq. (2.18) and 6F the difference E — Ep. 
Define the function 

Jaucw ye" o 8° 6B 
  A(B, 7) = (Al) 
[aucwye-r80-088 

This can be interpreted as the energy of a system at 
temperature 1/0 with Hamiltonian 6£ and measure 
du(W)e-7"°, By the convexity of the free energy, the 
energy is a decreasing function of @. Hence A is bounded 

above, 

Jaucwye-rPobE 

aucw yer 

We now take the quenched average of both sides. In 
the integrals, the average can be applied directly to 6£, 
since Eo 1s independent of the quenched disorder. But 
(6 )) = 0, so the right-hand side vanishes, and we have 

(A(B,7)) < (AB = 0,7))) = 0. (A3) 

In particular, for y = 6, (A)) = P(e, — €,), so that we 
finally obtain 

A(B,y) < A(@ =0,7) =   (A2) 

e(T,a) < €,(T, a) , (A4) 

which was stated without proof in Eq. (2.20). 

APPENDIX B: HIGH-TEMPERATURE 

EXPANSION 

In this appendix, we show using a cumulant expansion 
that the free energy (2.13) can be written as a power 
series in @, with coefficients that are functions of af. The 

zeroth-order term of this series is the high-temperature 
limit discussed in Sec. ITC. 

The first step is to separate the energy into random 
and nonrandom parts. The nonrandom part is 

Eo = (E)) = Pe(W) = Nae(w) , (B1) 

and the random part is 

P 

6bE=SE-Ey=) be, , (B2) 
— 

where 

dé, = €(W; S*) — e(W). (B3) 

We now treat 6F as a perturbation to the “free Hamil- 
tonian” Ey. The partition function takes the form 

Z = ZoleP°®),, | (B4) 

Here ()o denotes the average with respect to the distri-
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bution Zj 'e~8”°. The factor 

Zo(Ca) = f aucwyeP* — J aucwye nee 

(B5) 
is the high-T partition function introduced in Sec. IIC. 

Taking the logarithm of both sides and performing the 
quenched average, we obtain 

— AF = In Zo(af) + 5° ce C;)), (B6) 

where the C; are from the cumulant expansion of 
In(e~P°F\, 

Cy = (6E)o, (B7) 

C2 = ((6E)*)o — (6E)5, (B8) 
C3 = --- (B9) 

If 6£ were a quantity of order unity, the cumulants would 
be functions only of af, the only parameter governing the 
distribution e~°”°, Hence Eq. (B6) would be the desired 
power series in £. In fact, the situation is somewhat more 
complicated because 6F scales like a. 

To investigate the scaling of the cumulants with a, we 
write them as sums over connected correlation functions 

P 

G= > 
May Mg=l 

(6€n, «°° 6€y,)e- (B10) 

Counting the P’ terms in this sum, the naive estimate 
would be that C; ~ P!. However, the quenched average 
makes any term containing an unrepeated index vanish, 

since (( 6¢€, )) = 0. In other words, if an index appears, it 
must appear at least twice for the term to be nonvanish- 
ing. This means that the cumulants can scale no faster 
than C; ~ Pl/2]_ At the same time, there are also fac- 

tors of N which make the cumulant extensive, so that it 

behaves like 

(W)= | Ds e(W;S) 

= fax f dy S{o(2)- awit | B86 (2- NPWS) 6(y- Nw? -s), 

  

dx dz 

e(W) =| 27 

The two auxiliary variables x and y are introduced to 
remove S from the argument of the g functions, and z 

and y are introduced to transform the 6 functions into 

exponentials using the identity 

dz ..- 
d(x) = | —e’** , (y= /F (C3) 

When the Gaussian average over S is now performed, a 

dydj ...,..-1 oo “ “ UAL eine tind ig(2) — glu)? | DSexp [iN (We + WG) - S| 
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Cy ~ Nae. (af) , (B11) 

to leading order in a. 
In the expansion for the free energy, the term contain- 

ing C; only contributes to terms of order B47?) or higher 
in the ultimate high-temperature expansion. Hence the 
free energy can be written in the form 

—BF =InZo+ 5_ #' F;(a), (B12) 
j=l 

where F; contains contributions from the finite number 
of cumulants Cj,...,Co9;. 

In general, any quantity A that is finite in the high-T 
limit possesses a high-temperature expansion of the form 

A(B,T/a) =) BAi(T/o), (B13) 

In the high-temperature limit (8 — 0, T/a = const), 

A(8,T/a) — Ao(T/a) , (B14) 

which depends only on the effective temperature T/a. 
In general, the functions A; can be nonanalytic functions 

of T/a. In particular, the high-7' limit term Ap can be 
nontrivial and lead to such behavior as the first-order 

transition in the Boolean-discrete model. 

APPENDIX C: ANNEALED APPROXIMATION 

FOR PERCEPTRON LEARNING 

In this appendix, we give a fuller account of the results 
that were outlined in Secs. [V A and IV B. We begin with 
a derivation of Eq. (4.7) for the average generalization 
error, which illustrates many of the calculational tech- 
niques of this paper. Integrating the error function (4.6) 
over the a priori input measure (4.3), we obtain 

(Cl) 

(C2) 

  

[ 

simple Gaussian integral in @ and 7 is left. These vari- 
ables can in turn be integrated out, leaving 

dx dy z*+y?—2zxryR 
e(W) = ——_—=—— — 

(W) / onJ/l— Re ( (1 — R2) ) 

x5la(z) — 9)? 
This result has a simple interpretation. It is the average 

  

(C4)



6086 

of $[9(z)—g(y)]*, where x and y, like W-S/VN and W®. 

S/VN in (4.6), are Gaussian variables with unit variance 
and cross correlation R. A simple change of variables in 

Eq. (C4), a shift followed by a rescaling, yields the form 
(4.7). 

To derive the annealed approximation for perceptron 
learning, we begin by evaluating Eq. (2.31) for Gan(W). 
The calculation is essentially the same as the previous 
one for e(W), and results in a similar formula, 

dz __drdy | z?+y*—QzyR 
Gan —In exp | — 

Inv — R2 2(1 — R?) 

x exp{—B[g(x) — g(y)]°/2} . 

  

(C5) 

Again, the answer depends on W only through the over- 
lap R. A change of variables in the integral (C5) yields 
the form (4.14). Evaluating the integral for the cases 
of g(x) = x (linear perceptron) and g(x) = sgn(x)/V2 
(Boolean perceptron), we obtain 

(C6) 
, 5 In{1 + 26(1 — R)] (linear) 

s ~°)r—1 cos~! R] (Boolean). —In[l—(l-e 

Although derived using the Gaussian a priori input dis- 
tribution (4.3), the above results for «€(W) and Gan(W) 
apply also to the case of the discrete inputs S; = +1 
in the thermodynamic limit. This insensitivity to input 
distribution is explained by the central limit theorem, 
which guarantees that W -S//N and W°-S/VV/N are 
Gaussian variables (in the N — oo limit) with very weak 
assumptions about the distribution of S. This assertion 
may be verified by a straightforward calculation for dis- 
crete S, which yields Eqs. (C6) as the leading terms in a 
saddle-point expansion in 1/N. 

Since Gan(W), Eq. (2.31), depends only on the over- 
lap R, the annealed partition function (2.30) can now be 
rewritten as an integral over RF, 

(2) = [ dRexp N[Go(R)~ eGR], (C7) 
where 

NGo(R) = In J encw) 6(R-—N7'W-W°®) (C8) 

is the logarithm of the density of networks with overlap 
FR. In the thermodynamic limit (N — oo), the integral 
can be evaluated as 

—Bf(T,a)= ~ In( Z)) = extrr[Go(R)-—aGan(R)] . 

(C9) 

Hence the thermodynamic free energy f(T',a@) is deter- 
mined by extremizing the free-energy function —8f(R) = 
Go(R) — aGan(R). Differentiating f(R) with respect to 
R, we obtain the stationarity condition Eq. (4.16). 
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We can write the stationarity equations in a more re- 

vealing form by proceeding further in the evaluation of 

Go. The 6 function in (C8) can be expanded by intro- 

ducing another order parameter R, 

1 100 dik . 

Go= =n | pa exp( NRA 
N joo 271 

+1n f du(W) eww") ; 

(C10) 
In the thermodynamic limit, this reduces to 

~ ] 5 
Go = -RR+ = in f du(w) eww" ; (C11) 

where the right-hand side must be stationary with re- 
spect to the saddle-point parameter R. The free energy 
can now be written as a saddle point over two order pa- 
rameters 

—Bf= osttn.a( —RR + win f qucw) ekw-w° 

  

-oG a(R) (C12) 

The saddle-point equations are 

R= -o Se ; (C13) 

R= —(W)q_-W° ; (C14) 

where 

(Ww), = f du(W) W exp(RW - w°) (C15) 
  

Af du(W) exp(RW - W°) 
The order parameter R has a natural interpretation: it 
is the strength of a local field pushing W in the direction 
of W°®. Since it increases with a, it forces W toward Wo 
as a — oo. Upon eliminating R, these equations reduce 
to Eq. (4.16). 

Equation (C11) can be evaluated quite easily for the 
case of the Ising constraint W; = +1. Then we can make 
the replacement 

fauw) = (C16) 
W,-+1 

which leads finally to 

Go(R) = —RR+ In2cosh RP , (C17) 

assuming that the teacher weights also satisfy the Ising 
constraint. Extremizing with respect to R, we obtain the 
equation 

R=tanhR (C18) 

Eliminating R, one can finally derive the result (4.20), 
which is purely a function of R, and is the familiar result 
for the entropy of the Ising model as a function of the 
magnetization FR. 

Calculating Go for the spherical distribution is some- 
what more complicated. We rewrite the a priori spherical
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distribution (4.17) as 

  

N 
aA 

du(W) = IT ef. 2 oe ™) (C19) 

and then Gp is determined as a saddle point over R and 

x, 

Go= -5 In(2re) + RR++1n paweon-hw 

oo 

= -5 +RR+iA-- = In(22) + Ty (C20) 

eo 9r[W? = [ Dsex (- -p S72 (Ww?) ) 

o=1 

Eliminating R and A finally yields the result (4.18), which 
was justified previously by geometric arguments. 

APPENDIX D: REPLICA THEORY 

OF PERCEPTRON LEARNING 

The starting point of the replica calculations is the 
derivation of the replicated Hamiltonian (2.49), which 
resembles the derivation of the annealed Gz, described 

in Appendix C. We introduce auxiliary variables z,, Z,, 
y, and y in order to simplify the average over S, 

~ / Tee fw exp (49 > [9(z0) - se) Js II 6 (zo ~ N71 2we . Ss) 6 (y — NOME We s) 

  

- 1133 dz, dig / UY ox exp (40 SY lo(zo) - gy) PP +i >” tote + vi 

x | Dsexp ins (Sows, +w s 
oC 

(D1) 

The average over S is now a simple Gaussian integral and yields 

dx, dt, [ dydg 1 | ae o-GrlQeoiR = {T= moore f AEE exp (—}8 Nte-) — ato? +8 Davee +) 

1 _ . . 1. 
x exp (-5 S| tot .Qop — 9 8,Ro — 3 , 

o,p o 

(D2) 

Since G, depends on the weights only through the order parameters Q,, and R, that were defined in Eqs. (2.55) and 
(4.21), the replicated partition function can be written as an integral over these order parameters 

y= [ Tee» TI dR, exp(—NaG,[Qop, Ro]) 

« fT aucwey TT 5 ( Qo» — NOW" Ww") TT (Re ~ N-'w? .w?), 
o<p 

a<p 

271 

dQ,,dQ> dR,dR, a «zy = / [] teeet@ee [ TI Syr &? NGolQop, Ros Qoes Re] ~ aGrIQees Rel) | 
o<p 

where 

= ~ 1 Re Ro - 32 Oe,Qen + = WV In T] du(w?) exp (sre Ww’? -w+ S| Q0pW? - w") 

o<p 

(D3) 

(D4) 

(D5) 
o<p
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is the logarithm of the density of replicated networks with Re=Rk, (D8) 

the overlaps Qo, and R,. Qo, = bg, + (1— dop)4 , (D9) 
In the thermodynamic limit, the integral (D3) over the . . \ 

order parameters is dominated by the saddle point in Ro =f. (D10) 
Qo, and R,. The free energy is obtained by analytically 

i. ; With this substitutions, the free energy takes the form 
continuing this saddle point to n = 0, 

l — Df — extr[Go(q, R,4, R) ~ aG,(q, R)| ; (D11) 

— Pf = lm —In( 2") 4 
n—0 nN 

where we have defined 

= erty {GolQep, Ros Qep, Rel ~ 0G, 1Qep, Rel} 
G, = lim Yr , (D12) 

(D6) n—0 n 
_,... Go 

According to the RS ansatz, the saddle point takes the Go= iim n (D13) 
form 

To calculate G,, we substitute the RS ansatz into 

Qop = bap + (1 — bap)q , (D7) Eq. (D2) and perform the integral over 4, leaving 

eS = | Dy fT] 22 exp (49 Sla(e2) - vn) 

xX exp (Fo — q) > + i> @4(to — ry) jo exp (-iwvs — R? >| , (D14) 

The auxiliary variable ¢ has been introduced via the identity { Dt e’' = exp(3b”). Performing the integrals over the 
Z,, and shifting and rescaling the 2, integrals, we finally obtain 

e7 Gr = | vt [ dy / Dz exp (-56 E (2/1 -4+ yR +t/q— R°) — 9(y)| ‘yy . (D15) 

Taking the limit n — 0 gives Eq. (4.27) for G,. 
The RS result for Go is 

Go=n (-Rk- sn(n —1)qq- 54) + xin [ De (/ du(W) exp[W - (z\/¢ + w°?))) , (D16) 

The n — 0 limit of this expression yields Eq. (4.26) for Go. 

APPENDIX E: ONE-STEP RSB FOR PERCEPTRONS 

Following the Parisi theory of RSB [45] we make the following “one-step” ansatz for the form of the order parameter 
matrix Quy: 

{1° goqo-:: \ 

gl: qoqdo::: see 

Go qo::° 1 qi-:--: 

Quv = goqdo::: qi l1l--:- sae (E1) 

    Cs a 

Each block in this structure is an m xX m matrix. All off-diagonal blocks consist of Q,,, = qo. The diagonal block has 

Qi: = land Q,y = q for p Fv. The conjugate matrix Qu has a similar block structure. The order parameters ft,



45 STATISTICAL MECHANICS OF LEARNING FROM EXAMPLES 6089 

and Ry are symmetric at the saddle point, i.e., R, = R and R, — R, as before. 

Upon replacing Eqs. (D7)-(D10) by the RSB ansatz and taking the appropriate n — 0 limit, the free energy (D6) 
is given by 

— Of = Go(90, 41; 90,41, R, R,m) — aG,(qo,q1, FR, m) ) (E2) 

where 

1 ; ; . 1 m 

Go = 5 UMGoGo +[—m)q —1)¢.} -RR+ Nm [Px in | Das (| du(W) exp(W - z) ; (E3) 

Z=20V G0 + 2Vh — Go + WR, (E4) 

C= [ dy [ dioin [ 0u| [ Dees (ota - ew?) (E5) 

t=toVq —-R?+tivn—q—yk. (E6) 

The free energy has to be minimized with respect to qo, 91, G0, G1, R, R, and m. Note that after the n — 0 limit 
has been taken the allowed range of m is 0 < m < 1. Also, the physical meaning of go, gi, and m is explained in 
Sec. V D2 [see Eqs. (5.73)-(5.75)]. Upon substituting m = 0, the free energy f reduces to the RS result, Eq. (5.66). 

Specializing to the case of Ising constrained weights in Go and Boolean output in G;, we obtain 

1 . . A 

Go 5 (mqogo + [((1-— m)qi — 1] qi) — RR 
1 

a” m 

+ S| de In / Dz 2 cosh (20 Vac + 2iV 4 — do + we R)] (E7) 

: I 

go — R? 

1-q 

m- 9 yk 
l-~-q = VIl-q 
  

We now search for a solution to the saddle-point equa- 
tions at finite temperature with the property 

q = 1, qi =o. (E10) 

According to Eq. (5.73), for such a solution each pure 
phase consists of a single (or a few almost identical) mi- 
croscopic state. Thus the system collapses at finite tem- 
peratures to phases with zero entropy. This is not unlike 
the collapse of the system to the ground state at higher 
values of @ (1.e., the perfect generalization state). How- 
ever, it occurs in the metastable, spin-glass regime. 

To find a solution with the property (E10) we take 
the limit q: — 1, g1 — oo of Eqs. (E7) and (E9) while 
keeping @ finite. We obtain 

Ll. 5. . 
Go = —[mGo(go — 1) — mRR 

1 = OF +7 > [ dein 2cosh (2m Vac + W; mR) 
t 

(E11) 

-= [ Dy { Dton | Dt; [e~8 + (1—e7F*)H(r)]”™, (E8) 

  

  

G,=-2][ dy / Dt In [e~P™ + (1 —e7™)A(u)] 
m Jo 

(E12) 

_ P2 

u=t,/2 “ ye (E13) l-q Vl—q 

Comparing Eqs. (£11)—(E13) with Eq. (5.66) one obtains 

. - 1 . - 
Frsp (qo, Go, FR; R,m, B) — — frs(qo,m* Go, R, mR, Bm) . 

(E14) 
This structure is similar to the result of Krauth and 
Mézard [33] for the case of training a perceptron with 
random input-output mappings. _ 

Stationarity with respect to qo, go, R and R results in 

go(T,m, a) = qrs(T/m, a) , (E15) 

R(T,a,m) = Rpys(T/m,a) . (E16)



6090 

Finally, stationarity with respect to m yields 

sps(T/m, a) = 0 ; (E17) 

which implies 

m(T, a) = T/T,(a@) , (E18) 

where T,(q@) is the s = 0 line of the RS solution. 
We have not attempted to search for other RSB so- 

lutions or to check the stability of this solution. How- 
ever, this solution is probably exact both here and in 
the random perceptron problem of Krauth and Mézard. 
Similar completely frozen SG phases are known to ex- 
ist in the REM, the “simplest spin glass” [54], and the 
large-P Potts glass. Recently, they have also been found 
in learning of random mappings by two-layer networks 
(60,62,63]. 

APPENDIX F: POWER COUNTING 

IN THE HIGH-TEMPERATURE EXPANSION 

For the Boolean-mismatched model, the optimal gen- 
eralization and zero entropy lines both follow power laws 
of the form T ~ a’, with 0 < r < 1. The determina- 
tion of this exponent requires the balancing of the two 
dominant terms in the asymptotic expansion. This is 
somewhat tricky, because determining which are the two 
dominant terms in turn depends on the exponent. 

Since both T and a are diverging, it would seem nat- 
ural to perform a double expansion around (1/T,1/a) = 
(0,0). Such an expansion is in fact ill defined, since the 
existence of a nontrivial high-temperature limit shows 
that the T, a — oo limit depends on the ratio T/a. 

As discussed in Appendix B, the proper high- 
temperature expansion for a quantity A that is finite in 
the high-T" limit is 

OO 

A(8,T/a) = SB A(T/o) . 
7=0 

(F1) 

If one proceeds to expand the A;, one obtains a double 
expansion about (1/7,7'/a) = (0,0) 

A(1/T,T/a) = YA (2) (zy | 

This high-T’ expansion is the proper tool for investigating 
power laws of the form IT’ ~ a”. We must only assume 

(F2) 
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that 0 < r<1,so that both 1/T and T/a@ approach zero 
as @ — OO. 

Assuming now that we have an expression for €, of 
the form (F2), let us find the power law Top: ~ a” such 
that €, decreases at the fastest rate. In the series (F2) 
each term a,b scales like 1/a7¢+('-")®, so that the expo- 
nent is some weighted average of a and 6. The power of 
the dominant term in the sum is min,[ra; + (1 — r)6,]. 
This exponent must be maximized, to ensure the fastest 
decrease of €,. 

The problem thus reduces to linear programming. 
Given a set of pairs (a;,0;), find the r that maximizes 
min,;[ra;+(1—r)b,;]. The problem looks difficult because 
there are an infinite number of pairs (a;,5;) to consider, 
but in fact most of the pairs can be eliminated from con- 
sideration. We define a partial ordering of the set of pairs: 
(a;,6;) < (a;,6;) means a; < a; and b; < b;. A term 
(a,b) is minimal if (a,b) > (c, d) implies (a, b) = (c, d) for 
all (c,d). Only the subset of minimal pairs (which can- 
not be ordered) are relevant, because (a;,b;) < (a;, ;) 
implies ra; + (1 —1r)b; < ra; + (1 —1)b;. The linear pro- 
gramming problem thus only includes the finite minimal 
subset of pairs (a;, 5;). 

For the Boolean-mismatched model, we calculated the 

asymptotics of the generalization error as a series in 
a—1/2 at fixed T, 

€g(T, a) — €min = Se; /2(B)a7”? (F3) 

j=l 

To convert this to the form (F2) of the high-T expan- 
sion, we expand the e; in powers of 3. Only the leading 
term from each e; need be retained, since the higher- 

order terms are irrelevant. From the terms of order a7~!/2 
through a~? we obtain the (1, 1/2), (1,1), (1,3/2), and 
(0,2) terms in the high-T expansion (F2). From these 
four terms, we finally extract the minimal subset (1, 1/2) 
and (0,2). Terms in (F3) of order a—5/? and higher need 
not be considered, since they are all bounded below by 
(0,2) and are thus irrelevant. 

The maximin problem, which involves only (1, 1/2) and 
(0,2), has r = 3/5 as its solution, justifying the result 
Topt ~ a3/5 quoted in Eq. (6.54). The calculation of 
the zero-entropy line is similar, except that the minimal 
terms must add up to zero. 
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