e ABSTRACT

In this paper, | analyze the controversy within Artificial Intelligence (Al)
which surrounded the ‘perceptron’ project (and neural nets in general) in
the late 1950s and early 1960s. | devote particular attention to the proofs

and arguments of Minsky and Papert, which were interpreted as showing
that further progress in neural nets was not possible, and that this
approach to Al had to be abandoned. | maintain that this official
interpretation of the debate was a result of the emergence,
institutionalization and (importantly) legitimation of the symbolic Al
approach (with its resource allocation system and authority structure). At
the ‘research-area’ level, there was considerable interpretative flexibility.

This interpretative flexibility was further demonstrated by the revival of

neural nets in the late 1980s, and subsequent rewriting of the official
history of the debate.

A Sociological Study of the Official
History of the Perceptrons Controversy

Mikel Olazaran

The recent sociology of scientific knowledge has shown that
processes of controversy often play a central role in the production
and validation of scientific knowledge.! Harry Collins recom-
mended the study of ‘interpretative flexibility’ (that is, variation in
scientists’ perceptions of the same results or experiments) as a
methodological starting point in controversy studies.? Before
consensus is reached, groups of scientists from diverse traditions
(with their own cultures, interests and connections with both the
wider scientific community and the wider society) may interpret
the same experiment (phenomenon, result, method or technique)
differently. Showing the interpretative flexibility of scientific results
amounts to the realization that no knowledge possesses absolute
warrant, whether from logic, experiment or practice; there can
always be grounds for challenging any knowledge claim.?

In scientific practice, interpretative flexibility is reduced in
processes of accumulation of cognitive and social resources, where
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factors like the following play an important role: communication
and interaction between research specialties and disciplines, cross-
fertilization; interaction between scientific and technological
contexts (in this case, information technology and program-
ming); accumulation of organizational, institutional and rhetorical
resources; the science-policy context; and the wider scientific and
technical culture.* By studying the effect of social factors — both
internal and external to the scientific community — on the pro-
cesses of closure of controversies, sociologists have exposed the
contingent elements in the production and validation of scientific
knowledge.’

Specific cognitive objects (such as certain ‘crucial’ experiments,
results or ‘proofs’) often play an important role in the evolution of
scientific controversies. The key move in the controversy analyzed
in this paper was the decision by Marvin Minsky and Seymour
Papert to replicate the ‘Perceptron machine’ built by a team led by
Frank Rosenblatt, with a view to showing its limitations. As
Collins pointed out, replication of this kind is quite unusual in
science, and it occurs only when the claim under discussion is
particularly important.® The ‘interpretative flexibility’ of Minsky
and Papert’s results was considerable. Standards of proper experi-
mentation and criteria of competence had not by then been
agreed, and experimental work relating to the controversial issues
was not equally compelling to all those involved in the debate.

As Trevor Pinch has pointed out, the construction of a disputed
cognitive object can be used as the defining point around which
differing groups of scientists taking part in a controversy can be
identified.” These groups emphasize different dimensions of what
we can safely assume to be the ‘same’ object. Disputed cognitive
objects can be articulated at different levels. Following Pinch, I
will consider two modes of articulation, the ‘research-area’ mode
and the °‘official-history’ mode.® The research-area mode of
articulation is used when the disputed object is part of the
immediate area of concern and practice of the scientists involved
in a controversy, whereas the official-history mode is used in
historical accounts of how a particular field evolved. The multi-
dimensional character of the object in the research-area mode (the
possibility of working on different aspects of it) is lost at the
official-history level, where results and proofs are regarded as
either valid or invalid. The official-history mode occurs mainly
at the informal level of communication in science. Using some con-
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cepts and elements from the work of Nicholas Georgescu-Roegen,
Richard Whitley, Pierre Bourdieu and others, Pinch showed that the
official-history mode of articulation, with its legitimating functions,
often plays a very important role in scientific controversies and in the
underlying ‘battles’ for authority in science.

In this paper, I reconstruct the controversy which surrounded a
specific ‘cognitive object’ — namely, certain proofs and arguments
which apparently showed that progress in perceptron research was
not possible.® The structure of the paper and its main arguments
are as follows. After a brief presentation of the neural-net
approach and its antecedents, I will look at Frank Rosenblatt’s
Perceptron machine and the controversy which surrounded it.
Then I will analyze some of the main technical problems and
limitations of early neural nets. I then discuss ‘impossibility’ proofs
and arguments and the process of closure of the controversy,
which I reconstruct by linking the developments analyzed pre-
viously with the disciplinary, technological and funding contexts.
The emergence, institutionalization and legitimation of symbolic
Al as a research specialty was the most important factor in this
process. Finally, I will examine the process of accumulation and
cross-fertilization which has recently brought about the revival of
neural nets.

According to the official history of the controversy, in the mid-
1960s Minsky and Papert showed that progress in neural nets was
not possible, and that this approach had to be abandoned. In this
paper I try to show that this official view emerged as a result of the
closure of the perceptrons controversy. Before that, things were
not so clear at the research-area level. And neural nets were not
completely abandoned: a few researchers continued working in
this area, but they were displaced from artificial intelligence (AI)
to other disciplines.

Collins has used the ‘things could have been otherwise’ argu-
ment in order to show the interpretative flexibility of scientific
results. The curious thing about the perceptrons controversy is
that things were really otherwise in the recent revival of neural
nets, which I will examine at the end of the paper. As neural nets
emerged as an accepted specialty, the official history of the
controversy was rewritten in order to legitimate the new social
and cognitive structures of the AI discipline. The interpretative
flexibility of Minsky and Papert’s impossibility proofs was reopened.
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Neural Nets

Neural networks are information-processing systems composed of
many interconnected processing units (simplified ‘neurons’) which
interact in a parallel fashion to produce a result or output.!® They
are called ‘neural’ because, in designing them, researchers are
‘inspired’ by some (sometimes only a few) simplified features of
information processing in the brain. The massively parallel archi-
tecture of these systems is remarkably different from that of a
conventional (also called ‘von Neumann’) digital computer.
Neural nets are not programmed, but ‘trained’. Training a neural
net in some classification task involves selecting a statistically
representative sample of input/output pairs, and algorithm for
adjusting the strengths (or ‘weights’) of the connections between
processing units when the system does not produce the desired
outputs. Neural-net training is usually a long (and computationally
expensive) process of cycles of input feeding, output observation
and weight adjustment.

The neural-net approach differs from the tradition which has
dominated AI in the last decades, namely the symbol-processing
perspective. Within symbolic Al, intelligence and cognition are
seen as processes of symbol manipulation and transformation. A
symbolic system relies on its representational structures and on
the possibility of applying structure-sensitive operations to them.
Representational structures are manipulated and transformed
according to certain rules and strategies (embodied in computer
programs), and the resulting expression is the solution to a given
problem.

Researchers expect neural nets to have considerable success in
tasks not easily programmable so far within the rule-based symbol-
processing approach, such as pattern and speech recognition. The
learning capabilities of neural nets may be especially important for
this type of task. Each unit in a neural-net system performs a
simple processing operation which can be divided into three parts:
input addition, comparison with a threshold value and, if that
value is equalled or surpassed, ‘firing’ or output activation (see
Figure 3, overleaf). Figure 1 shows one of the most popular neural-
net architectures — namely, the one formed by strata of units and
connections (also called ‘multilayer feedforward’ net, because
activation always spreads in the direction from input to output).
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FIGURE 1
Multilayer Network
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The architecture of neural nets is radically different from the
von Neumann architecture, which is the basis of most existing
computers. One of the main characteristics of the von Neumann
architecture is the separation between memory and processor.
Von Neumann computing consists basically of performing one
after another (that is, sequentially) certain transformations upon
binary expressions which are stored in the computer memory.
These transformations are made according to a list of instructions
or rules (the program) which is also stored in the memory. The
basic operation of a von Neumann system involves the following
steps: localizing an expression in the memory; transferring it to the
central processing unit; transforming it; and bringing it back to a
different location of the memory.

Von Neumann memory is composed of unrelated, discrete
locations, resembling a list of binary expressions (which in Al
would stand for symbolic expressions). The only way of finding a
certain expression in this list would be to know its exact place.
Neural nets work rather differently. Information is not held in
discrete locations, but distributed throughout the system’s para-
meters. The ‘knowledge’ that a neural-net system has at any time
of its evolution (that is, the ‘state of the system’) is given by the
activation state of the processing units and the values of the links
interconnecting them. In a neural net, linguistic or symbolic
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expressions do not exist as such, their ‘equivalent’ (this word has
to be used cautiously) being overall patterns of activation emer-
ging from the parallel interaction between many units at the
subsymbolic level.

One of the most interesting properties of distributed, associative
memories is graceful degradation: in certain circumstances, the net
can perform at an acceptable level even if some of its processing
units do not work properly (in this, neural computing contrasts
sharply with conventional computing and programming). Another
important property of neural nets is their ability to recognize
whole patterns (or objects), even though only a part of them is
presented as an input (or when the image is distorted or in-
complete). :

Neural-net research is an approach to Al and cognitive
science.'! These related disciplines both aim at building intelligent
machines (that is, computer programs and simulations which carry
out intelligent or cognitive tasks) and at studying (that is, con-
structing and testing theories of) perception and cognition using
computational methods and tools. AI’'s emphasis is on building
intelligent machines, whereas cognitive science — a highly
interdisciplinary field of research — concentrates on understand-
ing cognition.

The origins of Al go back to the cybernetics movement of the
1940s and 1950s. This movement started around the idea that the
functioning of many systems, both live and artificial, can be better
understood with models based on information processing and
transfer, rather than on energy transfer. Researchers aimed at
studying the elements that automatic machines and the human
nervous system have in common — what they called ‘control and
communication processes both in the animal and in the machine’.
To address this question, an important interdisciplinary effort was
made, with contributions from areas like mathematics, formal
logic, computer science, psychology, electrical engineering, physi-
ology and neuroscience. The foundations of cybernetics were built
and explored by leading scientists, including Alan Turing, Warren
McCulloch, Claude Shannon, Norbert Wiener, John von Neu-
mann and Kenneth Craik.

An important aspect of the cybernetics movement was the
existence of different approaches to the issue of the relationships
between brain (or mental processes) and machine. During the
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second half of the 1950s, symbol-processing and neural nets were
emerging as the two main approaches to both studying cognition
computationally (today’s cognitive science) and building intelli-
gent machines (today’s AI).

The Dartmouth Conference (Hanover, New Hampshire, held as
a Summer School in 1956) is usually taken as the starting point of
symbolic AI. The emergence phase of this approach ended
towards the mid-1960s, when it entered a period of institutiona-
lization and development.’?> Computers had first been used for
numerical calculation purposes, but symbolic Al exploited their
capability for implementing symbol manipulation. In these
systems, symbolic expressions stand for words, propositions and
other conceptual entities. The symbol-processing approach is
based upon the possibilities that computers offer for storing and
processing symbolic expressions. Computers are much better than
human beings at storing large quantities of symbolic expressions
and processing, manipulating and transforming them in ways
sensitive to their logico-syntactical structure. The representational
structures contained in a symbolic Al system are manipulated
according to certain rules and strategies (programs, algorithms,
heuristic rules), and the resulting expression is the solution to a
given problem or task. Here information processing occurs at the
representational level (its human equivalent would be mental
processes), and not at the neurobiological (or brain) level. Sym-
bolic Al systems simulate human mental and cognitive processes
by computational (digital, von Neumann) means. Among the most
important researchers of early (and contemporary!) symbolic Al
were John McCarthy, Allen Newell, Herbert Simon and Marvin
Minsky.

But since the early 1950s, in a process which accelerated towards
the late 1950s, some researchers had been exploring and develop-
ing a different, non-symbolic approach to Al: the so-called neural-
net perspective. These scientists and engineers did not seek to
model real neural networks as studied by neurophysiology or
neurobiology; rather, they were trying to build computational
architectures bearing some resemblance to the brain’s nets of
neurons. These systems were being built employing McCulloch-
Pitts artificial or formal ‘neurons’, connected to each other by links
with modifiable links or ‘weights’ (Donald Hebb’s notion of
learning by modifying the connections between neurons was
foundational in this respect).
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The Perceptrons Controversy
Single-layer Machines

In the late 1950s and early 1960s groups from several universities
and laboratories carried out research and implementation projects
in neural nets. Among the most important projects were those
headed by Frank Rosenblatt (Cornell University and Cornell
Auronautical Laboratory, CAL), Bernard Widrow (Department
of Electrical Engineering, Stanford University) and Charles Rosen
(Stanford Research Institute, SRI).

The number of neural-net projects or groups is difficult to
quantify. In their critical study of neural nets (analyzed later in this
paper), Minsky and Papert alleged that, after Rosenblatt’s work,
there were perhaps as many as a hundred groups (in an interview
conversation this number went up to ‘thousands’).

Rosenblatt’s (1958) [perceptron] schemes quickly took root, and soon there
were perhaps as many as a hundred groups, large and small, experimenting with
the model either as a ‘learning machine’ or in the guise of ‘adaptive’ or ‘self-
organizing’ networks or ‘automatic control’ systems.!?

This issue is an important one in the official-history mode of
articulation of the controversy, where it is alleged that Minsky and
Papert had to react to stop such a great wave of ‘misled’ projects.
Later I will analyze this issue as a part of the official history. For
now it is important to point out that, even though there were
not so many projects, neural-net research was one of the main
cybernetic approaches to the brain-machine issue, and was taken
up very seriously by a significant number of groups and individuals.
This can be shown by looking at the scientific meetings of the
time, like the ‘Mechanisation of Thought Processes’ symposium,
organized by the British National Physical Laboratory in November
1958, and the ‘Self-Organization’ conferences held in 1959, 1960
and 1962.1

Early researchers made important scientific contributions,
especially regarding single-layer neural nets (these were systems
with one layer of modifiable connections, although they could
have more layers of fixed connections). The most famous machine
of this period was Rosenblatt’s Perceptron, which is represented
in Figure 2. This machine had two layers of connections, but
only those from association units to output units had adjustable
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FIGURE 2
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weights. The machine built by Rosenblatt’s group at CAL had
eight response units, but only three of them are represented in
Figure 2. The maximum number of incoming links received by an
association unit (or ‘order’) of this system is six. Later I will show
the importance of this issue.

As Figure 3 shows, an output unit fires if the sum of the
activation it receives from other units equals or exceeds its
threshold value. Note that input activation (v) is multiplied by the
values or weights (w) of the connections.

The question of learning was very important in early neural nets
(these systems are not ‘programmed’ in the sense of conventional
computers). In order for a perceptron-like net to improve its
performance in some classification task, the modifiable con-
nections have to be adjusted according to a rule (or learning
algorithm). In 1960, teams led by Frank Rosenblatt, and by
Bernard Widrow and Marcian Hoff, developed two very import-
ant learning algorithms for single-layer neural nets.'> Rosenblatt
showed that, if a perceptron was physically capable of performing
a classification task (that is, if its parameters were capable of
embodying that task), then it could be ‘taught’ that task in a finite
number of training cycles.!6 A training cycle involves presentation
of a pattern, observation of the output given by the machine, and
adjustment of the connections according to an algorithm.

The perceptron convergence theorem was proved for the simpli-
fied perceptron of Figure 4 (representing the adjustable part of the
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original perceptron after removing the fixed sensory-to-association
connections). This algorithm says that, for learning to occur, it is
necessary that the perceptron architecture be capable of embody-
ing the desired input/output classification. But proving whether a
classification can be carried out by the simplified perceptron of
Figure 4 (let alone Rosenblatt’s Mark 1 Perceptron, which had a
first layer of randomly wired connections) is an NP-complete
problem — that is to say, it is exponentially intractable (the time it
takes to solve it grows exponentially with the size of the problem).
Thus, although the perceptron rule is a powerful learning algorithm,
training a single-layer neural net in a classification task is very
much an empirical, experimentation-based matter (where factors
like the input/output training sample used and the generalization
abilities required after training are very important).

The Rhetoric of the Debate

Controversy increased as Rosenblatt’s work began to gain notori-
ety in the late 1950s. Frank Rosenblatt, a psychologist at Cornell
University, was the central figure of the early neural-net move-
ment, both from a scientific and from an organizational point of
view. He designed and studied the Perceptron, which was imple-
mented at CAL (Buffalo, New York; now the Arvin Calspan
Advanced Technology Center), but he was also the charismatic
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FIGURE 4
Simplified Perceptron
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leader and most enthusiast advocate of neural nets, both within
the scientific community and in the wider society.

The Perceptron Project was funded by the US Office of Naval
Research (ONR). Rosenblatt and ONR presented it at a press
conference held in Washington on 7 July 1958. The statements
made by Rosenblatt there, which were widely reported in the mass
media, heated the controversy. The following report from The
New York Times is an example:

The Navy revealed the embryo of an electronic computer today that it expects
will be able to walk, talk, see, write, reproduce itself and be conscious of its
existence. Later perceptrons will be able to recognize people and call out their
names and instantly translate speech in one language to speech and writing in
another language, it was predicted.!”

According to the official history of the controversy, Rosenblatt’s
‘overclaims’ irritated many people in the AI community, including
some of its leaders.

Present day researchers remember that Rosenblatt was given to steady and
extravagant statements about the performance of his machine. ‘He was a press
agent’s dream’, one scientist says, ‘a real medicine man. To hear him tell it, the
Perceptron was capable of fantastic things . . .”.!®

Critics accused Rosenblatt of not having respected scientific
standards and of having used the media in a partisan way. The
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following interview quote by Marshall Yovits, who was responsible
for the funding of the Perceptron Project at ONR, is interesting in
this respect:

Many of the people at MIT [referring to the symbolic Al leaders] felt that
Rosenblatt primarily wanted to get press coverage, but that wasn’t true at all.
As a consequence many of them disparaged everything he did, and much of
what the Office of Naval Research did in supporting him. They felt that we were
not sufficiently scientific, and that we didn’t use the right criteria. That was just
not true. Rosenblatt did get a lot of publicity, and we welcomed it for many
reasons. At that time, he was with Cornell Aeronautical Laboratory, and they
also welcomed it. But at ONR — as with any government organization — in
order to continue to get public support, they have to have press releases, so that
people know what you are doing. It is their right. If you do something good, you
should publicize it, leading then to more support.®

Controversy was rather bitter at times, as scientific arguments,
rhetoric and organizational pressure were combined in the process
of the debate.

The campaign was waged by means of personal persuasion by Minsky and
Papert and their allies, as well as by limited circulation of an unpublished
technical manuscript (which was later de-venomized and, after further refine-
ment and expansion, published in 1969 as the book Perceptrons).?

The interview quote below, by Charles Rosen (from the SRI
group, one of the most important neural-net centres of the time),
is another indicator of the tenseness of the debate:

Minsky and his crew thought that Frank Rosenblatt’s work was a waste of time,
and they certainly thought that our work at SRI was a waste of time. Minsky
really didn’t believe in perceptrons, he didn’t think it was the way to go. I know
he knocked the hell out of our perceptron business.?!

Sociologists have shown that rhetoric is an inherent element of
discourse and practice in scientific controversies.?? And, of course,
scientists use rhetoric when they present and justify their projects
outside the scientific community, as was the case with Rosenblatt.
Because of the nature of Al, rhetoric has always been particularly
controversial in this discipline.?* The so-called ‘Dreyfus affaire’ is
one of the most interesting examples, although there are many
others. Hubert Dreyfus, a professor of philosophy at the Univers-
ity of California, Berkeley, carefully studied the predictions made
by symbolic Al researchers in the 1950s and 1960s, and compared
them with the results which were really obtained. The rhetoric
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studied by Dreyfus included symbolic Al leaders Allen Newell and
Herbert Simon’s famous 1957 claims that, within ten years,
computers would win the world chess championship, compose
aesthetically valuable music, discover and prove an important
unknown mathematical theorem, and that most psychological
theories would take the form of computer programs.

There are now in the world machines that think, that learn and that create.
Moreover, their ability to do these things is going to increase rapidly until — in
a visible future — the range of problems they can handle will be coextensive
with the range to which the human mind has been applied.?*

In 1965, Dreyfus wrote a much circulated mimeograph paper
which, in 1972, became the basis of his famous What Computers
Can’t Do book.? Dreyfus criticized some of symbolic Al’s claims
from a philosophical point of view. Basically, he argued that the
digital, formalized and rule-governed nature of AI was inadequate
to model truly human intelligence (with its fuzzy, intuitive,
phenomenological and gestaltic aspects). Dreyfus’ work provoked
a strong reaction from the symbolic Al community, and some
interesting and heated debates followed.®

In the perceptrons controversy, the contending views were often
represented by Rosenblatt and Minsky. They were not only the
leaders or spokesmen of the contending positions, but also two of
the most important members of the ‘core set’ of the controversy.?’
Their famous confrontations have been reported in historical
accounts of Al.

Another who was irritated by Rosenblatt was Marvin Minsky, perhaps because
Rosenblatt’s Perceptron was not unlike the neural-net approach Minsky was
alternately intrigued and frustrated by. Many in computing remember as great
spectator sport the quarrels Minsky and Rosenblatt had on the platforms of
scientific conferences during the late 1950s and early 1960s.2

Problems and Limitations of Early Neural Nets

Rosenblatt was aware of the problems and limitations of his
Perceptron machine, and acknowledged them in his papers. The
machine could not adequately detect similarities between figures,
because it classified objects according to the amount of overlap or
intersection in the input retina.?® Preprocessing (distinguishing the
components of an image and the relationships between them) was
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another related problem. Lacking an adequate preprocessing
system, a set of association units had to be dedicated to the
recognition of each possible object, and so an excessively large
layer of association units was needed.>® Other limitations were
excessive learning time and lack of ability to separate parts in a
complex environment (Rosenblatt included here the figure-ground
or ‘connectedness’ problem, later analyzed by Minsky and
Papert).>!

Rosenblatt studied more complex architectures: nets with two
layers of association units,3 ‘cross-coupled’ nets (which had
connections among the units of the same layer), and multilayer
nets. He claimed that perceptrons’ generalization capabilities
improved considerably with these changes,>® but he admitted that
very important problems concerning multilayer and ‘cross-
coupled’ nets remained to be solved. Rosenblatt summarized the
limitations of perceptrons in a list of fifteen problems, some of
which are reproduced below:

A number of perceptrons analyzed in the preceding chapters have been
analyzed in a purely formal way, yielding equations which are not readily
translated into numbers. This is particularly true in the case of the four-layer
and cross-coupled systems, where the generality of the equations is reflected in
the obscurity of their implications. . . . Those problems which appear to be
foremost at this time include the following: (1) Theoretical learning curves for
the error correction procedure. . . . (2) Determination of the probability that a
solution exists for a given problem. . . . (3) The development of optimum codes
for the representation of complex environments in perceptrons with multiple
response units. (4) Development of an efficient reinforcement scheme for
preterminal connections. . . . (7) Theoretical analysis of convergence-time and
curves for adaptive four-layer and cross-coupled perceptrons. . . . (12) Effect of
spatial constraints in cross-coupled systems (e.g., limiting interconnections to
pairs of association units with adjacent retinal fields). Studies of possible figure-
segregation (figure-ground) mechanisms. (14) Studies of abstract concept
formation, and the recognition of topological or metrical relations. . . .>*

Rosenblatt’s most pessimistic comments were for problems 13
(connectedness) and 14 (recognition of topological relationships
and abstract concepts).

These two problems [13 and 14] . . . represent the most baffling impediments to
the advance of perceptron theory in the direction of abstract thinking and
concept formation. The previous questions [from the 1st to the 12th] are all in
the nature of ‘mopping-up’ operations in areas where some degree of perform-
ance is known to be possible. . . . [However] the problems of figure-ground
separation (or recognition of unity) and topological relation recognition
represent new territory, against which few inroads have been made.>

Downloaded from sss.sagepub.com at UNIVERSITE DE MONTREAL on June 20, 2015



Olazaran: Official History of the Perceptrons Controversy 625
FIGURE 5
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In points 4 and 7, Rosenblatt referred to the difficulties of training
multilayer nets, and recognized that this issue could not be solved
simply by carrying out more powerful simulations or by building
more advanced machines:

In the case of problem 4 ... simulation studies seem to be indicated for
preliminary exploration, although it is hoped that some theoretical formulations
may ultimately be achieved. . . . The seventh question again is a theoretical

one, although preliminary results obtained from simulation programs should
prove enlightening.3

The limitations of single-layer neural nets can be illustrated with
a simple example (the simplest one possible). Figure 5.1 shows a
simple net composed of two input units and one output unit. It is
easy to see that this net can compute the conjunction (or ‘and’)
logical function. The output unit fires only when it receives
activation from both input units (only in this case is the sum of
input activation bigger than the threshold value, 1.5). But the
parameters of the system of Figure 5.1 (the values of the connec-
tions and the threshold value) cannot support functions which are
not linearly separable, such as exclusive disjunction or ‘exclusive-
or’.%” The system should fire when presented input pairs (1, 0) and
(0, 1), and should not fire when presented inputs (1, 1) and (0, 0).
But if inputs (1, 0) and (0, 1) exceed the threshold value, then input
(1, 1) will exceed it too, and the system will fire. As Figure 5.2
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shows, an intermediate or ‘hidden’ unit is necessary in order
to realize exclusive-or. This hidden unit would produce strong
inhibitory activation (—2) when the (1, 1) input pair is presented to
the net.

Early researchers were aware that multilayer systems had much
more classification capacity than single-layer ones, but they could
not find powerful weight adjustment rules for them.>®

For example, the ‘and’ [function] . . . can be realized with the [single-layer]
linear-logic circuit . . . while the exclusive-or [functions] . . . require a cascade
linear logic arrangement [hidden units]. . . . [The limitations of single-layer
networks] are extremely severe . . . since the percentage of realizable logical
functions becomes vanishingly small as the number of input variables increases.
The chances of obtaining an arbitrary specified response are correspondingly
reduced. More sophisticated approaches must therefore be undertaken. A
number of alternatives are possible. . . . The most attractive appears to be
multiple-layer logical circuit arrangements, since it is known that any function
can thereby be realized. . . . However, no general criteria on the basis of which
intermediate logical layers can be taught functions required for over-all network
realization of the desired input/output relationship have been discovered.>

Classifications realized by neural nets can be represented as
decision regions in pattern space. Multilayer nets with two layers
of hidden units and three layers of modifiable connections (that
is, with one more layer of intermediate units than the system of
Figure 1) can form any decision region in pattern space — that is,
they can realize decision regions (classifications) of arbitrary
complexity (this complexity being limited by the number of units
in the system).*’ In other words, a multilayer network with two
layers of hidden units can realize any input/output classification.
Early researchers were aware of the limitations of single-layer
systems (some of these will be illustrated in the following section),
and there is no doubt that they saw multilayer nets as the way to
go. Training multilayer nets was one of the main problems of the
early neural-net field.

Early neural nets also had important technological limitations,
one of the most important of them being the size of the com-
ponents. The Perceptron built by Rosenblatt, Charles Wightman
and their colleagues at CAL, had only 512 modifiable connections,
but it filled a whole laboratory room. Adjustable connections
were implemented using motor-driven potentiometers of consider-
able size, and so implementing a perceptron with thousands of
connections using this technology was not practical. Alternative
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implementations (like the SRI group’s magnetic cores, or Wid-
row’s ‘memistors’) were developed, but this technology was rather
limited compared to the emerging von Neumann computer. The
advent of the digital computer affected other computer archi-
tectures too, like the analog architecture.*! In fact, certain ele-
ments of neural nets (in particular the continuously adjustable
weights) and other early cybernetic systems and ‘brain models’ can
be seen as ‘analog’.

Digital computers could be used — and indeed started to be
used — to simulate neural nets, but the overall philosophy of
the neural-net approach, as formulated mainly by Rosenblatt,
favoured a brain-style, anti-von Neumann implementational
position.

Theorists are divided on the question of how closely the brain’s methods of
storage, recall, and data processing resemble those practised in engineering
today. On the one hand, there is the view that the brain operates by built-in
algorithmic methods analogous to those employed in digital computers, while
on the other hand, there is the view [Rosenblatt’s view] that the brain operates
by non-algorithmic methods, bearing little resemblance to the familiar rules of
logic and mathematics which are built into digital devices.*?

The models which conceive of the brain as a strictly digital, Boolean algebra
device, always involve either an impossibly large number of discrete elements,
or else a precision of the ‘wiring diagram’ and synchronization of the system
which is quite unlike the conditions observed in a biological nervous system.*?

But even though simulation of neural nets was possible in
principle, the association between the digital computer and sym-
bolic AI was much stronger, as I will show later. Before that I will
turn to Minsky and Papert’s study of the problems of early neural
nets. As I pointed out earlier, according to the official-history
mode of articulation of the debate these researchers showed that
further progress in neural nets was not possible, and after that
neural nets were largely abandoned.

The ‘Proofs’ of the Impossibility of Perceptrons

A Social Service for the AI Community

In the 1950s, several research or problem areas evolved from the
cybernetic movement, but none of them had, at that time, yet
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emerged as a research specialty. Competition became stronger in
the late 1950s, as symbolic Al started to emerge as a specialty and
neural nets were still attracting a significant amount of human and
economic resources. The importance of the problems of early
neural nets was not clear. Neural-net researchers maintained that
single-layer nets were only the beginning, and that their limita-
tions, important as they were, would be overcome with more
complex systems. In the early 1960s, when controversy had
reached its highest levels, Marvin Minsky and Seymour Papert,
two leading symbolic Al researchers from the prestigious MIT Al
group, decided to intervene in the controversy.

In the middle 1960s Papert and Minsky set out to kill the perceptron, or, at
least, to establish its limitations — a task that Minsky felt was a sort of social
service they could perform for the artificial intelligence community.*

According to the official history, Minsky and Papert were worried
by the fact that many researchers were being attracted by neural
nets. Their motivating force was (according to this version) to try
to stop what for them was an unjustified diversion of resources to
an area of dubious scientific and practical value, and to push the
balance of Al funding and research towards the symbol-processing
side.

In the late 1950s and early 1960s, after Rosenblatt’s work, there was a great
wave of neural network research activity. There were maybe thousands of
projects. For example Stanford Research Institute had a good project. But
nothing happened. The machines were very limited. So I would say by 1965
people were getting worried. They were trying to get money to build bigger
machines, but they didn’t seem to be going anywhere. That’s when Papert and I
tried to work out the theory of what was possible for the machines without loops
[feedforward perceptrons].*®

There was some hostility in the energy behind the research reported in
Perceptrons. . . . Part of our drive came, as we quite plainly acknowledged in
our book, from the fact that funding and research energy were being dissipated
on . .. misleading attempts to use connectionist methods in practical appli-
cations.*®

The exaggerated statement about the number of neural-net
projects can be understood as part of the official history. Alleging
that there were thousands of projects going along such a ‘deviant’
path justified symbolic Al leaders’ strong reaction against neural
nets. The social functions of the official history will be analyzed
later. Here I will examine Minsky and Papert’s technical argu-
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ments in some detail. Minsky and Papert’s work circulated in the
form of drafts and was well known by the mid-1960s, although it
was not published as a book until 1969.#7 It is important to note
that Minsky and Papert’s work had its effect upon the controversy
well before the book was published.

In the official-history mode, Minsky and Papert’s work is
supposed to have shown that further progress in neural nets was
not possible, and that therefore this approach lacked scientific or
practical value. This is why I will use the term ‘impossibility
proofs’.*® However, strictly speaking, Minsky and Papert showed
that single-layer nets, defined in a certain way, had some import-
ant limitations. On the other hand, they conjectured that progress
in multilayer nets would not be possible because of the problem of
learning. The key issue (which 1 try to elucidate below) is that their
study was widely seen as a ‘knock down’ proof of the impossibility
of perceptrons (and of neural nets in general).

Minsky had worked in neural nets, but in the early 1950s he
abandoned this field to embrace the symbolic approach. It is
interesting to note that in the early 1960s he (along with Papert)
went back to the neural-net field in order to ‘replicate’ (so to
speak) Rosenblatt’s Perceptron, and thus show its limitations. As I
have already mentioned, Collins argues that this is rather unusual
in science.*® Normally, one accepts the results coming from an
area one is not directly involved with, and the farther away that
scientific area is from one’s own, the bigger one’s certainty about
it. Collins pointed out that the crucial and interesting cases are the
replication of controversial and important observations, and the
core-sets of scientists who are involved in the work. The Percep-
tron case satisfies this criterion.

Minsky and Papert’s work was highly elaborated from a mathe-
matical point of view, and it stands as a very important contribu-
tion to neural-net theory. They studied a perceptron similar to the
one in Figure 2 (with one output unit instead of three), but they
introduced an important restriction regarding the number of
connections from input units to association units (the layer of fixed
connections in Figure 2). They maintained that the interest of
neural computing came from the fact that it was a parallel
combination of local information, and they suggested that, for this
computation to be effective, it had to be ‘simple’ in some mean-
ingful sense.>®

The computation performed by the output unit of their percep-
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tron (a sum of incoming weighted activation in parallel plus a
comparison with a threshold) satisfied the proposed criterion. In
the case of the association units, Minsky and Papert interpreted
their ‘simple combination of local information’ restriction as
implying that each of these units could not receive connections
from many input units — that is to say, each association unit could
receive connections only from a small part of the input retina.
They defined the ‘order’ of a perceptron as the maximum number
of incoming connections received by any association unit (there-
fore, as I have already mentioned, the order of the perceptron of
Figure 2 is 6).

The implications of this ‘conjunctive localness’ criterion are
better understood by looking at the main examples analyzed by
Minsky and Papert: ‘parity’ (saying whether the number of
activated inputs in a perceptron retina like the one in Figure 6 is
odd or even), and ‘connectedness’ (the figure-ground problem,
consisting of saying whether a set of activated retina points belong
to the same object — that is, whether or not they are connected to
each other). The problem of parity is related to the exclusive-or
function mentioned earlier (in a network with two input units and
one output unit, computing parity is equivalent to computing
exclusive-or). Minsky and Papert proved that the order required
for their single-layer perceptron to compute parity was the whole
retina — that is, at least one association unit had to receive
connections from all the input units.5! But if one association unit
had to ‘look at’ all the input units in the retina, then the
computation realized by the perceptron was not based on a
combination of local information, and therefore the ‘conjunctive
localness’ criterion could not be satisfied.

The second main problem studied by Minsky and Papert was the
‘connectedness’ issue. The input pattern appearing in the retina of
Figure 6 (the blackened units) is connected. Minsky and Papert
proved that the order required for a perceptron to compute the
connectedness property also exceeded practical and acceptable
limits. This order grew arbitrarily large as the input retina grew in
size.>?

In sum, Minsky and Papert proved that the order required for a
perceptron to compute parity and connectedness was not finite; it
increased with the size of its input retina. This problem could be
seen as equivalent to a conventional computer program having to
be rewritten when changing the size of the task.>
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FIGURE 6

Earlier I showed that early neural-net researchers were well
aware of problems like connectedness (especially worrying for
object and letter recognition). Nevertheless, in Minsky and
Papert’s study those problems acquired an ‘anomalous’ character.
Larry Laudan has defined an ‘anomalous problem’ as a question
that both (a) resists solution within a scientific approach, and (b)
has an acceptable solution within a competing research tradition;>*
but in controversies, notions like ‘resistance to solution’ and
‘acceptable solution within a competing tradition of research’ are
evaluated differently by the contending groups. The anomalous
character of a problem increases if researchers agree, to compare
the solution (or the lack of solution) given by a tradition of
research with the solution given by a competing one. One
important move in Minsky and Papert’s rhetoric was to claim that
problems such as parity or connectedness could easily be solved
using conventional algorithms in serial computers.>

The predicate ‘connected’ seemed so important in this study that we felt it
appropriate to try to relate the perceptron’s performance to that of some other,
fundamentally different, computation schemes. . . . We were surprised to find
that, for serial computers, only a very small amount of memory was required. ¢

Many of the theorems show that perceptrons cannot recognize certain kinds of
patterns. Does this mean that it will be hard to build machines to recognize
those patterns? No. All the patterns we have discussed can be handled by quite
simple algorithms for general-purpose computers.>”

By emphasizing that parity and connectedness could easily be
realized by conventional algorithms in von Neumann computers,
Minsky and Papert were linking their critical position about neural
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FIGURE 7

nets with two very important factors that would later become
closure factors in the controversy: symbolic Al and the digital
computer.

Interpretative Flexibility

But the importance of problems like parity and connectedness was
not so clear for neural-net researchers. They compared neural nets
not with conventional computers, but with humans. Consider
Figure 7.%8 It is not immediately obvious whether the black figure
is connected or not. Now look at the white background as a figure.
White is connected, and black is not. But this is not obvious the
first time one looks at the objects. A conscious, sequential process
is necessary in order to determine the connectedness of these
figures.

In the research-area mode of articulation, the importance of
these problems — and their alleged anomalous character — was
open to interpretative flexibility. Neural-net researchers claimed
that, if one is trying to explain and model human cognitive
capabilities, then problems like parity and connectedness are not
so worrying (let alone anomalous) after all, because human beings
are not good at recognizing them either.>® The following quote by
David Block, a mathematician from Cornell University who was a
colleague of Rosenblatt in the Perceptron project, is an example of
this.

Another indication of this difference of perspective [between Rosenblatt and
Minsky-Papert] is Minsky and Papert’s concern with such predicates as parity
and connectedness. Human beings cannot perceive the parity of large sets (is the
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FIGURE 8

CAT
TAHE

Source: H.M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines
(Cambridge, MA: MIT Press, 1990), 32.

number of dots in a newspaper photograph even or 0odd?), nor connectedness
(on the cover of Minsky and Papert’s book there are two patterns; one is
connected, one is not). It is virtually impossible to determine by visual
examination which is which. Rosenblatt would be content to approach human
capabilities, and in fact would tend to regard unfavorably a machine which went
beyond them, since it is human perception he is trying to approximate.*

The relative importance of computing connectedness in certain
circumstances can be shown by a letter recognition example.
Sometimes connectedness is not a dominant feature of humans’
visual environment. The second letter of the two words appearing
in Figure 8 is the same (something between ‘A’ and ‘H’).%! One of
the appealing properties of neural nets was that, due to previously
learnt associations, they would be capable of recognizing whole
patterns (in this case the ‘A’ of ‘cat’) even though only a part of
them (the unconnected second symbol of the first word of the
figure) was presented as the input. One of the strong points of
neural nets is that, in certain circumstances, they can continue to
see the same pattern even when bits are removed that change the
figure from connected to disconnected (just like humans!).

Neural-net researchers concentrated on the positive properties
of the single-layer perceptron (for example, its learning algorithm,
its brain-like character, its distributed memory, its resistance to
damage, its parallelism), and claimed that further research on
more complex models (systems with more than one layer of
adjustable connections, with connections among the units of the
same layer, with backward connections, and so on) was needed in
order to overcome its limitations. They were asking for time and
funding to carry out that research. The issue was, of course,
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whether their arguments, claims and rhetoric were strong enough
to contest Minsky and Papert’s criticism.

The simple perceptron (which consists of a set of inputs, one layer of neurons,
and a single output, with no feedback or cross coupling) is not at all what a
perceptron enthusiast would consider a typical perceptron. He would be more
interested in perceptrons with several layers, feedback and cross coupling. . . .
The simple perceptron was studied first, and for it the ‘perceptron convergence
theorem’ was proved. This was encouraging, not because the simple perceptron
is itself a reasonable brain model (which it certainly is not; no existing
perceptron can even begin to compete with a mouse!), but because it showed
that adaptive neural nets, in their simplest forms, could, in principle, improve.
This suggested that more complicated networks might exhibit some interesting
behavior. Minsky and Papert view the role of the simple perceptron differently.
Thus, what the perceptronists took to be a temporary handhold, Minsky and
Papert interpret as the final structure.®*

The opinions of other neural-net researchers of the time were
similar. For example, Widrow complained that Minsky and Papert
had defined the perceptron so narrowly that they could prove that
neural nets could do nothing, and he emphasized that his group
was working on networks much more complex than the single-
layer one.

When I first saw the book, years and years ago, I came to the conclusion that
they had defined the idea of a perceptron sufficiently narrowly so that they
could prove that it couldn’t do anything. I thought that the book was relevant,
in the sense that it was good mathematics. It was good that somebody did that,
but we had already gone so far beyond that. Not beyond the specific
mathematics that they had done. But the structures of the networks, and the
kinds of models that we were working on were so much more complicated and
sophisticated than what they had discussed in the book. All the difficulties, all
the things that they could prove that the perceptron couldn’t do were pretty
much of noninterest, because we were working with things so much more
sophisticated than the models that they were studying. The things they could
prove you couldn’t do were pretty much irrelevant.5?

For those actually involved in neural-network research, Minsky
and Papert’s proofs were (in Widrow’s words) ‘pretty much
irrelevant’. In the research-area mode of articulation, the disputed
cognitive objects (Minsky and Papert’s ‘proofs’ and arguments)
did not have the static (all-or-none, either valid or invalid)
character that is attributed to them in the official-history mode.
And, as in Pinch’s case study of von Neumann’s proof against
Bohm in quantum physics, after the perceptrons controversy was
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closed most people used Minsky and Papert’s proofs against neural
nets without ever going into them.%*

As in Pinch’s case, the authority of Minsky and Papert’s proofs
can be linked to the importance of the axiomatic or ‘arithmetic
ideal’ in science, although in this case this ideal should be applied
not only to those specific disputed objects but also to the more
general differences between the symbolic and neural-net
approaches. Symbolic Al is based on the capabilities of the
computer for manipulating symbolic expressions in ways sensitive
to their logico-syntactical — and therefore discrete — structure.
Although the question of proving what a computer program can
do is by no means trivial, % symbolic AI was much closer to the
arithmetic (and rationalist) ideal than the subsymbolic, environment-
driven, trained (not programmed) neural-net approach (which was
closer to self-organizing, cybernetic systems).’

So far I have analyzed Minsky and Papert’s proofs about single-
layer perceptrons. But what about multilayer nets? The question
of learning in multilayer nets had been on neural-net researchers’
agenda since the late 1950s, and was widely seen by them as a
critical issue. According to the official history of the debate,
Minsky and Papert showed that progress in neural nets as a whole
(not just in single-layer systems) was not possible. But what
Minsky and Papert actually said (in the formal literature) was
much less than that.

The perceptron has shown itself worthy of study despite (and even because of!)
its severe limitations. It has many features to attract attention: its linearity; its
intriguing learning theorem; its clear paradigmatic simplicity as a kind of
parallel computation. There is no reason to suppose that any of these virtues
carry over to the many-layered version. Nevertheless, we consider it to be an
important research problem to elucidate (or reject) our intuitive judgement that
the extension is sterile. Perhaps some powerful convergence theorem will be
discovered, or some profound reason for the failure to produce an interesting
‘learning theorem’ for the multilayered machine will be found.%®

By what process was this conjecture interpreted as showing that
further progress in multilayer neural nets was not possible?
Whereas neural-net researchers were asking for time and money
for studying more complex systems and trying to solve the
problems they had, critics favouring the symbolic perspective
claimed that, because of the limits of single-layer systems and the
lack of successful learning rules for multilayer systems, progress in
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neural nets was not possible. We must now analyze the process of
closure of this debate — the process through which interpretative
flexibility was reduced, and controversy closed. In other words,
the question now is to explain the emergence of the official-history
view and its social functions.

Closure of the Controversy

Paul Edwards has recently pointed out two important aspects of
the emergence of symbolic Al: on the one hand, symbolic
researchers’ involvement in the early ‘mundane practice’ (as he
puts it) of (von Neumann) computer programming and software
development and, on the other, ARPA’s institutional support to
symbolic Al, mainly through the Information Processing Tech-
niques Office (IPTO, directed by Joseph C.R. Licklider).%

The development of high-level computer languages and time-
sharing systems was especially important for symbolic Al. As the
first computers became commercially available in the 1950s,
programmers started to develop compiler and high-level languages
in order to simplify the program coding tasks that until then had
been done in binary machine language (which was extremely
difficult to use and debug). Exploiting the capabilities of the first
digital computers required the development of languages which
would translate English-like commands and instructions into
machine language. As the first high-level programming languages
became available in the late 1950s, researchers started to think of
computers as manipulators not just of numbers but also of
symbolic expressions. Symbolic Al researchers developed pro-
gramming languages especially suitable for symbol manipulation
(such as Newell and Simon’s IPL, and McCarthy’s LISP).

Symbolic Al programs consumed vast quantities of memory and
machine time and, due to the scarcity of the computing resources
then available, there was strong competition for computing time.
In the late 1950s, computers were ‘batch processors’ (while a
program was running, the machine could do nothing else). Input/
output devices were much slower than the central processing unit
(CPU), so the CPU was idle most of the time. Edwards describes
this situation as follows:

Programs usually had to be run many times before all errors were found and
fixed. Since the debugging process was slower than CPU or input/output times
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by yet further orders of magnitude, after receiving their output and fixing their
programs, programmers would have to wait, frustrated, in a queue until the
machine was again free. . . . The . . . small number of available computers
(especially in universities) meant intense competition for computer time.”

Around 1958, John McCarthy developed the idea of CPU time-
sharing; he wanted to provide symbolic Al researchers with the
possibility of working with LISP interactively from their terminals,
without having to deal with the ‘priesthood’ of computer opera-
tors. Working with the computer interactively created the possibil-
ity of on-line debugging and fixing of programs while these were
running. Thus the effects of each change became instantly visible
to the terminal user (the Al researcher).

As Edwards points out, this connection between Al and time-
sharing led to the second of the mentioned issues: ARPA’s strong
support of symbolic AI, mainly through Licklider’s IPTO.
ARPA’s backing of interactive computing, time-sharing systems
connected symbolic Al with military projects for human-machine
interaction in electronically mediated systems of ‘command and
control’ and ‘decision support’. Along with time-sharing, symbolic
researchers received strong funding for their scientific objectives
of high-level programming, cognitive simulation, heuristics, and
the like.

Supported by ARPA funding, the initial leading core of sym-
bolic AI — a reduced group of researchers and their students,
working at a few prestigious centres such as MIT (Minsky’s
group), Carnegie-Mellon University, Stanford University
(McCarthy’s group), and SRI — had a privileged access to
economic and (the then so scarce) computing resources, and
consolidated their professional and organizational network.”!
ARPA’s policy favoured resource concentration at a few centres
of excellence, and selection of projects was based neither on peer
review, nor on equalizing principles for research money distribu-
tion, but on the agency’s own judgement about the best
researchers working on the best projects from the point of view of
the agency’s military goals.”

At the same time that it was backing symbolic Al explicitly,
ARPA decided — also in an explicit manner — not to fund neural-
net research. Both neural-net and symbolic Al researchers were
well aware of this, and there is no doubt that this had an impact
upon the perceptrons debate. Controversy went beyond the limits
of the scientific community, and reached the US Government
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agencies that were funding AI — mainly ONR and, above all,
ARPA. Marvin Denicoff, who worked at ONR in the early 1960s
and was also well informed about ARPA’s involvement in Al
(both agencies collaborated in some respects) told me about this:

At that time [in the 1960s], the Office of Naval Research had funds at the level
of $40K or $50K. ARPA was able to fund hundreds of thousands, or even
millions. Rosenblatt never attracted that kind of money, because he wasn’t
offering a large pay-off. By pay-off I mean not in the scientific sense, but in the
application sense, world problem solving. Again, his work was much more, I
would say, traditional science. The Office of Naval Research never gave him the
kind of money that he really required, and he was not successful in getting the
money from the Science Foundation or from ARPA. One can draw the
conclusion that if he had had the money he would have made even greater
progress. That’s too easy an answer, because it doesn’t always follow that large
amounts of money make the difference. Well before the Minsky and Papert
book came, Rosenblatt was not successful in attracting more money, that I
know for a fact.”

Jon Guice has studied the role of ARPA and the MIT-area
defence and research community in the process of closure of the
perceptrons controversy. He has documented in detail ARPA’s
decision to concentrate its IPTO funding resources on the sym-
bolic Al centres from the early 1960s (Minsky’s MIT group) and
mid-1960s (Stanford, CMU and other smaller institutions), at the
same time as it explicitly rejected applications to fund neural-net
research.”® This decision by ARPA was a very important factor in
the legitimation of symbolic Al and in the closure of the percep-
trons controversy. Guice has also pointed out the importance of an
unconventional, satirical paper entitled Artificial Intelligentsia,
written by consultant Louis Fein in 1963.7°

Fein asks the reader to imagine that a Federal agency has sent a
request to bid on research and development work in Al to four
companies. The author then includes the request to bid, the four
companies’ replies, and an evaluation of the proposals by an
external technical expert who advises the agency. Pseudonyms
are used for the agency (Bright Field), bidding companies
(Optimystica; Dandylines Enterprises; Search Limited, formerly
Search Unlimited; and Calculated Risks, Inc.) and evaluator
(J.R. ‘Bubbles’ Piercer, from Pessimyths, Inc., a consulting outfit)
The bidding companies represent different Al perspectives and
research groups: self-organization (Optimystica), neural nets
(Dandylines, which could refer to the SRI neural-net group,
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perhaps associated with other groups; it is interesting to note that
this company sees its work as a continuation of that of Rosenblatt’s
group), symbolic Al (Search Limited, formerly Search Unlimited,
which could well refer to Minsky’s MIT group) and probabilistic
and statistical pattern recognition, which can be seen as related
to neural nets (Calculated Risks, Inc.). ‘Bright Field’ could be
ARPA, and J.R. ‘Bubbles’ Piercer could be Licklider (who was
actually ARPA’s IPTO Director from 1962 to 1964).

‘Bubbles’ Piercer’s report contains some interesting points.
First, he criticizes Bright Field for failing to ask certain companies
to bid (apparently referring to certain neural-net and cybernetics
companies). Second, he criticizes the agency’s overambitious Al
goals, and maintains that Al is in a research phase, far from
development and production (he is in favour of Al as an aid to
human intelligence, rather than a replacement of it). He points out
that AI (including symbolic AI) has made many promises but so
far it has failed to deliver. Finally, although he vaguely recom-
mends some support for Calculated Risks and Dandylines (in
particular for studying learning and storage capacity in multilayer
nets), he ends by making a strong recommendation to support
Search Limited. As Guice points out, of these three perspectives
of research only the third one (symbolic Al, starting with Minsky’s
group) was actually funded by ARPA’s IPTO.

The (unusual) satirical character of this paper makes it difficult
to evaluate, but it can be taken as a (humorous) account of the
competition for ARPA funding in the early 1960s between
symbolic and other AI approaches (neural nets, and related
approaches like probabilistic pattern recognition and cybernetics).
ARPA’s decision to back symbol-processing and to reject neural
nets was a very important closure factor in the perceptrons
controversy. It is important to note that, for ARPA, symbolic and
heuristic systems were the way to go not only for ‘data interpreta-
tion and decision-making in command and control’ in general, but
also for the central areas of interest of neural-network researchers
(that is, visual pattern recognition, as applied for example to the
interpretation of satellite photographs).

The process of emergence and institutionalization of symbolic
Al as a scientific specialty was almost completed by the mid-1960s.
By then this approach had accumulated an important stock of
scientific contributions.”® At that time the perceptrons controversy
was approaching closure. From the three main early neural-net
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projects, only Rosenblatt continued his work in perceptrons.
Widrow’s Stanford University group went into telecommunica-
tions engineering applications (where they employed successfully
some of their neural-net techniques), and the SRI group started an
important mobile robot project within symbolic AI. Later,
Rosenblatt’s early death in 1971 in a sailing boat accident would
leave the neural-net field without its most charismatic leader and
advocate.

According to the official history of the controversy, after Minsky
and Papert’s study, the neural-net approach was rejected and
abandoned. Papert himself recognized the existence of ‘universal-
istic’ (all-or-none) attitudes.

Its universalism made it almost inevitable for Al to appropriate our work as a
proof that neural nets were universally bad. . . . In fact, more than half of our
book is devoted to ‘properceptron’ findings about some very surprising and
hitherto unknown things that perceptrons can do. But in a [scientific] culture set
up for global judgement of mechanisms, being understood can be a fate as bad
as death.”’

Papert recognized the existence of a ‘global judgement’ (against
neural nets) in the closure of the perceptrons controversy, and
complained that his book with Minsky was interpreted in that
sense.

According to the official history, Minsky and Papert replied to
Rosenblatt’s overclaiming and showed that progress in neural nets
was not possible — and after that this field was largely abandoned.
But if, as I have shown here, Minsky and Papert did not quite
show that, and if (as I will point out soon) neural nets were not
completely abandoned, what was the role of the official history? It
is my view that its role can only have been the legitimation of the
emergence and institutionalization of the symbolic approach,
which came to be seen as the ‘right’ approach to AI, and as
occupying the whole AI discipline. In the 1970s, symbolic AI’s
leading researchers used the ‘we are the only AI paradigm’
argument in their rhetoric, as can be seen in this quote from a
seminal paper by Newell and Simon:

The principal body of evidence for the symbolic hypothesis that we have not

considered [so far in this paper] is negative evidence: the absence of specific

competing hypotheses as to how intelligent activity might be accomplished —
whether by man or by machine.”®

Therefore the closure of the perceptrons controversy in the mid-
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1960s could well be the ‘marker event’ that Newell was looking for
in his account of the emergence of symbolic Al.

Through the early 1960s, all the researchers concerned with mechanistic
approaches to mental functions knew about each other’s work and attended the
same conferences. It was one big, somewhat chaotic, scientific happening. The
four issues I have identified — continuous versus symbolic systems, problem
solving versus recognition, psychology versus neurophysiology, and perform-
ance versus learning — provided a large space within which the total field sorted
itself out. Workers of a wide combination of persuasions on these issues could
be identified. Until the mid-1950s, the central focus had been dominated by
cybernetics, which had a position on two of the issues — using continuous
systems and orientation towards neurophysiology — but no strong position on
the other two. The emergence of programs as a medium of exploration
activated all four of these issues, which then gradually led to the emergence of a
single composite issue defined by a combination of all four dimensions
[symbolic, problem solving, psychology, performance]. This process was essen-
tially complete by 1965, although I do not have any marker event. [Later Newell
points to one more ‘issue’.] Most pattern recognition and self-organizing
systems were highly-parallel network structures. Many were modelled after
neurophysiological structures. Most symbolic-performance systems were serial
programs. Thus, the contrast between serial and parallel (especially highly-
parallel) systems was explicit during the first decade of AI. The contrast was
coordinated with the other four issues I have just discussed.”

The official history of the debate legitimated the authority struc-
ture which was emerging in Al, and was used by the élite of the
symbolic approach as a defence strategy against heterodox and
‘deviant’ interpretations and approaches.

The official history conveniently exaggerates the phenomenon
of the abandonment of neural nets. Although neural nets were
largely rejected as an approach to Al, throughout the 1970s, all
over the world, some (not many) researchers — most of them
belonging to a younger generation — continued working on neural
nets and related topics outside the Al field, in neuroscience and
psychology-oriented areas. As the Lighthill report for the UK
Science Research Council on the state of Al in the early 1970s
shows, neural-network-like research remained somewhat stronger
in Europe than in the United States.®’ Researchers who worked in
neural nets (in topics such as unsupervised learning and associative
memory) in the 1970s include Christoph von der Malsburg, David
Willshaw, Teuvo Kohonen, Geoffrey Hinton and Igor Aleksander
in Europe; Michael Arbib, Stephen Grossberg, James Anderson,
Jack Cowan and Leon Cooper in the United States; and Kunihiko
Fukushima and Shun-ichi Amari in Japan.®!
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Therefore the (inaccurate) view of the ‘abandonment of neural
nets’ can be seen as legitimating the emergence of symbolic Al,
rather than as an exact description of the result of the perceptrons
controversy. After the closure of the controversy, neural-net
activity decreased significantly and was displaced to areas outside
Al (it was considered ‘deviant’ within AI) but, contrary to the
official view, it did not completely disappear.

The Revival of Neural Nets

Studies of scientific controversies have shown that, once an
interpretation has emerged as dominant after the closure of a
controversy, time runs against the ‘losers’ as the organizational
and cognitive structures supporting the winning side develop and
institutionalize.3? As the institutionalization of a new social order
(with its resource allocation system and authority structure)
advances, it increasingly comes to be seen as the only possibility
(as a ‘natural’ order). This is why, in periods of stability, soci-
ologists employ methodological directives such as Everett
Hughes’s ‘remember that it could have been otherwise’, in order
to remind themselves of the constructed character of social reality.
Collins has employed this idea in the sociology of science.®?

In this paper, I have tried to show the interpretative flexibility of
Minsky and Papert’s proofs and arguments about the impossibility
of perceptrons. The rejection of neural nets as an approach to Al
was a contingent social process, and therefore, in principle, ‘things
could have been otherwise’. The interesting and curious thing
about neural nets is that things were actually otherwise in the
middle and late 1980s, two decades after the closure of the
perceptrons controversy. Here I can only review briefly some of
the main developments which brought about this change.3

In the early 1980s, symbolic AI went from institutionalization to
a stage of growth, applications and (the beginning of) commercial-
ization.®> International competition and interest in this specialty
increased as the US and UK governments reacted to the
announcement by the Japanese Government of its Fifth Genera-
tion Project (especially directed to areas like natural language
processing and ‘knowledge engineering’, or knowledge-based
systems). The rise of the expert systems application area in the
mid-1980s was one of the main developments of this period.®
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Developments in information technology were a major change
affecting Al. In the early 1980s, dramatic decreases in computing
costs brought about a ‘democratization’ in the access to computing
resources. As a result, as James Fleck points out, the scope for the
strong symbolic Al élite to control the development of the field
was weakened, allowing outsiders to move in and pursue their own
variants of AI research.’’” Eventually this permitted the use of
powerful computing resources to simulate until-then ‘deviant’
approaches, such as neural nets. On the other hand, since the late
1970s, researchers from a variety of fields in the human sciences
(and later in the neurosciences) had started to use the computer as
a research tool in an emerging interdisciplinary discipline called
‘cognitive science’. Although cognitive science was then based in
the symbolic approach, its interdisciplinary character helped bring
new perspectives into the computer-mind problem.

In this context, some symbolic Al researchers started to confront
the limitations of their models. Expert systems were being applied to
a great variety of problems, but symbolic AI was not so successful in
areas such as speech recognition, pattern recognition, and common-
sense and heterogeneous reasoning. Some researchers started to
look at new approaches for studying and modelling these tasks.

The conference organized in June 1979 at La Jolla (California)
by neural-net ‘veterans’ Geoffrey Hinton and James Anderson can
be seen as the first contact between researchers who had been
working in neural nets throughout the 1970s and researchers
coming from the symbolic approach, but looking for ways of
solving some of its limitations. The papers presented there were
developed and published in 1981 in a book entitled Parallel Models
of Associative Memory .28 The topics of the book are a good sample
of the perspectives which were being considered: information pro-
cessing in the brain, connectionist local nets, semantic nets, and
associative memory. Other topics which these researchers were
looking at include parallelism in vision research (for example,
interaction between many local features in the interpretation of an
image) and multiple constraint systems.® After this, the Parallel
Distributed Processing (PDP) group was formed in the University
of California-San Diego, headed by psychologists David Rumelhart
and James McClelland.

Although neural nets were not directly linked to the neuro-
sciences, increases of activity and interest in the latter in the 1980s
contributed to a more favourable context for the former. PDP and
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other researchers adopted a ‘brain-style’ style of information
processing. They argued that the information processing power of
the brain comes from its parallelism. Given the facts that neurons
are not too fast (firing frequencies range from a few to a few
hundred impulses per second) and that some complex mental
behaviour (like recognizing a face) takes 1/10 second, researchers
concluded that the brain’s information processing power must
come from its parallelism.*®

The advent of parallel computers and supercomputers in the
1980s as an attempt to overcome the speed limitations of sequen-
tial computers (separation between memory and central process-
ing unit in a von Neumann computer imposes a sequential, ‘one
operation at a time’ style of computation) added plausibility to
‘brain-style’ computation. As with the neurosciences, the con-
nection between parallel computers and neural nets was not
straightforward in the beginning; many of the most successful
neural-net experiments of the mid-1980s were done as simulations
in sequential computers. On the other hand, there are many
parallel computer architectures, and neural nets are one extreme
type (massively parallel).”! Nevertheless, increases in computer
power and speed due to parallelism will undoubtedly favour
neural-net research.”?

The work done by the PDP group (with people like Rumelhart,
McClelland, Hinton and Terrence Sejnowski) and by ‘veterans’
such as Anderson, Grossberg, Kohonen, Willshaw and von der
Malsburg started to a attract researchers from other disciplines to
the neural-net field.”*> Migration is a common phenomenon when a
new area of research is emerging.”* Researchers coming from
overpopulated areas or specialties, or having widely applicable
backgrounds such as physics or mathematics, may perceive interest-
ing or non-exploited problems and career opportunities in different,
emerging areas.

The case of John Hopfield, a physicist from the California
Institute of Technology, was particularly important.”> Hopfield
used a method of the physics of collective phenomena (the Ising
model of magnetic material, or ‘spin-glass’) in order to develop a
new neural-net architecture with symmetric connections that could
be used as an associative content-addressable memory.%®

In physical systems made from a large number of simple elements, interactions
among large numbers of elementary components yield collective phenomena
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such as the stable magnetic orientations and domains in a magnetic system. Any
physical system whose dynamics in phase space is dominated by a substantial
number of locally stable states to which it is attracted can therefore be regarded
as a content-addressable memory. The physical system will be a potentially
useful memory if, in addition, any prescribed set of states can readily be made
the stable states of the system.’

Hopfield’s model was later developed by Hinton and Sejnowski,
two of the most important researchers of the PDP group, into the
‘Boltzmann machine’ stochastic multilayer net.”® Hinton and
Sejnowski developed a learning algorithm which usually got the
best global minima and, although in the beginning it was quite
slow, they presented it as a first solution to the problem of learning
in multilayer nets.

In the Boltzmann machine, Hinton and I found a learning algorithm which
overcame the conjecture by Minsky and Papert that you couldn’t generalize the
perceptron learning algorithm to a multilayered architecture.™

A learning algorithm was discovered for the Boltzmann machine that provided
the first counterexample to the conjecture by Minsky and Papert that extensions
of the perceptron learning rule to multilayered networks were not possible.%

Both the Hopfield and the Hinton-Sejnowski cases show that
cross-fertilization and communication between neural nets and
other scientific fields (physics of collective phenomena; stochastic
techniques from statistical mechanics) was very important in the
neural-net revival.!”! Different techniques were applied to the
study of representation and learning in nonlinear dynamical neural
net systems.

After the Boltzmann net, PDP researchers Rumelhart, Hinton
and Ronald Williams developed a learning algorithm for multi-
layer feedforward (that is, perceptron-like) nets, the so-called back-
propagation algorithm. ' This contribution — the most popular of
the neural-net revival — triggered a new wave of neural-net
research. Figure 1 earlier represents the type of architecture for
which Rumelhart and his colleagues developed their technique.
The main problem for weight adjustment in multilayer nets is to
know the error made by the hidden units, in order to be able to
adjust the connections between input units and hidden units (the
error made by the output units is the difference between the real
output pattern and the desired one). The intuitive idea of back-
propagation is that the error made by a hidden unit should depend
on the errors made by the output units to which it is connected.
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These errors are back-propagated, so that the weights between
input units and hidden units can then be adjusted. In a back-
propagation net, each output unit demands from the hidden units
exactly what it needs, and the hidden units try to accommodate the
conflicting demands.'®

A very important difference between the back-propagation net
and the perceptron was the introduction of smooth or sigmoid
activation functions (in the processing units) instead of the classic
discontinuous step functions, so that it became possible to com-
pute error gradients in multilayer feedforward nets (the deriva-
tives of the error with respect to the hidden units’ output could be
calculated). This small change in the assumptions defining a neural
net made possible the study of complex systems with flexible
activation surfaces.

Small reformulations of a problem can greatly change the possibilities of making
progress. The change from threshold logic units to sigmoids might not seem like
a major reformulation, but by using continuous rather than discontinuous
functions, it became possible to generalize the Widrow-Hoff and perceptron
learning algorithms to multilayered networks.'®*

It is interesting to note that Paul Werbos developed a technique
equivalent to back-propagation in the 1970s, but found resistance
to his idea of applying it to neural nets.!*

In 1986, PDP researchers Rumelhart and McClelland sent a
report to DARPA and the National Science Foundation (NSF)
asking for funding for neural nets and warning against further
neglect of this approach.!® DARPA’s Neural Network Study, and
its subsequent decision to start support for this approach, were
especially significant because of the strong role played by this
agency in the development (and legitimation) of symbolic AI. By
the end of the 1980s, most US European and Japanese funding
agencies had launched programmes in neural nets.

In the process of legitimation of the new neural-net movement
of the late 1980s, the PDP researchers confronted the view which
had helped legitimate the symbolic approach (and delegitimize
neural nets) in the 1960s — namely, the official history of the
controversy. Rumelhart and his colleagues claimed that, even
though their back-propagation net sometimes got trapped in local
(or false) minima, in practice the system led to acceptable
solutions in ‘virtually every case’. They claimed that they had
overcome Minsky and Papert’s impossibility proofs and arguments:
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The problem, as noted by Minsky and Papert, is that whereas there is a very
simple guaranteed learning rule for all the problems that can be solved without
hidden units, namely the perceptron convergence procedure (or the variation
originally due to Widrow and Hoff, which we call the delta rule), there is no
equally powerful rule for learning in networks with hidden units. The standard
delta rule [Widrow’s LMS or delta rule algorithm] essentially implements
gradient descent in sum-squared error for linear activation functions. In this
case, without hidden units, the error surface is shaped like a bowl with only one
minimum, so gradient descent is guaranteed to find the best set of weights. With
hidden units, however, it is not so obvious how to compute the derivatives, and
the error surface is not concave upwards, so there is the danger of getting stuck
in local minima. The main theoretical contribution of this [paper] is to show that
there is an efficient way of computing the derivatives. The main empirical
contribution is to show that the apparently fatal problem of local minima is
irrelevant in a wide variety of learning tasks. Although our learning results do
not guarantee that we can find a solution. for all solvable problems, our analysis
and results have shown that as a practical matter, the error propagation scheme
leads to solutions in virtually every case. In short, we believe that we have
answered Minsky and Papert’s challenge and have found a learning result
sufficiently powerful to demonstrate that their pessimism about learning in
multilayer machines was misplaced.'”’

In a sense, PDP researchers made use of the official history for
their own benefit. They were saying something like ‘after all,
Minsky and Papert did not really show that neural nets were
impossible’. They were exploiting the interpretative flexibility of
the debate to their own benefit, but it is important to note that
they were able to do this within the process of accumulation and
cross-fertilization of the middle and late 1980s. Other people who
tried to do the same before then (like Werbos with back-
propagation, or some neural-net ‘veterans’ with other systems)
failed.!%® The official history of the debate was rewritten in order
to legitimate the ‘new order’ (resource allocation system and
authority structure) resulting from the revival of neural nets, and
its emergence as an Al research specialty.

Rumelhart and his colleagues’ claims reopened the controversy,
and Minsky and Papert reacted quickly.

We have the impression that many people in the connectionist community
do not understand that this [back-propagation] is merely a particular way to
compute a gradient and have assumed instead that back-propagation is a new
learning scheme that somehow gets around the basic limitations of hill-climbing.
. . . Virtually nothing has been proved about the range of problems upon which
GD [the generalized delta rule, or back-propagation] works both efficiently and
dependably. . . . In the early years of cybernetics, everybody understood that
hill-climbing was always available for working easy problems, but that it almost
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always became impractical for problems of larger sizes and complexities. . . .
The situation seems not to have changed much — we have seen no contempor-
ary connectionist publication that casts much new theoretical light on the
situation. . . . We fear that its [back-propagation’s] reputation also stems from
unfamiliarity with the manner in which hill-climbing methods deteriorate when
confronted with larger-scale problems. In any case, little good can come from
statements like ‘as a practical matter, GD leads to solutions in virtually every
case’ or ‘GD can, in principle, learn arbitrary functions’. Such pronouncements
are not merely technically wrong; more significantly, the pretense that problems
do not exist can deflect us from valuable insights that could come from
examining things more carefully. As the field of connectionism becomes more
mature, the quest for a general solution to all learning problems will evolve into
an understanding of which types of learning processes are likely to work on
which classes of problems.'®

As the neural-net revival advanced in the late 1980s, the
controversy about the validity and feasibility of neural nets (the
old perceptrons controversy) reopened, and there were new epi-
sodes of interpretative flexibility.!'® But this time the emergence
of neural nets as an Al specialty was unstoppable.'!! Techniques
like back-propagation were developed and applied to a wide
variety of practical problems in areas such as object and speech
recognition.!!?

Debate about the relationships between the symbolic and
neural-net approaches continued, but the most negative views
about the neural-net field were quickly overcome.!’® As both
approaches were compared and developed, the strong and weak
points of each of them was being tested in each particular problem.
After a first period of quite strong competition between the
two approaches, the situation will probably evolve into a more
normalized combination of competition and — increasingly —
cooperation.

Concluding Summary

In this paper, I have analyzed the controversy which surrounded
Rosenblatt’s Perceptron Project (and neural nets in general) in the
late 1950s and early 1960s. Attention has been focused on a
particular cognitive object: Minsky and Papert’s proofs and argu-
ments, which were interpreted as showing that further progress in
neural nets was not possible and that therefore this approach had
to be abandoned. I have distinguished two modes of articulation of
this disputed cognitive object: the research-area mode and the
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official-history mode.''* I have shown that the official-history
mode of articulation played a crucial role in the controversy.

At the research-area level, there was considerable interpretative
flexibility about Minsky and Papert’s proofs and arguments.
Scientists using different research techniques and having different
approaches and interests interpreted those results differently.
However, as the symbolic AI approach emerged and institutional-
ized, an official interpretation emerged according to which Minsky
and Papert had shown that progress in perceptrons — and in
neural nets in general — was not possible. According to this
official-history view, neural nets were abandoned in the late 1960s.

The official-history mode of articulation of the debate can be
seen as part of the discourse of legitimation of the new Al ‘order’
(with its resource allocation system and authority structure) which
emerged from the institutionalization of the symbolic approach as
a research specialty. The symbolic approach was presented as
occupying the whole AI field, and the official history of the
perceptron debate was used as a defence strategy against ‘deviant’
claims and approaches (such as neural nets). Some researchers
continued working in neural-net-related topics throughout the 1970s,
but they were displaced from the Al field.

The interpretative flexibility of the debate is further shown by
the revival of neural nets (in different circumstances) in the mid-
1980s. In the recent process of emergence and legitimation of
neural nets as an Al research specialty, the official history was
revised (PDP researchers claimed that ‘after all, Minsky and
Papert did not really show that progress in neural nets was
impossible’) as the AI field was being socially and cognitively
redefined, and a new resource allocation system and authority
structure was developing.
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