
information and computation 132, 1�63 (1997)

Exponentiated Gradient versus Gradient

Descent for Linear Predictors*

Jyrki Kivinen-

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23),

FIN-00014 University of Helsinki, Finland

and

Manfred K. Warmuth�

Computer and Information Sciences, University of California, Santa Cruz, California 95064

We consider two algorithms for on-line prediction based on a linear

model. The algorithms are the well-known gradient descent (GD) algo-

rithm and a new algorithm, which we call EG\. They both maintain a

weight vector using simple updates. For the GD algorithm, the update is

based on subtracting the gradient of the squared error made on a predic-

tion. The EG\ algorithm uses the components of the gradient in the

exponents of factors that are used in updating the weight vector multi-

plicatively. We present worst-case loss bounds for EG\ and compare

them to previously known bounds for the GD algorithm. The bounds

suggest that the losses of the algorithms are in general incomparable, but

EG\ has a much smaller loss if only few components of the input are

relevant for the predictions. We have performed experiments which show

that our worst-case upper bounds are quite tight already on simple artifi-

cial data.] 1997 Academic Press

1. INTRODUCTION

We consider a scenario in which the learner, or learning algorithm, tries to

accurately predict real-valued outcomes in a sequence of trials. In the beginning of

the tth trial, the learner receives an instance xt , which is an N-dimensional real

vector. The components xt, i of the instances are also called input variables. Based

article no. IC962612

1 0890-5401�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* An extended abstract appeared in ``Proceedings of the 27th Annual ACM Symposium on the Theory

of Computing,'' pp. 209�218, ACM Press, New York, May 1995.
- Supported by the Academy of Finland, Emil Aaltonen Foundation, and ESPRIT Project

NeuroCOLT.
� Supported by NSF Grant IRI-9123692. E-mail: manfred�cse.ucsc.edu.

on the instance xt and information received in the previous trials, the learner makes

its real-valued prediction ŷt . After this, the actual tth outcome yt is observed, and

the learner is charged for the possible discrepancy between the predicted outcome

ŷt and the actual outcome yt . The discrepancy is measured by a loss function L, for
example by the square loss function given by L(yt , ŷt)=(yt&ŷt)

2. Over a long

sequence of trials, the learner tries to minimize its total loss, which is simply the

sum of the losses incurred at the individual trials. A learning algorithm that follows

this protocol is called an (on-line) prediction algorithm.

Obviously, if no assumptions are made concerning the relation between the

instances and outcomes, there is not much a prediction algorithm can do. To set

a reasonable goal, we measure the performance of the algorithm against the perfor-

mances of predictors from some fixed comparison class P. (The comparison class is

analogous to the touchstone class of the agnostic PAC model of learning (Kearns

et al., 1994).) The algorithm is required to perform well if at least one predictor

from the comparison class performs well. At the extremes, the outcomes could be

completely random, in which case they can be predicted neither by the algorithm

nor any predictor from the comparison class P, or the outcomes might always be

completely predicted by one fixed predictor from P, in which case the algorithm

should incur only a small loss before learning to follow that predictor.

In general, the predictors p # P are arbitrary mappings from RN to R. In this

paper, we concentrate on linear predictors. To any vector u #RN we associate a linear

predictor pu , which is defined by pu(x)=u } x for x #RN. Then any set U�RN of

vectors defines a comparison class P of linear predictors by P=[pu | u #U].
Given an l-trial sequence S=((x1 , y1), ..., (xl , yl)), the total loss of the algo-

rithm is given by LossL(A, S)=�l

t=1 L(yt , ŷt), where ŷt is the tth prediction of the

algorithm. Analogously, the total loss of a predictor p is given by LossL(p, S)=
�l

t=1 L(yt , p(xt)). For linear predictors, we also use the notation LossL(u, S) for

LossL(pu , S). A very first goal could be to obtain bounds of the form

LossL(A, S)=O(inf
u #U

LossL(u, S)), (1.1)

when we allow the length l of sequences, and hence the total losses, increase

without bound. At this first stage, we simplify the presentation by keeping the num-

ber N of dimensions constant and assuming that there is some fixed subset X�RN

to which the instances xt always belong. It turns out that we can often obtain some-

thing better than (1.1). We can get the coefficient of the leading term on the right-

hand side of (1.1) down to 1 and thereby obtain

LossL(A, S)=(1+o(1)) inf
u #U

LossL(u, S), (1.2)

where the quantity o(1) approaches 0 as infu # U LossL(u, S) approaches infinity.

Thus, the bound (1.2) means that the additive additional loss LossL(A, S)&
infu # U LossL(u, S) of the algorithm grows at a sublinear rate as a function of

infu # U LossL(u, S). The asymptotic notation in (1.1) and (1.2) hides the dependence

of the total loss of the algorithm on the number N of dimensions, as well as the

2 KIVINEN AND WARMUTH

ranges U of the predictor vectors in the comparison class and the domain X of the

instances. As these dependences are usually quite important, we will later also

consider the constants not shown in the asymptotic bounds.

Note that the bounds (1.1) and (1.2) are worst-case bounds with respect to S. We

may need to assume that the instances xt belong to a restricted domain X, but we

do not assume that they are drawn from a probability measure, nor do we make

any assumptions about how the outcomes yt are related to the instances xt . If there

is no good linear predictor u for the trial sequence S, then the right-hand sides of

the bounds (1.1) and (1.2) are very large, so the bounds may not be very interest-

ing. However, the bounds always hold. This is in contrast to more common

approaches where statistical assumptions about the distribution of the instances

and the dependence of the outcomes on the instances are used in order to derive

probabilistic loss bounds for the prediction algorithm (Widrow and Stearns, 1985;

Haykin, 1991).

The research reported in this paper was inspired by Littlestone (1989b, 1988),

who proved worst-case bounds for the case when the comparison class consists of

Boolean monomials, or more generally linear threshold functions. In this case it

was assumed that the components of the instances, as well as the predictions and

the outcomes, were Boolean, and the total loss was measured by the number of

mistakes, i.e., the number of incorrect predictions made by the algorithm. More

recently, there has been some work on using an arbitrary finite comparison class

P=[p1 , ..., pN]. Predictors from a finite class are often called experts (Cesa-Bianchi
et al., 1994). Note that a finite comparison class can be considered as a comparison

class with a very restricted set of linear predictors. For i=1, ..., N, let ui #RN be the

unit vector with u ii=1 and u i
j=0 for j{i. If we replace an instance xt by the vector

x$t=(p1(xt), ..., pN(xt)), the original predictor pi , applied to the original instance xt ,

can be represented as the linear predictor pu i , applied to the new instance x$t .

Hence, instead of the original comparison class P we consider the comparison class

of linear predictors pu with u #U, where U consists of the N unit vectors u1, ..., uN.

The number of dimensions is now the number of experts, i.e., the size N of the

original comparison class. Vovk (1990) proved that for a large class of loss

functions, a simple algorithm achieves bounds of the form LossL(A, S)�
infu # U LossL(u, S)+c log N, where the constant c depends only on the loss func-

tion. Such bounds are even tighter than those of the form (1.2). However, for the

absolute loss such bounds were not obtained. Vovk (1990) and Littlestone and

Warmuth (1994) had bounds of the form (1.1) for the absolute loss. Later Cesa-

Bianchi et al. (1994) showed how these bounds could be improved to the form (1.2)

by a careful choice of certain parameters in Vovk's algorithm. Some of these results

assumed that the outcomes yt must be in [0, 1] and were generalized for con-

tinuous-valued outcomes yt # [0, 1] by Haussler et al. (1994).
In this paper, we consider proving bounds of the form (1.2) for a comparison

class of general linear predictors, rather than only predictors that choose one of the

N components of the instance. We also describe simple experiments that verify that

the worst-case bounds reflect the actual behavior of the algorithms. We have suc-

ceeded in the proofs only for the square loss (yt&ŷt)
2, although the basic ideas of

this paper can be phrased for general loss functions. The immediate predecessors of

3EXPONENTIATED GRADIENT

this work are the papers by Cesa-Bianchi et al. (1996) and Littlestone et al. (1995).
Cesa-Bianchi et al. consider the gradient descent algorithm, or the GD algorithm,

for linear predictions. This algorithm is also known as the Widrow�Hoff algorithm

and the Least Mean Squares algorithm. It is also one of the main algorithms used

in this paper. The algorithm maintains a weight vector and updates it after each

trial. The tth weight vector wt can be considered as the hypothesis the algorithm

has before trial t about the best linear predictor for the trial sequence. At trial t, the
algorithm gives the prediction ŷt=wt } xt . After receiving the outcome yt , it updates
the weight vector according to the update rule

wt+1=wt&2'(ŷt&yt) xt ,

where ' is a positive learning rate. To motivate our name GD for this algorithm,

note that the derivative of the loss (yt&wt } xt)
2 of the algorithm with respect to the

weight wt, i is given by 2(wt } xt&yt)xt, i . Hence, the update subtracts from the

weight vector the gradient {w t
(yt&wt } xt)

2 multiplied by the scalar '. The GD

algorithm can be considered as a simple application of the gradient descent

heuristic to our on-line prediction problem. Choosing the learning rate ' is non-

trivial and can significantly affect the performance of the algorithm.

We also introduce a new on-line prediction algorithm, which we call the exponen-
tiated gradient algorithm, or the EG algorithm. The EG algorithm is closely related

to the algorithm given by Littlestone et al. (1995). The EG algorithm also has a

weight vector wt and predicts with ŷt=wt } xt . The update rule is

wt+1, i=
rt, iwt, i

�N
j=1 rt, jwt, j

,

where rt, j=e&2'(ŷ t&y t) x t, j for some positive learning rate '. Thus, the ith compo-

nent of the gradient now appears in the exponent of a factor that multiplies wt, i .

The weights of the EG algorithm are positive and sum to 1. This restriction on

the weight vector clearly also restricts the predictive ability of the algorithm. There-

fore, we also introduce the exponentiated gradient algorithm with positive and
negative weights, or the EG\ algorithm. The EG\ algorithm is obtained by apply-

ing a simple transformation to the EG algorithm. The components of its weight

vector can be positive or negative. Their sum is not fixed, but the algorithm

assumes a fixed upper bound for it.

The algorithms GD and EG can be motivated using a common framework. In

making an update, the algorithm must balance its need to be conservative, i.e.,

retain the information it has acquired in the preceding trials, and to be corrective,

i.e., to make certain that if the same instance were observed again, the algorithm

could make a more accurate prediction, at least if the outcome is also the same.

Thus, with an old weight vector s, the algorithm chooses a new weight vector w

that approximately minimizes

d(w, s)+'L(yt , w } xt),

4 KIVINEN AND WARMUTH

where d(w, s) is some measure of distance from the old to the new weight vector,

L is the loss function, and the magnitude of the positive constant ' represents the

importance of correctiveness compared to the importance of conservativeness. The

measure d is typically not a metric. For the square loss function, using the squared

Euclidean distance d(w, s)= 1
2&w&s&2

2 results in the GD algorithm. The EG algo-

rithm results from using for d the relative entropy, also known as Kullback�Leibler

divergence,

dre(w, s)= :
N

i=1

wi ln
wi

si
.

This assumes that all the components si and wi are positive, and the constraints

�i si=�i wi=1 are maintained. The use of the relative entropy as a distance

measure is motivated by the Maximum Entropy Principle of Jaynes and the more

general Minimum Relative Entropy Principle of Kullback. These fundamental prin-

ciples have many applications in information theory, physics and economics. (See

Kapur and Kesavan (1992) and Jumarie (1990) for an overview.)

For our work it is central that the distance measure is used in two different ways:

first, it motivates the update rule, and second, it is applied as a tool in the analysis

of the algorithm thus obtained. By estimating the change of distance from the

weight vector wt of the algorithm to a comparison vector u at each update, it is

possible to prove the kind of worst-case loss bounds we consider here. This use of

a distance measure for obtaining worst-case loss bounds was pioneered by Little-

stone's analysis of Winnow (Littlestone, 1989b), which also employs a variant of

the relative entropy. Amari's (1994, 1995) approach in using the relative entropy for

deriving neural network learning algorithms is similar to the first use we have here

for the distance measure. The distance term in the minimized function is also some-

what analogous to regularization terms used in neural network algorithms to avoid

overfitting (Haykin, 1994).

We now discuss the actual worst-case bounds we can obtain for the GD and

EG\ algorithms. For the GD algorithm, the bounds we cite were already given by

Cesa-Bianchi et al. (1996). These include bounds of both the forms (1.1) and (1.2).

For the EG\ algorithm, we give new bounds that are strictly better than those

obtained by Littlestone et al. (1995) for their algorithm. In particular, we also have

bounds of the form (1.2), whereas Littlestone et al. (1995) had only bounds of the

form (1.1). The importance of considering both the algorithms GD and EG\ comes

from the fact that for these algorithms, the constants hidden by the notation in (1.1)

and (1.2) are quite different. To state the exact bounds, recall that for positive p,
the Lp norm for vectors x #RN is defined by &x&p=(|x1 |

p+ } } } +|xN |
p)1�p. This is

generalized for p=� by setting &x&�=max i |xi |. All the bounds that follow hold

only for the square loss, and we omit mentioning the loss function in them.

Assume now that a trial sequence S satisfies &xt&2�X, where X is a known con-

stant, but let S be otherwise arbitrary. For the GD algorithm, setting the learning

rate ' suitably results in the bound

Loss(GD, S)�2(Loss(u, S)+&u&2
2 X

2)

5EXPONENTIATED GRADIENT

that holds for all vectors u #RN (Cesa-Bianchi et al., 1996). To make the coefficient

in front of Loss(u, S) equal to 1 and thus obtain a bound of the form (1.2), the

algorithm needs before the first trial reasonably good estimates of some charac-

teristics of the whole trial sequence. These estimates help the algorithm to set the

learning rate '. In addition to the bound X, the algorithm need bounds K and U,

such that some vector u with L2 norm at most U has loss at most K. If the algo-

rithm is given before the first trial any values for the parameters K, U, and X, then
the bound

Loss(GD, S)�Loss(u, S)+2-K UX+&u&2
2 X

2 (1.3)

holds for all weight vectors u and trial sequences S such that Loss(u, S)�K and

&u&2�U hold and &xt&�X holds for all t. If the parameters K, U, and X are given

too low values, the bound (1.3) can become vacuous because the conditions for u

and S are not satisfied for any u. On the other hand if the parameters are overly

conservative, then the bound also becomes very loose. If it is not possible to obtain

satisfactory values for all the parameters before the first trial it is in some cases

possible to apply an iterative scheme for obtaining increasingly accurate estimates

for some of the mas the trial sequence proceeds. This leads to abound that is similar

to (1.3) but has slightly larger constant coefficients (Cesa-Bianchi et al., 1996).
For the EG\ algorithm, it is necessary to give as a parameter an upper bound

U for the L1 norm of the vectors u of the comparison class. Assuming now that the

instances of the trial sequence S have a bounded L� norm &xt&��X for some

known constant X, we have the bound

Loss(EG\, S)�3(Loss(u, S)+U2X 2 ln 2N)

that holds for all u #RN such that &u&1�U. As with the GD algorithm, additional

knowledge of the trial sequence helps the algorithm to choose the learning rate '
more accurately. If, in addition to U and X, the algorithm is given a parameter K,
then it achieves the bound

Loss(EG\, S)�Loss(u, S)+2 -K ln 2N UX+2U2X2 ln 2N (1.4)

for all comparison vectors u and trial sequences S such that &u&1�U and

Loss(u, S)�K hold and &xt&��X holds for all t.
Note that Lp and Lq are dual norms if 1�p+1�q=1 (Royden, 1963). Hence, the

L1 norm used for the comparison vectors and the L� norm used for the instances

in the bounds for the EG\ algorithm are dual. The norm L2 , used for both the

comparison vectors and the instances in the bounds for the GD algorithm, is its

own dual. We now show that the different pairs of dual norms in the upper bounds

for the GD and the EG\ algorithms result in certain situations in radically different

behavior for large N. For simplicity, we consider the case in which there is a perfect

linear relation between the instances and outcomes, and therefore some comparison

vector u satisfies Loss(u, S)=0. We can then take K=0 in the bounds (1.3) and

(1.4). Assume that all the other parameters are also set optimally, and write

6 KIVINEN AND WARMUTH

Xp=maxt &xt&p for p=2 and p=�. Then the bound (1.3) simplifies to

Loss(GD, S)�&u&2
2 X

2
2 and the bound (1.4) to Loss(EG\, S)�2 &u&21 X

2
� ln 2N.

For clarity, we consider two extreme cases. First, assume that u has exactly k
components with value 1 and the rest N&k components have value 0. Thus, only

k input variables are relevant for the prediction task. Assume that the instances xt

are from the set [&1, 1]N of vertices of an N-dimensional cube. Then &u&2=- k,
&u&1=k, X2=-N, and X�=1. The bounds become Loss(GD, S)�kN and

Loss(EG\, S)�2k2 ln 2N, so for N>>k the EG\ algorithm has clearly the better

bound. On the other hand, let u=(1, ..., 1), and let the instances be rows of the

N_N unit matrix. Then &u&2=-N, &u&1=N, and X2=X�=1. The bounds

become Loss(GD, S)�N and Loss(EG\, S)�N2 ln 2N, so the GD algorithm has

clearly the better bound. Thus, the bounds for GD and EG\ are incomparable, and

for large N the difference can be arbitrarily large in either direction.

The simplified scenario given above can be generalized. If only few of the input

variables are relevant for predicting the outcomes, but all the input variables take

values of roughly equal magnitudes, then the EG\ algorithm has the better bound.

The GD algorithm has the better bound if all the input variables are almost equally

relevant for predicting, and the L2 norms of the instances are not much larger than

the L� norms. This happens if most of the total weight in the instance vectors is

concentrated on the largest components. The conclusions remain similar also when

no comparison vector u achieves Loss(u, S)=0, which is the case if there is noise

in the instances or outcomes. However, the differences between the total losses of

the algorithms become less pronounced in these less pure situation.

While the preceding comparison is based purely on worst-case bounds, the con-

clusions about the relative merits of the algorithms are confirmed by experiments

on simple artificial data. This is true both with and without noise in the outcomes.

In the experiments we have also seen that the learning rates suggested by our

worst-case upper bound analysis are quite close to the optimal ones.

In particular, we have observed that the number of examples the GD algorithm

needs before it obtains an accurate hypothesis is roughly comparable to the number

N of input variables, even if almost all of the input variables are irrelevant for the

prediction task. For the EG\ algorithm, the dependence on the number of irrele-

vant input variables is only logarithmic, so doubling the number of irrelevant

variables results in only a constant increase in the total loss. It seems that the EG\

algorithm has a strong bias for hypotheses with few relevant variables. Thus, if only

few variables are needed for prediction, then the loss bound of EG\ grows sub-

linearly in the number N of the variables. The GD algorithm is biased towards

hypotheses with small L2 norm, and even if only few variables are relevant, it uses

all the dimensions in a futile search for a good predictor with a small norm.

We feel that the situation that favors the EG\ algorithm is much more natural

and likely to arise in practice. Since linear predictors are very restricted, a natural

extension would be to expand the instance xt by including as new input variables

the values fi (xt) for some suitably chosen basis functions f i . Then a linear predic-

tion algorithm could actually use a linear combination of the basis functions as its

predictor. As an example, we might include all the O(Nq) products of up to q
original input variables (Boser et al., 1992). Assuming that the input variables are

7EXPONENTIATED GRADIENT

in the range [&1, 1], this does not increase the L� norms of the instances. Assume

further that the outcomes are actually given by some degree q polynomial of the

input variables, with k terms that each have a constant coefficient of at most 1.

Then the loss bound for the EG\ algorithm after the expansion of the instances

would be O(k2q log N). However, the GD algorithm would suffer from the fact that

the expansion increases the L2 norms of the instances, and could have a loss

O(kNq). Unfortunately, expanding the instances increases the amount of computa-

tions needed in the predictions and updates.

Worst-case upper bounds have become a powerful tool in analyzing simple learn-

ing problems. The learning algorithms GD and EG\ can be directly applied to

feed-forward neural networks. For the GD algorithm, this leads to the back-

propagation algorithm. From the EG\ algorithm we obtain a neural network algo-

rithm that uses the same gradient information as the back-propagation algorithm,

but applies it in a radically different manner. We expect that some of the differences

in the behavior of the GD and EG\ algorithms for a linear neuron carry over to

feed-forward neural networks, but it seems unlikely that one could prove worst-case

bounds in this more complicated setting. For single sigmoided neurons, worst-case

bounds have been obtained recently (Helmbold et al., 1995a).
We define the basic notation in Section 2. Our main algorithms are introduced

in Section 3, and their derivations using the various distance measures are given in

Section 4. In Section 5, we prove our worst-case upper bounds for the losses of the

algorithms. Both Section 4 and Section 5 begin with a high-level description of our

approach, after which the more technical application of the ideas for the various

algorithms follows. Section 6 gives some related lower bound results. In Section 7,

we show how the algorithm and their upper bound proofs can be modified for a

generalized scenario, in which the algorithm is required to make several predictions

at once. Section 8 contains a brief discussion on converting our worst-case total loss

bounds for expected instantaneous loss bounds. Our experimental comparisons of

the algorithms are described in Section 9.

To quickly get an idea of our main results, the reader can skim through the

definitions in Section 2 and the descriptions of the algorithms in Section 3, and then

go to Section 9 for the comparison of our theoretical and empirical results for the

different algorithms. Section 4 is important for gaining intuition about the algo-

rithms. The most important theoretical results are given in Section 5.

2. PRELIMINARIES

On-line prediction algorithms function as follows. In trial t, for t=1, 2, ..., the

algorithm first receives an instance xt #R
N. After producing a prediction ŷt #R, the

algorithm receives an outcome yt #R as feedback. The performance of the algorithm

at trial t is measured in terms of a loss function L that assigns a nonnegative real

loss L(y, ŷ) to each possible outcome�prediction pair (y, ŷ) and has the property

L(y, y)=0 for y #R. For a more compact notation, we define Ly(ŷ)=L(y, ŷ).
In particular, we write L$y (ŷ) for (�L(y, z)��z)z=ŷ when ŷ is some given fixed

value. Our default loss function is the square loss, i.e., L(y, ŷ)=(y& ŷ)2. Another

8 KIVINEN AND WARMUTH

commonly used loss function, for predictions and outcomes in the interval [0, 1],

is the entropic loss function: L(y, ŷ)=y ln(y�ŷ)+(1&y) ln ((1& y)�(1& ŷ)). Here

we follow the standard convention 0 ln 0=0.

Technically, an on-line prediction algorithm is a mapping A that maps a sequence

(xi , yi), i=1, ..., t&1, of instance�outcome pairs and a new instance xt into a

prediction ŷt=A((x1 , y1), ..., (xt&1 , yt&1), xt). In this paper we only consider on-

line prediction algorithms that represent all the information they retain from the tri-

als 1, ..., t&1 by a weight vector wt and predict with ŷt=wt } xt . Then the weight

vector can be considered as the algorithm's linear hypothesis. The initial weight vec-

tor w1 is a parameter of the algorithm. At the end of each trial the algorithm

updates its previous weight vector wt into wt+1 , taking into account the instance

xt and the outcome yt as well as wt . We will discuss various update rules in this

paper.

The total loss of A on a sequence S=((x1 , y1), ..., (xl , yl)) is

LossL(A, S)= :
l

t=1

L(yt , ŷt).

We also define a total loss for a weight vector u #RN by

LossL(u, S)= :
l

t=1

L(yt , u } xt).

We omit the subscript L when we use the square loss L(y&ŷ)=(y&ŷ)2.
Our goal is to have algorithms for which the loss LossL(A, S) is low for all

possible trial sequences. Obviously, without some knowledge of the trial sequence

S, we cannot give any useful guarantees about LossL(A, S). To set a reasonable

goal for the algorithms, we consider the loss infu # U LossL(u, S) of the best linear

hypothesis in some class U�RN of weight vectors. The quantity

LossL(A, S)& inf
u #U

LossL(u, S) (2.1)

is then the additional loss of the algorithm compared to the weight vectors of the

class U. We seek algorithms with provable upper bounds on the additional loss that

hold for arbitrary sequences S. We call the set U the comparison class and the vec-

tors u #U comparison vectors. We sometimes call a particular comparison vector

u #U that has a small loss a target vector. To prove bounds for the additional loss

(2.1), we usually need to make some assumptions about the norms of the com-

parison vectors u #U, as well as about the instances xt that appear in the trial

sequence S. Observe that the infimum measures how well a linear model can do

when whole sequence is given in a advance. The on-line learner only sees one

example at a time and the additional loss over the infimum measures the price the

algorithm has to pay for not seeing the whole sequence in advance.

For any positive real p, the Lp norm for vectors x #RN is defined by

&x&p=(| x1 | p+ } } } + | xN | p)1�p. For the case p=1 we have &x&1=�N
i=1 | xi | ,

9EXPONENTIATED GRADIENT

and for case p=2 we have the Euclidean length &x&2=-�N
i=1 x

2
i of the vector x.

Besides these two norms, we also use the L� norm &x&�=maxN
i=1 | xi | , which is

obtained as a limit in the definition of Lp when p approaches �.

We have various measures of distance between two weight vectors u and w. In

applying the distance measures to be presented shortly, we usually take as u some

comparison vector and as w the hypothesis of the algorithm at some trial. In

general, a distance measure d is any function mapping RN_RN to the nonnegative

reals in such a way that d(u, u)=0 holds for all u #RN. The most basic of our

distance measures is the squared Euclidean distance dsq defined by dsq(u, w)=
1
2 &u&w&2

2 . Some distance measures we use are only defined if u and w are in a

particular subset of RN. The relative entropy is a distance measure that is only

defined when both vector are probability vectors, which means that their com-

ponents are nonnegative and sum to 1. For two probability vectors u and w, the

relative entropy dre(u, w) is defined by

dre(u, w)= :
N

i=1

ui ln
ui
wi

.

Note that we allow the components to be zero, and for that case the usual conven-

tion 0 ln 0=0 is used. If we have wi=0 and ui>0 for some i, then dre(u, w)=�.

It can be shown that dre(u, w) is always nonnegative, and 0 only if u=w.

If w=(1�N, ..., 1�N) is the uniform probability vector, then for all probability

vectors u # [0, 1]N we have dre(u, w)=ln N&H(u), where the quantity H(u)=

&�N
i=1 u i ln ui is called the entropy of the weight vector u. Every probability vector

u satisfies 0�H(u)�ln N and, hence, dre(u, w)�ln N for the uniform vector w.

We now generalize the relative entropy by removing the requirement that the

components of u and w sum to 1 but still keeping the requirement that the com-

ponents of both vectors are nonnegative. We define the unnormalized relative

entropy dreu(u, w) for all u and w in [0, �)N by

dreu(u, w)= :
N

i=1
\wi&ui+ui ln

ui
wi+ .

Note that dreu(u, w)=dre(u, w) holds when both u and w are probability vectors. It

is easy to see that dreu(u, w)�0 holds for all vectors u and w in [0, �)N and

equality holds only if u=w.

We also consider the distance measure d/ 2 (u, w) defined by

d/ 2 (u, w)=
1

2
:
N

i=1

(u i&wi)
2

wi

=
1

2 \ :
N

i=1

u2
i

wi

&1+ ,

where the second equality is based on assuming �N
i=1 ui=�N

i=1 wi=1. Because the

function f given by f (u)=w&u+u ln(u�w) has around u=w the second-order

Taylor expansion f (u)=(u&w)2�(2w)+O((u&w)3), the measure d/2(u, w) can be

considered an approximation for the measure dreu(u, w). Since ln x�x&1, it is also

easy to see that dre(u, w)�2d/2 (u, w) holds for probability vectors u and w.

10 KIVINEN AND WARMUTH

Note that none of the distance measures discussed above satisfies the triangle

inequality, and with the exception of the squared Euclidean distance dsq the dis-

tance measures are not symmetric. For the squared Euclidean distance dsq , we

clearly have dsq(u, u)�0 for all u, and dsq(u, w)>0 for all w{u. These properties

also hold for the distance measures dreu and d/2 if the vectors w and u are restricted

to have only nonnegative components, and for dre if u and w are restricted to be

probability vectors. See Helmbold et al. (1996b) for some plots that visualize the

distance measures for probability vectors in the three-dimensional case.

3. THE MAIN ALGORITHMS

In this section, we introduce the main on-line prediction algorithms we consider

in this paper. In Section 4, we give a motivation that shows how each of the algo-

rithms naturally arises from an approximate solution to a certain minimization

problem. A number of additional algorithms are also introduced in Section 4.

All the algorithms share the same basic structure. The algorithm maintains a

weight vector, which can be considered as the algorithm's guess of a good linear

predictor. We use wt to denote the weight vector of an algorithm before trial t. The
weight vector wt contains the only information the algorithm retains about the tri-

als 1, ..., t&1. The algorithm starts by setting the initial weight vector w1 to be

some start vector s. After seeing the t th outcome yt , the algorithm updates its

weight vector to wt+1 according to its update rule. The value of the new weight vec-

tor wt+1 depends on the old weight vector wt , the instance xt , the prediction ŷt ,
the outcome yt , and a learning rate '. The exact dependence is called the update rule
of the algorithm. The difference between our various algorithms is that they use dif-

ferent update rules. The learning rate ' may be different at different trials, but here

we usually keep it fixed. The prediction ŷt after seeing the instance xt at trial t is
given by ŷt=wt } xt for all the algorithms. As a small exception to this, for some of

the algorithms the predictions are restricted into a fixed interval, and if the value

wt } xt fall outside this interval, the prediction will be the closest value inside the

interval.

Figure 1 gives the algorithm which we call the gradient descent algorithm and

denote by GDL . Recall that L$y t
(ŷt)=(�L(yt , z)��z)z=ŷ t

. Notice that the i th
component of the gradient {w t

L(yt , wt } xt) is given by �L(yt , w } x)��wi=

(�L(yt , z)��z)z=w } x x i=L$y t
(w } x)xi . Thus, the gradient descent algorithm updates

the weight vector by subtracting from it the gradient {w t
L(yt , wt } xt) multiplied by

the scalar '. The GDL algorithm can therefore be seen as a straightforward applica-

tion of the usual gradient descent minimization method to the on-line prediction

problem. We let GD(s, ') denote the algorithm GDL(s, ') for the case when the

loss function L is the square loss function given by L(y, ŷ)=(y&ŷ)2. The algo-

rithm GD(s, ') has many names, including the Widrow�Hoff algorithm and the

Least Mean Square (LMS) algorithm (Cesa-Bianchi et al., 1996; Widrow and

Stearns, 1985). The update for GD(s, ') is simply

wt+1=wt&2'(ŷt&yt) xt . (3.1)

11EXPONENTIATED GRADIENT

Algorithm GDL(s, ')

Parameters:

L: a loss function from R_R to [0, �),

s: a start vector in RN, and

': a learning rate in [0, �).

Initialization: Before the first trial, set w1=s.

Prediction: Upon receiving the t th instance xt , give the prediction ŷt=wt } xt .

Update: Upon receiving the t th outcome yt , update the weights according to the rule

wt+1=wt&'L$y t
(ŷt)xt .

FIG. 1. The gradient descent algorithm GDL(s, ').

The start vector s of the algorithm can be arbitrary. Typically one would choose

s=0. As the trial sequence proceeds, the individual weights wt, i can reach

arbitrarily high and low values. A typical learning rate could be '=1�(4X 2) where

X is an estimated upper bound for the largest L2 norm maxt &xt&2 of the instances.

Later, in Theorem 5.3, we give some theoretical results about the proper choice of

' and the resulting performance of GD. As a general heuristic, the learning rate

should be low if it is expected, for example because of noise, that there is no linear

predictor u for which LossL(u, S) is low. The learning rate should be high if it is

expected that for all good linear predictors u, the distance &u&s&2 from the start

vector is large.

We also consider one particular method of letting the learning rate of GD vary

between trials. Thus, we use the name GDV(s, ') for the algorithm that is as

GD(s, ') except that the update (3.1) is replaced by

wt+1=wt&2
'

&xt&
2
2

(ŷt&yt)xt , (3.2)

assuming &xt&2>0. If &xt&2=0, the algorithm makes no update. The variable lear-

ning rate algorithm GDV is of particular interest when it is assumed that yt=u } xt

holds for some fixed unknown vector u.

We now turn to the two main new algorithms of this paper. The first, and sim-

pler, of these is given in Fig. 2. We call it the exponentiated gradient algorithm, or

EGL . In the update of EGL , each weight is multiplied by a factor rt, i that according
to (3.4) is obtained by exponentiating the ith component �L(yt , wt } xt)��wt, i=

L$y t
(wt } xt)xi of the gradient {w t

L(yt , wt } xt). After this multiplication, the weights

are normalized, as shown in (3.3), so that they sum to 1. The weights clearly never

change sign. Hence, the weight vector wt of EGL is always a probability vector, i.e.,

it satisfies �i wt, i=1 and wt, i�0 for all i. Therefore, the prediction wt } xt is a

weighted average of the input variables xt, i , and wt gives the relative weights of the

components in this weighted average. This is in contrast to the GDL algorithm,

12 KIVINEN AND WARMUTH

Algorithm EGL(s, ')

Parameters:

L: a loss function from R_R to [0, �),

s: a start vector, with �N
i=1 si=1 and s i�0 for all i, and

': a learning rate in [0, �).

Initialization: Before the first trial, set w1=s.

Prediction: Upon receiving the t th instance xt , give the prediction ŷt=wt } xt .

Update: Upon receiving the t th outcome yt , update the weights according to the rule

wt+1, i=
wt, irt, i

�N
j=1 wt, jrt, j

. (3.3)

where

rt, i=exp(&'L$y t
(ŷt) xt, i). (3.4)

FIG. 2. The exponentiated gradient algorithm EGL(s, ').

where also the total weight &wt&1 can change. The fact that the weight vector is

always a probability vector clearly restricts the abilities of EGL to learn more

general linear relationships. We shall soon see how these restrictions can be avoided

by a simple reduction.

As the GDL algorithm, the EGL algorithm has a loss function, start vector, and

a learning rate as its parameters. Again, L$y t
(ŷt)=(�L(yt , z)��z)z=ŷ t

. If the loss

function L is the square loss function, we denote EGL(s, ') simply by EG(s, '). For
the square loss, (3.4) becomes

rt, i=e&2'(ŷ t&y t) x t, i.

We assume that the start vector s also satisfies �i si=1 and si�0 for all i. The
usual choice for s is the uniform probability vector (1�N, ..., 1�N). A typical learning

rate could be '=2�(3R2), where R is an upper bound for the maximum difference

maxt(maxi xt, i&mini xt, i) between the components xt, i of an instance xt .

Analogously to the GD algorithm, the EG algorithm should have a low learning

rate if no probability vector u is assumed to be a good predictor, and a high learn-

ing rate if it is assumed that for the good predictors u the distance dre(u, s) from the

start vector is large. If s is the uniform vector (1�N, ..., 1�N), then the distance is

largest for nonuniform vectors u, having its maximum value ln N when for some i
the vector u has ui=1 and uj=0 for j{i. More detailed results about the choice

of the learning rate and the resulting total loss of EG are given in Theorem 5.10.

Before proceeding to our second main algorithm, we give a simplified alternative

for the update rule of the EGL algorithm. The alternative has the benefit of avoid-

ing the use of the exponential function and thus possibly saving some computation

13EXPONENTIATED GRADIENT

time. We use the name approximated EGL for the algorithm obtained from the EGL

algorithm by replacing the update (3.3) by

wt+1, i=wt, i (1&'L$y t
(ŷt)(xt, i&ŷt)). (3.5)

To see how the approximated update (3.5) arises, note that the first order Taylor

approximation of e&av for v close to v0 is given by e&av
re&av0(1&a(v&v0)). By

replacing the exponentials on the right hand side of (3.3) by this approximation,

with a='L$y t
(ŷt), v=xt, i , and v0=ŷt , we obtain

wt+1, i=
wt, ie

&aŷ t (1&a(xt, i&ŷt))

�N
i=1 wt, je

&aŷ t (1&a(xt, j&ŷt))
. (3.6)

We get (3.5) from (3.6) by noticing that �N
i=1 wt, j=1 and �N

i=1 wt, j (xt, j&ŷt)=0,

which makes the denominator on the right hand side of (3.6) equal to e&aŷ t.

Admittedly, it may seem somewhat arbitrary to use ŷt as the center of the Taylor

approximation for e&ax t, i. However, we shall see in Subsection 4.4 that the update

rule (3.5) also has another motivation that is not based on approximating (3.3). It

has also been noticed that in applying the exponentiated gradient update to a

certain unsupervised learning problem (Helmbold et al., 1996b, 1996c) the approx-

imation given here leads to a generalization of the Expectation Maximization

algorithm (Dempster et al., 1977).
Note that the update rule (3.5) maintains the invariant �N

i=1 wt, j=1. However,

it may make some of the weights wt+1, i zero or negative. A weight that once gets

set to 0 can never recover because of the multiplicative nature of the update, and

this might be a problem. One way to ensure that the weights remain positive after

the update (3.5) is to enforce that the learning rate satisfies

'<(L$y t
(ŷt)(xt, i&ŷt))

&1 (3.7)

for all indices i for which the quantity on the right&hand side of (3.7) is positive.

In some very preliminary experiments we have performed it seems that the per-

formance of the approximated EG is hardly distinguishable from that of the

unapproximated EG, and that there is no real problem with weights going to zero.

However, difficulties may arise in more complicated situations.

The second new algorithm, which we call the exponentiated gradient algorithm

with positive and negative weights, or EG\
L , is given in Fig. 3. The EG\

L algorithm

can best be understood as a way to generalize the EGL algorithm for more general

weight vectors by using a reduction. Given a trial sequence S, let S$ be a modified

trial sequence obtained from S by replacing each instance xt by x$t=(Ux1 , ..., UxN ,

&Ux1 , ..., &UxN). Hence, the number of dimensions is doubled. For a start

vector pair (s+, s&) for EG\
L , let s=(s+1 , ..., s+N , s&1 , ..., s&N). Consider using

EG\
L (U, (s+, s&), ') on a trial sequence S and using EGL(s, ') on the modified

trial sequence S$. If we let w$t be the t th weight vector of EGL(s, ') on the trial

sequence S$, it is easy to see thatUw$t=(w+
t, 1 , ..., w

+
t, N , w

&
t, 1 , ..., w

&
t, N) holds for all t and,

14 KIVINEN AND WARMUTH

Algorithm EG\
L (U, (s+, s&), ')

Parameters:

L: a loss function from R_R to [0, �),

U: the total weight of the weight vectors,

s+ and s& : a pair of start vectors in [0, 1]N, with �N
i=1 (s

+
i +s&i)=1, and

': a learning rate in [0, �).

Initialization: Before the first trial, set w+
1 =Us+ and w&

1 =Us&.

Prediction: Upon receiving the t th instance xt , give the prediction

ŷt=(w+
t &w&

t) } xt .

Update: Upon receiving the t th outcome yt , update the weights according to the rules

w+
t+1, i=U }

w+
t, ir

+
t, i

�N
j=1 (w

+
t, jr

+
t, j+w&

t, jr
&
t, j)

(3.8)

w&
t+1, i=U }

w&
t, ir

&
t, i

�N
j=1 (w

+
t, jr

+
t, j+w&

t, jr
&
t, j)

, (3.9)

where

r+t, i=exp(&'L$y t
(ŷt) Uxt, i) (3.10)

r&t, i=exp('L$y t
(ŷt) Uxt, i)=

1

r+t, i
(3.11)

FIG. 3. Exponential gradient algorithm with positive and negative weights EG\
L (U, (s+, s&), ').

therefore, w$t } x$t=(w+
t &w&

t) } xt . Hence, the predictions of EG\
L on S and EGL on

S$ are identical, so EG\
L is a result of applying a simple transformation to EGL .

This transformation leads to an algorithm that in effect uses a weight vector

w+
t &w&

t , which can contain negative components. Further, by using the scaling

factor U, we can make the weight vector w+
t &w&

t range over all vectors w #R for

which &w&1�U. Although &w+
t &1+&w&

t &1 is always exactly U, vectors w+
t &w&

t

with &w+
t &w&

t &1<U result simply from having both w+
t, i>0 and w&

t, i>0 for some

i. For other examples of reductions of this type, see Littlestone et al. (1995).
The parameters of EG\

L are a loss function L, a scaling factor U, a pair (s+, s&)

of start vectors in [0, 1]N with �N
i=1 (s

+
i +s&i)=1, and a learning rate '. We

simply write EG\ for EG\
L where L is the square loss function. As the start vectors

for EG\, one would typically use s+=s&=(1�(2N), ..., 1�(2N)). This gives

w+
1 &w&

1 =0. A typical learning rate function could be '=1�(3U2X2) where X is an

estimated upper bound for the maximum L� norm maxt &xt&� of the instances.

More detailed theoretical results are given in Theorem 5.11.

Again, we introduce one particular variable learning rate version of EG\. We use

the name EGV\ for the algorithm that is as EG\ except that (3.10) and (3.11) are

replaced by

15EXPONENTIATED GRADIENT

r+t, i=exp \&
2'

&xt&
2
�

(ŷt&yt) Uxt, i+ (3.12)

r&t, i=exp \
2'

&xt&
2
�

(ŷt&yt) Uxt, i +=
1

r+t, i
, (3.13)

assuming &xt&�>0. If &xt&�=0, the algorithm makes no update. Again, EGV+

turns out to be interesting in the noise-free case yt=u } xt .

As with the EGL algorithm, we can replace the exponential functions using the

approximation e&av
re&av 0(1&a(v&v0)). Here we choose a='L$y t

(ŷt)U,

v0=ŷt�U, and v=xt, i or v=&xt, i , which yields the update rule

w+
t+1, i=w+

t, i (1&'L$y t
(ŷt)(Uxt, i&ŷt)) (3.14)

w&
t+1, i=w&

t, i (1&'L$y t
(ŷt)(&Uxt, i&ŷt)). (3.15)

We call the resulting algorithm the approximated EG\
L algorithm. As with

the approximated EGL algorithm, to guarantee that the weights remain positive the

learning rate ' must satisfy

'<(L$y t
(ŷt)(Uxt, i&ŷt))

&1 (3.16)

for all i for which the right-hand side of (3.16) is positive, and

'<(L$y t
(ŷt)(&Uxt, i&ŷt))

&1 (3.17)

for all i for which the right-hand side of (3.17) is positive.

4. DERIVATION OF THE UPDATES

4.1. Basic Method

In this section, we give a common motivation for the algorithms GD and EG

introduced in Section 3, as well as some additional algorithms. Consider an algo-

rithm that before a given trial has s as its weight vector. At the trial, the algorithm

receives an instance x, gives a prediction ŷ=s } x, and receives an outcome y. The
algorithm then updates its weight vector to w. In choosing the new weight vector

w, there are two main considerations. First, the algorithm should learn something

from the trial. Thus, if the same instance and outcome were to be observed again,

the loss L(y, w } x) of the algorithm with the new weight vector should be smaller

than the loss L(y, s } x) with the old weight vector. We call the tendency to improve

the prediction on the example correctiveness. Second, the algorithm should remem-

ber at least part of what it learned in the preceding trials. Since all the information

that the algorithm has retained from the preceding trials is contained in the weight

vector s, the new weight vector should be close to the old weight vector s, as

measured by some distance measure d(w, s). We call the tendency to remain close

to the old weight vector conservativeness.

16 KIVINEN AND WARMUTH

The correctiveness and conservativeness requirements are usually at odds with

each other, so the algorithm needs to make a compromise. One way for the algo-

rithm to obtain such a compromise is to minimize a function

U(w)=d(w, s)+'L(y, w } x), (4.1)

where the coefficient '>0 is the importance given to correctiveness relative to con-

servativeness. If ' is close to 0, minimizing U(w) is close to merely minimizing

d(w, s), and hence the algorithm tends to make only small updates. In the limit

where ' approaches infinity, the problem of minimizing U(w) approaches the

problem of minimizing d(s, w) subject to the constraint L(y, w } x)=0. If we expect

that the instances or outcomes given to the algorithm are subject to noise or other-

wise unreliable, we choose a small value of ', which prohibits the algorithm from

making too radical changes based on a single trial.

To minimize U(w), we would need to set its N partial derivatives �U(w)��wi to

zero. Since �L(y, w } x)��wi=L$y (w } xt)xi , this means finding, for i=1, ..., N, the

value wi that satisfies

�d(w, s)
�wi

+'L$y (w } x)x i=0. (4.2)

Solving (4.2) for wi is, in general, very difficult. However, if we replace L$y (w } x) by

L$y (s } x) in (4.2), we get the equation

�d(w, s)
�wi

+'L$y (s } x)xi=0, (4.3)

which turns out to be easy to solve for all the distance measures d we consider. If

the update is small, i.e., if the new weight vector w is close to the old weight vector

s, then replacing L$y (w } x) by L$y (s } x), which leads from (4.2) to (4.3), gives a

reasonable approximation. Thus, we apply in our algorithms update rules that

result from solving (4.3) for wi with various distance measures d.
Helmbold et al. (1996b, 1996c) give an alternative motivation for (4.3). Recall

that our goal is to minimize U(w), and that solving this minimization problem

exactly is difficult because both d(w, s) and L(y, w } x) depend on w. To simplify the

dependence of L(y, w } x) on w we approximate L(y, w } x) with its first-order

Taylor polynomial with respect to w around w=s. In other words, instead of mini-

mizing U(w) we minimize its approximation U� (w) defined by

U� (w)=d(w, s)+'(L(y, s } x)+L$y (s } x) x } (w&s)).

Now the equation �U� (w)��wi=0 simplifies to (4.3).

Of course, instead of approximating U with U� and then solving the minimization

problem for U� exactly, we could apply some numerical method directly to find an

approximate minimum for U. It is not clear whether this would results in a better

17EXPONENTIATED GRADIENT

prediction performance, but it certainly would make the computations more com-

plicated.

For another view to the meaning of minimizing U, assume that there is a unique

weight vector w$ such that that U(w) is minimized for w=w$, and write

p=L(y, w$ } x). Thus, p is a real number that depends on ', y, s, and x. When '
approaches �, the relative importance of L(y, w } x) in U(w) increases and hence

p approaches 0. It is the easy to see that w$ is also the unique solution to the con-

strained problem of minimizing d(w, s) subject to L(y, w } x)�p. Hence, the

optimal weight vector w$ can be seen as obtained from moving from s into a region

of low loss, defined by the condition L(y, w } x)�p, along the shortest possible

route. For large values of ', the value p is close to 0 and the new weight vector is

required to be almost correct for the received instance and outcome. For small

values of ', the value p is slightly less than L(y, s } x), so the weight vector is made

to make only a small corrective movement. This approach to updating a weight

vector is similar to the methods introduced by Amari (1994, 1995) for more general

neural network learning problems.

In the next subsections we derive the updates of this paper using the method

described above with the distance measures dsq , dre , dreu , and d/2 . Sometimes, in

particular with the distance measure dre , we wish to guarantee the additional

property �N
i=1 wi=1. We do this by the usual method of introducing a Lagrangian

multiplier #. Hence, instead of minimizing U� we minimize U� defined by

U� (w, #)=d(w, s)+'(L(y, s } x)+L$y (s } x) x } (w&s))+# \\ :
N

i=1

wi+&1+ .

Setting the N+1 partial derivatives of U� to zero gives us the equations

�d(w, s)
�wi

+'L$y (s } x) xi+#=0 (4.4)

for i=1, ..., N and the additional equation

:
N

i=1

wi=1. (4.5)

Thus, when the additional constraint �N
i=1 wi=1 is needed, we solve for i=1, ..., N

Eqs. (4.4) instead of (4.3) and then apply (4.5) to obtain the value for #.

4.2. Gradient Descent Algorithms

The gradient descent algorithm GDL is obtained by using the squared Euclidean

distance dsq as the distance measure. For this case, Eqs. (4.3) result in the update

wi=si&'L$y (s } x)x i , (4.6)

which is the update rule for the GDL algorithm.

18 KIVINEN AND WARMUTH

Note that if the loss function is the square loss, the gradient descent update

becomes

w=s&2'(s } x&y)x.

For the square loss and the squared Euclidean distance we can also minimize U(w)

directly without making any approximations. In this case, (4.2) becomes

w=s&2'(w } x&y)x. (4.7)

From (4.7), one can solve for w } x by first taking the dot product of both sides with

x. If w } x is substituted back into (4.7), one gets

w=s&
2'

1+2' &x&2
2

(s } x&y)x. (4.8)

Thus, minimizing U(w) gives the same update as minimizing U� (w), except that the
learning rate parameter is changed in a manner that is independent of w.

If we use the squared Euclidean distance together with the constraint that the

weights wi must sum to 1, we obtain an algorithm GPL that is known as the

gradient projection algorithm (Luenberger, 1984). For this case, Eq. (4.4) implies

wi=si&'L$y (s } x) xi&#. (4.9)

By substituting (4.9) into (4.5) and using the assumption �N
i=1 si=1, we obtain

#=&'L$y (s } x) avg(x), where avg(x)= :
N

i=1

xi �N.

Substituting this back into (4.9) gives us the update rule

wi=si&'L$y (s } x)(xi&avg(x)). (4.10)

for the GPL algorithm. We introduce GPL in this paper for the purpose of com-

parison to our new algorithm EGL which also maintains the constraint that the

weight sum to 1. Actually the new algorithm EGL also keeps the weights positive.

One can keep the weights of GPL positive as well by setting a suitable upper bound

for the learning rate as we did for the approximated EGL and EG\
L algorithms in

Section 3.

4.3. Exponential Gradient Algorithms

We now use the relative entropy distance measures dreu and dre . Both measures

assume that the weight vectors have non-negative components, and dre(w, s)

19EXPONENTIATED GRADIENT

requires that the components of the weight vectors sum to one. Substituting d=dreu
in (4.3) gives us

ln
wi

si
+'L$y (s } x)x i=0.

By solving for wi , we obtain the update rule

wi=si exp(&'L$y (s } x)xi). (4.11)

We call the algorithm with this update rule the exponentiated gradient algorithm
with unnormalized weights and denote it by EGUL . The update rule of the EGUL

algorithm is like the update rule of EGL , except for the normalization in the update

rule for EGL . Assuming that the components of s are nonnegative, the components

of the updated weight vector w are nonnegative as well. Thus, the nonnegativity

constraints are always preserved by this update.

Consider now the distance measure dre , which requires the constraint �N
i=1 wi=

�N
i=1 si=1. For this case, Eq. (4.4) becomes

ln
wi

si
+1+'L$y (s } x) x i+#=0,

from which we obtain

wi=si exp(&'L$y (s } x) xi&1&#).

Hence, wi=siri exp(&#&1) where

ri=exp(&'L$y (s } x)x i).

Applying (4.5), we obtain exp(&#&1)=(� N
j=1 sjrj)

&1. Hence, the update rule is

wi=
siri

�N
j=1 sjrj

.

Note that the update rule keeps the weights wi positive if the weights si are positive.

4.4. Approximated Exponential Gradient

In Section 3, we introduced a simple approximation (3.5) for the update rule of

the EG algorithm. We next show that we can motivate the update rule (3.5) of the

approximated EG algorithm starting directly from a distance measure, as we

already did for the GD and EG algorithms. Hence, the approximated EG algorithm

seems to have some interest in its own right. We use the distance measure d/ 2 to

motivate the approximated EG algorithm. As noted in Section 2, d/2 (w, s)

approximates dreu(w, s) if w and s are close to each other. We first look at the

restricted case with �N
i=1 wi=�N

i=1 si=1. In this case, we obviously can also

approximate dre(w, s) by d/ 2 (w, s).

20 KIVINEN AND WARMUTH

For the distance function d/ 2 , Eq. (4.3) becomes

wi

si
&1+'L$y (s } x) xi+#=0.

Solving for wi , and for # that gives �N
i=1 w i=1, we get from this

wi=si (1&'L$y (s } x)(x i&s } x)),

which is the update rule (3.5) of the approximated EG algorithm. The non-

negativity of the weights wi is guaranteed if we bound the learning rate by requiring

'<(L$y (s } x)(x i&s } x))&1

to hold for all i such that L$y (s } x)(x i&s } x) is positive. Since the update is multi-

plicative, a component si that is zero will stay at zero. Therefore, we should not

allow wi to be set to 0.

We can use the measure d/ 2 also when the sums �N
i=1 si and �N

i=1 wi are not

necessarily 1. Omitting the normalization constraint from the previous derivation

gives us the update rule

wi=si (1&'L$y (s } x)x i),

which is an approximation to the update rule of the EGU algorithm. In a simple

unsupervised learning problem for learning mixture coefficients it has been noticed

that the distance measure d/2 can also be used to motivate a generalization of the

Expectation Maximization (EM) optimization method (Helmbold et al., 1996b,

1996c).

In summary, we have seen that there are two different ways of arriving at the

same approximated EG algorithm. First, one can approximate the exponential

function in the update rule of EG. Second, one can use the d/2 distance measure,

which is an approximation for the relative entropy dre , to derive an algorithm in the

same manner the relative entropy was used to derive the EG algorithm.

4.5. The Approximation Step in the Derivations

In the following sections, we prove that learning algorithms based on the preced-

ing semi-rigorous motivations actually perform well for the square loss. We prove

worst-case square loss bounds for all algorithms introduced in this section, except

for the approximated versions of the exponentiated gradient updates. However,

experimental results suggest that the approximated version of the exponentiated

gradient updates behave very closely to the actual exponentiated gradient updates.

(See Subsection 9.5.)

We have been unable to prove worst-case loss bounds expressed as a function of

the loss of the best linear weight vector for other loss functions than the square loss.

In fact, we have reason to believe that the step of evaluating the derivative

21EXPONENTIATED GRADIENT

�L(y, z)��z=L$y (z) at z=s } x instead of z=w } x may lead to bad results par-

ticularly if the loss function is unbounded. For example, let L be the relative

entropy loss. We then have

L$y (z)=&
y
z
+

1&y
1&z

.

For 0<y<1, the value L$y (z) changes dramatically as z approaches 0 or 1. Hence,

if the prediction s } x was very close to 0 or 1, then the value L$y (s } x) may not be

close to the value L$y (w } x), even if w and s were relatively close to each other.

Therefore, the approximation made in the derivation of the algorithms may be very

inaccurate.

To see the possible consequences of using the algorithms based on the ques-

tionable approximation, consider the algorithm EGL for the relative entropy loss in

a simple two-dimensional case with x=(0, 1) and s=(1&p, p) for some p. Then
s } x=p. As p approaches 0 and y remains fixed to, say 1�2, the value

exp(&'L$y (p)xi) approaches � for i=2, but remains 1 for i=1. Hence, if we write

w=(1&q, q) for the weight vector w after the update, we see that q approaches 1

as p approaches 0. Similarly, if p approaches 1, then q approaches 0. Thus, if at

some stage of the trial sequence the weight vector get too close to (0, 1) or (1, 0),

the consequent updates cause the weight vector to oscillate wildly, even if the out-

comes remain constant. This eventually leads to arbitrarily large losses for the algo-

rithm, although a fixed linear predictor might have a very small loss.

We believe that for linear prediction with the relative entropy loss and other

unbounded loss functions, better prediction results can be obtained by solving the

minimization problem for U(w) numerically. However, we have no results on this.

Obviously, the numerical solving would increase the computational cost of the

algorithm.

5. WORST CASE UPPER BOUNDS FOR THE TOTAL LOSS

5.1. Basic Method

We next introduce the basic method used in our proofs for worst case upper

bounds for the losses of on-line prediction algorithms. The method is an abstraction

of the proof method employed by Littlestone (1989b, 1990) and others (Littlestone

et al., 1995; Cesa-Bianchi et al., 1996). In the subsequent subsections, we show how

this basic idea can be applied to the specific algorithms introduced in Section 3. We

have succeeded in this application only for the square loss function, but we hope

it could also be applicable to other loss functions. In a simpler situation, where the

learner is not trying to learn a linear function but merely to pick out the best single

component of the instances for predicting the outcomes, it has been possible to use

a similar approach to prove bounds for a very general class of loss functions (Vovk,

1990). As noted in Section 4, the algorithms can be motivated by applying a dis-

tance measure to the weight vectors maintained by the algorithms. These distance

22 KIVINEN AND WARMUTH

measures will also be useful in proving worst-case loss bounds. They have a role

similar to that of potential functions in amortized algorithm analysis (Cormen

et al., 1990).
Let w1 , ..., wl be the sequence of weight vectors produced by an algorithm A on

an N-dimensional trial sequence S=((x1 , y1), ..., (xl , yl)), and let ŷt be the tth
prediction of A. Then ŷt=wt } xt holds for the algorithms we consider, except in

some special cases where we constrain the range of ŷt . For convenience, we assume

that the algorithm makes an update even after the last trial, although the resulting

weight vector wl+1 is never used for predicting. Let d be a distance measure and

L a loss function. Given a weight vector u #RN, we say that d(u, wt)&d(u, wt+1)

is the amount of progress made by the algorithm at trial t towards u. Negative

progress towards u means actually moving away from u. Naturally, u must be in the

domain of the distance measure d. For instance, u must satisfy u # [0, 1]N and

�i ui=1 if d(u, w)=dre(u, w).
In a single trial, we would expect the algorithm to make positive progress

towards those vectors u that made an accurate prediction, and negative progress

towards those vectors u that predicted inaccurately. This is reflected in the motiva-

tion of the algorithms, where our goal is to move the weight vector towards those

weight vectors that made an exactly correct prediction. Over a whole sequence of

trials, we would expect the net effect to be that the algorithm makes positive

progress towards those vectors u for which the total loss LossL(u, S) is relatively

small, and negative progress towards those vectors u for which the total loss

LossL(u, S) is relatively large.

Consider first the special case that for some particular vector u we have yt=u } xt

for all t, and hence LossL(u, S)=0. We then say u is the target vector, and the algo-

rithm should try to find it. We could require that the progress towards the target

u at trial t should be proportional to the loss of the algorithm at trial t. This is a

specific way of saying that the algorithm should learn from its mistakes. Generally,

we wish to allow the situation that LossL(u, S)>0 holds for all u. Then there is no

obvious target vector for the algorithm to try to approach. However, we can

require that at each trial t, for all weight vectors u, the progress of the algorithm

towards u is at least aL(yt , ŷt)&bL(yt , u } xt) for some positive coefficients a and

b. Thus, the algorithm should make large progress towards those weight vectors

that predicted much more accurately than the algorithm did.

Hence, we try to establish bounds of the form

aL(yt , ŷt)&bL(yt , u } xt)�d(u, wt)&d(u, wt+1), (5.1)

which we require to hold for all weight vectors u that we consider as possible

targets. Proving bounds of this form is the main technical problem in this paper. To

get the tightest bound, we would wish a to be as large and b to be as small as possible

in (5.1). Expectedly, there is a trade&off, and for any given positive value b there

is some largest value of a for which we can prove (5.1). It turns out to be con-

venient to introduce a new parameter, c, and two functions, f and g, such that for

all values c>0 if we take b=g(c), then a=f (c) is the largest value of a for which

we can prove (5.1). To obtain (5.1) for a=f (c) and b= g(c), the learning rate '

23EXPONENTIATED GRADIENT

must be set in a particular manner that depends on the value c. The bound for the

total loss of the algorithm follows by adding the bounds (5.1) with a=f (c) and

b=g(c) for t=1, ..., l, which yields

f (c) LossL(A, S)&g(c) LossL(u, S)� :
l

t=1

(d(u, wt)&d(u, wt+1))

=d(u, w1)&d(u, wl+1)

�d(u, s),

since w1=s and d(u, wl+1)�0. Hence, we have

LossL(A, S)�
g(c)
f (c)

LossL(u, S)+
d(u, s)
f (c)

. (5.2)

Note that (5.2) holds for all possible weight vectors u, although we naturally get the

best bound if u has a small loss and is close to the start vector. The final step in

the proof is to choose the value c that minimizes the right-hand side of (5.2) and,

hence, gives the tightest bound. For the functions f, we obtain in our proofs, it is

always the case that as c approaches 0, the ratio g(c)� f (c) approaches 1 and 1� f (c)
approaches infinity; as c goes to infinity, the ratio g(c)� f (c) also goes to infinity

while 1� f (c) approaches some positive constant. Therefore, the larger the loss

LossL(u, S) is compared to the distance d(u, s), the smaller value of c we wish to

use. For the particular functions f and g we have in this paper, choosing c in the

optimal way gives bounds of the form

LossL(A, S)�inf
u

(LossL(u, S)+c1 -LossL(u, S) d(u, s)+c2d(u, s)). (5.3)

The coefficients c1 and c2 can depend on the norms of the instances xt .

Since the learning rate ' for which (5.2) is achieved depends on c, and the bound

(5.3) is obtained only by choosing c based on some estimates on LossL(u, S) and
d(u, s) for a suitable target u, we do not directly obtain the bound (5.3) in the

absence of such estimates. However, if such estimates are not known before the trial

sequence begins, it is in some situations possible to use an iterative method, com-

monly known as the doubling technique (Cesa-Bianchi et al., 1994; Cesa-Bianchi
et al., 1996), for obtaining increasingly accurate estimates as the trial sequence

proceeds and modifying the learning rate accordingly. This leads to bounds of the

form (5.3), but with slightly worse constant coefficients. Another possibility is to

settle for weaker bounds of the form

LossL(A, S)�c3 inf
u

(LossL(u, S)+d(u, s)) (5.4)

that has a coefficient c3>1 for the leading term LossL(u, S). The weaker bounds

can be achieved without any additional knowledge.

24 KIVINEN AND WARMUTH

5.2. Worst-Case Loss Bounds for GD

In this subsection we give a streamlined version of the worst-case analysis of the

GD algorithm. The analysis was originally presented by Cesa-Bianchi et al. (1996).
We start by bounding the loss of the algorithm at a single trial in terms of the loss

of a comparison vector u at that trial and the progress of the algorithm towards u.

Lemma 5.1. Let wt be the weight vector of GD(s, ') before trial t in a trial
sequence S=((x1 , y1), ..., (xl , yl)), and let u #RN be arbitrary. Let t be arbitrary,
and let X be such that &xt&2�X. For all values a and b such that 0<a�
b�(1+2X2b), and a learning rate ' that satisfies '=b�(1+2X2b), we have

a(yt&wt } xt)
2&b(yt&u } xt)

2� 1
2 (&u&wt&

2
2&&u&wt+1&

2
2). (5.5)

For any values a and b such that 0<b�(1+2 &xt&
2
2b)<a, for any learning rate '

there are trial sequences S and vectors u #RN such that (5.5) does not hold.

Proof. Write pt=yt&wt } xt and qt=yt&u } xt . For wt+1=wt+2'ptxt we then

have

1
2 (&u&wt&

2
2&&u&wt+1&

2
2)=&2'pt(wt } xt&u } xt)&2'2 &xt&

2
2 p2

t

�&2'pt(qt&pt)&2'2X 2p2
t .

Here equality holds if X=&xt&2 . Hence, to prove (5.5), it is sufficient to show

F(pt , qt , ')�0, where

F(pt , qt , ')=2'pt(qt&pt)+2'2X2p2
t+ap2

t&bq2
t .

Further, if X=&xt&2 , then F(pt , qt , ')�0 is also a necessary condition for (5.5).

We now omit the subscript t from the formulas. As F(p, q, ') is a second degree

polynomial in q and b is positive, we easily see that for a fixed p and ', the value

F(p, q, ') is maximized when q='p�b. Hence, it is sufficient to show for all p that

G(p, ')�0, where

G(p, ')=F(p, 'p�b, ')=p2((2X2+1�b) '2&2'+a).

Again, we easily see that for fixed p the value G(p, ') is minimized if we choose

'=b�(1+2X2b). For this optimal choice we get

G(p, b�(1+2X2b))=
p2

1+2X2b
(2X2ab+a&b).

Thus, if 0<a�b�(1+2X 2b)=', we have G(p, ')�0, and (5.5) holds. If

b�(1+2X 2b)<a, then for all values of ' we have F(p, q, ')>0 for some p and q.
Since we can easily construct a trial sequence S and a vector u for which

25EXPONENTIATED GRADIENT

yt&wt } xt=p and yt&u } xt=q hold, this shows that (5.5) does not hold if

X=&xt&2 and b�(1+2X2b)<a. K

Note that the expression b�(1+2X2b) used to give the learning rate in Lemma

5.1 is similar in form to the expression '�(1+2' &x&22) that appears in the place of

the learning rate in (4.8). Therefore, by the remarks preceding (4.8), we see that the

new weight vector wt+1 chosen by the GD algorithm with the learning rate

b�(1+2b &xt&
2
2) suggested by Lemma 5.1 is the vector w for which the value

1
2&w&wt&

2
2+b(yt&w } xt)

2

is minimized.

The next simple lemma shows how repeated application of Lemma 5.1 to all the

trials of a sequence gives a total loss bound. We introduce a new parameter c for

the purpose of choosing the values of a and b in the applications of Lemma 5.1.

Lemma 5.2. Let S=((x1 , y1), ..., (xl , yl)) be an arbitrary trial sequence. Let
'=c�(X 2(1+2c) where c>0 is an arbitrary parameter and X>0 an upper bound
such that &xt&2�X holds for all t. For all start vectors s #RN, and comparison
vectors u #RN we then have

Loss(GD(s, '), S)�(1+2c) Loss(u, S)+\1+
1

2c+ &u&s&2
2 X

2. (5.6)

Proof. Let b=c�X 2 and a=b�(1+2X2b)=c�(X2(1+2c)). Let wt be the tth
weight vector of GD(s, ') on the trial sequence S. Then (5.5) holds by Lemma 5.1,

and therefore

c
1+2c

(yt&wt } xt)
2&c(yt&u } xt)

2�
X2

2
(&u&wt&

2
2&&u&wt+1&

2
2). (5.7)

By adding the bounds (5.7) for t=1, ..., l we get

c
1+2c

Loss(GD(s, '), S)&c Loss(u, S)�
X2

2
(&u&w1&

2
2&&u&wl+1&2)

�
&u&w1&

2
2 X

2

2
,

which is equivalent with (5.6). K

We now show how the final loss bounds are obtained by choosing the parameter

c in Lemma 5.2 appropriately. If we have no knowledge of the relative magnitudes

of the loss Loss(u, S) of the comparison vector u and the product &u&s&2
2 X

2, we

can choose c in such a way that the coefficients of these quantities become the

same. If we have some estimates of these quantities, we obtain a tighter bound by

choosing c in such a way that the larger quantity gets a smaller coefficient.

26 KIVINEN AND WARMUTH

Theorem 5.3. For a trial sequence S=((x1 , y1), ..., (xl , yl)), let X>0 be an
upper bound such that &xt&2�X holds for all t. With the learning rate '=1�(4X 2)

and an arbitrary start vector s #RN, we have for any vector u the bound

Loss(GD(s, '), S)�2(Loss(u, S)+&u&s&2
2 X

2). (5.8)

Further, let K and U be arbitrary constants, and let the learning rate ' satisfy

'=
U

2X -K+2UX 2
. (5.9)

Then for all u #RN such that Loss(u, S)�K and &u&s&2�U hold, we have

Loss(GD(s, '), S)�Loss(u, S)+2-K UX+&u&s&2
2 X

2. (5.10)

Note that the second bound becomes vacuous if there is no u #RN such that

Loss(u, S)�K and &u&s&2�U. The typical start vector for GD is s=0. For that

start vector, U is an upper bound on the L2 norm of u.

Proof. We first apply Lemma 5.2 with c=1�2. For this value we have 1+2c=
1+1�(2c)=2, so the bound (5.6) gives (5.8). The bound (5.6) with c=1�2 holds for

the learning rate '=(1�2)�(X2(1+1))=1�(4X2) as required.

To obtain (5.10), we first notice that for K and U that satisfy the assumptions of

the theorem, the bound (5.6) implies

Loss(GD(s, '), S)�Loss(u, S)+&u&s&2
2 X

2+F(c), (5.11)

where F(c)=2cK+U2X2�(2c). Assume first that K>0. As F$(c)=
2K&U2X2�(2c2), we then have F$(c)=0 for c=UX�(2 -K). Since F"(c)>0 for

all c, the value F(c) is minimized for c=UX�(2 -K). Substituting this value of c
into (5.11) yields (5.10).

In the special case K=0, we also have Loss(u, S)=0, and hence the right-hand side

of (5.11) has the limit &u&s&2
2 X

2 as c approaches infinity. Let us denote by 'c the
learning rate 'c=c�(X2(1+2c)). Lemma 5.2 now implies limc�� Loss(GD(s, 'c), S)�
&u&s&22 X

2. Let now '�=limc�� 'c=1�(2X2). Since the loss Loss(GD(s, '), S) is
a continuous function of the learning rate ', we obtain

Loss(GD(s, '�), S)= lim
c��

Loss(GD(s, 'c), S)�&u&s&2
2 X

2,

which is the results we claim for K=0. K

We can perform a simple dimension check to see that the learning rates given in

Theorem 5.3 are, to an extent, meaningful. Assume, for instance, that the input

variables xt, i represent times measured in seconds, and the outcomes yt represent
lengths measured in meters. Then also the unit of the predictions ŷt=wt } xt should

be 1 meter, so the unit of the weights wt, i should be 1 meter per second. More

generally, let the dimension of the input variables be [x] and the dimension of the

27EXPONENTIATED GRADIENT

outcomes [y]. Then the dimension of the weights in [x]&1 [y]. By considering

the update rule (3.1) we see that the dimension of the learning rate ' should be

[x]&2. Since the dimensions of X, K, and U are [x], [y]2, and [x]&1 [y], respec-
tively, we see that this is indeed the case. It is also true that all the terms on the

right-hand side of the bounds (5.8) and (5.10) have the same dimension as the loss

of the algorithm, namely [y]2.
Note that this analysis assumes that all the input variables have the same dimen-

sion. If this is not the case, and we change the unit used to measure certain input

values while keeping other units unchanged, then the behavior of the algorithm is

changed.

Recall that by GDV we mean the algorithm that works as GD except that the

learning rate ' has been replaced by '�&xt&2 , in other words, the update rule (3.1)

has been replaced by (3.2). We now see that the GDV algorithm is particularly well

suited for prediction if the losses at each trial are suitably scaled. Thus, consider

measuring the loss at trial t by (yt&ŷt)
2�&xt&

2
2 , assuming &xt&2>0. We ignore

trials with &xt&2=0; this is justified, since at such a trial the GDV algorithm by our

definition makes no update, and all linear predictors make the same prediction

ŷt=0. Let Loss$ denote the loss of an algorithm or a comparison vector on a trial

sequence measured by this scaled square loss. Given a trial sequence S=
((x1 , y1), ..., (xl , yl)), we consider the modified trial sequence S$=((x$1 , y$1), ...,
(xl , yl)), where x$t=xt�&xt&2 and y$t=yt �&xt&2 . Since

(ŷt&yt)
2

&xt&
2
2

=
(xt } wt&yt)

2

&xt&
2
2

=\
xt

&xt&2
} wt&

yt

&xt&2+
2

,

we have Loss$(u, S)=Loss(u, S$) for all u. Note that (3.2) is equivalent with

wt+1=wt&2'(wt } x$t&y$t) x$t ,

which implies that the weight vectors of GDV(s, ') on the trial sequence S are

the same as the weight vectors of GD(s, ') on the trial sequence S$. Hence,

Loss$(GDV(s, '), S)=Loss(GD(s, '), S$). Therefore, Theorem 5.3 applied to the

trial sequence S$, in which &x$t&2=1 for all t, gives the following corollary.

Corollary. Let S=((x1 , y1), ..., (xl , yl)) be an arbitrary trial sequence. For
arbitrary start vector s #RN and comparison vector u, we have

Loss$(GDV(s, 1�4), S)�2(Loss$(u, S)+&u&s&22).

Further, let K and U be arbitrary constants, and let the learning rate be

'=
U

2 -K+2U
.

Then for all u #RN such that Loss$(u, S)�K and &u&s&2�U hold, we have

Loss$(GDV(s, '), S)�Loss$(u, S)+2 -K U+&u&s&2
2 .

28 KIVINEN AND WARMUTH

The GDV algorithm can also be applied in the situation in which we assume the

trial sequence to be noise-free, e.g., yt=u } xt for all t.

Theorem 5.5. Let u #RN be arbitrary, and consider a trial sequence S=
((x1 , y1), ..., (xl , yl)) in which yt=u } xt holds for all t. We then have

Loss(GDV(s, 1�2), S)�&u&s&2
2 max

t
&xt&

2
2 and

Loss$(GVD(s, 1�2), S)�&u&s&2
2 , (5.12)

for all start vectors s.

Proof. First note that if at trial t we have &xt&2=0, then yt=u } xt=wt } xt=0

regardless of u and wt , and the algorithm makes no update. Hence, without loss of

generality we can assume that &xt&2>0 holds for all t.
Let c�0 be an arbitrary parameter, and let wc

t be the t th weight vector of

GDV(s, c�(1+2c)) on trial sequence S. By applying Lemma 5.1 with X=&xt&2 and

b=c�&xt&
2
2 and assuming yt=u } xt , we get

1

&xt&
2
2

c
1+2c

(yt&wc
t } xt)

2�
1

2
(&u&wc

t &
2
2&&u&wc

t+1&
2
2).

Let wt be the t th weight vector of GDV(s, 1�2) on trial sequence S. By considering

the limit where c approaches �, we see that

(yt&wt } xt)
2�&xt&

2
2 (&u&wt&

2
2&&u&wt+1&

2
2).

In particular, we have &u&wt&
2
2&&&u&wt+1&

2
2>0, and we get

(y t&wt } xt)
2�(max

t
&xt&

2
2)(&u&wt&

2
2&&u&wt+1&

2
2).

By adding these inequalities for t=1, ..., l and observing that &u&wl+1&2�0, we

get the first inequality of (5.12). The second inequality is proven similarly. K

5.3. Worst-Case Loss Bounds for GP

In this subsection, we show how the worst-case upper bounds for the square loss

of the GD algorithm imply similar bounds for the GP algorithm, which uses the

update rule (4.10). Let avg(x)=�N
i=1 xi �N, and let avg(x) denote the N-dimen-

sional vector in which each component has the same value avg(x). Then for the

square loss, the update rule (4.10) becomes

wt+1=wt&2'(ŷt&yt)(xt&avg(xt)),

where ŷt=wt } xt . The new weight vector wt+1 satisfies �N
i=1 wt+1, i=�N

i=1 wt, i .

Hence, if the GP algorithm uses a start vector s with �N
i=1 s i=W, then the algo-

rithm maintains the invariant �N
i=1 wt, i=W for all trials t.

29EXPONENTIATED GRADIENT

Consider now applying the algorithm GP(s, '), with �N
i=1 si=W, to a trial

sequence S=((x1 , y1), ..., (xl , yl)). Define a modified trial sequence S$ by S$=
((x$1 , y$1), ..., (xl , yl)), where x$t=xt&avg(xt) and y$t=yt&W avg(xt). Then it

is easy to see that the weight vectors of the algorithm GD(s, ') on the trial

sequence S$ are the same as the weight vectors of the algorithm GP(s, ') algorithm
on the trial sequence S. Further, if ŷt is the t th prediction of GP(s, ') on the trial

sequence S, then the tth prediction of GD(s, ') on the trial sequence S$ is given

by ŷt&W avg(xt). Hence, Loss(GP(s, '), S)=Loss(GD(s, '), S$). By applying

Theorem 5.3, we obtain the following bounds.

Corollary 5.6. For a trial sequence S=((x1 , y1), ..., (xl , yl)), let V be an
upper bound such that &xt&avg(xt)&2�V holds for all t. With the learning rate
'=1�(4V 2) and an arbitrary start vector s #RN, we have for all vectors u such that
�N

i=1 ui=�N
i=1 si the bound

Loss(GP(s, '), S)�2(Loss(u, S)+&u&s&2
2 V

2). (5.13)

Further, let K and U be arbitrary constants, and let

'=
U

2V -K+2UV 2
.

Then for all u #RN such that �N
i=1 u i=�N

i=1 si , Loss(u, S)�K, and &u&s&2�U
hold, we have

Loss(GP(s, '), S)�Loss(u, S)+2-K UV+&u&s&2
2 V

2. (5.14)

Thus, if the values xt, i are concentrated close to their average value avg(x t), but

the average values avg(xt) are large, and we know the value �N
i=1 ui for the

comparison vectors u we wish to use, then the GP algorithm can make use of this

additional knowledge and incur a lower loss than the GD algorithm would.

As with the GD algorithm, we define for GP a variant GPV with variable

learning rates. The update rule of GPV is

wt+1=wt&2
'

&xt&avg(xt)&
2
2

(ŷt&yt)(xt&avg(xt)),

and we have the following upper bound.

Theorem 5.7. Let u #RN and s #RN be such that �N
i=1 ui=�N

i=1 si , and consider
a trial sequence S=((x1 , y1), ..., (xl , yl)) in which yt=u } xt holds for all t. We then
have

Loss(GPV(s, 1�2), S)�&u&s&2
2 max

t
&xt&avg(xt)&

2
2 . (5.15)

30 KIVINEN AND WARMUTH

5.4. Worst-Case Loss Bounds for EG

In this subsection, we give worst-case upper bounds for the loss of the EG algo-

rithm, which was derived in Section 4 using the relative entropy as a distance

measure. Similar bounds were earlier proven by Littlestone et al. (1995) for their

algorithm, which is related to ours but does not have an analogous derivation. Our

bounds are lower than those of Littlestone et al. In particular, we have bounds of

the form (5.3), which seem unobtainable for the algorithm of Littlestone et al.
Again, we start by proving an upper bound for the loss of the algorithm at a

single trial in terms of the loss of a comparison vector u and the progress of the

algorithm at that trial.

Lemma 5.8. Let wt be the weight vector of EG(s, ') before trial t in a trial
sequence S=((x1 , y1), ..., (xl , yl)), and let u # [0, 1]N be a vector with �i u i=1.

Consider an arbitrary trial t. Let R>0 be an upper bound such that
maxi xt, i&mini xt, i�R. For any constants a and b such that 0<a�2b�(2+R2b),
and a learning rate '=2b�(2+R2b), we have

a(yt&wt } xt)
2&b(yt&u } xt)

2�dre(u, wt)&dre(u, wt+1). (5.16)

Proof. Let ;t=e2'(y t& ŷ t). Then wt+1, i=wt, i;
x t, i
t �� j wt, j;

x t, j
t , and we have

dre(u, wt)&dre(u, wt+1)= :
N

i=1

ui ln
wt+1, i

wt, i

= :
N

i=1

uixt, i ln ;t&ln :
N

i=1

wt, i;
x t, i
t .

Hence, (5.16) is equivalent with F(wt , xt , wt } xt , yt , u } xt , ;t)�0 where (omitting

now the subscript t)

F(w, x, ŷ, y, r, ;)=ln :
N

i=1

wi;
x i&r ln ;+a(y&ŷ)2&b(y&r)2 (5.17)

and ;t=e2'(y t&ŷ t).

Let now B be such that B�xt, i�B+R holds for 1�i�N. We then have

0�(xt, i&B)�R�1 for 1�i�N. The bound :x�1&x(1&:) holds for :�0 and

0�x�1, and is tight for x=0 and x=1. By applying this with :=;R, we obtain

;x i=;B(;R) (x i&B)�R�;B \1&
xi&B
R

(1&;R)+ .

Using the above gives us

ln :
N

i=1

wi;
x i�B ln ;+ln \1&

w } x&B
R

(1&;R)+

31EXPONENTIATED GRADIENT

when �N
i=1 w i=1. Hence, we get F(w, x, w } x, y, r, ;)�G(w } x, y, r, ;), where

G(ŷ, y, r, ;)=B ln ;+ln \1&
ŷ&B
R

(1&;R)+&r ln ;+a(y&ŷ)2&b(y&r)2.

Note that the inequality is tight if, for instance, N=2 and x=(B, B+R).

To obtain (5.16), it is now sufficient to show that G(ŷ, y, r, ;)�0 holds

for all values of ŷ, y, and r, when ;=e2'(y& ŷ) with '=2b�(2+R2b). Since

�2G(ŷ, y, r, ;)��r2=&2b<0, the value G(ŷ, y, r, ;) is maximized when r is such

that �G(ŷ, y, r, ;)��r=0. Solving this gives r=y&ln ;�(2b). In particular, for

;=e2'(y& ŷ), we see that proving G(ŷ, y, r,e2'(y& ŷ))�0 for r=y+'(ŷ&y)�b
implies G(ŷ, y, r, e2'(y& ŷ))�0 for all values r. For r=y+'(ŷ&y)�b we have

G(ŷ, y, r, e2'(y&ŷ))=H(ŷ, y) where

H(ŷ, y)=2'B(y& ŷ)+ln \1&
ŷ&B
R

(1&e2'R(y&ŷ))+
&2'y(y&ŷ)+\a+

'2

b + (y&ŷ)2.

It remains to show that H(ŷ, y)�0. We apply the bound ln(1&q(1&e p))�

pq+p2�8, which holds for 0�q�1 and p #R (Helmbold et al., 1996b, Lemma 1).

We get H(ŷ, y)�S(ŷ, y) where

S(ŷ, y)=2'B(y&ŷ)+2'R(y&ŷ)
ŷ&B
R

+
1

8
(2'R(y&ŷ))2

&2'y(y&ŷ)+\a+
'2

b + (y&ŷ)2

=
(y&ŷ)2

2b
((2+R2b) '2&4b'+2ab).

Therefore, it remains to show Q(')�0 where Q(')=(2+R2b) '2&4b'+2ab. We

easily see that Q(') is minimized for '=2b�(2+R2b), and that for this value of '
we have Q(')�0 if and only if a�2b�(2+R2b). K

As with the GD algorithm, we can combine the bounds for individual trials to

give a bound for the total loss of the algorithm. We introduce a parameter c, which
is later chosen in a suitable way to balance the two terms in the loss bound.

Lemma 5.9. Let S=((x1 , y1), ..., (xl , yl)) be an arbitrary trial sequence and
R>0 an upper bound such that maxi xt, i&mini xt, i�R holds for all t. Let c be an
arbitrary positive constant, and let '=2c�(R2(2+c)). Then for any start vector
s #RN and comparison vector u #RN, we have the bound

Loss(EG(s, '), S)�\1+
c
2+ Loss(u, S)+\

1

2
+

1

c+ R2dre(u, s). (5.18)

32 KIVINEN AND WARMUTH

Proof. Let b=c�R2 and a=2b�(2+R2b)=2c�(R2(2+c)). Let wt be the tth
weight vector of EG(s, ') on the trial sequence S with '=a. Then (5.16) holds by

Lemma 5.8, and therefore

2c
2+c

(yt&wt } xt)
2&c(yt&u } xt)

2�R2(dre(u, wt)&dre(u, wt+1)). (5.19)

By adding the bounds (5.19) for t=1, ..., l, we get

2c
2+c

Loss(EG(s, '), s)&c Loss(u, S)�R2(dre(u, s)&dre(u, wl+1))�R2dre(u, s),

which is equivalent with (5.18). K

We now obtain actual loss bounds for the EG algorithm by choosing a suitable

value c in Lemma 5.9. The simplest way is to balance the terms proportional to the

loss of the comparison vector u and to the distance dre(u, s). If we have estimates

K and D for these quantities, we can do a more careful analysis of the trade-off and

obtain a tighter bound.

Theorem 5.10. For a trial sequence S=((x1 , y1), ..., (xl , yl)), let R>0 be a
bound such that maxi xt, i&mini xt, i�R holds for all t. Let '=2�(32). For any start
vector s # [0, 1]N and comparison vector u # [0, 1]N with �n

i=1 si=�N
i=1 ui=1, we

have the bound

Loss(EG(s, '), S)�
3
2 (Loss(u, S)+R2dre(u, s)). (5.20)

Further, let K and D be arbitrary constants, and let

'=
2-S

- 2K+E2 -D
. (5.21)

If then additionally Loss(u, S)�K and dre(u, s)�D hold, we have

Loss(EG(s, '), S)�Loss(u, S)+ - 2KD+
R2dre(u, s)

2
. (5.22)

Typically, we apply EG with the start vector s=(1�N , ..., 1�N). In this case, we

have dre(u, s)=ln N&H(u), where H(u)=&�N
i=1 ui ln ui is the entropy of u. Since

the entropy is always positive, we then have dre(u, s)�ln N.

Proof. We apply Lemma 5.9. With the choice c=1, the bound (5.18) simplifies

to (5.20), and the bound is achieved by applying the learning rate '=2�(3R2).

Let now K and D be such that Loss(u, S)�K and dre(u, s)�D. Then (5.18)

implies

Loss(EG(s, '), S)�Loss(u, S)+
R2dre(u, s)

2
+F(c), (5.23)

33EXPONENTIATED GRADIENT

where F(c)=Kc�2+R2D�c. Assume first that K>0. As F$(c)=K�2&R2D�c2, we
then have F $(c)=0 for c=R- 2D�K. Since F"(c)>0 for all c, the value F(c) is

minimized for c=R - 2D�K. Substituting this value of c into (5.23) yields (5.22).

The special case K=0 follows by considering the limit where c approaches �. K

As for the GD algorithm, a simple dimension analysis provides a crude check for

the learning rates given in Theorem 5.10. First note that due to the update, the

weights wt, i of the EG algorithm are always dimensionless. This is a natural conse-

quence of requiring their sum to be 1. Hence, the predictions ŷt have the same

dimension as the input variables xt, i , and therefore the outcomes yt must also have

this dimension. Let [x] denote this common dimension. Then the dimension of the

learning rate ' must be [x]&2 in order to make the exponent in the update factor

rt, i=e2'(y t&ŷ t) x t, i dimensionless. This is true for the learning rates given in Theorem

5.10, since the quantity D is dimensionless and the quantities R and -K have the

dimension [x].
Note that EG requires that the start vector and the hypotheses are probability

vectors. By doubling the number of components we can allow negative weights as

well. The resulting algorithm EG\ is our main competitor for the standard gradient

descent algorithm GD. The EG\ algorithm still requires a parameter U such that

we use only comparison vectors u with &u&1�U. Let u #RN be an arbitrary weight

vector. We define two weight vectors with only positive weights, u+ and u&, by

setting u+
i =u i if ui>0 and u+

i =0 otherwise, and u&
i =&u i if ui<0 and u&

i =0

otherwise. Then u=u+&u&. Given an instance vector x #RN, if we define u$=

(u+
1 , ..., u+

N , u&
1 , ..., u&

N) # [0, �)N and x$=(x1 , ..., xN ,&x1 , ...,&xN) #R
N, we have

u$ } x$=u } x. Thus, the 2N-dimensional vector u$ with only positive weights

represents the same linear function as u, assumed that the instances x are duplicated

before taking the dot product with the weight vector.

For the vector u$ defined above, we have &u$&1=&u&1 . If we wish to define a

weight vector u" with &u"&1=U>&u&1 , we can simply set ui"=ui$+(U&&u&1)�(2N)

for i=1, ..., 2N. That is, we distribute the excess weight U&&u&1 uniformly to the

components of u". We can also distribute the excess weight non-uniformly. We need

to only maintain the relations ui"&u"i+N=ui for i=1, ..., N. Thus, given a weight

vector u #RN with &u&1�U, we say that a vector u" # [0, U]2N is a norm U
representation of u if &u"&1=U and u i"&u"i+N=u i for i=1, ..., N. We now see how

this reduction can be used to obtain an upper bound for the loss of the EG\ algo-

rithm, with positive and negative weights, from the known upper bounds for the

EG algorithm.

Theorem 5.11. Let S=((x1 , y1), ..., (xl , yl)) be a trial sequence and X>0 a
bound such that &xt&��X holds for all t. Let u #RN be an arbitrary weight vector
with &u&1�U, and let u$ # [0, U]2N be an arbitrary norm U representation for u. Let
s=(s+, s&) # [0, 1]N_[0, 1]N be a pair of start vectors with �N

i=1 (s
+
i +s&i)=1,

and let s$=(s+1 , ..., s+N , s&1 , ..., s&N). For the learning rate '=1�(3U2X2) we have

Loss(EG\(U, s, '))�3(Loss(u, S)+U2X 2dre(u$�U, s$)). (5.24)

34 KIVINEN AND WARMUTH

Further, let K and D be positive constants, and let

'=
-D

UX - 2K+2U2X 2 -D
.

For all weight vectors u #RN and all norm U representations u$ of u, if Loss(u, S)�K
and dre(u$�U, s$)�D hold, we have

Loss(EG\(U, s, '), S)�Loss(u, S)+2UX - 2KD+2U2X 2dre(u$�U, s$). (5.25)

Finding a norm U representation u$ of u that minimizes the relative entropy

dre(u$�U, s$) seems to be nontrivial. However, for the uniform start vector this relative

entropy is always at most ln 2N, and using D=ln 2N leads to reasonable bounds.

Proof. We define a new trial sequence S$=((x$1 , y1), ..., (x$l , yl)) by setting

x$t=(Uxt, 1 , ..., Uxt, N , &Uxt, 1 , ..., &Uxt, N). The algorithm EG\ has been defined

in such a way that the predictions produced by EG\(U, s, ') on the trial sequence

S are the same as those produced by EG(s$, ') on the trial sequence S$. In

particular, Loss(EG\(U, s, '), S)=Loss(EG(s$, '), S$). We further note that

Loss(u$�U, S$)=Loss(u, S) and maxi x$t, i&mini x$t, i=2U &xt&� for all t. Therefore,
the bound (5.25), and the learning rates that achieve this bound, follow directly

from the corresponding part of Theorem 5.10.

To obtain (5.24), we apply Lemma 5.9 to the trial sequence S$ and comparison

vector u$�U with R=2UX. Then the bound (5.18) yields

Loss(EG\(U, s, '), S)�\1+
c
2+ Loss(u, S)+\2+

4

c+ U2X2dre(u$�U, s$),

and the bound (5.24) follows by choosing c=4. The resulting learning rates satisfies

'=1�(3U2X2). K

To check the dimension of the learning rates, let again the dimension of the input

variables be [x] and of the outcomes [y]. Then the dimension of the weights wt, i ,

and of the parameter U, is [x]&1 [y]. The update includes exponentiating the

value 2'(yt&ŷt) Uxt, i . Hence, this value should be dimensionless, which means

that the dimension of the learning rate ' should be [y]&2. Since the quantity D in

Theorem 5.11 is dimensionless, and the quantity K has dimension [y], this is the

case for the learning rates given in Theorem 5.11.

Recall that we defined the algorithm EGV\ as a modification of EG\ in which

' is replaced by '�&xt&� in the update after trial t; in other words, the formulas

(3.10) and (3.11) are replaced by (3.12) and (3.13). Like with GD and GDV, there

are some situations in which we can obtain loss bounds for EGV\ from our

bounds for EG\. First, we can obtain an upper bound for the scaled loss Loss$

defined for a weight vector u by

Loss$(u, S)= :
l

t=1
\
yt&u } xt

&xt&� +
2

,

35EXPONENTIATED GRADIENT

and generalized to define Loss$(EG\(U, s, ')) is the obvious manner. Here we

again omit from the loss calculation the trials with &xt&�=0. A reduction

analogous to the one applied to obtain Corollary 5.4 gives the following result.

Corollary 5.12. Let S=((x1 , y1), ..., (xl , yl)) be an arbitrary trial sequence.
Let u #RN be an arbitrary vector, with U a bound such that &u&1�U,

and let u$ # [0, U]2N be an arbitrary norm U representation for u. Let
s=(s+, s&) # [0, 1]N_[0, 1]N be a start vector pair with �N

i=1 (s
+
i +s&i)=1, and

let s$=(s+1 , ..., s+N , s&1 , ..., s&N). We then have

Loss$(EGV\(U, s, 1�(3U2)), S)�3(Loss$(u, S)+U 2dre(u$�U, s$)).

Further, let K and U be arbitrary constants, and let

'=
-D

U- 2K+2U2 -D
.

Then for all u #RN such that Loss$(u, S)�K and dre(u$�U, s$)�U hold, we have

Loss$(EGV\(s, '), S)�Loss$(u, S)+2U - 2KD+2U2dre(u$�U, s$).

Second, we can apply EGV\ in the noise-free case.

Theorem 5.13. Let u #RN be an arbitrary vector, with U a bound such that
&u&1�U, and let u$ # [0, U]2N be an arbitrary norm U representation for u. Consider
a trial sequence S=((x1 , y1), ..., (xl , yl)) in which yt=u } xt holds for all t. Let
s=(s+, s&) # [0, 1]N_[0, 1]N be a start vector pair with �N

i=1 (s
+
i +s&i)=1, and

let s$=(s+1 , ..., s+N , s&1 , ..., s&N). We then have

Loss(EGV\(U, s, 1�(2U2)), S)�2U2(max
t

&xt&�)2 dre(u$�U, s$) and

Loss$(EGV\(U, s, 1�(2U 2)), S)�2U 2 dre(u$�U, s$).

Proof. The proof is analogous with the proof on Theorem 5.5; we omit the

details. K

5.5. Worst-Case Loss Bounds for EGU

We now consider the EGU algorithm introduced in Subsection 4.3. This algo-

rithm uses a multiplicative update similar to that of the EG algorithm. The dif-

ference to the EG algorithm is that in the EGU algorithm, the total weight

�N
i=1 wt, i is not kept constant. Accordingly, the EGU algorithm is useful when we

wish to allow comparison vectors u for which the norm &u&1 is not known.

For the EGU algorithm, we have been able to prove worst-case loss bounds of

the form (5.3) only in the case that all the outcomes and the input variables are

positive, and the comparison vectors have only positive components. Preliminary

experiments suggest that the algorithm works well also when the input variables

can be negative, but much work remains to be done on this. For our proof it is also

necessary to restrict the range of the predictions and outcomes. Thus, we give an

36 KIVINEN AND WARMUTH

additional parameter Y to the algorithm, with the understanding that the outcomes

are in the range [0, Y]. We write EGU(s, Y, ') for the EGU algorithm that has a

start vector s and learning rate function ', and predicts with ŷt=wt } xt if wt } xt�Y
holds and with ŷt=Y otherwise.

As usual, we start with a technical lemma.

Lemma 5.14. Let wt be the tth weight vector and ŷt the t th prediction of
EGU(s, Y, ') in a trial sequence S=((x1 , y1), ..., (wl , yl)), and let u # [0, �)N be
arbitrary. Consider an arbitrary trial t. Let X>0 be such that 0�xt, i�X holds
for all i, and assume that 0�yt�Y holds. For constants a and b such that
0<a�b�(1+2XYb), and the learning rate '=b�(1+2XYb), we have

a(yt&wt } xt)
2&b(yt&u } xt)

2�dreu(u, wt)&dreu(u, wt+1). (5.26)

For any constants a and b such that 0<b�(1+2XYb)<a and for any learning rate
function ', there are a weight vector wt , comparison vector u # [0, �)N, and an out-
come yt such that (5.26) does not hold for N=2 and xt=(0, X).

The proof of Lemma 5.14 is similar to the proof of Lemma 5.8, but somewhat

more complicated; for details, see the Appendix.

As with the algorithms GD and EG, we now combine the single trial bounds

given by Lemma 5.14.

Lemma 5.15. Consider a trial sequence S=((x1 , y1), ..., (xl , yl)) with xt # [0, X]N

and yt # [0, Y] for all t for some constants X>0 and Y>0. Let c be an arbitrary
positive constant, and let '=c�(XY(1+2c)). Then for all start vectors s # [0, �)N

and comparison vectors u # [0, �)N we have the bound

Loss(EGU(s, Y, '), S)�(1+2c) Loss(u, S)+\2+
1

c+ XYdreu(u, s). (5.27)

Proof. For t=1, ..., l, let b=c�XY and a=b�(1+2XYb)=c�(XY(1+2c)). Let
wt be the t th weight vector of EGU(s, Y, ') on the trial sequence S with ' such that

'(xt)=a. Then (5.26) holds by Lemma 14, and therefore

c
1+2c

(yt&wt } xt)
2&c(yt&u } xt)

2�XY(dreu(u, wt)&dreu(u, wt+1)). (5.28)

By adding the bounds (5.28) for t=1, ..., l, we get

c
1+2c

Loss(EGU(s, Y, '), S)&c Loss(u, S)

�XY(dreu(u, s)&dreu(u, wl+1))

�XYdreu(u, s),

which is equivalent with (5.27). K

37EXPONENTIATED GRADIENT

Finally, we show suitable values for c for obtaining good loss bounds from

Lemma 5.15.

Theorem 5.16. Consider a trial sequence S=((x1 , y1), ..., (xl , yl)) with
xt # [0, X]N and yt # [0, Y] for all t for some constants X and Y. With the learning
rate '=1�(3XY) and an arbitrary start vector s # [0, �)N, we have for any vector
u # [0, �)N the bound

Loss(EGU(s, Y, '), S)�3(Loss(u, S)+XYdreu(u, s)). (5.29)

Further, let K and D be arbitrary constants, and let

'=
-D

- 2KXY+2XY -D
. (5.30)

If then additionally Loss(u, S)�K and dreu(u, s)�D hold, we have

Loss(EGU(s, Y, '), S)�Loss(u, S)+2 - 2KXYD+2XYdreu(u, s). (5.31)

Proof. We apply Lemma 5.15. With the choice c=1, the bound (5.27) simplifies

to (5.29), and we get '=1�(3XY). Let now K and D be such that Loss(u, S)�K
and dreu(u, s)�D. Assume first K>0. Then (5.27) implies

Loss(EGU(s, Y, '), S)�Loss(u, S)+2XYdreu(u, s)+F(c), (5.32)

where F(c)=2Kc+XYD�c. Then F$(c)=2K&XYD�c2, and F$(c)=0 for c=
-XYD�(2K). Since F"(c)>0 for all c, the value F(c) is minimized for

c=-XYD�(2K). Substituting this value of c into (5.32) yields (5.31), and the

learning rate ' for this c satisfies (5.30). In the special case K=0 we consider limits

as c approaches infinity, as we did in the proof of Theorem 5.3. K

To check the dimensions of the learning rates, let the dimension of the input

variables be [x] and of the outcomes [y]. Then the quantity 2'(yt&ŷt)xt, i that

appears exponentiated in the update rule is dimensionless if the dimension of ' is

[x]&1 [y]&1. In Theorem 5.16, the dimension of the quantity D is [x]&1 [y] and

the dimension of K is [y]2, so the learning rates satisfy this condition.

6. LOWER BOUNDS

We first consider the case where the instances xt and the target u satisfy norm

constraints &u& p�U and &xt&q�X for some p and q in R+_ [�], but the out-

comes yt can be arbitrary. Recall that the norms Lp and Lq are dual if 1�p+1�q=1.

Hence, the L2 norm is its own dual, and the L1 norm is the dual of L� norm. If

the norms Lp and Lq are dual, then the Cauchy�Schwartz Inequality can be

generalized to show that &u& p�U and &x&q�X together imply |u } x|�UX
(Royden, 1963).

38 KIVINEN AND WARMUTH

Theorem 6.1. Let p, q #R+_ [�]. Let A be an arbitrary on-line prediction
algorithm, and let K, U, and X be arbitrary positive reals. Then for all N #N+ there
are an instance x #RN with &x&q=X, an outcome y #R, and a comparison vector
u #RN with &u& p=U, such that for the 1-trial sequence S=((x, y)) we have
Loss(u, S)=K and

Loss(A, S)�K+2cNUX -K+(cNUX)2

where cN=N1&1�p&1�q. In particular, if 1�p+1�q=1 then cN=1, and if 1�p+1�q<1

then limN�� cN=�.

Proof. We define two potential target vectors u+=(UN&1�p, ..., UN&1�p) and

u&=&u+ , and an instance vector x=(XN&1�q, ..., XN&1�q). Then &u+&p=

&u&&p=U, &x&q=X, and u } x=UXN1&1�p&1�q. Let ŷ be the prediction of the algo-

rithm A, when it sees the instance x at the first trial. We further choose

y=UXN1&1�p&1�q+-K if ŷ�0 and y=&UXN 1&1�p&1�q&-K otherwise. Then

either Loss(u+ , S)=K or Loss(u& , S)=K. Since LossL(A, S)�y2, we get the

stated bound. K

The special case p=q=2 of Theorem 6.1 was noted already by Cesa-Bianchi

et al. (1996). The lower bound given in Theorem 6.1 for this case coincides with the

upper bound given in Theorem 5.3 for the GD algorithm. Hence, the GD algorithm

has the best obtainable worst case loss bound.

Note that in Theorem 6.1, K cannot be made arbitrarily large without also

making the absolute value of the outcome arbitrarily large. The following lower

bound, also from Cesa-Bianchi et al. (1996), shows that if the number N of dimen-

sions can be arbitrarily large, then again the loss bound for GD is the best possible,

even if range of the outcomes is restricted. For a comparison vector u and instances

xt , the range of the outcomes is [&UX, UX], where U=&u&2 and X=maxt &xt&2 .

Since UX=max[u } x | &u&2=U, &x&2=X], this is a natural range for the out-

comes.

Theorem 6.2. Let U, X, and K be arbitrary positive reals, and let the dimension
N be at least (1+-K�(UX))2. Let A be an arbitrary on-line prediction algorithm.

There is a comparison vector u #RN, with &u&2=U, and a trial sequence S=
((x1 , y1), ..., (xN , yN)), with xt # [&X, X]N and yt # [&UX, UX] for all t, such that
Loss(u, S)=K and

Loss(A, S)�K+2UX -K+(UX)2.

Consider now the lower bound of Theorem 6.1 for p=1 and q=�, which is the

case related to the EG\ algorithm. The lower bound has cN=1 for all N. However,

the upper bound for the EG\ algorithm in Theorem 5.11 includes the factors - 2D
and 2dre(u$�U, s), which can grow logarithmically in N. Thus, for large N there is

a significant gap between the upper and lower bounds. We would like to know if

it is possible to improve the upper bounds by eliminating the ln N factors. In the

general case, we have had no success in solving this problem. We now present two

39EXPONENTIATED GRADIENT

partial results that hint that our upper bounds may be reasonably tight. We con-

sider the upper bounds for the simpler EG algorithm, from which the bounds for

EG\ are obtained via a reduction. If we were able to improve the bounds for EG,

then an improvement for EG\ would automatically follow.

The following result of Littlestone et al. (1995) shows that in the case

Loss(u, S)=0, a factor ln N in the loss of the algorithm cannot be avoided. For

simplicity, we consider only the case xt # [0, 1]
N. For the case Loss(u, S)=K>0,

the lower bound in this results does not come close to the upper bound, as it does

not contain a term proportional to -K. It remains an open question whether the

-K term can be avoided if the range of the outcomes is [&UX, UX].

Theorem 6.3. Let k and N be positive integers, with k�N. Let K be an arbitrary
positive real, and let A be an arbitrary on-line prediction algorithm. There is a target
vector u # [0, 1]N, with �N

i=1 ui=1, and a trial sequence S=((x1 , y1), ..., (xl , yl)),
with xt # [0, 1]

N and yt # [0, 1] for all t, such that Loss(u, S)=K and

Loss(A, S)�K+
ln N&ln k

4 ln 2
&

1

2
.

The comparison vectors u used in the proof Theorem 6.3 contain k components

with value 1�k, with the rest of the components having the value 0. Hence, for the

uniform vector s=(1�N, ..., 1�N) we have dre(u, s)=ln N&ln k.
The next theorem shows that if we consider only upper bounds of the form used

in Theorem 5.10, then the constant coefficients given in the theorem are optimal.

However, this leaves open the possibility that smaller coefficients could be obtained

by inserting, for example, an additive constant term.

Theorem 6.4. Let A be an arbitrary prediction algorithm and let s=(1�2, 1�2). If
p and q are constants such that

Loss(A, S)�Loss(u, S)+p -Loss(u, S) dre(u, s)+qdre(u, s) (6.1)

holds for all non-trial sequences S=((x1 , y1)) with x1 # [0, 1]
2 and y1 # [0, 1], and all

weight vectors u # [0, 1]2 with �N
i=1 ui=1, then p�- 2, and if p=- 2 then q�1�2.

Proof. We take x1=(0, 1) as the only instance in the sequence. Then the predic-

tion of A at the first trial must be 1�2, or the weight vector u=s=(1�2, 1�2) would
violate the assumptions of the theorem for the outcome y=1�2. Consider now

u=(1�2&=, 1�2+=) for 0<=<1�4. Let the outcome of the trial be y=3�4+=. Then
Loss(u, S)=1�16 and Loss(A, S)=1�16+=�2+=2. On the other hand, we have

dre(u, s)=ln 2+(12+=) ln(12+=)+(12&=) ln(12&=)=2=2+O(=4),

and hence - dre(u, s)=- 2=+O(=3). Therefore, in the case Loss(u, S)=1�16 the

right-hand side of (6.1) can be expanded as

1

16
+

p - dre(u, s)
4

+qdre(u, s)=
1

16
+

p - 2

4
=+2q=2+O(=3).

40 KIVINEN AND WARMUTH

Therefore, (6.1) cannot hold for for small = unless p and q satisfy the stated

bounds. K

7. BATCH PREDICTIONS

We consider generalizing the prediction problem into a setting in which at each

trial, the prediction algorithm predicts for each of a batch of several instances and

then receives the outcomes for all these instances. A generalized trial sequence is a

sequence ((M1 , y1), ..., (Ml , yl)), where for each t we have Mt #R
m t_N and yt #R

m t

for some mt . We define Mt, i to be the ith column of the t th instance matrix Mt .

A prediction algorithm for generalized trial sequences is defined as with usual trial

sequences, except that now the t th prediction ŷt is a vector in Rm t. To measure the

loss of an algorithm, we now need a loss function from Rm_Rm to [0, �). Here

we consider only the square loss function defined by L(y, ŷ)=&y&ŷ&2 . The notions

of the loss of an algorithm or a weight vector on a trial sequence are defined in the

obvious way.

All of the algorithms introduced in Section 3 can be converted for generalized

trial sequences in a straightforward manner. The predictions ŷt=wt } xt are

naturally replaced by ŷt=Mtwt . In the updates, we replace the derivatives

�L(yt , wt } xt)

�wt, i

=Ly t
(wt } xt)xt, i (7.1)

by

�L(yt , Mtwt)

�wt, i

=\
�L(yt , z)

�z +z=M tw t

}Mt, i . (7.2)

In particular, for the square loss the generalization of the GD algorithm, which we

call the GDM algorithm, has the update rule

wt+1=wt&2'MT
t (ŷ&yt)

and the generalization for the EG algorithm, which we call the EGM algorithm,

has the update rule wt+1, i=wt, irt, i �(� j wt, jrt, j) where

rt, i=exp(&2'(ŷ&yt) }Mt, i). (7.3)

It has been previously shown (Cesa-Bianchi et al., 1996; Schapire and Warmuth,

1994) that the GDM algorithm has a loss bound similar to that of GD. Recall that

the norm &A&2 for a matrix A is defined as &A&2=max[&Ax&2 | &x&2=1].

Theorem 7.1. Let S=((M1 , y1), ..., (Ml , yl)) be a generalized trial sequence
such that &Mt&2�X for all t. For the batch prediction algorithm GDM(s, ') with the
learning rate '=1�(4X 2), we have for all weight vectors u the bound

Loss(GDM(s, '), S)�2(Loss(u, S)+&s&u&2
2 X

2).

41EXPONENTIATED GRADIENT

Assume further that we know bounds K and U such that for some weight vector u we
have Loss(u, S)�K and &s&u&2�U. Then for the learning rate

'=
U

2UX2+2X-K

we have

Loss(GDM(s, '), S)�Loss(u, S)+2UX -K+&s&u&2
2 X

2.

The proof of Theorem 7.1 is based on noticing that the proof of Theorem 5.3 for

the GD algorithm easily generalizes to the situations where the instances are

matrices instead of vectors. The upper bound of Theorem 7.1 can be shown to be

tight (Schapire and Warmuth, 1994). We now give a similar result for the EGM

algorithm. The proof is based on a reduction that allows us to apply directly the

upper bound given in Theorem 5.10 for the EG algorithm. We could easily

generalize result for the more general algorithm EG\ when it is applied to matrices.

In the noise-free case K=0, similar results were given by Littlestone et al. (1995).
The reduction could also be applied to the GD algorithm to obtain Theorem 7.1.

Theorem 7.2. Let S=((M1 , y1), ..., (Ml , yl)) be a generalized trial sequence such
that for all t and i, the L2 norm of the ith column Mt, i of the matrix Mt is at most
R�2, i.e., &Mt, i&2�R�2. For the batch prediction algorithm EGM(s, '), with the
learning rate '=2�(3R2), and for any comparison vector u # [0, 1]N with �N

i=1 ui=1,

we have the bound

Loss(EGM(s, '), S)� 3
2 (Loss(u, S)+R2dre(u, s)).

Assume further that we know bounds K and U such that for some u # [0, 1]N with
�N

i=1 ui=1 we have Loss(u, S)�K and dre(u, s)�D. Then for the learning rate

'=
2 -D

R - 2K+R2 -D
(7.4)

we have

Loss(EGM(s, '), S)�Loss(u, S)+R - 2KD+
R2dre(u, s)

2
.

Proof. We prove the theorem by reducing it to the upper bound given in

Theorem 5.10 for the EG algorithm.

Let w1 , ..., wl+1 be the sequence of weight vectors that EGM(s, ') produces on

the trial sequence S. We define a trial sequence S$=((x1 , y1), ..., (xl , yl)), with
xt #R

N and yt #R, such that on the trial sequence S$, the algorithm EG(s, ') also
produces the sequence w1 , ..., wl+1 of weight vectors. Let

xt, i=
Mtwt&yt

&Mtwt&yt&2
}Mt, i

42 KIVINEN AND WARMUTH

and

yt=
Mtwt&yt

&Mtwt&yt&2
} yt .

For any weight vector r we then have

r } xt&yt=
(Mtwt&yt)

&Mtwt&yt&2
} (Mtr&yt). (7.5)

Applying (7.5) for r=wt we get wt } xt&yt=&Mtwt&yt&2 , so (wt } xt&yt)xt, i=

(Mtwt&yt) }Mt, i . Hence, when xt and yt are defined as given here, the gradients

given in (7.1) and (7.2) have the same values. Thus, the weight vectors generated

by EGM(s, ') on the sequence S are the same as the weight vectors generated by

EG(s, ') on the sequence S$.
Further, we get (wt } xt&yt)

2=&Mtwt&yt&
2
2 and, hence, Loss(EGM(s, '), S)=

Loss(EG(s, '), S$). Applying (7.5) for r=u we get

(u } xt&yt)
2=

((Mtwt&yt) } (Mtu&yt))
2

&Mtwt&yt&
2
2

�&Mtu&yt&
2
2 ,

so Loss(u, S$)�Loss(u, S). Further, since &Mt, i&2�R�2 implies &R�2�xt, i�R�2,
by applying the upper bound of Theorem 5.10 with the learning rate '=2�(3R2) we

get

Loss(EGM(s, '), S)=Loss(EG(s, '), S$)� 3
2 (Loss(u, s)+R2dre(u, s))

for any comparison vector u # [0, 1]N with �N
i=1 ui=1. Finally, assume that

Loss(u, S)�K and dre(u, s)�D hold for some u. We then get Loss(u, S$)�K and,

hence,

Loss(EGM(s, '), S)=Loss(EG(s, '), S$)

�Loss(u, S$)+R - 2KD+
R2dre(u, s)

2

�Loss(u, S)+R - 2KD+
R2dre(u, s)

2

for the learning rate given in (7.4). K

8. OBTAINING EXPECTED INSTANTANEOUS LOSS BOUNDS

So far the focus of this paper has been worst-case bounds for the total loss of on-

line algorithms. We now show how from these worst-case total loss bounds we can

derive bounds for the expected total loss and for the expected loss on the next

instance.

43EXPONENTIATED GRADIENT

We study only a very simple probabilistic model. As can be seen from the proofs,

much weaker probabilistic assumption would lead to similar bounds. An example
is a pair e=(x, y) that consists of an instance x #RN and an outcome y #R. We

assume that there is a fixed but unknown probability distribution D on the example

domain RN_R, and that the examples are drawn independently at random from

this distribution. The following bounds on the expected loss are still worst-case in

the sense that we make no assumptions about the distribution D.

The first part of this section relies on the fact that once we have an inequality of

the form of (5.2) which always holds, then by taking expectations of both sides we

get for all l the bound

EStDl (LossL(A, S))�
g(c)
f (c)

EStDl (LossL(u, S))+
d(u, s)
f (c)

=l
g(c)
f (c)

EetD(LossL(u, e))+
d(u, s)
f (c)

.

The parameter c and thus the learning rate can now be optimized as a function of

upper bounds on the expected loss EetD(LossL(u, e)) of the vector u on a single

example and the distance d(u, s). For example, in the case of the GD algorithm this

leads to the following probabilistic version of Theorem 5.3.

Theorem 8.1. Let D be a probability distribution on [x | &x&2�X]_R. With
the learning rate '=1�(4X 2) and an arbitrary start vector s #RN, we have for any
vector u and all l�1 the bound

EStD l (Loss(GD(s, '), S))�2(lEetD(Loss(u, e))+&u&s&2
2 X

2). (8.1)

Further, let K and U be arbitrary constants, and let ' be the learning rate

'=
U

2X - lK+2UX 2
.

Then for all u #RN such that EetD(Loss(u, e))�K and &u&s&2�U hold, we have

EStDl (Loss(GD(s, '), S))�lEetD(Loss(u, e))+2 - lK UX+&u&s&2
2 X

2. (8.2)

In many cases we are not interested in worst-case total loss bounds of an on-line

algorithm but rather than that we are looking for a hypothesis which predicts well

on a random instance. We define a hypothesis h to be any mapping from RN to R.

The instantaneous loss InstLossL(h, D) of a hypothesis h with respect to a distribu-

tion D on RN+1 is defined as the expected loss when the hypothesis h is used to

predict on a random instance drawn from D, that is,

InstLossL(h, D)=E(x , y)tD(L(h(x), y)).

44 KIVINEN AND WARMUTH

A common goal of learning is to produce a hypothesis with small instantaneous

loss after seeing a reasonable number of examples. In the case when the instan-

taneous loss is measured with respect to to some distribution D, it is assumed that

the training examples are drawn independently at random from the same distribu-

tion.

Giving a sequence S=(e1 , ..., el) of l examples to an on-line predicting algo-

rithm naturally leads to l+1 hypothesis. For our linear on-line prediction algo-

rithms, the sequence S, interpreted as a trial sequence, would lead to the l+1

weight vectors w1 , ..., wl+1 , and each of these defines a hypothesis that maps the

instance x #RN to wt } x. More generally, we define the tth hypothesis ht of an on-

line prediction algorithm A on the example sequence S to be the mapping that

maps an instance x to the prediction ŷ the algorithm would give if it were given x

as the t th instance after the instance-outcome pairs e1 , ..., et&1 of previous trials.

We denote this hypothesis ht by A(e1 , ..., et&1). For t=1, this is the initial

hypothesis of A.
In obtaining a good hypothesis from an on-line prediction algorithm, it might

seem a good strategy to give the whole example sequence to the algorithm and then

pick the last hypothesis, which is based on all the examples. Since additional infor-

mation should only help the learner, one might think that the expected instan-

taneous loss for the hypothesis ht is lower than that for the hypothesis ht&1 , or in

general for any earlier hypothesis. This could be formalized in the inequality

E(e1 , ..., e t)tD t(InstLossL(A(e1 , ..., et), D))

�E(e 1 , ..., e t&1)tD t&1(InstLossL(A(e1 , ..., et&1), D)).

However, this inequality does not necessarily hold for our algorithms. As a trivial

counterexample, assume that there is a unique weight vector u for which the expected

loss E(x , y)tD(L(u } x, y)) is minimized. If the start vector of the algorithm is equal

to u and the learning rate is positive, then the expected loss of the second

hypothesis w2 obviously is higher than that of the initial hypothesis w1=u.

We conclude this section by presenting a simple method (Helmbold and Warmuth,

1995) that can be used for proving expected instantaneous loss bounds for all algo-

rithms and distributions. We can rewrite the expected total loss as

EStDl (LossL(A, S))=E (e1 , ..., e l)tD l \ :
l

t=1

LossL(A((e1 , ..., et&1)), et)+
= :

l

t=1

E(e 1 , ..., e t&1)tD t&1(EetD(LossL(A((e1 , ..., et&1)), e)))

= :
l

t=1

E(e 1 , ..., e t&1)tD t&1(InstLossL(A(e1 , ..., et&1), D))).

Given the l hypotheses h1 , ..., hl , we define the randomized hypothesis hR as follows.

Give an instance x, we first choose an index t from the uniform distribution on

[1, ..., l]. We then let the prediction hR(x) of the hypothesis be the prediction ht(x)

45EXPONENTIATED GRADIENT

of the t th hypothesis. From the definition of hR and the preceding equality we

obtain

E(e 1 , ..., e l&1)tDl&1 (InstLossL(hR , D))=
1

l
EStDl (LossL(A, S)). (8.3)

In this paper, the hypotheses are represented by N-dimensional weight vectors.

Let hA denote the average hypothesis represented by the average weight vector

wA=�l

t=1 wt �l. Assume now that for all fixed x and y, the value L(w } x, y) is a

convex function of w, which is a reasonable assumption and holds for the loss func-

tions L we are interested in. Then for any x and y, Jensen$s Inequality yields

L(hA(x), y)=L \\
1

l
:
l

t=1

wt+ } x, y+�
1

l
:
l

t=1

L(wt } x, y).

By taking expectations when (x, y) is drawn from D we obtain

InstLoss(hA , D)�InstLoss(hR , D) and, hence,

E(e 1 , ..., el&1)tDl&1 (InstLossL(hA , D))�E (e1 , ..., el&1)tDl&1 (InstLossL(hR , D)).

This together with equality (8.3) can be seen as a crude method for convertingan

algorithm whose expected total loss is bounded to an algorithm with bounded

instantaneous loss. More sophisticated conversion methods are given by

Cesa-Bianchi et al. (1994) and Littlestone (1989).

9. EXPERIMENTAL AND THEORETICAL COMPARISON

OF THE ALGORITHMS

9.1. Comparison of the Worst-Case Upper Bounds

In this subsection we compare the worst-case upper bounds given for GD and

EG\ in Theorems 5.3 and 5.11. Considering the upper bounds helps us to under-

stand the circumstances in which the algorithms could be expected to perform well

or poorly. We later perform experiments with artificial data to verify that the upper

bounds give us correct ideas about the actual behavior of the algorithms. The

experimental setting is described in Subsection 9.2, and the experiments are

described in the following subsections.

The bounds given in Theorems 5.3 and 5.11 are not directly comparable, since

they are given in terms of different quantities. For both algorithms, the bound is of

the form (-K+C)2, where K=Loss(u, S) for some vector u and the quantity C
depends on the distance from the start vector to the target vector and the norms

of the instances. For simplicity, let us replace in the following discussion the relative

entropy dre(u$�U, s) in the bound for EG\ by its upper bound ln 2N. For the GD

algorithm, we have C=U2X2 , where U2=&u&2 and X2=max[&xt&2 | t=1, ..., l].
For the EG\ algorithm, we have C=U1X� - 2 ln 2N, where U1=&u&1 and

X�=max[&xt&� | t=1, ..., l].

46 KIVINEN AND WARMUTH

Figure 4 illustrates the trade-offs between the different norms in the bounds.

Recall that always &w&��&w&2�&w&1 , and how tight these inequalities are

depends on the vector w. Hence, the EG\ algorithm has the advantage over the

GD algorithm on the instance side of the figure, since its loss bound includes the

factor X� that is less than (or in special cases equal to) the factor X2 in the loss

bound for GD. Similarly, GD has the advantage on the target side, since the factor

U2 in the bound for GD never exceeds the factor U1 in the bound for EG\. The

additional factor 2 ln 2N in the bound for EG\ further favors GD. As the products

X2U2 and X�U1 are incomparable, the total effect can favor either GD or EG\.

We first construct a situation in which the bound for EG\ is, for a large number

N of dimensions, is better. To make GD lose its advantage on the target side, we

choose u=(1, 0, ..., 0). Then U1=U2=1, and the only advantage for the bound for

GD now comes from the factor 2 ln 2N in the bound for EG\. To maximize the

advantage of EG\ on the instance side, we take xt, i # [&1, 1] for all t and i. This
gives X�=1 and X2=-N, which maximizes the ratio X2 �X� . Hence, in the case

K=0, we have the upper bound 2 ln 2N for the loss of EG\ and the upper bound

N for the loss of GD. A less exaggerated setting that leads to similar results is

obtained by choosing the target u=(1, ..., 1, 0, ..., 0), with k nonzero components,

for some small k. Then U1=k and U2=- k. Taking again xt # [&1, 1]N, we get

in the noise free case the bound 2k2 ln 2N for EG\ and the bound kN for GD.

Thus, if the number N&k of irrelevant variables is large, then EG\ has the advan-

tage over GD. More generally, if a large part of the total weight &u&1 is concen-

trated on few components of u, then U1 is reasonably close to U2 , and GD has only

a small advantage on the target side.

In Subsection 9.3, we perform simple experiments in situations such as just

described. We see that on artificial random data, the actual losses of the algorithms

compare to each other as we could predict based on the analysis of worst case

upper bounds. In other words, random irrelevant variables confuse the GD algo-

rithm much more than the EG\ algorithm. When the number k of relevant

variables is kept constant, the loss of the GD algorithm grows linearly in N,

whereas for the EG\ algorithm the growth is only logarithmic.

FIG. 4. Schematic representation of the main factors affecting the loss bounds of the GD and EG\

algorithms.

47EXPONENTIATED GRADIENT

It could be argued that in natural data, even irrelevant variables are usually not

random. However, we propose applying our algorithm to nonlinear prediction

problems by expanding the instances to include the values of a number of basis

functions; see Subsection 9.6 for details. Via this expansion, even a small number of

truly random variables generates a large number of pseudorandom variables, which

also seem to confuse the GD algorithm.

We now show that the GD algorithm can be better, as well. We can make

X2=X� by taking the instance vectors xt to be unit vectors in the direction of the

coordinate axes. Then X1=X�=1, and EG\ has no advantage on the instance

side. To make U2 as much smaller than U1 as possible, we choose u=(1, ..., 1),

which minimizes the ratio &u&2�&u&1 . Then U2=-N and U1=N, so in the case

K=0, the upper bound for GD is N, while the upper bound for EG\ is 2N2 ln 2N.

In Subsection 9.4 we study experimentally this situation and some of its less

extreme variants. Again, we see that the worst-case upper bounds describe the real

behavior of the algorithms reasonably well.

9.2. The Experimental Setting

The theoretical results in Section 5 are derived for worst-case situations, where

an adversary may generate the examples. We wish to see if these theoretical results

describe the behavior of the algorithms also when the examples are not chosen

adversarially. For this purpose, we consider simple artificial data. First, we generate

l instances xt by drawing each instance xt independently from some probability

measure in RN. Typical probability measures that we use include the uniform

measure on the unit cube [&1, 1]N, the uniform measure on the set [&1, 1]N of

vertices of the unit cube, and the uniform measure on the unit sphere

[x | &x&2=1]. We choose a target u #RN to suit the particular experiment we wish

to perform. To generate the actual outcomes, we take the values u } xt predicted by

the weight vector u and add random noise to them. We quantify the amount of

noise by a noise rate #, which roughly gives the error |u } xt&yt | as a fraction of

u } xt . Thus, let C=max[|u } xt | | t=1, ..., l] be a scaling factor that gives the range

of the predictions u } xt . The t th outcome yt is chosen uniformly from [u } xt&#C,
u } xt+#C]. We then run the algorithms on the example sequence and plot the

cumulative losses �m
t=1 (yt&ŷt)

2, for m=1, ..., l, for the various algorithms.

Recall that the algorithms GD, GP, and EG\ have their variants GDV, GPV,

and EGV\. As suggested by Theorems 5.5, 5.7, and 5.13, we use the variable learn-

ing rate algorithms in the noise-free case #=0 if the norms of the instances xt are

not same for all t. (Of course, if, say, &xt&2=X for all t, there is no difference

between GD and GDV, so we just use GD.)

Our experiments are all on artificial data. However, we use these experiments

in an unusual way. We do not merely compare the actual performances of some

algorithms A and B on particular artificial data. We also compare the actual losses

of the algorithms to their worst-case upper bounds. In the cases when the loss

bound of B is much larger than the loss bound of A, we typically see that already

the actual loss of B is much larger than the loss bound of A. We do not need

the experiments to show A performs well, as this is taken care of by proving a

48 KIVINEN AND WARMUTH

worst-case loss bound for A. The point is to show that already on a simple artificial

data, the competing algorithm B exceeds the worst-case bound of A. The worst-case
bounds depend only on the distance of the start vector s to the target vector u as

measured by some distance measure, and the total loss of the target vector u. They

are not based on assumptions about the distributions of instances or the noise

mechanism. If we consider other data, with a different instance distribution and

noise process but the same target and same total loss of the target, then the loss A
will always stay below its upper bound. However, the loss of B might become low

as well.

We represent our experimental results by showing the cumulative loss curves

of some typical experiments. In other words, we plot the cumulative loss

�t
i=1 L(yi , ŷi) of an algorithm up to trial t as a function of t. It should be noted

that the actual numerical values of the cumulative losses of the algorithms are not

important for us. The experiments are meant to demonstrate that by changing the

target and the instances, we can make the differences in the losses of the various

algorithms arbitrarily large in either direction.

Recall that we discuss two forms of upper bounds in this paper. We need very

little information for bounds of the form (5.4). However, for the more sophisticated

upper bounds of the form (5.3), as well as for the learning rates to be used by the

algorithms so as to achieve these bounds, we need a number of parameters such as

U, X, K, and D. The parameter U bounds the norm of the target vector, X bounds

the norm of the instances, K bounds the loss of the target u, and D bounds the dis-

tance d(u, s) from the start vector s to the target u. In practice, these quantities are

usually not known, and some other methods must be used to obtain a good learn-

ing rate. If only one of the parameters is unknown, there are strategies for guessing

its value with increasing accuracy (Cesa-Bianchi et al., 1994; Cesa-Bianchi et al.,
1996). These strategies sometimes lead to loss bounds of the form (5.3), but with

the coefficient c1 and c2 somewhat larger than the ones obtained in Theorems 5.3

and 5.11 when good values of the parameters are known. In our experiments, we

have used our knowledge of the target to set all parameters optimally and tune the

learning rate as a function of the optimal choices. This is because we did not want

the difficulties of choosing the learning rates hinder a fair comparison of the algo-

rithms. It turns out that the learning rates given in the theorems are in our

experiments reasonably close to the best possible ones.

In applying a learning algorithm, one is usually not so much concerned with the

cumulative loss as with the quality of the final hypothesis. In our experimental set-

ting, one would wish the hypotheses wt of the algorithm to converge to the target

vector u. As shown in Section 8, bounds for the rate of convergence can be obtained

from the worst-case total loss bounds. Further, in the experiments we have per-

formed we have noticed that the algorithm with the smaller cumulative loss usually

also converges faster. However, the methods we have used, in particular in choosing

the learning rates in the various algorithms, have not been designed with con-

vergence in mind. Consequently, it is possible that another approach would result

in different algorithms with better convergence. In particular, one might wish to

initially use a high learning rate in order to quickly get close to the target, and then

decrease the learning rate in order to decrease the oscillations around the target

49EXPONENTIATED GRADIENT

which are caused by noise. One can also improve convergence by averaging several

hypothesis. These considerations are beyond the scope of this paper.

9.3. Sparse Target, Instances from the Unit Cube

We consider some situations in which the analysis of Subsection 9.1 suggests that

EG\ would be better. Figure 5 shows the cumulative losses for the GD and EG\

algorithms in a typical experiment with a sparse target and instances from

[&1, 1]N. The number N of dimensions is 100, and the target has been chosen as

u=(&1, 1, &1, 0, 0, ..., 0). The instances xt have been chosen uniformly from

[&1, 1]N. Hence, we have X2=- 100, X�=1, U2=- 3r1.7321, and U1=3. The

start vectors for GD is the all zero vector. For EG\ we set the parameter U to U1

and all components of both the start vectors to 1�(2N), which effectively starts EG\

with the all zero vector as well. Then dre(u�U1 , s)=ln(200�3)r4.1997. The noise

rate has been set to 0, so the upper bounds obtained from Theorems 5.3 and 5.11

become 102 } 3=300 for GD and 2 } 32 ln(100�3)r75.5947 for EG\. The figure

shows the actual cumulative losses for this experiment and their respective upper

bounds. In the special case with no noise, and hence the loss of the target being 0,

the learning rates suggested in Theorems 5.3 and 5.11, and used in this experiment,

depend only on the instances and not on the target or the outcomes.

From Fig. 5, we see that for both algorithms, the upper bound is reasonably

tight. In experiments we have observed that typically the cumulative loss of GD

approaches its upper bound when the length of the trial sequence increases. The

actual loss of GD is clearly higher than the worst-case loss bound of EG\. The loss

FIG. 5. Cumulative losses of GD (solid line) and EG\ (dotted line), with their upper bounds, for

instances xt # [&1, 1]100 and target u=(&1, 1, &1, 0, ..., 0).

50 KIVINEN AND WARMUTH

curve of EG\, and later that of GD, turns horizontal, as the hypothesis of the

algorithm converges to the target and there is no more loss.

Figure 6 shows the results of an experiment similar to that of Fig. 5, except that

now there is a moderate amount of noise. The noise rate # has been set to 0.2. Now

the knowledge of the distance between the start vector and the target, and the total

loss of the target vector on the 300 examples, have been used in calculating both

the learning rates and the worst-case upper bounds for the loss. We notice that the

worst-case upper bounds are less tight, but the performances of the algorithms com-

pared to each other are similar to those observed in the noise free case. Due to the

presence of noise, the loss curves do not turn horizontal but approach a positive

constant slope.

The following experiment illustrates the behavior of the GD algorithm when the

instances are orthogonal. A square matrix with all its components from [&1, 1] is

a Hadamard matrix if its rows are orthogonal. We take the instance xt to be the

(((t&1) mod N)+1)st row of an N by N Hadamard matrix, for N=256. We take

u=(1, 0, ..., 0) as the target, and set the noise rate to 0. The cumulative losses of the

algorithms are shown in Fig. 7.

In the special case that the instances x1 , ..., xN are orthogonal, and there is no

noise, the weight vector wt+1 of the GDV algorithm with the learning rate '=1�2
is the least squares solution to the (possibly underdetermined) system of equations

w } xj= yj , j=1, ..., t. That is, it is the solution with the least L2 norm. Hence,

applying linear least squares prediction in an on-line manner in this situation

results in the same large loss as shown for GD in Fig. 7. More generally, it can be

FIG. 6. Cumulative losses of GD (solid line) and EG\ (dotted line), with their upper bounds, for

instances xt # [&1, 1]100 and target u=(&1, 1, &1, 0, ..., 0), and noise rate 0.2.

51EXPONENTIATED GRADIENT

FIG. 7. Cumulative losses of GD (solid line) and EG\ (dotted line), with their upper bounds, with

u=(1, 0, ..., 0) as the target and with rows of a 256_256 Hadamard matrix as instances.

shown that no algorithm that uses weight vectors of the form wt+1=� t
i=1 aix i can

have smaller loss in this situation (Littlestone et al., 1995). This class of algorithms

also includes a basic variant of weight decay, where an additional &wt&
2
2 error term

is used as a penalty for large weights (Hinton, 1986).

According to a commonly accepted heuristic, the number of examples needed to

learn linear functions is roughly proportional to the number of dimensions in the

instances. The results presented here do not contradict this in any way. The number

of examples required for the EG\ algorithm to learn is much smaller than the num-

ber of dimensions, but this is because the target functions have only a few nonzero

components. Since the GD algorithm cannot take advantage of this, it is outper-

formed by EG\. In the experiments of Figs. 5 and 6, there were only three relevant

ones among the 100 input variables. If the number of relevant components is

increased, keeping the values of all the relevant weights equal, the losses of GD and

EG\ first approach each other. When there are about 25 relevant components, the

losses of the algorithms are roughly the same. If the number of relevant components

is increased above 25, the GD algorithm outperforms the EG\ algorithm more and

more clearly. Based on the forms of the loss bounds for GD and EG\, we expect

EG\ to perform well even if most of the components of the target are not zero, but

the weight is concentrated on a few components, and &u&1 is thus not much larger

than &u&2 .

9.4. Dense Target, Instances from the Unit Sphere

We now consider a case where the target u is dense, in the sense that every com-

ponent of an instance x affects the value u } x. For N dimensions, we choose the

52 KIVINEN AND WARMUTH

target u=(1, ..., 1). We choose the instances xt uniformly from the N-dimensional

unit sphere [x #RN | &x&2=1]. Then &xt&2=1 for all t.
In Fig. 8, the cumulative losses of GD and EGV\, with the respective upper

bounds, have been plotted for N=20 and noise rate 0. The GD algorithm clearly

outperforms the EGV\ algorithm, as we would expect from the discussion in Sub-

section 9.1.

To make the difference between the GD and EG\ algorithms as clear as

possible, we again consider nonrandom data. We choose the instances by going in

order through the rows of an N_N unit matrix, for N=20. Hence, the instance xt

has xt, i=1 if i=(t&1) mod N+1, and xt, i=0 otherwise. As the target we use

u=(1, ..., 1), and the noise rate is 0. The results are depicted in Fig. 9. The GD

algorithm learns the correct weight ui at trial i, and achieves perfect performance

after trial N.

9.5. Variants of the Algorithms

Figure 10 shows the cumulative losses for the GD algorithm in the experiment

of Fig. 6 with slightly differing learning rates. We see that the algorithm is robust

with respect to small deviations in the learning rate, and that the learning rate

obtained from Theorem 5.3 is close to optimal.

If the algorithm is given additional information about the target vector u, its per-

formance should improve. In Section 3 we considered in particular the restriction

�i ui=1. As discussed in Section 3, incorporating this restriction into the GD algo-

rithm leads to the GP algorithm. (Here we do not restrict the weights of GP to be

FIG. 8. Cumulative losses of GD and EGV\, with their upper bounds, for target u=(1, ..., 1) and

instances from the 20-dimensional unit sphere.

53EXPONENTIATED GRADIENT

FIG. 9. Cumulative losses of GD and EG\, with their upper bounds, for u=(1, ..., 1) as the target

and with rows of the 20_20 unit matrix as instances.

FIG. 10. Cumulative loss of GD with learning rate multiplied by 0.8, 1.0, 1.2, and 1.4.

54 KIVINEN AND WARMUTH

nonnegative.) By Corollary 5.6, for any vector u such that �i ui=1, the cumulative

loss of GP is bounded by (-K+U2V)2, where K=LossL(u, S), U2=&u&2 , and

V=maxt &xt&avg(xt)&2 . If the values xt i are large but, for each t, close to each

other, then V can be much lower than X2=maxt &xt&2 . Then we would expect GP

perform better than GD does. We also have the EG algorithm, which can be

thought of as EG\ applied to the special case �i ui=1 and ui�0 for all i. For
EG we have by Theorem 5.10 the bound (-K+U1R - (ln N)�2)2, where

R=maxt(maxi xt, i&mini xt, i). Again, if the values xt, i are large but concentrated

for each t, then EG is favored over EG\.

Figure 11 shows the results of an experiment with large, concentrated values of

xt, i . There are 20 variables that attain values in [4, 6], and the target vector has

3 non-zero components. There is no noise. The algorithms GPV and EG, which

make use of the fact that �i ui=1, clearly outperform the algorithms GDV and

EG\, which do not make use of this fact. If data like this were to appear in prac-

tice, one might want to subtract a constant from the input variables to avoid

problems with large values. However, unless the value �i ui is known, one cannot

know how the outcomes should be transformed in order to maintain their linear

relation to the instances.

We have also made experiments with the approximated EG algorithm introduced

in Section 3. The advantage of the approximate algorithm is that it needs only addi-

tion and multiplications, and no exponentiation, in its update, and hence is com-

putationally simpler. In situations considered here, the approximated and exact

EG algorithms seem to have roughly the same learning performance. The learning

rates suggested by the analysis of the EG and EG\ algorithms also seem to work

FIG. 11. Cumulative losses of GDV, EG\, GPV, and EG for instances xt # [4, 6]
20 and target

u=(1�3, 1�3, 1�3, 0, ..., 0).

55EXPONENTIATED GRADIENT

well for the corresponding approximated versions. Our experiments with the

approximate algorithm have not been extensive, and we do not know if under some

circumstances there are likely to be problems with weights going to zero.

We also performed some very preliminary experiments with the EGU algorithm.

The algorithms seemed to work also in the case where some of the input variables

are negative.

9.6. Expanding the Instances

Our next experiment illustrates the use of linear function learning to learn non-

linear target functions by the means of expanding the instances in such a way that

the target function becomes linear for the expanded inputs (see Boser et al., 1992).
For example, let B(x, q), for q=1, 2, 3, ..., be a vector that has as its components

all monomials over the variables xi , up to degree q. Thus we have, e.g.,

B((x1 , x2 , x3), 2)=(1, x1 , x2 , x3 , x1x2 , x1x3 , x2x3 , x
2
1 , x

2
2 , x

2
3). Then every poly-

nomial of degree at most q over the variables xi can be written as u } B(x, q) for

some coefficient vector u. Accordingly, polynomials of degree at most q can be

learned as linear functions by using the expanded instances B(x, q) instead of the

original instances x as the input to the algorithm. If the original instances have N
components, then the expanded instances have O(Nq) components. However, if the

target polynomial has only few terms, then the target vector u has only few nonzero

components, and the EG\ algorithm can still perform well.

Figure 12 shows the results of an experiment with expanded instances. The

original instances have been chosen uniformly from [&1, 1]8, and an expanded

FIG. 12. Cumulative losses of GD and EG\, with their upper bounds, for sparse target and

expanded instances.

56 KIVINEN AND WARMUTH

instance consist of the products of the components of the original instance. Since

the components xt, i are from [&1, 1], we do not consider products that include

the same variable more than once. Hence, there are 256 products. We have chosen

the target polynomial x2x3x4+x2x2x3x6+x1x2x3x4x6x7x8 , with three terms,

which for the encoding we use gives the target coefficient vector u with

u59=u96=u251=1 and u i=0 for i � [59, 96, 251]. The noise rate has been set

to 0. Figure 12 is qualitatively similar to Fig. 6. Hence, in the case of a sparse target

and instances from the unit cube, the advantage of EG\ over GD does not depend

on the input variables being independent, which was the case for Fig. 6 but not for

Fig. 12.

In real-world data, there might be some truly independent variables, possibly

together with other variables with correlations and more complicated dependencies.

The experiment suggests that in such data, the new variables generated as the

products of the few original independent variables cause the GD algorithm similar

difficulties as a large number of independent random variables, although the intro-

duced new variables are not truly independent. Hence, if the instances are

expanded, results may be similar to those described in Subsection 9.3 even if the

number of independent random variables in the original instances is small.

When we expand the instances, the time for predicting and computing the

updated weight vector usually becomes linear in the dimension of the expanded

instances. For simplicity, we consider the case xt # [&1, 1]N and ignore products

that contain some variable more than once. In the expansion method discussed

above, the expanded instances B(x, q) then have (Nq)=O(Nq) dimensions. Thus, the

expense of the prediction and update time restricts our choice of q. However,

the EG\ algorithm still generalizes well when the target is sparse. If the original

instances are in [&1, 1], then the components of B(x, q) are also in [&1, 1]. If the
target u over the expanded domain has exactly k components in [&1, 1] and its

remaining components are zero, then (using the notation of Subsection 9.1) we get

the following norms: U2=- k, U1=k, X2=(N
�q)

1�2, and X�=1. In the noise-free

case, this leads the total loss bounds U 2
2X

2
2=k(N

�q)=O(kNq) for GD and

2U 2
1X

2
� ln(2(N

�q))=O(k2q log N) for EG\.

Assume that our goal is to obtain a hypothesis with instantaneous loss at most

=. If we take the bounds given by the reductions in Section 8 to be fair indicators

of the actual instantaneous losses of the algorithms, then an algorithm with a total

loss bound T leads to an algorithm with instantaneous loss T�t after O(t) examples.

Thus, GD would require O(k(N
�q)�=) examples and EG\ would require

O(k2q log N�=) examples. As seen before, when k is small the EG\ algorithm has

good generalization performance. However, this is only useful if the time O((N
�q))

is not prohibitive.

When the number of examples is small, the prediction and update time of the GD

algorithm can be significantly improved from the straightforward O((N
�q)). If the

start vector is also of the form B(s, q) then the t th weight vector wt is a linear com-

bination of B(s, q) and B(x1 , q), ..., B(xt&1 , q). Updating is done by adding a new

component to the linear combination, and computing the prediction wt } xt amounts

to computing t dot products of the form B(a, q) } B(b, q), where a, b #RN. Using

dynamic programming, such a dot product can be computed in time O(qN). Thus,

57EXPONENTIATED GRADIENT

for the t th example the total prediction and update time becomes O(qNt) instead
of O((N

�q)). In the special case q=N, computing one of the dot products can be

further sped up to O(N) even though each N-dimensional instance is expanded to

2N components. This is achieved by simply using the equality

B(a, N) } B(b, N)=`
N

i=1

(1+aibi).

Thus, if q=N, then the total time the tth example is O(tN) instead of O((N
�q)). We

know of no way to speed up the prediction and update for the EG\ algorithm.

Thus, the GD algorithm seemingly has an advantage. However, as argued above,

this algorithm can require as many as 0((N
�q)) examples, and only during the first

few trials can the GD algorithm save time by using the above methods. For large

values of t, the update and prediction time O(tN) for trial t would be larger than

the time O((N
�q)) obtained by simply maintaining one weight for each of the dimen-

sions of the expanded instances. In summary, the update and prediction times of

GD can be reduced, but algorithm might use so many examples that the speed-up

becomes useless.

10. CONCLUSIONS

The following are the key methods used in this paper.

1. We use worst-case bounds for the total loss for evaluating on-line learning

algorithms. The bounds are expressed as a function of the loss of the best linear

predictor.

2. We introduce a common framework for deriving learning algorithms based

on the trade-off between the distance traveled from the current weight vector and

a loss function. Different distance functions lead to radically different algorithms.

This framework has been adapted recently (Helmbold et al., 1996b and 1996c) to

an unsupervised setting.

3. The distance function also serves in a second role as a potential function in

proving worst-case loss bounds by amortized analysis (Cormen et al., 1990). The
bounds are first expressed as a function of the learning rate and various norms of

the instances and target vectors, as well as the loss of the target vector. Good loss

bounds are then obtained by carefully tuning the learning rate.

In this paper we are clearly championing the EG\ algorithm derived from the

relative entropy distance measure. The use of this distance measure is motivated by

the Minimum Relative Entropy Principle of Kullback (Kapur and Kesavan, 1992;

Jumarie, 1990). The resulting new algorithm EG\ learns very well when the target

is sparse and the components of the instances are in a small range. Such situations

naturally arise if we perform nonlinear predicting by first expanding the instances

to include the values of some nonlinear basis functions and then predict using linear

functions of the expanded instances. Since the loss of the EG\ algorithm increases

58 KIVINEN AND WARMUTH

only logarithmically in the number of irrelevant input variables, it is possible to

have a good generalization performance even if the number of basis functions, that

is the number of dimensions in the expanded instances, significantly exceeds the

number of training examples. As one possible heuristic, we suggest guessing a

reasonable set of basis functions and then iteratively replacing the functions that

receive a small weight, and are thus not used, with new hopefully more useful func-

tions. Cross-validation can be used to avoid overfitting.

Even for the single linear neuron we have been able to prove worst-case loss

bounds (in terms of the loss of the best linear predictor) only for the square loss.

Ideally we would like to have loss bounds for other standard loss functions such as

the relative entropy loss. It would also be interesting to find new distance measures

that would lead to new linear prediction algorithms, for which the loss bounds

depend on other pairs of dual norms than the pairs (L1 , L�) and (L2 , L2), which

correspond to the algorithms EG\ and GD, respectively.

The bounds for GD are provably optimal. However, we still need matching lower

bounds for the exponentiated gradient algorithms EG and EG\. The bounds for

EGU still need to be generalized to allow for negative components in the instances.

Applying gradient descent in multilayer sigmoid networks leads to the well-

known back-propagation algorithm. The exponentiated gradient algorithms can

similarly be generalized to obtain a new exponentiated back-propagation algorithm.

As a long-term research goal, we suggest developing a whole family of algoritms

derived using the relative entropy as a distance measure. Many of the tradional

neural network algorithms belong to the gradient descent family of algorithms that

in our framework can be derived using the squared Euclidean distance. This family

includes the Perceptron algorithm for thresholded linear functions, the GD algo-

rithm for linear functions, the standard back-propagation algorithm for multilayer

sigmoid networks, and the Linear Least Squares algorithm for fitting a line to data

points. The new family includes, respectively, the Winnow algorithm (Littlestone,

1988), the EG\ algorithm, the exponentiated back-propagation algorithm, and an

algorithm for fitting a line to data points so that the relative entropy of the coef-

ficient vector is minimized. The new family uses a new bias, which favors sparse

weight vectors. We have observed that in the case of linear regression, this leads to

improved performance in high dimensional problems if the target weight vector is

sparse. We also expect to see similar behavior in more general settings.

Recently, Helmbold et al. (1995a) were able to prove worst-case loss bounds for

single sigmoided linear neurons when the tanh function is used as the sigmoid func-

tion and the loss function is the relative entropy loss. In this case, worst-case loss

bounds can be obtained for the algorithms from the gradient descent and exponen-

tiated gradient family.

APPENDIX

Proof of Lemma 5.14. Let xt # [0, X]N be given. We first estimate the progress

dreu(u, wt)&dreu(u, wt+1), when wt+1, i=wt, i;
x t, i with ;>0. We have

59EXPONENTIATED GRADIENT

dreu(u, wt+1)&dreu(u, wt)= :
N

i=1

(wt+1, i&wt, i)+ :
N

i=1

ui ln
wt, i

wt+1, i

= :
N

i=1

wt, i (;
x t, i&1)& :

N

i=1

u ixt, i ln ;.

By applying the bound :z�1&z(1&:), which holds for :>0 and 0�z�1, with

z=xt, i �X and :=;X, we obtain

dreu(u, wt+1)&dreu(u, wt)� :
N

i=1

wt, i

xt, i

X
(;X&1)& :

N

i=1

uixt, i ln ; (A.1)

=wt } xt

;X&1

X
&u } xt ln ;. (A.2)

By substituting ;=e2'(y t&ŷ t) into (A.2) we see that for proving (5.26) it is sufficient

to show G(wt } xt , ŷt , yt , u } xt)�0, where (omitting the subspcript t)

G(q, ŷ, y, r)=q
e2X'(y& ŷ)&1

X
&2r'(y&ŷ)+a(y&ŷ)2&b(y&r)2.

Further, since the estimate :z�1&z(1&:) is tight for z=0 and z=1, in the case

xt=(0, X) #R2 it is also necessary to show G(wt } xt , ŷt , yt , u } xt)�0.

Recall that the prediction ŷt of the EGU(s, Y, ') algorithm is given by ŷt=wt } xt

if wt } xt�Y holds; otherwise ŷt=Y. Thus, we need to prove G(q, ŷ, y, r)�0 for

ŷ=q, and for 0� ŷ=Y<q. By the assumptions of the lemma, we also have

0� y�Y. Clearly G(q, ŷ, y, r) is nonincreasing in q for ŷ�y. Hence, in the case

ŷ=Y<q the condition G(q, ŷ, y, r)�0 follows if G(Y, Y, y, r)�0 holds. Thus,

without loss of generality we consider only 0� ŷ=q�Y.
By differentiating G(ŷ, ŷ, y, r) with respect to r we see that for fixed ŷ and y, the

value G(ŷ, ŷ, y, r) is maximized when

r=y+
'
b
(ŷ&y)=\1&

'
b+ y+

'
b
ŷ.

Note that for 0�'�b, this value of r is between y and ŷ. We have

G(ŷ, ŷ, y, y+'(ŷ&y)�b)=H(ŷ, y) where

H(ŷ, y)=
ŷ
X
(e2X'(y& ŷ)&1)&2'y(y&ŷ)+\a+

'2

b + (y& ŷ)2.

To obtain (5.26), it is now sufficient to prove that for values of a and b as in the

statement of the lemma we have H(ŷ, y)�0 for 0� ŷ�Y and 0� y�Y. We first

see that for H(ŷ, y)�0 to hold it is necessary that the values a and b satisfy the

conditions of the lemma. We then see that these conditions are also sufficient, which

is the main part of the claim.

60 KIVINEN AND WARMUTH

We have

�H(ŷ, y)
�y

=2ŷ'e2X'(y&ŷ)&2'(y&ŷ)&2'y+\2a+2
'2

b + (y&ŷ),

so for y=ŷ we have H(ŷ, y)=�H(ŷ, y)��y=0. Hence, a necessary condition for

having H(ŷ, y)�0 for values of y close to ŷ is that the second derivative

�2H(ŷ, y)
�y2

=4ŷX'2e2X'(y&ŷ)&4'+2a+2
'2

b

is nonpositive for y= ŷ. Hence, we need Q(y)=(4Xy+2�b) '2&4'+2a�0 for

0� y�Y. In this range, Q(y) is clearly maximized for y=Y. By differentiating, the

value of ' that minimizes Q(Y) is seen to be b�(1+2XYb). For this value of ', we
have Q(Y)�0 if and only if a�b�(1+2XYb).
We have now seen that a�b�(1+2XYb) is a sufficient condition for G(ŷ, ŷ, y, r)

�0 in the special case that y is close to ŷ. Before proving that the condition is also

sufficient in the general case, we show that it is necessary for the claim of the lemma

to hold. Let yt=Y&= for a small positive value =. Supposing a>b�(1+2XYb), the
preceding argument shows that H(Y, yt)>0 holds. The value r=yt+'(Y&yt)�b is

positive. Therefore, for any nonzero instance xt # [0, �)N we can find a comparison

vector u and a weight vector w such that u } xt=r and wt } xt=Y. In this case we

have, by the preceding argument, G(wt } xt , ŷt , yt , u } xt)>0. If we choose the par-

ticular instance xt=(0, X), then the bound (A.1) holds as an equality, and hence

G(wt } xt , ŷt , yt , u } xt)>0 implies that (5.26) does not hold for this trial.

We now let '=a=b�(1+2XYb) and see that these choices indeed give us

H(ŷ, y)�0 for 0� y�Y and 0� ŷ�Y. As explained in the preceding part of

the proof, this is sufficient for proving the lemma. For the special case ŷ=0 we

then obtain H(0, y)=&2XYb2y2�(1+2XYb)2�0. Assume now ŷ>0. The third

derivative

�3H(ŷ, y)
�y3

=8ŷX2'3e2X'(y&ŷ)

is then strictly positive for all y. As our choices for a and ' in the case ŷ= y�Y
imply

�2H(ŷ, y)
�y2

=
2b

1+2XYb \
1+2Xyb
1+2XYb

&1+�0,

we must have �2H(ŷ, y)��y2�0 for all y� ŷ. Therefore, since H(ŷ, y)=
�H(ŷ, y)��y=0 holds for y= ŷ, we have H(ŷ, y)�0 for y� ŷ.
In the special case that �2H(ŷ, y)��y2=0 holds for y= ŷ, the positiveness of

the third derivative implies that H(ŷ, y)>0 holds for y>ŷ and, in particular,

H(ŷ, Y)>0. If the second derivative �2H(ŷ, y)��y2 is strictly negative for y= ŷ,

61EXPONENTIATED GRADIENT

then H(ŷ, y) as a function of y has a local maximum at y= ŷ. The positiveness of

the third derivative implies that the second derivative can attain value 0 at most

once. Hence, the function cannot have another local maximum in the range

ŷ<y<Y, since between these two zeroes of the derivative �H(ŷ, y)��y there would

have to be a third, at a local minimum, and hence two zeroes of the second

derivative. Therefore, H(ŷ, y) obtains its maximum value for ŷ� y�Y either at

y= ŷ or at y=Y. Thus, it remains to verify that H(ŷ, Y)�0 holds. We have

�H(ŷ, Y)

�ŷ
=

e2X'(Y& ŷ)&1

X
&2ŷ'e2X'(Y& ŷ)+2'Y&\2a+2

'2

b + (Y& ŷ)

�2H(ŷ, Y)

�ŷ2
=&4'e2X'(Y& ŷ)+4ŷX'2e2X'(Y&ŷ)+2a+2

'2

b

�3H(ŷ, Y)

�ŷ3
=4X'2e2X'(Y& ŷ)(3&2ŷX').

Thus, regardless of the choice of ' and a, we get H(ŷ, Y)=�H(ŷ, Y)��ŷ=0 for

ŷ=Y, and to prove H(ŷ, Y)�0 for 0� ŷ�Y it is sufficient to prove

�2H(ŷ, Y)��ŷ2<0 for 0<ŷ<Y. For our particular choices of ' and a, we obtain

�2H(ŷ, Y)��ŷ2=0 for ŷ=Y, and

�3H(ŷ, Y)

�ŷ3
=4Xb2

(6Y&2ŷ) Xb+3

(1+2XYb)3
exp \

2Xb(Y&ŷ)
1+2XYb +>0.

Hence, �2H(ŷ, Y)��ŷ2<0 holds for 0� ŷ<Y, and we have H(ŷ, Y)�0 for

ŷ�Y. K

ACKNOWLEDGMENTS

We thank Nicolo� Cesa-Bianchi, David P. Helmbold, and Yoram Singer for their comments. We also

thank John Denker for inspiring us to use dimension analysis for checking update rules and learning

rates.

Received April 24, 1996; final manuscript received September 10, 1996

REFERENCES

Amari, S. (1994), ``Information Geometry of the EM and em Algorithms for Neural Networks,'' Tech-

nical Report METR 94-4, Univ. of Tokyo.

Amari, S. (1995), The EM algorithm and information geometry in neural network learning, Neural
Comput. 7, 13�18.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992), A training algorithm for optimal margin classifiers

in ``Proceedings, 5th Annual Workshop on Computational Learning Theory,'' pp. 144�152, ACM

Press, New York.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., and Warmuth, M. K.

(1994), ``How to Use Expert Advice,'' Technical Report UCSC-CRL-94-33, Univ. of California, Santa

Cruz, Computer Research Laboratory. An extended abstract appeared in ``Proceedings, 25th Annual

ACM Symposium on the Theory of Computing,'' pp. 382�381, ACM Press, New York.

62 KIVINEN AND WARMUTH

Cesa-Bianchi, N., Long, P., and Warmuth, M. K. (1996), Worst-case quadratic loss bounds for on-line

prediction of linear functions by gradient descent, IEEE Trans. Neural Networks 7, 604�619.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), ``Introduction to Algorithms,'' MIT Press,

Cambridge, MA.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), Maximum-likelihood from incomplete data via

the EM algorithm, J. Roy. Statist. Soc. Ser. B 39, 1�38.

Haussler, D., Kivinen, J., and Warmuth, M. K. (1994), ``Tight Worst-Case loss bounds for Predicting with

Expert Advice,'' Technical Report UCSC-CRL-94-36, Univ. California, Santa Cruz, Computer Research

Laboratory. Partial results appeared in ``EuroCOLT '93,'' pp. 109�120, Clarendon Press, Oxford, and in
``EuroCOLT '95,'' pp. 69�83, Springer, Berlin. To appear in IEEE Transactions on Information Theory.

Haykin, S. (1991), ``Adaptive Filter Theory,'' 2nd ed., Prentice�Hall, Englewood Cliffs, NJ.

Haykin, S. (1993), ``Neural Networks: A Comprehensive Foundation,'' Macmillan, New York.

Helmbold, D. P., Kivinen, J., and Warmuth, M. K. (1996a), Worst-case loss bounds for sigmoided linear

neurons, in ``Advances in Neural Information Processing Systems 8,'' MIT Press, Cambridge, MA,

pp. 309�315.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1996b), A comparison of new and

old algorithms for a mixture estimation problem, Mach. Learning, to appear.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1996c), On-line portfolio selection

using multiplicative updates in ``Proceedings, 13th International Conference on Machine Learning,''

Morgan Kaufmann, San Francisco, pp. 243�251.

Helmbold, D. P., and Warmuth, M. K. (1995), On weak learning, J. Comput. System Sci. 50, 551�573.

Hinton, G. E. (1986), Learning distributed representations of concepts, in ``Proceedings, 8 th Annual

Conference of the Cognitive Science Society,'' pp. 1�12, Erlbaum, Hillsdale, NJ.

Jumarie, G. (1990), ``Relative Information,'' Springer, New York.

Kapur, J. N., and Kesavan, H. K. (1992), ``Entropy Optimization Principles with Applications,''

Academic Press, New York.

Kearns, M. J., Schapire, R. E., and Sellie, L. M. (1994), Toward efficient agnostic learning, Mach.
Learning 17, 115�142.

Littlestone, N. (1988), Learning quickly when irrelevant attributes abound: A new linear-threshold algo-

rithm, Mach. Learning 2, 285�318.

Littlestone, N. (1989), From on-line to batch learning in ``Procedings, 2nd Annual Workshop on Com-

putational Learning Theory,'' pp. 269�284, Morgan Kaufmann, San Mateo, CA.

Littlestone, N. (1989), ``Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms,'' Ph.D.

thesis, Technical Report UCSC-CRL-89-11, Univ. of California, Santa Cruz, Computer Research

Laboratory.

Littlestone, N. (1991), Redundant noisy attributes, attribute errors, and linear threshold learning using

Winnow, in ``Proceedings, 4th Annual Workshop on Computational Learning Theory,'' pp. 147�156,

Morgan Kaufmann, San Mateo, CA.

Littlestone, N., Long, P. M., and Warmuth, M. K. (1995), On-line learning of linear functions, J. Comput.
Complexity 5, 1�23.

Littlestone, N., and Warmuth, M. K. (1994), The weighted majority algorithm, Inform. and Comput. 108,
212�261.

Luenberger, D. G. (1984), ``Linear and Nonlinear Programming,'' Addison�Wesley, Reading, MA.

Royden, H. (1963), ``Real Analysis,'' Macmillan, New York.

Schapire, R. E., and Warmuth, M. K. (1994), On the worst-case analysis of temporal-difference learing

algorithms, in ``Proceedings, 11th International Conference on Machine Learning,'' pp. 266�274,

Morgan Kaufmann, San Francisco; Mach. Learning, to appear.

Vovk, V. (1990), Aggregating strategies, in ``Proceedings, 3rd Annual Workshop on Computational

Learning Theory,'' pp. 371�383, Morgan Kaufmann, San Mateo, CA.

Widrow, B., and Stearns, S. (1985), ``Adaptive Signal Processing,'' Prentice�Hall, Englewood Cliffs, NJ.

63EXPONENTIATED GRADIENT

