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Preface 

This book is the third of a series of books based on conferences sponsored by the Metroplex Insti- 

tute for Neural Dynamics (M.I.N.D), an interdisciplinary organization of Dallas-Fort Worth area 

neural network professionals in both academia and industry. M.I.N.D. sponsors a conference every 

year or two on some topic within neural networks. The topics are chosen (a) to be of broad interest 

both to those interested in designing machines to perform intelligent functions and those interested 

in studying how these functions are actually performed by living organisms, and (b) to generate 

discussion of basic and controversial issues in the study of mind. The subjects are chosen for depth 

and fascination of the problems covered, rather than for the availability or airtight conclusions; 

hence, well-thought-out speculation is encouraged at these conferences. Thus far, the topics have 

been as follows: 

May 1988 — Motivation, Emotion, and Goal Direction in Neural Networks 

June 1989 — Neural Networks for Adaptive Sensory-Motor Control 

October 1990 — Neural Networks for Knowledge Representation and Inference 
February 1992 — Optimality in Biological and Artificial Networks? 

May 1994 — Oscillations in Neural Systems 

May 1995 — Neural Networks for Novel High-Order Rule Formation 

A book based on the May 1988 conference was published by Lawrence Erlbaum Associates, Inc. 

(LEA), in 1992. A book based on the October 1990 conference was published by LEA in 1994. The 
current book is based on the February 1992 conference, and one based on the May 1994 conference 

is in its early stages. 

The topic of optimality was chosen because it has provoked considerable discussion and con- 

troversy in many different academic fields (see, in particular, Schoemaker, 1991). There are sev- 

eral aspects to the issue of optimality. First is it true that actual behavior and cognitive function of 

living animals, including humans, can be considered optimal in some sense? Is there a measurable 
utility function, to use the economists’ term, or at least a utility function deducible on theoretical 

grounds, that all actions ultimately serve to maximize? Or is most actual human or animal behavior 

better described by what the economist and cognitive scientist Herbert Simon (1979) called satisficing 

— in colloquial terms, “muddling through” or “making do” with solutions that may not be the best 

possible, but are in some measurable sense good enough? The answer to this question is still 

unknown, which is one reason for the question mark 1n this book’s title. 

Second, what is the utility function for biological organisms, if any, and can it be described 
mathematically? Even if all behavior does not fit the maximization paradigm, as Schoemaker 

(1991) has suggested, optimality might provide a normative criterion for which behaviors are desir- 

able or should be encouraged. This kind of normative criterion can also guide the design of artifi- 

cial neural networks to perform engineering tasks, whether in robotics, pattern recognition, busi- 

ness applications such as scheduling, or a variety of other situations. If not all biological behavior 

is in fact optimal, this also suggests that although designers of intelligent machines should under- 
stand the biological functions of the brain as well as possible, they should not adhere slavishly to 

“biological realism” in the architectures for their machines.
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So the questions posed by the participants in this conference tended to fall into the categories 
of (a) how to optimize particular functions, in both biological and artificial networks and (b) whether 
particular functions are in fact performed optimally by particular biological or artificial networks. 
Rather than organize the chapters by what stance they took on optimality, it seemed more natural to 
organize them either by what level of questions they posed or by what intelligent functions they 
dealt with. This led to four major sections, including the following authors: 

What Is the Role of Optimality? 

Daniel Levine 

Paul Werbos 

Sam Leven 

David Stork, Bernie Jackson, and Scott Walker 

Wesley Elsberry 

Mark De Yong and Thomas Eskridge 

Quantitative Foundations of Neural Optimality 

Paul Prueitt 

lan Parberry 
Richard Golden 

Graham Tattersall 

Robert Dorsey and John Johnson 

Arun Jagota 

Optimality in Learning, Cognition, and Perception 

David Chance, John Cheung, Sue Lykins, and Asa Lawton 

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gescei 
Gail Carpenter 

Hervé Abdi, Dominique Valentin, and Alice O'Toole 

Jayadeva and Basabi Bhaumik 

Optimality in Decision, Communication, and Control 

Haluk Ogmen and Ramkrishna Prakash 
Gershom-Zvi Rosenstein 

Sylvia Candelaria de Ram 

Raymond Bradley and Karl Pribram 

The chapters in the first section set some general frameworks for discussing optimality, or the 
lack of it, in biological artificial systems. The second section deals with some general mathemati- 
cal and computational theories that help to clarify what the notion of optimality might entail in 
specific classes of networks. The chapters in the third section begin with optimizing rules for 
changing connection weights to facilitate associative learning, then move on to optimizing various 
processes in visual pattern perception. The chapters in the final section deal with optimality in the 
context of many different high-level issues, including exploring one’s environment, understanding 
mental illness, linguistic communication, and finally, social organization.
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The diversity of topics covered in this book is designed to stimulate interdisciplinary thinking 
and speculation about deep problems in intelligent system organization. This can have the unfortu- 

nate side effect of creating confusion for the reader by leading the reader to believe that many of the 

chapters are unrelated. At the suggestion of one of the book’s anonymous reviewers, we have 

attempted to mitigate this possible confusion by writing prefaces at the start of each chapter, pre- 

ceding the abstract. These prefaces are designed not only to frame the problem posed by the chapter’s 

authors but also to show salient relationships between the chapter and others in this book. 

In addition to the chapter authors, we acknowledge contributions made to this volume by sev- 
eral other individuals and organizations. The conference on which this book is based was made 

possible by generous financial support from two other organizations in addition to M.I.N.D. One 

was For a New Social Science (NSS), a nonprofit research foundation based in Coral Springs, 

Florida, that also cosponsored the M.I.N.D. 1995 conferences and supported the 1990 conference. 

The purpose of NSS, as stated by its founder, Dr. Sam Leven, is “turning the findings and tech- 

niques of science to the benefit of social science.” It seeks to develop more predictive method- 

ological bases for areas ranging from economics to management theory to social psychology — in 
some cases, to replace foundational assumptions dating from the time of David Hume and Adam 

Smith, based on a static and unrealistic model of human behavior, with new foundational assump- 

tions that draw on modern knowledge of neuroscience, cognitive science, and neural network theory. 

The other organization that supported the conference as the International Neural Network Society 

(INNS), through its Texas Area Special Interest Group (SIG), and administered by the then Execu- 

tive Director of INNS, Morgan Downey. INNS, founded in 1987, has become the flagship interdis- 

ciplinary organization for neural network researchers and practitioners, through several World Con- 
gresses on Neural Networks that draw around 500 attendees and the society’s official Journal, 

Neural Networks (published by Elsevier). INNS is now involved with this book in another respect, 

having joined forces with Lawrence Erlbaum Associates, Inc., to promote an INNS Book Series of 

which this book is a part. 

The speakers and poster presenters at the conference included one author for each chapter in 
this book except for Chapters 2 and 17, and several other distinguished neural network researchers: 
Stephen Grossberg of Boston University (whose talk 1s mentioned in the editors’ preface to Gail 

Carpenter’s chapter); Harold Szu of the Naval Surface Warfare Center (whose ideas are alluded to 

in Robert Dorsey and John Johnson’s chapter); Steven Hampson of the University of California at 
Irvine; and Subhash Kak of Louisiana State University. These speakers made strong contributions 

to the dialogue. Some could not contribute chapters to the book because of other time commit- 

ments, and others were not asked to contribute because the anonymous reviewers expressed the 

need to focus the dialogue more sharply, but their influence is felt in the points raised by the chapter 
authors. 

The other members of the Metroplex Institute for Neural Dynamics lent us considerable organi- 

zational support, especially Alice O’ Toole and Raju Bapi, who were with us on the M.I.N.D. ex- 

ecutive committee at the time of the conference. The University of Texas at Dallas provided the 

excellent Conference Center with state-of-the-art facilities at which the meeting took place. 
We owe a debt of thanks to the staff of Lawrence Erlbaum Associates, Inc., particularly to Judi 

Amsel and Ray O’Connell, our editors at different stages; our unknown copyeditor; and Arthur 

Lizza and Sondra Guideman, our production editors. Ray, in particular, promoted this book as a 

natural sequel to the book on knowledge representation and inference.
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Finally, we thank our wives, Lorraine Levine and Diane Blackwood, for their patience and 
Support. Their intuitive understanding of and proximity to our editorial efforts made them in effect 
cocreators with us. 

Daniel S. Levine 

Wesley R. Elsberry 
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I 
WHAT IS THE ROLE OF 
OPTIMALITY?





Don’t Just Stand There, 
Optimize Something! 

Daniel S. Levine 

University of Texas at Arlington 

Daniel Levine's chapter, Don’t Just Stand There, Optimize Something!, attempts to 
give a general theory for how much influence optimization has on human decision making. 
Levine considers the roles of optimization both at the descriptive level (how do we make decisions 

in reality?) and the normative level (how should we make decistons?). 

Levine compares actual human decision making with self-actualization, Abraham 
Maslow’'s description of optimal human mental functioning. He proposes a tentative neural 
network theory for self-actualization that posits an explanation for why it doesn’t always happen. 
A submodule of his network calculates a utility function of its present state, and another node 

(analogous to a function of the frontal lobes) imagines alternative states and calculates their 

utility functions. If an alternate state ts seen as "better" than the current state, this generates 

"negative affect" which drives the network to seek a new, and presumably closer to optimal, state. 

But the strength of the network's approach to a new state is regulated by a complex chemical 
transmutter system. If this strength ts insufficient, the network can get "stuck in local minima" 

in the familtar fashion of back propagation networks. 
Being stuck in a local mintmum ts not necessarily bad. It may be analogous to 

satisficing, the term coined by Herbert Simon for reaching the first decision that ts good enough 
to satisfy current needs, even if it 1s known not to be optimal (a concept also discussed in the 
chapters by Golden and by Werbos). Also, Levine points out, as does Leven’s chapter, that 
rational optimization of all decisions may lead to spending too much time and effort on decisions 
whose consequences don’t merit this effort. Based on previous work of Pribram, he suggests that 
the frontal lobes, hippocampus, and amygdala combine into a system that decides which goals are 
worth how much effort to optimize. He makes a distinction, also made in Werbos’ chapter, 

between optimizing at "macro" and "micro" levels.
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ABSTRACT 

This chapter deals at a philosophical level with two questions about human cognitive 
functioning: (1) Do we always optimize some variable that provides an advantage to us? and (2) 

Should we always optimize some variable? The first question is answered with a resounding 

"No." Some of the influence of irrational constructs, such as metaphors, on cognition is explored. 

Then a tentative neural network theory is proposed for self-actualization, an optimal state, partly 

rational and partly intuitive, that is achieved only a small portion of the time by most people and 

more consistently by a minority of people. The second question is left open: some situations are 
given whereby detailed rational strategies are counterproductive, but there still may exist a 
broadly normative utility function that combines reason and intuition. 

1. INTELLECTUAL ISSUES 

The conference on which this book is based has roots going back to the early 1970s. At 

that time many neural network theorists sought to explain human behavior broadly as maximizing 

positive reinforcement and/or minimizing negative reinforcement. The most important of these 
optimality theorists were Harry Klopf, Paul Werbos, and Gregory (now Gershom-Zvi) Rosenstein 
(the last two being contributors to this volume). Let us look at where these scholars derived their 
inspiration. Part of it came from analogy with economics, particularly microeconomics: just as 

consumers and producers are assumed to maximize profit, minimize cost, and so on, organisms 

maximize biological reinforcement, which is treated as a sort of "net income" (cf. Rosenstein, 

Chapter 19). But the inspiration for optimality also came from evolutionary theory. Ever since 

the age of Darwin, there has been a strong teleological itch among biologists, a tendency to see 
prevailing behavior as somehow justified from an evolutionary standpoint, as serving a purpose. 

Yet in all disciplines (less in economics than anywhere else, cf. Leven, Chapter 3) there 
has been a countervailing tendency to see rationality, particularly human rationality, as flawed, 

to see Edgar Allan Poe’s imp of the perverse (Stedman & Woodberry, 1894) in some of the 

actions of biological organisms. How, using optimality principles alone, can we explain addictive 

gambling, neurotic self-punishment, sexual attraction to toxic personalities, election of obvious 

scoundrels to political office? The list goes on and on. The title of my chapter is actually a 
variant of one used in the commentary (on the article of Schoemaker, 1991) by Paelinck (1991), 

who in turn took it from a cartoon in which it is an exhortation from an American economics 

professor to his students. Sometimes, mathematical theories needed to justify behavior within 

a rubric of "optimizing something" lead to absurdly tortuous utility functions. 

The debate over how much human behavior is rational goes on in every scientific and 
social scientific discipline, with major effects on the philosophical foundations of these fields 
(Cohen, 1981; Kyburg, 1983; Schoemaker, 1991). Sometimes (Jungermann, 1983), this debate 
has been couched in terms of optimism versus pessimism, with the believers in pervasive 

rationality being counted as optimists. But look at the optimality question from another view- 

point, that of the social reformer. If you are interested in ridding the world of unjust war, pover- 
ty, or environmental pollution, each of which is at least partly caused by human actions, you 
hope that these actions do not represent optimal human behavior. That is, people are capable of
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"better" than war or poverty or pollution. Hence, from the social reform viewpoint, Junger- 
mann’s "optimists" become "pessimists," and his "pessimists" become "optimists"! 

Even from an evolutionary viewpoint, Stephen Gould has shown that evolution does not 
necessarily imply "progress." Gould (1980, p. 50) reviewed two principles Darwin had 
propounded about nonadaptive biological change. One is that "organisms are integrated systems 
and adaptive change in one part can lead to nonadaptive modifications of other features." The 
other is that "an organism built under the influence of selection for a specific role may be able, 
as a consequence of its structure, to perform many unselected functions as well." Darwin 
disagreed with other biologists of his day who were stricter believers in optimality, such as 
Alfred Russel Wallace. He believed, as I do, that whereas evolution may lead to optimization 
of some functions, this process could have accidental by-products that are not always optimal (see 
Stork, Jackson, & Walker, Chapter 4, for a specific biological example). What Gould said about 
biological functions in general is particularly true of neuropsychological functions. 

In another sense, evolutionary theory does not tell us the whole story about human choice. 
Natural selection only means that traits will be selected that promote survival (of the individual 
or of his or her genes). It does not mean that traits will be selected that enhance the quality of 
life in senses that most of us would agree on, the best use of human potential.' In later sections, 
I develop a tentative neural theory of self-actualization, defined by Abraham Maslow (1968, 
1972) as the state of optimal human potential. Maslow noted that self-actualization is achieved 
consistently by about 1% of the population and on rare occasions by most other people. This is 
far less often than would be predicted if evolution selected for a self-actualizing tendency. 

Schoemaker (1991) asked what is the level at which the concept of optimality is 
meaningful. He asked whether optimality is "(1) an organizing principle of nature, (2) a set of 
relatively unconnected techniques of science, (3) a normative principle for rational choice and 
social organization, (4) a metaphysical way of looking at the world, or (5) something else still" 
(p. 205). The chapters in this volume vary widely in their viewpoints, but the largest segment 
seems to have arrived at a general consensus. The majority of authors herein, and of scientists 
in general, believe that optimality contains elements of both (1) and (3) of Schoemaker’s choices. 
It is an organizing principle of nature but not the organizing principle, that is, it does not point 
to a universal rule. The chapters in this volume by DeYong and Eskridge, Elsberry, Leven, and 
Werbos particularly point to optimization as a useful tool for understanding consciousness or 
intelligence, in spite of having major limitations. A system for vision, or cognition, or motor 
control may be optimal in its overall organization but suboptimal in parts, or vice versa. 

In dynamical systems in general, and neural network systems in particular, the crucial 
distinction is between competing attracting states of the system. This includes the distinction, 
now already a cliché after less than 10 years in wide usage, between global and local minima of 
an energy (or cost, or error) function. Ironically, the bugbear of nonoptimal local minima now 
particularly haunts back propagation networks, which originated with Werbos’ (1974/1993) effort 
to link brain theory to the optimization rubrics of economics! 

  

' It can be convincingly argued that under the current threats of nuclear war and environmental catastrophe, 
enhancing human potential is necessary for our survival as a species. If so, natural selection does not even ensure 
survival.
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2. FRONTAL LOBE DAMAGE AS A PROTOTYPE OF NONOPTIMAL COGNITION 

The hint that nonoptimality is pervasive in human cognition is important to those 
developing machines to perform higher-level cognitive functions, because those functions involve 

a mixture of reason and intuition. It suggests that although designers of such machines should 

study neuroscience and neuropsychology, they should not adhere slavishly to the buzzword of 

biological realism. This is because someone might devise an intelligent machine that is less 

vulnerable than our brains to, say, cognitive dissonance (Festinger, 1957) or conflict between 

reason and emotion. In fact, such a hypothetical machine might even be based on the same types 
of components as our brains are but with those components combined in a novel architecture. 
If so, as Lorenz (1966) and Werbos (Chapter 2) suggest, the long-awaited missing link between 
animals and a truly humane being might be ourselves! 

Since the frontal lobes integrate sensory, semantic, affective, and motor systems among 

others (Pribram, 1991), theories of their function would seem to bear on the issue of optimality. 

There have been several recent neural network simulations of cognitive effects of frontal lobe 

damage (Bapi & Levine, 1994; Cohen, Dunbar, & McClelland, 1990; Dehaene & Changeux, 

1989, 1991; Leven & Levine, 1987; Levine & Parks, 1992; Levine & Prueitt, 1989). These 

networks model behavioral circuits combining cognition, motivation, and reinforcement, in which 

frontal connections (with the limbic system, hypothalamus, thalamus, caudate nucleus, and 
perhaps midbrain) play a controlling role. I suggest that these frontal damage effects can be 

treated as prototypical examples of nonoptimal human cognitive functioning. 

David Stork (personal communication) has objected that any lesioned system’s functioning 

is of course suboptimal and does not indicate the system’s normal processes. However, our 

models treat frontal damage as weakening, not breaking, a connection. This is because the frontal 
lobes provide the most direct link, but not the only link, between sensory areas of the cerebral 

cortex and affective areas of the limbic system and hypothalamus (Nauta, 1971). Hence, optimal 

cognitive function (which Levine, Leven, & Prueitt, 1992, compared to self-actualization) requires 

balance of activities and connection weights in many brain areas. This balance, I conjecture, is 

disrupted not only by focal brain damage but by many other contingencies, including bad 

education or maladaptive social customs (society’s "phobias" or "obsessive-compulsive 

neuroses"). Figure 1.1 shows the continuum of human cognitive function from least to most 
integrated. 

The networks of Levine and Prueitt (1989) incorporated two generic frontal lesion effects: 

perseveration in formerly reinforcing behavior, and excessive attraction to novelty for its own 
sake. Many familiar human and social phenomena are analogs of these two types of effects. For 

example, one form of perseverative behavior is prejudice against a group of people because of 

an early bad experience. Sometimes, in fact, the prejudiced individual will base a habit of 
prejudice not on direct experience with Blacks, Jews, women, laborers, mathematicians, and so 

forth, but on what he or she has heard about the group. If that kind of conditioning is obtained 
from an entire social circle, or from influential individuals such as parents, it can override later,
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more favorable, direct experience with the group in question.” One form of excessive novelty 
preference is following fads, whether in political beliefs, scientific outlook, or drug usage. 

3. THE PROMISE AND SPECTER OF OUR METAPHORS 

Lakoff and Johnson (1980) noted how much human thought is structured by metaphors. 

The metaphors we use are unconscious, frequently culturally based, and create whole systems of 
analogies that become embedded in our common language without our being aware of their 
source. One of their key examples was the metaphor "ARGUMENT IS WAR." They gave the 
following examples of common American English phrases informed by that metaphor: 

Your claims are indefensible. 

He attacked every weak point in my argument. 

His criticisms were right on target. 

I demolished his argument. 
I’ve never won an argument with him. 

You disagree? Okay, shoot. 

If you use that strategy, he’ll wipe you out. 

He shot down all of my arguments. (p. 4; authors’ italics) 

Lakoff and Johnson emphasized that the war metaphor is not the only possible way to view 

arguments. By contrast, they asked us to "Imagine a culture where an argument is viewed as a 
dance, the participants are seen as performers, and the goal is to perform in a balanced and 

aesthetically pleasing way. In such a culture, people would view arguments differently, 
experience them differently, carry them out differently, and talk about them differently." 

In much the manner that frontal patients on a card sorting test develop an unbreakable 

positive feedback loop between their habits and their decision criteria (Milner, 1964), people 

frequently develop hard-to-break positive feedback loops between their metaphors and their belief 

systems. For example, when in graduate school I had an argument with a roommate about 
equality between men and women. My roommate, whose cultural background was more sexist 

than mine, said at one point in the discussion, "But I should be the man in the house." What was 

happening, I believe, is that he had among his mental constructs the metaphor "POWER IS 

MASCULINITY," and thereby used the term man metaphorically to mean boss. But since he 

used the word man instead of the word boss, his wording made it sound absurd that a woman 

should play the role, thus ridiculing the idea that a woman should have power equal to a man’s. 

Hence, our conditioning (either from experience or from teaching) determines our 
metaphors, which in turn limit our further conditioning. How this takes place is at the heart of 

analogical reasoning, which is one of the major current boundary areas between connectionist 

theory and traditional artificial intelligence (Barnden, 1994; Jani, 1991). I am by no means 

  

* Some preliminary neural network theories of how prejudice arises and how it might be overcome are discussed 

in Chapters 4 and 5 of Levine (1996).
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arguing that the cure for all social problems involves overcoming our metaphors and being 

"rational." Metaphors, in addition to adding poetry to life, enable creative leaps. Analogies lead 

to hunches supported by evidence insufficient for a formal proof but sufficient to suggest that a 

formal proof may be along the way. Analogies, some of them far-fetched, are a source of 

creative ideas even in the most proof-oriented of fields; the late mathematician Lipman Bers of 
Columbia University (personal communication) once said humorously that most mathematical 
proofs are derived from either "cheap tricks or bad jokes." 

  

INTEGRATION SELF-ACTUALIZATION 
A (CREATIVE SYNTHESIS) 

    
  

    
OPTIMIZING AMONG A 
FIXED SET OF RULES 

    
  

  
  

ENTRENCHED PATTERNS 
(NEUROTIC, BUREAUCRATIC, 

ETC.)       

  
  

STEREOTYPED (E.G., 

    
  

      OBSESSIVE-COMPULSIVE) 
BEHAVIOR 

¥ FRONTALLY DAMAGED 
DISINTEGRATION BEHAVIOR       

Fig. 1.1. Continuum of behavioral patterns trom frontally damaged to self-actualized, with stereotyped or 

entrenched behavior in between. (From Levine & Leven, 1995, adapted with permission.) 

I am merely arguing that we leave the way open for even our most beloved metaphors 

to be challenged if they seem inappropriate for a changed context. A suggestion for how this
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might be done arises from a role ascribed to the hippocampus in Pribram (1991). Pribram 

reviewed a large body of literature implicating two regions of the limbic system in the processing 

of familiarity versus novelty: the amygdala functions to create a sense of familiarity, whereas the 

hippocampus is involved in innovation. If part of a scene is currently being positively or 
negatively reinforced, hippocampectomized animals are unable to respond to changes in the part 

of the scene that is not being currently reinforced. It is precisely that type of change to which 

the innovator has to be able to respond, using the "peripheral vision" of his or her consciousness. 
A sexist man, for example, will never change his view that women are naturally subordinate 

unless he can be influenced by continual encounters with women acting effectively and pleasantly 

in powerful roles. Moreover, such encounters are most effective when they occur at times when 

his mind is focused on something unrelated to gender roles (such as needing to get a job done). 

4. A SPECULATIVE FRONTOLIMBIC SYSTEM 

In Pribram’s view, the frontal lobes serve to mediate the balance between hippocampal 

and amygdalar functioning. He reviewed work that shows the division of the frontal lobes into 

three main functional subunits: the ventral part that is extensively connected with the amygdala, 
the dorsal part that is connected with the hippocampus, and the medial part that is connected with 
the somatosensory cortex. All three of these sets of connections are bidirectional. Based in part 

on event-related potential data (Deecke et al., 1984), Pribram suggested that these three areas of 

the frontal cortex are respectively concerned with appropriateness of actions, with setting of 

priorities, and with practicality of subgoals. A very simplified scheme for the significance of 

interactions among the frontal lobes, hippocampus, and amygdala is shown in Fig. 1.2. 
This frontocortical-limbic scheme might have some more direct implications for optimality 

theory, as well. Pribram made the distinction between what he calls efficient processing, 
connected with functions of the hippocampus, and effective processing, connected with functions 

of the frontal cortex. What he meant by these terms was that efficient processing occurs when 

optimal ("least effort") choices are made in a fairly known environment, whereas effective 

processing occurs when choices are made in an environment that may be unknown (such as a 

new city after a move), choices that may not be optimal but "do the job." Hence, the frontal 

lobes, in their executive function (Pribram, 1973, 1991) are apparently deciding when it is 
appropriate to make optimal choices and when it is more appropriate to satisfice (cf. Golden, this 

volume; Simon, 1979; Werbos, this volume). 

4.1. Self-Actualization: Why Doesn’t it Happen All the Time? 

More suggestions about functional interactions between the prefrontal cortex and 
subcortical areas can be obtained from network analysis of the idea of self-actualization due to 
Maslow (e.g., 1968, 1972). This term was intended to mean human functioning at the highest 

possible level. One of the major characteristics Maslow found in self-actualizing people — and 

in average people during temporary episodes of self-actualization known as peak experiences — 

is that such people tend to resolve ambiguities in a way that synthesizes conflicting interests 

within the mind rather than deciding between them. Hence, these people bridge typical
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dichotomies such as serious versus playful, masculine versus feminine, strong versus generous, 

rational versus emotional, by innovative solutions to problems. 

  

      

    

            

FRONTAL 
"EXECUTIVE" 

AMYGDALA: 
PROCESSING HIPPOCAMPUS: 

WHAT'S INNOVATION 
REINFORCED 

Response to Response to 
familiarity changed context 

Fig. 1.2. Schematic of three interconnected brain regions that perform different functions in rule formation. 
(From Levine, 1995, reprinted with permission.) 

To understand self-actualization, or its absence, in neural networks, let us start with the 

notion of simulated annealing (Ackley, Hinton, & Sejnowski, 1985; Kirkpatrick, Gelatt, & 

Vecchi, 1983). Simulated annealing is a widely used probabilistic method to move a system out 
of a suboptimal local minimum of an energy function, and closer to an optimal global minimum. 

In Fig. 1.3, I propose an alternative to simulative annealing, one that seems related to human 

introspection. The basic needs of the organism are encoded by a competitive (on-center off- 

surround) module as in Cohen and Grossberg (1983). The Cohen-Grossberg theorem tells us that 

such a competitive network has a Lyapunov function, called V, and always approaches a steady 

State that is at least a local minimum of that function. My proposal is to supervise this 
competitive module by a "world modeler" module, possibly analogous to part of the prefrontal 

cortex (cf. Ingvar, 1985). The world modeler makes "copies" of various possible states of the 

need subsystem and calculates the Lyapunov function for each. If V of the current state is larger 

than V of some other projected state, this sends a signal to a "negative affect" module that in turn 

sends random noise back to the need subnetwork, which can move it out of an unsatisfying local 

minimum in much the same manner as in a Boltzmann machine (Ackley et al., 1985).
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The network of Fig. 1.3 is a step toward modeling the overarching function of the 
prefrontal cortex, as described by Damasio (1991): "To select the responses most advantageous 
for the organism in a complex social environment" (p. 404, author’s italics). In more detail: 

The primary value used for the selection is the state of the soma, understood as a 
combination of the state of viscera, internal milieu, and skeletal musculature. The primary 
signal used for the process of response selection is a somatic response, which we call a 
somatic marker. (Damasio, 1991, p. 404) 

Is Damasio’s somatic marker described by a Lyapunov function such as the one in Fig. 1.3? 

  

NEGATIVE 
+ AFFECT 

      

NOISE 

  
V |FUNCTIQN 

CALCULATI INS 

cuuneaeeeeeneenseens atl WORLD 

MODELER 

  

  

      

  

      

NEEDS 

Fig. 1.3. Alternative scheme for simulated annealing. If the current state of the module has a larger energy 
function than some alternative state imaged by the world model module, this activates the negative affect 
module, which sends noise to perturb the needs module. (From Levine, 1994, reprinted with permission.) 

The scheme of Fig. 1.3 is a first approximation: it must be expanded to include context- 
dependent biases within the needs module. Maslow (1968) discussed the hierarchy of needs: 
Survival needs like safety or food tend to be satisfied first, then needs for love or belonging, and 
finally needs for achieving one’s potential. A homeless person, for example, tends to accept a 
job that stifles creativity more easily than does an affluent person. This suggests a scheme
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whereby a few overwhelming needs suppress perception of mismatch from a global energy 
minimum in the state of other needs. Maslow (1968, p. 26) said, and Hofstede (1980) confirmed, 
that this hierarchy is not a strict all-or-none progression: some personalities and cultures can more 

easily than others accept frustration of a lower-level need in order to try to resolve the "whole 

picture." Leven (1987) posited three major styles of problem solvers: "Dantzig" or direct solvers, 

who try simply to achieve an available solution; "Bayesian" solvers, who play the percentages 

and try to maximize a measurable criterion; and "Godelians," who combine intuition and reason 

into innovative solutions. Hence, any neural model of self-actualization and the needs hierarchy 

includes wide parameter variations based on personality differences. 
Leven’s three types of solvers may differ in the extent to which they accept "satisficing" 

solutions that satisfy only some of their needs. The idea of a suboptimal local minimum may at 
times need to be reconfigured as a minimum for an energy function over part, but not all, of the 

needs module. If a subset B of the need set N suppresses the other needs excessively, the 

contribution of nodes in N-B to the calculation of the energy function V 1s also weakened. This 

is because, in Cohen and Grossberg (1983), V has the form 

V(x) = -Y [bd (dy + 4.4,(x,)d, (a), 
0 j.k=1 N 

| —
 

i=1 

where the c, are positive constants and the d; are monotone nondecreasing differentiable 
functions. This equation shows that if the system is in a state that primarily differs from an 

optimal state in those node activity variables v, for which z is a member of N-B, the affective 
error signal from this mismatch will be weakened. 

The system of Fig. 1.3 can be regulated at many levels. The two main processes to be 

regulated are (a) the competitive needs module itself, whereby tonic signals can move the 

module’s behavior toward either "winner-take-all" or stable coexistence, and (b) the gain from 

the negative affect error signal to production of "simulated annealing" noise. As to possible brain 
loci for controllers and modulators, either the needs module or the error signal may be 
identifiable with part of the amygdala, which has been implicated in calculations of emotional 
valuation (LeDoux, 1991; Pribram, 1991). Effects of fronto-amygdalar connections, in addition 

to those arising from the "world modeler" module of Fig. 1.3, could include control of the gain 

of the "noise" signal from the "negative affect" module. This suggestion comes from the clinical 

observation (e.g., Milner, 1964) that frontal patients sometimes express frustration at their own 
ineffective actions, but this frustration does not make them change their actions. 

The amygdala (especially its central and basolateral nuclei) is also heavily innervated by 

noradrenergic projections from the locus ceruleus (Foote, Bloom, & Aston-Jones, 1983). In 

addition to enhancing novel or significant inputs (Hestenes, 1992), noradrenaline (NA) influences 

cognitive attributions and beliefs. Individuals with low NA levels tend toward learned helpless- 

ness and lowered confidence in their ability to affect events (Leven, 1992; Samson, Mirin, 

Hauser, Fenton, & Schildkraut, 1992). A milder form of learned helplessness, with an interme- 

diate NA level, might lead to passivity about satisfying the "higher" needs in the set N-B 
(discussed earlier) if the "lower" needs in B are already met. In other words, the person may feel
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confident only about satisfying a small set of needs. In the network of Fig. 1.3, NA signals 
affect the competitive needs module, making its dynamics more winner-take-all with a low NA 
level, and more coexistent with a high NA level. Grossberg (1973) showed that tonic excitatory 
signals tend to uniformize activities in a competitive network. The NA signal could similarly 

tonically arouse the needs module, as shown in Fig. 1.4. Larger NA moves this module toward 

equilibria that satisfy a greater number of needs.” 

    

               

LOW NA HIGH NA 

Fig. 1.4. Effect of noradrenaline (NA) level on an on-center off-surround module, such as the needs module 

of Fig. 1.3. Dark circles indicate nodes with positive asymptotic activily. (From Levine, 1994, reprinted with 
permission.) 

4.2. Self-Actualization and Information Processing 

Now that a tentative theory of interactions between drives (Maslow’s "hierarchy of 

needs") has been outlined, let us look further at what may constitute satisfaction of a "self- 

actualization drive." The discussion in this part continues and extends that in Levine et al. 

  

> This model is a simplistic first approximation, because the role of noradrenaline is far too complex to be 

captured by a single parameter. More detailed network hypotheses about the interplay of NA and other transmitters 

such as dopamine and serotonin, and the brain regions involved, appeared in Leven (1992) and Luciano (1995).
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(1992). We return to the point of Maslow (1968, 1972) that self-actualization involves creative 

synthesis of previously conflicting concepts or beliefs. Recall that Fig. 1.1 depicts a continuum 

of human behavior from the most "disintegrated" to the most "integrated." Decisions based on 

winner-take-all choices to act strong or generous, playful or serious, and so forth, are more 
effective than decisions made by people with frontal lobe damage. Also, choices are based on 

rational judgment are more effective than choices based on entrenched habits. But if the claims 
of both conflicting entities (e.g., "strength" and "generosity") are powerful enough, still more 

effective choices (even if they are riskier) are available from syntheses of the two alternatives. 

For example, one might combine generosity and strength into being powerful so as to empower 

others, or combine playfulness and considerateness into "if it harm none, do as you will." 
Because these high-level syntheses involve a blend of rational, intuitive, and instinctive processes, 
that is, all of MacLean’s (1980) "three brains," they should, as Fig. 1.1 suggests, engage the 
prefrontal cortex, which is the chief communicator between the three brains. 

Different degrees of self-actualization lead to different methods of resolving ambiguity. 

Wegner and Vallacher (1977, p. 124 ff.), for example, reported studies of general impressions 

people formed about women who were depicted as both kind (leading to a positive evaluation) 

and sexually promiscuous (leading to a negative evaluation). Most people adopted either the 
univalent strategy of resolution (she’s "good" or "bad," not both), the aggregative strategy (she’s 
"a bit of each"), or the integrative strategy (e.g., she’s "happy go lucky" — an answer that ties 
the paradox together). The integrative strategy involves an ability, and decision, to transfer to 

a higher level in conceptual space if no decision made at a lower level is satisfactory. Levine 

(1989) described one possible way to implement ambiguity-dependent interlevel switching in an 

adaptive resonance theory (ART) network. Previous models (Dehaene & Changeux, 1991; Levine 

& Prueitt, 1989) posited rule-coding neurons in the prefrontal cortex. The choices between rules 

in those networks, however, were within one level (e.g., sorting cards on the basis of color versus 

shape of design). The prefrontal cortex also seems to make choices between levels, that is among 

types of rules. Examples of rules that need intact frontal lobes to be learned effectively are (a) 

choose whichever object is the most novel (Pribram, 1961); (b) alternate moving to the left and 

right (Goldman & Rosvold, 1970); and (c) press each of several panels once, regardless of order 

(Brody & Pribram, 1978). The greater the degree of self-actualization, the higher the level of 
rules that will tend to be chosen. This depends, in an ART network, on a parameter called 

vigilance that connotes probable, but not certain, match. This vigilance level in turn, I believe, 
depends on interactions between the neurotransmitters noradrenaline and serotonin; these are 

beyond the scope of this chapter, but related experimental results are found in Hestenes (1992). 

5. BUT IS NONOPTIMALITY SO TERRIBLE? 

Self-actualization (SA) is not an example of rational optimization in the classical sense 
used in economics (e.g., Lancaster, 1966). Rather, SA is related to the function of deciding when 

it is appropriate to optimize a rational utility function. It seems plausible that SA actually is 

equivalent to optimizing some other utility function that incorporates both reason and intuition, 

but at this stage of knowledge it is premature to try to quantify this function. I agree with
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Werbos (Chapter 2) that a truly intelligent system (i.e., one that optimizes utility over tune) needs 
capacities other than classical rationality. Such a system clearly, Werbos emphasizes, needs 
emotion, in order to have a criterion for determining what is reinforcing. It also needs attraction 
to novelty, in order to encourage exploration (see also Ofmen & Prakash, Chapter 18). 

Meanwhile, I am indebted to Sam Leven for the following example (discussed in Leven, 

1987) of a situation whereby "it is not optimal to optimize": 

You are in a Supermarket, buying weekly groceries. You arrive at the aisle containing 
breakfast cereals. There are fifty different brands. Each comes in three different 

sizes. Each has different quantities of ten vitamins than the rest, a different price, 

and, of course, a different flavor. Buy a box of cereal. 

The optimizing — rational — man’ faces a combinatorial nightmare. Following the broadly 

accepted model introduced by Lancaster (1966), our economic man identifies the categories on 

which he should judge the cereals ("characteristics") and creates a matrix of rankings: a very 
difficult multidimensional optimization problem. 

The frontal lobes say: hey wait a minute, devoting all that time to the cereal choice which 
doesn’t make a lot of difference shows (in the terminology of Pribram, 1991) trouble setting 

priorities, and even some impropriety. Hence, we only try to optimize overall decision schemes, 

not every single decision (see also the discussion of economics and business in Werbos, this 

volume). An analogous "macro-optimality" without "micro-optimality" occurred in Bullock and 
Grossberg’s (1988) model of arm motor control. These authors argue that their model, which 
sets control goals but does not establish an optimal trajectory, is more flexible than a competing 

model, the "minimum jerk model," which interprets every intermediate position of a muscle as 

the minimum of some utility function. This might be the ambiguity that we have to live with 

at all levels, sensory, motor, and associative. Perhaps optimality itself is just a metaphor! 
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Optimization: A Foundation for 
Understanding Consciousness 

Paul J. Werbos! 
College Park, Maryland 

Paul Werbos’ chapter, Optimization: A Foundation for Understanding Conscious- 
ness, provides a general picture of the role of optimization in deepening insights about brain 
organization and human nature. Although Werbos does not believe that optimization explains 
every detail of behavior, he argues that optimization, and the related idea of control, provide a 
foundation for helping to understand the structure of many types of intelligence in both brains 
and electronic computers. He argues further that the insights obtained from neural network 
analysis deepen, rather than change, centuries-old ideas from some philosophies and religions. 

In his preliminary section, Werbos discusses classic deviations from optimality in actual 
neural systems. One has to do with the problem of getting "stuck" in local minima. Although 
no intelligent system can entirely avoid local minima, Werbos mentions recent work in adaptive 
control (some of it his own) on strategies to alleviate the problem. One of these is "shaping": 
to train a network on easy versions of a problem, and then gradually readapt the weights to 
increase the chances of solving harder versions. Another has to do with attraction to novelty and 
exploratory behavior, which is also discussed in the chapters of this book by Pruettt and by 
Ogmen and Prakash. Like those other authors, Werbos believes that exploration, although it 
deviates from static utility maximization, is actually a necessary component of intelligent 
systems. Finally, there ts the difference between "micro-" and "macro"-optimality, also discussed 
in Levine's chapter. Werbos adduces evidence from business organizations that certain types of 
"micromanagement" are actually suboptimal for overall performance of companies. 

Werbos defines intelligence in terms of macro-optimality, that is, maximizing the value 
of a utility function over time. (In this light, the schizophrenics discussed in Rosenstein’s 
chapter might be interpreted as people who are focused strongly on immediate maximization of 
a variable, called Income, and are ineffective at planning its long-term maximization.) But 
Werbos’ interpretation of this utility function deviates somewhat from the orthodoxy that 

  

The views herein are purely my personal views, oversimplified in places to make a point. They certainly do 
not in any way represent the views of any of my employers past and present, one of whom remains a close friend 
and supporter even though he is totally aghast at Section 7 and the Appendix.
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developed in economics, behaviorist psychology, and analytical philosophy. He stresses that not 

only are reason and emotion not opposites, but an intelligent organism requires emotion to make 
good decisions — a point also made tn the chapters by Leven, Levine, and Rosenstein. 

Also, Werbos believes that study of intelligent control requires consideration of things 

outside the pale of reductionist science, such as consciousness and, possibly, the soul. This may 
be somewhat related to his view of how humans fail to be optimal: in our ability to articulate our 
desires, that is, to get our rationality in harmony with our emotions. In this regard he believes, 

with Konrad Lorenz and others, that humans might be transitional forms to a higher level of 
evolution. In his appendix, he speculates that something akin to a soul, a part of mental life not 
reducible to atoms and neurons, could be important for bridging to the higher level. 

ABSTRACT 

This chapter describes how the concept of optimization — whatever its limitations — can 

be a useful tool in efforts to understand consciousness and the mind. Such efforts must draw on 

what has been learned in many disciplines, many cultures, and many centuries. Neural net 

designs based on optimization offer us a more complete understanding of the phenomenon of 
intelligence and mind, precise enough to be replicated on electronic computers, yet fully 

consistent with what we see in the brain and in experiments on overt behavior. A deeper 

understanding of intelligence and the mind has immediate implications for the problem of 

consciousness, and for the foundations of psychology and philosophy. 
This chapter provides a global summary of these implications, as seen from the viewpoint 

of existentialism, Confucianism, and linguistic analysis — established philosophical traditions 

which should not be ignored here. Among the six issues discussed are the subjective sense of 

existence, the levels of intelligence, the foundations of ethics, alternative states of consciousness, 

concepts of the soul, and the role of quantum theory. In all cases, the chapter presents candid 
personal views which may be regarded as heresies by a significant fraction of the community. 

The chapter argues that neural network research can indeed yield important insights into all of 

these questions, but that it does not provide a basis for overthrowing earlier views in philosophy 

or for resolving the debate about the existence of the soul; instead, it may help us to understand, 

unify, sharpen and deepen some very ancient insights. It suggests how one might understand and 
reinterpret some ancient four-letter words — hope, fear and soul — which have permeated human 
cultures for millennia, long before the advent of formal philosophy or theology. 

1. PRELIMINARIES: IS IT INTELLIGENT TO DO ONE’S BEST? 

The title of this section is partly a pun, and partly an appeal to common sense. The word 

"intelligent" by definition has something to do with the ability to do one’s best, to optimize. 

There is a huge literature out there — both in economics and in other social sciences — on 
humans’ ability to foul up, to be irrational, to make mistakes, and to become totally insane; 

however, it is important that this literature mainly focuses on deviations from the default, 

reference assumption of perfect optimality. The behavior it describes may be viewed as examples 

of stupidity (i.e., failures of intelligence) rather than examples of intelligence. We as humans do
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not really intend to foul up (vis-a-vis our real values) or to waste energy fighting ourselves. 
Optimality still provides a very powerful intellectual tool, which we can use to create very 
powerful designs and models, even if these models must be modified later to account for second- 
order phenomena. 

Years ago, for purposes of mathematical research, I proposed that we should actually 
define an intelligent system as a "generalized system which takes action to maximize some 
measure of success over the long-term in an uncertain environment which it must learn how to 
adapt to in an open-minded way." I went on (Werbos, 1986) to define the terms within this 
definition. This chapter tries to describe the relation between this more precise concept of 
intelligence and the fuzzier concepts which have emerged simply by observing human beings. 
The key concept here is that an intelligent system does not start out with an optimal strategy of 
action; instead, it tries to learn an optimal strategy, bit by bit, over time. 

If you are an intelligent human being, and you can think of ways that other people around 
you could be a little bit smarter in achieving their goals, then the deviations from optimality may 
seem very important to you. You are comparing one intelligent system (yourself) against 
another. But if you are an engineer, trying to build systems which work as well as possible, you 
will find it truly amazing that human brains of any description perform as well as they do on 
such a wide variety of very difficult tasks. If you do the very best you can, as an engineer, to 
develop an optimizing learning system, you will still find imperfections or limitations in what 
you develop. In fact, it is fascinating how the imperfections of the best possible engineering 
designs do seem to match the most obvious imperfections of organic brains. 

As an example, consider the local minimum problem. In realistic terms, it is not possible 
to build a powerful learning system which can never get caught in a rut, in a vicious cycle or 
local minimum. Therefore, it should be no surprise at all that people and animals do get caught 
in ruts, even though their brains do have well-tuned mechanisms to try to minimize the problem. 
Present-generation artificial neural networks (ANNs) do not get caught in local minima nearly 
as much as some people feared ten years ago; however, when ANNs are used to solve very 
complex control problems, it is crucial to use a strategy called "shaping" to avoid terrible local 
minima. In "shaping" (White & Sofge, 1992), one first trains the ANN to learn a very simple 
version of the problem; one then uses the resulting weights as initial values for an ANN trained 
to solve a harder version of the problem; and so on. This parallels the human need to learn “one 
Step at a time." 

Please note that learning one step at a time is not the same thing as performing a defined 
task one step at a time. A single step or stage in the learning process often represents an entire 
new Strategy or concept of how to perform a complex task, a task which may not even be 
divisible into a sequence of subtasks. For example, in engineering, consider the problem of 
training a system to balance three connected poles, one on top of the other, like a family of 
acrobats trying to stand on top of each other without falling over. The first Step may be to learn 
how to balance a simple pole. The second step might be to balance a large pole with a smaller 
pole on top. The third stage might be to balance two poles of the same size. Four Stages of 
learning may or may not be good enough to solve this training problem. This step-by-step 
approach can work only if each individual step is easy enough to be learned, but hard enough
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to force the development of the new concepts (or "hidden variables" or "representation") needed 

to solve the next more difficult problem. In formal terms, one is always guaranteed to overcome 

the local minimum problem if one somehow can learn to develop the concepts necessary to the 

task at hand. 

Thanks to the learned use of symbolic reasoning, human beings do not get caught in a rut 
nearly as much as other species. (A human being who lived exactly like a chimpanzee would 

generally be considered as being caught in a rut.) We can understand this situation better by 
viewing it in a more positive way: humans often use symbolic reasoning to help them visualize 

new, creative opportunities to enhance their lives, in ways that would not be obvious if they 

always just followed the path of least resistance. Symbolic reasoning can help us learn and 

develop new concepts in a more systematic way, based on learned strategies of thought. Even 

so, the human use of symbolic reasoning has some serious limitations, to be described in section 
5. Even the most sane among us are still caught in local minima, in lives that fall short of our 

ultimate potential, to some degree (Campbell, 1971; Levine, 1994). 

Another example of alleged imperfection is the tendency of humans to seek novelty or 

new information, even at some cost in terms of reinforcement. In actuality, novelty-seeking or 

exploratory behavior turns out to be an essential component of optimizing neural network control 

systems. It is essential both for stability and for avoiding local minima (Miller, Sutton, & 

Werbos, 1990; White & Sofge, 1992). In other words, it is essential to our ability to find ever 

more intelligent and more creative ways of coping with reality. Dreams, heresies, humor, and 

new challenges are all crucial aspects of human exploratory behavior. 

Certainly, the concept of optimization has been abused very often. Many of us have gone 

through phases of excessive self-control during adolescence, in alternation with periods of 

excessive exploratory behavior. In management research, it is now well known that "reinforce- 

ment" strategies which are based on demeaning, distorted assumptions about human values can 
reduce productivity substantially. (There is an old adage that productivity is lowest in 
organizations where people are motivated by fear, mediocre in organizations ruled by greed, and 

highest in organizations driven by pride or self-respect.) In large organizations of all kinds, 

managers who try to micro-optimize assuming that they know everything, and assuming that 

there is no need for exploratory behavior — often degrade productivity. All of these behaviors 

are motivated by an honest desire to optimize, but they are in fact grossly suboptimal; they are 
transitional stages, the kinds of stages or ruts which learning systems get stuck in for a while as 
they gradually learn better. They may learn better either through creative thinking or through 
bankruptcy. (Admittedly, however, the phenomenon of intelligence is far less obvious in social 

systems than in individual human minds.) 
In the field of psychology, Stephen Grossberg has argued very often that models based 

solely on reinforcement learning or optimization can only explain about half of the experiments 

out there. To explain the other half, one must account for "classical conditioning,” which 

requires a subsystem to generate expectations about the environment. In fact, the more advanced 

ANN designs which I have developed (Santiago & Werbos, 1994; White & Sofge, 1992) do 
contain such an expectations system, because that is crucial to effective optimization in complex 

engineering applications. Prior to late 1993, there had been no serious, published tests of these 

particular designs on realistic control challenges, in part because there were simpler versions 
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which were easier to implement; however, by late 1994, five groups of researchers had 
implemented these designs, and had shown that they do lead to better results across a variety of 
applications — difficult benchmark problems in bioreactor control, robot arm control, and 
automatic aircraft landing; simulated missile interception, compared against current state-of-the- 
art methods used on that problem; and control of a physical prototype of a hypersonic aircraft 
(Werbos, 1995a). In this chapter, however, I do not review the mathematics of these models in 
detail, because they are moderately complex and have appeared elsewhere. 

A complete review of the literature on rationality and learning would require far more 
detail than I have provided here. For example, it should consider Raiffa (1968), Von Neumann 
and Morgenstern (1953); Werbos (1968, 1992b), and the work of Herbert Simon and others. The 
goal of this chapter, however, is not to evaluate the concept of optimality, but rather to use the 
concept in addressing larger questions about consciousness and the mind, and so on. 

2. INTRODUCTION: THE ISSUE OF CONSCIOUSNESS 

In 1992, a prominent speaker at the conference of the European Neural Network Society 
declared "an open season on the problem of consciousness." The "problem of consciousness" 
is a very old problem, and one may legitimately ask why we would suddenly spend so much 
energy in revisiting it at this time. There are at least two legitimate answers: (a) that 
fundamentally new insights, developed by interdisciplinary neural network research, let us address 
the problem of consciousness at a higher level; and (b) that a relaxation of certain academic 
taboos — restricting analysis to overt behavior only (as in classical behaviorism) or to linguistic 
analysis only (as in some university philosophy departments in the United States and United 
Kingdom) — may now permit us to face up to issues which were hard to address 10 or 20 years 
ago. These answers lead, however, to further questions: 

1. If insights from neural network research are useful, why are so many of the new 
manifestoes on consciousness written by people with limited knowledge of the real frontiers 
of the field (i.e., of those aspects which are most relevant to higher intelligence?) 
2. Where is there serious philosophical depth in this discussion, above and beyond the 
classical Anglo-American approach? 

3. Just what ts the problem of consciousness anyway? 

This chapter draws heavily on current neural network research, as one might expect, but 
it also draws on traditions like existentialism and Confucianism, which have critical contributions 
to make. I do not have enough space here to explain all the vicissitudes and varieties of 
existentialism or Confucianism; however, these traditions are very important as an antidote to 
some of the more extreme and parochial approaches to philosophy which have existed in the past 
in some American universities. Twenty years ago, the leading theory of ethics in the Anglo- 
American philosophy departments was a theory attributed to Rawls which proceeded entirely by 
performing a semantic analysis of the word "justice" and of what it should mean (based on 
assorted assumptions about what good definitions for a word should be), building up to strong
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recommendations for what policymakers should do all across the board. (Bear in mind that the 

problem of ethics refers to the problem of purpose and goals in human life; it requires a lot more 
than just coming up with a formula to keep lawyers happy.) This episode reminds me of a 
meeting I once attended at the Census Bureau, where famous world-class statisticians proposed 

to develop a measure of value or utility, for use in allocating federal funds, by simply doing a 

factor analysis of a complete set of available data series collected by the Bureau. This situation 

would have been very amusing, except that billions of dollars of federal funds have actually been 

allocated on the basis of formulas derived in such ways. See Werbos (1990) for a discussion of 
assorted ways that value measurements have been developed in the government. 

Nevertheless, I would agree with the Anglo-American school on at least two basic points: 
(a) that it is foolish to invest too much energy in worrying about words like "consciousness" until 
we develop some sort of clear idea of what it is that we are worrying about, an idea of what the 
word is supposed to mean, and (b) that language, in general, does play a deep and central role 

in philosophy (Werbos, 1992c). 

So what, then, is the "problem of consciousness"? This chapter does not start out by 

picking out one particular definition of the word "consciousness"; this would be a misleading 

exercise, because the word really does have many different meanings. Instead, it focuses on six 
more specific questions that people appear to be asking under this general rubric: 

1. How is it possible — objectively — that human beings could ever meet the dictionary 

definition of "consciousness" — a basic sense of awareness, which allows them to respond 

to what they are aware of? 
2. How is it possible that human beings have a subjective feeling that we do in fact exist, 

given that we have the various capabilities discussed under questions 1 and 3? 
3. How is it possible that human beings show additional capabilities, such as intelligence 

or emotions or creativity, which we commonly tend to associate with our consciousness? 

4. What is it in the brain that distinguishes between states of "Consciousness" versus States 

of "unconsciousness" like sleep? 

  

5. Can the human mind — in its widest scope — be explained entirely in terms of atoms 

and neurons, or do we need to invoke some sort of "soul" to explain the full range of our 

experience? 

6. Can the human mind or the "soul" be fully explained in terms of algorithms or Turing- 
machine concepts (generalized to include continuous variables), or must we invoke other 

concepts like quantum computing (Penrose, 1989)? 

This chapter presents my personal opinions on these questions. The reader should be 

reassured that I am aware of the idiosyncratic nature of my views, and that my strategic goals 
in the neural network field (Werbos, 1993a, 1994a, 1994b, 1994c) are sufficiently explicit that 

they leave no room at all for me to entertain any kind of bias against anyone who can advance 

those goals, regardless of their views on these questions. Because of page limits, this chapter 

simply explains what my views are, and cites other papers which explain the critical details.
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3. THE OBJECTIVE QUESTION OF AWARENESS 

Question (1) is hardly a problem at all, objectively — even though it is probably the most 

semantically correct interpretation of the "problem of consciousness." Not only human beings, 

but all animals on earth show some degree of awareness of their environment. Awareness — in 

a literal, objective interpretation of the word — simply refers to the ability of organisms to input 

and respond to data from the environment. There is no great mystery in explaining why that 
phenomenon should evolve (i.e., can confer an advantage in survival), and no great mystery in 
seeing that there are neural circuits capable of providing that simple capability. 

Many of the neuroscientists working on "consciousness" would say that they are studying 

consciousness in the sense of awareness. They study how people become "conscious of a 

stimulus." (For example, members of that community speaking at the 1994 World Congress on 

Neural Networks, whose works are cited in Alavi and Taylor, 1994, and Taylor, 1992, made this 

statement.) That research does not try to explain how awareness exists, in a general sense; rather, 
it attempts to uncover the specific mechanisms by which information attracts attention and is 

registered at various levels of the sensory system of the brain. To fully understand these 

mechanisms — or to understand any other subsystem of the brain — it is crucial to understand 

how the subsystems contribute to the functioning of the whole system; thus, consciousness 

(defined as awareness) is very much a subset of consciousness as intelligence, to be discussed 
in Section 5. 

It is unfortunate, in my view, that work on sensory input pathways — however important 
— has been mixed up with discussions of the existence of the soul, based solely on confusions 

between different definitions of the word "consciousness." Leaping from sensory physiology 

directly to assertions about the soul is analogous to jumping from the physics of silicon to 

assertions about computer design, without bothering to learn about chip design or transistors (let 

alone applications) along the way. In fact, the latter extrapolation makes more sense than the 
former, because silicon is at least a dominant aspect of chips, whereas sensory input is only one 
aspect of human intelligence. 

Another common fallacy in the neuroscience of consciousness is the search for the site 

of "consciousness" within the cerebral cortex. This is analogous to the famous "search for the 

engram," back in the days before we understood that human memory is more distributed — even 

"holographic" — in nature. Sensory inputs typically get registered at many sites, at many levels 
in the brain. Each of these sites represents a certain level of "awareness" — a level of 
responsiveness to stimuli. Some biologists have been very excited to learn that human subjects 

state that they are aware of stimuli which reach certain sites, and state that they are unaware of 

certain others; however, from an objective point of view, this does not imply that one site is 

magically "conscious," whereas others are not. It only tells us that information in one site is 

available as an input (direct or indirect) to those areas of the cortex which control the verbal 
behavior of asserting "I am aware of that stimulus." 

It should be emphasized that neither of these fallacies is universal within the neuroscience 

of consciousness. However, there are many cases where these fallacies have received greater 

publicity than the valid, underlying science.
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4. THE SUBJECTIVE SENSE OF EXISTENCE 

From a very strict existentialist point of view, it is nonsense to try to "explain" our own 

subjective sense of existence. Our subjective sense of existence or awareness is our Starting 
point, the foundation on which we build everything else. This question is analogous to a 

question which novices ask of physicists: "Dr. Einstein, can you explain why R=T in general 

relativity? What underlying phenomena give rise to that equation? What kind of ether do 

electromagnetic waves travel in?" The point is that Einstein was looking for the lowest level of 

physical description, that level which inherently cannot be explained as the working out of 
something more fundamental. Both Einstein and the existentialists were very active in 
questioning and revising their views of what exists at the most fundamental level, but they still 

maintained an effort to build everything else up from that level. 
From an objective point of view, we may twist the question around, and ask how it is that 

organisms could evolve a sense of their own existence as such. Marvin Minsky answered this 

years ago, by simply pointing out that there are evolutionary advantages in organisms developing 

models of the self and insights to describe their own thinking. Once again, there is no real 

problem here from an objective point of view. When we ask whether other human beings have 
a sense of their own existence, we are essentially just asking the objective question; the answer 
is obviously "yes." (It would still be "yes" even if other humans were actually just programs in 
a vast virtual reality game, as long as those programs demonstrated the pertinent objective 

capabilities.) From an objective point of view, one may go further and argue that sane, self- 

aware organisms will naturally tend to accept the existentialist view of taking their own existence 

and awareness as a Starting point, because this is an honest reflection of how their natural 

thought-processes work. (See section 5.) 
From a strict Anglo-American point of view, neither of these answers is entirely 

satisfactory, because they seem to assume that there really do exist organisms on earth, that there 

is such a thing as biological evolution, and so forth. If we limit our thinking to nothing but the 

manipulation of words, without ever grounding ourselves in any sort of direct perception of 

reality, then we can in principle permit any fantastic combination of words to emerge from our 

mouths. From such a viewpoint, we could just as well worry deeply about issues like why the 

sun appears to rise every day; after all, can we be really sure that the earth revolves about the 
sun? Even if we accept that there is always some distant degree of uncertainty here (as is 
appropriate, from an existentialist point of view), it would seem silly to invest a huge amount of 

emotional energy on quirky little hypothetical contingencies which are poorly integrated into the 

rest of our concerns and which we have no way to account for In any Case. 

I do not believe that all American philosophers adhere to the extreme viewpoint I am 

arguing against here; in fact, I do not spend any further time on that particular species of 
philosophy here. Also, I do not mean to downplay the issue of how we know that the sun is 
likely to rise tomorrow; studying that issue is quite different from actually worrying about what 

to do (or how to answer intellectual questions) in case the sun actually does not rise to tomorrow. 

See section 10.4.6.4 of White and Sofge (1992) for a discussion of how old questions, like the 

question of the sun rising tomorrow, do in fact get assimilated into more far-ranging theory in



OPTIMIZATION AND CONSCIOUSNESS 27 

the neural network field. They do have a serious link to the hard-core scientific work to be 
summarized very briefly in the following section. 

5. INTELLIGENCE, EMOTIONS, CREATIVITY AND ETHICS 

In most of my research, I have found it preferable to address the issue of "intelligence," 
rather than the issue of "consciousness," because it expresses more exactly where the hard-core 

scientific issues really lie. My view of intelligence is itself somewhat controversial, and some 

psychologists would argue that it is far too narrow; however, even my view requires us to include 

both emotions and creativity as attributes of intelligence. This is one case where neural net 

theory does indeed have something to say about conventional views of the mind: contrary to 

popular wisdom, as expressed in Star Trek and such, intelligent androids and the like cannot be 
devoid of emotional systems, because emotional systems are a necessary component of intelligent 

systems (Werbos, 1992a, 1992c). There are excellent reasons to expect this conclusion to apply 
even with fuzzier, less specialized views of "intelligence." 

In my own research, I have defined an intelligent system as a system capable of 

maximizing some kind of measurement of utility or reinforcement or performance or goal- 

satisfaction (with or without prior knowledge of how that measure is defined as a function of 
other variables) over time, in an environment whose dynamics are not known in advance, so that 
the system must learn both the dynamics and a strategy of action in real time through experience. 

It must be a generalized system, capable of adapting to "any" noisy, nonlinear environment, if 

given enough time to adapt. (See White & Sofge, 1992, Chapter 10, for more precise concepts 

to replace the word "any.") This definition implicitly includes the ability to solve complex 

problems which, in turn, implies some degree of creativity. Neural net designs now exist, on 
paper, which appear fully capable of meeting this definition (Werbos, 1992c; White & Sofge, 
1992), although there are a few points where the approach is clear but the details have yet to be 

worked out (Werbos, 1993a, 1994c). Some psychologists would complain that human beings are 

not totally rational or optimal; however, realistic neural net designs have imperfections which are 

similar in many ways to those of humans. 

Why are "emotions" necessary as part of such an intelligent system? The technical 

arguments are given in more detail in the sources already cited. Crudely speaking, any 

"intelligent" system — by my definition or any other — should at least have some ability to learn 
how to take actions at the present time which lead to better outcomes (by some criterion) in the 

future. It should have some degree of foresight. Foresight also turns out to be essential even 

to stability in conventional control systems like chemical plants controllers trying to maintain 

Operation at a fixed set-point (Werbos, 1996). There are really only two ways to achieve 

"foresight" in the general case, where we can't cheat by exploiting linearity or the like: (a) by 

building explicit plans for what we will do and what will happen, extending all the way into the 
distant future as far as we care about; (b) by developing an evaluation system, or "Critic," which 

can be used to predict the long-term benefit of the various near-term alternative outcomes of 

alternative actions. (One can, of course, combine both planning and a Critic.) Whenever it is
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not possible to plan the future exactly — because of uncertainties or variables beyond one's 
control — then an adaptive Critic becomes essential. 

When there are many, many variables to be considered (as in human decision-making), 

it is not enough to have one large evaluation system which produces a global evaluation of the 

entire state of one's environment. It is important to have individual evaluations, analogous to 

prices, for each of the important variables or objects in one’s environment. This idea — the idea 

of calculating a positive or negative evaluation for each object — corresponds exactly to Freud’s 
notion of “emotional charge." (It also relates to the ancient idea of "hopes" or "fears" attached 

to individual objects or variables. Hope and fear refer specifically to the "emotional" reactions 
— positive or negative weights — placed on different variables, based on their implications for 
the future success of the organism. The words "good" and "bad" also express such assessments 

by the organism.) Backpropagation itself originated in 1974 as a surprisingly direct translation 

of Freud’s concept of "emotional energy" or "psychic energy" into mathematics; those concepts 

are also the basis of the most powerful neurocontrol systems in engineering applications today 

(Werbos, 1994b, 1995a). Grossberg (1982) argued that an emotional system is needed even to 

replicate the simplest kinds of memory capabilities found in the human brain. Levine and Leven 
(1992) also discussed the importance of emotional systems at some length. 

Classical views of intelligence have often assumed that intelligence is either a binary 
variable (either you have it or you don’t) or a continuous variable (everything from microbes to 
superhumans has a certain degree of it). A careful examination of the real-time optimization 

designs now available (White & Sofge, 1992) suggests, instead, that intelligence is more like a 

quantized or discrete variable. (Continuous variables like brain size and metabolic level also 

have some significance, contrary to what is politically correct; if they were irrelevant, evolution 
would have settled on a zero-cost zero-weight brain.) For example, even with simple supervised 
learning networks — which probably exist as local circuits in the brain (Werbos, 1994a) — there 

are fundamental, qualitative differences between different types of design: local designs based 

on fixed preprocessors, feedforward designs with adaptable hidden units, and simultaneous- 

recurrent networks adapted by simultaneous backpropagation. These different types of design 

yield distinct quantum levels of capability in approximating functions (Werbos, 1993a). 

At a more global level, Bitterman (1965a, 1965b) demonstrated years ago that there are 
basic, qualitative differences between intelligence in different classes of vertebrates, as seen in 

experiments on behavior. He also showed that these differences have definite links to the 

qualitative differences in the gross cellular architecture between brains from different classes of 

vertebrates. These differences, in turn, can be related to clear-cut differences which exist 

between different levels of design in artificial neural networks; for example the "error critic" 
design in White and Sofge (1992, Chapter 13) requires something like a merger of limbic (critic) 
cortex and general (neuroidentification) cortex, which does in fact underlie the historical 
evolution of neocortex in the mammal, whose removal (according to Bitterman) generates the 

removal of processing capabilities which happen to be related to error critics. To an engineer, 

it is astonishing that anyone would have simply assumed qualitatively equivalent behavior from 

well-designed systems with radically different components and structures; however, behaviorist 
dogma historically made it very difficult to study these basic realities. (A cynic might argue that 

the behaviorists were trying to defend themselves against the charge that experiments with
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animals might not tell us directly about humans. Another explanation is that behaviorists were 
trying to save the world from the dangers of racism — including racism against snails and 

microbes.) The requirement for an emotional system applies, however, even to the simplest level 

of intelligence within vertebrates; a/l vertebrate brains do possess a limbic system. 

What would it take to achieve a quantum level of intelligence which can truly adapt to 

"any" environment, up to the full potential of the universal Turing machine? In Werbos (1992b) 
and White and Sofge (1992, Chapter 13), I argued that full Turing machine capabilities require 

the use of explicit symbolic reasoning. The naive next step is to conclude that human beings — 
who seem capable of symbolic reasoning by use of words or mathematics — represent a quantum 

step in the evolution of intelligence, above other mammals. From the viewpoint of everyday 

experience, this would seem highly probable, at first. 

On the other hand, formal symbolic reasoning is a surprisingly recent phenomenon. It 
is easy enough for humans to udfer words, but the conscious manipulation of words or equations 
by use of formal symbolic logic and related techniques is relatively new. In fact, the articulation 
of experience into formal logical propositions or equations is also new. Without such 

articulation, symbolic reasoning as such has little value. Of equal importance are those forms 

of "visualization" which translate back from formal symbols into presymbolic "images." The 

general development of symbolic reasoning over the past few millennia has been charted in some 
detail by Sapir (in comparative linguistics) and by Max Weber (in comparative sociology). For 
ideological reasons, Max Weber has become quite popular in recent years and Sapir has not, but 

the history they summarize remains quite serious. 

In the neural network field, Jim Anderson (e.g., Anderson, Spoehr, & Bennett, 1994) has 

done extensive modeling of how humans learn arithmetic. Based on his empirical findings, he 

has argued that humans possess "two" learning mechanisms: (a) a highly developed and fine- 

tuned "sensory" system, shared with other mammals, and (b) a "buggy alpha test version" of 

formal symbolic reasoning. After all, if symbolic reasoning is the foundation of human 
technology and civilization, how do we explain the fact that human technology and civilization 

is only a few thousand years old? The obvious answer (elaborated on in Werbos, 1992c) is that 

humans represent a recent, unstable transitional life-form, which has only recently evolved just 

enough capability for symbolic reasoning to let it muddle through a few technological design 

problems, on a one-in-a-million basis (which is still enough to start a technological civilization, 

when there is a culture available to disseminate new ideas, as has been observed even in 

chimpanzees). We ourselves are the "missing link" between the mammalian and the symbolic 
levels of intelligence. Perhaps there will never be such a thing as a fully perfected symbolic 

reasoner, but it is clear that humans have not exhausted whatever potential does exist. These 

ideas may be seen as an explanation for related observations by Lorenz, as discussed by Levine 
in Chapter 1. 

One might then pose the problem of consciousness as follows: Are human beings really 
"conscious" or "intelligent"? Perhaps not, in the larger scheme of things. In Werbos (1992c), 
I explained how simple wiring changes, related to the balance between the waking state and the 

dreaming state, might be central to human abilities in symbolic reasoning. (These, in turn, might 

be related to the unique wiring of the human thalamic reticular nucleus as discussed by Alavi and
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Taylor, 1994, and Taylor, 1992). If so, there is little doubt that such capabilities could be wired 

into a computer as well. Computers could be made "conscious" or "intelligent" at a level beyond 
that of human brains today, if we were crazy and suicidal enough to want to do this. 

In my view, the biggest symptom of our lack of evolution is our inability to master the 

most fundamental aspects of symbolic reasoning: the ability to accurately articulate our true goals 

and values, in a way which is totally in harmony with the presymbolic aspects of our thought and 

allows us to master symbols instead of being mastered by them. In crude language, the problem 

is that we lie to ourselves. (In psychiatrists’ terms, we overuse denial as a defense mechanism.) 

We lack the ability to simply articulate — in a direct, honest way — the information coming to 
us from all of our feelings and our everyday experience of life. My examples of Anglo- 
American philosophers and statisticians, in Section 2, are not isolated examples. To perform 
reasoning effectively, humans must learn even the most basic things the hard way, like dogs 

learning to walk on two feet. It is natural for humans to learn symbolic reasoning, when they 

have enough time and help and intelligence, but the process can be very difficult. The basic 

foundation of Confucian ethics — to learn to know oneself, and to be "true" to oneself — may 

be viewed as a clear expression of (and aid to) that learning process. In this view, the mark of 

a sane human being is an attitude towards life which includes a kind of total openness to the 
empirical data which comes to us from our senses and from our emotionally charged feelings, 
and an easy two-way communication and harmony between the symbolic and nonsymbolic 
aspects of our intelligence. This is close to the Freudian ideal of "sanity." 

From a more formalistic viewpoint, Confucian ethics may be justified as follows. As 

Bertrand Russell pointed out, there can be no logical, operational answer to questions like "What 

should we do with our lives?" because the word "should" has no operational, objective content. 

However, there can be an operational answer to the question: "What would I do if I were wise? 
What "answers" to the problems of ethics would satisfy me — put me ina state of stable mental 
equilibrium with respect to my acceptance of these "answers" — if I fully understood myself, my 

feelings, and my environment?" These questions are inherently meaningful and operational 

because they address the /, the self, which can be understood — in part because of neural 

network research (Werbos, 1992c). Using these questions as the foundations of ethics leads one 

to the pursuit of integrity, as defined by Confucius. As a practical matter, one can never expect 

to achieve a complete and perfect understanding of one's environment and oneself, any more than 
one can expect to play a perfect game of chess; however, this does not invalidate the effort. 

This section should not be interpreted as an endorsement of all the secondary ideas which 

have evolved in Confucianism over the years. Confucianism — like Christianity, Marxism, 

Islam, Buddhism, and Western science — has accumulated its share of obnoxious barnacles, due 

to the universal existence of power seekers, opportunists masquerading as zealots, gullible 
followers, and groupthink. 

  

6. STATES OF "CONSCIOUSNESS" VERSUS "UNCONSCIOUSNESS" 

There is a radical difference between the concept of consciousness as "wakefulness" and 

the concept of consciousness as "intelligence." Neural network theory already provides some 

insight into the reasons why intelligent organisms must have multiple states of consciousness.
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For example, in Werbos (1987) and White and Sofge (1992), I argued that some form of 

"dreaming" or "simulation" is essential to the efficient adaptation (or effective foresight) of 

advanced reinforcement learning systems. After Sutton and I had long discussions of that paper 

(cited by Sutton) at GTE in 1987, Sutton performed simulations (described in Miller et al., 1990) 

demonstrating this point empirically. This interpretation of dreaming is basically equivalent to 
the theory developed independently by LaBerge (see LaBerge & Rheingold, 1990), who is 
perhaps the world’s leading dream researcher. 

As noted in the previous section, I have also suggested how an intermediate stage of 
consciousness, linked to hypnosis (Werbos, 1992c), may be important to human abilities with 

language. Deep sleep (and its substates?) remains a mystery, but there are new possibilities for 

linking that phenomenon to neural network research (Werbos, 1993a). More research is needed 

here, especially to pin down the link between neural net models and brain circuits, but there is 

good reason to expect success in this work, if sufficient effort is applied. 

7. WHAT ABOUT THE SOUL? 

Up to this point, I might hope that any truly rational scientist, reviewing the evidence 

carefully, would at least respect the views I have expressed. From this point on, I have no such 

illusions. 

Sections 5 and 6 argued that everything people associate most passionately with human 
consciousness — intelligence, emotions, creativity, dreams, and so on — can be fully understood 

in terms of classical neural network models, consistent with the Turing theory of computation. 

Werbos (1994a) gave an overview of how these new models fit with specific circuits in the brain 

as well. By Occam's Razor, this suggests that the hypothesis of a "soul" is totally unnecessary 

and should be abandoned. This is clearly a highly rational conclusion to draw, and I remember 

believing in this conclusion very intensely back at ages 8 through 19. However, on a purely 

personal basis, I have come around to the view that something like a "soul" — a part of the mind 

and the self which cannot be reduced to atoms and neurons — is in fact necessary in order to 
explain the full range of human experience. Like Shaw (1965), I am concerned with dimensions 

of experience more subtle than those which are usually cited in these discussions, and my use 

of the word soul is not intended in any way as a reference to theology (as discussed later). 

Based on past experience, I predict that most readers will feel surprise at seeing the last 

two sentences in print. Many readers — including some creative and prominent people — will 

quietly voice agreement, but wonder where we go from here. A few canny old psychiatrists may 

even snigger, "So someone else has discovered that you need Jung as well as Freud to come to 

terms with the full spectrum of human experience. So what else is new?" A few psychologists 

will immediately leave the room, for fear that the physicists will denounce them as practitioners 

of voodoo and steal all their federal funding if they are seen consorting with people who express 
such views. (These fears are not entirely based on fantasy, either.) A very few readers will 
actually feel honest, subjective uncertainty about the issue, and really seek evidence for and 
against. (That was my stance in 1969-1971, the period when I really first developed 
backpropagation, ADAC, and other backpropagation-based critic designs, though I only published



32 WERBOS 

Werbos, 1968, then.) A fair number of articulate readers — including many powerful 

administrators — will instantly think about two questions: (a) Has an eccentric lunatic just 

walked into the room? Is this another Eccles (1993)?; (b) If we make room to discuss the soul 

hypothesis on an equal footing with the "standard" alternative, do we risk losing the insights of 
neural net research and unleashing forces of sheer craziness and illogical thinking which could 

overwhelm us? 

A chapter this brief cannot resolve the concerns of all these groups. However, I would 

like to comment on (a) and (b). In 1964, when I first read Hebb’s ideas about these issues, I was 

in complete agreement with his views. Hebb was trying to explain the idea of Occam’s Razor, 
which we now understand more precisely (White & Sofge, 1992, Chapter 10). He described how 
prior expectations — which encourage us not to invoke "expensive" assumptions which 
complicate our understanding of the universe are important in science, above and beyond 

empirical data as such. For example, he pointed toward laboratory work in parapsychology. He 

argued that most scientists would probably agree with the conclusions of that work, ifthey judged 

the statistics as they do with most scientific papers they read. However, because those 

conclusions have a huge improbability "cost" a priori, we still tend to disbelieve them, if we look 
at prior empirical information. Based on Section 5, I would take this a step further: I would 
argue, even now, that all laboratory data we now have regarding human abilities, from problem 

solving through to parapsychology, is sill not convincing enough to justify the soul hypothesis. 

In fairness to the parapsychologists, | should confess that I do not know their literature 
well enough to draw strong conclusions. There is an analogy here between parapsychology and 

the study of ancient history: it requires reliance on a huge body of secondary sources, many of 

them quite willing to stretch the truth in favor of diverse biases (some in favor and some 
against), so that it would take a huge effort to make a truly judicious analysis. Even if one did 
all that work, one should recall the example of Aristotle, who produced a wonderfully judicious 
resolution of the scientific issues of the time; judicious or not, it was dead wrong. Thus even 

if the results from parapsychology were very clear-cut, the average scientist could not afford to 
know enough to find a compelling reason to believe them. 

Given this situation, how could I — or any other scientist, thinking for himself or herself 

— give any credence at all to the soul hypothesis? In my own case, the answer lies in direct, 

personal observation of what I see around me. / do not expect all rational scientists to agree with 
me, because they do not share the same base of experience. But I do not accept the idea that I 
myself, in formulating my own views, must discard any personal experience which has not been 

socialized through the laboratory. I like to believe that my interest in the human mind, and my 
acceptance of the existentialist/Contucian viewpoint back in 1964, was the real cause of my 

making these observations — which I did not allow myself to accept for several years. 

Just how eccentric is it to be open to the soul hypothesis based on personal experience? 
Years ago, the National Science Foundation commissioned a study of the underlying values of 

Americans, through the National Opinion Research Center (NORC) at the University of Chicago, 
a leading center for surveys and sociology and the like. Among the difficult issues they 

addressed was the nature of beliefs and experience related to the soul hypothesis. They 

discovered that personal experiences played a far greater role than they had expected. Even more 

surprising, they found that the percentage of people claiming such experience increased v 

o 
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monotonically with education and other measures of success. The investigators have reported 

(Greeley & McCready, 1975) the great surprise they encountered when they presented this 

finding to their review board. A skeptic on the board pointed out that their statistical results 
would predict that 70% of that very board (composed of PhDs) would have answered "yes" to 
a highly inflammatory-looking question. After this, 70% of the board did in fact come forward, 

reluctantly, and validate the prediction — to the great surprise of everyone in the room. My own 
views of the soul hypothesis and the relevant experience are considerably more complex and 

idiosyncratic than what was reported in Greeley and McCready (1975), but whether I am a 

lunatic or not, I am certainly not a very eccentric one (except perhaps in my willingness to 

articulate taboo ideas, when my session chair asks me to address a controversial issue). There 
are many serious, technical people who take the soul hypothesis seriously, and they merit equal 
time. 

Would these statistics be different for people who — in addition to being well-trained — 

are highly independent, creative thinkers, the kind of people who have demonstrated more than 

anyone else their ability to ignore conventional wisdom and arrive at their own viewpoint? Let 

us consider the four greatest physicists of this century, the pioneers who rebuilt the foundations 
of modern physics — Einstein, Schrodinger, Heisenberg and DeBroglie. Einstein often used the 
word God, and is alleged to have been a mystic; however, what I have seen of his writings 

suggests that this was not anything more than the erudite but firmly "secular" theology I have 

seen often, expressed in similar ways, at the local Unitarian church. On the other hand, records 

of the conversations between Schrodinger and Einstein make it clear that Schrodinger was deeply 

interested in things like Sufi mysticism — something which is far more than mere allegory. 

Heisenberg consistently described his physics in Vedantic terms, and invited well-known yogis 
to expound their views at the Copenhagen Institute. DeBroglie is said to have been a follower 

of Bergson’s vision of collective intelligence, which seems like a close relative of Teilhard de 

Chardin’s views. All in all, the 70% figure would seem to be in the ballpark here. 

Would the soul hypothesis per se undermine the effort to understand the mind in a 

scientific way? On the contrary, one might argue that efforts to repress this idea (or to hand it 
over to television preachers) would be as conducive to sanity as any other kind of gross 

repression of thought. 
The greatest abuse of the soul hypothesis has come from power seekers who try to use 

it as an excuse for making other people follow their orders in a blind, unthinking manner, without 

opening themselves to personal experience or to mathematical or scientific efforts to understand 

that experience. The formulation I propose here still starts from the Confucian/existentialist 

view; that view clearly argues that we should try to be true to our entire self — including both 

the brain and the soul. If neural network mathematics is useful in understanding the general 
phenomenon of intelligence — regardless of the hardware that implements this intelligence — 

it should, in principle, be useful even in explaining other forms of intelligence. The Appendix 

to this chapter describe some of my personal thoughts on this point, for those who take the 

hypothesis seriously. Section 8 will explain why I use this ancient four-letter word "soul," 

despite the unfortunate associations it conjures up in the minds of some readers.
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8. QUANTUM COMPUTING, MIND AND SOUL 

Quantum computing is a serious and exciting new area for research. However, like the 
neuroscience of consciousness, it has spawned massive confusion, both in the public and in the 
Scientific community, in part because it combines two complex research areas — quantum field 
theory (QFT) and advanced computing. Even within the scientific community, there are 
relatively few people who truly understand the basics of both of these areas. 

In this section I argue that there is a realistic possibility that quantum computing might 
produce generic, useful computational capabilities, and that related capabilities might even exist 
in the "soul" (if the soul exists) but probably not in the brain. However, I suggest that these 
capabilities could only become intelligible after we reorient this research in new directions. 
Before explaining these points, I must first review some basic facts which are well understood 
already by the relevant specialists. 

Some people imagine that a valid understanding of computation in the brain must make 
reference to quantum theory because, after all, electrons and protons and so on are governed by 
quantum theory. But one could apply the same logic to computer chips as well; they too are 
made of electrons, protons and neutrons. In actuality, quantum theory is used routinely by 
designers of fundamental electronic devices like transistors and gates; the literature on electronics 
is already quite full of concepts like quantum wells, tunneling junctions, band gaps, Bohm- 
Aharanov rings, and so on. But all of this is at the device level. One uses quantum theory, for 
example, to design a device which performs a task like the logical "AND" operation. Then, 
when combining low-level devices together to make a useful computer system, one relies mainly 
on classical, digital logic or (as in artificial neural networks) on classical, simple analog concepts. 
Penrose (1989) did a reasonably accurate job of describing the kind of logic that we use when 
we build up systems from devices. Our new designs in the neural network field have many 
advantages in terms of cost and throughput, but they still fit into this general framework. 

In formal terms, all of the computer systems in use today — from personal computers 
through to biologically inspired holographic systems — can be understood as "Turing machines." 
They fit into a universal theory of computing systems developed decades ago by Alan Turing. 

Quantum computing is a novel effort to design computer systems which exploit 
fundamental effects in QFT which cannot be reduced to Turing machines. Early work in this 
field was inspired by suggestions from Richard Feynman, one of the co-inventors of QFT. An 
excellent survey was published by David Deutsch (1992), one of the leading researchers in this 
area. Deutsch developed a new universal theory of computing, analogous to Turing’s, but 
expanded to incorporate quantum effects. Deutsch and other workers in this field demonstrated 
that quantum effects can be used to perform tasks which cannot be performed nearly as well by 
Turing machines. Nevertheless, the tasks described so far appear more like curiosities, rather 
than the basis of any generic technology. Deutsch expressed doubt as to whether any of this will 
ever have practical significance to any form of generic computing technology; however, he hoped 
that it was too early to tell. This literature provides no basis at present for believing that 
quantum effects are important in any way to the phenomenon of intelligence. 

Within the fields of psychology and neural networks, many researchers have suggested 
that field effects or even three-dimensional Schrodinger equations could be important to
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intelligent systems (Pribram, 1991; Werbos, 1993b). But the computational mechanisms proposed 

in that literature are not examples of quantum computing as just defined. They are fully within 
the range of what can be simulated (albeit inefficiently) on conventional digital computers. They 
are fully within the range of what can be implemented efficiently in the kind of hardware used 
for artificial neural networks. 

Hameroff and his collaborators (see Pribram, 1994) recently proposed that coherence 

effects like those used in lasers might produce true quantum computing effects within cell 

microtubules. There are excellent computational reasons to predict that microtubules do play a 

crucial role in "intelligence" in the brain (Werbos, 1992a, 1994a); however, this does not require 

quantum computing effects. For Hameroff's coherence effects to work, Penrose has calculated 
that they would somehow have to involve correlations across 10,000 neurons or more. There is 

no indication of what new computational capabilities such a correlation would lead to, and no 

indication that such effects would have anything to do with what we see happening at that level 

in the brain. It is not obvious that laser-like activity could be possible in assemblies of neurons. 

All of these negative conclusions and loose ends appear very discouraging at first. 
However, they are really quite typical of any research field in its early stages. The neural 
network field went through a similar period of discouragement, between the publication of 
Minsky’s book on perceptrons and the work which led to the popularization of backpropagation 

(Werbos, 1994b). Fifteen years ago, the most serious, well-informed analysis of fuel cells in 

transportation appeared quite negative; however, new approaches and breakthroughs have made 

this the lead candidate for the automobile of the future, and the subject of a major joint initiative 

between the President of the United States and the automotive industry. There is a legitimate 
basis for hoping that new approaches might work as well in the field of quantum computing. 

Conventional approaches to quantum computing are inspired mainly by the Copenhagen 

or the many-worlds interpretations of QFT, and by conventional digital, sequential computing. 

But there are other interpretations of QFT in existence. Regardless of which interpretation is 

actually true, in an objective sense, they are all close enough that they give some valid intuition 

about the phenomena themselves. One interpretation which I have developed (Werbos, 1994d) 

is the idea that quantum effects can be explained by assuming that causality runs forward and 
backward, symmetrically, in quantum experiments. Thus, when people use special crystals to 
demonstrate basic quantum effects, there is a kind of settling down through a resonance between 

past and future — like a Hopfield net or a simultaneous-recurrent net (Werbos, 1992a), but 

without the need to waut tor convergence through iteration in forward time. Even if the human 

brain has no such capabilities, | can imagine a possibility (with 20% probability?) that this could 

be used to increase the power of optical neural networks. It is questionable that humanity would 

benefit much from such technology, but the intellectual issue is worth resolving. 
Because Penrose has generated some strong visceral reactions among physicists, I need 

to make a few side comments here, for the physicist. In my alternative interpretation of quantum 

theory, I am not hypothesizing that "quantum causality" (as Schwinger would define it) is 

violated; rather, I am merely highlighting the well-known fact that ordinary time-forward 

causality — causality as defined in the original Bell-Shimony work — is violated by standard 

quantum electrodynamics (QED). (In my papers, for example, I cite well-known work by Von
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Neumann and DeBeauregard on this point.) I am not assuming any deviations from QED in this 
argument. My alternative interpretation is relevant here only as a way of getting intuition about 
QED. Likewise, I am not talking about a kind of computing which would require astronomical 
energies; ordinary Bell’s Theorem experiments have been conducted at very ordinary levels of 
energy, using the same kinds of photorefractive crystals that people use in optical implementa- 
tions of ANNs. As this book goes to press, both Elizabeth Behrman of Wichita State University 
and John Caulfield of Alabama A&M University have claimed serious progress in developing 
ideas and designs of this sort, involving realistic optical computing hardware. 

One reviewer — a non-physicist — has asked for a simple example of backwards 
causality in quantum physics. The simplest example I know was discussed in my 1974 paper on 
quantum foundations (cited in Werbos, 1993c, 1993d), based on the account of nuclear exchange 
reactions in Segre’s book Nuclei and Particles. Suppose you could design a cannon which, 
without any automatic control system, could, whenever an enemy rocket is about to come up over 
the horizon, automatically swivel into exactly the right angle, and fire at the exact time, so that 
it will hit the target exactly when the target first appears over the horizon, even if the target is 
fired after the cannon must fire to meet it. If anyone ever built such a cannon, one might 
attribute it to magic or precognition, or suspect over-the-horizon radar and cheating. But 
neutrons, shooting pi mesons out to oncoming protons, have displayed exactly such a 
"precognition." The conversion of the oncoming proton to a neutron proves that charged mesons 
are exchanged. More relevant, but complicated, examples (involving optics and Bell’s Theorem) 
are cited in Werbos (1993c, 1993d). Behavior like this may sound mysterious, but it is fully 
consistent with the model of a universe governed by partial differential equations. 

Taking this further, some of my friends have suggested that quantum effects and 
holographic processing could possibly explain the aspects of experience which I attribute to 
"soul." As an example, one of these friends has cited the work on remote viewing of H. E. 
Puthoff and Russell Targ at SRI International in the 1980s, funded by the Department of Defense. 
Unfortunately, I do not have easy access to that work, and I do not have strong feelings about 
its validity. However, the concept of remote viewing does exemplify the kind of phenomenon 
which — if true — would present an interesting challenge to physics and psychology. It is easier 
to discuss than the more complex phenomena which I find more interesting. 

Quantum effects and holographic effects by themselves could not begin to explain 
something like remote viewing. The kinds of mechanisms which we observe in the brain — the 
mechanisms which drive the creation of chemical bonds, the flux of electromagnetic fields, and 
the movement of currents — are based entirely on quantum electrodynamics (QED), an aspect 
of QFT which is well understood in phenomenological terms. QED fully incorporates quantum 
effects, and it underlies all forms of holography now known to the human species. It is not a 
deep, dark mystery. If quantum and holographic effects were enough to give us a capability to 
see a picture of a remote location far away, based on a receiving device as small as a human 
brain on the surface of the earth, then the scientists in the military — who are very familiar with 
QED — would have built such a device long ago. The military have spent billions of dollars, 
across many research labs and universities, trying to improve the resolution of their imaging of 
distant objects, using devices much larger than a brain, exploiting all kinds of interference effects 
at all kinds of frequencies in the electromagnetic spectrum. On occasion, highly creative
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physicists like Schwinger and Hagelstein have demonstrated that coherence effects can 

accomplish things which more pedestrian experimentalists had thought impossible; however, these 
things fall far short of remote viewing a la Puthoff and Targ. 

Based on this work, we may be reasonably sure that "remote viewing" would require one 

or more of (a) a complex signal processing system and "antenna," (b) some kind of explicit 

cabling system or network to connect remote sites, and (c) additional physical fields beyond those 

covered by QED. Even in biological signal processing systems, such as the bat’s sonar 

processing, it is clear that a large and visible chunk of the brain is needed to perform signal 
processing for something much less complex than remote viewing. All this suggests that we need 
to face up to a stark, binary decision here: either to reject the proposed class of phenomena 
altogether, or to consider the possibility of information processing structure (like invisible 

networks or invisible signal processing or "intelligence" in the universe itself) beyond what we 

can see in the atoms of the brain. It is rational to feel uncertain (i.e., to assign probabilities) 

between these two alternatives, but it is not rational to imagine that one can avoid the choice 

itself through some kind of fuzzy logic. As noted in Section 7, the "soul" alternative has a high 

a priori improbability cost; however, it need not be a lot worse than the assumption of unseen 
"dark matter" among astronomers, if one considers the amazing variety of biological systems on 

earth adapted to exploit diverse sources of energy. Still, as discussed in Section 7, there are good 

reasons to respect those scientists who consider the improbability cost too high to consider. 

The foregoing argument does not suggest that quantum effects, holography or complex 

vibrational states in large molecules are unimportant to biological intelligence. It merely suggests 

that they would not be enough by themselves to explain phenomena like remote viewing. It 
reinforces the conclusion from earlier paragraphs that there is little if any indication of true 
quantum computing in the brain itself even if we should postulate effects like remote viewing. 

However, once we postulate such etfects, we can begin to imagine the possibility of yet another 

level of intelligence, beyond the level of single-stream symbolic reasoning, based on effects such 

as time-symmetric causality or the processing of multiple streams of symbols in parallel. Such 

possibilities are extremely speculative, of course, at the present time. 

APPENDIX: A FEW PERSONAL THOUGHTS ABOUT THE SOUL 

The editor of this book has asked me to say something more specific about my views on 

the nature of the soul, and its relation to other themes in this book. This request is reasonable; 

however, my thoughts on this point should not be considered part of the chapter proper, because 

they are inextricably linked to idiosyncratic aspects of personal observations and experience. In 

the absence of shared experience and lengthier, more complete explanations, I would not expect 
a rational reader to agree with the details of my views. I would ask the classical materialist 
simply to skip this appendix; it is, at best, a "what if" piece, asking what we might conclude after 
we agree that the soul does exist. 

My own experience is perhaps closer to the kind described by Jung (see Campbell, 1971) 

than to the kind described by Greeley and McCready (1975), although I can relate somewhat to 

both. Greeley and McCready state that the experiences they refer to are not limited to any
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religious or ethnic group, but that most educated people tend to become much more involved in 

their own religious heritage and more committed to its beliefs after undergoing such experience. 
I find this disappointing, and perhaps further evidence that we are still a transitional species. To 

the extent that there is common experience out there, logic suggests that it should push us toward 

more common conclusions, rather than toward greater provincialism and sectarianism. It is one 
thing to appreciate the living culture and past experience of one’s provincial heritage; it is a 
totally different thing to endorse florid theories of bureaucratic rather than empirical origin (like 
the Government Printing Office Style Manual or lists of prison sentences in purgatory), without 

paying full attention to the global heritage of humanity as a whole. 

After one accepts that the soul exists, one’s prior probabilities (per Hebb’s argument) 
change substantially. One naturally tries to learn from the experience of others, as well as 

oneself. In anthropology, the example of penicillin is famous: penicillin (in bread mold) was 

used in healing for many, many years by African witch doctors, but totally ignored by scientists 
because they did not like the explanations used by the witch doctors; knowing about that 
example, we may try to learn what we can from the experience of many cultures, without letting 

ourselves be put off by our disrespect for their explanations of their experience. Of course, we 

must be careful about the ways in which rumor and wishful thinking tend to distort experience 

in predictable ways (especially when they tend to deify people in power). 

After having explored more cultures and people than can be summarized here, I feel 
confident that no one on earth has a legitimate basis for describing the nature of the soul in any 
detail. The exploration has been worthwhile for other reasons, and important insights are to be 
found in obscure cultures, but none of these people begins to approach the level of qualitative 

understanding we would want to demand, as scientists. In understanding the soul, we are like 

tenth century people interested in astronomy; some important information is available, but if we 

demand full understanding in our lifetimes, we will only set ourselves up to become victims of 

other people’s fantasies. A rational, honest, intelligent human being would have to take the 

approach described by Raiffa (1968) in decision analysis: to accept uncertainty as an unavoidable 

fact, and to live with it as best we can. We may choose to work hard to grow in understanding, 
but to do this effectively we must admit the limitations we face. We need to play these issues 

by ear, to maintain some balance and detachment, to rely heavily on direct observation (which 

we constantly try to enhance), and to maintain several alternative working hypotheses. 

In examining historical ideas about the soul, | am amazed at the florid details of religious 

mythologies which contradict each other and are rather easy to explain away in psychoanalytic 

terms as creations of the mind (Campbell, 1971). On the other hand, it is hard at times to avoid 
some degree of respect for the extreme Buddhist viewpoint that everything we see can be 
explained away as a creation of the mind, including the walls and the floor; however, such 

feelings can be explained away as a consequence of our present ignorance, and are comparable 

to the pessimism of certain neuroscientists regarding our understanding of the brain (Werbos, 

1994b, p. 2). Still, the existence of an alternative explanation does not disprove the concept. 

As a humorous aside, I can imagine someone arguing that everything we see is a product 
of Mind, and that Mind in turn is governed by backpropagation — ergo that backpropagation is 
the foundation of everything. Even as the inventor of backpropagation, I would find that idea 
a bit too much.
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If we find that florid mythologies are unsatisfying (and are too large a set to select from, 

anyway), our best hope for avoiding chaotic, pure phenomenology is to use some of the same 
ideas we use in science, including Occam’s Razor. In fact, even mystics use expressions like "As 
above, so below," and expound the idea of monism — the idea that the soul and the body are 

governed by the same set of natural laws, laws which are no less precise and universal for being 

as yet unknown. Even the New Testament is full of references to things that can only be 

"revealed" or understood in a future age when humanity is ready, as a result of learning over 

time. Is it not possible that mathematics is a crucial part of what is necessary for such 
understanding, and part of what we have really been learning in the past two millennia? 

From this perspective, then, can we imagine how a universe governed by some kinds of 
mathematical laws that we can conceive of — either from differential equation theory or 

information processing theory — could generate such a phenomenon as "soul"? Despite knowing 

more about information processing than about differential equations, I still find it hard to imagine 

information processing as a foundation to explain everything. The problem is that all forms of 
Mind that we are familiar with (and can conceive of) inherently require something outside 
themselves to relate to (Jung in Campbell, 1971). Finkelstein (1985) and others have looked for 
reformulations of quantum theory in terms of Mind based on quantum neural networks; however, 

it is my understanding that such efforts have not gotten very far. If we cannot yet conceive of 

a universe governed by information processing concepts, then we are left with the alternative of 

partial differential equations, an approach studied at length by physicists such as Einstein. 

Any differential-equation-based Cosmos would presumably be governed by thermodynam- 
ic principles, like those we experience here which generate Darwinian selection, or a general- 
ization to account for causality forward and backward in time. (See Werbos, 1994d, for a 
discussion of relations between these concepts). In a Darwinian Cosmos, the soul might be a 

kind of living organism, based on fields and forces not yet understood, living in symbiosis with 

the other part of us. (I am reminded of the Star Trek episode where Dr. Crusher points towards 

a "ghost" and says something like: "You ... you are not really a spirit .... 1 now know what you 

really are, you dirty cheater ... you are nothing but a life form." But this "ghost" was not the 

only one of us guilty of being a life form.) The traditional alchemical marriage (Campbell, 

1971) can be seen simply as an effort to get both parts working in harmony, in a unified way, 
in recognition of the fact that this is the only way to get a Pareto optimal result for both parts. 

When storing information, however, one would normally prefer to store it In more permanent 

hardware. (Some mystical traditions argue that a// humans routinely exercise capabilities beyond 

what they consciously believe in — but that people have difficulties in putting enough learning 

or experience into their souls to permit easy memory or control of such faculties. Hebb [1949] 

commented that more brain space and learning time are needed when learning to cope with larger 

volumes of sensory input.) The quality of symbiosis might depend both on actions initiated on 
the soul side and on the normal genetically determined capabilities of the nervous system. 

Based on these ideas, one might imagine two kinds of symbiosis — a one-to-one 

symbiosis, or a many-to-one symbiosis. The latter would match a range of traditional mystical 

beliefs, from Jung’s collective unconscious to Teilhard de Chardin (1972) or the Gaia hypothesis 

(Lovelock, 1992). If we postulated such a collective intelligence or soul, | would predict that
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our experience of the soul would be analogous to the experience of a single neuron (or cell 
assembly) inside a higher order neural network; for example, we may be whipsawed by 
backpropagation effects at times, or we may find ourselves acting as powerful channels of 
psychic energy (backpropagation), especially when we crystallize concepts which can help the 
entire global system to escape from local minima, and to grow in maturity. In either model of 
symbiosis — one-to-one or many-to-one — I would expect that issues related to psychological 
growth and ego formation, as described by Freud and clarified by neural network models, would 
apply in a similar way both to the soul and to the brain. 

More recently, I find myself influenced by images (Werbos, 1994d), which come closer 
to older ideas of a much larger web of life, in which people may vary in their degree of 
immersion in the more local collective intelligence. There has been much interest lately in the 
Gaia hypothesis (Lovelock, 1992), which has been used, for example, as a rationale for 
environmentalism of the spirit (Gore, 1992). (There have been many treatments of this idea in 
science fiction as well, including some of the works of Orson Scott Card, Silverberg, and 
Chalker.) All of this fits well with my own thoughts, but lately I feel there is something 
fundamentally incomplete in that image. Recently, I find myself more attracted to the old 
Chinese image, which pictures humanity more as a middle kingdom, poised between earth and 
sky — demanding a balance between these two strong spiritual connections or parts of our lives. 

Some readers may feel that I have left out some crucial things in this very brief account. 
I agree, and a few of the holes are filled in (albeit still very briefly) in Werbos (1986, 1992c, 
1993b, 1994d). As a practical matter, I do not spend a lot of time thinking about these concepts, 
however great their putative importance, because I recognize how great our ignorance really is; 
however, there is no doubt that they substantially color my perception of human events, and I 
like to believe that they do at least represent some improvement over the traditional extremes of 
florid, fearful ethnocentric mythologies and cold, grey, blind materialism, both of which 
substantially inhibit the natural human tendency toward spiritual growth. 
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Sam Leven’s chapter, Negotiating Inside the Brain — and Out: The Microfounda- 
tions Project, sets out to challenge the notion that human decision making is based on the 
rational, systematic search for optimal solutions. He starts by tracing the history of this concept: 

the Frenchman de la Mettrie in the eighteenth century gained the enmuty of the church through 
his "man ts a machine" concept, but in this century such mechanistic ideas are the orthodoxy. 
Recently, an underground against this orthodoxy has gained momentum in many fields, as Leven 
reviews. In computer science and artificial intelligence, Terry Winograd has argued the need for 

context and Marvin Minsky has sought a "society of mind." In experimental psychology, 
management theory, and (the ultimate goal of Levens theorizing) economics, an Increasing 

number of scholars have suggested the inyportance of emotional and automatic as well as rational 

processes. In logic and semantics, revolutionary scholars have suggested ways to partially 
systematize types of processing that follow general rules other than the strictly rational ones. 

Leven reviews some of his own earlier work whereby the theories of many social scientists 

are joined into a general idea of "triunity" of reason, affect, and habits. This triunity also draws 

on older ideas from such eminent neurobiologists as Paul MacLean, Karl Pribram, and A. R. 

Lurta. Like some of the other authors in this book (particularly Levine, Ogmen and Prakash, 

Rosenstein, and Werbos), Leven believes that affect, habit, and novelty perform useful functions 

in human information processing. In a series of neural network models, Leven and Wesley 
Elsberry have incorporated these capabilities into a model of negotiation. Each of their two 
"negotiators" contains a "habitual" module that is similar to a Hopfield net, a "rational" module 

similar to a back propagation net, and an "affective" module similar to an adaptive resonance 
theory net. Each negotiator also has a frontal lobe-like module that serves the function of 

integrating all three, along lines that Pribram has suggested. Also, Leven and Daniel Levine 

have combined affective and semantic capabilities in a different manner to model consumer



44. LEVEN 

preference in an actual product buying sttuation (Coca-Cola). Although all this work is far from 

complete, it suggests that modern neuropsychological modeling can provide economists with a 

plausible alternative to the rational optimization models that still dominate their discipline. 

ABSTRACT 

In neural networks (Anderson, 1991) and economics (Arrow & Hahn, 1971), the 

dominance of optimizing models produces inevitable distortions (Simon, 1986, 1991). Both fields 

consider cooperative and distributed domains (Hayek, 1952; Pribram, 1991) — and both suffer 

from assumed local global optimization. 

A heterodox view for modelling both fields may be maintained (Leven, 1987b, 1992). 
Automaticity, reason, and emotion all play a role in memory, analytic, and creative processes. 

Their neural substrates and interactions are modelled; an application to decision making is 
described. 

Men are not narrow in their intellectual interest by nature; it takes special and rigorous 

training to accomplish that end. (Viner, 1958, p. 380). 

The progress so made is immensely impressive. It is made by sleepwalking, is it wise to 
"wake up"? [I am not sure it is. So I speak now ina very low voice. (Bell, 1988, p. 
170). 

1. INTRODUCTION 

Many fields have assumed rationality — the systematic search for an optimal solution. 
We argue, from history, science, and common sense, that this assumption is wrong-headed. The 
failure of the Rationality Principle (Anderson, 1991) imposes heavy burdens on social and natural 
scientists —- and changes the questions neural network modelers of decision making should ask, 

the techniques they should employ, and the results they can reach. 

Following Bruner (1990, p. 19), we maintain that models should be concerned with 

"situated action" — action situated in a cultural setting, and in the mutually interacting intentional 

States of the participants. Only such discursive networks, aware of, and affected by, their 

environments, can capture the sense of thought and the feel of action (Leven, 1992a, 1992b). 
In 1747, the physician J. O. de la Mettrie announced that "man is a machine." Behavior 

and internal function could be analogized to systems subject to numerical control, composed 

according to an internal logic, and understood to be as systematic as much as any other natural 

phenomenon (hence, not different as a language-producing creature). Language and thought, like 

other biological functions, were structured and systematic (not God-given). His systematic 

medicine and psychology provided the basis for a morality based in the perfection of the human 
machine, not in religion or Cartesian sentimentality. 

De la Mettrie was, in fact, advocating a mathematizable cognitive psychology. Speech 

and ideas, rather than suggesting human superiority, demonstrated the sophistication of the natural
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control system involved. Each individual mind is "like a self-performing piano listening to (and 
amused by) its own playing" (da Fonseca, 1991, p. 31). 

Others were not so sanguine about de la Mettrie’s system. When his Dutch publishers 

were blackmailed into revealing his identity, the Calvinist, Lutheran and Catholic Churches joined 

in a rare combination to ban and burn his books. He was expelled from "tolerant" Holland and 

forced to flee to Prussia — where his next book was banned and where he died under suspicious 
circumstances. 

Now, a specter looms over both human and natural sciences. It is the legacy of the 
triumph of de la Mettrie over the forces of "superstition." The modern human behavior 
orthodoxy that dominates such fields as psychology, computer science, linguistics, economics, 

and neural networks securely asserts the centrality of optimization and rationality — like de la 

Mettrie’s self-playing piano, all behavior is cognitively controlled. The majority of textbooks in 

these fields has embraced the Cognitive Revolution, which began with Miller, Galanter, and 
Pribram (1960) — who had not, of course, read the manuscripts the holy men burned. 

The irony of de la Mettrie’s triumph is that his success has been total. Discipline upon 
discipline maintain that distributed systems (especially those dominated by human behavior) 

follow an optimizing, rational structure. J. R. Anderson (1991, p. 3) could posit — standing as 

both psychologist and neural network modeler — a "Principle of Rationality. The cognitive 

system optimizes the adaptation of the behavior of the organism." 

The implication of de la Mettrie and Anderson for models of thinking and behavior, which 
has been embraced across many fields, is that there is a structure of inference involved in human 
thought process. Economists maintain that all markets, ceteris paribus, are composed of 

consumers and producers who plan and act rationally — optimizing the value of their rewards 

(e.g., Arrow, 1990). Computer scientists employ optimizing compilers and rationalizing data 

Structures, Cognitive psychologists find depression to be suboptimal explanation of events 
(Seligman, 1991). Epistemologists suggest that "semantically valid sets of syntactic operations 
are ‘preferred’ (by Nature, that is)" (Matthen, 1989, p. 564). 

An intellectual underground in each of the sciences has grown to undertake de la Mettrie’s 

subversive role. Traditional artificial intelligence (AI) has found its Maquis among the elite: 

Terry Winograd, who first employed schemas in computing, has decried the lack of context and 

sensibility (Winograd & Flores, 1987) — and Marvin Minsky (1986), who first connected 

schemas to Al, has sought a "society of mind." Experimental psychologists have betrayed the 

fallibility of cognition (Neale & Bazerman, 1991) and its susceptibility both to affective 
influences and to "habits of mind" (Gilovich, 1991). Economists have faced "anomalies" (Thaler, 
1991) and the unnerving prospect of moral economic men (Koford & Miller, 1991). Even in 

linguistics, subversion is carried on by situational linguists (Devlin, 1991) and radicals like Eco 

(1986) who suggest that language must convey meaning under such revolutionary influences as 

emotion. 

Do these somewhat fuzzy-headed rebels have some basis for the attack on cognition-as-ra- 
tionality-as-optimization? Is there a physiological substrate that might justify the notion that 
control of human behavior is not solely rational? Could one, for example, be depressed without 

having a thinking disorder?
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We return to the source to pose such questions. He may lead us past perfection to a more 
accurate view of decision making (and error-making) behavior. Then, we add modestly, Sigmund 
Freud’s work shall suggest the accuracy of our own work. 

2. STRUCTURES OF MIND AND BEHAVIOR 

But in what do logical faults consist? ... in the non-observance of the biological rules for 
the passage of thought. These rules lay down where it is that the cathexis of attention is 

to be directed each time and when the thought-process is to come to a stop. They are 
protected by threats of unpleasure, they are derived from experience, and they can be 
transposed directly into the rules of logic .... The existence of biological rules of this kind 
can in fact be proved from the feeling of unpleasure at logical faults. (Freud, in Pribram 
& Gill, 1976, p. 119) 

Sigmund Freud, in his Project for a Scientific Psychology (Pribram & Gill, 1976), pointed 

to three classes of general errors: "threats of unpleasure" (affect inhibits), experience-derived 

(habits of mind), and those based in logic (inappropriate rule use). These types of error, we 
should not be surprised to learn, have been rediscovered in modern psychological study. 

Recently, Reason (1990, p. 201 ff.) presented three basic classes of mistakes made in 
industrial accidents. Slips, Reason determined, were "attentional failures": omission, misordering, 

and mistiming, among others. Lapses were "memory failures" forgetting intentions, omitting 

planned acts. Mistakes constituted misapplication of a good rule or application of a "bad" one. 

That Freud’s 1896 analysis stands scrutiny one hundred years later would be a curiosity, 
were it not for the explanations he offers for the sources of these errors. The rationale he 
employed for error diagnosis is highly suggestive of a general approach to decision making. 
Recall that Freud distinguished errors on the bases of affect (emotion), habit (automaticity), and 
logical operation (semantics). These classes make considerable sense in light of findings by 

Pribram (1986, 1991) and others that suggest a biological basis for decision processes, including 

wrong decisions of course. 

This approach fits with the analysis of Levine (1986) and Leven (1987b); they match the 
three classes of decision processes with three broad regions of mind, following approaches by 
Pribram (1991), Luria (1981), and MacLean (1991). The separate (though not mutually exclusive) 

areas are tied to three divisions of the frontal lobes, the "executive of the brain" (Levine, 1986; 

Pribram, 1986).’ 

Pribram (1991) stressed the contributions of three mental frames. He saw practicalities 

as the embodiment of routinized performances, involving the control of patterned, hierarchical 

behaviors and producing images of achievement. The tennis player strikes a forehand similarly 
thousands of times; it is a structured, systematic performance that allows the ability to adjust (or 

satisfice, as Simon, 1986, would say). Automatic control is regulated by feedback structures tied 
to amygdalar, hypothalamic, and striatal "command structures." 

  

' This discussion follows Leven (1988, 1992a).
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Pribram’s proprieties constitute rule-based behaviors. Here, order is imposed by inference, 
rather than rote learning. An internal Socratic dialogue establishes fitness of rules and logic. 
Neocortical and temporal structures collaborate in brain processing of "correct reasoning." 

Priorities allow the maintenance and reconciliation of "maps" — spatial, musical, 

emotional. These are context-sensitive capabilities that create coherence from many "strands" 

of information. This fronto-limbic capability is based on the making sense of complicated 
settings. 

Pribram (1986) noted that each of these capabilities is mediated within its own third of 

the frontal lobes. The ability of this executive region to integrate and direct behavior allows 
sophisticated and "conscious" performance. The categories Pribram employs are somewhat 

comparable to other, well-known models of regional brain function. MacLean (1991) suggested 

that the three sets of capabilities constitute "Three Ages of the Brain."? He suggested that the 

motor- and drive-inducing regions of the brain (e.g., basal ganglia and hypothalamus) evolved 
earliest and allowed primitive creatures to acquire and perform automatic (habitual) tasks. Thus, 
he called the region Reptilian. The orienting, affective, context-sensitive region he termed 

Mammalian; this "higher" area is composed mainly of limbic structures. Lastly, MacLean’s 

Neomammalian structure is the "latest" and "mast sophisticated"; located in neocortex, it is 

responsible for logic and analysis. 

Similar to the Pribram (and MacLean) madel is research in classes of memory function. 
Tulving (1983 et al.) suggested a threefold typology. Tulving labeled automatic memory, 

memory for routinized performance, Procedural Memory. Recall of context and affect, "gestalt 

memory," he termed Episodic. Hierarchical and categorizing (logical recall) is Tulving’s 

Semantic Memory. The three flavors may be recalled separately, even independently: a need 

(drive) or physical performance may invoke one set of recollections, a mood might evoke 

another, and a set of inferences could justify a third. The recalled information from the three 
different qualities of memory can be so different as to seem incomparable — different "keys" and 
different modalities are being utilized. 

We should not be too surprised that these categories, matching physical structures and 

mental capabilities, match modern classifications of information theory. Nicolis (1991) isolated 

syntactic (regular, easily analyzed) patterns, semantic (logical, hierarchical) categories, and 

pragmatic (gestalt-making, context-sensitive) structures. He claimed the three are orthogonal and 

can only be emulated with very different algorithms. Chandrasekharan (1990, p. 40) found that 

“mental architectures" must be related to three classes of logic: hierarchical classification, concept 
matching, and abductive assembly — "interaction among malfunctions [becomes] a composite 

hypothesis." 

In fact, Peng and Reggia (1990, p. 3 ff.) formalized a highly similar three "classes of 

logic": 

  

> A brief critique of this model is offered in Leven (1992b).
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Deductive: 

Given Rule — All balls in the box are black. 

+ Case — These balls are from the box. 

Conclude — These balls are black. 

Inductive: 

Given Case — These balls are from the box. 

+ Result — These balls are black. 

Hypothesis — All balls in the box are black. 
Abductive: 

Given Rule — All balls in the box are black. 
+ Result — These balls are black. 

Hypothesize Case — These balls are from the box. 

Deduction is automatized, routine. Induction seeks a general rule, based on an array of like rules. 
Abduction responds to nonspecific cues from the environment to construe a single case into a 
sensible order, 

There is, in fact, a relationship between all the foregoing categories and Peirce’s 
(1965-1966) semiotics. The notion that information and processing structures seem to map 
one-to-one and into each other suggests higher order relationships as well (Leven, 1992a). 

3. OPTIMIZATION, EMPATHY, AND STRUCTURES OF BELIEF 

These components of individual neural function, decision making, and logic can be 
employed to model personal and group action (Leven, 1987b, 1992b). Standard models of 
organizations support the notion of three types of organization style, strategy, and rationality 
(Goold & Campbell, 1989). 

One, the Classical model, is based on centralized control, rigid routines, and wage-based 

rewards. Garbage collection is a Classical task: no one finds fulfillment doing the job, regular 
and careful performance is essential for safety (requiring strict supervision and the assumption 
that workers shirk), and pay is considered the sole likely reward. Strong leaders and quiet 
employees are the most effective match. Worker participation in the planning process is absent; 
the tasks are so routine, there is no distant horizon, and managers assume employees to be barely 
competent. 

Another approach, the Human Relations view, is effective in complex, short-horizon 
planning regimes. Group solidarity is emphasized: managing a convention facility, for example, 
involves mediating among competing claims and taking abuse from dissatisfied customers. 
Employees must cope with internal and external tensions — supervisors must be systematic and 
understanding. The organization must ration limited resources effectively. That requires 
tolerance — and a logical approach. 

Lastly, the Social Psychological school involves long-term problems and emphasizes the 
creativity of employees. Work, in this model, is complicated and demanding; workers are 
valuable and must be solicited for advice. The development of NASA is comparable to the tasks
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appropriate to this approach: talented people, encountering an ill-defined problem, must create 
and share unlikely results — and learn to treasure frustration. 

What makes the Organization Theory models revealing is their comparability to the three 
approaches of economic theory. Morishima (1990) has noted that the three approaches (classical, 
neo-classical, and Keynesian) are not, as frequently maintained, competitors. The three models 
correspond to different economic and cultural circumstances. 

Under conditions of low technology and resource-based economies, wages tend to regress 
toward a minimum, and work is highly routinized and heavily supervised. The structure of the 
economy seems absolutely stable; planning horizons are extremely short, even seasonal. Under 
these circumstances, Morishima explained, the traditional wage-fund, Ricardian approach (control 
by exploiters) is accurate: many work, few rule. 

As basic industries (iron foundries and steel mills) grow, the neo-classical model becomes 
plausible. Each new product requires massive quantities of other materials and equipment. The 
dictum of Say’s Law, "Supply creates its own demand," is fully appropriate — after all, a rapidly 
industrializing society has virtually infinite needs. As more output becomes available, more 
employees are needed to use or transform it. Iron leads to railroads, lead to steel mills, lead to 
port construction — and, as scale economies take place, lead to export. Here, any employee is 
valued, because he or she is needed badly. Horizons are, as in the Human Relations model, long 

enough to plan new upgrades in technology; the complexity and constant newness of the tasks 
lead to high esprit de corps that accompanies rising wages. 

Finally, as an economy attains modernity, large profitable firms require individual 
risk-takers as employees and indulgent, whimsical customers (changes in fashion often drive the 
market). Here, Keynes’ demand-management approach is appropriate. Workers have high skills 
and face volatile markets (e.g., Silicon Valley computer firms). Managers are frequently 
dependent on their employees — they may not even understand what their "charges" do! 

Morishima suggests that the world looks very different to these folks: change is frequent, 

technology advances as long as demand is strong, consumers "self-actualize." 

Just as large multinational firms may employ elements of all three organization models 
(Goold & Campbell, 1989), so economic circumstances coexist — even within the same firm. 
Eliasson (1991) suggested that firms migrate among the three mind-sets as their environments 
and problems shift; the three different "rationalities" (exploitative, managerial, visionary) must 
compete and cooperate in changing markets. 

Eliasson has sought to model the functions of the firm, within a competitive economic 
environment. He employs standard computational technique appropriate to the three models, 
involving different time horizons, different goals, and different abilities to adapt (acquire 
previously unknown existing technologies). This ambitious project allows the construction of 
complex economic games that demonstrate the competing goals of the existing firms and the 
problems involved in absorbing innovations. 

As remarkable as the elaborate design is, it lacks certain qualities neural networks could 

bring to such a simulation. Nets can respond to ambiguous patterns (even with ambiguous 

responses!). A few models (discussed later) have learning capabilities that traditional dynamic 
programming models lack (Werbos, 1974, 1990). And, if neural nets bear any relationship to
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human thought processes, they may provide an opportunity to employ "human-like" qualities of 

thought. 

Leven (1987b) and colleagues (Blackwood, Elsberry, & Leven, 1988; Leven & Elsberry, 

1990) developed a model of "discursive networks" (Leven, 1992a). The group simulated dyadic 

bargaining between two complexes of neural networks (Leven, 1992b). Recent work involved 

the extension of this work to multilayer economic games (Leven, 1995). The work of this group, 
they asserted, allows emulation of habits, affect, and logical analysis (Leven, 1987a). The dyadic 

model allows gestures and expressions to "frame" the logic of negotiation — and to change its 

nature and outcomes. 

The logics employed parallel the ones we have discussed. The task of going "beyond 

optimization" they have set themselves is what we consider next. 

4. IMPLEMENTING A DISCURSIVE MODEL OF MIND 

We begin by introducing the original model employed by L&E.* Leven (1987a) noted 

that only a complex environment could emulate human decision making (or even sense making). 

He recognized that models would have to emulate regional neural processes — and their 
interaction. He followed a set of analogies: between the Hopfield (Hopfield & Tank, 1986) 
model and fixed action patterns in instinctive and habitual behaviors; between back-propagation 
(BP) and semantic processing (as Rumelhart, McClelland, and the PDP Research Group, 1986, 

noted!); and, between adaptive resonance theory (ART) (Grossberg, 1980) and affective/contex- 

tual processing. 
As he would elaborate, Leven (1987b) recognized that the automaticity and stability 

represented by Hopfield would provide a valuable emulation model for rote and motor learning. 

He recognized, further, its relationship to the classical organization theory model (massively 
parallel, strictly constrained, optimizing behaviors). Finally, he saw an analogy to traditional 
models of "economic man." Hopfield required that its fixed learning and easy acceptance of 

minima be appropriate to the problem (it cannot change). An optimizing economic agent presents 

great stability of cognitive processing and search style (Arrow & Hahn, 1971). Hopfield’s failure 

to be minimally self-training was the only caveat. 

Similarly, he saw the match between back-propagation and logical processes the PDP 
Group asserted. Linear separability, flexible system design, and the possibility of affecting 

learning rate and error-passing rate were highly attractive. Only the acknowledged failure to 
accommodate "dynamic schemas" (Rumelhart et al., 1986, Chapter 14), flexible and complex 

meanings that changed in time, was a source of disturbance. 

Finally, he was aware of the close match between hippocampal CA1-CA3 interaction and 

adaptive resonance. The sensitivities of ART to arousal (presumably, activation) and gain control 

  

* Dan Levine (discussed later), Diane Blackwood, and several others have participated in what I call "L&E," 

for succinctness’ sake. Beyond the actual modeling, | am deeply indebted to Bill Hudspeth, Alianna Maren, and (of 

course), Karl Pribram of the Center for Brain Research. I am grateful, as well, for insights and inspiration from Paul 

Werbos (National Science Foundation), Joe King (Radtord University), and the Neural Networks and Decision 

Theory classes at Radford University.
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(sensor-fused external distractions?) provided the same sensitivity Thompson (1990) called 
emotional resonance, awareness of interacting (interpersonal) stimuli. ART did not fully specify 
sources for its parameter values, though, and lacked computational stability (Leven & Elsberry, 
1990). 

Leven (1987a) recognized the necessity for mutual cooperation of hierarchies of networks 
— the need to modify both within a set of models (e.g., ARTs) and between them (ART--> 
Hopfield--> BP). It would take nearly three years (Leven & Elsberry, 1990) to begin providing 
solutions. 

The first implementation allowed each network to be trained independently and to 
function almost independently. Each network passed output to its closest neighbor, as well as 
to a "frontal lobe simulator" (which performed a simple averaging and rounding function). Two 
sets of networks were presented; each had a Hopfield ("Dantzig"), back-propagation ("Bayes"), 
and adaptive resonance ("Godel") net — and the "Lobes" device. Inputs derived (except at t) 
from the colleague’s opposite — "George" would send "Mikhail" a composite bid of Dantzig 
(received by Mikhail’s Dantzig), Bayes (sent to Mikhail’s Bayes), Godel (to Mikhail’s Godel), 
and Lobes (sent to Mikhail’s Lobes). 

The two sets of networks were trained separately. Each was biased to recognize different 
inputs and to respond differently. Four sets of parameters were passed, ultimately: Dantzig’s 
"motoric" output of physical gestures (closeness to colleague, eyes opening or narrowing, etc.), 
Bayes’ "semantic" output (quality of argument), Godel’s "affective" output (tone of voice, etc.), 
and Lobes’ money bid (averaged from proposed bids of the trio). 

Despite the minimal flexibility of the network (all parameters had to be set by the tester), 
George and Mikhail proved to be valuable negotiators. The two proved highly sensitive to initial 
conditions — and to each other's bids. It turned out to be fairly common for one bargainer to 
win for a period of time, with ever increasing return, using a strategy of buying for a low price, 
selling for a high price, and performing with intimidation, but eventually to suffer a reversal of 
fortunes. Under that condition, the bargainer would demonstrate withdrawal — to an analogy 
for helplessness — and dominance. Their expectations could be undermined; their poor 
responses would evidence a sort of "shock." 

Still, the "communication" emulated with such convincing style was based in "canned", 
almost fully controlled networks. Only Godel (ART) showed the capacity to learn — and the 
inability to dynamically alter arousal and gain control in response to changes in the (internal and 
external) environment. Bayes and Dantzig (our analogs for semantic and motoric processes) were 
immune to change, learning, or even system failure. 

The stability-plasticity dilemma (e.g., Grossberg, 1980) loomed: networks that were 
reliable and predictable lacked the capacity to adapt, whereas adaptive nets lacked sufficient 
reliability and predictability. We may, however, have found a basis for "making peace" with the 
dilemma, if not fully overcoming it. As Leven (1995) demonstrated, a self-training and 
selt-repairing back-propagation network can be employed to replace the unsatisfactory Bayes: 
George and Mikhail can learn new rules, reject old ones, and analyze confusing information with 
a set of different techniques, within a BP environment. 

We shall, below, detail further changes in progress, as our discursive networks attain the 
capability to interact, react, and learn new responses as well as patterns.
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5. BEYOND OPTIMIZATION 

We begin by describing our most successful progress, in adapting Bayes to perform 

self-training and self-repair. Our model in progress, BP-SAM, is constructed from a few 

components: three (or more) higher-order nets trained in standard logics; a set of lower-order 
nets, either initially-trained or "empty" (unexposed to data); and "N2", a reset and information-co- 

ntrol mechanism which determines when it is appropriate to retrain ("repair") a lower-order net 
and then gate input data from failing nets. 

The model presents "superior nets," which are, in current versions, the three underlying 

logic bases most commonly employed: classical (predicate), modal, and nonmonotonic logics. 
Classical logic includes propositional logic. 

As we wrote (p. 2), modal logic, which is frequently associated with temporal logic, is 

distinguished from classical logic by inclusion of operators. L(/) can be interpreted as "I now 

know that /," "I now believe that /," and "/ is true at all times." Its dual, M(i), can represent "I 

do not know that / is false," "I do not doubt /," and "There is some time when / is true" 

(Shoham, 1988). Temporal logic is, largely, a direct extension: "at % o’clock, / is true," "I 
believe that / at % o’clock," "between % and D, / is true," and their duals. 

Nonmonotonic logic (NML) represents inherently contradictory information that remains 
useful and structured. NML can be applied to everyday behavior and probability. For example, 
supposing that we have found rules for assigning subjective probabilities to events, how are we 

to determine whether these rules are reasonable? Since each event is a unique occurrence and 

involves a different prior knowledge state, it is not possible to ask whether the prediction 

corresponds to the actual frequency? Many studies have shown that human beings judge 

likelihoods in bizarre ways, which violate the most fundamental laws of probability theory. 
People must be doing something right. 

NML, then, accommodates predictable contradiction. When Coca-Cola lovers were 

exposed to New Coke in taste tests, they responded to the new flavor enthusiastically. When the 

new flavor appeared in stores, they responded with violence against the flavor they had approved. 

The apparent contradiction may not be so confusing (Leven, 1987b): during the taste test, 

consumers were highly aroused and sensitive to the physiological taste experience, whereas in 
the market they related with relaxed affect — and were horrified to find the product with warm 

associations missing. The rules posited may be inadequate to explain an outcome; NML provides 
tools with which to cope with results that are common, yet lack simple explanations. 

The three "superior" nets perform training upon "empty" nets — these are previously 

untrained "memory capacity." They also accept input that N2 has redirected from lower level 
nets which have failed to produce satisfactory results. 

How could such an environment get established? Where do the "superior nets" get their 

training? Pribram (1991, Lecture 7) asserts that the structures of thought, in frontal and temporal 

areas, are prepared by interacting with patterned (already structured) motor and somatosensory 
processes. 

Karmiloff-Smith (1991, p. 179) argued that children learn in three ways: by innate 

specification, by interaction with the outside world, and by "an endogenous process whereby the 

mind exploits the knowledge that it has already stored (both innate and acquired), by representing
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recursively its own representations." This third form of representation Karmiloff-Smith termed 
“endogenous exploitation via representational redescription and restructuring." This re-representa- 
tional model consists of three level, she asserted. Her I-level is implicit, effectively stored, and 

quickly accessed in response to external stimuli. This level is comparable to input to Bayes (the 
semantic system) from Dantzig (the motoric system). Such an internally sensitive process can 
self-generated. In such a way, Karmiloff-Smith argued, retarded children can develop 
automatized language fluency. 

The normally fluent child can redescribe language learning at a higher level of abstraction, 

she maintained — as a "data structure" or a schema. It is ready to become an E-level structure, 

accessible for conscious consideration. This next level of evaluation ("E-2") is a process of 
logical derivations. 

Lastly, the highest level of abstraction ("E-3") provides the capacity to integrate schematic 

and socially and contextually cued information, This ability to draw on automaticity and context 
in building explicit representations is representative of the capacity the "superior nodes" might 
attain. These patterns, of course, are based on essential notions of order — and its ability to 
transform sense and other data into a coherent if/then framework. 

Thus, the three levels are conformant to Dantzig, Bayes, and Godel. And the 

“endogenous exploitation via representational redescription and restructuring" Karmiloff-Smith 
described is the interprocess resonance to which we have ascribed the "superior node" learning 
algorithm. 

As Pribram (1991) and others noted, the state of one system inevitably effects others’ 

effectiveness — and, even, actual functions. Karmiloff-Smith’s work demonstrates that the model 

of "superior nodes" is valid — but, further, it shows that the three processes we have specified 
(and modeled) are precise matches to experimental evidence. 

Although the model we have discussed grossly oversimplifies decision making and 
learning processes, it does offer an opportunity to begin to test notions of thought process, 
learning and memory, and affect- and state-dependent behaviors. It is, even now, allowing us 
to build multiperson negotiation environments, in which bargainers come from different cultural 
and physical environments. It allows us to plumb the depths of individual affective behavior 
(Leven, 1992a). 

There is abundant evidence that, in all situations, our perceptions, memories, and decision 
processes are affected by the environment (Gilovich, 1991). This is, of course, no less true for 
economic actors — even ones who are certain they are optimizing! 

We have begun to model everyday (Leven & Levine, 1987) and strategic economic 
situations (Leven & Elsberry, 1990). The complex problems are beginning to yield novel 
formulations of the process by which preferences are formed (Leven & Levine, 1996) and by 
which unintentional exploitation begins (Leven & Elsberry, 1990; Leven, 1995) — no mean 
problems to consider. 

At every turn, we discover the complex ties between motivations (or drives or 
automaticity), affect (or emotion or context-sensing), and cognition (or semantic or logic 
processing). And the most impressive part of human behavior to us is its coherence (Levine, 
Leven, & Prueitt, 1992).
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We have just begun to pose the difficult questions. Heaven help us if we ever get good 

at it. 
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David Stork’s chapter, Nonoptimality in a Neurobiological System, gives a specific 
biological example to show that evolution does not automatically lead to optimal neural 
structures. On the contrary, the process of evolution in complex, dynamic environments means 

that at any gtven time in the history of a species, structures are present that arose to solve a set 
of tasks that were relevant to an earlier environment. These same structures often do not lead 
to optimal performance of tasks that are relevant to the organisms’ current environment. This 
outlook is in agreement with principles propounded in several other chapters (notably those of 
DeYong, Elsberry, Leven, and Levine), but Stork’s chapter is the only one in this book that 

provides a specific example. 
Stork’s neurobiological example is the circuit mediating a tail-flipping response in the 

crayfish. In thts circuit, there is a ganglion (LG) that excites a neuron called FF, leading to 

activation of flexor muscles in a particular segment. However, the tailflip response involves 
inhibition of flexion in those muscles. The same sensory stimuli that excite LG also inhibit FF 
directly by another pathway, and the flexor muscles of that segment indirectly by yet a third 
pathway. Hence, the excitatory LG-to-FF synapse is "useless" because it is always overridden. 
The nonoptimality, in terms of tail flipping, of this synapse’s existence is supported by computer 

stmulations (in another article by the author, referenced herein). Stork goes on to show that the 

"useless" synapse serves an evolutionary purpose for a different response, swimming without 
tail flipping. Moreover, his simulations show that if the crayfish ever went back to a situation
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where swimming was again the response of choice, the neural circuit would again be well suited 
for that response. 

The crayfish results suggest that nonoptimal structures are not only prevalent, but in 
some cases may serve the purpose of helping the organism adapt to a changed environment of the 
future. Stork notes that as neural systems get more complex, as in mammals, the amount of 

potentially useful nonoptimality is likely to be even greater than in the crayfish. This ts related 
to the notion of Prueitt’s chapter in this book, that the principle of optimality needs to be (and 
is) balanced by a complementary principle of optionality, or diversity generation. 

ABSTRACT 

We simulate the evolution of the neural circuitry subserving the tailflip escape maneuver 

in the crayfish in order to help explain a paradoxical ("nonoptimal") feature of that circuit. 
Specifically, a "useless" synapse in the current tailflip circuit can be understood as being a 

vestige from a previous evolutionary epoch in which the circuit was used for swimming instead 

of flipping. Such preadaptation effects may underlie a broad range of neural structures 
throughout the animal world, and illustrate fundamental principles important for artificial life, 
most notably the locally greedy nature of evolutionary change and that "elegance of design counts 
for little." 

1. INTRODUCTION 

The structure and function of every organism — both biological and the vast majority 
posited for artificial life —- depend crucially upon its evolutionary precursors (Bonner, 1988). 

The form of the human eye and the neural system subserving peripheral visual processing, for 
example, depend upon the evolutionary history of hominids and pre-hominids (Spinelli, 1987); 

likewise, the structure of systems subserving hearing (and thus speech recognition), motor control, 
and so on derived from those of earlier evolutionary epochs Indeed, evolutionary change is so 

fundamental to our understanding of biological life that Dawkins (1976, 1989) claimed that life 
without the notion of evolution was virtually unthinkable. 

Neural systems of all animals possess structure at birth — there are no tabulae rasae 

anywhere in the animal kingdom. Such structure is absolutely fundamental to the performance 

of the organism, of course, and even determines what can, and what cannot, be learned from the 

environment. Moreover, it is increasingly clear that the initial promise of artificial neural 

networks toward achieving adequate performance on speaker-independent speech recognition, 
three-dimensional visual object recognition, scene analysis, language understanding, and a host 
of higher cognitive functions cannot be met without continued progress in understanding 

constraints, as manifest in network structure (Stork, 1988, 1990). Whereas nearly all researchers 

in neural networks design their networks (or "reverse engineer" what exists in biology), we 

believe that a deeper understanding of the sources of biological structure will also help us create 
artificial neural systems duplicating or mimicking complex behavior. Such understanding will 
also support efforts to produce artificial life.
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Because biological structure evolved through selection in extremely complex environ- 
ments, we should not expect that biological solutions will always conform to "good" design 
principles. The research related here is directed to understanding how "inelegant" — indeed, 
counterintuitive, or "nonoptimal" — structures might arise through evolution, even in quite simple 
neural systems. We argue, moreover, that "nonoptimality" should be expected to be even more 
prevalent in complex neural structures, for instance, the human brain. 

Although its roots extend back to the time of Darwin (1866/1968), the concept of 
preadaptation has been recently elaborated by S. J. Gould, E. Mayr and others (Gould, 1982; 
Gould & Vrba, 1982; Mayr, 1976). Preadaptation is used to describe the process by which an 
organ, behavior, neural structure, etc., which evolved to solve one set of tasks is later utilized to 
solve a different set of tasks. It illustrates the dichotomy between designed, planned, and 
"optimal" forms in biology on the one hand, and "nonoptimal" ones on the other. 

An example of preadaptation of an organ is the bird wing. The proto-bird wing was too 
short to be used for flight, and hence must have been used for some other task; the Darwinian 
fitness at that time did not depend upon flight. Theories of the use of the proto-wing include 
thermoregulation (the proto-bird spreads or retracts its wings to cool or warm itself), insect 
catching (the proto-wings are used to knock down insects to be eaten), and reorientation during 
jumps for insects (the proto-bird can then catch insects from a larger volume of air), and others. 
Whatever the reason, the proto-wing was indisputably not used for flight. Later in evolution, as 
the proto-wing became longer, a behavioral threshold was reached in which the limb could be 
used for flight. Then, a different set of evolutionary pressures were placed on the wing, yielding 
a lighter and more aerodynamic wing. The later wing, though, had to be built upon the structures 
that evolved for the previous task. Thus there could be structures in the current bird wing — 
holdovers from the earlier evolutionary epoch — that are "nonoptimal" for flight (Stork, 1989). 

If such structures do not present an excessive biological "cost" (say, in energy or 
resources), then those structures may remain in the later system. Even if the structure does pose 
a cost to the organism, that structure might nevertheless remain in the later organisms, since 
intermediate states in its elimination may prove very detrimental to the organism. In such a case, 
the structure is "frozen into" the organism, a relic of the earlier evolutionary epoch. 

Figure 4.1 illustrates, metaphorically, the process of preadaptation, and can be discussed 
in terms of neural networks (our primary system of interest). At an early epoch, the network 
solved Task 1, and might even have been optimal for it. (Optimal is, of course, dependent upon 
one’s measure. We need not be specific here, but state roughly that a circuit which uses the 
minimum number of components, biological energy, and structure to solve the problem without 
compromising the organism’s ability to solve other problems can be regarded as more optimal 
than a circuit that doesn’t.) At a later evolutionary epoch, a different task becomes more 
relevant. This switch in task might be due to a changing environment, or to the network 
evolving such that new niches become available (as in the bird wing), and so on. The network 
is then under different evolutionary pressures, and the "energy landscape" is deformed. The 
network, however, must build upon structures selected based on Task | — structures that might 
not be appropriate for the second task. The result is that the network may be “nonoptimal" for 
Task 2.
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Fig. 4.1. Preadaptation. Metaphorical cnergy landscape describing performance of a network throughout 

evolution. Evolutionary time runs from the back of the figure to the front; the "energy" (e.g., a measure of 

fitness) is vertical, and some index of network structure runs left to right. At an early epoch, the network 

may have been optimal for solving the task at that time — Task | — but later, the appearance of Task 2 

deforms the energy landscape. The network might, therefore, be in a nonlocal minimum, and hence 

"nonoptimal” for Task 2. In our typical crayfish simulations, Task 1 is swimming and Task 2 flipping. 

Investigations of preadaptation are important in neurobiology, artificial neural networks, 

and artificial life. Such studies elucidate the nature of evolutionary change and the function of 

biological networks (especially since such information cannot be preserved in the fossil record). 

Preadaptation sheds light on the study of artificial neural networks in at least two ways: it can 

help guide the "reverse engineering" of biological systems, showing which structures might or 
might not be relevant to the cognitive task at hand; it can suggest general hybrid evolution-lear- 

ning neural networks based on biological processes (Keesing & Stork, 1991; Miller, Todd, & 

Hughes, 1989; Stork & Keesing, 1990, 1991). Since the vast majority of attempts at artificial 

life incorporate evolution in some form, preadaptation can aid these efforts by clarifying the 

difference between elegant and simple design principles and the "inelegant" implementations that 
might be required in living organisms. Likewise, studies such as this one can help to illuminate 
the processes in evolution. 

We have chosen the crayfish tailflip circuit for our simulation studies for several reasons. 

First, the neural circuitry has been extensively mapped by neurophysiologists (Wine, 1971). 

Second, the circuit is small enough that realistic simulations can be made using the computer 

resources available to us. Third, an apparently "nonoptimal" structure is evident in the circuit. 

Fourth, the circuit is responsible for a behavior that is of the utmost survival value for the
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crayfish (flipping away from danger), and thus Darwinian selection pressures on the circuit are 
great. Fifth (and closely related to the previous reason), a highly plausible evolutionary scenario 
can be made for the circuits. Finally, the crayfish has a phylogenetically close relative, 
Anaspides tasmaniae, which can serve as a sort of "control" organism, since its homologous 
circuits differ in ways easily linked to its different behavior. 

2. CRAYFISH TAILFLIP CIRCUIT 

The crayfish tail consists of six segments, each with its own small neural circuit linking 
pressure-sensitive cells to flexor muscles governing the tail segment. The tailflip escape 
maneuver is effected by flexion of the anterior segments (segments 1-3) with no flexion in the 
postertor segments (segments 4-6). Figure 4.2 shows the basic structure of the actual crayfish 
circuits responsible for this behavior and possible evolution. 

Consider carefully the circuit in segment 6, which leads to inhibition of the flexor muscles 
whenever the sensory interneurons are excited. A neural volley passing from the LG to the FF 
neuron would lead to excitation of the FF. However, this excitation is counteracted by the direct 
inhibuory connection from the sensory interneuron to the FF itself. There is, moreover, inhibition 
of the flexor muscle vis the Fl neuron. The synapse between the LG and FF is thereby 
overridden; it seems to have no purpose. So far as is known, then, the circuit is "nonoptimal." 

The question naturally arises: Why does the crayfish have this apparently useless synapse? 

What can account for such "nonoptimality” in design? 
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Fig. 4.2. The neural circuitry subserving the tailflip in crayfish. Excitatory synapses are represented by a T 

and inhibitory synapses by a @. In the event of a rapid rise in ambient water pressure (from a predator), 

pressure transducers yield excitatory activation in the sensory interneurons. To effect the tailflip maneuver, 

each anterior segment (c.g., segment 2) must flex (Le., the flexor muscles must be excited) and each posterior 

segment (c.g., segment 6) must not flex (i.c., the flexor muscle must be inhibited). Note especially that one 

of the excitatory synapses in segment 6 is “uscless": any time an excitatory volley passes from neuron LG 
to FF, the FF neuron is also inhibited (via a direct connection from the sensory interncuron), thereby 

rendering the excitation inctfective. Furthermore, the only projection of the FF (which is to the flexor 

muscles) is also overridden by inhibition from the Fl neuron.
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2.1. Preadaptation Hypothesis 

Dumont and Robertson (1986) hypothesized that the excitatory LG = FF synapse is a 
vestige from an earlier evolutionary epoch, one in which the proto-crayfish did not flip, but 

instead merely swam. (Simultaneous flexion in all segments leads to swimming, as in the 
Anaspides tasmaniae, which has in each of its six tail segments a circuit homologous to those 

in the anterior segments of the crayfish.) The hypothesis is that the circuits in the posterior 

segments originally had the form at the top of Fig. 4.2 (appropriate for swimming), but under a 

change in task — from swimming to flipping — the circuit evolved by building upon the 
previous ones. The LG = FF synapse was useful for swimming, but not for flipping, and the 
circuit evolved other connections to override that synapse. Because that synapse is no longer 

expressed behaviorally, it is "frozen into" the circuit a vestige of the earlier epoch, and 

nonoptimal in the context of the circuit’s current use, in much the same way that the appendix 
has been "frozen" into our digestive system. We provide here computer simulations and further 

analysis in support of this hypothesis. 

  

3. SIMULATION APPROACH 

The overall approach follows a classical Darwinian evolution scenario, shown in Fig. 4.3; 

a more complete explanation and description of the relationship to actual biology is given in a 

recent paper (Stork & Keesing, 1992). Each network has a haploid gene, which is expressed to 

yield the full network, including connectivities and neural response characteristics. Networks 

then respond to the environment — a simulated pressure wave from a predator — and are 

selected based on their response. The selected networks then reproduce to give the genes of the 

next generation, and the cycle continues. 

Genotype. The genetic representation and development used in our model system together avoid 

some of the artificial assumptions made by other modelers of genetic systems. The most 

important question centers on that of genetic representation of neural connection strengths: is this 

representation localized (each initial connection strength determined by one or a small number 

of genes) or is it distributed (the many connection strengths determined by several genes)? 

There is abundant evidence for pleiotropy and a distributed genetic representation in 
biology (Dawkins, 1976; Griffiths & McPherson, 1989; Hall, Greenspan, & Harris, 1982; 

Wilkins, 1988). It is clear that the information in the entire human genome is insufficient to 

specify every brain synapse, not to mention those elsewhere in the nervous system. Nor does 

there seem to be much evidence for "one gene-one synapse." Instead, genetic representation can 

act in several ways: setting affinities for connections, development rates, and so forth (Purves & 
Lichtman, 1985; Purves, 1989). Furthermore, there are many cases in which mutations in a 
single gene or a small number of genes can have distributed consequences, as in many systemic 

neural disorders such as multiple sclerosis. On the computational and systems levels, a 

distributed representation has several useful properties. Perhaps most importantly, it permits 

mutations to make large changes in network structure, thereby leaving small refinements to be 

accomplished through learning (Keesing & Stork, 1991; Plotkin, 1988; Stork & Keesing, 1990).
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Our simulations employ a distributed representation, based on properties of control genes 
and structural genes (Hawkins, 1986). The structural genes code for fundamental aspects of the 
phenotype, here the cell type, neurotransmitters, type of synaptic receptors, and so on; the control 
genes guide the expression of the structural genes (Fig. 4.4). Thus, for instance, if a particular 
enhancer from the control genes is activated, it will lead to a distribution of the Structural genes 
to be expressed. This captures the fact that certain phenotypic features are expressed in concert. 
For example, a human photoreceptor contains both photopigment and platelets, as well as other 
Structures unique to photoreceptors; these are all expressed together. (One typically does not find 
cells with photopigment but no platelets, for instance.) In our model, then, several of these 
features are represented by a single structural gene; if that gene is activated, all of the component 
phenotypic features are candidates for expression. 
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Fig. 4.3. Evolutionary processes. The genes lead via development to a structured network, including 
interconnections (excitatory and inhibitory), neural-channel properties, and so on. The network then responds 
to the environment and is selected based on the resulting fitness score. Fitness depends upon the posited task, 
here either swimming or flipping. The most fit individuals then reproduce to yield the genotypes in the next 
generation, and the evolutionary processes continue. 

Consider just one of the phenotypic traits: cell adhesion molecules (CAMs), implicated 
in developmental programs for connectivity (Edelman, 1987, 1988). In our model, there are four 
types of CAMs; during development the initial connectivity between two neurons is specified by 
the similarity in their CAMs, just as biological CAMs, large cell surface glycoproteins, are 
homophilic. Suppose that promoter 1 (also sometimes called an enhancer) would lead to the
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expression of CAM1 and CAM2 (Fig. 4.5). If no other promoters are activated, the final neuron 

would have those two CAMs expressed. But suppose, moreover, that promoter 2 would lead to 

CAM2 and CAM4, but not CAM1 and CAM3, and analogously for promoter 3, as shown in the 

figure. (In our simulations, a promoter table describes the relationship between the promoters 

and the CAM structural genes.) If all three promoters are activated, each would express its 

corresponding set of CAMs, but prevent other CAMs from being expressed. The final 

distribution of CAMs expressed in a neuron are then the result of a majority vote for each CAM, 

as if the promoters competed among themselves to express the individual CAMs. Similarity in 

the cell surface markers expressed in any two neurons determines the initial interconnectivity — 

the greater the similarity, the stronger the initial synaptic connection, in accord with homophilic 

properties of CAMs (Edelman, 1987). 

Enhancers Structural genes 
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Fig. 4.4. Haploid genome uscd in simulations. Structural genes (shown downstream, grouped for 

convenience) govern the phenotypic structures in the network. Enhancers (upstream, grouped by neuron for 

convenience) govern the expression of the structural genes. 

A similar computation occurs for the neurotransmitter to be produced in a neuron, we use 

twelve candidate neurotransmitters (¢.g., GABA, acetylcholine, ..., whereas above we used just 

four CAMs. In the simulations described here, only one transmitter is expressed (as described 

by Dale’s Law, which is not universally obeyed). Genes coding for acetylcholine and 

cholineacetyltransferase have been found on two separate chromosome segments in Drosophila 

melanogaster (Greenspan, 1980; Hall et al., 1982) and this suggests that a similar arrangement 

could exist in the crayfish. 

Grouped phenotypic features that lead to a neuron being either a sensory, or an 

interneuron or a motor neuron are expressed by an analogous mechanism, though with only three 

(exclusive) attributes rather than twelve. Neural channel properties are computed as the average 

of those from each structural gene activated. Thus if one structural gene would lead to a large
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number of Na channels, while another would lead to a small number, then if both are activated, 

that actual number expressed will be intermediate. Such features of the model are motivated by 

recent results on mutations in three different alleles in the Shaker locus, which led to postsynaptic 
potentials in muscles longer and larger than in the wild type (Jan, Jan, & Dennis, 1977), implying 

a genetic representation of potassium channels. (See a current paper (Stork & Keesing, 1992) 
for more detailed discussion of the biological motivation of the model.) 
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Fig. 4.5. Model for the expression af cell adhesion molecules in a neuron. Suppose that for a given neuron 

three promoter genes. are activated. In the example shown here, the first leads to activation of the structural 

genes 1 and 2, which would Icad to CAM1 and CAM2; promoter 2 would likewise lead to CAM3 and CAM4, 

etc. (This relationship between promoters and these structural genes is stored in a look-up table in the 

simulations, and derives from physiological data on gene expression af CAMs.) The final CAMs expressed 

in the neuron are the result of a majority vote for cach CAM; in the case shown, CAM3 and CAM4 are 

expressed. (Tie votes are decided by an unbiased random choice.) 

What is important here is that the relationship between genetic representation and ultimate 

phenotype is distributed and indirect. 

3.1. Phenotype 

Each neuron is thus described by its global type (sensory, interneuron, or motor neuron), 

its decay rate constant, neural channel concentrations (which determine the excitatory and 

inhibitory saturation levels), its neurotransmitter type, its synaptic receptor type, and complement 

of cell adhesion molecules. 
The network as a whole is specified by the neural interconnectivities, determined by the 

similarities of the CAMs (computed as a Hamming distance) on each candidate pair of neurons. 
We also include a distance-dependent term, making neurons that are physically more separated 

have lower connectivity for any given CAM similarity. Expressed networks have the form shown 

in Fig. 4.9 below.
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3.2. Behavior 

The behavior of each neuron in the network is governed by Hodgkin-Huxley equations 
of the following form (Grossberg, 1982; Hodgkin, 1964): 

dx, 
So OT 74% +(b-ex,) {> aif) Th (dex) eoftaph (1) 

ex in 

where 

* X, = activity in neuron (depolarization); 
* f(x) = output spike rate — a compressively nonlinear transfer function of the activity; 

a, b, c, d, e = constants describing ion concentrations, channel densities, and so forth. In 
particular, a describes the time constant for neural recovery, b and c together with a specify the 
excitatory saturation level, and likewise d, ¢, and a specify the inhibitory saturation level; 
' Z, = Strength of synapse between neurons i and j; 

- J; = external input for neuron i (not due to other neurons); 
'G,, = the set of neurons connected to neuron i by synapses leading to excitation; 
"G,, = the set of neurons connected to neuron i by synapses leading to inhibition. 

The right-hand side of the equation consists of three terms. The first denotes a relaxation 
decay, the second an excitation term (involving the sum over all the inputs that lead to 
excitation), and the third term, analogously, inhibition. For our task, the input J; is nonzero only 
for the sensory neuron, and in that case consists solely of a brief delta-function impulse at ¢ = 
0. 

3.3. Selection 

Our selection procedures are based on fitness-proportional reproduction (Goldberg, 1989); 
the fitness score depends upon the task. For swimming, this score is equal to the maximum 
instantaneous excitation in the network’s motor neuron (normalized over the population), 
corresponding (roughly) to the strength of flexion in the posterior tail segments. For flipping, 
the score is the maximum magnitude of inhibition in the motor neuron, corresponding (roughly) 
to the lack of such flexion. Although other measures of fitness are possible (motor-neuron 
activity integrated over time, maximum value of the derivative of the activation, etc.), the one 
we used captures the behaviorally relevant features of flexion. This fitness function is 
biologically plausible, since the crayfish locomotion is fundamental to its survival. Of course, 
other traits confer fitness: we are concentrating solely on one of the most important. 

The algorithm for selection can be visualized as taking the fitness scores of each of the 
networks in a population and lining them up in a bar whose length is proportional to the 
individual scores. Then, points are chosen randomly and independently along the entire length 
(Fig. 4.6). The networks selected in this way are then reproduced, regardless of the value of their
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fitness score (see subsection on reproduction). The number of points chosen is equal to the 

number of individuals. 
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Fig. 4.6. Selection for fitness-proportional reproduction. Each network is represented by a rectangle having 

a width equal to its fitness score. Selection is achieved by randomly choosing points along the entire 

population (arrows), which determine which networks survive. Thus, the probability a network survives is 

proportional to its fitness score, and a network can be selected multiple times. It is possible — though 

somewhat rare — for a network with a very low fitness score to be selected over a network with high fitness 

score. (Herc the scores have been arbitrarily nonnalized to maximum = 10.) 

Such fitness-proportional reproduction is biologically motivated and generally preferable 

to schemes in which merely the most fit individuals are selected by truncation selection. In 

general, fitness-proportional reproduction helps to preserve diversity in the genome by permitting 

some low-fitness networks to pass on their genes. 

3.4. Reproduction 

Those networks selected in this manner are reproduced using the familiar processes of 

replication, mutation (p,,, flip = 10-?/bit/generation), bit insertion (p,,insert = 10-*/network/generat- 

ion), and single-position crossover (75% of pairs), as put forth by Holland (1975) and illustrated 

in Fig. 4.7. The genetic algorithm parameters — in particular the somewhat high mutation rate 

— were chosen in order to probe the phenomena as thoroughly as possible using our computer. 

Based on several runs with different parameters and random number seeds, we found that our 
fundamental findings did not depend significantly on the choice of parameters over a wide range. 

4. RESULTS AND ANALYSIS 

All simulations were done on Connection Machine CM-28, either at RIACS (Moffett 

Field, CA) or Thinking Machines Corporation (Cambridge, MA). Our program consisted of 
roughly 12,000 lines of C’ code, the parallelized version of C; typical simulations required two 
to three hours. On SIMD (single-instruction multiple data) computers, there is always the 

question of the level at which parallelization of the problem should be made. The Connection 

Machine operating system and C language permit construction of domains, which are processed 

in parallel. Candidate domains for our system were:
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Fig. 4.7. The processes of random mutation, bit insertion, and crossover (shown) as well as replication (i.c., 
duplication without mutation, not shown) are used between gencrations. 

* individual networks, 

- individual neurons, and 

‘ individual synapses. 

(The temporal dynamics of the neurons are inherently serial — the integration of Eq. (1) 
— and thus could not be parallelized. Indeed, this serial integration alone accounted for over 1/4 
of the total processing time.) 

Thus, for instance, if the code were parallelized at the level of individual networks, then 
the neurons and synapses would be serially processed. If, on the other hand, individual neurons 
were parallelized, then just the synapses and any finer grain structures would be processed 
serially, and so on. While paralleling to the finest grain (here synapses) would lead to most rapid 
calculations, the overhead in Inter-processor communication would increase, since each neuron 
interacts with several other neurons. For our small number of neurons (7), parallelizing at the
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level of individuals was most efficient. Only if the number of neurons per circuit were larger 

(roughly 20-30) would the speedup in computation by parallelizing at the neuron level outweigh 

the drawbacks in communication overhead. 

The parallel aspect of the our program is that all members of the population are calculated 
simultaneously on this SIMD machine. Individual neurons and synapses within a network are 
computed in series. We created the parallel data structure "domain individual," a C’ domain that 

allocates one processor (each with 8 kbytes of memory) per crayfish circuit. All the code was 

on the host VAX, while the data (synaptic strengths, neural activities, etc.) were stored on each 

physical processor. We ran some simulations with larger populations and found that the fitness 

curves (see Fig. 4.8(a)-(b)) did not differ significantly from our results for populations of 200 
individuals. Whereas the statistics for these larger sets is only slightly more reliable, we found 
that analyzing individual networks for "nonoptimal" structures — which had to be done 
laboriously, by hand — became prohibitively time-consuming. 

4.1. Preadaptation 

Figure 4.8, from a typical simulation, illustrates the basic phenomenon of preadaptation 

(Stork, Walker, Burns, & Jackson, 1990). The graph on the left shows the population average 
fitness as a function of generation. At generation 75, the task was changed from swumming to 
flipping — the fitness score magnitude of the positive activity in motor neuron is then negative 

(inhibitory). The population average fitness drops precipitously as the circuits previously selected 

for swimming are then tested and selected for flipping. Later the fitness levels off (by generation 

150) to a mean score of 0.13 (in arbitrary units). The right hand graph shows evolution in the 

case of rewarding flipping alone — no preadaptation. After 75 generations, the mean score, 0.29 
(in the same arbitrary units), is significantly above that of the preadapted networks in the left 

figure, given the same number of generations rewarding flipping. In short, evolving flipping 

networks from those previously selected for swimming leads to poorer performance than evolving 

them from the random networks present at the beginning of each of our simulations. Although, 

of course, there is a small chance the preadapted networks (Fig. 4.8, left graph) could 
spontaneously increase in fitness through a fortuitous combination of mutations or crossovers, 
the networks seemed to be caught in a local minimum (cf. Fig. 4.1). 

The structure of preadapted networks differed from those not preadapted (Fig. 4.9). In 

particular (based on a preliminary analysis of several dozen networks), roughly three times as 

many "nonoptimal" structures were found in preadapted circuits as in non-preadapted circuits 

(other variables held constant). The structures we termed "nonoptimal" included neurons 

unconnected to the rest of the network and synapses whose polarities (e.g., excitatory) were 

counterbalanced by another projection of the opposite polarity (i.e., inhibitory). 
Because non-optimal structures arose more frequently in preadapted circuits in our 

simulations, and because several simulated circuits had nonoptimal forms very closely 

homologous to those in the biological crayfish (compare Figs. 4.2 and 4.9), our simulations 

provide support for an understanding of the LG => FF synapse in the crayfish in terms of 

preadaptation.
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A possible objection arises: how can we be sure that the LG => FF synapse is, indeed, 
never used by the crayfish for some other purpose? Perhaps we simply have not been clever 
enough to guess a use. By analogy, very recent work on potassium channels in Aplysia on first 
analysis seemed to show that certain channels were non-functional, and, hence, perhaps 
nonoptimal (Treistman & Grant, 1993). It was only after the ambient water temperature was 
raised from the (natural) 10°C to the warmer 1520°C that these channels became active. (This 
Suggested that the channels might help prevent convulsions in the Aplysia. As F. H. Crick has 
remarked, evolution can be more creative than humans! 
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Fig. 4.8. Preadaptation. (Left) The maximum individual fitness and the generation mean fitness for a 
population selected first for swimming and then (after gencration 75) for flipping. (Right) Population selected 
solely tor flipping. The minimum fitnesses were zero at virtually every generation, and hence have not been 
plotted. The same normalization convention was used for the graphs. 

To such objections we respond that the manifest simplicity of the crayfish network and 
the restricted behavioral repertoire exhibited by the crayfish (at least evident in laboratory studies) 
seems to limit such hypothetical uses. Of course, a use might be found in the future. It might 
be possible that the "nonoptimal" synapse and attendant projections give an architectural 
constraint of some sort, and cannot be removed without great behavioral and fitness cost. (One 
hypothetical use for the "nonoptimal" circuit is for the inhibitory sensory-FF projection to limit 
the duration of an excitatory volley — perhaps to make a short "burst" in activity in the motor 
neuron. Alas, this does not appear to be the case in either the crayfish or our model networks: 
the inhibition of the FF neuron invariably precedes the excitatory volley through the "useless" 
synapse.) Given the simplicity and plausibility of the preadaptation scenario provided by Dumont
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and Robertson and by our simulations, this explanation seems far more acceptable than any 
current alternative. 

  {C}-—j41C)—j4©C—F @ 
Swimmer 

Libor 
Preadapted Flipper 

Fig. 4.9. (Top) Network resulting from evolution by selection for swimming alone. (Bottom) Network after 

preadaptation scenario. Note in particular the nonoptimal connections in the lower circuit. In both circuits, 

the sensory neuron is shown at the left and the motor neuron at the right. (As in Fig. 4.2, Ts represent 
excitatory connections and @s inhibitory ones.) 

4.2. Evolutionary Memory 

How can we understand in a deeper way the preservation of genetic information coding 

for functionally unless structures? Perhaps we can consider genetic information to be "junk." But 

note: junk is fundamentally different from trash. The junk around our house was at one time 

useful, and is often stored in an attic in the possibility of being used later. Trash, however, might 
never have been useful, and is not useful at present. We discard trash; we save junk, even if 
there is but a small chance that it might be used again. Perhaps the distributed genetic 
information responsible for the "useless" synapse is "junk" in just this way. 

In order to explore this possibility, we performed another set of simulations. We selected 

first for swimming, and then for flipping (as before), thereby creating a population of networks 

which possessed a significant fraction of structures "nonoptimal" for the flipping. We then 

changed the task back again to swimming, in order to see how rapidly and how well the 

population then evolved for swimming. 

Figure 4.10 shows typical results. After selection for swimming then flipping, the 
population fitness rose very rapidly for the subsequent swimming task. The population did this 

more rapidly than when it had evolved under the first swimming epoch, presumably in part 

because the later evolution could appropriate structures remaining from the first swimming epoch. 

The "junk" in the genome permits the crayfish to rapidly relearn how to swim, should the 
environment require it.
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Keeping genes that were useful at previous epochs may help explain how evolution can 
be faster at later epochs, since the structures need only be recalled or reselected, not rebuilt ex 
nthilo (Dawkins, 1976; Wills, 1989). 

5. CONCLUSIONS AND FUTURE WORK 

Our simulations support an explanation that an apparently "useless" feature of the 
contemporary crayfish tailflip circuit arose from preadaptation, specifically, that the crayfish 
circuit was historically selected based on the circuit’s ability to have the crayfish swim, and later 
selection was based on the crayfish’s ability to flip. As such, there are features "left over" from 
the earlier (swimming) epoch, not selected out, and hence perhaps "nonoptimal" in the current 
(flipping) circuit. Nevertheless, genes that code for structures that are at one epoch "useless" 
may be expressed under different environmental circumstances and, thus, permit the system to 
respond rapidly to changing environments. 
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Fig. 4.10. Evolutionary memory. The population was first selected for 200 generations for swimming, then 
for another 200 gencrations for flipping. At generation 400, the task was changed back to swimming. Note 
especially that the recovery of fitness is extremely rapid in this last epoch (after generation 400).
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These results, and the theories underlying them, have great import for biological systems 
and posited artificial life organisms. As Dumont and Robertson (1986) wrote of the evolution 
of biological networks: "As long as both the end result and all the intervening stages work, 
elegance of design counts for little." The same phenomena are even more likely to occur in 
complex neural systems (which have more degrees of freedom) because there are more 
intervening stages between the genes and the behavior they influence. Hence, nonoptimality may 
permeate neural systems in the animal world. We thus provide an alternate — but not 
necessarily competing — explanation to that of Edelman (1987) for the large number of silent 
and perhaps unused synapses throughout the mammalian brain. 

It has been argued persuasively that human language has a strong innate, and hence 
genetic, component (Chomsky, 1957). However, speech seems to have arisen fairly late in 
hominid evolution, roughly 100,000 years ago (Lieberman, 1984). This epoch is very brief (on 
an evolutionary time scale), and surely too brief for complex language circuits to arise ex nihilo. 
Thus, it appears likely that our current language circuits appropriated and built upon structures 
selected for tasks other than language. Perhaps the most plausible use for the circuits before 
language was orofacial motor control (Lieberman, 1984; Stork, 1989). Generalizing and 
extrapolating from our crayfish analysis, we can perhaps understand why language may not be 
“optimal,” that is, why grammar contains quirky forms or rules, due to preadaptation. 
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Optimality and Strategies in 
Biological and Artificial 
Neural Networks 

Wesley R. Elsberry 

Texas A&M University 

Wesley Elsberry’s chapter, Optimality and Strategies in Biological and Artificial 
Networks, attempts to relate optimality considerations to classical evolutionary theory. He 
defines both optimality and satisficing in terms that primarily have to do with function, 

emphasizing that the same behavioral function can be performed with different neural structures. 
An example given here is that speed of neuronal transmission is enhanced in mammals by 
myelination of the axon, but in squid by a large axonal diameter. 

Elsberry also gives an example from courtship behavior of the wrasse fish to show that 
optimal functioning can sometimes occur in the nervous system. But he emphasizes that 
Darwinian natural selection only serves to select for traits that enhance reproductive success 
of the organism, not optimal functioning in any other sense. This ts a point also made in other 

chapters in this section (those of Levine, Werbos, and Leven). And the chapter by Stork points 
out that in neural functioning as in any other biological functioning, there is a time lag between 

changes in environmental conditions and adaptations; hence, traits that evolved to perform one 
function can persist, and be suboptimal, at a later epoch wherein another function is required. 
In spite of all this, Elsberry argues, a large part of neurobehavioral function in many organisms 
can be both explained by natural selection and interpreted as optimal. Much of neural function 
which is not optimal can be understood as satisficing — a concept that originally arose in 
economics but fits naturally in a framework of evolutionary biology. 

As far as artificial neural networks (ANNs) are concerned, Elsberry says, to the extent 

that biological functioning ts in fact optimal, the goal of biological realism should be striven for 
in ANNs. The method of genetic algorithms enables some fairly detailed study of the 
evolutionary process within ANNs themselves. He cites an article by Parisi et al. about ANN 
whereby connection weights that evolved to perform one function (food gathering) actually
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enhanced the performance of an unrelated function (learning the logical "exclusive-OR" 
relationship). 

The principal mark of genius is not perfection but originality, the opening of new 
frontiers. Arthur Koestler 

ABSTRACT 

Some general considerations are outlined on how optimality is related to Darwinian 
natural selection. The position is taken that optimality relates to overall function, rather than 
structure. Specifically, optimal functioning is defined in terms of what maximizes the possibility 

of survival to a period of successful reproduction. Some neural network experiments on 
evolution are described in which enhanced ability at one skill actually increases the ability to 
develop a totally unrelated skill. An evolutionary perspective on satisficing is also outlined. 

1. THE BASIC ARGUMENT 

In a vastly undersampled multidimensional feature space and essentially unlimited 
variability, Koestler’s dictum just given could have great utility. However, that’s not how 

biological systems work. The constraint of history implies that rats will not give rise to furred 

invertebrate omnivores. The future directions in which descendant populations will develop 
depend critically on the set of features of the ancestor. Variation for novelty’s sake thus has a 
limited payoff, in that the possible variation is constrained by the ancestor’s history. 

Biological neural networks perform sensory integration and motor control functions in 

metazoan animals. The function of biological neural networks, in the sense defined by Millikan 

(1993), is the emission of appropriate behavior of the animal under normal conditions. I view 

these functions as having arisen by means of differential reproduction of animals expressing 

behavioral traits. This scenario of natural selection influencing behavior leads to a set of 

hypotheses regarding the existence and role of optimality in biological neural networks. First, 
the appropriate evaluation function for determination of optimality is that of reproductive success. 
Representation of alleles in future generations is the only criterion of evaluation in nature, and 

thus the one that should be used for determining whether an organism has an optimal response 

to environmental conditions. Second, a distinction between optimal function and optimal 

structure needs to be recognized. Biological neural networks permit the performance of cognitive 
functions that have been abstracted away from direct sensory encoding. In these cases, the 

behavior emitted may not have any direct mapping to a specific neural architecture. Analysis 
at the structural level may be misleading, because a variety of structures may support the same 
or similar behaviors. 

The linkage between biological and artificial neural networks is not anywhere near direct, 

proceeding more by means of analogy than anything else. Artificial neural network (ANN) 

Systems are even then abstractions away from our current understanding of neuroscience, as 
evidenced by the paucity of work which takes into account some representation of the actions 

of even one or two neurotransmitters. However, the dependence of ANN advances on insights
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from biology suggests to me that a further strong statement may be made by extension of the 

already existing analogy. 

Determining the optimality of a particular artificial neural network should be an exercise 

in multivariate analysis. Too often, performance concerning a narrowly defined problem has 
been accepted as prima facie evidence that some ANN architecture has a specific level of 
optimality. Taking a cue from the field of genetic algorithms (and the theory of natural selection 

from which genetic algorithms (GAs) are derived), I offer the observation that optimality is 

selected in the phenotype; that is, the level of performance of an organism or an ANN is 

inextricably bound to the system of which it is a part. The context in which the evaluation of 

optimality is performed will influence the results of that evaluation greatly. While compart- 

mentalized and specialized tests of ANN performance can offer insights, the construction of 

effective systems may require additional consideration to be given to the assumptions of such 

tests. Many benchmarks and other tests assume a static problem set, while many real-world 

applications offer dynamical problems. 

An ANN that performs "optimally" in a test may perform miserably in a putatively similar 

real-world application. Recognizing the assumptions that underlie evaluations is important for 

issues of optimal system design; recognizing the need for "optimally suboptimal" response in 
adaptive systems applied to dynamic problems is critical to proper placement of priority given 
to optimality of ANNs. 

This concept requires some explication of the biological and genetic algorithm 

background. I next set forth some common concepts, some specific findings, and outline what 

I] see as necessary conclusions that must be drawn from them. Along the way, I treat the terms 

optimality, function, and satisficing to a modicum of analysis. The relation to ANNs remains 

implied by analogy. 
The physical structure of biological neural systems is dependent on both historical and 

contingent factors. The theory of common descent assures us that as far as traits are heritable, 
descendants derive adaptations from the basis of already existing structures and traits. 

Although common descent is accepted in all but a few fringe groups, it is worthwhile to 

reiterate some of the ways in which we can see the effect that common descent has had upon 

populations. All organisms in all kingdoms share most of the genetic code. This statement is 

even stronger than it sounds, because the exceptions are both few in number and incomplete in 
variance. The mapping of genetic codons to amino acids is identical in all organisms examined 

save a few protist species, and also certain mitochondrial lines. Even in those groups, the 
variance only extends to a few different pairings of codon to amino acid. 

Respiratory cycles are highly conserved. The Krebs cycle is found widely, and in aerobic 

organisms, the cytochrome system is a well-studied example of a widespread metabolic pathway. 

Patterns of embryological development separate lineages in animals. Protostome 

development is observed in many invertebrate phyla, whereas deuterostome development occurs 

in a few invertebrate phyla and chordates. 
These various broad attributes link ancestors and descendants in lineages. At points where 

novel adaptations are incorporated into a lineage, these adaptations arise from or are derived from 

already existing structures, processes, or traits.
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At the level of structural organization, there is not an expectation of optimal design in the 
sense that a knowledgeable engineer could design an optimal structure from scratch. The 
optimality that remains to be discovered in biological systems, including neural systems, is the 

kind of optimality which is conditioned on both current context and past history. The theory of 

common descent provides the past history, and issues in ecology provide current context. 

The important part to remember about optimality in biological neural systems is that it 

is bound up with the whole organism. We may ignore the phenotype only at the peril of 

embracing erroneous views of subsystems. The evaluation of components of such a system can 
yield only limited, and sometimes misleading, insights. Nevertheless, problem decomposition 
will remain one of our most useful tools in attacking the complexity of biological systems. The 
resolution of this dilemma is to recognize the limitations of problem decomposition as we employ 

it, and to concurrently employ synthetic approaches to analysis using knowledge gained from 

specific studies to confirm validity or determine areas of inconsistency. The inconsistencies will 

represent regions of nonlinear responses in systems, which will be ripe areas for research and 
characterization. 

By optimality, | intend to convey the meaning as having the properties or attributes which 
contribute to the best possible functioning under a specified set of conditions. Now I should also 

indicate a meaning for function. I here adopt Millikan’s (1993) definition of proper function. 
It is extremely important to recognize that the concept of optimality requires a contextual 

grounding for any specific instantiation. This is exercised in comparing optimality to the possibly 

competing concept of satisficing. 

Proper function, according to Millikan (1993), is any attribute of utility preserved in an 
organism and its descendants by the operation of selection. Biological functions do not exist 
without a history, and the history defines the function. This leads to certain philosophical tag 

ends, such as the conclusion that the original instantiation of an adaptation cannot thus be 

considered as having a proper function, but the advantages of consistency that this definition 

yields outweigh the disadvantages. 

The function of biological neural systems, then, can be deciphered by making comparisons 

between organisms that have neural systems and those that do not, or whose neural systems differ 
in substantial ways. Biological neural systems provide for rapid transmission of sensory or motor 
contro] information through the organism. For some organisms, the mere hardwiring of sensory 

systems to motor systems is the sum total of neural organization. More interesting cases involve 

neural systems that perform processing of sensory input before emitting motor control signals. 

In either case, the primary function of the neural system is to provide the basis for behavior, the 
sum total of activity of the organism. 

The means by which we recognize what an organism is, and what it is not, are by no 

means settled merely by finding an integument, cell wall, or bilipid layer. As Millikan (1993) 

pointed out, there is an inadequacy in trying to make an exact and absolute distinction between 

organism and environment. The organismic system to which Millikan referred includes the 

organism and that part of the environment which is necessary for the normal function of the 

organism. In other words, the organism is not a universe to itself, but must be considered in 

context when issues of behavior are studied. The environment provides the context of resources 
and other organisms in which and on which the organism operates.
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Organisms live, reproduce, and die in a world unconnected to and generally indifferent 

to the meanings of their existence. This process continues apace, with many individual 

organisms accessing the same limited pool of resources, often in the same way. This establishes 
a competition, one without rules, but with numerous constraints. The constraints are imposed 

both from extrinsic influences and from intrinsic programming, the influence of an inherited 
program. Viewing these programs as teleonomic processes enables a clearer insight into how 

organisms approach optimality. Optimality here is seen as having a better approach to the 

unconnected, inchoate, continuous competition we call life. 

Resource utilization has been extensively treated. Many theories in economics explicitly 

cover this topic. Of recurring interest in the literature is Herbert Simon’s concept of satisficing 

(Simon, 1979). As the term finds use elsewhere in this volume, this seems a good opportunity 

to explore Simon’s usage and how the term fits into discussion of optimality and biological 

neural systems. As Simon used the term in his book, Models of Thought (1979), satisficing can 

be seen to incorporate two distinct concepts. For one, satisficing is the concept of a selection 

among projected outcomes, and acting on such a selection which is expected to yield an 

acceptable payoff. On the other hand, satisficing is also used for the concept of an individual 

terminating an activity when some specific need has been met sufficiently well. I use projective 

satisficing to refer to the first concept, and activity satisficing to refer to the second. 
Neither projective satisficing nor activity satisficing is strictly applicable as a description 

of natural selection. Natural selection is an a posteriori process operating strictly on the principle 

of differential reproductive success, and whose effects are best understood at the population level. 

Natural selection is not projective in nature, nor does it incorporate intermediary evaluation, such 

as would be necessary for the application of activity satisficing. 

Ernst Mayr referred to natural selection as an optimization process, but a very special one 

(1989). Mayr gave about ten different reasons why natural selection cannot be expected to give 
perfect adaptation. For this discussion, his listing of the property of adaptability is a key 
element. I would prefer to term this consideration accommodation, as in the optical literature for 

the process of adjustment of the eye to new light levels. My preference stems from the fact that 

adaptation already has the meaning of adjustment to environmental conditions in a population 

over a period of generations. Mayr noted that the range of accommodation that individuals of 

a population possess will pose a bar to further selection in refinement toward an optimal solution. 

However, I wish to explore the notion that this principle of accommodation is, itself, an approach 
to optimality. 

Being able to accommodate, that is, to adapt the individual to the needs of more than one 

specific environment or situational context, provides the basis for escaping some of the other 
constraints that hinder the search of natural selection for optimal solutions. In one sense, the 

accommodation brings the action of natural selection to a halt, yet in another, this accommoda- 

tion may provide the means by which organisms can produce optimal behavior. 

Behavior is, after all, the property of real interest to us in studies of animals, human and 
nonhuman. In cases of parallel evalution, we can see that a variety of "solutions" exist for 
common problems in adaptation. Many ecological niches are not defined by the anatomy of 

organisms, but rather by the behavior of those organisms. Wrasses and gobies can fill the niche 

of "cleaner fish" in reef systems, and history has settled the issue for the Pacific cleaner wrasse
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and the Atlantic neon goby. The niche, in each case, has far more to do with the similar 
behaviors seen in each than with the anatomical details of each species. 

That optimal behavior exists is not at issue. Marian Dawkins reported on preliminary 
findings in bluehead wrasse (Thalassoma spp.) that indicate an optimal behavioral response with 
respect to environmental conditions (1994). In bluehead wrasse, a "Supermale" defends his 
territory from other males and courts females within that territory. Chromatophores in the skin 
of the supermale enable it to behaviorally adjust its coloration, where the range of change goes 
from brilliant blue to bright green. The territorial threat display has bright blue with prominent 
black banding. The courting display is a bright green with dark circles on the pectoral fins. The 
bright blue coloration reflects light at the optimal wavelength for penetrance in seawater, which 
results in the territorial display being visible for the maximum possible distance. The courting 
display coloration is displaced in wavelength from the courting display wavelength in such a 
manner that it is maximally distant without entering a region of increased falloff in penetrance. 
A satisficer would have displaced the courtship wavelength the minimal distance necessary to 
reliably distinguish courtship coloration from territorial coloration. That is not what is seen in 
the bluehead wrasse. 

Even at the level of structural features, adaptation processes seek solutions that provide 
workarounds to historical constraint. An example is found in comparison of vertebrate and 
cephalopod neurons. Vertebrate neurons have myelinated axons: Schwann cells envelop axons 
with insulation, and axonal depolarization jumps from gap (node of Ranvier) to gap in the 
coverage. The speed at which depolarization progresses down the axon is greatly enhanced 
relative to axons that are unmyelinated. Invertebrates, including cephalopods, do not have 
myelinated neurons, but must make do without. Making do, in this case, still involves being able 
to have fast responses to stimuli, both for predator avoidance and for prey capture. Squid are 
raptorial animals, often taking fish as prey, and being challenged by larger fish and marine 
mammals as prey items themselves. The means by which squid get around the limitation on 
speed of propagation in their axons is to have large-diameter axons. The speed of propagation 
increases with the diameter of the axon, so squid manage to behave appropriately even though, 
at a component level, it would seem that a relative disadvantage had been established. 

The behavior of organisms is, in many ways, like the result of the interaction between 
hardware and software in computer systems. That this is the case is not very illuminating or 
Surprising, but it is something that bears repetition in the interest of illustration. Alan Turing 
developed his ideas about stored program computers as a working out of concepts concerning the 
instantiation of the human mind. The action of analogy can be seen to result in productive 
synergy between biological and computational research, starting with Turing and continuing 
through Hebb, Grossberg, Holland, Hopfield, Alkon, Pribram, and others involved at the interface 
between biology and computation. 

Some of the more interesting recent results in learning have come from studies of 
evolutionarily stable strategies (ESS) and genetic algorithms. Psychological studies of 
development provide data that can be explained rather neatly by application of ESS. Naive 
self-centered strategies may be discarded for more sophisticated modes of stable interaction as 
individuals learn about relationships with others. Of even greater import are studies of learning 
In systems with inheritance, as exemplified by genetic algorithms.
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A thought-provoking study of learning and genetic algorithms is found in Parisi, Nolfi, 

and Cecconi (1991). I intend an extended discussion of this paper, and thus begin with quoting 

the abstract: 

We present simulations of evolutionary processes operating on populations of neural 

networks to show how learning and behavior can influence evolution within a strictly 
Darwinian framework. Learning can accelerate the evolutionary process both (1) when 
learning tasks correlate with the fitness criterion, and (2) when random learning tasks are 

used. Furthermore, an ability to learn a task can emerge and be transmitted evolutionarily 

for both correlated and uncorrelated tasks. Finally, behavior that allows the individual to 

self-select the incoming stimuli can influence evolution by becoming one of the factors that 

determine the observed phenotypic fitness on which selective reproduction is based. For 
all the effects demonstrated, we advance a consistent explanation in terms of a multidimen- 
sional weight space for neural networks, a fitness surface for the evolutionary task, and a 
performance surface for the learning task. 

Parisi et al. presented a very interesting series of simulations, and an even more 

interesting set of conclusions. Along the way, they noted the existence of what appears to be 

inheritance of acquired characters. As the authors pointed out, though, a consistent Darwinian 
explanation is available. 

The baseline simulation involves a genetic algorithm operating on a population of 

simulated organisms. The organisms are controlled by feedforward multilayer neural networks. 

The neural networks accept as input the angle and distance measures to the nearest bit of 

simulated food, and also the two outputs from the previous time step. The outputs are interpreted 
as stay/move forward and turn left/turn right. In the initial generation of organisms, each 

organism is outfitted with randomized weights in the neural networks. Each organism interacts 
with a simulated environment alone for 5,000 time steps. Each organism has the possibility of 

encountering 1,000 pieces of food in this lifetime. The genetic algorithm’s evaluation function 

is simply the number of pieces of food encountered, and thus "eaten," by the organism. 

Unsurprisingly, the genetic algorithm evolves populations of organisms that do better at 

the task of finding food. After SO generations, the population food acquisition average is around 

250, up from about 10 for the initial population. No weight changes occur during the organisms’ 

lives; the only changes occur by mutation in copying the weight values of successful organisms 
to succeeding generations. (Parisi et al. were careful to note that speaking of assigning fitness 

values to genotypes is inaccurate, but in the context of the simulations, this simplification will 

suffice.) 

Then Parisi et al. changed a few things. The neural networks were modified to have two 

more output units, which were trained by back-propagation to predict the angle and distance to 

the nearest food item at the next time step. Weights within the neural network change over the 

organisms’ lives, but those changes are not used in copying to further generations; the changes 
due to learning are not made available in reproduction. The populations with the prediction 

learning task do better over the same number of generations as compared to the baseline
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population: after 50 generations, the population average food acquisition is about 400. Because 
prediction of the next sensory input is obviously related to the task of finding food, it is easy to 
explain the difference in performance of the two sets of simulations. If we imagine two 
organisms represented as different points on a fitness surface, the effect of the prediction learning 
task will be to possibly shift the position of each organism on that fitness surface. Even if the 
two organisms start out with the same relative fitness, learning will accentuate differences in the 
regions of the fitness surface that each occupies. An organism already at a local maximum will 
be likely to end up with a lesser fitness than an organism that starts in a region with a higher 
local maximum. The well-correlated task implies that most changes in weight over the organisms 
lifetime will tend to explore local areas of higher fitness on the fitness surface. 

Using the same network structure, another simulation run was performed. This time, 

however, the network outputs were trained to pseudo-random numbers. The result: the average 

food acquisition at 50 generations was about 330. This falls between the baseline simulation, 
where there was no weight change during life, and the prediction learning simulation, which had 
correlated weight change. Parisi et al. explain this by noting that any perturbation of weights will 
tend to differentiate between organisms whose overall fitness starts out as being equal, but which 

occupy regions of the fitness surface with differing "potential." The effect is not as pronounced 
as when learning is correlated. 

Parisi et al. next explored "indirect inheritance of acquired characters." In this case, they 

modified the organism's neural network to have an output, this time trained during life to 
compute the exclusive-or (XOR) of the sensory inputs. The XOR problem is assumed not to be 
correlated with the food acquisition task. Because the tasks are not correlated, and the fitness 

evaluation only looks at food acquisition, Parisi et al. expected that no improvement in ability 

to learn the XOR task would be seen over time. However, the results showed that organisms of 

later generations did have an improved capacity for learning the XOR task. How might this be? 

Parisi et al. forwarded the explanation that the performance surface for the XOR and the fitness 
surface for the food acquisition task will have regions that vary in correlation of slope. Those 
organisms which have better correlation of the two slopes will be more likely to end with a high 
fitness value than those organisms with a poor correlation of performance and fitness slopes. 

This explains the apparent inheritance of an acquired character with a completely Darwinian 
mechanism. 

Again, though, it should be stressed that organisms do not pass on the weights as adjusted 

by lifetime learning. The performance of new organisms has much the same starting point: 
descendant organisms do not acquire the ability to perform the learning task, they acquire the 
ability to learn the learning task more quickly. 

Stepping away from simple description of Parisi et al.°s methods and conclusions, a few 

general comments on the linkage to biology are in order. With the use of one neural network 

as the basis for learning and motor action for each organism, it is easy to see that changes in 

weights due to learning at some output units will necessarily change the feedforward response 
of the other output units, due to change in the node output values for hidden layer nodes. In 
actual biological organisms, this interaction between systems and consequent perturbation due 
to learning would be much more difficult:to establish in detail. However, the mere fact of some 
learning task having a perturbing influence on fitness-defining tasks will set the basis for the
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mode of evolutionary change discussed by Parisi et al., and their mechanism of evolutionary 

acquisition of learning capability would then be ready to go to work. 

As mentioned before, optimality in biological systems is not a matter seen from a global, 
top-down perspective. As biological neural systems are the basis for behavior, it makes sense 

to evaluate the behavior of organisms in a theoretical framework that makes specific predictions 

about that behavior, based on considerations of optimal function. Optimal foraging theory (OFT) 

is one such theoretical framework. OFT asserts that organisms will behave in a predictable 

manner: they will acquire resources at maximal rates commensurate with circumstances. There 

exists quite a range of opinion over what is or is not part of OFT, but this catches the major 
thrust of usage in studies invoking OFT. 

OFT has its most notable success as a description of the behavior of organisms where 
energy constraints are tight; organisms whose energy budget requires high levels of input and 
whose metabolism, correspondingly, is high, tend to match the predictions made under OFT most 
closely. 

Hummingbirds and bees are favorite subjects in OFT studies, followed closely by various 

ungulate herbivores and seed and nut gathering birds. In hummingbirds and bees, issues in 

information theory come to the fore. For hummingbirds, the information of interest involves how 
hummingbirds might decide to pattern visits to food sources based on knowledge of food source 

quality. In bees, the issue of information transfer has been the single largest source of 
controversy within bee foraging studies. 

A study of hummingbird foraging had two food sources of differing quality separated by 

a substantial distance (substantial by hummingbird standards, at any rate). The frequency of 
visitation to the two feeding stations was characteristic of rate maximizers utilizing the marginal 

value theorem — except in the case where one feeding station had very poor quality food 
compared to the other. The prediction, according to marginal value theory, would be that a rate 

maximizer would never revisit the poor quality feeding station. The hummingbirds, however, 

continued to visit the feeding station at a very low frequency. The resolution, of course, is to 

step back and reconsider the system. Hummingbirds feed on nectar from flowers, which may 

be found on shrubs and trees. The quality of food found in association with a particular shrub 
or tree will depend on the number and condition of flowers on that shrub or tree. This value will 

tend to fluctuate, such that a shrub might go from nonproductive status to highly productive 

status in a short period of time, and this value may fluctuate in either direction over time. 
Hummingbirds have be shown to be capable of some very interesting cognitive processing, but 

no one has suggested that precognition is among those capabilities. The hummingbird must 

engage in scouting behavior in order to learn the current status of food sources, and this includes 

not totally ignoring potential food sources just because those sources were, at some time past, 

not of good quality. Information about the environment must be collected by real-world 
organisms, which is unfortunately not the case for the imaginary theoretical individuals which 
seem to consistently be the jumping-off point for development of various theories in economics 

and biology. 

Optimal biological neural networks will be identified not by their optimal structure, but 

rather by their optimal behavior. Differences in structure will not necessarily lead to differences
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in behavior. Because behavior is a whole-organism ensemble, it is important to make evaluations 
in light of overall function and fitness, and not merely on specific features in isolation. 

Artificial neural networks currently have a simple relationship between structure and 
function. As ideas derived directly or indirectly from biological study are incorporated, we can 

be assured that this simplicity will also disappear. The relevant information that will be available 

for evaluation, and that ultimately matters most, is the behavior of the ANN system. This 

behavior does not exist in isolation from the problem context, and should not be evaluated 
without reference to that context. 

There is a common perception of a scale of function leading from poor to adequate to 

better and best. The codification of this scale leads us to consideration of the concept of 

optimality in general, and for us, the intersection of optimality and function in biological and 
artificial neural networks. The issue of whether we can expect to find optimality in biological 

neural networks or to achieve optimality in artificial neural networks should have a serious effect 

on research carried out in each field. If we are justified in assuming that optimality is a possible 

attribute of biological neural networks, then we have the basis of an existence proof for extending 
that expectation to the artificial neural systems whose design and operation are premised on 

biological neural networks. If, on the other hand, we cannot justify the expectation of optimality 

in biological neural networks, then our work in striving toward proving or designing optimal 

artificial neural networks becomes just that much more difficult. 

In order to explore this field properly, a good working set of definitions is critical. As 

the excursion that I plan involves stops at optimality, optimization, optimal foraging theory, 
satisficing, and other scenic points of interest, I here attempt to give a consistent set of meanings 
so that the reader may construct a consistent road map. To overextend the metaphor, there are 

a number of chuckholes and dips posing obstacles, in that the terminology is often given specific 

usage without the usage meant being unambiguously and forthrightly stated. 

1.1. Natural Selection, Optimality, and Satisficing 

As the primary proposed mechanism of adaptive evolutionary change, natural selection 
has undergone rigorous scrutiny and testing since its formal proposal under that name in 1858. 

In between 1900 and 1930, natural selection was widely regarded as being contradicted by the 

newly rediscovered principles of Mendelian genetics, so much so that textbooks and articles 

referred to Darwin as establishing well the fact of evolution, but having forwarded an incorrect 

theory of its mechanism (natural selection). The Neo-Darwinian theory of natural selection 
formulated by researchers including Dobzhansky, Fisher, Wright, and Mayr demonstrated that the 
Mendelist objections to natural selection were misplaced. 

The question of the meaning of natural selection for natural adaptation, however, remains 
open. Certainly, some researchers go too far in asserting an adaptive component for all features 

of an organism. On the other hand, claiming that natural selection plays no role in the adaptation 

of features in organisms seems equally naive. Somewhere in between the two extremes lies the 

middle ground of biological reality. This middle ground denies the naysayers of both camps, 
who cannot tolerate a pluralistic, complex reality.
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The question of whether biological neural networks are or can be optimal probably cannot 
be answered with either a definitive yes or no at this time. Our understanding of even the normal 

functioning of biological neurophysiology is woefully inadequate to the task of analysis that the 
question poses. Even that small amount of data refers to an even comparatively smaller set of 
populations of research animals, when measured against total biodiversity. Still, we can consider 
other questions that are inclusive of our question of interest, where a definitive "no" answer 
would short-circuit our search for an answer. The most inclusive question would be, can 

optimality arise through evolutionary change? Assuming that the answer is not "no," we may 

then consider further questions. The answer to the question, can optimality arise through 

evolutionary change, is most emphatically "yes." Various results demonstrate that various aspects 

of sensory mechanisms and social behaviors occur with optimal specifications or at optimal rates. 
Given that current neurophysiological knowledge does not give us the basis for direct 

analysis of optimal function, what approach can be taken to give an indication of whether 
optimality in fact exists in biological neural networks? 

First, a recognition of what comprises a proper evaluation function is needed. Evaluation 

functions which ignore the basic facts of evolutionary biology may be safely ignored. So what, 

precisely, forms the real, canonical evaluation function for biological organisms? That evaluation 
function is simply differential reproductive success. Phenotypic characters of an organism which 
do not either give a reproductive success advantage, or a reproductive success disadvantage, are 
not preferentially retained or eliminated from the population. This evaluation function can only 

operate on the composite phenotype of the organism, which is the complex interaction of 

genotype, environment, and contingent history. Evaluation functions which remove the biological 

neural network from its context in determining the phenotype of an organism are inherently 

susceptible to bias, and should either be rejected out of hand, or should have empirical support 

showing that they are unbiased estimators of the actual biological evaluation function. 
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Mark DeYong and Thomas Eskridge’s chapter, Properties of Optimality in Neural 
Networks, ts one of two chapters in this book (the other being Elsberry’s) that focuses on the 
variety of ways in which networks could be interpreted as being optimal. DeYong and Eskridge’s 
focus ts on the design of artificial neural networks (ANNs), not networks in ling animals, 

although they include a discussion of how faithful one should be to biological detail in ANN 

design. 

DeYong and Eskridge make a particularly cogent distinction between three levels of 

potential optimality in ANNs: the performance level, the attribute level, and the design level. 

These different levels have some degree of analogy to the biological "triunity" of habits, reason, 
and affect as discussed in Leven's chapter in this book. Also, they are related to the distinction 

drawn in both Levine's and Werbos’ chapters between optimality of detail versus optimality of 

overall function. There ts also an echo of Werbos’ chapter in their statement that optimality at 

the overall design level need not correspond to a maximum or minimum of a mathematical utility 

function. 

This discussion ts a first step toward a taxonomy of different "optimalities" for ANNs 

(and perhaps, by analogy, for biological neural networks as well). DeYong and Eskridge go on 

to deal with the potential significance of other common tissues and distinctions, such as linear 

versus nonlinear; digital versus analog; hardware versus software implementations, and more. 

They acknowledge that the field needs some general organizing principles about what should be 
optimized, and how that ts to be done, but state we are still in the "fourteenth century" on our 

quest for such principles. Articles such as this one are valuable for helping us see where the field 
stands.
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ABSTRACT 

Ongoing research into the nature of optimality in artificial neural networks (ANNs) is 
presented. We discuss the relationship of optimality criteria and critical design decisions for the 
development of ANNs, with the final goal of producing a process model for the optimal design 
of artificial neurons and ANNs. 

1. OPTIMALITY AND OPTIMALITY CRITERIA 

Optimality arguments have often been used to describe and predict empirical regularities 
in many scientific domains (Schoemaker, 1991; Levine, Chapter 1). Optimality arguments de- 

scribe or explain these regularities as the maximization or minimization of some objective func- 

tion. The exact form of this optimality function is the subject of much of the discussion in the 
literature and in this volume. Particularly in the study of artificial neural networks (ANNs), the 
discussion of optimality is often obscured by the differing ways in which explanations of opti- 
mality can be used (e.g., normative or predictive), the different forms of the optimality explana- 
tion (e.g., teleological, causal, or process), and by the different criteria on which networks can 
be optimized. 

Optimality arguments are used for both normative and predictive reasons. The assumption 
of rationality that underlies microeconomic theory is an example of a normative optimality argu- 
ment that allows economics to be described so that the choices of rational agents can be ex- 
plained. The rationality assumption basically states that the best option in a given situation 
should be chosen. However, the assumption is not predictive of the economic behavior of 
people, because they do not always act rationally. Thus, the predictive capabilities of the norma- 

tive model are more limited than a process model explanation of observed behavior. A process 
model explanation is a model that is defined in terms of the observed entities and behaviors. 

Predictions made from this model can be directly applied to the entities in question, because the 

information used in developing the prediction is explicitly observed in the entity or its behavior. 

The form of optimality arguments is also varied in the study of optimality in ANNs. 
Teleological explanations of optimality are generally applied when the observed phenomena are 
so complex that a causal or process model cannot be obtained. Teleological explanations 
anthropomorphize the entities under study by projecting “wants” and “intentions” on them. Thus, 
light "wants" to take the shortest amount of time to get from a point A above water to a point 
B under water. However, teleological explanations fail to provide reliable predictive power in 
the same way that the (teleological) rationality assumption does. A causal model attempts to 
rectify this by providing a causal chain of events starting from a set of plausible or possible 
initial conditions to the observed event. Although this form of optimality argument allows 
predictions to be made with more confidence than a teleological argument, it is still based on 
subjective constructions and expectations. A process model takes the causal argument one step 
further by working from "first principles" so that the subjective matter is confined to (at most) 
the definitions of terms. This is the most powerful form of optimality argument, because it all 
but eliminates the biases that adversely affect the other two forms.
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Teleological and causal optimality arguments are useful in a number of fields, but in the 
study of ANNs, more basic process model optimality arguments can be applied. With ANNs, 
it is possible for the investigator to “open up” the network, and (to some extent) inspect the func- 
tionality of each element of the system. Thus, we would like to apply a “design science” ap- 
proach to the study of optimality in ANNs; that is, we explicitly attempt to design optimal sys- 
tems (Simon, 1981). By the term optimal systems we do not mean to suggest that the design ts 
perfect with respect to some specified goal and no better solution could possibly be found, but 
that it is preferred over alternatives that attempt to optimize the same goal. This is similar to the 
use of optimality in biological systems, where inclusive fitness is the optimality criteria that is 
maximized. Helweg and Roitblat (1991) stated that: 

Natural selection is perforce an optimizing function in that it selects from a set of alter- 
natives those that are more successful at reproducing their genetic copies. Natural selection 
ranks genotypes in order of their fitness, and selects those that are most fit. An individual 
that failed to maximize its fitness would quickly (in evolutionary time) be replaced by an 
individual that was more successful at optimizing its fitness. 

This is, of course, a teleological explanation of optimality: natural selection does not actually 
"rank" and "select." Although this explanation does provide a useful means of reasoning about 
evolution, it is, like most other teleological explanations, primarily a postdictive explanation. 
This is to say that teleological explanations do not generally have the power to enable predictions 
to be made, but instead provide a satisficing explanation. What is needed is a process 
explanation: an explanation embodied by a model that can be used to predict future behavior with 
respect to optimality criteria. 

Optimality arguments in ANN design can take on normative or predictive uses, and fall 
into any of the three forms mentioned above. With respect to optimizing objective functions, 
many researchers have focused on optimizing a single criterion. Although we do believe that 
some criteria are more important than others, we agree with Elsberry (Chapter 5) that optimality 
in ANNs should be examined with respect to a number of optimization criteria. We have created 
a hierarchy of criteria divided into levels that illustrates our view of the importance and 
relationships between optimality criteria for ANNs (Fig. 6.1). This is by no means a complete 
taxonomy of all criteria, but is meant to serve as a basis for discussion of optimality issues and 
as a framework for the study and development of a process model of optimal ANN design. We 
briefly discuss the optimality issues at levels one, two, and four before discussing in more detail 
the design issues at level three. 

1.1. Level One Optimality 

The primary issue in determining optimality at the first level is how well the network per- 
forms at the task it is designed to do. Performance can be measured by the accuracy in classify- 
ing the training set, accuracy in classifying the test set, and accuracy in generalization to new ex- 
amples.
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Fig. 6.1. Levels of optimality. The levels of optimality are shown in a pyramid, with the top (fourth) level 

being the decision to use a neural network, the third level being optimality criteria used in the design of the 

neuron clement and network structure, the second level being optimal attributes of the network, and the 

bottom (first) level being optimal performance issues. 

Optimality criteria such as accuracy on the training set presuppose a particular type of 

neural network, namely, the common paradigm of supplying a uniform-architecture, feedforward, 
logistic activation function network with a set of examples on which to train (Rumelhart, 

McClelland, & the PDP Research Group, 1986). For these networks, training typically consists 

of supplying a set of input/output examples that, taken together, provide a representative 

description of the data space. The results of the network on the example are compared with the 

desired output, and any error is used to modify the weights in the network to reduce the error 

the next time the training example is presented. Training consists of minimizing the difference 
between the network output and the desired output. Optimality under the criterion of accuracy 
on the training set judges competing networks on their performance in producing the desired 
output for each training instance. The measure of performance can be cumulative error, average 

error, or the smallest maximum error for any instance in the training set. 

Similarly, the criterion of best performance on a test set would judge competing networks 

on their ability to respond correctly to instances are not in the training set. The training set is 

typically chosen as a random subset of the all instances available for training, and thus is 
assumed to representative of the data in the problem space. Because of this, the test set may be 

significantly different from the data characteristics of the network in actual operation. Thus, the 

criterion of best generalization performance is an optimality criteria that is sometimes used. For 

example, a neural network for stock prediction can be developed using training and test sets 

meant to ensure that the network has adequate ability to respond to the wide variety of market
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conditions that may arise. But when put into actual practice, the conditions of the market may 
not exhibit the behaviors on which the network was trained, or may demonstrate several of them 
at once. In this situation and others like it where the task environment contains some uncertainty, 
it is important to judge network optimality on its ability to consistently perform well. In cases 

such as these, the performance metric could be based on either the post-facto decisions humans 

make on the data presented to the network (i.e., with the same data, a human would have made 
a similar decision), or on the extent to which the decision made was on the basis of “graceful 
degradation” (i.e., an extrapolation of the solutions for known training instances.) 

1.2. Level Two Optimality 

There are a number of properties that are desirable for neural networks once adequate per- 

formance (level one optimality) is obtained. In general, the smaller the network is, the more op- 

timal it is. The size of a network can be measured in the number of layers, nodes, or intercon- 

nections it has. These criteria for optimality can be significantly biased by the type of neuron 
element and training procedures used in the development of the network. For example, Cascade 

Correlation methodology generates networks with a large number of layers, but with few nodes 
(FahIman & Lebiere, 1990). 

This training of neural networks suggests a number of possible criteria that can be the 

focus of an optimization process, aimed at reducing the amount of time needed to train the 

network: the number of times the training set is presented to the network (i.e., the number of 

epochs), the number of mathematical operations that must be performed, and the number of 
training instances required. Any principled method of reducing the training time of a network 

will find wide acceptance within the neural network community for the simple reason that the 

longer networks take to train, the fewer experiments can be run, and the slower results will be 

to come. This point is underscored by the current research on catastrophic forgetting, where two 

Or more training instances force a competition for the weights on a number of interconnects, 
changing the network after one training instance to respond correctly to it, but forcing it to then 

respond incorrectly to a training instance that was previously responded to correctly (French, 
1991; French & Jones, 1991; Hetherington & Seidenberg, 1989). This cycle drastically increases 

the training time of the network, sometimes making training impossible. 

The other optimality criteria mentioned reflect the development of ways to skirt the 

number of training instances problem. When the investigation is not directly studying the number 

of training epochs, it is feasible to meet the desired goal of minimizing training time by reducing 
the number of operations that must be performed, or reducing the number of training instances 
required to achieve acceptable performance during test and actual use. If the number of 

mathematical operations performed during the training of the network on one instance can be 

minimized, then the shortened processing time will allow the training instances to be presented 

many more times. This can also be achieved by using a simplified neuron model, reducing the 

number of nodes in the network, or by reducing the number of interconnections between nodes 
(cf. the randomized interconnection schemes of Minai & Levy, 1993.) 

Similarly, if there is a deep understanding of the problem space in which the network will 
work, training examples can be selected that convey the maximal amount of information.
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Obviously, this is a tortuous method of reducing training time, because if the problem space was 

understood so deeply, a neural network solution would likely not be necessary. 

1.3. Level Four Optimality 

The criterion at level four basically encompasses the decision to attempt a solution to the 

problem using neural networks instead of a conventional software, mechanical, or manual ap- 
proach. Because there have been numerous articles written on the benefits of neural networks 

over conventional approaches (Eskridge & Barnden, 1992; Rumelhart et al., 1986; Smolensky, 

1988), we mention this only for completeness. 

2. ISSUES OF OPTIMALITY AT LEVEL THREE 

In designing optimal ANNs, we wish to know general principles by which optimal ANNs 

for other systems can be generated (i.e., a process model of optimal ANN design). Unfortunate- 

ly, the optimality criteria at levels one and two permit only postdictive explanations of optimality. 

One ANN is better than another because it has better performance with respect to the level one 
and two criteria. Although the optimality criteria at levels one and two give a means of 
comparing two nets and selecting the more optimal, they tell nothing about the process factors 

that make one net more optimal than the other. It is the issues that are addressed at level three 

that begin to provide a process explanation for optimal ANN design. This is also the level where 

optimization for behavioral characteristics that are not precisely defined by the minimization of 

some mathematical function is performed. In particular, the development of ANNs for the 

control of the object recognition and reasoning tasks of autonomous systems defies the precise 

specification of input/output characteristics. The issues investigated at optimality level three are 
also the types of issues that will allow a process model for optimal behavior in these unstructured 

task environments (Eskridge & Fields, 1989; Fields, Eskridge, Hartley, Coombs, 1989; Fields & 

Dietrich, 1987, 1988.) 

© Biological versus nonbiological basis of neuron model 
© Model dynamics 

- Time-dependent versus time-Independent 
- Continuous versus discrete 

- Linear versus nonlinear 
© Model implementation 

- Hardware versus software 

- Analog versus digital 

© Task specific versus generally configurable system architecture 

Fig. 6.2. Design tradcotts basic to optimal neural network design. The competing design decisions form the 

basis for developing a process model of optimal neural network design.
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The optimality issues that we feel are important as a basis for developing a process model 
for the design of optimal ANNs are shown in Fig. 6.2. These issues are directed principally at 
the neuron model used by the ANN, and have been motivating factors behind our development 
of the Hybrid Temporal Processing Element (HTPE, patent pending) (DeYong, 1992; DeYong, 
Eskridge, & Fields, 1992; DeYong & Fields, 1992; DeYong, Findley, & Fields, 1992). By 
focusing on the neuron model, the issues of network topological structure can be treated with re- 
spect to the problem being solved rather than as a structure into which problems must be forced. 

2.1. Biological Versus Nonbiological Basis of Neuron Model 

The development of biologically realistic artificial neuron models has been of interest for 
the last four decades and has diverged in several directions ranging from the purely mathematical 
parallel conductance model introduced in Hodgkin and Huxley (1952), to the symbolic network 
simulator GENESIS of Wilson and Bower (1989). These models, however, concentrate solely 
on biological realism and tend to lose sight of their hardware implementation and application to 
real-world engineering problems. 

Biological realism in neural modeling is motivated both by the goal of understanding the 
behavior of biological nervous systems and by the realization that biological neurons are 
complex, versatile signal processing devices that are evidently well suited to a very large variety 
of computational tasks (Hopfield, 1982; Kohonen, 1988; Lippmann, 1987). Neurons are hybrid 
analog/digital devices, in which inputs are processed by the time-dependent convolution of 
relatively slowly varying postsynaptic potentials (PSPs), and outputs are transmitted over long 
distances by fast, relatively loss-free action potentials (APs). This integration of analog input 
processing with digital, pulse-encoded communication allows neurons to make use of time and 
phase differences between signals arriving in real time to represent both temporal and, for 
example, in the visual system, spatial information (DeYoe & Van Essen, 1988). It also allows 
neurons to exchange information in times much smaller than their internal processing times, 
thereby breaking the communications bottleneck that hobbles many massively parallel computers. 
The combination of high-speed, digitized communication and versatile analog computation makes 
neurons ideal for many time-dependent signal processing applications. 

Although modeling the details of biochemistry down to the ion channels is in all likeli- 
hood unnecessary, it is expected that a neuron that does not lump the influence of the axon and 
collaterals, synapse, and dendrite into a single weight on a single time scale will better reproduce 
the desirable computational characteristics of biological neurons. This not only aids in the study 
of biological neural networks, but also provides a means for investigating computational 
mechanisms clearly not available in the standard neuron model. 

Other approaches to the design of neurons trade biological realism for simplicity and tra- 
ditional computational power. These systems are generally time dependent and digitally based, 
and therefore negate several beneticial aspects of biological neurons. What these models gain 
in idealized efficiency (i.e., computed maximum connection updates per second), they lose in 
actual applicability to real-world science and engineering problems through the inability to 
distinguish temporal characteristics of the input. The utility of a non-biologically based neuron
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can be lessened further, depending on the form of the activation function used (e.g., logistic, step 

function, or linear). 

There are a number of problems that can be solved quite well by a network of nonbiolog- 
ical neuron processing elements. However, with respect to the optimality of this solution, in 

many of these cases, a biologically based implementation can perform better. Because the hybrid 

analog/digital nature of the biologically based approach can respond to signals encoding 

information in frequency and phase as well as by accumulating pulses to duplicate the behavior 

of nonbiological neuron models, it will be applicable in more problem situations. Because 

biologically based neuron model behaviors subsume the nonbiologically-based behaviors, 
choosing them for the neuron design can only allow more optimal ANN solutions to be 
generated. 

2.2. Model Dynamics 

2.2.1. Time Dependent Versus Tume Independent. Many artificial neural networks assume 
that each input vector is independent of other inputs, and the job of the neural network is to 

extract patterns within the input vector that are sufficient to characterize it. For problems of this 
type, which amount to spatial pattern recognition, a network that assumes time independence will 
provide acceptable performance. However, there is a large class of problems where the input 
vectors cannot be assumed to be independent and the network must process the vector with 

respect to its temporal characteristics and context. Network architectures that assume time 

independence are typically unwieldy when applied to a temporal problem, and require additional 

Inputs, neuron states, and/or feedback structures. As mentioned above, networks that assume 

time dependence have the advantage of being able to handle both time-dependent and time- 
independent data. 

The ability to handle temporal as well as spatial information is particularly important 
when optimal behavior means survival within a task environment. Miall (1989) stated that "... 

the current forms of neural networks, while suitable for some computational tasks, have an 

impoverished temporal repertoire and so are unsuited to many time dependent operations faced 

by animals." Examples of such time-dependent operations include real-time obstacle avoidance, 

object tracking, feature and object recognition in the presence of ambiguity and uncertainty, and 
contextualized problem solving. These operations are critically important to the development of 

autonomous vehicles for use in the private, public, and defense market sectors. 

In the types of networks Miall (1989) referred to, the intrinsic time dependence of the 

postsynaptic potentials generated by synaptic activity is replaced by the summation of weighted 

input levels, and the streams of action potentials are replaced by the output of the model neuron. 
All computation is assumed to occur within a short increment: 

y(t+t) = s()- a ,x,(t)) 

where y is the output, x, are the inputs, a, are the input weights, and t is the time increment.
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This model has two main shortcomings. First, although the signals are time dependent, 
the processing is not, limiting its applicability, and second, it provides no insight into 
computation in the biological network at the scale of the individual cell. This model can process 
time-varying signals, but it cannot be directly applied to the class of distributed decision making 
(DDM) problems involving the temporal relationships between processing elements (e.g., 
temporal winner take all (temporal WTA) problems, as in Barnden, Srinivas, & Dharmavaratha, 
1990). It is now reasonably clear that such relationships are routinely used to solve real-time 
signal processing problems, such as visual object identification and tracking (e.g., DeYoe & Van 
Essen, 1988). 

2.2.2, Continuous/Asynchronous Versus Discrete/Synchronous. Many problems amenable 
to solution by ANNs require that the temporal aspects of the problem be taken into account. To 
accomplish temporal dependency, the ANN must be continuous and asynchronous. Both of these 
conditions are required because if a system is discrete or synchronous, errors will be introduced 
into the system by missing signals in the digitization process or by shifting signals in both the 
digitization and synchronizing processes. Figure 6.3(a) illustrates the information losses caused 
by digitizing a pulse stream representing a continuous input signal and by enforcing synchronicity 
on the neuron elements. At the first input spike, a low-amplitude, long-duration PSP begins in 
the continuous/asynchronous (CA) case, which is only registrable at time T, in the dis- 
crete/synchronous (DS) case. When the second spike arrives, the amount of current that it adds 
to the PSP in the CA case pushes it over the threshold V", causing an axon hillock to fire at time 
T,. Voltages V, and V, show two additional possibilities for the PSPs after the second spike. 
With voltage V,, the current level at the time of the next digitization will be lower than the 
threshold, and therefore the digitizing system will have missed the axon hillock firing altogether. 
With voltage V,, the current level remains at a high enough level so that the digitization will 
recognize the current as being enabled. It could then command the axon hillock to fire at time 
T,. However, important temporal properties of the input signals have been changed by delaying 
the order to fire by 7,. This delay could be as much as the digitizing window T.. 

The first input AP in Fig. 6.3(b) has a leading edge at time 7, and a falling edge at time 
T,. The rise time of the low-amplitude, long-duration PSP V, contained in the time interval TD, 
could be considered a transient, with time TD, being an intermediate steady state. When the 
second input AP arrives it generates a PSP that adds with the previous PSP. If the resulting 
combined PSP follows the solid line, the period from 7, until the PSP completely dissipates is 
considered a transient period with rest as the steady-state value. It is possible to view the entire 
period from 7, until the dissipation of the PSP as transient, if TD, is viewed as transient. If the 
PSP follows V,, the period TD, is a transient, with V, as the steady state. If the PSP follows V, 
the period 7D, is a transient, with V, as the steady-state value. In any of these cases, the time 
delay between AP1 and AP2, as well as the transient PSP amplitude, is assumed to contain no 
information. 

As already mentioned, information can be carried in the transient signals based on the 
delay between the input pulses. Although these pulses can cause significant changes to the PSP, 
they can be considered to be in the transient region of a conventional analog system and will be 
ignored by such a system. In conventional analog systems, where all computation is carried out
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by level-to-level transformations, no information about the temporal characteristics of the input 

signals can be used to distinguish the input. 
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Fig. 6.3. Continuous, asynchronous versus discrete, synchronous. (a) Time delay or signal loss that can result 

from digitizing continuous signals. (b) Related difficullics using a conventional analog approach, which 

discretizes the signals into transicnt and steady-state behaviors. 

2.2.3. Linear Versus Nonlinear. It has been shown that neuron models with nonlinear 

input/output transform components are able to solve nonperiodic dynamical systems, whereas 

those with strictly linear elements are able to solve only periodic dynamical systems (Pineda, 

1988; Rumelhart et al., 1986). In conventional, nonbiologically inspired neuron models, the 

nonlinearity is typically exemplified by the logistic function (Rumelhart et al., 1986). This 
function transforms the real-valued sum of inputs into a real-valued output. In terms of a 

biologically-based neuron model, this property is realized in a nonlinear transformation from 
input APs to PSPs. It is important to note that because the nonlinearity applies to the pulse 

streams as they arrive at a neuron, this nonlinearity transforms the frequency and phase domains 

of the input, as well as the (pulse stream equivalent of) input strength. 

The choice of linear versus nonlinear input/output transformation functions is another case 
where one option subsumes the other: A network that is capable of implementing nonlinear in- 
put/output transformations is also, by definition, able to handle linear transformations. If the 

optimality task is survival in a task environment, then the extra options afforded by the choice 

of nonlinear transformation may be critical to the effectiveness of an autonomous system.
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2.3.1. Hardware Versus Software. The primary advantage of a hardware solution to a 

software solution is the speed of solution. Hardware implementations typically provide at least 

several orders of magnitude improvement in the speed of solution over software implementations. 
Depending on the design choices made in the consideration of the preceding optimality issues 
discussed, the implementation of the neuron element in hardware may be the only feasible 
solution. In particular, hardware support is necessary to process continuous/asynchronous pulse 

streams. A software simulation of this process will lose the critical temporal information 

contained in the pulse stream simply because it is being executed on a discrete, synchronous 

processing unit. As a practical matter, the presence of feedback and multiple inputs can make 

a software simulation of pulse stream neural elements unusably slow. 
2.3.2. Analog Versus Digital. Given that the design choices may force a hardware 

implementation of the neuron model, the next choice is the implementation technique. This 
choice will play a large role in determining the efficiency of the resulting system. There are 

three principal implementation methodologies used in VLSI neural networks: conventional analog, 

digital, and a hybrid of analog and digital. Analog devices have an advantage over digital 

devices of generally affording faster processing at a lower hardware overhead. Analog signals 

also naturally convey temporal information in the input. However, digital devices provide greater 
noise immunity and a building-block approach to system design. The hybrid approaches 
generally take a form in which the internal computation of the neuron is implemented in analog, 

and the extracellular communication is performed digitally. This approach is based explicitly on 

the electrophysiology of spiking neurons, and gives the best of both worlds: the speed and low 

hardware overhead of analog, and the noise immunity and building-block nature of digital compo- 

nents. 
2.3.3. Conventional Analog. Conventional analog systems are systems in which the range 

of permissible amplitudes of input and output signals is continuous. Conventional analog systems 

follow an axiomatic framework that asserts, among other things, that the transient is linear and 

can be discounted as containing no information. However, transient behavior can be used in some 

instances to characterize the steady state. For example, in a conventional analog implementation 

of multiplication, the transient can be used to characterize how long the system will take to settle 

to steady state, or if it will settle. However, the transient does not contain any information 

relevant to the solution of the multiplication problem. Transients are used to characterize the 
physical behavior of the analog system and are not used in the functional behavior of the system. 

This neglect of the transient can have a detrimental effect on the processing power of the analog 

system. 
Analog circuits are commonly used because of their speed and small implementation size. 

Analog waveforms also provide a natural means for modeling biological signals such as PSPs. 
Analog circuits have a fairly constant power dissipation due to the fixed current biases required 
to keep the devices in the proper operation mode. This is an advantage over digital circuits 

which have power surges due to circuit switching. 

2.3.4. Conventional Digital. There has been interest in developing digital neural network 

systems and processing elements due to the availability of development tools for digital circuits 

and the expertise to use them. Digital neural processing elements also have the advantage of 

conforming to automated testing procedures, which analog systems lack. Because of the
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difficulty in implementing the inherently analog aspects of biological neurons, many digital neural 

processing elements implement instead the idealized mathematical expression of the multipli- 

cation of synapse weight by the activation value produced in the axon hillock. These circuits do 

not have particular circuitry for the standard components, but rather implement a simple form of 
microprocessor, complete with arithmetic logic units (ALUs) and on-board random access 
memory (RAM). There are several networks that conform to the above description, such as in 
Melton, Phan, Reeves, and Van den Bout (1992), Hammerstrom, (1990), and reviewed in 
DeYong (1992). These implementations all have the same problems, namely that the range of 

behaviors of digital models is limited with respect to biologically inspired neurons, temporal 
aspects of the input signals could be missed or shifted, and numeric information is stored with 
limited resolution, which may prevent adequate solutions from being found. 

2.3.5. Hybrid Analog/Digital. Hybrid Analog/Digital systems are proposed to circumvent 
the problems associated with either analog- or digital-only implementations of VLSI neural 
networks. The idea is to compensate for the weaknesses of one technology with the strengths 
of the other. For example, communication with analog signals has the disadvantage of being 
susceptible to noise. This can be overcome by using digital communication techniques. 

An example of a system that uses this technique can be found in Waller, Bisset, and 
Daniell (1991). The synapse weights are stored digitally, then are converted via a digital-to- 

analog converter to an analog value. This is then passed through a synapse, which converts the 
analog value into a number of pulses. These pulses are then counted by digital circuitry and 
produced as output. Although this is clearly a design motivated by engineering considerations, 
it does illustrate the types of integration that can be made using a hybrid approach. 

Other types of hybrid systems generally attempt to perform internal computations in 

analog and external communication digitally. However, in the examples given above, which are 

prototypical of the field, this amounts to implementing digital circuits in analog. As such, these 

methods will have many of the same problems as conventional analog and digital circuits. 

In terms of developing a process model of designing optimal ANNs, the design choice 

of implementation method is not completely clear. The digital implementation strategy cannot 
be considered as an optimal design choice, because it would preclude the use of other optimality 
issue options presented earlier. The conventional analog implementation strategy (with the al- 

lowance for some unconventional operating procedures such as not always settling into steady 

state) can be made to encompass both the digital and hybrid implementation techniques. So in 

a Strict sense, the conventional analog implementation method would lead to the greatest amount 
of design flexibility for the development of new ANNs. However, as a practical matter, the 

hybrid approach combines the strengths of the analog and digital approaches, using the strengths 
of one approach to all but eliminate the weaknesses of the other. And because the hybrid 

approach can opt to use only analog implementation techniques, fabrication under hybrid 

construction rules can produce any system producible by the analog only method. It is only 

when digital design elements are introduced that the hybrid method becomes more specific than 

the analog. But, with careful consideration of how the detailed implementation plan for an ANN 
will be carried out (specifically, banning the use of digital techniques where it would interfere 
with other design choices), the hybrid implementation methodology can provide at least as 
optimal a solution as could be constructed using an analog only approach.
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2.4. System Architecture 

2.4.1. Task-Specific Versus Generally-Configurable. General-purpose architectures in 

which identical neurons are fully interconnected make design negligible; the network merely 

needs to be adapted via weight modifications to a new problem. However, the performance of 

a network built by this approach can suffer due to inefficiencies caused by unneeded and/or 
redundant nodes. Similarly, adaptation and convergence may be slow, unpredictable, and never 
fully complete unless the range of variation of both input and output is well understood. 
Redundancy in neural networks promotes robust behavior only if the redundant nodes are 

performing properly. Different learning algorithms produce different results, but most training 

is considered complete when the output layer is performing within a certain tolerance; the proper 

operation of all internal nodes is not guaranteed. 

Task-specific architectures bypass the dangers of unproductive internal node redundancy, 

and many of the issues regarding training and convergence. The benefit of a task specific 
architecture is that the network designer can reduce the space of possible solutions (defined by 

the network topology and weight values) by building in knowledge of the domain for which the 

network is to operate. 
The issue of optimality in the case of the system architecture is particularly difficult to 

come to grips with. A general-purpose multilayered, feedforward network has the ability to be 

trained to work on a wide range of problems. However, it is currently unknown in general 
whether any given problem of interest will be in the set on which the network will be able to 
learn. Task-specific architectures provide exceptionally fast response and virtually no training 

time, because the network is tuned to provide exactly the number of nodes and node connections 

necessary to perform the desired task. 

3. TOWARD A PROCESS MODEL OF OPTIMAL ANN DESIGN 

Schoemaker (1991) presented a historical account of the principle of least time. This 
principle arose in response to the problem of explaining why, when we place a stick in water, 
it seems that the angle above the water is different from the angle below. The ancient Greeks 

spent a great deal of time measuring the incident and refracted angles of the stick between air 

and water. The purpose of this was to gather enough data so that an induction of a relationship 

between the angles could be generated and then supported. However, it was not until the 
seventeenth century that Snell algebraically linked the two angles. However, Snell's algebraic 

law relied on the assumption of a constant that was different for each media (i.e., water or oil) 
used. Fermat later developed the teleological optimality explanation of the phenomena, stating 

that the light travels not necessarily the path of least distance, but the path of shortest time. This 

explanation allowed Fermat to specify a formula for Snell’s constant, which was the speed of 

light in air divided by the speed of light in water. With Fermat’s contributions, the explanation 

of the relationship between the incident and refracted angles was made significantly more useful. 
Now, a researcher could simply determine the speed of light in the media of interest and, without 
experimentation, determine the incident angle from the refracted angle and vice versa. The 
development of the explanation of the principle of least time culminates in the explication of the
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quantum-mechanical view of Snell's law, which reduces the problem to one of the sum of photon 
travel times on probabilistic pathways. This causal/process explanation allows the phenomena 
to be explained at the lowest, most complete level of detail 

In comparison, the development of a process model of optimal ANN design is about in 
the fourteenth century. As a group, we neural network researchers have made an extremely large 
number of measurements: the development of ANNs for hundreds of different applications, and 
the development of hundreds of different ANNs to experiment with. Teleological explanations 
of network structure and behavior are beginning to be presented (see Levine, Chapter 1, and 
Stork, Jackson, & Walker, Chapter 4, for a review). What has been lacking from this set of data 
are the "Snells" and "Fermats" of the neural network community. It is hoped that the increased 
visibility and structures provided in this collection will provide some inspiration to the neural 
network community to lessen the efforts spent on taking measurements, and increase the effort 
put into the search for causal and process relationships between network structure and optimal 
behavior. 
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Paul Prueitt’s chapter, Optimality and Options in the Context of Behavioral 
Choice, suggests a general approach for understanding the structure of biological neural 
networks as collections of subnetworks. The larger networks calculate utility functions based on 

primary parameters of these subnetworks. All else being equal, these subnetworks optimize the 
values of their utility functions. Optimization of one subnetwork can compete with optimization 
of another subnetwork, leading to suboptimal global dynamics, as other authors in this volume 

also note. However, even local behavior ts not always optimal because optimality sometimes 

competes with another useful organizing principle that Pruettt calls optionality. In other 
words, for dealing effectively with novel or unpredictable situations, the networks have to 

generate a diversity of responses. Thus calls for exploratory behavior (see also the chapter by 

Ogmen and Prakash), in cognitive as well as motor dimensions. Exploratory behavior is seldom 
optimal because it typically occurs in situations where the optimal response ts not yet known. 

How might the balance between optimality and optionality be mediated in the brain? 
Based tn part on laboratory experiments of Karl Pribram and in part on his own joint modeling 

work with Levine, Prueitt suggests that in primates, the "executive" functions of the frontal lobes 

are tmportant to tis mediation process. As suggested also in Levine's chapter, the prefrontal 
corfex serves as an interface between different subcortical systems involved in processing 

familiarity and novelty. Roughly, the familiarity system tends toward maximizing utility and 

the novelty system toward maximizing choices, whereas the frontal lobes are involves in deciding 

which subsystem to activate. 

Pruettt’s chapter suggests general mathematical concepts that could provide the bases for 

these interactions. These include dissipative systems, help-suppression networks, planar rotators, 
and Gabor functions along with on-center off-surround interactions and opponent processing. 
He suggests a synthesis between two types of models in the literature. One type of model,
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developed in the conference volumes edited by Pribram (see the references in this chapter to 
Pribram, Kugler, and Hameroff), aims at understanding how cellular and subcellular structures 

form into typical neural network "nodes" or conceptual units. The other type, developed by 
Grossberg and his colleagues (see the chapters in this volume by Carpenter, Levine, and Ogmen 
and Prakash), aims at understanding how typical neural network "nodes" (conceptual units) 

form into functional networks to perform cognitive tasks. 

ABSTRACT 

This chapter speculates about the emergence of processes that give rise to adaptive 
recognition, expectation and choice by biological systems. This speculation focuses on the 
creation and annihilation of process compartments whose behavior is localized into subsystems. 

Each subsystem’s behavior may not be optimal for two reasons. First, individual subsystems are 

in competition for scarce resources and optimize by undercutting the needs of each other. 

Second, the behavior of subsystems is governed by exploratory activity. This suggests that 

non-optimizing behavior occurs in conjunction with a structured generation of diversity. The 

mechanisms that provide this structure are described by an analogy to our common Sense notion 
of self image. This analogy describes the formation of a "system image" arising as a product of 

system interactions with the environment. 

1. SPECULATION 

Most connectionist models assume the existence of in vivo transformations through which 

a neural system builds internal representations. For example, artificial neural networks seek a 
minimization of some chosen measure of the difference between stimulus representation and 

representation of acquired categories. Structures emerge from the threshold separating chaos and 

order to produce subsystems that are necessary to these representations. This tnvolves the 

formation of compartments. 

A compartmentalized process, or process compartment, is a process that is localized in 

space and time. The sum of energy transfer in and out of its boundary remains almost constant, 

and thus the theory of dissipative systems provides us a partial model. However, compartmental- 
ization has not been fully reduced to the conservation laws of physics. This failure results in a 
denial of some essential properties of living systems, or the introduction of unexplained vital 

forces that act counter to the forces of entropy. 

For example, simple inhibition and suppression properties widely used in artificial neural 

network research describe only a few surface characteristics. Neurons work cooperatively within 
a neuro-ecosystem that has active circuits at quantum, chemical, neural ensemble, anatomical and 

electromagnetic levels of observation. And, to date, there is no formal theory that accounts for 

all of these levels and their interaction. 

The purpose for most of artificial neural networks research is to extend the artificial 

intelligence paradigm within a single scientific view that is reducible, in principle, to classical 

physics. History bears out a resilient effort to explain biology in terms of simple electronic 

computation. In the formative period of artificial intelligence (1942-1972) the excitatory
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networks were favored over ones having some inhibition, because inhibition implies something 
more than mere dissipation of energy. This problem can be solved by subsystems that produce 

an agent that successfully competes for limited resources and thus decreases the system’s 

production of some other agent. A reduction of the property of inhibition to a slightly more 

complex interaction does not, however, describe how the selection of specific chains and circuits 

of reactions is initiated. 

We may begin this description by increasing the degree of complexity to the point where 
compartments emerge from cooperative/competitive interaction. However, systemic problems 
remain. There is an abundance of explanatory proposals for attacking these problems, but each 

fails to be consistent with our folk psychology. Thus, they are discouraged. 

The practice of science is materialistic and formal, which may or may not be correct, as 

well as anthropocentric which is a simple, pervasive bias. These properties are well integrated 

into the theoretical foundation. Clearly, Gédel’s and Church's theorems on consistency and 
completeness imply something about the realism of a unified, formal, and consistent foundation 
for all scientific investigations. However, a unified foundation is an ideal that is very appealing 
and there is no way to predict how mid twenty-first century science will address this issue. 

Meanwhile, a large class of potential explanations are not investigated (Rosen, 1985) and certain 

other areas are overinvestigated. Science depends on a widely accepted and self-consistent 

theoretical basis for pursuing investigations (Kuhn, 1970), so we can only be mildly critical of 

the current scientific paradigm. However, science is also empirical and should account for 
observations made about real living systems. 

2. ECOLOGY OF COMPARTMENTS 

This chapter only provides a broad description of process compartments, and not a 

complete theory. The description addresses the core issues in cognitive and information science, 
and these issues are far from being resolved. It is important to note, however, that compartments, 
as they are defined below, are abstractions that generalize the properties of phenomena that 
occupy multiple levels of organization (see Bradley and Pribram, Chapter 21). 

A biological cell is a good example of a process compartment. There is energy and 

matter flow through its boundary, but this flow is controlled by the properties of the membrane 

and the spatial/temporal envelope that serves as the cell’s boundary in four dimensions. A more 

complex example is a simple model of the visual process. Photon stimulation of the protein 
complexes in the retina induce emergent patterns at several junctions between the retina and 
visual cortex. Repeated stimulation results in pattern clustering and featural recognition at these 

junctions. Over time, a distributed feature space is constructed through joint expressions of 

genetic, chemical, and network information at junctions and characteristic optic flow input at the 

retina. Optic flow patterns then fall under the influence of a set of top-down feature space 

response templates and visual recognition takes place. Resonance mechanisms, electromagnetic 

(EM) phase coherence, and phase locking control underlie biochemical circuits 

Experimental neuroscience provides firm neurological evidence that retinal images are 
(nearly) a Fourier transform of temporal invariances available in optical flow (Pribram, 1991, 
1993). The evidence suggests that internal representations are encoded in the isophase contours
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of electromagnetic (EM) activated phase coherence, or resonance, in dendritic ionic fields at the 

lateral geniculate nucleus. It is thus theorized that EM encoded representations are algebraically 

isomorphic to structures emergent in the optical flow. The encoding is, however, virtual in the 

sense that it exists as a set of probability distributions and must be instantiated through 

subfeatural combinatorics (Prueitt, 1995, 1996a, 1996b). Such virtual encoding becomes an event 
when conditions elicit local invariance in the form of the compartment. As the influence of 

stimuli passes through several process compartments, an isomorphism is preserved across a span 

of time. The invariance achieved by this isomorphism is observable as the event. 

For the visual system, encoding is achieved through fine variations of the functional 

properties of cells and ensembles of cells. The result is a repertoire of subfeatural elements that 
are evoked in the formation of visual events. Most likely there is a permanent manifestation of 
the system’s repeated reliance on selection from a repertoire. For example, commonality in re- 

presentations of input patterns of activity has resulted in spatial and temporal selectivity of cells 

in the posterior visual cortex. This selectivity has been measured as a correlation between 

interspike intervals and stimulus orientation (spatial stimulus) and frequency of presentation 

(Berger & Pribram, 1993; Daugman, 1988). 

Neural selectivity does not mean that feature recognition is a function only of cell 
morphology. Information is separated and distributed across multiple regions of the brain and 
is resident at multiple levels of organization: at the synaptic level, the microtubulin level, the 

protein complex level, and son on. Whenever information is transformed by a compartment, 

there is, by necessity, a core component of that transformation that must be measure preserving, 

or isomorphic, to the component input. Since the composition of several isomorphisms is an 

isomorphism, representational transformations by multiple compartments preserve relevant 

Information on the category of stimuli and the characteristics of correlated electromagnetic 

resonance. In this way, stimuli are re-presented while being distributed across and into the brain. 
Given the focus of this volume, I next present preliminary work on a model where 

interaction gives rise to transient systems capable of exercising a higher order control over their 

subsystems. As stated in the abstract, my intent is to establish a metaphor based on biological 

process compartments, such as cells in the visual cortex, to organize work on computer based 

process compartments. The result is a computational model describing the formation of 

compartments within an ecosystem. The ecosystem is necessary to provide commonality and 
higher order organization for subsystem compartments. 

The study of fluids under conditions far from thermodynamical equilibrium suggests 

steady-state structures form as internal dynamics evolve toward local optimization. In fact, the 

availability of complex biochemical machinery is representative of an infrastructure whose 

computations generate, propagate, and interpret internal representations. In biological systems the 

same phenomenon creates compartments as a result of symmetries in the distributions of energy 
and matter. The compartment provides a location and the physical substrate for these algorithms 
to link cognition, awareness, and intentionality to these chemical computations. 

For reasons rooted in an evolutionary selection of simpler, as opposed to more complex, 

systems, structures are created in nonlinear interactions and produce linear separation and 

combination of data to and from separate information streams. Linearity allows the most 

efficient fusion of independent information streams, whereas nonlinear interaction is wonderfully
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sensitive to perturbation by the environment. Using these two principles, individual compart- 
ments produce tused outcomes as a cooperative phenomenon involving multiple sources. 

3. STIMULUS REPRESENTATION 

Systems designed to optimally match patterns are essential to stimulus-response events 
in living systems. Pribram and his colleagues have modeled biological signal processing as a 
measure of spatial-temporal pattern matching, using a convolution in the form of a Gabor 
elementary function. The set of Gabor elementary functions of time for a given At are defined 
over an infinite index set {n, m where n and m are integers} (Gabor, 1948) as: 

Yam(4) = exp[-p(t — n Ad)/2(At)2] exp(2pimt/Ad. (1) 

MacLennan (1993) summarized several decades of experimental evidence that Gabor 
functions of space and time are representative of functional primitives in visual cortex. The first 
factor, exp[—p(t — n At)/2(AD)2), provides a temporal window defined by the harmonics of the 
length Av. For ¢ large, the factor is close to zero. For ¢ finite, the expression has local maxima 
at n Al. 

The second factor of the Gabor transform is similar to the Fourier elementary function. 
This factor can be analyzed in terms of principal components and has wide application in 
military, industrial, and commercial products. The analysis of principal components has led to 
new signal recognition technologies with direct application to circumventing instrumentation 
limitations constraining single- and multi-channel microelectrode recording (Bankman, 1993). 

Such technology moves us closer to understanding biological signal processing. 

A generalization is in order that admits the formation of process compartments. This 
generalization makes a distinction between the spectral composition of stable process 
compartments and the chaotic transitions from which they arise and dissolve. In later sections 

of this chapter, this distinction is further formalized as internal and external metaphors with 
which to view process compartments. 

Given a one-dimensional observational trace, m(0), of a stimulus, its within-episode 

manifestation may be expressed as a finite linear combination of density (probability) measures 

Cum mes elementary functions, y,_(2): 

M1) = &CamYam(t)- (2) 

For EM events that correlate with neurocomputation, the computation of coefficients c,_, could 

be achieved via dendritic fast adaptation via gradient descent methods, involving phase alignment 
during a brief initial period of electromagnetic driven synchronicity (as suggested by Pribram). 
Observational traces linked to the values for c,,, would then exist in the form of Eq. (2) for a 
finite period of time and would be measurable. 

Following a tradition going back at least to Hull, the coefficients c,, are thought of as the 
Stimulus trace (for historical review see Levine, 1991). These traces have not been directly
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observed in experimental data, but are widely hypothesized as correlating to fine mental events 

such as mental verbalization and goal formation. 
Signal generation expressed between neuron bodies presumably consist of a propagated 

At, a fundamental harmonic, as well as algebraic patterns expressed between coefficients c,,,._ In 

the simplest case, the harmonics of At are oscillatory signals whose frequencies have integer 

multiples of At (higher harmonics) and whose frequencies divide At evenly (lower harmonics). 

Phase locking and nonlinear transitions near critical points provides synchronization of 

phenomenon into nearest neighbor harmonics. 

It is not required that At and c,,, be propagated by the same mechanism, nor that 
mechanisms exist at the same time scale. In fact, the architecture supporting global process is 
a key determinant in what becomes selected during emergence and what does not. For this to 
work, as here theorized, the system must be "Stratified in time"; that is, it must have multiple 

levels of organization that are organized by the speed at which things happen. Process 

compartments are created and annihilated within levels that are observable only at specific time 

scales. Once created, a compartment separates phenomena that once had a direct interface. Once 

a compartment has been annihilated, two phenomena that were separated now interact. 

The emergence and reinforcement of fundamental harmonics produce coherence and phase 

synchronization within and between time scales. For example, the competitive enhancement of 
Significant patterns can be experimentally observed in the on-center off-surround cellular 

dynamics of retinal cells (Ellias & Grossberg, 1975; Grossberg & Levine, 1975; Hubel & Wiesel, 

1962) or in machine intelligence by adaptive resonance theory (Carpenter & Grossberg, 1987). 
These are examples of phase synchronization and coherence. It is important to note, however, 

that attentional focus and goal formation are subjected to additional architectural principles such 
as intersystem modulation and opponent processing (Levine, Parks, & Prueitt, 1993). 

Both the elemental functions y,,(4) and the coefficients arise, in an as yet unexplained 
fashion, during the brief formative period early in the life of the compartment. Once these are 

selected, they act collectively as a process transformation. According to this view, biology 

creates a medium that produces the Gabor functions, which then transform visual stimulus. Other 
types of transformations are employed in other brain regions and in other media. A simpler 

(matrix) linear association may occur in the cerebellum (Houk, 1987), and wavelet transforma- 
tions are conjectured to form the basis for microtubulin signal propagation (Hameroff, 1987; 
Hameroff et al., 1993). In any case, the computation of transform coefficients are presumed to 

be accomplished by fast adaptation of structural constraints, like dendrite spine shape, protein 

conformation, or neurochemical agents reflecting neurotransmitter concentration. We expect that 

this is done with the flexibility required to select from multiple (optional) responses in ambiguous 
Situations (see Pribram, 1991, pp. 264-265). This "response degeneracy" (see Edelman, 1987) 
implies that the process compartment itself, which arises by imposing constraints where none 
before existed, is nevertheless left underconstrained during its lifetime. This characteristic, if 

experimentally confirmed, might serve to differentiate a living system from a simpler system 

arising from fluids forced through phase changes under thermodynamic pressure. 

Before moving to the next section, we need to discuss the rationale for regarding response 

degeneracy as complementary to optimality. The creation of viable options would be 

complementary to optimality if all but a few selective response potentials were somehow held
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ineligible for deterministic evolution toward a local basin of attraction. This occurs in two 

Stages. First, there is an enfolding of the implicit properties of the system and its environment 
during a brief non-algorithmic process (the quantum metaphor: Penrose, 1989; Shaw, Kadar, & 

Kinsella-Shaw, 1994). Second, a final selection of one from a small number of high potential 

paths in the probability space created during the first stage (see the notion of multiple drafts 

versus the Cartesian theater, in Dennett, 1991, pp. 101-138). 

The "deselection" of all but a few response potentials is true of frontalAimbic interaction 
involved in selective attention (Levine et al., 1993) and is likely to be an explanation for other 
phenomena. The result is the creation of a small number of realizable options, formation of 
goals, and exercise of free will. Thus a distinction is made between the creation of options by 
a living system and the deterministic evolution of systems toward local minima. This distinction 

implies that biological systems, although relying on classical laws, are not reducible to them. 

The origin of control is placed in a system image as a result of system/not-system interaction. 

In the next section, I briefly restate the description of process compartments. 

4. THE MODEL IN BRIEF 

In biological systems, response categories are acquired through experience and expressed 

via the mechanisms of immune and neurobiology. Most often, functional expression of these 

mechanisms is shaped by prior experience into an accommodated internal store capable of 

producing mental representation. The system image arises when this store is stimulated by 
external interaction. The stimulation involves recognition or response to novelty. As a result, 
substructural processes are fused to produce mental representations within context. Functional 

specificity is supplied by an organized substrate — such as the network of neurons, the 

conformational space of proteins, or the anatomical organization of the brain. 

The model has transient compartments with internal evolution determined by interaction 

between a system and its environment. Specific instantiation of evolution rules within the 
compartment is then jointly determined by initial conditions on system variables, by external 
perturbation, and by sensitivity to symmetry breaking. If the interaction is weak, then behavioral 

characteristics of external systems are propagated between compartments. Intercomponent 

frequency entrainment in the electromagnetic (EM) spectrum results in signal generation, 

propagation, and interpretation between steady state compartments. —Intercompartmental 

interaction allows local/global signaling during restructural transitions and provides periodic 
Interactions with various parts of an complex external world. This interaction extracts 
information expressed in a common subfeatural set. 

In the first stage of a compartment’s existence, a brief event, perhaps noncomputational 

in nature, produces a system image and nominates a finite set of observables. The system image 

aligns subsystems to serve the needs of higher order phenomena. For example, a protein newly 

formed from RNA will undergo one or more near chaotic energy/state transitions before settling 
down into a metastable state. Each transition creates a compartment. RNA transformation to a 

metastable state can be envisioned as a series of process compartments with a fairly uniform 
system/not-system interface governed by an invariant system image.
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This intuitive notion of system image describes how systems generate anticipatory actions 

serving intrinsic as well as extrinsic needs. Do proteins express anticipatory actions during phase 
changes? Any judgment about this is very difficult because of the scale of observation required 
to be intimate within a protein’s world. It is even difficult to formalize the notion of intention 
when we deal in the world with other humans (Gurwitsch, 1977/1979). An individual acting in 

the interest of the nation would presumably be influenced by the system image of the nation, as 

well as by his or her own self image. Note that "need" is better described as "ecological 

affordance," which is broadly interpreted to be a phenomenon arising from a nonconserved 

quantity (Gibson, 1979; Shaw et al., 1994). System image can be described by providing 
examples and by appealing to our common notion of human self-image. 

4.1. Representational Computation 

There are two major caveats that have been associated with models that rely on stimulus 

traces. In spite of these two caveats the explanatory power of behavioral theories, based on an 

assumption of stimulus traces, is considerable. 

First, transformation mechanisms may act in a single very fast event or over a longer 
period of time, marked by sudden transformations of substructure. During transformations, 
variation of time scale may not be uniform for all observables. Thus representational correlation 

is more than a static match between values in two vectors. When attempts are made at 

interpreting real spike train data as simple vector processing, the results are system models with 

no apparent information. A more reflective model involves the coefficients of a Gabor type 

transform windowed within episodic events of positive duration (McGuinness & Pribram, 1980) 

and the selection of the terms of the transform from a set of transformationally similar set of 

elementary functions, for example, y,,,(¢) as in Eq. (2). 
Second, it is reasonable to assume that the composition of a finite set of elementary 

functions (principle components) is periodically restructured by locally relative least action 

principles. During representational binding, utility functions emerge to reflect least action 

principles subject to ecological affordance at the time scale under consideration. An affordance 

positively biases the evolution of emergent phenomenon and shapes stimuli into Gaussian 

envelopes to reflect global properties of an environment. In the same way, ecological niches are 

formed in large-scale ecosystems. However, in spite of the existence of stimulus clustering into 
envelopes, environmental affordances are often nonstationary (in time) because the world itself 
is undergoing change. Thus, principal components selected to fit one set of circumstances may 

not fit changed circumstances. A locally catastrophic restructuring of substructure is the result. 

These two caveats are met with two observations. First, a theory of natural kind is 

essential to understanding intelligence, and any theory of natural kind must point to the creation 
of reliable reflexes, and a means for fusing reflexes into coordinated action. Complex responses 
arise from the selective attention of a system image, while internally processing priorities and 

expectation and maintaining a hold on the pragmatics of real-time, and often nonstationary, 

situations. Thus, although the mechanisms that support cognition are subject to adaptation toward 

optimal processes (measured with respect to several time scales), these processes must also 

satisfy flexibility in response to a nonstationary world (Prueitt, 1994, 1995).
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A second observation involves a common basis for data fusion. Because efficient 
response to expected occurrences is a function of natural selection, the common availability of 
a class of natural kind is essential to coexistence. Conjecturally, common substructural 
constraints provide the basis for expectation, generation of messages, and interpretation of 
messages. The mechanisms that produce representational transformations act independently as 
weakly linked systems with behavior shaped by internal affordance and by weak interaction with 
its environment. To be viable, these closed systems must adapt themselves to primitives that 
provide commonality and the basis for cooperative processes with other closed systems. These 
primitives are the external affordance provided by the environment to each of the systems. 

In an analog to distributed computer systems, the hardware of the sensory and cognitive 
mechanisms of the human brain responds to sensory input by making small adjustments in 
network connectivity, while monitoring the expression of learned (or inherited) constructs, and 
re-presentation of the trace of the stimulus. When one of a class of internal states is achieved 
then the system must respond within a limited range of options. However, if the mismatch 
cannot be compensated by small adjustments, then local restructuring dissolves the process 
compartment and a new compartment arises with a new set of options. 

4.2. Stimulus Processing Within Process Compartments 

I suggested above that preprocessing within compartments involves the systemic 
identification of a finite set {y,,,} selected from a much larger repertoire of subfeatural elements. 
The selection may involve activating sequences of events, such as neurotransmitter circuits, that 
in turn make available the necessary resources for subfeature expression. The subfeatures 
themselves are emergent phenomenon that form at a faster time scale (see Eq. (5)). These 
become the ground on which the system depends. Identification is then correlated with the 
creation of transient compartments that then change state based on the exact condition of the 
stimulus, acting in a classical if-then (response/stimulus) fashion. 

Assuming a set of learned categories having internal representation d,_y,_.(¢) and incoming 
composite stimulus having representation c,y,_(0) then 

EY) = 2(Cam — Lam) (3) 

IS a measure of stimulus mismatch. This stimulus mismatch can be expected to play a critical 
role in maintaining, or not, the coherence that supports the process compartment. Behavioral 
action is represented in a similar language with the notion of a "reflex arc" correlating with the 
expression of one of the subfeatural elements. Sensory and cognitive representations are shaped 
by internal constrains designed to optimize an accommodated representation in terms of 
elementary components, while exchanging information with auxiliary processes. Conjecturally, 
the fused representations result in indirect accommodation of experience within a memory store 
and involves both local phenomena (stimulus traces) and a global phenomenon (the memory 
store). 

Accommodation results from the synthesis of stimuli and internal affordance into an 
singular event that higher order processes can address directly. This must involve an "enfolding
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of experience" with long-term plans and objectives. Although such a notion does not give a 

definition of self-image, the phenomenon of self-image and David Bohm’s notion of implicate 

order seem to be related. Both the enfolding of experience and its accommodation depend on 

measures of coherence and cohesiveness correlative to emergent processes formed from the 

constraints of an interface between internal and external representations. 
Dissipation is the parent of the process compartment. During the first part of a formative 

phase of the compartment, a choice between viable sets of options is created. During the second 
part, a specific option, or subset of the potential options, is selected by what appears in the first 

part as an agent. Its morphology is not dependent on awareness or consciousness but on dynamic 

interaction between help and suppression processes (Eisenfeld & Prueitt, 1988; Prueitt, 1988; see 

Figs. 7.1 and 7.2). 

System image sits as a higher order mediator of creations, annihilation, and interactions 

of process compartments. If there is no such mediator, there is no choice and no intentionality. 
Higher order mediation is found at precisely the point where optimality’s complementary 
principle, optionality, is most clearly identified. When we watch others it can be easy, given the 
proper technical background, to believe that human behavior is merely experience-determined 

responses from a highly integrative, genetically determined collection of mechanisms. This is 
what the reductionists believe. However, when we observe ourselves, we perceive responses to 

be choices between alternatives. We perceive from our personal experience the periodic 

generation of a diversity in expectations that depend critically on system image. From this 

diversity, we choose specific actions as the result of our intention to achieve these expectations. 
Our notion of self-image cannot be stated without reference both to internal experience 

and the world experienced (Bandura, 1978). Through the self image, the individual brings a 

nondeterministic and nonoptimizing element into a process that is governed by laws that are 

deterministic. Self-image is generally constant throughout life. It links together experiences into 

a meaningful whole. However, the description of a system image does not solve some ultimate 

problem in cognitive psychology. Consciousness is a higher order expression of self-image, but 

need not be its only manifestation. For example, regulatory processes, occurring over a short 
period of time, can be shaped by a higher order system image that is constant over a much longer 

period. The images of subsystems may influence each other as well as higher order (existing 

over long periods of time) and lower order systems (existing over short periods of time). The 

relationship is delineated by observational time scale. 

Broad anatomic interaction reflects the internal dynamics of the human brain. Transient 

dissipative structures allow a multiplexing of information, derived from posterior cortex and 

limbic regions, while perception and action jointly maintain these transient structures through 
nonconservative induced gradients. As a result of induced changes in anatomic regions, isolated 

compartments form and maintain a relative stability for finite periods of time. For example, 

multiple compartments could form in the hippocampus and interact with compartments that arise 

in parallel in the amygdala. Those compartments not inhibited by frontal lobe mediation would 

then induce specific plans to be formulated. 
This model requires a computational approach. However, the science community does 

not share a set of conventions under which computational investigation of biological intelligence 
should be pursued. A deeper explanation cannot be achieved within the current foundation.
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Meanwhile, we cannot act as though intentional systems do not introduce teleological elements 
into a mechanistic world. This simply denies common experience. We should not be surprised 
if new computational models uncover what are essentially a class of nonalgorithmic events. The 
mere recognition of such a class could bring behavioral science in line with common sense and 
reject the folk psychology of twentieth century psychology (Churchland, 1989), which does not 
address the role of anticipation (Rosen, 1985), or intentionality (Kugler & Turvey, 1987), nor 
address other essential questions (Werbos, 1993). 

System image is instrumental in any full description of the central issues of intelligence 
and intentionality, and we need a scientific foundation for its discussion. Establishing this 
foundation may not be far away. As suggested by Eccles (1993), intentionality could be 
expressed during brief nonlinear restructural transitions of process compartments. Eccles pointed 
out that the geometrical arrangement of synaptic boutons supports a femtosecond process 
controlling the release of the transmitter vesicle mediated by Ca** influxes. The control is 
provided by a process selected through evolution to conserve neurotransmitter. The process has 
the effect of creating a homogeneous probability distribution measuring the likelihood that any 
one of six boutons will carry the gradient field interchanges between presynaptic and postsynaptic 
events. Eccles saw this mechanism as the interface in which the mind couples to the brain by 
changing the probability and timing of synaptic events. These events are then seen to play a role 
in the formation of network connections at a high level of organization. At critical locations, 
even distributions are maintained while the gradient increases to a high level. Symmetry and 
increased gradients result in a barrier and thus in the formation of a trigger. The trigger is 
released when self organization at a higher level can be effectively influenced (Eccles, 1993). 

Hameroff identified similar symmetry generating mechanisms in the geometric structures 
of the microtubulin assembly as well as in the temporal dynamics of microtubulin formation. 
Microtubulins play important roles in cell mitosis and have the potential to control the 
connectivity of neuronal ensembles through the fine alteration of dendritic arborization, as well 
as to influence second messenger cascades guiding long-term potentiation (Hameroff, 1987). 

4.3. Immune-Neural Interface 

The notion of human system image, although itself not well defined, is a metaphor for 
an higher order "agent" that mediates the formation of compartments and shapes the compart- 
ments’ evolution. In this model, the transformation of stimulus traces are shaped in this fashion 
by immunological/neural interactions that are distributed in nature. Of course, this is a huge 
simplification that is speculative and exploratory. System image itself need not be a nonmaterial 
mind/body interface as perceived by Eccles (1993), but it could alter probabilities during phase 
transitions of compartments whose existence is brief when compared to the agent and thus have 
many of the same properties as envisioned by Eccles. The primary distinction is that system 
image is a phenomenon that interacts indirectly as intentionality in probability space. 

A network model of help-suppression circuits (see Figs. 7.1 and 7.2), motivates a model 
of self-image formation based on distributions of idiotype classes (Eisenfeld & Prueitt, 1988; 
Jerne, 1967; Prueitt, 1988; Richter, 1979). Reactions induced by compartments within 
help-suppression circuits connecting processing levels have nonzero reaction rates and thus
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produce a driving force for iterative (cross-level) transformation of representational input. Such 
reentrant processing (Edelman, 1987) is necessary for any adaptive mechanism of invariance 
recognition (see also Pribram, 1991). In analogy to the immune system, it is also possible for 
associated features to become functionally paralyzed by help-suppression reaction circuits 

producing low zone tolerance (LZT) (Eisenfeld & Prueitt, 1988). 

Equations that I developed to model help-suppression circuits involve indicator functions, 

distribution functions, and transition state tables, and their presentation is beyond the scope of 

this chapter (Prueitt, 1988). Moreover, the model was developed to reflect global characteristics 

of clonal and natural selection as described in Jerne (1967) and Richter (1979), and may not 
reflect the internal dynamics of any real immune system as it reacts to any specific antigen. The 

computational model is therefore only another metaphor. It places one part of a very complex 
puzzle into a tentative position while other pieces are examined. 

The help-suppression circuits of immune networks provide a different view of the 

ubiquitous phenomenon of Opponent processing seen in the dipole tield (Grossberg, 1972a, 

1972b). The gradient developed by a process compartment drives associated reaction circuits In 

the ecological substrata, and thus produce self/not-self interactions involving any emergent 

structures that have become linked with the dipole stimulus. Self/not-self interactions in the 
immune system establish help-suppression circuits that form control mechanisms influencing 
production rate variation in neurochemical isomorphs. Similar circuits would be capable of 
encoding input within the framework of a protocritic process responsible for individual system 

image. Emergent phenomenon derived from circuits of this type could explain the selective 

interpretation of experience that characterizes human psychology. 

+ + + + 
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Fig. 7.1. Help-suppression circuits develop a hysteresis that produces an active inability to respond to certain 

types of immunological challenges. 

Now for the details of how emergence leads to self-similar phenomena. Consistent with 

the ecological approach to learning behavior, the transitions involved in creating a process 
compartment are open to "information" (meaningful temporal and spatial invariances) from many 
different sources. The formation of information involves degeneracy and is "nonoptimal" in this 

sense. Thus, the emergence of a finite set of preestablished reaction circuits from subcellular and 

cellular environments is predicted to result in one-to-many and many-to-one transformations 

across levels of organization. Selection of members of the set of possible transitions results from 

an evening of the probability that each of the possible transformation paths will occur.
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Aftordance is then reflected in probability distribution as several heightened sets of self-similar 
potentials are created. Small variations between these are enhanced to become the subfeatures 
of the compartment. 
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lig. 7.2. Help-suppression circuits coupled to dipole fields produce a control of subfeature selection that 
depends on accommodated system image. 

4.4. Process Compartments and Prefrontal Involvement in Mediating Choices 

The processes particular to prefrontal cortex modulation of sensory input, as well as 
limbic events, provide keys to understanding the complementarity of optimality and the 
generation of choice (optionality) by biological systems. First, neural processes satisfy a least 
action principle in distributed, and often virtual, state spaces. Second, these state spaces exist 
simultaneously at different time scales (see the next section) and often collapse after a period of 
transient stability. Third, the periods of stability are correlated with mental phenomena such as 
are involved in mental search. Mental search, associated with planning, is initiated by neuronal 
groups in the prefrontal cortex in response to a stimulus, often originating from the posterior 
cortex. Mental search may also be initiated by limbic events. A small number of dominant foci 
could be maintained by trontolimbic inhibition of interregionally linked dendritic field coherence 
through variation of neuromodulators and perhaps though EM signals. The initiated search is 
ended when there is a resolution of some uncertainty or a specific goal is achieved. 

The global force involved in constraining the neural ecosystem is a wave guide that 
produces discrete localization and a temporal invariance. The discussion of this force has a long 
history. An exposition of the two competing paradigms of localization and antilocalization can 
be found in John (1971), Lashley (1929), and Pribram (1973). That memory has localized points 
of concentration is suggested by a number of experiments. For example, a long line of research 
Supports the notion that feature extraction is the primary functional process supporting recognition 
systems. Other work points out that the activation or encoding of memory involves cells in many
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brain regions. Still other research reminds us that activation or encoding of memory is dependent 

on genetic information contained in cells. In Brain and Perception, Pribram’s presentation of 

far frontal cortex function followed an extensive neuropsychological presentation of the full range 
of sensory and motor control systems, as well as cognitive functions associated with the posterior 
cerebral convexity, amygdala, hippocampus, and limbic forebrain: 

... familiarization and innovation occur within a processing space that defines an 

episode. Episodes provide the context within which perceptions are valued. Context 

(processing space) and content (stimuli sampled) interact in a reciprocal fashion. 
(Pribram, 1991, p. 226) 

The frontolimbic forebrain, a complex of brain regions including the limbic forebrain, 
basal ganglia, and frontal cortex, is involved in the creation and maintenance of a processing 
space capable of placing stimulus into a context from which ambiguity or incompleteness can be 

addressed: 

Ordinarily, input from sensory or internal receptors preempts allocation ... by 
creating a "temporary dominant focus" of activation within one or another brain 
system. .... However when input competition, incompleteness, or ambiguity place 
extra demands on the routine operations of allocation, envisioning proprieties and 
priorities, and practical inference become necessary. (Pribram, 1991, p. 239) 

The role of process compartments in modeling information fusion is suggested by the 
above passages. The neurological facts are clear: 

1. The anterior (front) portion of the frontal lobe develops a temporary dominant focus that draws 
energy and information from auxiliary processes. 

2. Each local dominant focus enslaves neighboring activity and activity at faster time scales in 

the production of emergent phenomenon, modeled as a thermodynamically closed (isolated) 

compartment. 

3. The function of envisioning proprieties and priorities (see Pribram, 1991, Chapter 10) serves 
the same function as does top down expectancy in category classification. 

4. The executive control by the prefrontal cortex exposes the operation of intentional inputs into 
the process compartment. 

5. Signal integration depends on measures of coherence and cohesiveness of emergent complex 

processes from an ecologically sensitive interface between the visual cortex and limbic system. 
This interface is mediated by the frontal lobes. 

6. The propagation of signals from individual neurons to that neuron’s area of innervation is 
accompanied by the modulating influence of electromagnetic events, chemical modulation, and 

what might reasonably be called second messenger events in the form of protein based dynamics. 

7. Although emergent process compartments arising in the posterior cerebral convexity are 

constrained by the need to know exactly (optimally) what is sensed, the process compartments 

of the frontolimbic circuit demand flexibility and options.
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5. THE CHALLENGE IS CLEAR 

Phenomena are localized in space with parallel events occurring during the same period 

of time but at distinct time scales. This provides science with an enigma, because it is counter 

to the naive notions of the law of entropy. For a specific time scale and for a specific space 
localized phenomenon, the path in state space that traces a selection of choices is governed by 

an implicit order, described as a "system image." Localization is either brought about by this 

system image or system image emerges as the result of localization. This provides science with 

an enigma, Since it is counter to the naive notions of the law of entropy. 

Sir Roger Penrose stated a strong form of the anthropic principle: 

... preferable, to my way of thinking, would be a rather more scientific version ... namely 
the anthropic principle, which asserts that the nature of the universe that we find ourselves 

in is strongly constrained by the requirement that sentient beings like ourselves must 
actually be present to observe it. (Penrose, 1989, pp. 405-406) 

Penrose’s previous arguments make a case for admitting both algorithmic as well as 
nonalgorithmic phenomena as an integral part of human consciousness. The reason why sentient 

beings are required, it may be argued, is to perform nonalgorithmic tasks in a world where 

everything else is governed by algorithmic laws (the laws of classical physics). It seems to me 

that this principle is stated backward, because nonalgorithmic processes also characterize quantum 

physics. Thus an alternative perspective is that nonalgorithmic events at the quantum level can 

produce artifacts that serve to enhance the survival of sentient beings. Natural selection would 

then be predicted to propagate and refine subsystems that make efficient use of quantum 
phenomena directly or the artifacts that form as longer events. 

It is possible that quantum artifacts exist at a nonquantum time scale as (a) the 

noncomputational phenomena involved in the creation and annihilation of compartments, (b) 

network properties constraining the interaction between components, (c) the property of an energy 

manifold expressed within a process compartment, or (d) a message to be generated or interpreted 

by a mechanism. 

It has become increasingly clear to me that a mature computational mathematics of 
interacting process compartments is necessary to more fully understand the neural ecosystem. 

6. THE ROLE OF INTERCOMPONENT LANGUAGE 

Isolation of compartments is complemented by the development of intercomponent 

language (Prueitt, 1994). The conditions for the creation of process compartments arise under 
constrained dynamics, initially without boundary conditions, initial conditions, or a fundamental 
set of observables. At the present time, how this occurs is still one of the great mysteries of life. 
However, there can be no question that intentional systems take willful advantage of episodic 

emergence during periods in which the system's further evolution has multiple, but finite, 

possible futures. Such systems are deterministically underconstrained and have nonuniform 

probability distributions with variance associated to multiple potential evolutionary paths.
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Underconstrained systems provide the degeneracy needed for an interactive specification of the 

proper observables that arise as anticipatory measurements are made (Rosen, 1985). The 

resulting inferential actions produced by episodic constraints have a direct analog to the motion 

of a trajectory constrained to exist in a higher dimensional "solution set" as defined by an energy 

manifold. 

The need to cooperate with other compartments and achieve subsystem optimality 
involves the generation and interpretation of signals. The need for language is an invariant (law) 
in the behavior of biological systems (Pattee, 1963). In semantic theories of information, 

symbolic structures are manipulated with mathematical logic through the examination of 
organizational principles as well as inferential action. 

An assumption that internal dynamics becomes isolated is justified because biological 

membranes, or more generally system boundaries, exchange structural constraints (messages) 

without measurable associated energy perturbations. This conclusion requires experimental 

verification (or disverification) of the following generic principles. 

1. The isolation of internal dynamics can be accomplished by initial conditions during the 

formation of the compartment. 

2. Phase coherence and synchronization give rise to the process compartment, with energy sinks 
and sources shaping the potential manifold. 

3. Decisive events within the compartment are sensitive to symmetry-forming mechanisms. 

Encoding of intercomponent signaling as structural constraints provides an additional 
challenge for mathematical neurodynamics. Conjecturally the levels of activity in biological 

systems have a morphology that arises from the stratification of fluids under conditions far from 

equilibrium. Stratification forces the formation of boundaries (membranes) in which kinematics 

and kinetic forces are linked together to adaptively encode, via a class of transformations, 

information about the organism and its environment. Once a stratification has occurred, the 

origin of episodic stability is jointly derived in conjunction with the environment, from 

microprocesses (observed as nonholonomic variables), and from macroprocesses (observed with 
holonomic variables). This view allows a natural statement of entailment (causal description) 

viewed in an evolutionary perspective consistent with Edelman’s neuronal group selection 

(Edelman, 1987; Edelman & Finkel, 1984) and Changeux and Dehaene’s (1989) theory of 

cognitive function based on multilevel processing and interactions (see also Dehaene & 

Changeux, 1991). 

In Beek, Turvey, and Schmidt (1992), the hypothesis that "the phenomena of movement 
are understandable as the outcomes of nonlinear dissipative dynamics" (p. 67) is extended to an 

examination of autonomous and nonautonomous dynamics. Although it is true, perhaps, that 

self-organizing processes are best expressed in autonomous form (Haken, 1977), the role of 

nonautonomous variation is the key to capturing the internal dynamics of an open environ- 

mentally embedded interface. An autonomous system is one defined by the absence of time as 

an essential observable and is generally written in the generic form, 

dx/dt = f(x) with initial condition x(t,) = x, (4)
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whereas the generic form of a nonautonomous system is 

dx/dt = f(x,0) with initial condition x(t,) = x,. (5) 

In our model, the within episodic dynamics are closely associated with a time-independent model 
whereas the transitions are modeled with a time dependent model in the form of Eq. (5). A note 
of caution should be addressed as there may be more severe complications than temporal 

autonomy to modeling restructural transitions, because the number and nature of observables will 
undergo fundamental changes. 

7. SUMMARY 

I have suggested that local coherence in the EM spectrum is produced by systems that are 

Stratified into numerous levels and that produce compartmentalized energy manifolds. These 

process compartments, and not merely networks of neurons, are prime candidates for the 

proximal causal mechanisms producing behavior. This view is consistent with the views 

expressed in Changeux and Dehaene (1989): 

A given function (including a cognitive one) may be assigned to a given level of 
organization and, in our view, can in no way be considered to be autonomous. Functions 

obviously obey the laws of the underlying level but also display, importantly, clear-cut 

dependence on the higher levels. At any level of the nervous system, multiple feedback 

loops are known to create reentrant mechanisms and to make possible higher-order 

regulations between the levels. (Changeux & Dehaene, 1989, pp. 71-72) 

At all levels, in anatomical regions and across time scales, generic mechanisms appear 

to operate. More complex models of prefrontal cortex interaction with other cortical systems and 

with limbic systems, require a formal model of intentional processes (Rosen, 1985; Kugler, Shaw, 

Vincente, & Kinsella-Shaw, 1990). It is important to introduce the issue of boundary formation 

in nonautonomous transitions between episodes. Of particular interest is the nonstationary 
response to symmetry breaking that accompanies these transitions. The model presented in this 
chapter provides a framework for unification of the neuronal model, process components 
operating at faster and slower time scales, as well as clarifying the natural role for structural 
constraints to control signal production and interpretation between compartments (Pattee, 1972). 

Stratified processing within and between transient compartments can then be seen in ecological 
terms. 
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lan Parberry’s chapter, Knowledge, Understanding, and Computational Complexity, 
deals with an tssue that ts not discussed elsewhere in this book, but is vital for optimality 
considerations both in artificial and biological neural networks. This is the issue of how extensive 

computational resources are needed for particular cognitive tasks. Parberry argues that many 

of the discussions about the ability of conrputers to emulate human or animal cognitive function 

have focused solely on whether computers can in principle replicate a particular class of 
functions or behaviours. In addition, he adds, they need to consider whether replications that are 
realizable in theory would in fact consume such a large amount of computational power as to be 

unrealistic in practice. He argues that computers could in princtple be designed to replicate 

anything the brain does, including intentionality, but that it may be hideously expensive to do 
SO. 

There are implications of computational complexity theory for optimality that go beyond 
what ts discussed in this chapter. Computational complexity is analogous in some sense to the 

cognitive effort expended by biological organisms when confronted with unexpected or novel 
events. Bratn loct for effort have been extenstvely studted by another of this book’s authors, Karl 

Pribram (see, e.g., Pribram & McGuinness, 1992, and Section 3.2 of Bradley and Pribram, 

Chapter 21 in this volume). The arguments by several authors in this book ( notably Stork, 

Werbos, Leven, and Levine) that much of neural and cognitive functioning ts not optimal do not 

consider the expenditure of effort in the process of making a decision. The possibility still exists 
that satisficing decisions (Simon, 1979) can be interpreted as optimal with respect to some 
complex utility function that increases with satisfaction and decreases with effort. Hence, 
Parberry’s work may point the way to a broader basis for interpreting network behaviour, both 

biological and artificial, in an optimality framework.
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ABSTRACT 

Searle’s arguments that intelligence cannot arise from formal programs are refuted by 

arguing that his analogies and thought-experiments are fundamentally flawed: he imagines a 

world in which computation is free. It is argued instead that although cognition may in principle 

be realized by symbol processing machines, such a computation is likely to have resource 
requirements that would prevent a symbol processing program for cognition from being designed, 
implemented, or executed. In the course of the argument the following observations are made: 

(1) A system can have knowledge, but no understanding. (2) Understanding is a method by which 

cognitive computations are carried out with limited resources. (3) Introspection is inadequate for 

analyzing the mind. (4) Simulation of the brain by a computer is unlikely not because of the 

massive computational power of the brain, but because of the overhead required when one model 

of computation is simulated by another. (5) Intentionality is a property that arises from systems 

of sufficient computational power that have the appropriate design. (6) Models of cognition can 
be developed in direct analogy with technical results from the field of computational complexity 
theory. 

1. ARGUMENT 

Penrose (1989) stated, "I am inclined to think (though, no doubt, on quite inadequate 

grounds) that unlike the basic question of computability itself, the issues of complexity theory 

are not quite the central ones in relation to mental phenomena." On the contrary, I intend to 

demonstrate that the principles of computational complexity theory can give insights into 
cognition. 

Searle (1980) published a critique of artificial intelligence (AI) that almost immediately 

caused a flurry of debate and commentary in academic circles. The paper distinguished between 

weak AI, which uses the computer as a tool to understand cognition, and strong Al, which has 

as its main goal the recreation of cognition in a computer by means of a formal symbol-proces- 
sing program. Searle professed to prove by thought-experiment, analogy, and introspection that 

no formal program can think, and thus deduced that strong AI is misguided. 

Despite the flood of criticism and countercriticism that has been published, Searle seemed 

to have changed his opinions little over the next decade (Searle, 1984, 1990). As a theoretical 
computer scientist | do not find his arguments convincing. I propose here to expose some 
fundamental misunderstandings in his arguments. I do not directly refute his claim that strong 
Al is misguided, but I propose to show that his demonstration of this proposition is deeply 

flawed. I believe that strong AI cannot be dismissed on purely philosophical grounds. However, 

in the course of my argument I raise some of my own doubts about strong AI. 

The three main weapons that Searle uses against strong AI are introspection, reasoning 

by analogy, and gedankenexperiment. Introspection can be highly unstable pedagogical ground, 
because in using the mind to observe and reason about itself, one risks running afoul of the 
Heisenberg Uncertainty Principle: the process of self-analysis may change the mind to the extent 

that any conclusions are cast into serious doubt. Nonetheless, I am prepared to allow
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introspection within certain bounds: I will allow Searle to look within himself and state that he 
understands English and does not understand Chinese. 

I am suspicious of reasoning by analogy primarily because one needs little experience to 
realize that an analogy can be inappropriate if not properly subjected to the scrutiny of logic. 
Similarly, the gedankenexperiment, despite its illustrious history, can be seriously misguided. 
Because a gedankenexperiment is carried out purely in the mind, the conductor of the experiment 
is free to construct a fictional world in which reality does not apply, and hence runs the risk of 
coming to conclusions that have no basis in the real world. This is the fundamental flaw in 
Searle’s reasoning: he carries out his gedankenexperiment in an imaginary world where 
computation costs nothing. 

Many academics from outside the field of computer science who like to publish papers 
in the field appear to suffer from the misguided belief that computer science is a shallow 
discipline (if nothing else, because it has the word "science" in its name). Searle, like many 
critics of computer science, does not appear to be aware of current tends in research. Searle’s 
arguments are limited to the theoretical computer science before the 1970s, which is based on 
the concept of computability, and the Church-Turing thesis that all models of symbolic 
computation are essentially the same. 

Such a computational model assumes that computation is free. Unfortunately, just 
because a function is computable in the Church-Turing sense does not automatically mean that 
it is computable in the real world. Computation consumes resources, including time, memory, 
hardware, and power. A theory of computation, called computational complexity theory,' has 
grown from this simple observation, starting with the seminal paper of Hartmanis and Stearns 
(1965). The prime tenet of this technical field is that some computational problems intrinsically 
require more resources than others. The resource usage of a computation is measured as a 
function of the size of the problem being solved, with the assumption that we can solve small 
problems with the computers available to us now, and we will wish to scale up to larger 
problems as larger and faster computers become available. 

The crux of Searle’s argument is the following: just because a computer can compute 
something does not imply that it understands it. This is a reasonable hypothesis in the light of 
1950s computer science: a function being computable is not sufficient reason to believe that 
something that computes it truly understands it. According to Searle, proponents of strong Al, 
in contrast, believe the opposite. The Turing? test (Turing, 1950) pits a human being against a 
computer. If an independent observer cannot tell in conversation with the two via some 
anonymous medium such as a teletype which is the computer and which is the human being, then 
the computer is said by proponents of strong AI to be "intelligent." 

  

I ; ; ; ; . Computational complexity theory should not be the confused with the more recent science of complexity 
popularized by physicists. 

> Alan Turing made fundamental contributions to both theorctical computer science and Al, which is not 
surprising because the two fields were at the time inexplicably intertwined by the fact that the only computational 
device upon which to model a computer was an intelligent one: the brain.
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Searle’s gedankenexperiment consists of the following. Program a computer to converse 

in a natural language by providing it with a table of all possible inputs and their corresponding 

outputs. When given an input, the computer looks up the correct response in the table, and 

outputs that response. Searle reasoned that this computer passes the Turing test, but cannot be 

said to really understand what it is doing. He justified the latter observation with an analogy. 

A human being can be given such a lookup table for a language that he or she does not 

understand, for example, Chinese. This person can pass the Turing test in Chinese, despite the 

fact that he or she does not understand Chinese. Unlike many of Searle’s critics, | am quite 

comfortable with this line of argument, and quite willing to concede that a computer programmed 

in this manner does not understand what it is doing in any reasonable sense of the word. 

However, Searle missed an important point early in his argument. He assumed that such a 

computer program is possible. 1 believe that such a program is not possible, for the simple 

reason that it requires too much in the way of resources. 

Because the number of legal utterances in a natural language is uncountable (Langendoen 

& Postal, 1984), it is impossible to compile a complete look-up table of a language such as 

English or Chinese. However, this is not a serious barrier to the experiment. It would be 

sufficient for the purposes of passing the Turing test to compile a table of commonly used 

statements and legitimate responses. Whilst the number of commonly used questions and 

statements is a matter of some debate, a conservative lower bound is easy to obtain by 

considering questions of a particular form. 

Consider queries of the form 

Which is the largest, a <noun>,, a <noun>,, a <noun>,, a <noun>,, a <noun>,, a <noUN>,, OF a 

<noun>,? 

where <noun> denotes any commonly used noun. Seven nouns were chosen rather than any 

other number because that appears to be the number of concepts that a typical human being can 

grasp simultaneously (Miller, 1956). How many queries are there of this form? There is little 

difficulty in constructing a list of 100 commonly known animals (see, e.g., Fig. 8.1). Therefore 

there are 100 choices for the first noun, 99 for the second, etc., giving a total of 

100x99x98x97x96x95x94 = 8x10'* queries based on Fig. 8.1 alone. 
This is a very large number that requires grounding in everyday experience. The Science 

Citation Index’ is a publication that approaches the human limit for usable information crammed 

into the smallest amount of space. Each page contains approximately 275 lines of 215 characters 

each, and each inch thickness of paper contains 1000 pages (over 5.9 x 10’ characters). 

Assuming we could fit two queries of the above form and their responses on each line, each inch 

of paper would contain 5.5 x 10° queries. Therefore, if a look-up table for queries of the above 

form were constructed, and all the pages were stacked up, they would be 1.45 x 10° inches, that 

is, 2300 miles high. This would require a volume of paper almost 200 feet long, 200 feet wide, 

  

~ Published by the Institute for Scientific Information.
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and 200 feet high. In contrast, the Great Pyramid of Cheops was (at the time of construction) 

over approximately 760 feet square and 480 feet high (see Fig. 8.2). 

aardvark crocodile guinea pig orangutan shark 

ant deer hamster ostrich sheep 

antclope dog horse olter shrimp 

bear dolphin hummingbird — owl skunk 

beaver donkey hycna panda slug: 

bee duck jaguar panther snail 

beetle eagle jellyfish penguin snake 

buffalo eel kangaroo pig spider 

butterfly ferret koala possum squirrel 

cat finch lion puma starfish 

caterpillar fly lizard rabbit swan 

centipede fox llama raccoon tiger 

chicken frog lobster rat toad 

chimpanzee gerbil marmosct rhinoceros tortoise 

chipmunk gibbon monkey salamander turtle 

cicada wiralte mosquito sardine wasp 

cockroach gnat moth scorpion weasel 

cow goat mouse sea lion whale 

coyote goose newt seahorse wolf 

cricket gorilla octopus seal zebra 

Fig. 8.1. One hundred animals. 

A reasonable defense against this objection is that computers can store data more 

efficiently than the printed word. It is possible in principle to construct a hard-disk array capable 

of storing our example lookup table. If we extrapolate slightly from the current state of the art, 
a disk capable of storing 2.5 x 10” characters takes on the order of 100 cubic inches of volume 
and costs on the order of $1,000. Therefore, 8 x 10'* queries at 100 characters per query requires 

3.2 million disks, which would take up a volume of 1.85 x 10° cubic feet (or a cube 57 feet on 

a side), and cost $3.2 billion. 

It is clear that our toy example only scratches the surface of the true size of a lookup 

table for a natural language. It is not too difficult to compile a list of 1400 fairly common 
concrete nouns (see the Appendix). It is not unreasonable to expect computers to be able to 
match the highest human ability, which would be nine nouns per query (Miller, 1956). The total 

amount of storage required for 1400’ = 2 x 10°° queries, with 100 characters per query, 5 bits 

per character, is 10°’ bits. 

If we were to store this on paper, it would require a stack almost 10'° light years high. 

In contrast, the nearest spiral galaxy (Andromeda) is 2.1 x 10° light years away, and the distance 

to the furthest known galaxy in 1988 was 1.5 x 10'° light years (Emiliani, 1988). If we were to 
use hard disks, it would take 5 x 10°° drives, which would occupy a cube 580 miles on a side. 
Even if we were to extrapolate wildly beyond the limits of foreseeable technology and conjecture
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that each bit could be stored on a single hydrogen atom, it would require almost 17 tons of 
hydrogen. Yet our query set is still relatively small compared to the true number of reasonable 
natural language queries. It is not too difficult to compile 30 different adjectives or adjectival 
clauses to replace "largest"), which multiplies the resource requirement by 30. Increasing the list 
of nouns to 2,000 increases it by a further factor of 20. Increasing the list of nouns to 10,000 
increases it by a further factor of almost 2 million. 

  

  

  

Fig. 8.2. The Great Pyramid of Cheops and the lookup table. 

Therefore, it is fairly safe to conclude that it is not possible to pass the Turing test by 
simply using a lookup table. Where does this leave Searle’s Chinese Room gedankenexperiment? 
A lookup table certainly contains knowledge, but no understanding. Searle's gedankenexperiment 
illustrates that understanding enables us to perform computations with a reasonable amount of 
resource usage; certainly less memory than is required to store a lookup table, and less time than 
is required to access one. This is a purely operational definition of understanding, and thus may 
not be satisfactory to a philosopher such as Searle who is more interested in a denotational 
definition, but I believe that any theory of cognition that does not take this into account rests on 
unstable foundations. 

Naturally, understanding is not a Boolean trait; one can have a little understanding, rather 
than being limited to no understanding or complete understanding. With a little understanding 
of the concept of size, one can reduce the lookup table for the example queries simply by sorting 
the list of objects in increasing order of size. We appear to understand such things not by 
memorizing lists of facts, but by grounding the abstract concepts of the objects involved in 
everyday experience, from which information we compute facts such as their relative size. I 
believe that understanding evolved as the most efficient way of storing, cross-referencing, and 
reasoning about large quantities of environmental data (that is, the most efficient way that can 
be realized within the design parameters of evolution). 

One point on which Searle and I agree is that a digital computer can, in principle, 
simulate a human brain. The electrical behaviour of a single neuron is far from being well 
understood, but I would be surprised if it could only be described using continuous mathematics. 
My first objection is on general principle: most phenomena in the Universe appear to be discrete, 
although in many cases the quanta are so small that continuous mathematics is a good
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approximation to reality. My second objection comes from the experimental observation that the 
brain often continues to function when large numbers of neurons are damaged, and under condit- 

ions in which a large number of them misfire. I find it difficult to believe that this robustness 

would be possible if it were essential that every neuron compute a real value to infinite precision. 

Fixed precision is almost certainly enough, and probably not too large a precision. Any fixed 

precision computation can be realized by a discrete computation. 
Searle felt uncomfortable with the consequences of the Church-Turing thesis. Computers 

can be realized with any medium that can represent Boolean values and compute binary 
conjunction and complement, including water pipes. In principle, a plumber could devise a sewer 

system that can simulate a human brain. Searle found this absurd, but not for the same reasons 

that I do. There is far too much computational power in the brain to implement it as a sewer 

system. 

Can we make a rough estimate as to how much computational power is contained in the 

human brain? Barrow and Tipler (1986) gave a range of 10'° to 10’ floating point operations 
per second, but they assumed that the computation is taking place purely within the soma of the 

neuron. Conventional wisdom currently conjectures that a significant amount of the computation 

actually takes place within the synapses. Turing (1950) made an estimate in the 1950s that with 

the benefit of modern knowledge seems optimistically low. 

It is difficult to obtain reliable estimates of the number of neurons in the human brain. 
Shepherd (1988) estimated that the human cortex has a surface area of about 2,400 square 
centimeters, and Rockell, Hiorns, and Powell (1980) reported a uniform density of about 8 x 10° 

neurons per square millimeter, from which we can conclude that the number of neurons in the 

cortex alone is of the order of 10'". I assume that the bulk of the information passed from one 
neuron to another passes through the synapses; the number of such connections per neuron varies 

with the type of neuron in question, and is somewhat difficult to estimate, but a figure of 10° 

connections per neuron is probably conservative. It is probably optimistic to assume that a pair 
of inputs to a neuron can be combined using a single floating-point operation; even so, this 
implies that each neuron computes the equivalent of 10° floating-point operations to combine the 

information input to it across its synapses. Combining these naive estimates with a firing time 

of 10° seconds per neuron, we see that the brain appears to have a processing power equivalent 

to at least 10'° floating-point operations per second. 

Searle’s water-pipe brain simulator is clearly something that can be imagined, but not 
constructed. Even under high pressure, water would flow so slowly in the pipes that in order to 

achieve 10'* floating-point operations per second it would require on the order of 10'° floating 
point operations to be computed simultaneously at different parts of the sewer. Even if these 

results could be combined in a meaningful way in a fast enough manner, the sheer size of the 

system makes it so unreliable that it would stand little hope of passing the Turing test. For that 

matter, could a computer do a better job? Current supercomputers can execute 10'° floating-point 

operations per second, and it is estimated that we might reach 10'° by 1994 (Bell, 1989). The 
brain appears to have more available computational power than a thousand of these hypothetical 

supercomputers.
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This type of argument rests on shaky pedagogical ground because it is impossible to make 
an accurate assessment of the brain’s computational power given our current almost complete 
lack of understanding of the principles of brain style computation. Our estimate may well be too 
high or too low by several factors of ten. A second weakness is that technology is advancing 
so rapidly that, if Bell is correct and 10'° floating-point operations per second are achievable by 
1994, and advances in technology double computing speed annually, then computers may reach 
the 10'° floating-point operations per second needed to rival the brain by as early as 2004. 

One thing that we can be fairly certain of, however, is that the brain’s architecture is in 
a sense optimized for the type of computation that it is to perform. I say "in a sense" because 
there is little reason to believe that it is the absolutely optimum architecture (for evidence that 
biological computing systems are suboptimal, see, e.g., Dumont & Robertson, 1986; Stork, 1992; 
Stork, Jackson, & Walker, 1991). Rather, it is reasonable to believe that evolution has led toa 
locally optimal solution to a complicated optimization problem whose constraints include such 
factors as computational efficiency, heat loss, weight, volume, and_ nutritional requirements. 
Current computers, on the other hand, have architectures that are optimized within the constraints 
of current technology for the types of symbol processing problems for which they are used. It 
is hardly surprising that the architectures of the brain and the computer are radically different. 

The simulation of the brain on a computer, then, is the task of simulating one model of 
computation on a second, architecturally different, model. The concept of one computer model 
simulating another is a key one in the theory of computational complexity. The Church-Turing 
thesis states that any reasonable model of computation can simulate any other one. Computation- 
al complexity theory has similar theses that state that these simulations can be carried out with 
a fairly small overhead in resource use; there is the sequential computation thesis (Goldschlager 
& Lister, 1983), the parallel computation thesis (Goldschlager, 1977, 1982), the extended parallel 
computation thesis (Dymond, 1980; Dymond & Cook, 1980), and the generalized parallel 
computation thesis (Parberry & Schnitger, 1988). 

Nonetheless, each simulation requires an overhead in either hardware or time, often by 
as much as a quadratic in amount of that resource used by the machine being simulated. 
Theretore, any computer doing a neuron-by-neuron simulation of the brain need not only be as 
computationally powerful as the brain, but dramatically more so. For example, contrast our 
figures on raw computing power above with experimental figures in the DARPA study (1988) 
on simulating synaptic weight updates in current neuron models (summarized in Table 8.1). The 
reason why the computer figures are so poor (capable of simulating neural capacity somewhere 
between a worm and a fly, see Table 8.2) is that the raw computing power figures that we gave 
earlier completely ignored the extra overhead involved in the simulation. This is the real reason 
that we should abandon any hope of simulating cognition at a neuron-by-neuron level, rather than 
any philosophical or pedagogical objection. 

Searle’s reasoning by analogy that there is little reason to believe that a simulation of 
cognition is not the same as cognition is unconvincing. Certainly a simulation of a fire is not 
a fire, but for some purposes it does just as well. Pragmatically, if a simulation of cognition is 
not possible by reason of the fact that such a simulation carries too much overhead, then it is 
merely a matter of definition whether one calls it true cognition. Nonetheless, Searle has raised 
an important point that has deep ramifications. Strong AI proceeds by construction of a model
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of how the mind performs a task (such as understanding short stories, Schank & Abelson, 1977), 

and then implementing (Searle would say "simulating") that model on a computer. But what is 

introspection, if it is not simulating cognition? When one introspects, one constructs a conscious 

model of mind process, in essence a simulation of the mind. What right have we to believe that 

the products of introspection, which is no more than the construction of an internal simulation 
of mind, bear any real resemblance to the mind? 

Computer Synapses Updates 

PC/AT 1.0 x 10° 2.5 x 10° 
Symbolics 1.0 x 10’ 3.5 x 10° 
VAX 3.2 x 10’ 1.0 x 10° 

SUN3 2.5 x 10° 2.5 x 10° 
MARK III, V 1.0 x 106 5.0 x 10° 
CM-2 (64K) 6.4 x 10’ 1.3 x 10° 
Butterfly (64) 6.0 x 10’ 8.0 x 10° 

WARP (10) 3.2 x 10° 1.0 x 10’ 
Odysscy 2.6 x 10° 1.0 x 10’ 
CRAY XMP 1-2 2.0 x 10° 5.0 x 10’ 
MX-1/16 5.0 x 10’ 1.3 x 108 

Table 8.1. Number of Synapses, and Synaptic Weight Updates per Second tor Some Common Computers 

to Simulate a Neural Network (from DARPA study, 1988). The measurements for the MX—1/16 are 

projected performance only. 

Creature Synapses Updates 

Leech 7x 10° 2x 10' 

Worm 5 x 10' 2x 10° 

Fly 8x 10! 1x 10° 

Aplysia 2x 10° 2x 10'° 
Cockroach 9x 108 3x 10'° 

Bee 3x 10° 5 x 10" 

Man 1x 10"! 1 x 10'° 

Table 8.2. Number of Synapses, and Synaptic Weight Updates per Second tor Some Common Creatures 

(from DARPA study, 1988). 

A crucial part of Searle’s argument is the concept of intentionality, which describes 
directed mental states such as beliefs, desires, wishes, fears, and intentions. Intentional states are 

related to the real world, but are not in one-to-one correspondence with it. One can have beliefs 

that are false, desires that are unfulfillable, wishes that are impossible, fears that are groundless, 

and intentions that cannot be realized (Searle, 1979a, 1979b). There are conscious intentional 

States, and unconscious intentional states, yet Searle devised a logic of intentional states that is 

mirrored in linguistics (Searle, 1979b). Searle came to this conclusion from introspection, that
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is, by constructing a conscious and therefore by its very nature symbolic simulation of 
intentionality. If a simulation of intentionality is fundamentally different from intentionality 
itself, and if a conscious model of intentionality is merely a simulation of intentionality (rather 
than the real thing), then we are drawn to the inevitable conclusion that Searle’s logic of 
intentionality tells us little about intentionality itself. The inadequacy then is not in strong Al, 
which can take any consciously generated symbol-based model of cognition and turn it into a 
computer program, but rather with the analytical tools of cognitive psychology. 

Searle argued that a formal program cannot have intentionality, and that intentionality is 
a crucial part of cognition. I am in agreement with the latter hypothesis, but in the former 
hypothesis Searle exhibited a strong anti-machine bias that he did not defend to my satisfaction. 
He was willing to accept that an animal has intentionality because it is the simplest explanation 

of its behaviour, but only because it is made of the same "stuff" as we are; apparent intentional 

behaviour from a robot was insufficient for him because (Searle, 1980, p. 421) "as soon as we 

knew that the behavior was the result of a formal program, and that the actual causal properties 
of the physical substance were irrelevant we would abandon the assumption of intentionality." 

Searle made the assumption that intentionality is a property of the "stuff" of biological 
organisms, and cannot arise from the "stuff" of computers by execution of a formal program. 
We do not know enough of how intentional states are realized in human beings (Searle, 1979b, 

considered the question briefly and dismissed it as irrelevant) to be able to say with confidence 

that formal programs can never exhibit them. It is reasonable to hypothesize that intentional 
States can arise in computational systems that are both sufficiently powerful and properly 
organized. There is no reason to believe that intentional states arise in simple machines such as 
thermostats, and it is a reasonable hypothesis that they do occur in higher primates and human 
beings. A reasonable hypothesis is that simple machines lack the computational power to have 
intentional states. That proper organization is necessary for intentional states is a properly 
conservative view; it is too optimistic to believe that they occur naturally in any computational 

system that is powerful enough to exhibit them. The real reason why computers do not have 

intentional states is that they are too simple to have them. 

Searle was offended by the thought that a mere computer program could have intentional 
States, or think. But there is nothing "mere" about a computer program. The task of producing 
correct, fast, and robust software for even simple tasks (such as an airline reservation system) is 
incredibly difficult, as anyone who has attempted to write more than "toy" programs will agree. 
I have no philosophical problem with the hypothesis that there exists a program that when 
executed gives rise to cognition. However, there is a great chasm between that belief and strong 
Al. It may be that the program is far too complicated for us to understand. It may be that, when 
written as a formal program, it has resource usage that is beyond the power of the human race 
to provide. Simply because cognition can be realized in the brain (in some fashion that we do 
not yet fully understand) with a reasonable resource requirement is no reason to believe that its 

resource requirements as a formal program will be reasonable too. We have already seen that 
there is a large overhead in simulating one machine by another; it is often the case in 
computational complexity that a program for machine A requires large overhead to implement 
on machine B, regardless of whether machine B simulates the program for A directly, or executes
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a completely unrelated program that produces the same results. The overhead of achieving 
cognition on a computer may be so large as to render the task impossible. 

For example, it is clear that one cannot simulate intentionality by a Chinese Room 

algorithm, because such a lookup table must have entries for questions of the form 

Would you believe that a <noun>, could be larger than a <noun>,, a <noun>,, a <noun>,, a 
<noun>,, a <noun>,, or a <noun>,? 

or of the form 

Which would you like to see most of all, a <noun>,, a <noun>,, a <noun>,, a <noun>,, a 

<noun>,, a <noun>,, or a <noun>,? 

The previous arguments about the size of the lookup table apply equally well here. 

In summary, I believe that intentionality and cognition can in principle be obtained by 

executing the appropriate formal symbol manipulation program, but that there are other barriers 

that prevent intentionality and cognition from being realized that way in practice. To draw an 

analogy, the Principia Mathematica (Whitehead & Russell, 1910-1913) reduces mathematics to 

symbol manipulation, yet this is not how mathematicians do mathematics. Whilst they freely 
acknowledge that it is a necessary condition for any "proof" to be in principle expressible in 

formal logic, it is not necessary that it be so expressed. Mathematicians reason informally 
principally for the purposes of communication: a human being simply cannot understand a proof 

of any great depth and difficulty if it is expressed in symbolic logic. I believe that in the same 

sense, the mind can in principle be reduced to a symbol manipulation program, but the program 

would be far too long and complicated for human beings to understand (see also Campbell, 1989, 

p. 109), and that the reason why we don't see thinking beings that are "mere symbol processors" 
is that the mind reduced to a symbol processing program may be too greedy of resources to be 

realized in the physical world. 

We must also face the fact that it may not be possible to build a computer that matches 

the brain in speed, size, reliability, portability, power consumption, and ease of fabrication. It 

may be, as some biologists believe, that biology is the only way to achieve these goals 

simultaneously. But perhaps not. Perhaps the brain is the only way that such a computational 

device could evolve. It is an open question whether we can devise one ourselves, independent 
of the constraints of evolution. It is still an open question as to whether we could make such a 

device sentient. I believe that it is not possible given our current state of technology and current 

state of knowledge about cognition, but Searle’s arguments have failed to convince me that such 

a thing is in principle impossible. 

Many believe that neural networks adequately refute Searle’s Chinese Room gedankenex- 
periment (see, e.g., Churchland & Churchland, 1990). Searle dismissed neural networks and 
parallel computation as not bringing anything new to the concept of computation as it applies to 

cognition. In a sense he was right; they bring nothing new to the 1950s style of computability 
theory that he used to bolster his arguments. However, parallel computers are more efficient at
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solving some problems than sequential computers are (see Parberry, 1987), and the same can be 
said of neural networks (see Parberry, 1990, 1992). 

The prime contribution of neural networks is not their mode of computation. The fact that 
they use a computational paradigm that differs from the traditional Church-Turing one is 
self-evident in some cases, but this is not the death knell for computer science as many of the 
proponents of neural networks would have us believe. Theoretical computer science has dealt 
with unconventional modes of computation for decades, as we examine later in this chapter. 

The prime contribution of neural networks is the capacity for efficient computation of 
certain problems. The first computers were created in rough analogy with the brain, or more 
correctly, in rough analogy with a carefully selected subset of what was known about the brain 
at the time. Although technology has advanced greatly in recent decades, modern computers are 
little different from their older counterparts. It is felt by some scientists that in order to produce 
better computers we must return to the brain for further inspiration. 

I believe that it is important to determine which features of the brain are crucial to 
efficient computation, and which features are by-products or side effects of these (see Parberry, 
1990, 1994). I do not believe that a computer that is comparable in computing power to the 
brain can be obtained by merely simulating its observed behaviour, simply because the overhead 
is too great. The general principles of brain computation must be understood before we try to 
implement an artificial system that exhibits them. 

Computational complexity theory is a powerful technique that can be used to divine some 
of the general principles behind brain computation. However, the theory is in its infancy. 
Surprisingly, many apparently simple questions about efficient computation turn out to be 
difficult and deep. Whilst computational complexity theorists equate exponential resource usage 
with intractability and polynomial resource usage with tractability, in real life any resource usage 
that grows more quickly than log-linearly in problem size is probably too large to be of any real 
use. It remains to develop the tools that can make that fine-grained a distinction in resource 
requirements; for example, we cannot distinguish between problems with time requirements that 
intuitively grow exponentially with problem size from those that do not (see, e.g., Garey & 
Johnson, 1979). 

Nonetheless, computational complexity theory often gives insights that may have profound 
philosophical ramifications. For example, many neural network researchers use a continuous 
model (i.e., one in which the neurons compute a continuous value). It can be shown in certain 
technical senses that if one assumes that neuron outputs are robust to small errors in precision, 
then their model is essentially the same as a discrete one within a "reasonable" overhead in 
resources (Obradovic & Parberry, 1990a, 1990b). More importantly, the same is true even 
without the assumption of robustness (Maass, Schnitger, & Sontag, 1991). 

The general framework used by neural network researchers is a finite network of simple 
computational devices wired together similarly to the network shown in Fig. 8.3 so that they 
interact and cooperate to perform a computation (see, e.g., Rumelhart, Hinton, & McClelland, 
1986). Yet there is little attention paid to how these finite networks scale to larger problems. 
When one designs a circuit to solve a given task, such as performing pattern recognition on an 
array of pixels, one typically starts with a small number of inputs, and eventually hopes to scale 
up the solution to real life situations. How the resources of the circuit scale as the number of
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inputs increases is of prime importance. A good abstraction of this process is to imagine a 
potentially infinite series of circuits, one for each possible input size, and to measure the increase 

in resources from one circuit in the series to the next (see Fig. 8.4). 

Inputs from sensors 

Outputs to effectors 

Fig. 8.3. A finite neural network with nine nodes and two layers. 

There is an apparent flaw in this abstraction, however. Because for every natural number 
n, every Boolean function with 2 inputs can be computed by a finite Boolean circuit (essentially 
by using a lookup table, a formalization of Searle’s Chinese Room), our infinite-family-of- 

finite-circuits model can compute any Boolean function, and so violates the Church-Turing thesis. 

This can be remedied in one of three ways (among others). First, we could insist that each finite 

circuit in the infinite series be similar to its predecessor in the series in the sense that a 

Church-Turing computer can compute the differences between the two. This type of circuit is 

called a uniform circuit (whereas the former is called a nonuniform circuit). Second, we could 
insist that the number of processing units in the finite circuits grows only polynomially with input 

size. This would avoid the embarrassment of being able to compute every Boolean function, 

because it is easy to show by a counting argument that there are Boolean functions that require
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exponential size. Third, we could insist that the structure of each circuit be different from its 

predecessor, but that there exists a computable set of circuits in which substantially more than 
half of the alternatives compute the correct function. The first solution satisfies the Church-Tur- 
ing thesis, and the other two do not. This need not necessarily be a problem: the Church-Turing 

thesis is a model of reality, and is not inviolate. The second solution is not particularly desirable, 

since it can make the design of the circuits difficult in practice. The third solution is more 

appealing because although we may not be able to compute the layout of each circuit, a subset 

of circuits chosen randomly from the computable set of alternatives has high probability of 
turning out a circuit that works. 

| ray 

Fig. 8.4. A neural network family. 

  

  
  

  
  

  
      

    

    

      

Allowing computers access to a random source appears to make them more efficient than 

a plain deterministic computer in some circumstances (see, for example, Cormen, Leiserson, & 

Rivest, 1990, Section 33.8). (Note that this is different from randomly choosing a deterministic 

algorithm.) In this case, it is sufficient for the algorithm to compute the correct result with high 

probability, say 0.999. Surprisingly, such a randomized algorithm can be replaced with a
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nonuniform one with only a small increase in resources (Adleman, 1978). This principle can 

even be applied to probabilistic neural networks such as Boltzmann machines (Parberry & 

Schnitger, 1989). 

Randomness and nonuniformity are two methods for reducing the resource requirements 

of algorithms, both of which reach outside the confines of the Church-Turing thesis. The use of 
randomness occurred to Turing (1950), as did the possibility that the program of the mind (if it 
exists) may be far too complicated for us to analyze. Turing also raised the possibility that a 
computer could learn, as does a child. Computational complexity theory has started to ask 

questions in this domain with the recent development of computational learning theory (see, e.g., 

Natarajan, 1991). Of prime importance is the probably-approximately-correct, or PAC model 

of learning, in which it is sufficient for the system to learn a response that is with high 

probability close to the correct answer. Valiant (1984) proposed the original distribution-free 
PAC learning, and more recent versions include the Universal distribution (Li & Vitanyi, 1989). 

The theoretical results described above demonstrate that randomness and continuous 

computation do not offer a large increase in efficiency because they can be simulated with a 

small increase in resources by discrete, deterministic computation. This does not, of course, 

mean that we should use discrete computation to realize neural networks. As discussed above, 

what is small overhead for a theoretician often becomes overwhelming in practice. Nonetheless, 
the theoretical results indicate that there is nothing new and alien in probabilistic and continuous 
computation, and that any philosophy based in them does not necessarily differ radically from 

a philosophy based on discrete, deterministic computation, contrary to all appearances. 
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Richard Golden's chapter, Optimal Statistical Goals for Neural Networks Are 
Necessary, Important, and Practical, provides a systematic mathematical theory, based on 
probability theory, for optimization 11a wide variety of neural networks for pattern classification. 
The networks that Golden fits into his framework are the Hopfield, brain-state-in-a-box (see 
Chapter 16 by Abdi, Valentin, and O'Toole), harmony theory, and Boltzmann machine networks. 
(Editor's note: the Cohen-Grossberg network, which is a generalization of the Hopfield and has 
a global Lyapunov function, fits into this framework as well.) 

The framework Golden uses includes an activation update rule, a learning rule, and an 
objective function. It also includes a probability density function specifying the likelihood of a 
particular weight vector, and a probability density function specifying the likelihood of a 
particular activation vector given the weight vector. The network's probabilistic assumptions are 
interpreted in terms of logically consistent (idealized) belief structure and therefore obey 
standard laws such as transitivity. The computational goal of the learning rule is to find a 
weight vector which is most probable given a sequence of training patterns presented to the 
network. One result of this theory is to determine the class of statistical environments that a 
given network can represent. 

In the discussion, Golden deals with several questions that are key to the overall ideas of 
this book. These include "Why assume models of human behavior should be rational?," "Does 
an energy function always exist?," and "What if the learning dynamics of a model are not 
optimal?" Golden recognizes deviations of human inference and decision making from strict 
rationality but seeks to explain them under Herbert Simon's rubric of “satisficing," which he 
interprets as follows: "humans try to achieve their computational goals but are limited by the
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algorithms that they are forced to use." This statement is a good description of a locally 
optimizing neural network whose actual behavior may not always be optimal for many reasons. 
Nonoptimal network behavior could result from interactions with other subnetworks that are also 
trying to optimize different objective functions, with neural networks in other humans that also 

have conflicting computational goals, and with a complex, nonstationary environmental context. 

The distinction between local and global optimization ts a theme of many of this book's other 

chapters (e.g., DeYong, Leven, Levine, Ogmen/Prakash, and Werbos). 

ABSTRACT 

The description of a neural network’s behavior in terms of its attempts to achieve specific 

computational goals is necessary to obtain a complete understanding of the network's behavior. 

A practical procedure for constructing the computational goal for a given neural network 
architecture is described. To illustrate the approach, specific computational goals for a variety 
of neural networks are then formulated as the solutions to a set of nonlinear statistical 

optimization problems. Some reasons for using a statistical formulation are that (a) rational 

decision makers should use statistical inference, and (b) a statistical formulation permits an 

objective evaluation of a neural network’s computational goals using goodness-of-fit tests. 

Finally, some commonly asked questions about this approach are noted and answered. 

1. INTRODUCTION 

Marr (1982) proposed that at least three levels of description are necessary to understand 

the behavior of a complex information processing system. These three levels of description are 

the implementational theory level, the algorithmic theory level, and the computational theory 

level. The computational level of description is designed to specify the goal of the information 

processing task. Moreover, the relevance of the goal for the information processing task must 

also be specified at this level and its uniqueness must be justified. The algorithmic level of 
description is designed to specify the algorithms required to carry out the computations necessary 

to achieve the computational goal with sufficient detail so that the algorithm can be implemented 
as a computer program. Finally, the implementational level of description is designed to specify 

how the procedures at the algorithmic level are actually implemented. 

An artificial neural network (Levine, 1991; McClelland, Rumelhart, & the PDP Research 

Group, 1986) is a collection of simple neuron-like computing units. Each unit has a real-valued 

state that is referred to as the unit's activity level. The list of the activity levels of all units in 
the model can be represented as a vector X which is referred to as the activation pattern. The 
activation updating rule or classification dynamics of the neural network indicates how the 

activation pattern over the units will change as a function of the current activation pattern and 

the current pattern of connections among the neuron-like computing units. The free parameters 

of the model which explicitly specify the interaction coefficients of the neural network model are 

usually referred to as the connection weights and can be represented as a weight vector W. The 
learning rule specifies how the elements of the weight vector W are updated while the neural 
network model is learning.
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Because artificial neural networks are complex information processing systems, Marr’s 
(1982) theoretical framework is relevant for evaluating our current understanding of the behavior 
of these systems. The purpose of this chapter is to propose a particular formal theoretical 
framework for precisely and unambiguously expressing the computational goal of a neural 
network. This theoretical framework is expressed in terms of the language of statistics following 
proposals by a variety of researchers (Ackley, Hinton, & Sejnowski, 1985; Golden, 1988a, 1988b, 
1988c; Marroquin, 1985; Smolensky, 1986; Tishby, Levin, & Solla, 1989; White, 1989). 

First, the proposed probabilistic framework is defined and justified. Next, a useful method 
for the construction of a probabilistic computational level of description for neural networks is 
presented in conjunction with some sample applications of the theory. Finally, additional 
commonly asked questions about the approach are noted and answered. 

2. A STATISTICAL COMPUTATIONAL FRAMEWORK FOR NEURAL NETWORKS 

2.1. Formal Presentation of the Framework 

A theoretical framework for the description of neural network models is now provided 
following the development of Golden (1988a, 1988b, 1988c, in press). 

2.1.1. Implementational level of Description. The implementational level of description 
is expressed by explicitly writing down the dynamical systems associated with the activation 
updating and learning rules of the neural network model. 

Activation Updating Rule. Let W be a constant vector indicating the connection weights 
and other free parameters of the neural network model. A neural network model is assumed to 
be defined by an activation updating rule which is explicitly specified by either a discrete 
time-invariant deterministic (or stochastic) dynamical system of the form: 

X(i + 00) = F(X(0),W) + U, (1) 

where U,, ..., U,, ... is a zero-mean stochastic process indexed by 4, or a continuous time-invariant 
deterministic dynamical system of the form: 

dX/dt = F(X(0),W). (2) 

Note that Eq. (1) may be updated only once, as in the activation updating rule of a 
multilayer feedforward backpropagation network (Rumelhart, Hinton, & Williams, 1986). Also 
note that the above definition of the activation updating rule is not applicable to neural networks 
where the learning takes place during the activation updating process. It may be possible to 
extend the proposed theoretical framework to handle this latter situation in specific cases, but the 
above theoretical framework is sufficient for handling enough interesting cases to illustrate the 
general characteristics of the theory. 

Learning Rule. The learning rule describes how the weight vector W is adjusted based 
upon the network's experiences with its environment. Let the set t = {X,, X,, ..., Xx} be 
defined as the training sequence. To keep things simple, assume that the elements of Ty are
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independently and identically distributed according to an unobservable environmental probability 
distribution p,. 

The general class of neural network learning rules that are considered are assumed to have 

one of the following forms. Neural network batch learning rules are specified by either 

discrete-time dynamical systems of the form 

Wt + Ad = HCW(d), ty) (3) 

or continuous-time dynamical systems of the form: 

dW/dt = H(W,1,). (4) 

Note that if the neural network is required to demonstrate adaptive learning, Eqs. (3) and 

(4) are not appropriate because they require that each weight update is functionally dependent 

on the neural network’s past, present, and future experiences. For this reason, a third type of 

dynamical system for the weight update dynamics is now considered. An online neural network 

learning rule is specified by a discrete-time dynamical system of the following form: 

Wi + AD = H(W(d),X,) (5) 

where the stochastic process, X,, X;, ... is a Sequence of independent and identically distributed 

random vectors whose distribution is given by the environmental probability distribution p,. 

Thus, X, is the ¢" activation pattern observed by the neural network learning rule during the 

training process. An online neural network learning rule can presumably “track” slowly changing 
(i.e., nonstationary) Statistical environments, but the current version of the theoretical framework 

presented here does not directly deal with the nonstationary learning problem. 

2.1.2. Algorithmic and Computational Levels of Description. Although the dynamical 

system representation of a neural network model is sufficient to specify the network’s dynamics, 

the dynamical system representation is not an adequate description of the information-processing 
dynamics of the network model. The computational level of description specifies the information 

processing goals of the model, whereas the algorithmic level provides the necessary conceptual 
linkage between the implementational level and the computational level of description. That is, 

the algorithmic level of description provides a useful intermediate level of representation that 

explains how the implementation of the neural network is related to the achievement of the neural 

network's computational goals. Although all three levels of description (implementational, 

algorithmic, and computational) are equally important, this chapter focuses upon the computation- 

al level which is concerned with the optimal statistical goals of the neural network. 
Computational Goal of the Activation Updating Rule. Let the activation pattern X be 

partitioned into a response subvector R and stimulus subvector S. It is assumed that the elements 

of S are known, and that the elements of R are unknown and must be estimated. The 

computational goal of the activation updating rules in Eqs. (1) or (2) is to find a response pattern 

R’ which is most probable given stimulus S, the current knowledge state of the neural network 

W, and the network’s belief structure (i.e., probabilistic assumptions). That is, the computational
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goal of Eq. (1) or (2) is to generate a sequence of response vectors R,, R,, ... that converges in 
some sense to a global maximum of a probability mass (or density) function p. The probability 
distribution or belief structure p indicates the neural network’s belief that R will occur with 
probability (belief) p(R|S,W) given that the neural network has observed stimulus S in knowledge 
state W. 

Four important comments must be made at this point. First, the activation updating rule 
of the neural network is essentially optimal by definition, because a belief structure p is 
constructed so that the activation updating rule is seeking a global maximum of p. Second, the 
precise definition of p for a given neural network model is equivalent to a strong claim about the 
class of statistical environments that the neural network model is incapable of completely 
learning. Third, it is not obvious that a belief structure p can be found such that the activation 
updating dynamics for a given neural network architecture is seeking a global maximum of p. 
On the other hand, some guidelines for the construction of such belief structures are discussed 
later in this chapter. And fourth, the parametric form of the belief structure, p, implicitly 
incorporates knowledge of the network's biases, architectural assumptions, and activation 
updating rule. The sample space of p specifies the set of permissible activation patterns that are 
relevant to the neural network's information processing dynamics, and p also implicitly provides 
a "similarity metric" for judging the similarities and differences between activation patterns. 

Computational goal of the learning rule. The computational goal of the classes of 
learning rules such as Eq. (3), (4), or (5) is to find a weight vector W’ that is most probable 
given a training sequence, t,, of N training patterns with respect to the probability distribution 
p(X|W). Or in other words, find a W that maximizes p(W|t,). This goal can be achieved if it 
can be proved that Eq. (3) and (4) is an optimization algorithm which is seeking a W' that is a 
global minimum of the cross-entropy or Kullback-Leibler information criterion (Kullback & 
Leibler, 1951; White, 1989), E,(W). 

A heuristic derivation of the error function E,(W) is now provided in order to construct 
an explicit relationship between E,(W) and p(X|W). Let p(W) be a probability density function 
that specifies the likelihood of a particular weight vector before the training sequence, t,, has 
been observed. Let p(tx) be the likelihood of a particular training sequence consisting of the V 
training stimuli observed by the network. These N training stimuli are denoted by X,, X,, ..., Xn. 
Note that p(ty) is not functionally dependent on W. Then the likelihood of a given weight 
vector W given t, is expressed by 

PCWIty) = p(tx|W) pCW) / pty) (6) 

where 

PCtsIW) = pCXi|W) p(X,|W) pCX;|W) ... p(Xx|W) 

because X,, X,, .... Xy are independently and identically distributed. 
Unfortunately, p(W|t,) does not uniformly converge to a fixed function of W as the 

number of elements, N, in the training sequence, t,, is increased. To address this problem, 
define
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Ex(W) = -(1/N) log [p(Whty)] + K (7) 

where K is a constant that is not functionally dependent on W so that E,(W) is a monotonically 

decreasing function of W. The minima of E,(W) are thus equivalent to the maxima of p(Whty). 

Now, substituting Eq. (6) into Eq. (7), the following expression is obtained: 

Ex(W) = -(1/N) log [p(W)] - (I/N) 3; log(a(X|W)] + K, (8) 

where K, is a constant that is not functionally dependent on W and the summation ranges from 

i=1 to 1=N. If p(W) has a strict lower bound when W is sufficiently close to the set of global 

minima of -log [p(W|t,)] (this assumption can be considerably relaxed), then as N becomes 

large the —-(1/N) log [p(W)] term in (8) will approach zero. Thus, for sufficiently large sets of 
training patterns the error function is given by the log-likelihood function, E,(W), which 
converges to the cross-entropy or Kullback-Leibler Information Criterion (KLIC) (Kullback & 

Leibler, 1951; White, 1982, 1989) as the length, N, of the training sequence increases. That is, 

Ex(W) = -(1/N) &; log[p(X|W)] (9) 

where the summation ranges from i=1 to [=N. 

3. JUSTIFICATION FOR A PROBABILISTIC REPRESENTATION 

3.1. Neural Networks Are Inductive and Not Deductive Machines 

Most researchers in the field of neural networks would not consider a network of logic 

gates in the CPU of their computer to be a neural network. But of course, such a network Is 

formally equivalent to a network of McCulloch-Pitts formal neurons (McCulloch & Pitts, 1943). 

One reason that neural network researchers are reluctant to refer to logic gate networks as neural 
networks is that logic gates are solving deductive logic inference problems using the Boolean 
algebra instead of inductive logic problems. Most researchers would agree that a distinguishing 
characteristic of neural networks is their ability to generalize from experience and extract the 

"regularities" from their environment. Or, in other words, the computational goal of neural 

networks is to solve the inductive logic problem where the network is forced to make appropriate 

generalizations from its experiences in the world. 
It should be emphasized at this point that because inductive logic necessarily entails 

"going beyond" the data, the criteria for what constitutes a "good" inductive inference must be 

carefully considered. For example, Cox (1946) presented a very interesting argument concerned 

with the justification of probabilistic inference. Cox (1946) proved an assertion of the following 

type. If (a) the belief in a response R given a stimulus S can be represented as a real-valued 

function of S and (b) the computation of new beliefs from old beliefs is assumed to be consistent 

with the deductive logic (i.e., the Boolean algebra), then without any loss in generality the belief 
of R given S can be represented as the conditional probability of R given S. Similar arguments 
for using probability theory as an inductive logic that specifies the computational goals of a
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rational decision maker have been made by other researchers, including von Neumann and 
Morgenstern (1944), Ramsey (1988), and Savage (1954). 

Note that the "representation" of the belief of R given S as a conditional probability 
means that the following axioms of probability theory must be satistied. Let Q be a set referred 

to as the sample space of all possible elementary events (i.e., responses) for a given S. To keep 
the discussion simple, assume that Q contains a finite number of elements. Now, let events R 
and Q be events in Q. If: 

1.0 < p(R|S) VRE Q, 

2. p(Q|S) = 1, 
3. p(R U QIS) = p(RIS) + p(QIS) if RA. Q= 2g, 

then p(R|S) is the conditional probability of R given S. 
Any system of inductive logic that calculates and represents belief according to the above 

three axioms is equivalent to the probability theory or is logically inconsistent with respect to the 

above three axioms. To provide some additional insights into the plausibility of the above three 

axioms, these axioms of probability theory are now presented as axioms of rational decision 
making. To simplify the presentation, slightly "stronger" axioms of probability theory will be 

presented than is required. Golden (in press) provides a useful introduction to these axioms from 

the perspective of fuzzy measure theory on crisp sets. 

1. Axiom 1: 0 s p(R|S) s 1 WR © Q. This axiom states that the decision maker’s 

“belief that a particular event will occur can be represented as a real number 
between 0 (event will not occur) and 1 (event will occur). Intermediate belief 

values represent intermediate degrees of belief. Thus, a belief of 0.5 for a 

particular event (i.e., p(R|S) = 0.5) indicates the decision maker is completely 

uncertain about the occurrence of the event. This assumption implies that (a) the 

decision maker assigns a belief to every event which he, she, or it believes could 

occur in the environment, (b) the beliefs of the decision maker can always be 

rank-ordered, and (c) belief values have maximum and minimum values. 

2. Axiom 2: p (Q|S) = 1. The decision maker assumes that at least one event in the 
sample space will occur in its environment. 

3. Axiom 3: p(R U QJS) = p(R|S) + p(Q|S) if RM Q = @. This assumption states that 
the beliefs associated with mutually exclusive events combine in an additive 

manner. Although the additivity assumption is arbitrary, the additive method of 

computing beliefs has the following desirable properties. Suppose events R and 

Q are mutually exclusive (i.e., either R or Q can occur but events R and Q can 

not simultaneously occur). First, since the belief measure is nonnegative, the 

belief that either event R or event Q will occur is always greater than or equal to 

the belief that event R will occur (monotonicity). Second, the order of combina- 

tion of beliefs is irrelevant (commutativity and associativity).
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3.2. Objective Statistical Tests of Generalization Properties 

Consider a rational decision maker who has a belief p(X|W) that one of a finite number 

of outcomes, X, will occur in the environment. This belief is functionally dependent on the 

decision maker’s knowledge state W. Thus, different values of W will cause the decision maker 

to change his, her, or its beliefs about the likelihood of occurrence of the outcome X. Let p,(X) 
indicate the relative frequency that event X will occur in the decision maker’s environment. 
Then, a necessary but not sufficient condition for correct generalization is that a W exists such 
that: 

P(X|W) = p(X) VX © Q (10) 

where Q is the sample space. If this condition is not satisfied, then statisticians say that the 

parameterized probability model (belief structure) p(|W) is muisspecified with respect to the 

environmental distribution p,. A similar definition can be developed for probability density 
functions. 

This definition of generalization is straightforward, insightful, and useful. Given that the 
belief structure, p, of a particular neural network model is known, the class of statistical 

environments for which that neural network can make correct generalizations and inferences is 

explicitly specified. Moreover, goodness-of-fit tests such as White’s Information Matrix Test 

(White, 1982) or the chi-squared goodness-of-fit test (Manoukian, 1986, pp. 86-88) may be used 

to test for the presence of model misspecification. Such statistical tests are based on comparing 
the model’s predicted probability of event X with respect to the estimated relative frequency of 

event X in the model’s statistical environment. Objective statistical tests for deciding which of 

several alternative neural network (i.e., statistical) models "best fit" a given statistical 

environment can also be developed (Vuong, 1989; see Golden, 1995, in press). Thus, the 

construction of p provides a compact summary of the class of statistical environments that the 

neural network model will never completely learn! 

4. CONSTRUCTION OF A PROBABILISTIC COMPUTATIONAL DESCRIPTION 

In this section, a particular method of providing a given neural network model architecture 

with a probabilistic computational level of description is suggested following Golden (1988a, 

1988b, 1988c, in press). The reason for proposing this method is not to argue that this is the 
only correct method for constructing such probabilistic computational level descriptions. Rather, 
the reason for providing this procedure is to illustrate a useful procedure for constructing 

probabilistic computational goals for a large class of artificial neural network architectures. 

The method consists of two steps and is based on the development of Golden (1988a, 

1988b; see Golden, in press, for a review). The end result of the method is an explicit parametric 

probability mass (or density) function that the neural network model uses to find a "most 

probable" activation pattern as a consequence of the activation updating rule as in Eq. (1) or (2). 

Once this probability distribution is constructed, the computational goal of the learning process 

as specified by Eq. (3), (4), or (5) is determined. In other words, the neural network model’s



OPTIMAL STATISTICAL GOALS 153 

probabilistic representation is intentionally constructed so that the neural network model’s 

activation updating rule is trying to make "optimal" inferences. Then, the computational 
adequacy of the learning process is evaluated using the probabilistic representation that was 

assumed for the classification (1.e., testing as opposed to training) process. 

4.1. Construction of a Computational Goal for Classification 

The first step consists of constructing an energy function, V(X;W), that has the property 
that the activation updating rule in Eq. (1) or (2) can be viewed as a heuristic optimization 

algorithm that is seeking a global minimum of V(X;W) for some fixed constant weight vector 

W. For example, a multilayer feedforward back-propagation neural network (Rumelhart et al., 

1986) produces an activation pattern R = o(S;W) for a given input activation pattern S and a 

weight vector W. Thus, a possible energy function for this neural network would be 

V(R,S;W) = (1/2)|R - o(S;W)|’. (11) 

As a second example, the activation updating rules of the Brain-State-in-a-Box neural 

network model (Anderson, Silverstein, Ritz, & Jones, 1977; Golden, 1986, 1993), the Hopfield 

(1982) model, the Boltzmann machine, and Harmony theory may be viewed as heuristic 

algorithms for seeking a global minimum of V(X;W) with 

V(X:W) = -(1/2) X'WX (12) 

where W is a symmetric matrix whose ij" element indicates the "connection strength value" 

between units z and J of the network. 

The second step consists of constructing a probability mass (or density) function, p, that 

is a monotonically decreasing function of the energy function V. That is, find a function g whose 
domain and range are the real numbers such that p = g(V) where: (a) g(xt+k) < g(x) for all 

positive k, and (b) p is a valid probability mass function with respect to some sample space Q. 

The reason why p must be a monotonically decreasing function of V is that the activation 

updating rule Eq. (1) or (2) will then be searching for an activation pattern X° that is most 

probable with respect to p. This assumption is referred to as the optumal classification dynamics 

assumption (Golden, in press). Because the range of p is the closed interval [0,1] and the sum 

(or integral) of p over all disjoint subsets of the sample space © must be equal to one, it is 
usually convenient to construct p using the following approach. For the case where p assigns a 

probability mass, p(X|W), to each X in sample space Q, Golden (1988a, 1988b, 1988c, in press) 
suggested: 

p(X|W) = (1/Z) exp[-V(X;W)] where Z = Ly exp[-V(Y;W)]. (13) 

For the case where p is a probability density function, the normalization constant Z is 
computed by integrating as opposed to summing over the sample space Q as follows:



154 GOLDEN 

P(X|W) = (1/Z) exp[-V(X;W)] where Z = fyexp[-V(Y;W)] dY. (14) 

Golden (1988a, 1988b, 1988c), following Smolensky (1986), suggested a general argument 
regarding the uniqueness of the above mapping given certain restrictions on the parametric form 
of V(X;W). The probability distribution constructions in (13) and (14) can also be motivated 

using a Markov random field framework (Besag, 1974; Marroquin, 1985; also see Tishby et al., 
1989, for a statistical mechanics perspective). 

To illustrate the procedure describing how p can be constructed from V, substitution of 

Eq. (11) into Eq. (14) with X = (R,S) and the assumption that the sample space is a real vector 
space with dimensionality equal to the dimension of R yields the following belief function for 
a multilayer neural network: 

P(R|S;W) = (1/Z) exp (-(1/2)|R — $(S;W)|’) (15) 

which is a multivariate Gaussian density with mean vector @(S;W) and covariance matrix equal 

to the identity matrix. Note that if the sample space of Eq. (15) was not a real vector space but 

was limited to vectors in a binary vector space, then E,(W) would be mathematically intractable 
because Z would be functionally dependent on W. On the other hand, if the sample space of Eq. 

(15) is a binary vector space, then a computationally tractable belief function is given by using 
a different energy function to construct p(X'|W) which when substituted into Eq. (13) yields the 

cross-entropy error learning function (Golden, 1988c). Thus, the construction of an appropriate 

probabilistic computational goal for classification is based on (a) the appropriateness of the 

energy function V(X;W) as a distance metric for classification (see Golden, 1988c, for additional 

discussion), (b) the sample space of the data generating process which the neural network is 
attempting to represent, and (c) the computational tractability of the belief function. 

4.2. Construction of a Computational Goal for Learning 

Within the framework proposed by Golden (1988a, 1988b, 1988c),the probabilistic 

computational goal for learning is specified once the probabilistic goal for the classification 
dynamics of the neural network is specified. As discussed in the previous section of this chapter, 
the goal of learning is to choose the most probable value of W with respect to the network’s 

belief structure p. The error function, E,(W), in Eq. (9) obtains its global minima at precisely 

those values of W which are most probable with respect to p for N sufficiently large. For 

example, substituting the belief function pin Eq. (15), for a multi-layer feedforward network with 

continuous-valued targets, into Eq. (9) yields: 

Ex(W) = C + (1/N) (1/2) 2, | R'- 9(S';W)P (16) 

where C is a constant that is not functionally dependent on W and the summation index i ranges 

from 7 to N. The error function in (16) is typically minimized by the back-propagation learning 

algorithm (see Rumelhart et al., 1986, for additional details) during the learning process. Thus, 

the classification dynamics of the back-propagation network are optimal in the sense that the
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network is seeking the most probable response R given S and W with respect to (15). In 
addition, the learning dynamics of the back-propagation network are optimal in the sense that the 

network is seeking the most probable set of weights, W, with respect to (15). Finally, the 

parametric form of (15) explicitly indicates which class of statistical environments can never be 

learned by the back-propagation learning algorithm. 

As a second example, suppose the energy function has the form of Eq. (12) as in the 

Hopfield (1982), Brain-State-in-a-Box (Anderson et al., 1977; also see Golden, 1986, 1993, for 
an analysis of the Brain-State-in-a-Box model), Harmony theory (Geman & Geman, 1984; 
Smolensky, 1986), Boltzmann machine (Geman & Geman, 1984; Ackley et al., 1985) neural 

networks. Substitution of (12) into (13), and then (13) into (9) leads to the error learning cost 
function: 

E,(W) = -(1/2)(1/N) =; [X,]'WX, + log[Z(W)] (17) 

where Z is a function of W. Connectionist gradient descent algorithms for minimizing this error 
learning cost function were described by Smolensky (1986) and Ackley et al. (1985). 

Thus, despite the seemingly great differences in the nature of the Hopfield (1982), 

Harmony theory, Brain-State-in-a-Box, and Boltzmann machine neural network models, all of 

these network models have the same computational goals for classification and learning. True, 

it can be shown that the Harmony theory model and Boltzmann machine model under certain 

conditions can find a global maximum of (13) using energy function (12) more effectively than 
the deterministic neural models, but all of these models will be unable to internally represent the 

same statistical environments. 

5. COMMONLY ASKED QUESTIONS ABOUT THE APPROACH 

5.1. Why Assume Models of Human Behavior Should Be Rational? 

With respect to the proposed theoretical framework, neural network models are viewed 

as "heuristic" algorithms that attempt to achieve their computational goals. Simon’s (1979) view 
of satisficing algorithms is similar to the viewpoint proposed here. The pattern of errors 

associated with the network model can then be interpreted as a set of "clues" regarding the 

specific heuristics used by the model to achieve its goals. If one did not assume the 

computational level of description was consistent with the goals of a rational decision maker, then 

a theory of why the model's behavior yields "reasonably correct" answers would not be available. 
For example, it is well known that in certain situations people will violate the "transitivity" 
axiom. It is easy to imagine an individual who states that they prefer: (i) peach ice cream to 

strawberry ice cream, (ii) strawberry ice cream to vanilla ice cream, and (iii) vanilla ice cream 

to peach ice cream! The transitivity axiom is a fundamental assumption of probability theory and 

directly follows from the assumption that beliefs can be represented by real numbers and thus 

“ordered" along a single dimension. Although such violations of the transitivity axiom seem to 

clearly indicate that a probabilistic specification of computational goals is not appropriate for
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people or mathematical models of human behavior, it is worthwhile to carefully consider and 
assess the situation before one "throws the baby out with the bath water." 

True, people do make inferences that violate the transitivity axiom. On the other hand, 
these inferences are made relatively rarely and only in certain contrived situations. Consider the 
problem of walking through a door. This is a difficult motor control problem that is still not well 
understood. An intelligent system has decided that (a) it is more likely that the door is directly 
ahead than that the door is directly behind the robot, and (b) it is more likely that the door is 
directly behind the robot than above the robot. It seems that a good "engineering design" would 
be to build in a transitivity axiom so that it could make the inference that (c) it is more likely 
that the door is directly ahead than above the robot. 

It is very difficult to imagine that animal perceptual and cognitive processing systems that 
are capable of making inferences far beyond the capabilities of modern computer systems could 
work so well on a fundamentally flawed design. Instead, it seems more reasonable to view 
human behavior as "satisficing" following Simon (1979). That is, humans try to achieve their 
computational goals but are limited by the algorithms that they are forced to use. From this 
perspective, it is quite appropriate to assume the existence of rational computational goals. And 
finally, if we assume humans are using heuristic algorithms to achieve their idealized 
computational goals, then models of human behavior should use heuristic algorithms designed 
to achieve those same idealistic goals. 

5.2. Does an Energy Function Always Exist? 

The existence of an energy function that is minimized by the activation updating rule is 
not guaranteed. On the other hand, the claim is made that the construction of such an energy 
function that is minimized by the activation updating rule in some sense is usually possible. In 
fact, appropriate energy functions for almost every neural network model in the literature can be 
constructed (see Golden, 1988a, 1988b, 1988c, in press, for a review). 

5.3. Why Use a Probabilistic Interpretation if Learning is Ignored? 

It is sometimes argued that if the activation updating rule of a particular neural network 
such as the Brain-State-in-a-Box (BSB) model is known to be minimizing an energy function and 
the weights of the model are known, a probabilistic computational level of description is not 
required. One could simply state that the computational goal of the BSB model is to converge 
to an attractor that represents a particular category or that the computational goal of the BSB 
model is to attempt to find a global minimum of its energy function. 

Assuming that one accepts the assumption that the computational goal of a neural network 
is inductive in nature, then the above computational goals are inadequate because their 
relationships to the problem of inductive inference have not been explicitly identified. Moreover, 
if a probability distribution is not constructed for the neural network model, then a precise 
Statement regarding the suitability of a particular neural network model architecture for a 
particular statistical environment cannot be made.
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5.4. Is the Probabilistic Interpretation Unique? 

Let p = G(v) where v is an energy function and p is the model’s belief function. Then, 
within the framework of the theory proposed here, any function G such that the minima of v 

correspond to the maxima of p can be used provided that p is a valid probability mass (or 

density) function. Moreover, some neural network models may possess multiple energy 

functions! Thus, from this perspective, the probabilistic interpretation is not unique. 
On the other hand, suppose that one considers the following alternative definition of a 

neural network model. Let a neural network model be a triplet: (L,A,p) where L is the learning 
rule, A is the activation updating rule, and p is the model's belief function, which is maximized 

in some sense by the algorithm A. From this perspective, the probabilistic interpretation is 

unique because the probabilistic interpretation is a fundamental component of the model! The 

theoretical framework proposed here assumes that the specification of a neural network model 

is not complete until the neural network model engineer explicitly identifies the class of statistical 
environments that are consistent with the neural network’s classification and learning dynamics. 

5.5. Why Restrict the Above Framework to Map Estimation? 

MAP (maximum a posteriori) estimation of a response vector R given a stimulus vector 

means choosing that response vector R which is a global maximum of some conditional 

probability distribution p( |S). The theoretical framework presented here was developed within 

a MAP estimation framework for expository reasons. A more general theoretical development 

involving expected utility functions could be developed in a straightforward manner. That is, it 
is assumed that in addition to having a representation of uncertainty given by a probability 

distribution p(|S), the decision maker also possesses a representation of utility (i.e., subjective 
cost of making a particular response R). Let the decision maker's cost of choosing R, when the 

"correct" response was R, be given by U(R,, R,). Then, the decision maker seeks a response R, 

such that the function: 

VR,) = 2, UR, R,) p(R,|S) 

is minimized. Note that if UCR, R,) = 1 for R, = R, and U(R,, R,) = 0 for R, = R,, then 

selecting the R, so that V(R,) is minimized is formally equivalent to MAP estimation. Von 

Neumann and Morgenstern (1944) and Savage (1954) have argued that minimizing an expected 
utility function is the optimal strategy for a certain class of rational decision makers who are 

embedded in an environment characterized by uncertainty. 

5.6. What if the Learning Dynamics of a Model Are Not Optimal? 

The proposed theoretical framework prescribes the construction of a belief structure p 

such that the classification dynamics of the neural network are optimal. That is, so that the 

neural network is seeking a global maximum of p. If one decides the goal of the learning 
process is to find the most probable set of weights W, then the optimal cost function for learning
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is determined by p. It is also quite likely that the learning rule will not be minimizing the 

optimal cost function for learning. For example, it is not obvious that the Hebbian learning rule 

suggested by Anderson et al. (1977) and Hopfield (1982) is a good learning rule in general for 

searching for the global minima of Eq. (14). 

On the other hand, this type of learning rule might be viewed as optimal or suboptimal 
for certain restricted classes of statistical environments. The proposed framework does not 
recommend "throwing out" learning rules such as the Hebbian learning rule simply because they 

are nonoptimal. Instead, the proposed framework simply asks that researchers recognize the 

suboptimality of such learning rules with respect to a given belief structure p. 

5.7. What About Fuzzy Measures” 

If one accepts the axioms of fuzzy measure theory as constraints on the behavior of a 

rational decision maker, then fuzzy measures may be used as a language to express the 

computational goal of a neural network. Probability measures may be viewed as special cases of 

"fuzzy" measures (for a review see Golden, in press, and Klir and Folger, 1988, Chapter 4). 

Although such generality may seem initially desirable, the generality of fuzzy measures may not 

provide a sufficient number of constraints on the inductive decision making process. 

For example, if probability theory is used as a theory of belief, then p(A) = 1-p(7A) 
where 7A denotes the complement of the set A. That is, as one’s belief that A will not occur 

decreases, then one’s belief that A will occur must increase. On the other hand, fuzzy measure 

theory only requires that: b(A) < 1-h(7A) where b designates a fuzzy measure as opposed to a 

probability measure p. Thus, it is possible to change one’s belief that A will not occur without 

affecting one’s belief that A will occur! 

6. SUMMARY AND CONCLUSIONS 

This chapter began by arguing that neural network models are complex information 

processing systems. Because neural network models are complex information processing 

systems, Marr's (1982) computational level of description for understanding such systems is 

relevant to the analysis of neural networks. Accordingly, the description of a neural network’s 
behavior in terms of its attempts to achieve specific computational goals is necessary for 
understanding the behavior of neural networks according to Marr (1982). Specific computational 
goals for neural networks were then formulated as the solutions to specific nonlinear statistical 

optimization problems. Some reasons for using a statistical formulation were that (a) rational 

decision makers should use statistical inference, and (b) a statistical formulation permits an 

objective evaluation of a neural network’s computational goals using goodness-of-fit tests. 

Finally, some commonly asked questions about this approach were noted and answered. 
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Graham Tattersall’s chapter, Rule Induction and Mapping Completion in Neural 

Networks, deals with the problem of optimal generalization. The framework in which he studies 
this problem ts feedforward networks such as the multilayer perceptron or radial basis function 

net. He develops a mathematical method for computing the most statistically likely 
generalization, and shows that this can be achieved using sinusoidal nonlinear functions. 

The main operation of this type of neural network can be interpreted as learning a 
mathematical function based on a few training examples. It is desired to have a function of a 
larger class of data points that not only extends the original function but has the same properties 

as the original function. This can be done for both continuous and discrete valued functions, but 

the theory is most fully developed in this chapter for discrete (1.e., Boolean) functions. The 
statistical properties are, broadly speaking, understood in terms of using a discrete version of the 

Fourter transform to break up a function into spectral components and thereby extend it to a 

function that adds as few other spectral components as possible. 

The Fourter type networks proposed here use activation functions that oscillate and hence 

do not increase monotonically with input strength; for that reason they are not likely to be 
realistic models of biological neural networks. They are likely to have many applications, 

however, in artificial neural networks for both industrial and financial applications, such as the 
determination of credit worthiness that Tattersall mentions. The concern for finding optimal 

statistical properties of an artificial network is shared by Golden's chapter in this book. 

ABSTRACT 

The problem of generalisation of logical functions is addressed. It is argued that instead 

of arbitrarily choosing a particular neural net to perform generalisation, the statistically most
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likely generalisation should be computed and it appears that this computation can be performed 

by a class of feedforward ANNs using sinusoidal non-linearities. The ANNs are called the self- 

organising perceptron (SOP) and Fourier multilayer perceptron (FMLP), and are able to 
correctly generalise with data on which conventional ANNs fail. The justification for using the 
SOP and FMLP is based on an analysis of the amount of structure in a function and a 

reformulation of the Shannon-Hartley Law to show that they generalise in the statistically most 
likely way. 

1. INTRODUCTION 

One of the most important functions of neural networks is to generalise from a sparse set 
of input-output examples of some process and produce a useful output value estimate when given 

a previously unseen input. The process of generalisation consists of completing the input-output 

mapping or, in other words, inducing a rule which is consistent with the given training examples 

and which can then be applied to previously unseen input arguments. 

The process of generalisation is central to pattern recognition and rule induction in 

artificial intelligence. In both application areas, generalisation makes it possible to work without 
having a complete "lookup table" of all input pattern — output decision pairs. | More formally 

the process of generalisation can be viewed as completely defining a vector transformation or 

mapping rule denoted by f such that [y] = fx], where [x] is an input pattern or set of logical 

attributes and [y] is a pattern classification or decision code. Generalisation involves finding f[x] 
from a set of examples of [y] and [x]. This type of vector mapping is exactly the function 
provided by artificial neural networks (ANNs) in which an input pattern [x] is mapped to an 
output vector [y]. In ANNs the vectors [x] and [y] are intrinsically continuously valued but there 
is no reason why they should not represent logical attributes and in this case the network 
potentially behaves as a rule system. 

Many attempts have been made using ANNs to learn the rules underlying sets of data in 
the hope that the net would then be able to generalise correctly on previously unseen inputs. 
Most commonly, the ANN is a sigmoidal multilayer perceptron (MLP) or radial basis function 
(RBF) as described by Lowe (1989), and to a limited extent these experiments have been 
successful as reported, for example, by Scalia et al. (1989). 

Experiments by Tattersall and Foster (1989) suggest that the MLP and RBF are 
interpolative systems which can only successfully generalise on mappings whose output values 
change smoothly as the input argument is changed. This property is often well matched to 

mappings of data derived from the physical world. Such functions often exhibit smoothness, 
because the mechanisms underlying data production are continuous and have properties such as 
mass, thermal capacity, and electrical capacitance which lead to inertia and hence functions that 
change relatively slowly. These kinds of function are often said to contain "first-order structure" 
because of the high correlation between function values at adjacent points in their domains. 

The successful generalisation of physically derived data with first order structure using 
MLPs and RBFs has led researchers to use them to try to obtain generalisation with symbolic or 
logical data. Unfortunately, the functions underlying this type of data are not governed by 
physical inertia, so there is no reason to expect them to be smooth. Consequently, nets which
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generalise by interpolation will often incorrectly complete these functions because they lack first- 
order structure. However, the functions may contain "higher order" or "hidden" structure. This 
means that the values of the function at nonadjacent points in its domain are correlated, and in 

principle, generalisation should be possible by appropriately exploiting the correlation. 

A simple example of incorrect generalisation by an interpolating net such as the MLP is 

given by the parity function, which contains hidden structure but no first-order structure. This 
function is perfectly regular, and missing values can be predicted by a human quite easily after 
examining a few examples of the function. However, the function value does not change 

smoothly as the input argument is changed, so an MLP is incapable of correctly generalising to 

unseen arguments of the function, although it can easily learn given examples. 

Neural nets such as the MLP and RBF cannot generalise even on functions with very 

simple hidden structure, and therefore have limited application as replacements for conventional 

rule induction systems. This chapter describes modifications which provide both supervised and 
unsupervised forms of neural network which can correctly generalise when presented with 

examples of logical functions containing hidden structure. The networks use sine functions as 

the nonlinearities in their hidden units and are called the self organising perceptron (SOP) and 

Fourier multilayer perceptron (FMLP). They are able to generalise on high-order structure in the 

data as well as having the interpolation properties of conventional ANNs such as the MLP. 
A reformulation of the Shannon-Hartley Law is used to show that the FMLP and SOP 

generalise in the statistically most likely way and that if the number of hidden units is limited, 
they develop a mapping rule that gives the minimum possible error rate on both seen and unseen 

logical data. The FMLP and SOP both operate by finding a function or rule F(X) that is 

consistent with the training examples and also has the minimum possible frequency bandwidth. 

In the case of logical functions, which are cyclic, the minimum bandwidth function is the 

function whose frequency transformation contains the minimum possible number of spectral lines. 
It is suggested that the minimum bandwidth function which is consistent with the given set of 
training examples corresponds to a minimum entropy function and hence most probable function 
completion. The argument is supported by examining the nature of generalisation and its 

relationship to different types of data structure. Quantitative measures of the amount of structure 

in logical functions are developed and are used to explain the operation of the SOP and FMLP. 

2. EXAMPLES OF THE GENERALISATION PROBLEM 

The problem of generalisation of symbolic and continuously valued data can be illustrated 

by a pair of examples. In the first example we consider generalisation of symbolic (logical) data 

pertaining to a hypothetical case of credit worthiness. The use of neural networks to deal with 

this type of problem is currently attracting much attention from large companies which bill 

individuals after provision of goods or services. 

The credit worthiness assessment of an individual is based on a number of attributes of 
that individual, such as whether he or she is an owner occupier, marital status, post code, sex, 

and so on. The problem of generalisation is to take a fairly small set of individuals with known 

credit worthiness and examine their personal attributes. These examples must then be used to 
infer the credit worthiness of other individuals not in the example set (see Fig. 10.1).
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Fig. 10.1. (a) Truth table representation of hypothetical credit worthiness function. (b) Karnaugh map 
representation of hypothetical credit worthiness function. 

Usually, the symbolic attributes are coded as binary variables such as: A, = "Owner 
occupier," A, = "marital status," A, = "post code in Central London," A, = "male." Similarly, the 
condition of credit worthiness can be denoted by a binary variable, Q, and having assigned this 
coding to the examples, it is evident that the example set constitute entries in a truth table or 
Karnaugh map (Karnaugh, 1953) for a Boolean function as shown in Fig. 10.1. In terms of the 
truth table, generalisation is the process of filling in the blank rows of the truth table or elements 
of the Karnaugh map with the "best" set of values which are consistent with the example set. 

The second example is of generalisation applied to continuously valued data. A common 
task of this nature is speech recognition, in which a continuously valued spectral description of 
spoken words is used to classify a sound as a particular word. Typically, the spectral description 
is a multidimensional continuously valued vector which is input to the classifier, which then 
produces an output vector that encodes a particular classification. Thus, the classifier is required 
to act as a vector to vector mapper which implements a desired mapping function. The vector 
mapper should generalise, so that given a small number of examples of the spectral vector 
representation of known words, it produces the correct output vector value (classification) when 
presented with previously unseen spectral vectors as its input. 

A simplified description of this process is shown in Fig. 10.2, in which the input and 
output of the mapper are scalar variables. The function relating input and output is continuous,
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and this figure shows that the example set of required input-output pairs consists of actual 
samples of the function. The purpose of generalisation is therefore to produce the continuous 

function from its samples. This view of generalisation suggests that the body of knowledge on 

waveform reconstruction and Nyquist sampling is relevant to this problem and, as discussed in 

the following section and by Tattersall and Foster (1989), RBFs and MLPs have a similar 

function to the interpolation filters used to recover continuous waveforms from their sampled 
form. 

3. MLPS AND RBFS AS GENERALISING MACHINES 

Figure 10.2 shows that if the input-output examples in a training set are samples of a 

smoothly changing underlying function, then the complete continuous function should be 

recoverable by passing them through a suitable low-pass interpolation filter. It turns out that this 
is one interpretation of the action of the radial basis function and multilayer perceptron. 

3.1. Radial Basis Functions as Low-Pass Interpolators 

The operation of the radial basis function network is illustrated in Fig. 10.3, in which a 

set of basis functions are added together so that their sum closely fits discrete training examples 
of a continuous function which is to be learnt by the system. Typically the basis functions are 
multivariate Gaussians whose amplitude, mean value, and variance can be scaled to make the 

network output fit the given examples of the function. 

The low-pass filter action of the network is easily understood by initially assuming that 

the function’s training samples are regularly spaced and that one basis function is positioned over 

every sample in the function domain. In this situation the network's output is the convolution 

of the training samples with the radial basis function. spectrally this is low-pass filtering because 
the Fourier transform of the multivariate Gaussian is a low pass frequency response. 

In practice the samples are not positioned regularly and the bandwidth and amplitude of 

each of the basis functions must be individually adjusted to match the sample rate in its locality. 

Moreover, it is usually impractical to place a basis function over every single training sample 

because of computational load, and in this case, the function is subsampled by using a relatively 

small number of basis functions for its synthesis. The positions of the basis functions in the 
pattern space are adapted iteratively to optimise the accuracy of the synthesised function, and the 
bandwidth of each radial basis function is reduced to reflect the lower effective sample rate of 
the function. The MLP can similarly function as a low-pass interpolator; details are not given 
here. 

3.2. Deficiencies of the MLP and RBF as Generalising Machines 

The values of functions which describe logical processes often change abruptly as a single 

variable in the argument changes value. Such functions may be governed by very simple rules, 

and yet the sudden changes in their value means that generalisation by low-pass interpolation will 
be completely incorrect. Predictably, it will usually be found that radial basis function systems
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or sigmoidal MLPs fail to generalise correctly when only trained on a subset of possible input- 
output examples of these kinds of function, as is demonstrated by the practical results presented 
in Section 9 of this chapter. 

required continuous function g(x) 

sample values of g(x) 

g(x) 

    
x —— > 

Fig. 10.2. Generalisation by finding a continuous function from its samples. 

4. REQUIREMENTS OF AN IDEAL GENERALISING MACHINE 

Supervised learning machines such as the MLP are required for learning a mapping 

function Y = f(X) without exposure to all possible input/output pairs of Y and X values. This is 
only possible if the system can generalise from the sample values of the function which are given 

during training so that the statistically most likely value of output y is produced when a 

previously unseen input vector x is input to the machine. This means that the most likely 

complete function which is consistent with the training samples must be found. 

The definition of the most ltkely function is debatable, but in this chapter we use the idea 
that the completed function must not only be consistent with the given values of the function, 

but should also have the same statistical properties as the seen parts of the function. This means 
that the types of feature which are observed with a certain frequency in the given parts of the 

function should also be present with the same frequency in the completed function. Conversely, 

features which do not occur in the seen parts of the function should not be introduced into the 

generalised parts of the complete function. That is, the simplest or least complex function 

consistent with the given data examples must be found; the evaluation of function complexity is 
discussed later in the chapter. 

A powerful justification for using this approach to generalisation is that it is similar to the 

principle employed in a Bayesian classifier. In the classifier, an estimate is made of the class 

conditional probability distribution of a set of data from a set of training examples. It is assumed 

that these statistics extend to unseen regions of the data domain and can be used to classify 

patterns lying in these regions. In the case of the mapping completion problem, it is assumed
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that the statistics of the function in seen regions of the input domain also extend to unseen 

regions and therefore that the completed function must retain the same statistical characteristics. 

synthesised mapping    
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£00 radial basis functions 
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Fig. 10.3. Synthesis of function using radial basis functions. 

Generalisation is only possible if the function to be generalised is redundant in some way. 

For example, if a function has the statistics of white noise, it will be impossible to predict the 

value of the function at an unseen point in the domain, even if the values of the function at all 

other points are known. Conversely, a function which has constant value over the entire input 

domain is predictable from a single given value and is highly redundant. In general, redundancy 
is present if the values at different points in the domain are correlated and the correlation is 

manifest as structure in the input-output mapping. 

5S. MEASURING THE STRUCTURE IN LOGICAL FUNCTIONS 

The foregoing arguments are applicable both to functions of continuous and discrete 

valued variables. However, the primary object of this chapter is to show how ANNs can operate 
with discrete valued logical data, and from this point on, the discussion is related specifically to 

the problem of using neural nets to find the most likely Boolean function (rule) which is 

consistent with a sparse set of examples of a logical process. 

It is desirable to quantify the amount of structure in a function so that the complexity of 

different functions can be compared precisely. It is shown in later sections that such a precise 

comparison is necessary to determine how an incomplete function should best be estimated by 

a neural network. A natural measure of the amount of structure, or complexity, of a function is 

the length of the shortest data description required to completely define the function. This 
approach has been taken by Risanen (1978, 1986), who rigorously applied information theory to 
determine a lower bound for the necessary description length of a series of data.
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In this chapter we use a more intuitive engineering approach based upon the information 

theory proposed by Shannon (1948). The technique is analogous to the way in which the number 
of bits required to send a message over a communication channel is computed. In the latter case, 
the number of required bits is equal to the logarithm of the inverse probability of the message. 
The idea can be applied to the measurement of function structure by conducting a thought 

experiment in which two people are connected by a communication channel through which an 

attempt is made to transmit complete information about the Boolean function whose structure is 

to be measured. The value of the function at each possible point in its domain constitutes a 

message whose probability is determined by the topological statistics of the function. 

In the case of Boolean functions, only the two messages "1" or "O" are possible. If the 
function were unstructured such that each value had a probability of .5, then one bit of 
information would have to be transmitted to define each value of the function. If the function 
has N input variables then its domain contains 2% points; hence, 2% messages (bits) must be sent 

to completely define the function. This corresponds to transmitting the entire truth table for the 

function. Conversely, a highly structured function whose statistics make the values of the function 

at different points in the domain predictable requires much less than one bit of information per 

function value. This is because the probability of each value (message) being "1" or "0" is 
greater than .5, and so much less than 2" bits need to be transmitted to define the function. 

A suitable measure of function structure is therefore the number of bits which would be 
needed to send the entire function truth table, minus the information which actually needs to be 

transmitted if the statistics of the function are taken into account. This measure has a value of 

zero bits if the function is unstructured such that the probability of each function value is .5 and 

a value of 2" — 1 bits if the function is completely structured such that the probability of each 
value of the function being "1" or "0" is 100%. 

In practice it is very difficult to evaluate the statistics of anything but very simple 
functions. However, an alternative technique exists which exploits the relationship between 

bandwidth and information as formalised by Shannon, and this approach is described in the next 
subsection. 

5.1. Bandwidth and Function Structure 

The Shannon-Hartley Law (Shannon, 1948) relates the information-carrying capacity, C, 
of a communication channel to its bandwidth, B, and the signal-to-noise ratio, S/N, and is given 

by C = b log, (1 + S/N). This law can be reformulated to define the number of spectral lines 

required for the frequency-domain encoding of a function which requires a certain number of bits 

of information for its complete definition. Thus amount of structure can be measured by 

counting the function’s spectral lines rather than by trying to evaluate its topological statistics. 

The reformulation of the Shannon-Hartley Law commences by calculating how many 
different messages may be encoded by a single spectral line (carrier frequency) of variable 
amplitude in the presence of noise. A plausible coding scheme would be to represent each 

message by a different amplitude of the spectral line. To prevent the additive noise causing the 
different levels from being confused during decoding, their separation would have to be greater 
than the expected value of the noise. Assuming that the RMS (root mean square) value of the
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spectral line is s, and that the RMS value of the noise is s,, then the number of different spectral 

line amplitudes which could be decoded without confusion would be M: 

M =(s?+5,)/ 8, (1) 

Eq. (1) allows the number of messages which can be encoded by a single spectral line to 
be expressed in terms of the signal-to-noise ratio S/N,, as M = 1 + S/N,. Assuming each of the 

messages is equiprobable, their probability is just 1/M and so the number of bits of information 

which can be encoded by a single spectral line in the presence of additive noise is h = 

log,(1 + S/N,). Extending this to the case in which Q spectral lines are available for encoding 

information, it is seen that H bits can be encoded by Q spectral lines where: 

H = Q x log,(1 + S/N,) (2) 

This derivation is not mathematically rigorous but gives some insight into the process. 

Eq. (2) can be used to relate function structure to the number of spectral lines needed to encode 

the function in the frequency domain as shown in Fig. 10.4. It is assumed that quantisation noise 

is added in this process by the use of a threshold which sets the value of decoded function to 

either "1" or "0." The value of quantisation noise can be found by assuming that quantisation 
error has a uniform probability distribution and is therefore given by N, = A’/12, where A is the 

function value quantisation interval. 

For convenience, the two levels from the quantiser are assumed to be +1 and —-1 and so 

A = 2 and the signal power, S, is 1. Thus the signal to noise ratio is S/N, = 3, and the number 

of bits of information which can be encoded by Q spectral lines is H = 2Q. Thus, if it is found 

that a function requires at least Q spectral lines, in its frequency domain description so that it can 

be inverse transformed without any errors, it can be deduced that the number of bits of 

information required to describe the function is H(F) = 2Q. 

An argument which is often set against the validity of this relationship is that the number 

of lines depends on the type of basis vectors chosen for the frequency domain representation. 

For example if the first chosen basis vector (carrier frequency) is actually the same as the 

function to be encoded, then only one spectral line will ever be needed and the apparent amount 
of structure in the function will therefore be high even if the function is actually noiselike. 

The counterargument is that the chosen basis vectors should not favour any one particular 

type of function. For this reason it is proposed that the discrete cosine transform should always 

be used to encode the functions in the frequency domain because the basis vectors of this 

transform "sample" the N-space of the function at uniform solid angle intervals. In fact, the 

Fourier transform has similar properties to the discrete cosine transform, and no significant 
difference in structure value has been observed when using both of these transforms over a 
diverse range of function types.
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Fig. 10.4. Coding of a function in the frequency domain. 

5.2. Calculating Function Structure Using the Bandwidth Measure 

The previous section demonstrated a very simple relationship between the amount of 
Structure in a function and the number of spectral lines which its frequency-domain encoding 
occupies. A simple way to calculate the structure of a function is therefore to evaluate its 

multidimensional discrete Fourier transform and then find the minimum number of spectral lines 

which yield the original function when inverse transformed and thresholded. The selection of 

the spectral lines is done in order of their energy, with the largest being taken first and the 

smallest last. 

Some examples of this evaluation are shown in Fig. 10.5, which uses Karnaugh map 

notation to show the original function, its multidimensional DFT, and the smallest set of spectral 

lines which enables the function to be recovered by inverse transforming. For ease of representa- 

tion, the 16 possible four dimensional DFT coefficients are also laid out in the same format as 

a Karnaugh map. This means for example that the coefficient listed under coordinates 0110 is 

the amplitude a of four dimensional frequency given by cos (Oxmxx, + Ixmxx, + Ixaxx, + 

Oxmxx,), Where x,, 0 = 1, ..., 4, are the function arguments. Fig. 10.5 shows that highly structured
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functions such as four-bit parity only require one spectral line whereas more random functions 
require up to eight spectral lines for their representation. 

Original DFT of Selected Spectral 

Function Function Lines for Error Free 

  

  

        

  

  

  
  

          

Fig. 10.5. Examples of functions of various entropies and their DFTs. 

The size of the subset of highest energy DFT coefficients which enables the original 

function to be recovered without error is always exactly half of the total number of nonzero 

spectral lines in the DFT, rounded up to the nearest integer number of lines. Omitting half of 
the lines in the transform of the function introduces noise into its reconstruction, but the noise 

is effectively removed by the use of the threshold after the inverse transform which sets the noisy 

reconstructed value to "I" or "0." The amount of structure in a function can therefore be found 

directly from its DFT by counting the number of nonzero coefficients, N., as H(F) = N.. 

It must be emphasised that the Karnaugh map is only used as an aid to visualisation, and 

that the spectra shown are not a transform of the pattern in the two-dimensional Karnaugh map.
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6. THE BEST ESTIMATION OF AN INCOMPLETE LOGICAL FUNCTION 

We now return to this chapter’s fundamental question: how to find the simplest 
explanation of an incomplete set of data. In the context of logical functions this means that the 
System is presented with an incomplete truth table generated by an unknown function and must 
insert the most probable values in the blank entries of the table. This process is analogous to the 
process used to classify patterns with a Bayesian classifier: the statistics of the data are estimated 
from a training set and it is then assumed that these statistics will hold for previously unseen data 
in the test set. Hence, the basis for choosing the most likely function completion is to ensure that 
the statistics of the completed function are the same as the statistics of the given parts of the 
function. Choosing a completion function whose statistics do not match the statistics of the 
training examples will always reduce the amount of structure in the function because the 
predictability of each function value will be reduced. Thus the criterion for choosing a particular 
completion is to find a function which fits all the seen parts of the incomplete function and has 
the highest possible structure value. Because function structure is related to the number of 
spectral lines in the DFT or DCT of the function, the criterion for completion can be stated as 
follows: 

The most probable completion of an incomplete function is the function having 
fewest spectral lines in its DFT which is consistent with the seen parts of the 
incomplete function. 

Examples of this approach are shown in Fig. 10.6, which shows partially defined logical 
functions along with their most likely and second most likely completions based on the numbers 
of spectral lines in the DFTs of the set of possible completed functions. 

6.1. Overgeneralisation by Bandwidth Constriction 

A useful corollary to the bandwidth criterion is that selection of a highest energy subset 
of spectral lines which is insufficiently large to properly encode the original function, will yield 
a new function on inverse transformation, which progressively overgeneralises as the number of 
spectral lines selected is reduced. An example is shown in Fig. 10.7, which shows the Karnaugh 
maps generated by the inverse transformation of the DFT of functions from which different 
numbers of spectral lines have been selected. It can be seen that the errors in the reconstituted 
functions increase monotonically as the number of selected spectral lines diminishes. This 
property is important in the context of the self-organising perceptron (SOP) and Fourier 
multlayer perceptron (FMLP) neural networks to be defined later in this chapter. These 
networks are used for rule induction because the hidden units of the network synthesise spectral 
lines, and choosing a certain number of hidden units in the network fixes the complexity of the 
rule which will be implemented and the generalising ability of the network.



RULE INDUCTION IN NEURAL NETWORKS 173 

Seen Most Next Most Next Most 

Function Probable Probable Probable 

Function Function Function 

      
OFT of Most DFT of Next Most OFT of Most DFT of Next Most 

Probable Probable Probable Probable 
Function Function Function Function 

m1 

xey Bd unspecified 
OO o      

(a) (b) 

Fig. 10.6. (a) Minimum bandwidth completion of four-bit parity function with one unspecified value. (b) 

Minimum bandwidth completion of F(x, x5, .%,, ¥,) =X). 

6.2. Computational Implications of Using the Bandwidth Criterion 

An approach to inducing an optimal rule or function to fit a set of examples is to 
methodically search through the set of all possible complete functions which fit the given 

examples, evaluate their multidimensional DFTs, and select the function with the lowest number 

of spectral lines. However, with rules of practical complexity, this may prove computationally 

overintensive and other approaches to using the bandwidth criterion may have to be employed. 

As an example of the computational load incurred by the direct search technique, assume that 

a rule or function has n binary input attributes and that p examples of the mapping generated by 

the function are given. An optimal rule must be induced from these p examples. The number 
of possible function arguments is 2" of which p are given. The number of function arguments 

for which the function value is not known is therefore 2" — p, and so the number of possible 

completions of the function is 2@°-?). 
The DFT of each possible completion must be evaluated and each DFT requires 2" 

multiplications and additions. The total number of multiply-accumulate operations needed to find 
. . . . a . . . . . 

the optimal function is therefore 2".2@ ~?). Inserting some test values into this expression gives 
enormous numbers of multiply-accumulate operations for all but trivial problems and so 

alternative ways of applying the bandwidth criterion are essential.
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Fig. 10.7. Example showing monotonic increase in function errérs as number of spectral lines selected is 

reduced. 

7. RULE INDUCTION BY SPECTRAL PEAK PICKING — THE SELF-ORGANISING 

FOURIER PERCEPTRON 

The previous sections have shown that structure or redundancy in a function is manifest 
by the existence of spectral energy at only some points in the domain of its multidimensional 

frequency transform. A highly structured function has few peaks, and an unstructured function 
has many peaks. We have shown that the highest amplitude half of this set of peaks is required 

for perfect reconstruction of the function, and the positions and amplitudes of the peaks in this 
set can be viewed as an encoding of the rule which generates the function. 

In practical situations, only a subset of all possible input-output values of the function is 

defined and the missing values are set to a default value, usually the average of the defined 
function. The result of using default values for unspecified parts of the function is to cause 

spectral energy to appear at frequencies which would actually have zero energy if the complete 
function had been defined.
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This is illustrated by the parity function example in Fig. 10.8, which shows the DFT for 
the completely defined function and for the same function in which five points in the domain 

have been left unspecified. These have been assigned a default value equal to the average of the 

defined parts of the function. It can be seen that the DFT of the completely defined function 

only has energy at one frequency. The incompletely defined function has small amounts of 

energy at other frequencies, as well as a large amount of energy at the frequency point defining 
the complete parity function. 

SEEN FUNCTION DFT OF SEEN FUNCTION 
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| 4 !         
Fig. 10.8. Spectral peak of parity function surrounded by spectral noise floor due to incomplete definition of 

function. 

This example illustrates the general effect of not defining some parts of a function: a 

"spectral noise floor" is created by the missing values, and its level may rise to submerge
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significant peaks if insufficient points in the function are defined. however, if the spectral peaks 
associated with the underlying function are unambiguously visible above the noise floor, the 
complete function can be estimated from the partially defined function by picking these peaks 
and finding their inverse transform, assuming all other frequency coefficients are set to zero. 

It has already been shown in Section 6.1 that the error rate in the reconstruction of a 
function increases monotonically as the number of spectral terms used in the inverse 
transformation is reduced, so a method of estimating a complete function from a partially defined 
function is as follows: 

1. Evaluate the DFT of the partially defined function, setting undefined function values to the 
average of the defined part of the function. 
2. Pick the largest spectral peak in the transform and inverse transform, setting the energy at all 
other frequency values to zero. 
3. Test to see if the function generated by the inverse transform is consistent with the defined 
parts of the original function. 
4. If the outcome of the test in (3) is positive then the most likely function completion has been 
found in accordance with the criterion argued in Section 6. If the test outcome is negative, then 
go to (2) and increase the number of selected peaks by one and repeat the process. 

This algorithm can be cast in a neural network framework, which in principle can be trained 
continuously, and can update its estimate of the complete function underlying the training data 
as it is trained. The network is called the se/f-organising Fourier perceptron (SOP) and is shown 
schematically in Fig. 10.9. 

The SOP learns incrementally as follows: a process governed by some unknown rule 
generates a set of training examples defining parts of the function to be learnt by the SOP. As 
the n™ training example, F"(X), is received by the SOP it is passed through a multidimensional 
discrete Fourier transformer. Each training example only represents a single impulse in the 
domain of the function and therefore its transform, D(F"(X)), is easy to compute. The transform 
is loaded into a leaky accumulator which contains fractions of all past transform vectors, and as 
more training examples are received, the accumulator begins to build up an estimate of the 
spectrum of the rule/function underlying the data. The estimated spectrum is D'(w,, W,, ..., Wy). 

A function which has structure will start to exhibit some spectral peaks in the accumulated 

transform. Selecting the highest energy subset of these peaks defines the DFT, D(w,, w,, ..., Wn); 
of a rule which fits the seen data with minimum error given the number of peaks in the subset. 
The peak picking is done by "self-organisation” such that connections are made to those outputs 
of the leaky accumulator which exhibit large signal amplitudes. these connections can be thought 
of as the hidden units of the system and can have values of one or zero. 

The system is used in "recognition mode" by applying the estimated rule to the current 
input argument, X". This is simply done by evaluating the inverse transform (IDFT) at the 

position of the required function argument, X", to produce an estimated output, F(X") = 

IDFT{ D(w,, Wy, ..., w,, X")}. If the error between this function and the training set is too high, 
then the number of hidden units, and hence selected spectral peaks, is increased. Conversely, if
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the error is zero, the number of hidden units is reduced to ensure that the simplest possible 
function consistent with the training set is generated. 
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Fig. 10.9. Structure of sell-organising Fourier perceptron. 

This system has been tested by training on many four-variable functions in which some 
values are not defined. The estimated functions generated by the SOP using different numbers 
of spectral lines or hidden units are presented in Fig. 10.10. As expected, an SOP with just one 
hidden unit produces a very simple function estimate which does not always fit the seen data. 
This is because the simplest function which fits the data has an entropy which cannot be carried 
by a single spectral line. Increasing the number of hidden units allows functions to be generated 
which are consistent with the seen data. Eventually, further increase in the number of hidden
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units causes the SOP to generate functions which are not the simplest consistent with the seen 
data because the system has too much information capacity and stops generalising. 
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Fig. 10.10. Functions developed by self-organising perceptron. 

In view of the necessity of not overproviding the SOP with hidden units, an appropriate 

strategy is to start the system with just one unit and add more if it is found that the estimated 

function values are frequently incorrect. This approach will ensure that the most general rule 
possible will be initially developed and that it will only become more complex if the error rate 

is unacceptably high.
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8. RULE INDUCTION USING THE FOURIER PERCEPTRON (FMLP) 

The Fourier multilayer perceptron (FMLP) has been used by several neural net researchers 
as an alternative to the multilayer perceptron (see, e.g., Lapedes & Farber, 1987). The 
architecture of the FMLP is identical to the MLP except that the sigmoidal nonlinearities 
associated with each neural element are replaced by sinusoids as shown in Fig. 10.11. In an 
FMLP with one hidden layer, the weights from the input units into each hidden unit control the 
complex frequency generated by the unit, whilst the weights summing into the output units add 
together the complex frequency terms from the hidden units to form the required output value. 
The FMLP is therefore structured to generate an input-output map by multidimensional Fourier 
synthesis. 
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Fig. 10.11. The Fourier perceptron (FMLP). 

Learning in the FMLP is usually done using error gradient descent with the back 
propagation algorithm described by Rumelhart, Hinton, and Williams (1986). Ideally the FMLP 
minimises its mean square output error by adjusting the complex frequencies synthesised by the 
available hidden units to match the highest energy multidimensional frequencies in the function 
which it is being taught to synthesise. 

At first sight this action appears ideal for inducing the optimal rule or function from a 
subset of training examples. Each hidden unit in the network synthesises one spectral line in the 
frequency-domain description of the function, so a network with H(F)/2 hidden units should be
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capable of perfectly learning a function whose information content is H(F) bits. An FMLP with 

a restricted number of hidden units will therefore synthesize a complete function whose 

bandwidth is the minimum possible while still fitting the training examples. As shown earlier, 

minimum bandwidth implies minimum entropy, and hence the most probable complete function. 

Another important property of the ideal FMLP is that if the number of hidden units is less than 

H(F)/2 then the network will be forced to overgeneralise. However, the learning algorithm 
minimises the mean square error, and consequently the available hidden units will be used to 

model the highest energy spectral lines in the function and thereby minimise the number of errors 

in the resultant function as shown by the examples in the previous section on over-generalisation. 

The practical use of the FMLP is more difficult. First, the system is prone to becoming 

trapped in local energy minima like the MLP. A second more important problem is that the 

frequencies generated by the hidden units are not necessarily orthogonal over the domain of the 

function, and this may cause several hidden units of different frequencies to jointly model 
variations in the function which are really due to a single complex frequency. 

The latter problem can be reduced by encouraging the hidden units to take on frequency 

values which are harmonics of the reciprocal of the width of the domain of the function. This 

can be done by artificially extending the domain of the training examples by repeating the given 

function periodically in intervals beyond the actual domain of the function. For example, a one- 

dimensional logical function whose values are specified at x = 0 and x = 1 can be extended to 

generate new training examples such that F(x) = F(x + 2n) where n is an integer. 

In spite of this kind of trick, optimal learning in the FMLP is very unreliable on all but 
simple logical functions, and an improved learning algorithm is required. However, to 

demonstrate the fundamental suitability of the FMLP architecture, a number of experiments have 

been performed to confirm the claim of optimal rule induction. In these experiments an FMLP 

has been presented with a subset of the truth table of a number of functions and the complete 

function generated by the FMLP compared against the optimal completion as defined by the DFT 

evaluation of entropy. It is found that the completions are optimal as long as the FMLP does 
not become trapped in local minima; a sample of these results is shown in Fig. 10.12. 

9. COMPARISON OF THE FMLP, SOP, SIGMOIDAL MLP, AND RBF 

In Section 3 it was argued that the radial basis function net and multilayer perceptron both 

generalise by low-pass interpolation. If this is true, these nets are unsuited to data which exhibits 
structure not manifest as function smoothness. In particular, these nets cannot deal with data 

representing symbolic variables whose functional relationship may be very simple, yet are subject 

to sudden changes in value as the argument value is changed. 

To illustrate these problems, and attempt to show that the SOP and FMLP behave more 

appropriately than the MLP and RBF when faced with symbolic data, the ability of each type of 

network to generalise on a variety of functions has been tested. It is impossible to exhaustively 

test the performance of each network, so various function types with different properties have 

been chosen. The experiments consist of defining a binary function and finding the minimum 
complexity of each neural network which can learn the complete function without error. A 

network of the same complexity is then trained using a partially defined version of the function
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and its ability to complete the function is examined. The chosen functions and the function 

completions provided by each type of network are shown in Fig. 10.13 in the form of Karnaugh 

maps. The left-hand column shows the function on which the network has been trained. 
Subsequent columns show the functions actually learnt by an MLP, RBF, SOP, and FMLP 
respectively. Each network has one layer of hidden units, and its complexity is defined by the 

number of hidden units recorded under the Karnaugh mp for each network. 
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Fig. 10.12. Examples of function completion by the Fourier perceptron. 

* The parity function. The first function is four-bit parity, and it can be seen that each type 

of network is able to learn this function perfectly if trained on all 16 possible points in the 

domain. It is worth noting that the radial basis function net has great difficulty in dealing with 

the function and requires 16 hidden units for perfect learning. When each network is trained by 

the same function, with the value at just one point undefined, both the MLP and RBF fail to 

generalise in a way which maintains the regularity of the function. The FMLP and SOP 

generalise to the most regular (simplest) function consistent with the training set. 

‘ The "F(A,B,C,D) = A" function. This function is shown in the third and fourth rows of 

Karnaugh maps in Fig. 10.13. Experiment showed that the numbers of hidden units required for 

the MLP, RBF, SOP, and FMLP to perfectly learn this function when trained on all 16 possible 

values are 1, 5, 1, and 1, respectively. The function contains first-order structure. That is, the
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value of the function is generally the same at adjacent points in the domain. It is thus to be 

expected that all of the network types should correctly generalise on this function. As predicted, 
when trained on the function, excluding two of its values, each network correctly generalises. 

Seen. Completion Completion Completion Completion 
Function By MLP By RBF By SOP By FMLP 

ao 
Re 

  

   

    
  

H.U = 16 H.U=1 HU=1 

    
HU=1 HU=1 

   
          

          

          
          

          

                              

      

      

        
    

    
        

  

            

  

            

H.U = 1 HU=1 

HU=5 HU=3 HU=3 

HU=3 H.U=5§ H.U=3 H.U=3 

oe 
Fig. 10.13. Comparison of the function completions produced by various neural networks.



RULE INDUCTION IN NEURAL NETWORKS 183 

‘ The "diagonal" function. Results pertaining to this function are shown by the Karnaugh 
maps in the fifth and sixth rows of Fig. 10.13. Again, all networks were found capable of 

learning the function, given enough hidden units, and when trained on all of its values. However, 

both the MLP and RBF fail to find the simplest underlying function when trained on a subset of 

the values. This example illustrates how the SOP and FMLP can complete a function without 
introducing any new features, whereas the MLP and RBF introduce arbitrary new features. 

10. CONCLUSIONS 

This chapter has attempted to demonstrate that a rule system can be viewed as a mapping 

between a set of input attributes and a set of output actions or decisions. Such mappings are 

characterised by a function, F(X), where X is the set of inputs and F(X) is the output decision. 

Functions of this type frequently contain structure which means that the values of the function 

for one set of inputs can be estimated from the function values at other sets of inputs. It has 
been shown that this structure is manifest as the repeated occurrence of certain topological 
features over the domain of the function and that the statistical probability of these features can 
be used to derive an overall measure of structure in the function in terms of information entropy. 

This idea has been extended by a reformulation of the Shannon-Hartley Law to enable 

the entropy and hence structure of a function to be evaluated from the number of spectral lines 

occupied by the Fourier transform of the function. It has also been shown that the best estimates 

of unseen parts of a function can be obtained by searching for a function consistent with the seen 

data and with the minimum possible number of spectral lines in its transform. 
A variant of the multilayer perceptron which uses sinusoidal instead of sigmoidal 

nonlinearities has been shown capable of optimal function completion or, in other words, rule 

induction. Unfortunately, this type of MLP, known as the Fourier perceptron (FMLP), is hard 

to train reliably since it often gets trapped in local minima, and so a new perceptron structure has 

been developed. The new perceptron is known as a self-organising Fourier perceptron (SOP) and 
does not suffer from any learning difficulties. The SOP can produce very general rules at the 
start of training and can progressively make the rules more complex if its current rule makes too 

many errors. Moreover, if the SOP is restricted in size it will provide the optimal rule to fit a 

set of incomplete function values and can therefore be said to perform optimal rule induction. 
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Evolution of Dynamic 
Reconfigurable Neural 
Networks: Energy Surface 
Optimality Using Genetic 
Algorithms 

Robert E. Dorsey and John D. Johnson 

University of Mississippi 

Robert Dorsey and John Johnson’s chapter, Evolution of Dynamic Reconfigurable 
Neural Networks: Energy Surface Optimality Using Genetic Algorithms, poses the problem 
of optimal connection structures between neurons for performance of specific tasks. Networks 
with dynamically reconfigurable connection structures are becoming increasingly popular, as the 
problems are becoming sufficiently complex that function does not immediately suggest form. 

Dorsey and Johnson, building on some previous work of Harold Szu (a speaker at the 

Optimality conference but not a contributor to this book), develop a novel methodology that uses 
genetic algorithms to select structures that are optimal in the sense of minimizing an energy 
function. The examples that they use involve feedforward networks with small numbers of nodes, 
which Dorsey and Johnson set to solve classic problems such as the exclusive-OR problem. The 
weights within a network can either be zero or positive, and the genetic algorithm allows these 

weights to evolve. The dependence of energy on the weights is complex enough that hill-climbing 
algorithms on the energy surfaces have apparently proved ineffective. 

Dorsey and Johnson speculate that thetr methodology might prove helpful in determining 
neuronal structures for encoding specific concepts or performing specific behaviors. This could 
provide a synthesis between the approaches of Hebb that focus on specific neural connections, and 
those of Lashley that focus on collective properties. The chapter in this book by Bengio et al. also 
uses genetic algorithms to optimize synaptic weights (in conditioning models). If this
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methodology proves to be useful in neuroscience, it might also be usable in the study of 
optimizing soctal structures, as discussed in Bradley and Pribram’s chapter. 

ABSTRACT 

This chapter investigates the use of the genetic algorithm for training the Dynamic 
Reconfigurable Neural Network (DRNN). The assumption of energy efficiency provides the 
biological motivation for the reconfiguration of synaptic strengths and activity of connections. 
The DRNN, trained with the genetic algorithm, offers researchers a new tool to model neural 
activity. In addition, it requires modelers to reexamine what is meant by optimal and also 
whether or not the collective network performance rather than the individual neuron action should 
ultimately be the focus of neurophysiological research. 

1. INTRODUCTION 

Recent advances in neurosciences have identified active hairlike neurofilaments that can 
expand and contract forming synapses among neurons. As Freeman (1991) pointed out, "This 
ability of a neuron to reach out and form new synaptic links earns it the name ‘hairy neuron.’" 
These structures have caused a resurgence of interest among some researchers (see Szu, 1985, 
1991) in developing neural network models that are able to dynamically reconfigure themselves 
as needed. Although important in theory, the ability of the hairy neuron to dynamically 
restructure itself while solving the current problem has posed considerable difficulty for 
traditional training methods. The inability of conventional training strategies to yield acceptable 
results on this "dynamic reconfigurable neural network" (DRNN) led to Harold Szu’s challenge 
to one of the authors at the M.I.N.D. (Metroplex Institute for Neural Dynamics) conference to 
identify an algorithm that would be able to train and restructure the DRNN. Previous to this 
challenge Szu (1991) wrote: 

Thus, writing the neural system operation specifications for a general-purpose 
neural network is a challenging task that requires a constraint-relaxing optimiza- 
tion in the admixture of algorithm and architecture — namely, a dynamic 
optimization that is still to be developed. 

This chapter represents a response to Szu's training challenge, as well as an exploration of 
alternative architectures that can be used to solve the well-known XOR operation. 

Because the growth action of the neurofilaments of the hairy neuron appears to be 
independent of long-term synaptic potentiation, both the neuronal core and the surrounding active 
neurofilaments may serve as independent computing elements for the selection of pathways and 
Strengths of synaptic connections. This discovery points to a twofold mode of modification for 
connections in an artificial neural model: first, a conventional capability to change synaptic 
weights, and second, an unconventional potential to dynamically create and annihilate active 
connections. Models of these fully interconnected dynamic networks have the potential to meet 
the goal discussed by Pribram (1991) to “emphasize a minimum of constraints in the processing
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wetware or hardware," and thus move beyond the currently highly constrained neuroscience 

modeling framework. 
In the current chapter, the assumption of energy efficiency provides the biological 

motivation for the reconfiguration of synaptic strengths and activity of connections. Thus, the 

Hebbian tuning and adaptive topology become cooperative, as well as competitive, in order to 

minimize overall energy. An algorithm based loosely on genetic evolution provides the means 

to a parsimonious selection of pathways and strengths of synaptic connections. In contrast to 

backpropagation, or other gradient methods, the genetic algorithm does not rely on a slope- 

directed search from the current point but rather searches globally for a solution by iterating from 
one population of points to another. The probability of convergence to false optima is thereby 
reduced. Additionally, because the genetic algorithm is a direct search method, the network 
objective function is not required to be differentiable. This allows for flexibility in the selection 

of alternative objective functions. 

Dorsey and Mayer (1994) provided a detailed description of the properties and dynamics 

of this algorithm. They showed that for a wide variety of complex optimization problems, the 
genetic algorithm is able to consistently achieve the global solution. The genetic algorithm is 
ideal for the DRNN because it provides a global search and allows a complex and nondifferen- 
tiable objective function. 

The application of genetic algorithms to neural networks has followed two separate but 

related paths. First, genetic algorithms have been used to find the optimal network architectures 

for specific tasks. Todd (1988) and Miller, Todd, and Hegde (1989) represented various network 

architectures as connection constraint matrices that were mapped directly into a bit-string 

genotype. Modified standard genetic operators were then used to act on populations of these 
genotypes to produce successively higher fitness levels. This methodology was applied to three 

problems: the XOR, the Four Quadrant Problem (two-dimensional XOR), and the Pattern 

Copying Problem (a direct mapping between a binary input vector and itself). Guha, Harp, and 

Samad’s (1989) network architectures were represented using groups of units with probabilistic 

projections between them. Although interesting, this work seems to sidestep the issue of a 

universal functional mapping because it leaves unresolved the question of whether the model’s 
architecture performs poorly on a given task due to the appropriateness of the given architecture, 
or, rather to the inability of the backpropagation learning rule to achieve a global solution on the 

said architecture. 

Alternatively, in a recent paper Dorsey, Johnson, and Mayer (1994) demonstrated the 

superior performance of the genetic algorithm across a large class of problems with generic 

feedforward network architectures. In fact, the problems typically used one hidden layer and six 

hidden layer neurons. The genetic algorithm appears to overcome the shortcomings of 
backpropagation. There have also been previous attempts by Whitley and Starkweather (1990), 
Whitley, Starkweather, and Bogart (1990), Miller (1988), Montana and Davis (1989), and Whitley 

and Hanson (1989) to use genetic search instead of gradient-descent learning to establish the 

appropriate weight matrices in fixed architectures. 

This chapter, on the other hand, takes a general, fully interconnected, and dynamic 

network and uses a modified genetic procedure to evolve not only the connection weights but 

also the underlying connection structure.
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2. GENETIC ALGORITHMS 

In learning the appropriate weights and connection structure, the genetic algorithm uses 

a process that in ways parallels the Darwinian process of natural selection to iterate toward a 
solution (see Goldberg, 1989, and Holland, 1975). Given a specific dynamic neural network 
energy function to be optimized, the genetic algorithm starts with an initial population of 
candidate solutions (the first generation) and then selects a subset of the population to act as 
progenitors to contribute offspring to the next generation of candidate solutions. As in natural 

Systems, the new offspring inherit a combination of the traits from their parents whose traits were 
either the result of a crossover between vectors in a prior generation or bestowed as an initial 

condition set by the organizer of the initial population or mutation. The key to this process is 
selectivity. Not all population members from the previous generation are given an equal chance 
of surviving and thus contributing to the population of potential solutions. Thus, it is likely that 
only a select few will actually contribute. In particular, the population members with the highest 
probability of surviving are those with traits favorable to solving for the optimum of the specific 
energy function. In contrast, members of the current population least likely to contribute 
candidate solutions to the next generation are those possessing unfavorable traits. In this way, 
a new population of candidate solutions (the second generation) is built from the most desirable 
traits of the initial population. As iteration continues from one generation to the next, traits most 
favorable in finding an optimal solution for the objective function thrive and grow, whereas those 
least favorable die out. Mutation may also occur at any stage of the progression from one 
generation to the next. By randomly introducing new traits into the natural selection process, 
mutation tests the robustness of the population of current potential solutions. As with traits 
bestowed on members of the initial population, if these newly introduced traits add favorably to 
the ability of their recipients to optimize the specific objective function, then the new trait will 
thrive and grow. Otherwise, the effect of the mutation will die out. Eventually, the initial 
population evolves to one that contains an optimal solution and the evolutionary process 
terminates. As Szu (1991) wrote: 

... bioevolution may begin by chance, but it proceeds by dynamics. Initial chance 

and dynamics could together provide the statistical and the correlational 

information, the preferential and the synergistic boundary conditions, and the 

desirable and the realizable performance measures, which are all expressible in 
terms of a constrained free-energy principle in a top-down design of the 
minimum-maximum pattern-classification principle in this article. This energy 

principle can describe a comprehensive learning principle, including the 

topological dynamics of the cellular morphology. 

3. METHODOLOGY 

In order to optimize the DRNN shown in Figs. 11.1 and 11.2, we adopted certain 
protocols. These are clearly not unique, and alternative procedures could be followed and still 
be consistent with Szu (1991). Nonetheless, we felt these procedures to be the most logical.
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Fig. PL. The dynamic recontigurable neural network with two recursive nodes. 

The DRNN is operationalized in the following manner: 

- The DRNN consists of & input or data nodes x, (kK = 2 for the XOR problem), m recursive 
nodes (2 and 4 were used) and one bias term node. The data nodes are fixed at the 

data values for each observation. The bias term node ts fixed at —1.0. 

- The A input nodes are each connected to the m recursive nodes (km connections). Each 

recursive node is connected to all recursive nodes including itself (7m connections). 

The bias term node is connected to each recursive node (sm connections). The output 

node is connected to each recursive node and to the bias term node (m + 1 connec- 

tions). The total number of connections is therefore m(kA + m + 2) + 1. 

- The output of each of the recursive nodes is the sigmoid function 

1 
  

mek m 

1 +exp(-}> WO; 47 OX, tO, gy) 

i=] i=mel 

where w, are the connection weights.
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The initial input to the recursive nodes is initialized to an arbitrary value in the range 

[0,1]. We use 0 for the initial weights reported in this chapter. 

- The output of the network for the ¢" iteration of the j" observation is the value 

; 1 
if m 

1 +exp(-)> wy 11+ %acked 

i=l 

  

and the converged output for the j" observation is denoted Y,y. 

‘The DRNN is said to converge if the output from the output node varies by less than 107° 
for five consecutive iterations'. 
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Fig. 11.2. The dynamic reconfigurable neural network with four recursive nodes. 

  

'Two or even three consecutive iterations are not sufficient. Numerous solutions were found where this criterion 

was met for three consecutive iterations only to be following by a output values significantly different than previous 
outpuls.
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To optimize the DRNN we use the genetic algorithm with weights selected randomly from 
a uniform distribution over the range [—100, 100]. Two objective functions were used. For the 
first series of optimization runs the objective function 

N 

Min Yr 7 yy 
jel 

is used where Y,, is the converged forecast of the j" observation and Y, is the j" observation. For 
the other series of runs, the objective function 

m(keme2)e1 N 

Min} y O(Y,- YY + YO INDw,=0) 
j=l i=l 

is used where y > m(k + m + 2) + 1, IND(-) = 1 when the argument is true and equals 0 
otherwise and, as in Eq. (2), Y;,; implies the converged forecast of the j" observation. This 

objective function is referred to as the energy function. 

The first objective function simply selects a set of weights that will minimize the sum of 

Squared errors, whereas the second objective function requires this to be achieved with the 

minimum number of total connections. 

Both objective functions are used with the XOR problem. For the XOR problem, the 

DRNN consists of two input nodes, either two or four recursive nodes, the bias term node and 
the output node. This results in a total of 13 (2 recursive nodes) or 33 (4 recursive nodes) 

connections. There are four observations for the XOR problem. 

4. RESULTS 

The genetic algorithm quickly identifies a set of weights to solve the first objective 
function, and because no priority is given to solutions with fewer connections, hard zeros almost 
never occur. Several typical solutions are provided in Table 11.1. When the objective function 

is modified to incorporate a penalty for the existence of superfluous connections, the genetic 

algorithm readily achieves the solution of eight connections discussed in Szu (1991) and in 

Rumelhart, Hinton, and Williams (1986). Their solution is shown at the top of Fig. 11.3. In fact, 

for this orientation of nodes, both connections to the bias term are not necessary. Only seven 

connections are needed for this architecture. This compact solution is shown in Fig. 11.4. This 
solution has both recursive nodes connected to the two input nodes and one is connected to the 
bias term. In addition, the recursive node not connected to the bias term serves as input to the 

other recursive node. 

Some of the other solutions found by the genetic algorithm incorporating seven 

connections are listed in Table 11.2 and shown in Fig. 11.4. As can be seen, with two recursive 

nodes, there are two structures that can solve the problem and contain seven connections. To see 

whether or not the genetic algorithm would be able to solve the XOR problem with a more
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complex DRNN, the four recursive nodes were used. The genetic algorithm found a solution 
with the same fundamental structure as one of the seven connection solutions. This solution from 
the four recursive node DRNN is provided in Table 11.3. 

Out 
Out | 
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Fig. 11.3. Alternative cight-connection structures for the XOR problem. 

This seven-connection structure is not unique. The other solution shown in Fig. 11.4 is 

also able to solve the XOR problem with seven weights. In this case the reduced structure has 
one recursive node connected to the two data nodes and to the bias node. This recursive node 
also has input from the second recursive node. The second recursive node only receives input 
from the first recursive node and from itself.
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Table 11.1. Solutions Based on Minimizing Sum of Squared Errors. 
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Table 11.2. Seven-Connection Solutions Based on Minimizing the Energy Function. 

Weights 

18 

19 

20 

21 

26 

27 

31 

Table 11.3. Sample Solution for the Four Recursive Node DRNN. 

Solution I 

54.097 

66.357 

97.767 

-63.581 

54.870 

-52.713 
-51.417 
-86.065 
74.879 

19.988 

1.000 

1.015 

-78.455 

Solution 1 

0.0000 

0.0000 

9.5374 

-84.9750 

0.0000 

67.8922 

0.0000 

-20.5624 

47.3249 

42.3825 

0.0000 

1.0000 

0.0000 

Solutions 

-99.917]1 

74.0024 

-—23.5243 

-38.3391 

57.7830 

-—23.6824 

1.0000 
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Solution 2 

5.1580 

-80.1753 

89,7624 

85.5918 

97.2459 

-22.4606 

-21.2104 
62.0763 
61.9885 

14.5472 

-1.0612 

1.0000 

45.0968 

Solution 2 

0.0000 

61.2176 

28.7965 

28.7965 

85.6920 

-75.2506 

58.3850 

0.0000 

0.0000 

0.0000 

1.0000 
0.0000 

0.0000 

Solution 3 

19.1757 

1.2389 

5.0123 

30.0780 

40.5659 

-86.2190 
6.6190 

32.4577 
40.8300 

33.6546 

-—47.2223 

1.0046 

-—21.4239 

Solution 3 

0.0000 

58.3973 

52.2191 

-6.1705 

48.3934 

0.0000 

0.0000 

-66.1518 

10.8252 

0.0000 

1.0000 

0.0000 

0.0000 

All other weights are zero
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This use of the one recursive node simply to modify the signal of the other node is not 
uncommon among the solutions found. As the DRNN is optimized with the genetic algorithm, 

it will often reach a plateau with a larger number of connections prior to discovering how to 

eliminate the next connection. A typical genetic algorithm optimization run is shown in Fig. 11.5. 

This figure shows the value of the error function for the four-hidden-node DRNN as the genetic 

algorithm searches and ultimately converges to the seven-node structure shown in Table 11.3. 

The scale used is log-log because the genetic algorithm very quickly achieves a close solution 
but takes much longer to achieve the final solution. It is also apparent from the figure that 
intermediate solutions are achieved during the search process that solve the XOR problem, but 

with more than the minimum connections. — Figure 11.3 shows, for example, several of the 
structures formed to solve the XOR problem where eight connections were used. As can be seen, 
there are several configurations that use one of the recursive nodes for signal modification. 

Out Out 

ANC 
USS 

IN ° ° 

Iny Ing . ™ " } 

Fig. 11.4. Alternative seven-connection structures. 

As mentioned earlier, the structure discussed by Szu (1991) and by Rumelhart, Hinton, and 

Williams (1986) is not the minimum energy function found by the genetic algorithm. The energy 

of their solution can be reduced by eliminating one of the connections to the bias node. In 
addition, an architecture with even fewer connections was found with the genetic algorithm. 
Figure 11.6 shows the lowest energy structure found that will solve the XOR problem. This six 

connection structure has one recursive node receiving input from the two data nodes as well as 

from the other recursive node. The second recursive node receives input from the bias node and 

from the other recursive node. This is again not unique because either recursive node can take 

on either function. 

The values for the weights are shown in Table 11.4. This solution was not easily found by 
the genetic algorithm and required extensive search. To help understand the difficulty in finding
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this solution, Figs. 11.7 through 11.10 show the energy surface as the weights are varied. In each 
of these figures the weights were varied in .02 increments over the range +5.0 around the optimal 

value of the weight. In some cases the optimal value was zero corresponding to the connection 

optimally not existing. All other weights were held at their optimal values and the value of the 

energy function was plotted as the two weights were allowed to vary. For each figure the neural 

network was evaluated at 10,000 points. Figure 11.7 shows the energy function as weights 1 and 
2 are varied, Fig. 11.8 has weights 3 and 4, Fig. 11.9 shows 5 and 6, and Fig. 11.10 allows 
weights 7 and 8 to vary. As can be seen, the energy surface is quite complex. In addition, for 

those weights that are optimally zero, weights 1, 3, 4, and 7 in the figures, discontinuities exist 

as the energy function crosses the value zero. At that value the energy function drops by an 

increment of 1 corresponding to the elimination of that connection. In Fig. 11.7 both weights 

are optimally zero so there is a point value at (0,0) that represents the optimal value of the 

energy surface. 

5. CONCLUSION 

This study has shown that a global search algorithm, such as the genetic algorithm, has the 

ability to identify a set of weights that will solve the training problem of the dynamic 

reconfigurable neural network and thus meet Harold Szu’s challenge. Furthermore, if the 
objective function is structured in a manner to generate penalties for extraneous nodes and 
connections, the algorithm has the capacity to identify a parsimonious structure to solve the 
candidate problem. 
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Fig. 11.5. Changes in the value of the energy function during search.
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Fig. 11.6. A six connection structure for the XOR problem. 

Weights Solution 

1 0.0000 

2 100.2900 

3 0.0000 

4 0.0000 

5 0.7142 

6 -97.0725 

7 0.0000 

8 45.7195 

9 48.7554 

10 0.0000 

11 0.0000 

12 1.0000 

13 0.0000 

Table 11.4. Six-Connection DRNN Weights. 

The reason that the DRNN is difficult to train can be seen from the complex nature of 

the energy surface. The existence of an extremely convoluted energy surface in conjunction with 

the discontinuities associated with the removal of nodes and connections makes the DRNN a 

virtually intractable problem for hill-climbing-based algorithms.
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Fig. 11.7. Energy function as weights 1 and 2 are varied. 

A further result of this study is the identification of a wide variety of architectures for 

each energy level that is able to solve the problem. Although each structure can solve the 

problem, the individual characteristics of convergence for each solution have yet to be explored. 

In addition, each of the structures mentioned above can be formed in a multitude of ways 
depending on the starting point (or initial condition) of the genetic evolution in an almost random 
way. 

Because there is clearly a large number of ways to solve any particular problem, the issue 

of what is optimal becomes more interesting. The idea of a multitude of structures for solving 

the same problem resulting from different initial conditions is possibly what Karl Pribram (1991) 
had in mind when he wrote:
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Fig. 11.8. Energy function as weights 3 and 4 are varied. 

Einstein was wrong in expression if not in intent when he stated his view that God 

does not play dice with the universe. Indeed he does, and has six-sided cubes 

(numbered at that), or perhaps 10-dimensional superstrings with which to play. 
Playing marbles would only get him Hamiltonians: The marbles would accumulate 

in equilibrium structures composed of sinks of least energy. In my evening’s search 

for relevant information, in Einstein’s search for determinant structure, the books and 

dice are constraining initial conditions as it is of the process of shuffling the books 

or throwing the dice. 

The genetic algorithm is inherently a random process and thus identifies different 
solutions depending on the particular string of random numbers that are called. In this light it 

is important to return to questions that have concerned researchers in the past but that have been 

of less concern in recent studies.
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Fig. 11.9. Energy function as weights 5 and 6 are varied. 

What is perceived as disorder with respect to some particular activity ordinarily results, 
however, from the shuffling and throwing process. On closer scrutiny, randomness could be seen 
to reflect the structure of the initial conditions as they become processed in shuffling, throwing, 
or selecting (Pribram, 1972, 1986). 

If the starting point of the conditioning process matters and if a multitude of equally valid 

structures will yield acceptable (if not always optimal) solutions, then do these DRNN structures 

offer us insight in to Donald Hebb’s (1949) dilemma of whether perception is to depend on the 

excitation of specific cells, or on a pattern of excitation whose locus is unimportant? Hebb chose 
the former alternative: "A particular perception depends on the excitation of particular cells at 
some point in the central nervous system."
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Fig. 11.10. Energy function as weights 7 and & are varied. 

As neurophysiological evidence accumulated ... this choice, for a time, appeared 

vindicated: Microelectrode studies identified neural units responsive to one or 

another feature of a stimulating event such as directionality of movement, tilt of 

line, and so forth. Today textbooks in psychology, in neurophysiology, and even 

perception, reflect this view that one percept corresponds to the excitation of one 

particular group of cells at some point in the nervous system. (Pribram, 1991) 

Or should we be troubled even as in Lashley (1942): 

Here is the dilemma. Nerve impulses are transmitted over definite, restricted 
paths in the sensory and motor nerves and in the central nervous system from cell 
to cell through definite inter-cellular connections. Yet all behavior seems to be 
determined by masses of excitation, by the form or relations or proportions of
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excitation within general fields of activity, without regard to particular nerve cells. 
It is the pattern and not the element that counts. 

Because multiple DRNN structures solve the XOR problem equally well should this lead 
us to concentrate more on the patiern of excitation rather than on the excitation of specific cells? 
However, because there is an ultimate structure, the locus of processing is not necessarily 
unimportant. Is this what Pribram had in mind? 

According to the views presented here and in keeping with Lashley’s intuitions, 
this computational power is not a function of the "particular cells" and the 
conducting aspects of the nervous system (the axonal nerve impulses), nor is it 
necessarily carried out within the province of single neurons. At the same time, 
the theory based on these views does not support the notion that the locus of 

processing is indeterminate. Rather the locus of processing is firmly rooted within 

regions of dendritic networks at the junction between neurons. 

The DRNN, trained with the genetic algorithm, offers researchers a new tool to model 
neural activity. It also requires modelers to reexamine what is meant by optimal and also 
whether or not the collective network performance rather than the individual neuron action is 
what is ultimately the focus. 
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Optimization by a 
Hopfield-Style Network 

Arun Jagota 

University of North Texas 

Arun Jagota’s chapter, Optimization by a Hopfield-Style Network, is one of two 
chapters in this book that deal with what are usually considered classical optimization problems 
— the other being Jayadeva and Bhaumiuk’s chapter which draws analogies between some of those 

problems and problems in visual perception. In this case, Jagota applies a neural network based 

on Hopfteld’s to solve several problems in graph theory: graph coloring, minimum vertex and set 

cover, constraint satisfaction problems, and Boolean satisftability. 

Jagota points out that Is technique does not always produce global best solutions, 
though for one of the problem types (vertex cover) the solutions are within a certain factor of 
optimal. (Neither, of course, does the Hopfteld-Tank or any of the other known neural net 
algorithms for the Traveling Salesman Problem.) Rather, his contribution is in showing that a 

single simple network can provide solutions for several problems, all of which are sufficiently 
close to optimal for real-world applications. These could be considered "satisficing" solutions, 
perhaps, but Jagota’s approach is more grounded in formal mathematics than the usual satisficing 

approaches which settle on the first available satisfactory solutions. He shows that a variety of 
different graph theoretic problems can all be reduced to the same binary weights network in a 
manner that 1s goodness-preserving, that is, does not change relative orderings of solution 
qualities in the energy functions. This can be interpreted as not changing preferences based on 
utility functions. 

ABSTRACT 

We map several hard optimization problems, by reduction to MAX-CLIQUE, on to 

Hopfield network special case called HcN and then approximately solve them via its dynamical 

algorithms. These problems include graph coloring, minimum vertex and set cover, constraint 

satisfaction problems (N-queens), and Boolean Satisfiability. Approximation performance is 

experimentally determined on random instances. Our optimizing dynamics are discrete and 

provably efficient. Our broad contribution is in optimizing several problems in a single binary
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weights network, which, for all problems in this chapter, admits no invalid solutions. All 

reductions, except one, are goodness-preserving in a formal sense. We contrast this with the 

variety of handcrafted energy functions for the same individual problems in the literature, several 

of which admit invalid solutions also; several employ higher precision weights; and the goodness 
correspondence is not always clear, in a formal sense. 

1. CLIQUES AND MAXIMUM CLIQUE 

In a graph with undirected edges, a clique is a set of vertices such that every pair is 
connected by an edge. A clique is maximal if no strict superset of it is also a clique. A k-clique 

is a clique of size k. A clique is maximum if it is a largest clique. In Fig. 12.1, the vertex sets 

{a, c, d, e}, {c, d}, {a, b}, and {c, d, e} are, respectively, nonclique, nonmaximal 2-clique, 

maximal-but-not-maximum clique, and maximum clique (size 3). 
MAX-CLIQUE is the optimization problem of finding a largest clique in a given graph 

and is NP-hard (Karp, 1972) even to approximate (Arora et al., 1992; also see Crescenzi, Fiorini, 

& Silvestri, 1991; Freige, Goldwasser, Lovasz, Safra, & Szegedy, 1991; Garey & Johnson, 1979). 

That is, unless P = NP, which is highly unlikely, there is no algorithm that, for every given 

graph, can find a maximum clique — or even a clique within, for example, a constant factor of 

it — tractably (i.e., in time polynomial in the size of the graph). 

2. OPTIMIZATION BY REDUCTION 

In this section, we show how to map combinatorial optimization problems to 

MAX-CLIQUE in such a way that maximal cliques correspond to feasible solutions to the 

original problem and the size of the clique corresponds to the "goodness" of the solution. All 

the reductions described here have the following property: every maximal clique in a reduced 
instance corresponds to some feasible solution of the original problem. Our reason for exhibiting 
these reductions is as follows. In Section 4, we describe a special case of the Hopfield model 

that we call the Hopfield-clique network (HcN), which encodes the MAX-CLIQUE problem. In 

particular, given any graph G, we can construct an HcN instance N such that the stable states of 

N are exactly the maximal cliques of G. We will use this fact to solve other problems in HcN 

by first reducing them to MAX-CLIQUE and then reducing the resulting MAX-CLIQUE instance 

to HcN. Because HcN admits only maximal cliques as stable states, every HcN stable state thus 

represents a valid solution of the original problem. 
To describe an optimization problem A we specify the instances I, the sets F, of feasible 

solutions to I, and a numerical measure goodness, (s:/) defined for s © F;. In the MAX-CLIQUE 

problem, the instances are undirected graphs G, F, is the set of subgraphs of G which are 

cliques, and goodness(s:G) is the number of vertices in s. A reduction from A to another 

optimization problem B formally consists of a pair of functions (g, 4) such that for each instance 

I of A, J := g(/) is an instance of B, and his a function from F, to F,. The reduction is goodness 

preserving if for all instances J of A and feasible solutions b,, b, to the corresponding instance 
J of B,
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goodness,,(b,:J) > goodness,,(b,:J) <> goodness, (A(b,):J) > goodness, (h(b,):D 

This captures the idea that finding better solutions to B helps one find better solutions to A. The 

reduction of MAX-CLIQUE to HeN is goodness preserving (larger maximal cliques <> deeper 

local minima; see later). All reductions to MAX-CLIQUE in this chapter, except one, are 
goodness preserving. Consequently, all these reductions are goodness-preserving in HcN: deeper 

minima formally correspond to better solutions; global minima are exactly the optimum solutions. 

Many of these reductions are possible only because of the NP-hardness of MAX-CLIQUE. If 

MAX-CLIQUE were in P, then no reduction from an NP-complete problem to MAX-CLIQUE 

would be possible unless P = NP. A neural network for graph matching such as the one 
described in Hertz, Krogh, and Palmer (1991) has less "computational power" in this sense 
(because maximum matching is in P; consequently, no NP-hard problem is reducible to maximum 
matching unless P=NP). 

  

  

Fig. 12.1. Graph with maximal cliques {a, b}, (a,c, d}, and {c, d, e}. 

3. REDUCTIONS TO MAX-CLIQUE 

In this section, we present the reductions. Subsequent sections describe HcN, the 

optimizing dynamics, the experimental results and some theoretical issues, and comparisons with 
earlier work. 

3.1. Set and Vertex Cover 

The minimum vertex cover (MVC) is an NP-hard optimization problem on graphs (see 

Garey & Johnson, 1979); the minimum set cover (MSC) is its generalization to hypergraphs and 
thus NP-hard. MSC is also known as the Hitting Set Problem (Garey & Johnson, 1979). We 
describe MSC and then specialize its description to MVC. This terminology is from Motwani 

(1992). Given a vertex-set V = {v,, --, v,} and an edge-set E = {e,, --, ¢,,} such that e, c V, a 

subset C € V such that tor all e, € E: e; mn C # ©@ is called a set cover. That is, C is a set of 

vertices that cover all the edges. MSC is the problem of finding the smallest set cover in a given 

hypergraph instance. When, for all ¢, |e] equals 2, the hypergraph is a graph and the set cover is
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a vertex cover. MSC then becomes MVC. MSC and MVC model many resource-selection 

problems. Let V represent people and edge e, represent the subset of the people who have skill 

t. Then a set cover C represents a subset of the people such that for every skill, there is at least 

one person in C who has that skill. MVC also models computer networking (e.g., monitoring 

a network with the minimum number of processors). 

C is a vertex cover in a graph G iff V\C is a clique in G,, the complement graph of G 
(edges in G, are nonedges in G and vice versa). This is one reduction of MVC to 
MAX-CLIQUE that we shall use on our Hopfield net special case, mainly for empirical 
comparisons. Our main reduction is different, and is motivated by a well-known property of 

vertex covers attributed to F. Gavril (see Garey & Johnson, 1979, p. 134). This property also 
trivially generalizes to set covers. Therefore we describe it in the set cover setting and present 

the MSC-to-MAX-CLIQUE reduction that exploits it. We then specialize this reduction to the 

MVC case. 

A matching M in a hypergraph is a set of edges such that no two share a vertex (i.e., V 

¢, e EM: e,ne =O). Let M, = U, em & denote the vertices in any maximal matching M. 
‘ 

M, is a set cover because for every edge ¢, in E, e, nM, z OS. Let f(n) = max, - 5 le,|. A 

minimum set cover S’ must have at least one vertex from every edge in M. Hence |M,] < f(n)|S’|. 
That is, the vertices in any maximal matching are a set cover of size at most f(n) times that of 

the minimum set cover. Clearly, the approximation may be good only when f(n) << n. Fora 

graph, f(n) = 2. Hence the vertices in any maximal matching in a graph are a vertex cover of 
size at most twice that of the minimum vertex cover. This is the property that F. Gavril 
observed. 

Our MSC-to-MAX-CLIQUE reduction exploits this property by representing maximal 

matchings of a hypergraph H as cliques of a new graph. The line graph G, of a hypergraph H 

has a vertex v; for every edge e, of H and two vertices v,, v, of G, are adjacent iff the intersection 

of the corresponding edges ¢,, e, of H is nonempty. Given H, our reduction constructs the line 

graph of H and then complements it. The -cliques in the resulting graph G, are k-matchings 

in the hypergraph H. Thus every maximal clique of G, represents a distinct set cover of H 

within factor f(n) of optimum. Clearly, the size of G, (number of vertices) may be up to e(n), 

which can be astronomical unless f(n) << n. When H is a graph G and we are interested in the 

minimum vertex cover, G, is the complement of the line graph of G and its size can be up to 

@(n’) vertices. 
Figure 12.2(b) shows the line graph of the graph of Fig. 12.2(a). Figure 12.2(c) shows 

its complement. The 3-clique {e,, e;, e,} in Fig. 12.2(c) is a 3-matching in Fig. 12.2(a). 

3.2. Constraint Satisfaction Problems 

The constraint satisfaction problem is a key problem in many artificial intelligence 
applications, especially in computer vision and in natural language processing. For a good 
overview see Mackworth (1992).
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Fig. 12.2. (a) A graph, (b) its line graph, and (c) the complement of its line graph. k-cliques in (c) are 

k-matchings in (a). 

Definition 1. A binary constraint satisfaction problem (B-CSP) is a set of N variables X,, ..., Xv 

that take values from the sets D,, ... ,Dx respectively, under given binary compatibility 

constraints. For all variable pairs X,, X,, C(X;, X,) & D, x D, is a binary constraint set and 

specifies the pairs (d,, d;) such that X; = d; is compatible with X, = d. A solution of a B-CSP is 

an N-tuple of values to the N variables so that all pairs of value assignments are compatible. 

Because graph k-coloring is a B-CSP, solving a B-CSP problem is in general NP-hard. 

N-Queens Example. The N-queens problem is one of placing N queens on an N x N 

chessboard so that no queen threatens another. The standard formulation of the N-queens 

problem as a B-CSP uses N variables: X, = j represents a queen on column i and row j. The 

value set D; of each variable is {1, -, n}, denoting the n possible row values. The choice of 
variables enforces the column constraints of no more than one queen per column; the similar row 
and diagonal constraints are represented explicitly as C(X,, X;). 

Standard Representation of B-CSPs. A B-CSP is commonly represented as a constraint 

graph G=(V, E). There is a vertex v, for every variable X,. An edge (v,, v.) represents the binary 

constraint between X; and X;, and is labeled by the set C(X, X;) of compatible assignments (see 
Mackworth, 1992). If we consider only B-CSPs that have solutions, all constraint sets C(X,, X;) 

must be nonempty. We can then choose a convention in which two vertices v,, v, are nonadjacent 
if and only if their constraint set is complete. That is, C(X, X;) = D, x D,. This convention is 
space efficient. 

B-CSPs as MAX-CLIQUE. Our way of representing a B-CSP is different — we transform 

it to a graph so that all its maximal feasible solutions are explicitly represented as maximal 

k-cliques of that graph (solutions as N-cliques). We call this representation a B-CSP clique-graph. 

The reduction is as follows. For an N-variable B-CSP, define an N-partite graph G, partition i 

representing variable X;. Partition ¢ contains [Dj vertices, one for each possible value of X, and 
named by the value. We make C(X,, X,) the set of edges between vertices in partition i and 

partition j. Every compatibility constraint of the B-CSP is represented as an edge of the graph.
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The fact that the vertex set of a partition is an independent set (no edges) enforces the constraint 
that a variable may be assigned at most one value. 

It is clear that our reduction, in one sense, involves essentially only a language change 

and that there is a one-to-one correspondence between maximal sets of mutually compatible 

assignments to k variables of a B-CSP and k-cliques of its clique-graph. Hence the set of 

N-cliques is exactly the set of the B-CSP’s solutions. 

Figure 12.3 shows a clique graph representation of the 3-queens problem, according to 

its standard B-CSP formulation (see the N-queens example). 

  

Fig. 12.3. 3-queens B-CSP clique-graph. Edges represent compatible assignments. 

Space Requirements. The N-queens constraints are analytical, and need not be stored 

explicitly in conventional methods. The constraints are X, # Xj, X; — X} J — 4, and X-X; #1 — J, 

for each pair of variables (Nadel, 1989). In our method, however, the constraints must be stored 

explicitly. HcN is fully-connected; it requires O(N") connections (3,123,750 for N=50). HcN has 

nonzero-valued weights only for the nonedges. We have calculated that the number of non- 

edges (forbidden pairs) in the N-queens clique-graph is O(N’) (=125,000 for N = 50). To 

represent arbitrary B-CSP instances, ©(Z|D,|)* connections are required. 
One attractive feature of our representation is that all maximally compatible partial 

solutions (includes full solutions) are represented explicitly; further, its incorporation into HcN’s 

parallel architecture potentially provides a constant-time (i.e. independent of NM) test for an 

N-tuple to be a solution. Second, new parallel algorithms for solving B-CSPs emerge from its 
graph and neural network connection (see our results section). 

3.3. Boolean Formulas 

Satisfiability of Boolean formulas is in general NP-complete (Garey & Johnson, 1979). 

MAX-SAT, the problem of finding the maximum number of clauses satisfiable by a value as- 

signment, is NP-hard. MAX-SAT is the optimization problem that is experimentally 

approximated in this chapter. We employ a recent reduction of conjunctive form (CF) Boolean
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formulas to cliques in graphs (Crescenzi, Fiorini, & Silvestri, 1991). We view this reduction 
differently than in Crescenzi et al. (1991) — as a representation of any CF Boolean formula as 
a B-CSP, followed by the representation of the B-CSP as a B-CSP clique-graph. 

As an example of this reduction, consider the CF formula(v, +v,)(v, +v,)(v, +¥) 
consisting of a conjunction of three clauses Ci, Co, C;. We represent it as a B-CSP with variable 
X; for clause c;. The value set of X, is the set of literals in clause c; In this case, D, = {v,, v5}, 
D, = {v,,v,}, and D, = {v,, V5 }. The constraint sets are: C(X,, X) = (D; x D)\{(u;, u;)} where 
u; and u; represent different values to the same Boolean variable (v, or v, in this case). That is, 
the only incompatible assignments are if two clauses assign different values to the same Boolean 
variable. Figure 12.4 is the B-CSP clique graph for this example. The B-CSP clique graph of 
a formula of m clauses is m-partite. The k-cliques represent assignments that satisfy k clauses, 
so m-cliques represent assignments that satisfy the formula. In. this example, the 3-clique 
{C\V,, Co¥2, Cav, } Says that v, = v, = T satisfies all three clauses in the formula. 

rr 

  

a 

Fig. 12.4. B-CSP clique-graph for the formula (v, + v5) (, + v5) (Vv, + V5). 

3.4. Graph K-Coloring 

The graph k-coloring optimization problem is to label as many of the vertices of a graph 
with one of k colors as possible, such that no pair of adjacent labeled vertices has the same color. 
The problem is NP-hard for k = 3 (see Garey & Johnson, 1979). The problem has applications 
to resource partitioning. It is well known that graph k-coloring is a B-CSP. We use this 
connection to reduce graph k-coloring to MAX-CLIQUE but skip the intermediate B-CSP step 
in the description. We assume graph-theoretic terminology. 

Given an n-vertex graph G and the number of colors k, a new n-partite graph G’ with k 
vertices in each partition is created. Then Vi = iY,» my vit is the vertex-set of partition i. y, 
denotes vertex v, of G having color j.. The set of edges between vertices in partitions i and j is 
Vx Vj if (vj, v) is not an edge in G; it is (V, x V,) \ (Cy, »v, )) for l=1, --, k if (v, v,) is an edge 
in G. There is an exact correspondence between m-cliques, 1 < m sn, in G’ and sets of m
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vertices of G properly colored. Figure 12.5 shows a graph and its 2-coloring MAX-CLIQUE 

reduction. 

eee ee 

oy (2 

  

  

ee we 
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Fig. 12.5. (a) A graph and (b) its two-coloring reduction to MAX-CLIQUE. 

3.5. Common Vertex-Induced Subgraphs 

Consider a pair of graphs G and H. A common vertex-induced subgraph (CVS) is a 

subgraph, induced by a set V’ of vertices, that is common to both G and H (up to isomorphism). 

Figure 12.6 shows two graphs and one of their common vertex-induced subgraphs. 

Applications of CVS. The problem of graph isomorphism (are G and H isomorphic?) is 

a special-case: Find the largest common vertex-induced subgraph. If it is G (or H) the answer 
is yes, else no. Common subgraphs are also useful for pattern matching: geometric or otherwise. 

One example is to find the largest common pattern between an image and a model, with the 

essential features of both modeled as graphs. 
Representing CVS as Cliques. We use the reduction of Barrow and Burstall (1976) to 

represent common vertex-induced subgraphs of a given pair of graphs G and H as cliques of a 

new graph G H. We view this reduction as one to a B-CSP. The set of variables is X = V(C). 

The domain of every variable is D=V(H). The value x; = j is compatible with x, = /if and only 

if 

(1k) € E(G) = GD © ECA) 

The graph G A is just the clique-graph of the above B-CSP. 

k-vertex common vertex-induced subgraph of G and H} = k-clique of G H. 

Fig. 12.7 shows the graph G A for the pair of graphs G and H of Fig. 12.6.
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Fig. 12.6. Graphs G and H and their common subgraphs induced by the vertex sets {1,2,3,4} and {a,b,c,d} 
respectively. 

4. HOPFIELD-CLIQUE NETWORK 

The Hopfield network (Hopfield, 1982, 1984) is a recurrent N-unit network closely related 
to Ising spin models. W=(w,) is a real, symmetric with zero diagonal, matrix of weights, 
describing the interconnection weights of all unit pairs i, j. In the discrete version (Hopfield, 
1982), unit states are: S, € {0,1}. For x # 0, let 0(x) = 1 if x < 0 and 0 otherwise. The network 
state S=(S;) is updated serially as follows: at time ¢ exactly one unit @ is picked and updated 
according to the rule S(t) := @((WS(t - 1)),). This prescribes a family of serial-update rules, 
updates according to any of which monotonically decrease the energy function E = 
—(1/2)S'WS — I'S (Hopfield, 1982), thus guaranteeing eventual convergence to a discrete local 
minimum of it. Here I = (/) is the vector of external biases to units. 

Hopfield-C lique Network. The Hoptield-clique network (H¢eN) (Jagota, 1990b, 1992a) is 
a binary weights special case of the Hopfield network. For all i # j, w. © {p,]}, where p < —n. 
For all i, w, = 0. T= b" is the vector of external unit biases; 0 < b < 1. G,=(V,E) is the graph 
underlying it whose vertices are the units and there is an (undirected) edge between vertices i and 
J if and only if w, = 1. Vis the set of vertices. The discrete HcN has S; € {0,1}. A set of 
vertices V’ & V is an alternative description of the network state S = (S) © {0,1}% — the
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elements of V’ are the units that are ON. We use these notations interchangeably. S is a stable 

state if and only if (WS + I) = §S, that is, a local minimum state of the discrete energy function. 

Lemma 1 (Grossman & Jagota, 1992; Jagota, 1990b). The HcN stable states are exactly 

the maximal cliques of its underlying graph Gy. 

GH 

  

OO xeQ ee Q eO veQ 

Fig. 12.7. Graph G H whose k-cliques represent common vertex-induced subgraphs of G and A of order k. 

Not all edges are shown. A clique {1a,2b,4d} is shown, which represents a common vertex-induced subgraph 

of order 3 in G and H. 

Lemma 1 is straightforward, and closely related versions may also be found in Godbeer, 

Lipscomb, and Lubey (1988) and Shrivastava, Dasgupta, and Reddy (1990). 

; Lo. . C 
Lemma 2. The energy of a clique of size C Is {s ; 

Lemma 2 may also be trivially verified by calculation of energy of a clique. From 

Lemma 2, the encoding of MAX-CLIQUE in HeN is goodness preserving; it follows as a 

corollary that maximum cliques are exactly the global minima. 

The associative memory storage rule of HCN may be used to store graphs (of reduced 
problems). Instances of all problems in this chapter are easier stored in HcN in terms of 

reductions to maximum independent set, MIS (rather than MAX-CLIQUE). For this reason, we 

describe a version of the storage rule that complements the graph (to convert an MIS reduction 

to a MAX-CLIQUE one) before storage. The initial weight state is: For all ¢#j, w(0) = 1. A 

set S of vertices is stored as follows. For all ¢ # j, w,(0 + 1) := p if units ¢ and / are in the set 

S; w(t + 1) := w,() otherwise. A graph G may be stored by its edges. Because G is 

complemented, after storage, the stable states are maximal cliques of G, and hence maximal
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independent sets of G. G may also be stored by larger clique covers, which is more efficient (in 
practice we exploit this because some of our reductions conveniently allow us to). 

Recall that in serial updates, exactly one unit ¢is picked and updated according to the rule 
S(t) = O((W S(t — 1)),). Any serial-update (energy-descent) dynamics on discrete HeN converges 
in s2N unit-switches (Grossman & Jagota, 1992; Jagota, 1994). An equivalent result is in 
Shrivastava et al. (1990) 

Steepest Descent. Steepest descent (SD) is an instance of serial-update dynamics in which 
the unit ¢ whose switch reduces the energy maximally is picked to switch. Specifically, i satisfies 
AE; s min; AE, < 0 for some choice of S(t) and all choices of J and S(t). Here, 
AE, = [S,(t) — St - 1)] (WS(t - 1)), is the energy change caused by the particular switch of k. 
Let SD(V,) denote, starting with V, c V as initial state, updating units via steepest descent until 
HeN converges to a stable state. SD(V,) is characterized as a graph algorithm (Jagota, 1990a; 
also see Grossman & Jagota, 1992; Jagota, 1992a). Efficient convergence in s2N unit switches 
follows from this characterization (although it follows directly from the more general 
serial-updates result). SD(V) and SD(@) emulate two greedy large-clique-finding algorithms 
(Jagota, 1990a, 1992a). that are well known in the graph algorithms literature (see Griggs, 1983; 
Karp, 1976). 

Stochastic Steep Descent. Stochastic steep descent (SSD) is a stochastic variant of SD. 
In SSD, the deterministic moves of SD are replaced by gradient descent moves that are stochastic 
but favor the steepest direction. The motivation is, with initial state V, to Improve on the already 
good optimization performance of SD(V) (see Jagota, 19924) without a significant risk of 
worsening it. The unit to be updated is selected via a probability distribution P that has zero 
probability of "uphill" moves and favors large (steepest-descent like) decreases in energy. 
Specifically, let C(t) = {2 | AE(t) < O}. Then P[S, is switched at time 4} = O if AE(t) = 0; 
O[AE()] otherwise. Liegy) O[AE(O] = 1. P ensures that exactly one unit is switched. Our 
choice of 0 (hence P) that approximates SD is the linear distribution, represented by d[AE{(t)] 

AE 
= ————. The probability of switching a unit is proportional to the amount of energy the y Az, 

JEC(t) 
switch decreases. SSD performs only gradient descent moves for two reasons: (a) to approximate 
SD and (b) because any serial update gradient descent update scheme on HeN converges in s2N 
unit switches. Nongradient-descent heuristics like simulated annealing are much slower. The 
idea behind SSD is that multiple runs on the same input will produce different solutions, and 
because it approximates SD, it is expected to produce at least one solution that is better. Let 
SSD yi(Vot) denote ¢ runs of SSD on the same graph, with V, as Input for each run. The best 
clique found is chosen. Much better empirical MAX-CLIQUE approximations than from one run 
validate this approach (JJagota & Regan, 1992). 

5S. CONNECTIONS WITH EARLIER NEURAL NETWORK APPROACHES 

A word on well-known notation: minimal and maximal are analogous to local optima; 
minimum and maximum are analogous to global optima.
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5.1. Vertex Cover 

An algorithm for vertex cover has a ratio bound f(n) if on any n-vertex graph, a < fin), 
C* 

where C is the size of the vertex cover obtained by the algorithm and C’ is the size of its 

minimum vertex cover. 
The earliest Hopfield net encoding of the vertex cover problem that we have found is 

described in Godbeer et al. (1988, p. 19) and attributed to M. Luby (1986) as personal 

communication. Given a graph G=(V,E), a Hopfield net is constructed with weights w, = -1 for 

(ij) € E and w, = 0 otherwise. Furthermore w, = deg(1)-(1/2) where w; is a bias to each unit and 
deg(i) is the degree of vertex i in G. Minimal vertex covers are stable states (Godbeer et al., 
1988). It is easy to check that infeasible solutions are not admitted as stable states, for if there 
is an uncovered edge e, that is, one whose endpoints uw and v are both OFF, then both u and v 

receive positive input and one of them will switch ON. In Godbeer et al. (1988) there were no 

experimental results with this encoding, and we are not aware of any in the literature. However, 

we can show that the ratio bound given by this encoding is poorer than the factor of 2 guaranteed 

both by the matching observation and by its realization in HCN. We apply the following example 

from Motwani (1992, p. 48) to the encoding of Godbeer et al. (1988). Figure 12.8 shows the 

situation. 

R4 

  
  

    

Rl 

-1 

R2             
  R3   

Fig. 12.8. (a) Graph and (b) its vertex cover encoding ina Hopfield network. The encoding has a large stable 

state R, though the minimum vertex cover L is small. 

L is a minimum vertex cover, but it is easy to check that R is also a network stable state, 

which may thus be retrieved (even with serial steepest descent, in which a unit that maximally
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reduces the energy is switched, depending on how ties break). By generalizing this example to 
|L| = r and r groups R,, ---, R, of vertices such that every vertex in R; is connected to ¢ different 

vertices in L, it is easy to check that the ratio bound is Q Eh = QO(logr), where R = u, R.. 

A second Hopfield net encoding of the vertex cover problem (Ramanujam & Sadayappan, 
1988) is as follows. It employs the energy function 

B= AE Wy, BP 1A-¥A-¥pqy iJ iv 

The first term minimizes the number of ON vertices; the second term minimizes the number of 
edges uncovered by the ON vertices. A and B are nonnegative constants that control the relative 
importance of these terms. Given a graph G = (V, E), a Hopfield net is constructed with weights 
w, = —2A — Ba; and unit biases w; = BZ, a, = B deg(i) where deg(d) is the degree of vertex i in 
G. a=(a;) is the adjacency matrix of G. 

It is worth noting that this encoding admits stable states that correspond to infeasible 
solutions to MVC if the constants A and B are chosen injudiciously. There is no discussion on 
issues of choosing A and B in Ramanujam and Sadayappan (1988). Consider the following 
example: a graph consisting of two vertices v, and v, that are adjacent. It is easy to see that 
when A > B/2, E(@) < E({v,}) = E({v,}) and hence ©, an infeasible solution, is a stable state. 
(© is an infeasible solution because it does not cover any edge, let alone all edges, of the graph.) 
By similar reasoning, for an arbitrary graph G, if A > (B/2)A, where A is the maximum degree 
in G, then © is a stable state. This is because for any vertex v, E({v}) - E(Q) 2A - (B/2) A 
as at most A edges get covered by switching v ON. 

If A < B/2, on the other hand, then this encoding does not ever admit infeasible solutions. 
This is easy to see. Consider an infeasible solution. There is at least one uncovered edge e, that 
is, one whose endpoints u and v are OFF. Switching u or v ON increases the first term in the 
energy E by the amount A and decreases the second term by at least the amount B/2, because at 
least the edge e that was not covered earlier becomes covered. The cumulative energy change 
is thus negative and the infeasible solution cannot be a stable state. 

It is also useful to note that setting A to 0 is problematic. Because the second term is 
zero-valued for every vertex cover, this setting (a) makes every vertex cover a Stable state, (b) 
with the same energy value. No experiments are reported with this encoding in Ramanujam and 
Sadayappan (1988), and we are not aware of any in the literature. 

The second issue of this encoding, compared to ours, is that the weights and biases are 
real-valued. In our encoding, the weights are binary-valued: {0, -1}. Our encoding is thus 
easier to implement in hardware. A third issue is that the ratio bound of this encoding is not 
clear. 

A third approach (Shrivastava et al., 1990) encodes maximal independent sets (MIS) (the 
authors use their own term, irredundant isolated graphs) as stable states in the Hopfield model. 
It is based on the well-known fact that if / is an independent set then W, that is, the set of OFF 
units in a stable state, is a vertex cover. Their encoding was earlier presented in Godbeer et al.
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(1988, p. 17). However, in Shrivastava et al. (1990), a very interesting and initially surprising 

(to this author) result was proven: using synchronous updates, the MIS-encoded network 

converges in zero or one steps to a fixed point and two or three steps to a two-cycle. No 

experiments were reported, however. 
We employ two encodings of the vertex cover problem in HcN. Our first encoding 

(encoding 1) is based on the reduction of minimum vertex cover to MAX-CLIQUE based on the 
idea of maximal matchings. Encoding 1 has ratio bound of 2 (all stable states represent vertex 

covers of at most twice the optimum size). This holds regardless of the dynamical rule. 

Our second encoding (encoding 2) of vertex cover is based on the following more 

common reduction of minimum vertex cover to MAX-CLIQUE. A graph G is converted to its 

complement graph G, on which MAX-CLIQUE is approximated using HcN. The obtained clique 

in G. is an independent set in G; hence the set of OFF units is a vertex cover of G. Encoding 
2 is essentially the same as the encoding in Godbeer et al. (1988) and Shrivastava et al. (1990). 

It is clear that neither encoding 1 nor encoding 2 admits infeasible solutions. The set of 

stable states of encoding 2 represents exactly the set of minimal vertex covers. The set of stable 

states of encoding 1, on the other hand, represents only those vertex covers that correspond to 

maximal matchings. In fact, the minimum vertex cover may not be in this latter set. 
Although encoding 2 (and the one in Shrivastava et al., 1990) works well on uniform- 

ly-at-random instances (see Section 6), the same example of Fig. 12.8(a) illustrates that its ratio 
bound is poor [again, Q(log r)]. This time, L, which is a maximal independent set, may be 

retrieved as the stable state from which the vertex cover R=V\L is obtained. But L is the 

|R | minimum vertex cover and TE = Q(log r). Again, even steepest descent, with initial state V, 

may retrieve L, depending on how the ties break. 

§.2. Constraint Satisfaction Problems (CSPS) 

  Two early neural net approaches to (a) graph coloring — a constraint satisfaction problem 

(CSP) and (b) general CSPs are given by Ballard, Gardner, and Srinivas (1987) and Tagliarini 

and Page (1987), respectively. The eight-queens problem was solved in Akiyama, Yamashita, 

Kajiura, and Aiso (1989), and a solution of 1000 queens was alluded to in Kajiura, Akiyama, and 

Anzai (1989) but no details provided. 
An efficient discrete near-Hopftield network for CSPs was proposed in Adorf and Johnston 

(1990). Some parts of the network use asymmetric connections; thus convergence is not 

guaranteed. However, in practice (Adorf & Johnston, 1990) it worked very well on N-queens 

[finding exact solution in empirically observed O(N) unit-switches]. The 1024-queens problem 

was solved in minutes. Our reduction of CSPs to MAX-CLIQUE in this chapter was first 

presented in a poster (Jagota, 1991). A neural net approach to CSPs using hidden units was 
proposed in Baram and Dechter (1991). The number of hidden units required scales poorly with 
the CSP size; hence its use is limited to small CSPs. One of the apparent motivations was to 
establish a one-to-one correspondence between the CSP solutions and global minima. Our 

approach provably exhibits the same correspondence. A continuous Hopfield net formulation of 

N-queens was presented in Takefuji (1992a), but no empirical results were discussed. A more
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recent paper on neural approach to CSPs is Bourret and Gaspin (1992). The encoding is unclear 

and no empirical results are given. The authors are apparently unaware of earlier neural 
approaches to CSPs. 

It is useful to examine the energy function in Akiyama et al. (1989). Let v,. denote the 

vertex at row r and column c in an N-queens encoding. In Akiyama et al. (1989), the units are 

real-valued in [0, 1]. The energy function in Akiyama et al. (1989), exactly as reported there, 

is 

E = A290 (¥) v,.-1)? + BI290()) v,.- 1)" + 
r=l1 c=l c=1 r=1 
2 . 

d/2)) n » » Vece’Re* (A +B)/2)° v,-(1 - Vr 6) 
d r.c =] r+ceczd Rer,R-C=d 

We now show that if the energy function is restricted to the corners of the [0, 1]"-cube, that is, 

if the states are binary, then it may admit infeasible solutions if the constants are not chosen 
judiciously. On the {0, 1}" space, the last term may be discarded as it is always zero-valued. 

Consider the two-queens instance. It is easy to check that E({v,,}) = E({v,,}) = (A/2 + B/2) and 

E({v,,,¥22}) = D. Furthermore, for any strict superset S of {v,,, V..}, E(S) > E({v,,, ¥22}). Thus 

with (A+B)/2 > D, {v,,, ¥..}, which is an infeasible solution, is a stable state. The settings 

suggested in Akiyama et al. (1989) are A = B= C = D= 1 without explanation. 

Our approach in the current chapter admits only feasible solutions, that is, maximally 

compatible sets of queens, as stable states. The N-queens formulations in Adorf and Johnston 
(1990), Akiyama et al. (1989), Jagota (1991), and Takefuji (1992) all use N” neurons; the one in 

Adorf and Johnston (1990) uses N additional "guard" neurons. 

5.3. Boolean Satisfiability 

Two previous papers that have encoded Boolean formulas in Hopfield networks are Chen 
and Hsieh (1989) and Pinkas (1991). The former appears only as a short abstract, whereas 
Pinkas (1991) does not discuss its usage for solving Boolean satisfiability (SAT) per se. The 

encoding of SAT in HcN used in this chapter differs from this author’s own earlier work (Jagota, 

1990a). The latter uses the reduction of k-SAT to MAX-CLIQUE indirectly described in Garey 

and Johnson (1979). This reduction does not lend itself to approximate solution of MAX-SAT. 

The former is based on a somewhat simpler reduction (Crescenzi et al., 1991), which is also 
well-suited to approximate solution of MAX-SAT. Both our encodings use binary weights. The 

weights in Pinkas (1991), although of low precision, are integer-valued. 

5.4. Graph K-Coloring 

Because graph k-coloring is a CSP, there is some overlap between the early work we list 

here on graph k-coloring and what we listed earlier on CSPs. One of the earliest neural net 
approaches to graph coloring appears to be Dahl (1987) and is based on the Hopfield model.
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Another approach at about the same time is given in Ballard et al. (1987). They map graph 
coloring to Hopfield networks by reduction to maximum weighted independent set. This 

approach is similar — in strategy and in detail — to our mapping in this chapter. One main 

difference is that their reduction to weighted independent set requires an extra set of control 

vertices; ours doesn’t. The second difference is that their reduction is based on A + 1 colors, 

where A is the maximum degree of the original graph G; our reduction inputs the number of 
colors k as a parameter. What they gain by these differences is the mapping of the graph 

minimum coloring problem; our mapping is only for the graph k-coloring problem. They prove 

that global optima in their mapping correspond to minimum colorings. The optimization 

algorithms in Ballard et al. (1987) are, however, quite different than the dynamics we employ 

in the current chapter. In Ballard et al. (1987), no graph coloring experiments are reported. 

The Boltzmann machine is used for graph coloring in Aarts and Korst (1989, p. 159) (also 
see Korst & Aarts, 1989). The mapping of graph coloring to the Boltzmann Machine (Aarts & 
Korst, 1989) is structurally similar to the one in Ballard et al. (1987); Aarts and Korst (1989) 

were apparently unaware of this somewhat earlier work. Both reductions may be viewed as to 

maximum weighted independent set and both employ A + 1 colors. The approach of Aarts and 

Korst (1989) differs from the one in Ballard et al. (1987) by not using the extra control vertices; 

rather, it uses varying thresholds for the other vertices to reward colorings that use smaller 

number of colors. The mapping in Aarts and Korst (1989) is also similar to our mapping of 
graph k-coloring to HcN in the current chapter. 

The description in Aarts and Korst (1989) of their mapping is somewhat more 

complicated. First the mapping is described in combinatorial terms, then the weights and biases 

are derived, and then it is proven (Theorem 9.3), in somewhat lengthy fashion, that their mapping 

is feasible and order preserving. By contrast, our mapping methodology is different. We had first 

shown, only once, that maximum clique maps to HeN in feasible and order-preserving fashion. 
We then map other problems to HcN by reducing them to maximum clique. In doing so, we 
need only be concerned with properties of their reduction to maximum clique. This simplifies 
at least the exposition considerably. On the other hand, the mapping of Aarts and Korst (1989) 

is, like the one of Ballard et al. (1987), for the graph minimum coloring problem. They formally 

proved that global minima correspond to minimum coloring solutions. Our mapping is for the 

graph k-coloring problem (k-coloring solutions are the global minima). Consequently their 
mapping is more significant, in HcN we can only approximately solve the graph coloring 
problem indirectly by constructing different HcN instances for different k. The graph coloring 
experimental results reported in Aarts and Korst (1989, p. 173, Table 9.3) are not comparable 

with our experimental results (Table 12.4 in the following section). First, their test set comprises 

random graphs with expected degree a constant (independent of number of vertices N); ours 

comprises random graphs with expected degree p(N — 1) where p € [0, 1] is a constant. Second, 

in their exposition, their emphasis is on running time comparisons, not solution quality ones. 
Indeed, their Table 9.3 results only show the local energy minimum values in their solutions, not 
the number of vertices properly colored. Finally, their objective is to solve the graph coloring 
problem, and ours is to approximately solve the graph k-coloring problem (in particular to find 
the maximum number of vertices colorable with k colors).
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A third approach is in Adorf and Johnston (1990), in which experiments on graph 

3-coloring are reported. Their test graphs are essentially 3-colorable random N-vertex graphs as 

in Caspi (1992) (the generation mechanism is similar but differs in detail slightly). Their 

network does not have guaranteed convergence. It converges in N transitions on one set of 

graphs, but the empirically observed probability of convergence within 9N transitions decreases 

exponentially with increasing N. 

A recent approach is in Caspi (1992) where the Rochester Connectionist Simulator is used 
to solve graph coloring. Caspi experimentally showed that his neural network can find a full 

solution to the k-coloring problem (i.e., color all the vertices with & colors) for most k-colorable 

random graphs. Almost all k-colorable random graphs are uniquely k-colorable and hence 

k-chromatic (Turner, 1988). Thus Caspi’s full solutions to the graph k-coloring problem are 

almost always optimal solutions to the graph minimum coloring problem. However, these 

experiments also turn up some pathological cases of k-colorable random graphs that are hard to 

fully solve by their approach. Their empirical results are not comparable with the results of our 

chapter because our test set is composed of random graphs, not random k-colorable graphs. 
Finding optimal colorings in random graphs is probably hard. In any case, our dynamics are all 

efficiently convergent in time independent of the problem instance (depending only on vn) and 

applied mainly for obtaining quick approximation, whereas Caspi’s approach can occasionally 

be much slower (and does not have a proof of convergence). 

6. EXPERIMENTS AND RESULTS 

6.1. Vertex Cover 

n 

2 
by an edge with probability p. Table 12.1 reports vertex cover experiments using HcN on 

p-random 50- and 100-vertex graphs. The column labeled "ISVC" is based on loading the 
complement G, of the given graph G in HcN. A stable state (maximal independent set in G) is 

then found using SD(V) on HeN; the vertex cover (of G) is read-out as the set of OFF units. The 

next three columns are dynamics applied to G, , the complement of the line graph of G, stored 

A p-random n-vertex graph is one in which each of the pairs of vertices is connected 

in HcN. Each dynamics retrieves a stable state (maximal independent set in G,; maximal 
matching in G). The vertices in G associated with the vertices (edges of G) in the stable state 

are a vertex cover. Smaller maximal cliques in G, provide smaller vertex covers. Hence our 
¢ 

optimization goal here is exactly the opposite — to find the smallest, as opposed to the largest, 

maximal clique. Somewhat surprisingly, the problem of finding the smallest maximal clique is, 

in general, also NP-hard (Jagota, 1992b). The dynamics that works best is SSD, .,(0, n) —n 

runs of SSD from initial state @; the smallest size output (worst in the traditional optimization 

sense) is picked. 

The last two columns are expected size of minimum vertex cover (E[C ]) and expected 
size of maximum minimal vertex cover (E[|{MaMiC}}]), respectively. These ¢ estimates are very 
sharp and are obtained indirectly from the theory of random graphs applied to independent sets.
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It is well known that by Matula’s theorem, the maximum independent set size in a p-random 
graph can be pinpointed almost exactly (see Palmer, 1985). However, we noted earlier that this 
estimate is inaccurate for small n and p away from 0.5 (Jagota, 1992a; Jagota & Regan, 1992). 
We obtain our estimates directly from the formula for the expected number of maximal 
k-independent sets in p-random n-vertex graphs (Bollobés & Erdés, 1976): 

k 

E, p(k) = [Ja -p@1-c -p)*y 

    

Test Parameters VC Via IS VC Via Linegraph Reduction Expected Values 

PR n ISVC Ej# units} SD(V) SD(@)- SSD,,,(@,n) E[C’} E{{MaMiC]] 
0.5 50 42.86 612.5 48.0 48.6 46.2 42 47 

0.1 100 72.3 495 95.2 93.46 86.0 66 87 

Table 12.1. Size of Vertex Cover Found by Various Algorithms, Averaged Over 15 p-Random n-Vertex 
Graphs in Each Row. 

First, the expected sizes k, and k, of maximum independent set and minimum maximal 
independent set, respectively, are obtained by tabulating the distribution E(k) (which is 
binomial-like) and noting the & for which the values transition from =1 to <<1 and from <<1 to 
=1, respectively. Both transitions are known to be sharp in theory and are also so in practice. 
The expected sizes of minimum vertex cover and maximum minimal vertex cover are then n - k, 
and n - k, respectively. This procedure is much more accurate. 

From Table 12.1, the independent-set-based approach (ISVC) performs the best; all the 
line-graph-based approaches are significantly poorer. ISVC finds near-optimal solutions (compare 
it with E[C’]). ISVC, however, has a poor (worst-case) ratio bound. whereas the other three 
dynamics have ratio bound of 2. The variances in the results were small, justifying the small 
sample size. 

6.2. N-Queens 

In the N-queens encoding in HcN, |V| = N’ and the size of every stable state is < N. 
Hence, SD(V) makes O(N’) unit switches. SD(@) makes N unit switches. The operation of 
SD(V) on an N-queens instance may be viewed as follows (cf. Table 12.2). The initial state 
represents the board configuration in which a queen is placed on every square. From a given 
configuration, the next state is generated as follows. If no queens on the board are threatened, 
then a new queen is placed on the first lexicographically empty square on which a queen may 
be placed without threatening existing queens. If no such square exists, then we are at a stable 
state. If, on the other hand, at least one queen is threatened, then the queen that is threatened 
by the largest number of other queens on the board is removed. Ties are broken 
lexicographically. SD(@) may be viewed in similar fashion but from the initial state: the board 
is empty.
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6.3. Boolean Satisfiability 

An n-variable 3-SAT Boolean CNF formula has 3(" possible clauses. A p-random 

formula of the above kind independently selects each of these clauses for inclusion with 

n 
3 

probability p, generating an expected number | of clauses. Our network uses three units 

per clause. 

Over all the runs, a satisfying assignment was found just once: by SSD___.(V,N) with n=S0; 

p=-001. Here N was both the number of iterations of SSD and the number of units in the 

network (cf. Table 12.3). 

6.4. Graph K-Coloring 

Recall that in graph k-coloring, given a graph G and an integer k, we are interested in 
coloring the maximum number of vertices colorable with k colors. In this chapter we solve this 

problem approximately via efficient neural network heuristics. We report the number of vertices 

colorable, by various neural network heuristics, as a function of graph properties and k. 

Random Graphs. Our first test set comprises p-random graphs (recall the definition, given 

earlier). Table 12.4 reports graph k-coloring experiments using HcN on p-random 50-vertex 

graphs. 

N 4 6 8 10 12 16 30 40) 50 

SD(V) 4 5 7 9 10 14 26 37 45 
SD(@) 3 5 5 7 9 13 23 31 38 

Table 12.2. Number of Mutually Nonattacking Queens Placed Etficiently via SD(V) and SD(@). The optimal 

number in each case is N. SD(V) outperforms SD(@) in each instance. 

  

Test Formulae Parameters Avg # Clauses Dynamics 

Pp n SD(V) SD(@) SSDmax(@N) 

0.5 5 39.2 35.5 35.6 37.06 

0.02 20 178.73 166.33 162.13 168.93 

0.001 50 167.73 161.4 160.4 162.06 

Table 12.3. Number of Simultaneously Satisfiable Clauses Found by Various Algorithms, Averaged Over 

Fifteen p-Random a”-Variable 3-SAT Boolean CNF Formulas in Each Row. 

The chromatic number x(G) of a graph G is the minimum & such that G is k-colorable. 

The last two columns of Table 12.4 numerically tabulate lower and upper bounds on x(G,,,) that 

hold tor almost every G,,. These estimates are obtained from the theory of random graphs as 

follows (this parallels our earlier vertex cover estimates). From Spencer (1987, p. 53), n/a(G,,) 

< x(G,,,) s n(a(G,,,)/2). a(G) is the size of the largest independent set in G. Recall that for
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sufficiently large n, a(G,,) = 2 log... (Also see Spencer, 1987, p. 53.) Also recall that 

a-(G,,,)/2 is the expected size of the minimum maximal independent set for sufficiently large 

n (see Bollobas & Erdés, 1976). 

  

  

Test Parameters Algorithms Bounds on X(G,,) 

Pp k SD(@) SD(V) SSDmax(O,n) SSDmax(V,n) Lower Upper 

0.1 1 18.33 20.73 20.66 21.33 2.0 4.0 

2 32.93 34.53 35.13 35.26 

3 42.53 43.6 44.4 44.2 

4 48.33 48.13 49.06 48.73 

0.3 1 8.2 10.06 10.3 11.06 4.16 8.32 

2 16.3 19.06 19.6 20.0 

3 23.6 26.93 27.33 27.66 

4 30.2 32.93 33.66 34.53 

5 35.93 39.13 39.2 39.53 

6 41.06 43.26 43.73 43.53 

7 45.06 46.46 47.06 46.8 

8 48.0) 48.33 49.13 49.46 

Table 12.4. Number of Vertices Colored by Various Algorithms, Averaged Over 15 p-Random 50-Vertex 

Graphs in Each’ Row. For all rows of fixed p, the 15 graphs were — identical. 

As noted earlier, the above formula for a(G,,,) is inaccurate for n in the range of our 

experiments. We estimate a(G, ,) as we did before for obtaining the vertex cover estimates. From 

Bollobas and Erdés (1976), the expected number of maximal independent sets of size / in Gi» 

l 
is E,() = [")c1 pea -c-pyi First, the expected sizes J, and J, of maximum 

independent set and minimum maximal independent set respectively are obtained by tabulating 

the distribution E, (J) (which is binomial-like) and noting the / for which the values transition 

from =1 to <<1 and from <<1 to = 1 respectively. The lower bound and upper bound for x(G,p) 

are then n/l, and n/I, respectively. Note that we do not use /,, for the upper bound because our 

numerical investigations have also shown that for the range of n employed in our experiments 

the expected size of minimum maximal independent set is better estimated directly by /, than by 
lip. The lower and upper bounds on x(G,,) reported in Table 12.1 are also used to guide the 

selection of k for the experiments. 

From Table 12.4, some judgements of the performance of the dynamics (columns 3-6) and 

the intrinsic character of the k-coloring random graph instances are possible. For the same 

number of colors k, more vertices are colored for the p=0.1 graphs than for the p=0.3 graphs. 

Equivalently, to color the same number of vertices, larger number of colors are needed for p=0.3 

graphs as compared with for p=0.1 graphs. This is entirely predictable, as higher density graphs, 

in general, require more colors (also see columns 7 and 8). We may also note that for fixed p, 
the addition of each new color initially has larger benefits, in terms of additional vertices 

colorable, but the benefits tail off as the number of colors grows large. Finally, SD(@) has the 

worst performing dynamics but the other three exhibit very similar performance, with SD(V) 

Wp
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performing just slightly worse than SSD,,,.(@,N) and SSD,,,.(V,N). SD(@) catches up with the 
others, however, as the number of colors allowed is increased. 

"l Random Cliques Graphs". Our second test set comprises "/ random cliques" n-vertex 

graphs. These graphs are generated by generating / cliques at random and taking their union. 

First, the size s of each clique is computed independently and randomly from 1 to n/2. Then s 
vertices are picked at random from the n vertices to put in the clique. This process is repeated 

! times to generate the / cliques. Then the labeled union is taken of these / cliques to form the 
resulting graph. This graph is then subjected to a k-coloring reduction to MIS. 

It is worth noting that our associative memory storage rule of this chapter is a convenient 

way to take the union of cliques and to realize the k-coloring reduction to MIS of "/ random 

cliques" graphs. (Recall that MIS is the complement problem of MAX-CLIQUE and some 

problems are more convenient to reduce to MIS than to MAX-CLIQUE.) As an example, let n=4, 

l=2, and k=2. Let the two random cliques be {v,,v,,v,}, {V2,V3,V¥y}. Then the training set is 

(ciViCoYi fs {CpVr,CoVo}, {CVasCah, {CVs CVs}, (CV Ca ahs {CpVrC Val Va}, {Co¥1,C2¥2,C2¥s}, 
{C5V>,C,V3,C,V,}. That is, there are cliques for the partitions and k copies, one for each color, of 
each of the / random cliques. 

"7 random cliques" graphs are harder for certain MAX-CLIQUE heuristics than p-random 

graphs (Jagota, 1992a). Table 12.5 provides the same conclusion for graph k-coloring. In 

particular, the performance of SD(@) relative to the other dynamics is poorer on / random cliques 

graphs than on p-random graphs. Furthermore, in contrast with Table 12.5, the SD(@) 

performance relative to the other dynamics does not appear to improve significantly as the 

number of colors is increased. Significantly, the performance of the other three heuristics, 

relative to each other, remains relatively unchanged, with the qualification that SSD,..(V,N) is 

perhaps a more consistent, although still narrow, winner over SSD,,,.(@,N). From Table 12.5, 

we may note that the percentage of vertices colored by the dynamics on "20 random cliques" 

100-vertex graphs is much less than the same for "10 random cliques" 50-vertex graphs (compare 

the rows with the same k). That is, the former appear to be harder to color. 

max 

  

  

Test Parameters Algorithms 

n l k SD(@) _ SD(V) SSD(@,n) _SSD(V,n) 

50 10 2 8.8 12.2 11.6 12.13 

3 11.2 14.93 15.06 15.53 

4 13.73 17.8 17.86 18.53 

6 18.73 22.6 23.2 23.6 

8 23.4 26.93 27.73 28.33 

100 20 2 9.53 11.93 11.8 12.2 

4 14.06 17.13 17.53 17.93 

Table 12.5. Number of Vertices Colored by Various Algorithms, Averaged Over 15 "/ Random Cliques 

Graphs" in Each Row. For all rows of fixed n, the 15 graphs were identical. SSD denotes SSD 
max’
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7. DISCUSSION 

These results indicate that our approaches so far are not the best ones for individual 
problems. Neural network methods designed for N-queens, for even large N, quickly find exact 

solutions (e.g., Adorf & Johnston, 1990). Conventional methods for N-queens do even better. 

Recently, one of the simplest local search algorithms has been proven to almost always find a 

Satisfying assignment in 0.5-random 3-SAT formulas (Koutsoupias & Papadimitriou, 1992). Our 

dynamics found a satisfying assignment only once. 

The main contribution of our work is a single simple binary-weights network for 
approximately solving several optimization problems which does not admit infeasible solutions 

and in one case (vertex cover) provides an asymptotically optimal ratio bound. All our 
mappings, except encoding 1 of vertex cover, are goodness preserving. The goal of this chapter 

has not been to present a superior optimization technique but to exploit the simplicity and 

massive parallelism of neural networks for sufficiently good cost-effective optimization for 

real-world purposes. 
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The chapter by David Chance, John Cheung, Sue Lykins, and Asa Lawton, An 

Examination of Mathematical Models of Learning in a Single Neuron, deals with different 
models in the literature of classical (Pavlovian) conditioning. The authors relate the conditioning 

problem to optimality on two levels. First, there is optimality at the level of the organism or 

network that learns. The conditioning process ttself ts often considered as part of the organism's 
adaptive responses to the environment — a main theme of all the chapters in this book’s first 

section. Many neural network theorists (among them Barto, Sutton, Werbos, Grossberg, and 

Levine) have studied conditioning as part of the paradigm of reinforcement learning: how an 
organism (or artificial network) learns to approach those objects in the environment that are 

positively reinforcing and avoid those objects that are negatively reinforcing. This ts also 
considered, in a control framework, in this book's chapter by Ogmen and Prakash. However, 

Chance et al. trace the history of psychological theory: the notion that reinforcement learning ts 
done optimally was a mainstream notion in psychology (with Guthrie the sole important 
dissenter) in the 1930s, 1940s, and 1950s but ts less widely believed now.
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Second, there is optimality at the level of the single network connection, which Chance 
et al. interpret as a synapse between two neurons. There are trade-offs between the advantages 
of different learning rules: Hebbian, error-correcting, and the modifications due to various recent 
researchers or groups such as Sutton-Barto, Klopf, Gelperin-Hopfield-Tank, and Tesauro. 

Although the authors simulated all of these models, the authors draw the clearest 

comparisons between the Hebbian and Klopf (also known as drive-reinforcement) models. The 
Hebb rule depends on paired pre- and postsynaptic activities, whereas the Klopf rule depends on 

paired changes in pre- and postsynaptic activities. The Hebb rule does better at reproducing 
effects of stimulus duration, interstimulus interval, and acquisition curves, whereas the Klopf 
rule does better at reproducing complex contextual effects such as blocking and conditioned 
inhibition. The authors speculate that a comprehensive conditioning model from a single learning 
rule for single neurons may not exist: the whole nervous system is greater than the sum of its 

parts, and even actual neurons are complex enough to be modeled as networks. 

ABSTRACT 

Classical conditioning is used as a means to investigate unsupervised learning in a single 

neuron. The double advantage of being extensively studied and rich in terms of responses to 
multiple temporally related stimuli makes for a good benchmark against which learning laws can 
be tested. This chapter relates the mathematical developments in the area of real time single- 

neuron learning by looking at the Hebbian, Rescorla-Wagner, Sutton-Barto, Tesauro, Gelperin- 

Hopfield-Tank, Klopf (drive-reinforcement) and Widrow-Hoff rules for synaptic adaptations. The 

learning rules are compared based on four classical conditioning simulations: CS duration, 
blocking, reacquisition, and second-order conditioning. The results of the examination have 
shown both the strengths and weaknesses of the individual models. A comparison between the 
Hebbian and drive-reinforcement models brings into question the use of a single learning law as 
the basis for the optimal development of a multiple neuron system. 

1. INTRODUCTION 

The research discussed in this chapter was designed to gain a better understanding of 
single-neuron models that incorporated time as an important variable in the learning process. 

One of the most sophisticated learning models proposed to date was Klopf’s (1988) real-time 

drive-reinforcement theory. His model appeared to accurately depict a large number of Pavlovian 

classical conditioning procedures. In addition, he included comparisons with both Hebb (1949) 

and Sutton and Barto (1981). In our work we have also looked at the mathematical model of 

Rescorla and Wagner (1972), which assumed time but did not incorporate time explicitly in its 
learning rule (Levine, 1991). We also looked at Sutton and Barto (1981) who did include time 
in their learning and activation rules, and followed up on others in the 1980s (Gelperin, Hopfield, 

& Tank, 1985; Tesauro, 1986) who primarily extended the ideas of Sutton and Barto. We also 

included Klopf’s formulation of the Hebb rule and the Widrow-Hoff model (1960). 

A computer simulator was written based on the various real-time models of a single 
neuron. Various mathematical models were programmed into the simulator and tested using the
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classical conditioning procedures, many of them presented by Klopf. Our goals were (a) to 
understand mathematically the activation and learning rules of several different models of single 
neuron function, (b) to explore the use of mathematical tools to aid in the modeling of weight 

changes in a single neuron, (c) to examine the role of time as a factor in learning, (d) to compare 

results with psychological studies in classical conditioning, and (e) to provide the computer 

simulation as a teaching and research tool for psychology and engineering students. 

Our exploration of the models involves several of psychology’s theoretical issues. As 
psychology grew into a science, it brought with it an adaptionist evolutionary concept that 
emphasized the power of natural selection as an optimizing agent (Gould & Lewontin, 1979; see 
also Elsberry, Chapter 5). The goal was to better understand human adaptation to his 

environment (e.g., James, Dewey, Angell Carr, Thorndike, Watson), in other words, human 

ability to learn in a changing environment. The common assumption was that learning was 

movement toward an optimal state. Both Thorndike and Skinner also stressed the consequences 

of action. This led to the equating of reinforcement, reward, and consequences of behavior with 
a hedonistic explanation. For example, Olds and Milner (1954), Delgado (1955), and others 
sought to explain hedonism through pleasure and punishment centers in the brain. Klopf (1972, 

1979, 1982) talked about the hedonistic versus the heterostatic neuron. Although he dropped this 
terminology in his 1988 paper, the drive-reinforcement model of that paper is still based on 

neuronal reinforcement. However, many psychologists have moved away from such theories. 

As Malone (1990, p. 313) stated, "it is long past time to bury hedonism once and for all." 
Of the early learning theorists, Edwin Guthrie was one of the few who disagreed that 

learning always moved toward an optimal state (Malone, 1990). He discussed meaningless acts, 

awkwardness, and maladaptive and foolish behavior, and thought it unwise to treat them merely 

as failures (nonoptimal) in the course of otherwise reasonable goal-directed activity. (For further 

treatment of nonoptimality examples, see Levine, Chapter 1). Guthrie (1952) also warned against 

placing too much stress on general characteristics as opposed to attempting to explain the 
behavior of individuals in particular. 

During this century, behavioral research in classical conditioning has been viewed from 
two different perspectives: behavior of the single individual versus group behavior. The 

comparisons of models presented in this chapter were based on group behavior. 

All the neuronal models we analyzed had at least two things in common. First, they 

assumed that "essentially all behavior can be explained by the optimization of a single variable" 

(Levine, 1991, pp. 284 and 285). Second, these modelers assume stimulus substitution relative 
to the conditioned response (CR) and the unconditioned response (UR), which were viewed as 
similar. However, as early as 1932 Warner said "whatever response is grafted onto the 

conditioned stimulus (CS), it is not snipped from the unconditioned stimulus (US)" (quoted in 

Wagner & Brandon, 1989, p. 149). Wagner and Brandon further comment that "in many, if not 

most, circumstances of Pavlovian conditioning, the CS does not appear to act like a substitute 

for the US and/or evoke a CR that mimics the practiced UR" (p. 149). The models presented 
in this chapter combine the CR and UR as a single output, however, making no distinction 
between the two responses. 

The work of Hull, especially in the 1950s and 1960s, had a major impact on mathematical 
modeling of psychological data. Hull (1947) approached learning in terms of testable postulates
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that could eventually lead to general truths. This was a part of the shift to viewing psychological 

phenomena from a physical science perspective. Hull's postulates led to the 1972 model of 
Rescorla and Wagner, and became the basis for Klopf’s drive reduction/induction learning model 
in the 1980s. 

2. NEURONAL LEARNING RULES 

In particular, based on the experimental results of classical conditioning, many researchers 

have postulated rules to demonstrate the learning behavior of a single artificial neuron. In all the 
single-neuron models examined here, the activation function was generally accepted to be the 

weighted sum of the inputs, where the weights signify the corresponding synaptic strength, and 
the output is a nonlinear function of the weighted sum, thus representing the repetition frequency 
or the firing frequency of a real neuron. However, there is no general consensus on how a single 
neuron would modify its own synaptic weights in response to external conditions, although some 

recent research promised insights (Claiborne, Zador, Mainen, & Brown, 1991). 

Among the various synaptic weight adaptation (learning) laws that have been postulated, 

the major differences stem from the perspectives taken by their designers. Some, such as Hebb 
(1949) and Rescorla (1973), designed the learning rules from a psychological perspective based 

on association of stimuli. Recent changes of learning rules include refinements such as the 
Sutton-Barto (1981) and the drive-reinforcement (Klopf, 1988) rules, which come from the 

perspective of adaptive control theory. Others fashioned their adaptation laws from less 

biologically plausible origins, using the difference between the neuronal output and the given 

external reinforcement. (Reinforcement is used here in the most general sense, as any input 

signal that determines the changes in connection weights.) These are often called error-based 
adaptation laws, and include the back propagation rule (Le Cun, 1985; Parker, 1982, 1985; 

Rumelhart, Hinton, & Williams, 1986; Werbos, 1974) and the Widrow-Hoff (1960) adaptation 

rule. Some recent research suggests that back propagation of error may be an actually occurring 

phenomenon in cases where nitric oxide acts as a retrograde messenger (Kandel & Hawkins, 

1993). Still other adaptation laws are based on the input patterns of a cooperative network of 

neurons, thus achieving pattern-based matching operations. A good example is the adaptive 
resonance theory (ART) class of neuronal networks. Some adaptations are probability based 
where the neuronal output is analyzed in the probabilistic sense and the synaptic weights are 
modified in such a way that the next neuronal output would respond closely to expectation. An 
example of this category is the Rescorla-Wagner approach. 

The most general learning law in the literature, perhaps, is Amari’s (1977): 

w(t+1) = w(t)+c#r(t), 

where ¢ represents the time step; w,(t) and w(t + 1) the i" connection weight at the present time 

step ¢ and the next time step ¢ + 1; c the step size; and rd) the external (extracellular) or internal 
(intracellular) reinforcement for that trial or event. The form of this law indicates that learning 
Is incremental and cumulative. When a trial comes, learning occurs in the presence of direct 
reinforcement. If there is no reinforcement, there is no learning. Although Amari’s adaptation
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law does not point to the association between input and output stimuli, the formulation 
nevertheless suggests the notion of neuronal plasticity being incremental and a function of time. 

A common early assumption about the underlying mechanisms of learning was that 

associative changes are properties of complex neural circuits (Cohen, 1985, cited in Abrams & 

Kandel, 1988; Lashley, 1929). One of the first to challenge this assumption was the Canadian 

psychologist D. O. Hebb (1949) who suggested a cellular mechanism for classical conditioning. 
Hebb proposed that learning involved changes in the efficacy of plastic synapses at the neuronal 

level, and further, that these changes occurred through correlations between approximately 

simultaneous pre- and postsynaptic levels of neuronal activity. In other words, presynaptic 

activity, followed directly by postsynaptic activity, was hypothesized to result in a change in the 

efficacy of the associated synapse. Prior to Rescorla (1966), the most important principles of 
classical conditioning based on Pavlov’s (1928) reflexive model of associative learning were 

those of contiguity (the bond that occurs between two events which occur closely together in 
space and time), frequency (how often contiguous events occur together), and intensity (the 

strength of the contiguous association). Three models — those of Hebb, Widrow-Hoff, and 

Rescorla-Wagner — were proposed to address the contiguity, frequency, and intensity of the 

associative bond. 
Although Hebb gave no explicit mathematical formulation to his rule, it was commonly 

accepted (Sutton & Barto, 1981) as w.(t+1) = w,(t) + c*x,(t)*y(t), where x{%) is the input 

signal strength (or presynaptic activity) and y(Z) the output of the neuron. The Hebbian model 

was thus one of the earliest attempts to explain the role of real-time learning mechanisms in 

terms of the temporal association of signals, albeit a simultaneous one. The reader is cautioned 

here that the notion of simultaneous time is only one way to indicate the presence of more than 
one activity "at the same time” on a very gross time scale, perhaps on the time scale of the entire 
epoch, and hence should not be construed as precise timing order within the same epoch. As 

Carew, Hawkins, Abrams, and Kandel (1984) noted, Hebb’s postulate accounted for temporal 

specificity, the hallmark of associative learning, using plausible physiological mechanisms, and 

for stimulus and response specificity, which are common features of classical conditioning, 

without the need of complex neural circuitry. The pairing of input signals with neuronal output 

together as reinforcement suggests associative learning as a result of contiguity. The summation 
of reinforcement accounts for the concept of frequency. The strength of reinforcement as a 
function of the input and output signal strength reflects the notion of intensity. 

Hebb’s rule however, has several drawbacks. First, learning is only based on the activity 

present in the current epoch. There are no associations with historical occurrences. Second, 

Hebb’s rule provides no means of reducing synaptic efficacy. Thus, weights could potentially 

go to infinity. Third, there is no means of dealing with inhibitory connections between neurons 

(Caudill, 1989). Classical conditioning is too complex to Incorporate expectations and stimulus 
patterns into a simple correlation rule like Hebb’s (Sutton & Barto, 1981). Last, the necessity 

for Hebb’s postulate to produce action potentials in a postsynaptic neuron is neither "necessary 

nor sufficient" to produce the temporally specific change in synaptic efficacy that underlies, for 

example, the classically conditioned gill withdrawal reflex in Aplysia (Carew et al., 1984). 

The Widrow-Hoff adaptation law (1960) is formulated based on the least mean squares 
(LMS) principle rather than known learning criteria. The LMS principle seeks to minimize the
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error, which is taken to be the difference between the target neuronal output response value and 

the present value. The Widrow-Hoff law can be written as wi(t+1) = w(t) +c*x,(t) *[z- y(t)] 
where z is the (constant) target neuronal output response value. Hence the source of 
reinforcement is external, and learning occurs only when there is an explicit difference between 
the target and output response. 

The goal of this adaptation law is to change synaptic weights in such a way that the 
output response value will follow the given target value z. In other words, the neuron learns to 
reproduce the target value based on a linear combination of present active inputs. The form of 
the Widrow-Hoff rule again suggests learning through contiguity (pairing of x,(¢) and a function 
of y(t). Similarly to Hebb’s rule, learning here is only associated with the activity present in the 
current epoch. Hence, learning only occurs with overlapping input stimuli; that is, it only occurs 
when there is an unconditioned response (UR) paired with any active stimuli. 

The Rescorla-Wagner cognitive theory postulated that the animal learns expectations about 
events following presentation of a stimulus complex. These expectations are equivalent to 
associative Strengths at any given time and can be changed when events such as unconditioned 
stimuli differ from the composite expectation, which is the summation of associative strengths 
of present stimuli. The Rescorla-Wagner learning law is a direct formulation of Hull’s (1947) 
approach based on probability of the animal's response to its input stimuli. In the Rescorla- 
Wagner formulation there is a synaptic strength associated with each input stimulus. When more 
than one input stimulus is provided, there is a total synaptic strength analogous to neuronal 
output. Using the present neural network formulation, if the active input stimuli are a fixed 
value, then synaptic strength may be taken to represent synaptic weights, and total synaptic 
Strength as neuronal output. With minor modifications one can fit the Rescorla-Wagner learning 
law into a neuronal formulation, resulting in the leaming law w(t+1) = w(t) +c, *x,(t) *[z, - y(t)] 
where c, is a constant that varies according to the different stages of the conditioning paradigm; 
and z, the maximum synaptic strength at a particular stage. 

The Rescorla-Wagner and Widrow-Hoff laws appear similar although they are derived 
from totally different paradigms. Although the Widrow-Hoff model is based on minimizing the 
difference between target values and the neuronal output values, the Rescorla- Wagner model is 
bised on the probability of synaptic strengths in response to input stimuli toward a maximum 
Synaptic weight or strength value. There are two major differences, however, between these 
models. First, in the Widrow-Hotf model, the learning constant c remains the same, whereas in 
the Rescorla-Wagner model the learning constant c, varies throughout the same conditioning 
period. Second, the Widrow-Hoff model uses a target value that may change from epoch to 
epoch, whereas the Rescorla-Wagner model uses a constant z, that represents a maximum 
synaptic strength for the conditioning interval. 

It is historically important to note that in the 1960s, the principles of contiguity, 
frequency, and intensity were seriously questioned. Rescorla (1966) suggested that contiguity 
between two events was insufficient for conditioning, because a CS (conditioning stimulus) must 
not only be contiguous with a US but must also be an accurate predictor of US occurrence. 
Rescorla called this the contingency of events, which he defined as a statistic derived from the 
probability that US will occur in the presence of a CS, and the probability that it will occur in
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the absence of the CS. Combining these two probabilities allows tor calculation of a contingency 
coefficient that measures the degree to which CS and US will occur together. Thus positive 

contingency between a CS and a US produces excitatory conditioning, and negative contingency 

produces inhibitory conditioning. But both contingency and contiguity are necessary (Lieberman, 

1990). 

Association by contiguity alone was further questioned by Garcia and Koelling (1966) 
who challenged the idea that it did not matter what stimulus was chosen as a CS. They found 

that in studies of taste-aversion learning, for example, nausea could not be conditioned to a noise, 

nor fear to a taste, although each of these CSs is easily associated with the other US. Thus, some 

CS-US combinations associate more readily than others. This finding has been variously labeled 

preparedness, relevance, selective association, associative bias, and belongingness (Lieberman, 

1990). Also, Garcia and Koelling used a delay of at least 20 min between presentation of the 
taste and onset of illness. Thus conditioning is not simply due to the linking of contiguous 

events; some additional processes must be involved. 

Yet another challenge to the contiguity-alone principle came from Kamin’s (1968) 

experiment on blocking, in which prior conditioning of one element of a compound stimulus 

prevents conditioning to the other element. Blocking shows that conditioning will not take place 
if another stimulus that already predicts the US is present. These three findings taken together 
demonstrate that unconditioned stimuli are not associated with every stimulus that precedes them. 

Instead, conditioning seems to depend on stimuli that are good predictors of a US, that is, CSs 

that inform the organism that an important event is about to occur (Lieberman, 1990). 

Rescorla and Wagner’s model demonstrated paradigms such as conditioning, extinction, 

blocking, overexpectation, overshadowing, conditioned inhibition, superconditioning, discrimina- 

tion, and pseudodiscrimination. They could not, however, replicate configural learning, latent 

inhibition, or extinction of conditioned inhibitors. Their model was also unable to make 

predictions about effects on the conditioning of intratrial temporal relationships between stimull, 

and yielded a negatively accelerated acquisition curve, unlike those found in animal research. 

In the 1970s and early 1980s, some researchers of animal behavior (e.g., Klopf, 1972; 

Sutton & Barto, 1981) began to consider the role of time as a fundamental dimension for 

understanding natural intelligence. (Grossberg, 1967, was already considering time with his 

outstar model, but his assumptions are very different from those reported in this chapter.) As 

Klopf said later (1988), "Real-time learning mechanisms emphasize the temporal association of 
signals: each critical event in the sequence leading to learning has a time of occurrence associated 

with it, and this time plays a fundamental role in the computations that yield changes in the 

efficacy of synapses" (p. 90). 

The first major Step in creating a real time neural network model of classical conditioning 

to go beyond that of Hebb (1949) came from Sutton and Barto (1981); Gelperin et al. (1985), 

and Tesauro (1986), among others. They agreed that neurons may be reinforcement learning 

devices different from those previously proposed in neural theories (Klopf, 1972, 1979). In the 
Gelperin, Hopfield, and Tank (GHT) model, the present input stimuli are scaled by the change 

in Output values in the adaptation law. The GHT adaptation law can be described as 

w(t+1) = w(t) +c*x(t)*[(y(t) - y(t-1)]. The major thrust of the GHT adaptation law 

is that it is not the output values that provide the reinforcement but rather the change in output
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values from the previous time step. Hence, learning occurs only when there is a substantial 
change in the neuronal output. Using only the input stimulus, the GHT model also behaves in 

similar ways to the Widrow-Hoff in that the neuron only learns when there are strong input 
stimuli that cause an unexpected output. Because the output change may be positive or negative, 
the weight may also be increasing or decreasing. 

Tesauro (1986) postulated that learning not only depends on the output change, but also 

on the input change. Tesauro’s earlier learning rule is as follows: 

w,(t+1)=w,(t) +¢*x,(t-1)*(y(t) -fLy(t- 1)]) 
Ffly]=min(1,y+n) 

where y is a small constant and fis the expectation function that anticipates the present output 
from the previous output. The output change is not just a change from the previous value, but 
rather a change from the expected present value. The expected output is the previous output plus 
some additional amount yn, bounded by its maximum value. When there is a substantial 

difference between present output and expected present output, learning occurs. 
A later refinement of Tesauro’s rule incorporates the change in the past stimulus, rather 

than the input stimulus strength: 

w(t+1) = w(t) +c*xo[x,(t-1)-x,(t-2)]*O(t) -fLy(t-1)]) 

x,x>0 
o[x]= 

ia] 0,x<0 

where the sigma function signifies that only positive input change contributes to reinforcement. 
Using Tesauro, one sees that learning occurs only when there is a positive change in input stimuli 
coupled with a substantial change in the neuronal output that is beyond what is normally 
expected. Even though only the positive change in input stimuli is used, the change in output 
may be positive or negative. Hence, synaptic weights may be made to increase or to decease. 

The Sutton-Barto model (1981) uses a form of expectation closely related to that of the 

Rescorla-Wagner one, but whereas in the Rescorla-Wagner model associative strengths are 
changed based on the difference between received and expected US levels, in the Sutton-Barto 
one the weights are changed based on the difference between actual activity level and the time 
averaged level. The resulting law is 

w(t+1) = w(t) +c*x,(t)*[y(t)-y(2)] 
x(t) = ax (t-1)+x,(t-1) 

y(t) = By(t-1) +(1-B)y(t-1) 

where an overbar on a parameter represents the corresponding trace value; a and B are constants 
that control the forgetting factor for the trace on the input stimulus and output response.
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The Sutton-Barto adaptation law incorporates the traces of input and output signals as a 
means to account for the history of input and output stimuli. The input trace provides an intense 

input value only when the input is consistently present in the immediate past, hence placing more 

emphasis on more recent past events and less on the distant past. On the other hand, the output 

is "meaningful" and contains reinforcement value only when the actual output is different than 

the anticipated (or estimated) results. The change in output may be positive or negative, that is, 
reinforcement may be positive or negative. This allows the ability to learn as well as unlearn 
through association of deviation of action or inaction from anticipated results. 

When the parameter a is not equal to zero, the trace of the input stimulus represents an 

exponentially decaying weighing function on all past inputs. In most of the Sutton-Barto 

simulations, the value of B is taken to be 0; then the adaptation law can be rewritten as 

w(t+1) = w(t) +c*x,(t)*[z- y(t)]. When B equals 0, the output trace simply reduces to 

the previous past value. Examination of the simplified Sutton-Barto rule shows that the learning 
is then related to the change in output values, that is, the temporal difference of the output, with 

an exponentially weighted input. If a is close to 1, forgetting is slow and learning depends on 

a large number of past input stimuli. If a is very close to 0, the weighing of past inputs 

diminishes quickly and learning primarily depends on the most recent input stimuli. 

Sutton and Barto’s model was a temporal refinement of the Rescorla-Wagner model. As 

Klopf (1978) noted, a signal trace of an input to a synapse may persist for some period of time, 
and that this trace might allow for increases in synaptic efficiency even if the input event and the 
firing event are separated in time. The Sutton-Barto model does effectively demonstrate the 

formation of positive associations for the experimental frameworks in which overlap of CS and 

US does not occur. However, it does not give positive associations when CS offset is extended 

beyond US onset. The Sutton-Barto model replicates all of the stimulus context behavior of the 

Rescorla-Wagner model, including blocking, overshadowing, conditioned inhibition, discrimina- 

tion and pseudodiscrimination effects, as well as acquisition, extinction, and interstimulus interval 
(ISI) effects in trace conditioning. 

The Sutton-Barto model, however, deviates from some other evidence found in animal 

experiments. For example, the model does not account for the initial positive acceleration in the 

S-shaped acquisition curves observed in classical conditioning. Also, it yields inaccurate 

predictions for several CS-US configurations involving significant overlap between CS and US 

durations. Some of these problems were later solved using reinforcement learning models (Barto, 
Sutton, & Anderson, 1983; Sutton, 1984, 1988). In the area of unsupervised learning, some of 
the difficulties of the Rescorla-Wagner and Sutton-Barto models were not overcome until the 

work of Klopf (1986) and his drive-reinforcement model (1988), to be discussed shortly. 

After their original work on classical conditioning, Sutton and Barto (1982) extended their 

model to study how the CR usually anticipates the US in the simulation of conditioned inhibition 

and chaining associations. From this study, they moved into reinforcement learning models, 
which are outside the scope of this chapter. Such models are nevertheless important because they 
take temporal differences into account and move closer to an understanding of instrumental- 

operant learning (as opposed to classical-respondent learning models). For excellent treatments 

of reinforcement learning, see Kehoe (1989); Kehoe, Schreurs, and Grahm (1987); and Werbos 

(1989, 1990).
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Klopf (1988) proposed what he called a drive-reinforcement (D-R) model of single neuron 
function, in which drives are viewed as signal levels in the nervous system, and reinforcers as 
changes in signal levels. The result was a model that was characterized by Caudill (1989) as the 
most biologically rigorous neural network model of classical conditioning in use at this time. 

The D-R model not only predicts the formation of associations when stimulus overlap occurs, but 
accurately predicts that weaker (but still positive) associations will form when CS offset and US 
Onset are simultaneous or even temporally separated. 

Klopf (1986) presented the essence of his drive-reinforcement model as an extension of 
Sutton-Barto (1981); it was to appear as a detailed model in Klopf (1988). He defined his 
learning rule and gave it the name of Differential Hebbian Learning (independently discovered 

by Kosko, 1986). Klopf (1979) suggested the use of a stimulus trace variable completely 
separate from the major signaling variable. Thus when activity at a synapse is eligible for 
modification, it remains eligible for a period of several seconds. A synapse’s modifiability 
depends on the reinforcement level during this period of eligibility. Each synapse therefore can 
be viewed as having its own local trace mechanism. This trace mechanism mediates synaptic 
modification but does not directly alter other aspects of the neuron’s behavior. Klopf further 
Suggested that a trace could last for the relatively long times found in classical conditioning 
studies without interfering with continuing signal transmission. 

The drive-reinforcement learning law of Klopf (1988) derives from the idea that it is 
changes in both input stimulus and output response that serve as reinforcers. But in addition, the 
present synaptic change is dependent on a weighted sum of past changes: The connection 
between two neurons is doubled, with one connection carrying an excitatory weight (w.*(t)) and 
a second connection carrying an inhibitory weight (w;(Q). Klopf (1988, p. 87) further posited 
separate excitatory and inhibitory connections at each synapse, with total neuronal output equal 
to the sum of the activation from both excitatory and inhibitory responses. Reformulating Klopf’s 
equation in a form consistent with other equations in this chapter, we have: 

wi (t+1) = w;(t)+ )) ¢, * |W; (t-k) | + o[x,(t-k) -x,(t-k-1)] * (y(t) -y(t- 1) 
k=1 

: 8 
w, (t+1) = w; (t)+ )o c,* |w, (t-k) | « ofx,(t-k) -x,(t-k-1)] * (y(t) -y(t-1)) “) 

k=l 
Iwi], |wo [20.1 

The drive-reinforcement model, unlike any of the previously mentioned models, has 
Separate paths for excitatory and inhibitory reinforcement. In other words, every input stimulus 
has a positive excitatory weight and a negative inhibitory weight, with each weight being 
reinforced separately. 

The form of the learning equation shows us that learning is based on the history of input 
stimuli and output responses. This historical information is more than just a trace as in the 
Sutton-Barto model. The actual change in input stimuli and the actual output values are available 
for adaptation with a decaying factor. In other words, learning can occur even though the CS 
and the US do not overlap in time, that is, there is a finite nonzero interstimulus interval (IST).
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The decaying or forgetting factor is designed to achieve diminishing effects similar to the results 

observed in ISI conditioning. Inclusion of weights in the reinforcement term produces an S- 

shaped acquisition curve. It provides quicker convergence, and at the same time serves as a 

bound to the learning. The separate weights for excitatory and inhibitory effects allow a 

particular input trace to produce different responses related to the role played by each of the two 

weights. Because both weights are updated with different strategy at different times, this allows 

for a very useful interaction, and is particularly evident during extinction and reacquisition 

paradigms. Klopf claimed that this model predicted a wide range of classical conditioning 

effects, including delay and trace conditioning, conditioned and unconditioned stimulus duration 
and amplitude effects, partial reinforcement effects, interstimulus interval effects, second-order 
conditioning, conditioned inhibition, extinction, reacquisition effects, backward conditioning, 

blocking, overshadowing, compound conditioning, and discriminatory stimulus effects (some of 

these conclusions are questioned in the next section). 

In summary, we can logically organize the adaptation laws. All of them can be traced 

back to Amari’s law, which basically says that weight change is cumulative and incremental with 

respect to the reinforcement. Hebb’s learning rule specifies that the reinforcement is the 

multiplicative association between the input stimuli and the output response. The Widrow-Hoff 
law differs in that the association is not with the instantaneous output value, but rather with the 

difference between the output from the external target value. The GHT rule specifies that the 

output difference should not be dependent on an external target value, but rather on the previous 

output value. Tesauro’s specifies that the association is not only with the change in output, but 

also with the change in input at the same time. 
Rescorla-Wagner’s learning rule, based on the Hullian approach of probability, specifies 

that the learning constant could be different at various stages of the paradigm and the "target" 
value is the maximum synaptic strength. Sutton-Barto’s rule shows that the association should 

be dependent on the input trace rather than the present input value, and the output difference 

between the present output and the output trace. The drive-reinforcement rule uses the synaptic 

weights in the reinforcement term which is also dependent on the positive input change and 

output change. Furthermore, the D-R model specifies that there are two weights to each input 
stimulus, an excitatory weight and an inhibitory weight, each with separate updates. 

These models can also be distinguished by their treatment of time. On a gross time scale, 

one speaks of successive trials with each trial consisting of presenting the US and CS and 

observing the response in total. On a finer time scale, one speaks of successive time steps with 

each time step showing how the US and CS are presented, that is, the temporal relationship of 

the US and the CS within a trial. Those models that do not account for this finer time scale, 

such as those of Hebb and Widrow-Hotf, are termed non-real-time models. Those models that 

account for this finer time scale, such as those by Tesauro, GHT, Sutton-Barto, and Klopf, are 

termed real-time models. 

3. PSYCHOLOGICAL ASSESSMENT 

In the preceding sections we have discussed various mathematical adaptation (learning) 

rules of several models of how a single neuron’s activity might be simulated. The remainder of
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this chapter is devoted to further analyses of the neuronal models by testing them with various 
classical conditioning paradigms, followed by some of our conclusions. 

The simulation environment used in this study was an interactive set of programs written 
in Turbo C++ for the IBM PC and compatibles. The main module provides a set of pulldown 
menu screens that allow the user to choose trom several different learning strategies, conditioning 
paradigms, viewing modes, and setup options. When a learning rule had been selected, the user 
could change the operative constants for the learning model or continue with the default values. 

A choice of input files was also given, each representing a particular conditioning 
paradigm, or experimental procedure. Nineteen procedures, representing all the conditioning 
paradigms simulated by Klopf (1988) for the D-R model, were selected. After choosing a 
procedure (file), the user could run one or more models on the input configuration it represents, 
producing a set of weight and output files. The user could also change the conditions of the 
experiment or configure new experimental procedures by altering an input file or creating new 
files with the editing facility provided. Specifically, the user could define the number of trials, 
the number of time steps, the onset and offset step and duration of the US, and select up to six 
CSs. After running a simulation, the View option reads the weight and output files and displays 
a screen of 2-dimensional input, output and weight graphs or a 3-dimensional view of the 
model’s output (CR and UR) over the entire span of the experiment. The 2-D view screen may 
be altered to show the output of the learning element at different times across all trials and within 
each trial. The assumption for all models is that one time step equals 1 sec. 

In the simulations presented, default values for all learning and trace constants were used. 
These defaults are chosen to coincide as closely as possible with those specified by the authors 
of these models. For example, the Rescorla-Wagner model learning constant c was set to 0.5, 
and all weights began at 0.0. For the Sutton-Barto model, the value for the learning constant was 
again 0.5, and all weights were initialized to 0.0. The value of the input trace control constant 
a was 0.9, trace values x(0) and y(0) were initialized to 0.0, and f was set equal to 0.0. The 
effect of this value for B in the learning equation is to make y(t) equivalent to y(t - 1). For the 
drive-reinforcement model, with y = 5 and j initially equal to 1, the constant vector c was set 
equal to (c, = 5.0, c, = 3.0, c, = 1.5, cy = 0.75, cy = 0.25), and the absolute values of all weights 
have a lower bound equal to 0.01. For all experiments shown, the input nodes that received a 
US (unconditioned stimulus) had fixed weights of 1.0 and input nodes receiving CS (conditioned 
stimuli) had variable weights. The value for US input was always 0.5, and CS values were 0.2. 

4. ANALYSES 

In Pavlovian conditioning procedures, time is assumed to play a very important part. A 
conditioning stimulus, such as a bell, is typically presented to a hungry organism just before an 
unconditioned stimulus (US) is presented. The conditioning stimulus (CS) thus becomes 
associated with an unconditioned stimulus (food), and a conditioned excitation develops such that 
after a number of pairings, when the bell is rung, a conditioned response (CR) such as salivation 
occurs. When the amount of salivation in response to the bell is plotted relative to the number 
of trials, there is an initially positive acceleration of the curve changing to negative acceleration, 
which continues up to the point that an asymptotic level is reached, forming a somewhat S-
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Shaped curve. It is assumed that the level of response (CR) to the CS represents the level of 
association that has developed between the CS and the US. This procedure, sometimes called 
delay conditioning, is defined so that CS onset precedes US onset and CS offset occurs at about 
the same time, or later than US onset (cf. Fig. 13.1). 
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Fig. 13.1. Time course of a typical delay conditioning, paradigm using the drive-reintorcement model. 

In the computer simulations, we are dealing with discrete time. This means that when 
the CS goes off at the end of the time step preceding the onset of the time step when the US 
comes on, there is an assumption that the CS has gone off within one half of a time step before 
the US is presented. Following Klopf (1988), “Onset of a stimulus at time Step ¢ means that the 
stimulus was on during time step ¢ and was not on during the preceding time step. Offset of a 
stimulus at time step ¢ means that the stimulus was off during time step ¢ and was not off during 
the preceding time step." On the other hand, if a CS goes off during the same time step within 
which the US is presented (comes on), then the two are said to be overlapping, that is, on during 
the same time step. In general, overlapping occurs with CS and US when the CS is on during 
any or all of the times steps when the US is also on. The CS can, of course, be adjusted to be 
on for as many time steps as the experimenter wishes. 

When designing the simulations, we used Klopf (1988) as our guide because his drive- 
reinforcement model correctly simulates more classical conditioning paradigms than any of the
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other models. Thus we built all the models and files to work together from a common platform. 

Computer screens were designed to accommodate all seven of the above models and any we 

created for additional comparisons. Our data files were also centered around Klopf’s onset/offset 

times and number of trial presentations for all 19 of the classical conditioning procedures 

(paradigms). When the simulator was finished, and we began the analyses, we found that using 

Klopf’s onset/offset times for the other models sometimes limited their results, because inherent 
factors of a given learning rule were possibly not considered. In fact, some of the models failed 
to show learning when using his onset/offsets but do show learning when the onset/offsets are 

brought into line with learning equations in the other models. 

Simulation CS and US Timing 

Model CS, CS, CS, US 

Stimulus Duration 

SB and DR 

Reacquisition 

10/13/1-160 10/13/101-160 

Hebb 11/14/1-100 20/24/1-100 29/34/1-100 13/13/1-100 

23/24/1-100 

33/34/1-100 

SB 10/13/1-100 19/23/1-100 28/33/1-100 13/14/1-100 

23/24/1-100 

33/34/1-100 

DR 10/13/1-100 20/24/1-100 28/33/1-100 13/14/1-100 

23/24/1-100 

33/34/1-100 

Blocking 

Hebb 11/14/1-160 11-14/101-160 © -- 13/14/1-160 

13/14/1-160 

Hebb 11/14/1-200 -- -- 13/16/1-70 

13/16/141-200 

SB and DR 10/13/1-200 -- -- 13/16/1-70 

13/16/141-200 

Second Order 

Hebb, SB, and DR 10/15/1-200 7/12/61-200 -- 13/15/1-60 

Table 13.1. Timing of the CS-US Configurations. 

For example, the Hebb rule is based on simultaneous pre- and postsynaptic activity and 

must have overlapping CS-US presentations. In a delay conditioning paradigm, the CS must be 

presented for at least one time step after the US presentation begins. The Sutton-Barto and 

Gelperin-Hopfield-Tank models, on the other hand, cannot handle overlapping CS-US 

presentations because of the presynaptic trace element in these models. In the case of delay, the 
CS must terminate before or at the same time step when the US presentation begins. The 
comparisons made for our analyses were thus based on separate data files for these three models, 

and our results therefore differ from those of Klopf’s. Onset and offset times for all of the
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simulations presented are listed in Table 13.1. As an example, CS, is on for time steps 11-14 
for trials 1-100; CS, comes on at time step 20 and goes off at time step 24 for trials 1-100; CS, 
comes on at time step 29 and goes off at the end of time step 34 for trials 1-100; and the US for 
CS, is on for the duration of time step 13 only, for trials 1-100; the US is on for CS, for time 
Steps 23 and 24 (for trials 1-100) and for CS, the US comes on again for time steps 33 and 34 
(for trials 1-100). Note that pairings of US with all three CSs is shown in the upper left corner 
of each figure. 

4.1. CS Duration 

Figs. 13.2-13.9 give some of the simulator’s output for an experiment varying the duration 
of the CS in delay conditioning. The length of delay for CS,, CS,, and CS, is 3, 4, and 5 time 
Steps respectively. The experimental literature is in general agreement (Ayers, Haddad, & Albert, 
1987) that extending the duration of the CS tends to slightly weaken the level of conditioning. 
Thus, we would expect an animal in a similar experimental procedure to have approximately the 
same S-shaped learning curve for CS,, CS, and CS,, with progressively lower asymptotic levels 
demonstrating weaker associative strengths as CS duration increases. 
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Fig. 13.2. Delay conditioning using the Hebbian model.
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It should be noted that the model’s output, as shown in the following graphs, represents 

changes in the synaptic weights of the single neuron which represents the conditioned response 

(CR). In our discussion of the results we are comparing the single neuron output to the known 

experimental results of the conditioned response found in whole animal behavior. Our findings 
show that the simulation output for Hebbian (HE) learning matches the known experimental 
results (Fig. 13.2). 

The shortest duration (CS,) forms the strongest association, as represented by the value 

of the synaptic weight (w,), and the longest duration (CS,) the weakest association (w;). The 

results, however, show one of the major weaknesses of Hebbian learning; it provides no means 

of reducing the synaptic efficiency of the connection and fails to reach an asymptotic level. If 
not clamped artificially by the simulation environment at 5.5, the synaptic weight would continue 

to increase indefinitely. 
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Fig. 13.3. Delay conditioning using the Hebbian model. 

The Widrow-Hoff (WH), Rescorla-Wagner (RW), and Sutton-Barto (SB) models all show 

a learning curve for the weights of CS,, CS,, and CS, with the appropriate positive association, 

although the negative acceleration of the weight graph is not consistent with the experimental 

evidence. These models also give the correct ordering of associative strengths (Figs. 13.3-13.5). 

The Gelperin-Hopfield-Tank (GHT) model (not shown here for space reasons) shows that the CR
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for CS, conditions, but not for CS, or CS,. The GHT model conditions for CS, because there 
Is no overlap with the US. For the other CSs, there is overlap, and no conditioning occurs for 
this model. Duration of the CS appears to be a major factor in whether or not learning occurs. 
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Fig. 13.4. Delay conditioning using the Rescorla-Wagner model. 

The Tesauro (TE) model (Fig. 13.6), like the GHT, shows a negatively accelerated 
learning curve with higher associative strengths than the RW, WH, and SB models. The order 
effects of CS,, CS, and CS, are also in accord with the experimental results for animal learning, 
in that less CS-US overlap results in an increase in the level of conditioning. 

The drive-reinforcement (D-R) model in the same experimental framework is shown in 
Fig. 13.7. The formation of associations in the weight graphs produced is consistent with the S- 
shaped learning curves found in animal learning. However, the initial acceleration rate and 
asymptotic synaptic weight values are opposite to those found in animal research. Klopf (1988) 
stated, "whole-animal data may be insufficient to test these predictions, in that higher level 
attentional mechanisms may play a significant role when CS durations are extended beyond the 
US" (p. 95). The implication is that the D-R model findings are correct, and that further research 
at the single neuron might explain these results at a more molecular level.
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Fig. 13.5. Delay conditioning using the Sutton-Barto model. 
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Fig. 13.6. Delay conditioning using the Tesauro model. 
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Fig. 13.7. Delay conditioning using the drive-reinforcement model. ) 6 

From a whole-animal perspective, Klopf's original CS-US onsets and offsets contain a 

confounding factor. Both the CS duration and the absence or presence of a CS-US overlap are 

changed. The CS duration is increased from 3 for CS, to 5 for CS,; however, there is an overlap 

for only the second two CS durations. Simulation of the D-R model without this confounding 

factor showed unexpected results. Figure 13.8 shows the D-R model run using the Hebb data 

files, which include an overlap for all three CSs. The results on weight acceleration are 
Inconsistent with the known animal results. Also the asymptotic synaptic weight values do not 

correspond either to known animal results or to Klopfs predictions based on the original 

onset/offset times. When the D-R model was run using the Sutton-Barto files without CS-US 

overlap (Fig. 13.9) the results were different from the previous two simulation results, both in 

the acceleration curves and the asymptotes. 

4.2. Blocking 

Blocking ts an example of a compound stimulus because it contains separable stimulus 

components. Kamin (1968) first gave an experimental group of rats a series of training trials 

pairing a light (CS) with shock (US) until the light was maximally effective in evoking the 

elicited response. Then, the same animals received further training in which a second stimulus,
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a tone, was also paired with shock and the light was also presented at the same time as the tone. 

No conditioning occurred to the tone. Kamin reasoned this was because the tone provided no 

new information to the rats, indicating that for something to be learned, or associated, there needs 

to be a "surprise" factor present. Bower (1970) noted that "the learning mechanism seems to 

become ‘switched on’ mainly when environmental events do not confirm expectations. These 

findings show that although temporal contiguity is necessary, the CS must also have predictive 
value." In the 2-D simulation of blocking (Fig. 13.10), it can be seen that the drive-reinforce- 
ment model best predicts the blocking phenomenon. 
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During trials 1-100, CS, is reinforced by the US in the first stage of conditioning, until 

the CS, excitatory weight approaches asymptote. Then, in trials 101-160, CS, and CS, are 

presented at the same time and reinforced by the US. Weight 2 (w,), which represents CR, stays 

unchanged during the second stage, and is thus consistent with the experimental evidence. 

The Tesauro model (not shown here) shows a nonsigmoidal acquisition curve for CS, and 

shows blocking when the CS overlaps the US onset. The Hebbian model shows the weights for 

both CS, and CS, as conditioned excitation, but does not show blocking (Fig. 13.14). The 
models that also show blocking to various degrees are Rescorla-Wagner, Sutton-Barto, Gelperin- 

Hopfield-Tank (Figs. 13.11-13.13), and Widrow-Hoff (not shown here).
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Fig. 13.9. Delay conditioning using the drive-reinforcement model with Sutton-Barto data file. 
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Fig. 13.10. Blocking simulation using the drive-reinforcement model. 
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Fig. 13.11. Blocking simulation using the Rescorla-Wagner model. 
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Fig. 13.12. Blocking using the Sutton-Barto method. 

 



MODELS OF LEARNING IN A SINGLE NEURON 251 

4.3. Reacquisition Analysis 

The behavior of the D-R model in experiments examining the reacquisition of a 

previously extinguished association is completely in accord with the Pavlovian findings. The 

two-dimensional view of the input, output and weight graphs for this experiment is shown in Fig. 
13.15. 
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Figs. 13.13. Blocking simulations using the Gelperin-Hopfield-Tank model. 

To demonstrate reacquisition requires three stages of conditioning. In Stage 1 (trials 1- 
70), a delay conditioning procedure is used to produce conditioned excitation. Note again the 

appropriate S-shaped acquisition curve this model forms for the excitatory synaptic weight (w,) 
associated with CS,. 

In Stage 2 (trials 71-140), the inputs are configured so that the CS is no longer reinforced 

by the US. The resulting behavior is that extinction occurs, which for the D-R model means that 

the positive association of CS, to the US (w,) decreases while the CS, inhibitory synaptic weight 
(tw,) shows a small increase in absolute value. The effect of these changes is that the sum of 

w, and iw, approaches zero, causing the output of the neuron, y(£), to approach zero. These 

findings are consistent with Pavlov’s observations that response (salivation) to the CS (the bell) 

decreased from its previous asymptotic level when it was repeatedly given but not reinforced.
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Fig. 13.15. Reacquisition with the drive-reinforcement model. 
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The critical part of the reacquisition paradigm is Stage 3 (trials 141-200). Pavlov found 
that when the CS was again reinforced by the US, reacquisition of the original positive 
association occurred more rapidly than in the initial stage. In Stage 1 of the D-R simulation, 60 
trials occur before w, reaches its asymptotic level of 2.60. From the point where the US again 
begins to reinforce the CS (trial 141) to the point that w, returns to its previous level (trial 187) 
is just 46 time steps. Thus the D-R model correctly predicts the faster recovery found by Pavlov. 

The SB and RW models (Figs. 13.16 and 13.17) both produce weight graphs that are 
negatively accelerating in the delay conditioning stages as noted in the discussion of CS duration 
effects. For both models, the association of CS to US formed in Stage 1 (w,) extinguishes to 
zero in Stage 2. No explicitly inhibitory weights are used in either model, so the extinction of 

y(t) can only be produced by reducing the level of association. The result of this total 

elimination of the previously formed association is that in Stage 3, reacquisition of association 

to asymptotic level takes precisely the same amount of time it did in Stage 1. These models thus 
do not correctly demonstrate the more rapid rate of reacquisition found in animal research studies. 

The SB and RW (Figs. 13.16 and 13.17) and the GHT and WH models (not shown) all 
exhibit small amounts of acquisition for the first 71 trials, falling off gradually to about 0, then 
beginning to show reacquisition at trial 141. Note that the slope of the curves for w, (CR) does 

not occur more rapidly during reacquisition than during original acquisition. These models thus 

show support for reacquisition but do not predict the more rapid relearning of the CS as found 
in the experimental literature. 
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Figs. 13.16. Reacquisition using the Sutton-Barto model.
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Figs. 13.17. Reacquisition using the Rescorla-Wagner model. 

The Hebb model shows only an acquisition curve for Stage 1 (though clamped), as shown 
in Fig. 13.18. Actually, there are three graphs (inside Fig. 13.18) represented; at the top left, the 

onsets/offsets are shown for the US and CS,, followed by the output y for the three stages of this 

procedure; the second graph ts of the output y at the last time step minus 1, or; y at 2=15 (in this 

case 16-1); and finally the third graph shows the growth of the synaptic weights (CR). The 

second graph, that of y at time 15, shows that the US goes off at trial 71 and remains off until 

the US is again paired with the CS at trial 141 and remains on to trial 199 (cross-referenced with 

the output files — not shown). It should be noted that at time step 15, only the US is presented, 
and therefore y(t) only represents the UR (output). 

An explanation might be appropriate, because all the models but one show the same 
results for y(t): Whenever the US is not on, no learning takes place; but when the US is again 

paired with the CS, output results. What is reflected here is the combined strength of the US 

plus the CS in the form of a UR. With the Hebb model, CS, clamps thus preventing the second 

CS from affecting the CR in the third stage from appearing on the synaptic weight graph. The 
CR is not shown on the graph, yet the US elicits salivation, hence activity (UR), for trials 141- 
199.
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Fig. 13.18. Acquisition at Stage | using the Hebbian model. 

What distinguishes the Tesauro model (not shown) is its rapid, strong rise in associative 

strength, (to a synaptic weight of 5.0, where the models above only achieved a strength between 
1.0 and 2.0), beginning to fall off gradually at trial 71 and re-learning in Stage 3. However, the 
response to the second CS-US pairing did not occur more rapidly, as predicted by Pavlov. 

4.4. Second-Order Conditioning 

In second-order conditioning a weak association is formed between two CSs, one of which 

had previously been paired with the US. In Stage 1, CS, is paired with the US until a strong 

association has been formed. The CS, is presented with CS,. Pavlov (1927) thought it was a 
transient response and found the second-order response to be weaker than the response to the first 

CS-US pairing. Pavlov claimed that the second CS would inhibit a CR that otherwise could have 

occurred. This suggests that CS, will serve to reinforce new learning (CS,), much like a US does 

(Bower & Hilgard, 1981; Flaherty, 1985). 

The D-R model clearly shows (Fig. 13.19) these processes in action. First, in Stage 1 

(trials 1-60) CS, is reinforced by a US, giving a synaptic weight value slightly in excess of 4. 

In Stage 2 (trials 61-200) second-order conditioning occurs, but not as strongly as that produced 
in Stage 1, due to the effects of inhibition, as shown beginning at trial 71, labeled "tw, and iw,"
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on the graph (inhibitory weights 1 and 2). Although Klopf (1988) did not show the inhibitory 

weights in his graph (p. 100), his learning rule accounts for their presence. The results support 

Pavlov’s (1927) contention that inhibition is partly explanatory for lower values of the second 
CR. 

The Hebb model shows rapid acquisition for only CS, (Fig. 13.20), and also clamps the 
output. It is insensitive to second order conditioning. The RW and WH madels (not shown) 

exhibit a monotonically rising curve, then extinction beginning at trial 71. Both also show a 

negative slope below the x axis for w, (CR,). Neither shows learning during Stage 2, only 

inhibition. Note that in both models, weights 1 and 3 fall to the zero baseline. 

The SB model (Fig. 13.21) shows minimal acquisition of the delay procedure in Stage 1 

and only a slight association in Stage 2, as would be predicted. Tesauro’s model (Fig. 13.22) 

shows acquisition and extinction for CS, as would be expected. However, CS, rapidly accelerates 

to the level where it must be clamped. The GHT (not shown here) shows some semblance of 

imitating the RW and WH models (above), and like them shows neither inhibition nor negative 

weights. Although the RW and WH models are similar mathematically, they do produce slightly 

different results. 
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Figs. 13.19. Second-order conditioning with the drive-reinforcement model.
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Figs. 13.20. Lack of second-order conditioning with the Hebbian modcl. 

5. CONCLUSIONS 

The computer simulator was developed to allow a uniform and consistent environment 
in which the different learning models could be duplicated and past research in the area of single- 
neuron learning replicated. This approach allows for a greater understanding of the mathematics 

involved in single-neuron computation, as well as the capabilities to test the models through the 

simulation of known classical conditioning results. 

The various mathematical learning models have shown how diverse assumptions 

concerning the models appear to result in vastly different models. However, although there are 

many different forms of adaptation laws, there are several basic mathematical operations 
involved. First, weight adaptation is incremental; this is represented by derivatives (or first 
differences) of the weights. Second, weight adaptation is by means of associations; this is 

represented by multiplication. Third, parameter changes are more important than actual 

parameter values; this is represented by the derivatives (or first difference) of the parameters. 

Fourth, many models account for the temporal difference in event occurrences; this is represented 

by means of the memory feature. In other words, a history of past events is kept and is used to 

affect the present adaptation. Finally, the size of the memory can be asymptotically infinite, 

shortened to only the recent past, or even simplified to a single trace value.
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Fig. 13.21. Second-order conditioning with the Sutton-Barto model. 
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Fig. 13.22. Second-order conditioning with the Tesauro model.
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The results of examination of real-time models on four different classical conditioning 
experimental designs have shown both the weaknesses and strengths of individual models. 
Manipulation of the experimental setup has allowed for a comprehensive comparison to establish 

the extent of their ability to model whole animal behavior. The designs chosen for comparison 

demonstrate differing elements in classical conditioning: (1) CS duration illustrates simple level 

conditioning with a single CS, (2) blocking incorporates a second, nonpredictive, CS stimulus, 

(3) reacquisition incorporates extinction and reacquisition, and (4) second-order incorporates 

higher order conditioning with a compound stimulus. Looking at the different learning models 
within the framework of the above elements of classical conditioning leads to differing 
conclusions about a model’s overall performance. To demonstrate this approach, we make a 

comparison between two of the models: Hebb and drive-reinforcement. 
Although the Hebb model is limited by its inability to clamp learning, its association 

between CS duration and US presentation matches known data when an overlap between the CS 

and US is allowed. This overlap represents the time factor inherent in the Hebbian model in that 

simultaneous pre- and postsynaptic activity is necessary for learning to occur. Grossberg and 
Levine (1987) called this the syachronization problem. A slight overlap between CS and US is 
known to be the best conditioning procedure and leads to the development of the strongest 

association (Bower & Hilgard, 1981). The Hebbian model consistently replicates known results 

for simple conditioning designs, including CS amplitude and US duration. The model cannot, 

however, replicate procedures that contain an interval of time between the CS and US (such as 

trace conditioning). In the CS duration simulation, when an overlap is present for all three 
stimuli, the D-R model is incapable of replicating this simple conditioning experiment. In order 
for the model to show three correct learning curves, shown in incorrect order, the experimental 

data must contain a confound between overlap and duration. The discrepancy in the order of 

association is explained, by Klopf (1988), at the neuronal level as opposed to whole-animal 

behavior comparisons made for other paradigms. The D-R model is inconsistent in replicating 

simple conditioning results (i-e., CS amplitude, interstimulus interval), which are either explained 

at the neuronal level or contain confounding experimental designs. 
The D-R model is good at replicating conditioning designs that include more complex 

phenomena such as blocking, reacquisition, and second-order conditioning. This cannot be said 

for the Hebbian model, however, due to its mathematical limitations. Any CS that overlaps the 

US will form an association, as demonstrated by the two associations formed in blocking. It 

should be noted that Hebb could be set up to show blocking correctly by eliminating the overlap 

between the US and CS,. Because the Hebbian model does not incorporate negative weights, 

extinction cannot occur, and therefore reacquisition is not possible. The Hebb model also cannot 

form an association between two conditioned stimuli as shown in second-order conditioning. 
Since 1988, Klopf has extended his D-R model to include instrumental conditioning 

(Baird & Klopf, 1993; Klopf & Morgan, 1990; Klopf, Weaver, & Morgan, 1993) with a few D-R 

neurons in the form of "networks of trainable control systems, as models of nervous system 

function" (Klopf et al., 1993, p. 264). He referred to a control system that learns as an 

associative control process (ACP), which could lead to a neurobiologically and psychologically 
plausible process to explain the nervous system in the larger context of computational 

neuroethology.
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The development of single-neuron mathematical models represents a bottom-up approach 
to understanding brain function. An understanding of how a single neuron Operates is necessary 
to advance our ability to model behavior represented by networks of neurons. However, from 
a psychological perspective, several theoretical questions should be raised about the approach 
taken in modeling learning with a single neuron. 

The basis of comparison between learning laws is their ability to model whole animal 
behavior. Although this gives a clear yardstick, supported by years of research, is it a valid 
measure? Research in the area of classical conditioning with single cell organisms has shown 
mixed results in their ability to form even simple associations (Abramson, 1994). This raises the 
question: Are we giving our mathematical neuron the ability to do more than is possible for a 
single biological neuron? If so, does it make a difference?) Those who accept this perspective 
would argue that to empower the neuron with greater capabilities will change the functioning of 
the whole working together producing very different behavior. 

It has been inferred that the model that most accurately duplicates whole-animal behavior 
is the best neuronal model. By this definition, Klopf’s drive-reinforcement model most clearly, 
of those examined, demonstrates learning. However, the D-R model's inability to handle simple 
classical conditioning paradigms, such as CS duration and interstimulus intervals, casts doubt on 
Its status as the best model. The Hebb model does replicate simple conditioning and 
neurophysiological research supports changes in neurons indicative of Hebbian learning (Kandel 
& Hawkins, 1993). However, the inability of Hebbian learning to explain more complex 
conditioning shows its limitations from a single-neuron perspective. 

The problem may lie in trying to determine a single model as being the best overall. 
That is not to say that a comparison between models does not offer us Interesting and important 
information. The fact that the Hebbian and D-R models have differing strengths in replicating 
classical conditioning may lead to the question: Does the complex brain system incorporate more 
than one adaptation law? A complex system may in fact deal with time discretely and 
simultaneously dependent on available information. 

Recent results on the morphology, physiology, and synaptic architecture of single neurons 
(Segev, Rapp, Manor, & Yarom, 1992) give rise to one final theoretical question. They suggest 
that a single neuron should actually be modeled as a network, comprising input region (dendritic 
tree), cell body, and output region (axonal tree). Research has shown that the dendritic tree may 
not be isopotential (Claiborne et al., 1991, get this out of single neuron computation), which 
suggests synaptic modification cannot be represented by a single processing node. Although such 
modeling is beyond the scope of this chapter, it serves to add perspective to the study of single- 
neuron models that emulate whole-animal behavior. 

The formal comparisons between the various mathematical models have raised some 
interesting questions from a psychological perspective. Although we can not offer concrete 
answers, we feel there is importance in the questions. Have we become conditioned to approach 
neuronal modelling from a single perspective? The following quotation may be of interest:
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Pavlov thought dog saliva was extremely interesting. Therefore, he attended to 
it very closely. It was thus that a drop of dog saliva revolutionized our view of 
mind. One could argue that Pavlov did not discover anything, but that he himself 

was conditioned. Modern learning theorists emphasize that learning occurs when 

an organism discovers a discrepancy between the state of the world and the 

organism’s representation of the world. .... Rescorla (1988) remarks that 

"organisms adjust their Pavlovian associations only when they are surprised." 
This statement suggests that conditioning and having an insight are more or less 

the same thing. To be surprised, one must be attending to or be expecting 

something .... Rather than say that Pavlov developed a theory, we could say that 

he became conditioned; rather than say that Pavlov’s dogs were conditioned, we 

could say that they were surprised by a relationship between laboratory assistants 

and meat powder and that they developed a theory to account for this relationship. 
(Martindale, 1991, pp. 148-149) 

In this study, we were conditioned to respond to single-neuron modeling from a 

mathematical perspective; however, we were "surprised" by the complexity of the psychological 

issues. Whether this will be insightful in furthering neuronal modeling research may depend on 

the conditioning of future theorists. 
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The chapter by Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecset, On the 

Optimization of a Synaptic Learning Rule, deals with different rules for synaptic 
modification — which are also considered in the chapters by Chance et al. and Carpenter. Bengto 
et al. deal partly with classical conditioning example, but unltke Chance et al., Bengto et al. do 

not work with specific conditioning models already in the literature. Rather, they work with a 
general mathematical structure for conditioning rules, inspired in part by biological data on 

Aplysia. These rules combine Hebb’s rule with siniulated effects of chemical modulation. They 
are combined with a variety of architectures that are also, in part, patterned after Aplysia. 

Bengio et al. apply statistical optimization methods (tin a manner somewhat like Golden's 
chapter does) to figure out, within this structure, the best weights for performance of the 
functions they wish to perform. They train the network on a small sample of the tasks they wish 
it to learn and then try to minimize the generalization error; this tssue of generalization ts also 

dealt with in Tattersall’s chapter in this book. The optimization methods used are three classes 
of widely used network methods: genetic algorithms (see also Dorsey and Johnson's chapter); 

gradient descent (see also Golden's chapter); and simulated annealing (see also Levine's chapter). 

In addition to conditioning, they applied their networks to classification problems and to 

calculating Boolean functions, the latter being similar to the thrust of Jagota’s chapter. 

This chapter explores a variety of parameter optimization problems and suggests that most 

of the methods have uses in different applications. Genetic algorithms seemed to work the best 
on classification problems. On Boolean function problenis there was a trade-off between gradient 
descent and simulated annealing, with simulated annealing being more independent of tnutial 

conditions whereas gradient descent was faster. Experiments of the sort Bengio et al. are 

performing are of an exploratory character, and may contribute much to our knowledge of the
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utility of different optimization methods. The course of development or adult learning in human 

and animal nervous systems probably involves chan ges in weight parameters, so this work might 

eventually tluminate what optimiuzation strategies are used tn actual biological nervous systems. 

ABSTRACT 

This chapter presents a new approach to neural modeling based on the idea of using an 
automated method to optimize the parameters of a synaptic learning rule. The synaptic 

modification rule is considered as a parametric function. This function has local inputs and is 

the same in many neurons. We can use standard optimization methods to select appropriate 
parameters for a given type of task. We also present a theoretical analysis permitting to study 
the generalization property of such parametric learning rules. By generalization, we mean the 

possibility for the learning rule to learn to solve new tasks. Experiments were performed on 

three types of problems: a biologically inspired circuit (for conditioning in Aplysia), Boolean 

functions (linearly separable as well as non linearly separable) and classification tasks. The 

neural network architecture as well as the form and initial parameter values of the synaptic 

learning function can be designed using a priori knowledge. 

1. INTRODUCTION 

Many artificial neural network models have been recently proposed (see Hertz, Krogh, 
& Palmer, 1989, and Hinton, 1989, for detailed reviews), and each of them uses a different (but 

constant) synaptic update rule. We propose in this chapter to use optimization methods to search 

for new synaptic learning rules. Preliminary studies on this subject were reported in Bengio and 

Bengio (1991) and in Bengio, Bengio, and Cloutier (1991a, 1991b). Many biologically inclined 
researchers are trying to explain the behavior of the nervous system by considering experimental- 

ly acquired physiological and biological data for constructing their models (see, e.g., Byrne & 

Berry, 1989; Hawkins, 1989). These biologically plausible models constrain the learning rule to 

be a function of information locally available to a synapse. However, it has not yet been shown 

how such models could be efficiently applied to difficult engineering or artificial intelligence 

problems, such as image or speech recognition, diagnosis, prediction, and so forth. 

Another approach, preferred by engineers, emphasizes problem solving, regardless of 

biological plausibility (e.g., error backpropagation; Rumelhart, Hinton, & Williams, 1986). The 
above two classes of models seem to be growing further and further apart. An objective of this 

chapter is to contribute to fill the gap between the two approaches by searching for new learning 
rules that are both biologically plausible and efficient compared to specialized techniques for the 
solution of difficult problems. 

2. LEARNING RULE OPTIMIZATION 

The most remarkable characteristic of a neural network is its capacity to adapt to its 

environment: it can learn from experience, and generalize when presented new stimuli. In both 

biologically motivated and artificial neural networks, this adaptation capacity is represented by
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a learning rule, describing how connection weights (synaptic efficacies) change. Although it is 
generally admitted that the learning rule has a crucial role, neural models commonly use ad hoc 

or heuristically designed rules; furthermore, these rules are independent of the learning problem 

to be solved. This may be one reason why most current models (some with sound mathematical 

foundation) cannot deal easily with hard problems. In this chapter we propose to improve a 

learning rule by adapting it to the problems to be solved. To do this, we consider the synaptic 

learning rule as a parametric function, and optimize its parameters using standard tools, such as 
gradient descent (Rumelhart, Hinton, & Williams, 1986), genetic algorithms (Goldberg, 1989) and 

simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). We make the following assumptions: 

- The same rule is used in many neurons (this constraint may be relaxed to one rule for 

each type of neuron or synapse’). It is not plausible that each synapse or neuron 

in a network has its own rule. Actually, neural models described in the literature 

use a Single rule (e.g., Hebb’s, 1949), which dictates the behavior of every neuron 
and synapse. 

* There exists a relation (possibly stochastic) between synaptic update and some informa- 

tion locally available to the synapse, that corresponds to the learning rule (i.e., 

synaptic update is not totally random). This relation may be approximated by a 

parametric function 

W(X, Xo + X35 9), 95, -., 8.) (1) 

where x; are variables of the function and 0, are a set of parameters. 

2.1. Variables and Parameters of the Learning Rule 

Because the domain of possible learning algorithms is large, we propose to constrain it 

by using in Eq. (1) only already known, biologically plausible synaptic mechanisms. Hence, we 

consider only local variables, such as presynaptic activity, postsynaptic potential, synaptic 

strength, the activity of a facilitatory neuron, and the concentration of a diffusely acting 

neuromodulator. Figure 14.1 shows the interaction between those elements. Constraining the 

learning rule to be biologically plausible should not be seen as an artificial constraint but rather 

as a way to restrain the search space such that it is consistent with solutions that we believe to 
be used in the brain. This constraint might ease the search for new learning rules (Fig. 14.2). 

2.2. General Form of the Learning Rule 

From the above, and denoting w(i, J) as the weight of the synapse from neuron i to neuron 
J, the general weight update function will have the form 

  

' Biologists have found different types of neurons and svnapses inthe brain, but their characterization is far from 
complete (Gardner, 1987).
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Aw(1, J) = Aw(x,, X5, ..., X,3 8), 85, ..., 8,,). (2) 

The synaptic update Aw(i, /) of a synapse ¢ — j is computed using Eq. (2), as a function 

of variables x,, local to this synapse and a set of parameters 0,. It is those parameters that we 

propose to optimize in order to improve the learning rule. 

Postsynaptic Neuron 

Neuromodulatory Synapse    Synapse 

A 
Chemical Modulator 

  Presynaptic Neuron 

Facilitatory Neuron 

Fig. 14.1. Elements found in the vicinity of a synapse, that can influence its efficacy. 

2.2.1, Example of a Parametric Learning Rule. Hebb’s rule is probably the best known 
learning rule in connectionist models (Hebb, 1949). It suggests that a biologically plausible 
synaptic modification is to increase the weight of a connection when the presynaptic and 
postsynaptic neurons are active simultaneously. Under its most simple expression, Hebb’s rule 
may be written as a parametric function as follows: 

Aw(i. j) = Oy(i)x(j/) (3) 

where Aw is the weight update, y(/) the activity of presynaptic neuron i, x(j) the activity of 
postsynaptic neuron j, and 6 a correlation constant. In this case, y(2) and x(/) are variables and 
6 a parameter. 

2.3. Form of the Rule 

Once the variables and parameters have been chosen, the learning rule must be given a 
precise form. In Eq. (3), it is simply the product of the variables and of the parameter. 
Currently available biological knowledge can help us design a more general form of the learning
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rule. For instance, it is now accepted that many mechanisms may interact in a synapse 
simultaneously but with different time constants, which suggests the inclusion of delays in the 
learning rule. We may also model a synapse with more details, considering for instance local 

interaction at the dendritic tree level (a synapse is then influenced by the neuron’s local potential 

instead of its global activity). 

Space of Biologically Rule Used in 
plausible Learning Rules Biological Systems 

\ 

  

          

    

  Back 
ee Propagation 

Optimization Learning Rule 
Process    

  

   
   

Initial Point of. 
Search 

  

Space of Learning Rules 

Fig. 14.2. Constraining the space of learning rules considered. 

2.4. Task Diversification 

Optimizing a learning rule to solve a given single task is an interesting and nontrivial 

problem in itself that is discussed in this chapter. We want this rule to be able to perform 

adequately on new instances of the task. However, it may be more interesting (and more 
difficult) to find a learning rule that can be used successfully on a number of different learning 
tasks. During the optimization process, the same rule (with the same parameters) must be used 

on all tasks considered. Thus, we have to optimize a learning rule with respect to its 

simultaneous performance on different neural networks learning different tasks. This constraint, 

suggested by Chalmers (1990), should yield rules of more general applicability. This raises the 

question of generalization over tasks. Let us suppose that we optimize a rule using a training 

set of tasks sampled from a certain function space. Generalization over tasks is the expected 
performance of the learning rule on a new function sampled from the same function space, that 

is, the same class of functions.
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2.5. Parameter Optimization 

Once the form of Aw( ) is determined, we have to search for values of parameters that 

optimize the learning rule’s ability to solve different tasks. We now define the problem of 
optimizing a learning rule. 

2.5.1. Learning and Optimization. Let X be a random variable with probability distribution 
Py, fixed but unknown, and let @ : X — Y be an unknown function. For example, X may be a 

digital representation of a pixel matrix and Y the symbol (e.g., numbers, letters) corresponding 

to the image X. Or, X may be a measure of the economic activity on a given day, and Y the 

Dow Jones index on the following day (White, 1989). 

Let J be a scalar cost function. For example, we can choose J to be the mean square 

criterion: J(x, y) = (x - y)*. The goal of a learning system is then to produce a parametric 

function (0): X — Y which minimizes 

C = [ 16 @38),0(%)) P(x) dx (4) 

by finding adequate parameters 6.° In order to minimize C with a supervised learning system, 

we usually proceed using a set of N examples (x, o(x)), for i = 1, .... N, each chosen in (X,Y) 
independently using Py. Training performance of such a system can be measured in term of the 

difference between @ and @ for the N examples: 

A N A 

C = Y I(O(4;58),0(%,)) (5) 
i=l 

The generalization performance of such a system measures the difference between @ and @ for 

points other than those used to calculate C. To quantify the generalization property of a learning 

System, we now introduce the standard notion of capacity. 

Let z€ Z = (x, y) € (X, Y) and let G(z; 8) be the set of parametric functions g(z, 8). For 

example in neural networks, g represents a network architecture and a cost function, 0 is the set 

of weights, and z is the input and corresponding desired output vectors given to the network. 

More precisely, g(z; 8) = J(o(x;0),(x)). When J € {0, 1}, Vapnik (1982) defines the 

capacity of G(z; 8) as the maximum number of points x,, x,, ..., x, that can always be divided 

into two distinct classes with G(z; 6). Vapnik next describes an extension for the case where J 

ER. In this case, capacity is defined as the maximum number of input/output pairs Z,, Z,, ..., 2, 

that can always be learned by G(z; 8) with a cost less than a threshold chosen to maximize h. 

Theoretical studies such as Baum and Haussler (1989) and Vapnik and Chervonenkis 
(1971) give an upper bound on the number N of necessary instances of Z required to achieve 

  

4 . . . . 

~ For example, in a neural network, 0 is the set of weights,
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generalization with given maximal error. More specifically, knowing that the capacity of a 
learning system is a measure of the number of functions it can approximate, which depends 

roughly on the number of weights in the network, we can relate the generalization error of a 

learning system with the number AN of instances z © Z and the capacity A using the following 

formula (Vapnik, 1982): 

e<O fi,N (6) 
N oh 

where e is the difference between training error (using the NM examples) and generalization error 

expected over all examples. This means that for a fixed number of examples N, starting from 

h = 0 and increasing it, one finds generalization improves until a critical capacity is reached. 

After this point, increasing A makes generalization worse. For fixed capacity, increasing the 

number of training examples NV improves generalization (€ asymptotes to a value that depends 
on h). The specific results of Vapnik (1982) are obtained in the worst case, for any distribution 

Py. 

2.5.2. Optimization of the Parameters. Let L be a learning rule defined by its structure 

(fixed) and its parameters 8 (considered to be variable). Optimizing the learning rule requires 

a search for the values of parameters minimizing a cost function. 

Let {R,, R,, ..., R,} be a set of neural networks trained on n different tasks (and possibly 

having different structures), but using the same learning rule L. If C, is the cost (as defined for 
instance by Eq. (6)) obtained with neural network R, after being trained on its task, then the 

global cost function we wish to minimize is 

c= iC, (7). 

Furthermore, if we want a learning rule to be able to solve any task, we should, in theory, 

optimize C’ with respect to the cost resulting from the learning of every possible instance of 

every one of the n tasks. Because this is usually impossible in practice, we can only find an 

approximation having the generalization error decrease with the increasing number of tasks used 

to optimize C’. This follows from Vapnik and Chervonenkis’ (1971) theorem, as long as those 

tasks are good representatives of the sets of all possible tasks, which we usually cannot verify. 

More formally, we can define the capacity of a parametric learning rule as a measure of 

the number of rules it can approximate. Thus Eq. (7) holds for the generalization error of the 
learning rule where A is the capacity of the parametric learning rule (which is in fact a function 

of the number of parameters of the learning rule), NV is the number of tasks used to optimize the 

parameters, and ¢ is the difference between training error (training tasks) and generalization error 

(on new tasks). 

Thus, we can draw several conclusions from this extension. For example, it becomes 

clear that the expected error of a learning rule over new tasks should decrease when increasing 

the number of tasks (N) used for learning the parameters 6. However, it could increase with the
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number of parameters and the capacity of the learning rule class if an insufficient number or 
variety of training tasks are used in the optimization. This justifies the use of a priori knowledge 

in order to limit the capacity of the learning rule. It also appears more clearly that the learning 

rule will be more likely to generalize over tasks that are similar to those used for the optimization 

of the rule’s parameters. In consequence, it is advantageous to use, for the optimization of the 

learning rule, tasks that are representative of those on which the learning rule will be ultimately 
applied. 

2.6. Optimization Process 

We use a two-step optimization process as shown in Fig. 14.3. The form of the learning 

rule is defined and the parameters are initialized either to random values within reasonable 

bounds, or to values corresponding to biological evidence (an example of this can be found in 

Section 3). We also define the set of tasks to be used in the process. Then we use the following 
algorithm: 

1. We train n networks simultaneously on n tasks by using the current learning rule. Since Aw( ) 

is, with high probability, initially far from optimal, it is very unlikely that all tasks will be solved 

adequately. After a fixed number of learning steps, we compute the error obtained in each task 
from Eq. (6). 

2. The objective function (such as Eq. (7)) is minimized by updating the parameters 6 of Aw( ) 

according to the optimization method used. 

3. We return to Step 1, using the new parameters of the learning rule, until we reach an 

acceptable learning rule. When the new learning rule is able to solve adequately all n tasks, we 

may want to test its capability to generalize on tasks that were not used in the optimization 
process. Many different optimization methods may be used to improve Aw( ). We can use local 
methods such as gradient descent, or global methods such as simulated annealing (Kirkpatrick 

et al., 1983) or genetic algorithms (Goldberg, 1989; Holland, 1975). Local methods are usually 

faster, but they can get trapped in local minima, whereas global methods are less sensitive to 

local minima but usually slower. Hybrid gradient descent/genetic algorithms were recently 

suggested (Davis, 1989; Whitley & Hanson, 1989). In our experiments we used gradient descent, 

simulated annealing, and genetic algorithms. 

2.7. Problem Complexity 

It is interesting to discuss briefly the complexity of the above optimization problem. We 

already have some knowledge of the complexity of neural network learning. Deciding if in the 

space of parameters of a neural network N there exists an adequate solution to an arbitrary task 

Tis equivalent to the satisfiability problem, which is NP-complete (Judd, 1988). Consequently, 
the search for such solution in N must be NP-hard. However, experimentation shows that a 
complex task may be learned in polynomial time by a neural network if a sound approximation 

Is acceptable (Hinton, 1989). General optimization methods such as gradient descent or 

simulated annealing can usually give good suboptimal solutions in polynomial time, even if they
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may need exponential time for the optimal solution. In our experiments we clearly cannot aim 
at exact optimization. Instead, we allocate a polynomial amount of time to each network using 
the current learning rule to solve its task. We are thus searching for a learning rule that can 
solve a set of tasks reasonably well in reasonable time. 
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Fig. 14.3. Optimization steps. 

3. PRELIMINARY EXPERIMENTS 

To test the feasibility of our approach to the optimization of learning rules, we performed 
preliminary experiments with relatively simple problems (Bengio et al., 1991a, 1991b, 1993; 
Bengio & Bengio, 1990; Bengio, Bengio, Cloutier, & Gecsei, 1992). In this section we 
summarize the results. In these experiments, we used either yradient descent, simulated 
annealing, or genetic algorithms as optimization methods. The tasks were the following: 
conditioning, Boolean functions, and classification problems. Although preliminary results are 
positive, experimentation with more complex problems is needed in order to find useful synaptic 
learning rules. 

3.1. Form of the Learning Rule 

To facilitate the search for an optimal synaptic update rule Aw( ), it is important to choose 
an adequate form of the learning rule. Here, by adequate we mean a form sufficiently rich to
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express a good solution (which is problem dependent), but sufficiently constrained to ease the 

search of the solution.» To do so, we can use some biological knowledge. Figure 14.4 shows 

the general form of the learning rules we use in the experiments. It consists of a certain number 

of a priori modules representing known or hypothesized biological synaptic characteristics. The 

resulting rule reflects a combination of a priori and free modules. The parameters determine the 

relative influence of each module on Aw(A). 
The following equation is a concrete example of a learning rule used in the experiments 

that are described in this section: 

Aw(i,j) = 6,+8,y(i)+6,x(7) +8, y(mod(7)) + (8) 

6,y(i) y(mod (/)) + 8B, yi) x) + 8g yy) wG,J) 

This is an instance of the general form described in Fig. 14.4. The function computed by this 
equation has sevem parameters, and integrates the following a priori modules: 

- y(t) -x(J), Hebb’s rule. 

- (i) -y(mod(j)), where y(mod(j)) is a modulatory activity (chemical or neural). Hawkins 

(1989) described a conditioning model for Aplysia using such a mechanism. 

“VY w(t, J), where w(i, j) is the synaptic weight at a the previous time frame. This term, 

suggested in Gluck’s conditioning models (Gluck & Thompson, 1987), permits 

gradual forgetting. 

3.2. Conditioning Experiments 

The goal of our first experiment is to discover a learning rule that is able to reproduce 

some classical conditioning phenomena in animals. Conditioning experiments, first described by 

Pavlov (1932), are well known through experimental studies. For our experiments, we used 

Hawkins’ model (Hawkins, 1989). We studied the following phenomena: 
Habituation. Initially, a conditional stimulus CS, (e.g., a red light presented to an animal) 

pro duces a small response (e.g., the animal salivates slightly). By presenting CS, repetitively, 
the response gradually vanishes (i.e., the animal gets used to the stimulus, and reacts to it less 

and less). 

Conditioning. A conditional stimulus CS, is followed by an unconditional stimulus U S 

(e.g., a red light followed by food). The response to CS, grows gradually (the animal salivates 

before seeing the food, and so on as the red light is turned on). 
Blocking. After CS, has been conditioned, a second conditional stimulus CS, (e.g., a green 

light) is presented to the organism simultaneously with CS,, both followed by an unconditional 

stimulus US. In that case, CS, is not conditioned (the animal will not salivate on green light 

only). 

  

3 : . - oy . . : . : . 
Moreover, as we have seen in Section 2.5.2, if the form of the learning rule is too rich, capacity maybe too 

high to reach good generalization performance.
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Second order conditioning. After CS, has been conditioned, CS, may be conditioned by 
presenting CS, followed by CS, (the animal will begin to salivate when it sees the green light, 
knowing that the red light follows, and that it is usually followed by food. 

Extinction. After CS, has been conditioned, repetitive presentation of CS, not followed 
by US will reduce the animal’s response to its original level (when no food follows the red light, 
the animal tends to lower its saliva response with time, eventually reaching its initial 
unconditioned level). 

  

  

          

    

(— —_ 

Aw() 

a-priori free 
modules module 

presynaptic postsynaptic synaptic neuro neuro 
\. activity potential weight modulator 1 modulator 2 ) 
  

  

Fig. 14.4. A priori knowledge utilization. 

In the conditioning experiments, the cost function to minimize (with gradient descent in 

this case) is defined following Eqs. (5) and (7) where y is the actual response of the network 
given an input sequence of stimuli, and y is the target behavior for the same input sequence. By 
fixing the initial values for some parameters (e.g., in Eq. (8), 0; is initialized to 1) and by 
initializing the other parameters to random values (in the range [-1, 1]), it was possible to find 
a set @ such that all five conditioning behaviors could be learned by the network in Fig. 14.6 
with initial random weights. Figure 14.7 shows the evolution of the cost function during 
optimization. Figure 14.8 shows the results of all five conditioning tasks obtained from our new
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learning rule (an extensive analysis of the resulting rule will be done in a future paper). The 
results obtained by this learning rule are similar to Hawkins’ (1989) experimental results. 

  

Conditional Unconditional Desired 
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CS; US d 
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0 0 0.25 organism. 

Iw 0 

0 “| 

0 0 

Iw 0 CS, is conditioned by US. 

0 “| 

0 0 

~~ 0 

0 ~| 0.95 

0 0 0.25 

Fig. 14.5. Conditioning by a sequence of stimuli and responses. The real sequence used for the experiments 

is much longer. 

Figure 14.5 shows the way we modeled one of those behaviors (conditioning) with a 

sequence of stimuli and associated responses. The form of the learning rule we used is Eq. (8), 

and the network architecture is shown in Fig. 14.6. It is inspired by Hawkins’ work (Hawkins, 

Abrams, Carew & Kandel, 1983; Hawkins, 1989). In this network, CS, and CS, are conditional 

stimuli, US is an unconditional stimulus, FN is a facilitatory neuron, and MN a motor neuron (it 
represents the animal’s response to stimuli). CS, and CS, influence the motor neuron (through 

connections toward MN), and these connections are themselves modulated by a facilitatory 

neuron which takes into account two consecutive states of the system through connections with 

delay (e.g., when CS, is activated at time (and US at time / + 1).
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Fig. 14.6. Neural network used for the conditioning experiments. 
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Fig. 14.7. Evolution of the learning rule efficacy.
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Fig. 14.8. Conditioning tasks computed by our new learning rule. 

3.3. Experiment With Boolean Functions 

The goal of these experiments is to explore in a very simple setting the possibility of 

optimizing a learning rule that could be used to train a network with hidden units. They allowed 

us to evaluate the applicability of our method to a simple computational problem. We used again 

the same learning rule from Eq. (8). Fully connected networks with two inputs, a single output, 

and one hidden unit were trained to perform linearly separable functions (such as AND, OR) and 

nonlinearly separable functions (such as XOR, EQ). Information provided to hidden units about 
their contribution to errors was fed through backward paths, with neurons that might modulate 

synaptic change on corresponding forward paths (Fig. 14.9). 
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Output Output Error 

    

\ inputs \ Inputs 

Fig. 14.9. Architecture transformation to enable local evaluation of the network error. 

As for the conditioning experiments, a cost function was defined in terms of the difference 

between real and expected learning behavior of the network. This target behavior consists in 

learning some Boolean function within a cycle of 800 presentations of randomly selected noisy 

Boolean input patterns. A Gaussian noise was added to each input pattern for better 

generalization of the learning rule. Before each cycle, the network weights were initialized 

randomly, in order to allow the resulting rule to be as insensitive as possible to the network’s 

initial conditions. Rule parameters @ were updated after each cycle. The results are summarized 
in Table 14.1. 

Two optimization methods were used: gradient descent and simulated annealing. Gradient 

descent proved to be faster but sensitive to initial values of 8, whereas simulated annealing was 
slower (around 500 times slower) but insensitive to parameter initialization. In order to verify 
that gradient descent and simulated annealing were more efficient than random search, we also 
tried the following approach. For the random search, 50,000 vectors of 8, each with seven 
parameters within [—1, 1], were chosen and those corresponding to the best learning performance 
on the training tasks were kept. The networks trained with that rule could not learn the 

nonlinearly separable functions completely (25% error at best), whereas the networks trained with 
a rule obtained with gradient descent or simulated annealing were able to learn the training tasks 

perfectly. Furthermore, this rule could also generalize to new (but similar) tasks including
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nonlinearly separable functions, as shown in Table 14.1. Another interesting observation is that, 

as expected with the capacity theory extended in Section 2.5.2 and with results of Chalmers 

(1990), generalization to new tasks is improved if more tasks are used for optimizing the learning 

rule. 

3.4. Classification Experiments 

The general problem of classification (Duda & Hart, 1973) is to establish a correspon- 
dence between a set of vectors and a set of classes. A classifier is a function f: B — C, where 

B € R’ is a set of n-dimensional vectors we want to classify and C is the set of classes. Many 
problems may be formulated in this way. An example is the optical character recognition 
problem, which is to associate an image to a character. Here, using a simple neural network 

architecture with two input units, one hidden unit and one output unit, we will search for a 
synaptic learning rule able to solve two-dimensional classification problems with two classes. 

  

Number of Tasks Type of Tasks Number of Steps Generalization Optimization — Sensitivity 
(to New Tasks) Method to Initialization 

L NL 
1 L 3 yes no 

1 NL 15 yes ho Gradient yes 

4 L 5 yes ho Descent 

5 4L, INL 100 ves yes 

1 L 100 yes no Simulated 

l NL 1000 yes no Annealing no 

5 4L, INL 24000 yes yes 

Table 14.1. Summary of Boolean Experiments. L stands for linearly separable task whereas NL stands for 

nonlinearly separable tasks. 

Let the two classes be C, and C,, and let V, = {v € R’| v belongs to C,} and 

V, = {vE R’| v belongs to C,} be the sets of vectors belonging respectively to C, and C,. The 

task consists in learn whether each vector v € R® belongs to C, or C,. To do this, we randomly 

select vectors v € R® belonging to C, or C,. The network predicts the class C” to which an input 
vector v belongs. The goal is to minimize (by modifying the connection weights) the difference 
between C’ and the correct class associated to a vector, for every training vector. 

We performed experiments to verify the theory of capacity and generalization applied to 

parametric learning rules. In particular, we wanted to study the variation of the number of tasks 

N, the capacity A, and the complexity of the tasks, over the learning rule’s generalization property 

(e). Moreover, we did these experiments using three different optimization methods, namely, 
gradient descent, genetic algorithms, and simulated annealing. Experiments were conducted in 
the following conditions: 

* Some tasks were linearly separable (L) and others were nonlinearly separable (NL).
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- Each task was learned with 800 training examples and tested with 200 examples. A task 

was said to be successfully learned when there were no classification error over the 

test set. 

* We used once again the network described in Fig. 14.9, with backward neurons that may 
provide error information to hidden connections. 

- We tried two different parametric learning rules. Rule A was defined using biological a 
priori knowledge to constrain the number of parameters to seven, as in Eq. (8): 

Aw(i,j) = 05+8,y(i) +8,x(G) +8, y(modG)) + 

8, y(i)y(mod(/) )+ 8, y(i)xG) + 8 y(t) wif) 

where wi(i, j) is the synaptic efficacy between neurons i and Jj, x(/) is the activation potential of 
neuron j (postsynaptic potential), y(a) is the output of neuron i (presynaptic activity), and 
y(mod()) is the output of a modulatory neuron influencing neuron j. Rule B had 16 parameters 

and w as defined as follows: 

Aw(i,j) = 0) +8,y(i) +8,x(j) +8,y(mod(j)) +8,w(i,/) + O,y(i)xU) 
+ Ogy(i)y(mod (/)) + 6,y(é) wi.) + 8x) y(mod (/))+8,x (i) w(i,/) ay 

+ 8,9y(mod (/)) w(i,J) + 8, ,¥(i)x UV) y (mod (/)) wi, /)+8,,»DxG) wi) 
+ 8,59 (iy (mod (/)) w (i,j) +, 4 (4) y (mod (j)) w(i,j) + 8,5y(i)x UV) y (mod G)) w(i,/) 

- A typical experiment was conducted as follows: We chose a parametric learning rule (A or B), 

an optimization method (genetic algorithms, gradient descent, or simulated annealing), a number 

of tasks to optimize the rule (1 to 9), and a complexity for the tasks (linearly separable, L, or 

nonlinearly separable, NL). Then we optimized the rule for a fixed number of iterations, and 

finally, we tested the new rule over other tasks (i.e., we tried to learn new tasks with their 800 

training patterns and evaluate performance with a test over the remaining 200). 

The first experiment was to verify that the number of tasks N used for the optimization 

had an influence on the rule’s generalization performance. Figure 14.10 shows that for a given 

and fixed optimization method and capacity h, generalization error tends to decrease when N 
increases, as theory predicts. 

The second experiment was to verify if the type of tasks used during optimization 

influences the rule’s generalization performance. Figure 14.11 illustrates the results. We can see 

that when the rule is optimized using linearly separable tasks, generalization error on both 

linearly and nonlinearly separable tasks stays high, whereas if we use non linearly separable tasks 

during rule optimization, generalization error decreases when the number of tasks increases. 
In the third experiment (Fig. 14.12), we verified if the capacity of a parametric learning 

rule influences its generalization performance. Here, we compared rules A and B (respectively 

with 7 and 16 parameters). As shown, if the number of tasks used for optimization is too small, 

the rule with the smallest capacity (A) is better, but the advantage tends to vanish when the 
number of tasks increases.
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Fig. 14.10. Evolution of generalization error (E..,,) with respect to the number of tasks used during 

optimization. In this example, we used genetic algorithms and a rule with 7 parameters. Tasks were linearly 
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In Fig. 14.13, we compare the use of different optimization methods to find the 

parameters of a learning rule. We compared two methods: genetic algorithms and simulated 

annealing.” Genetic algorithms seem generally better, especially when the number of tasks used 

for optimization is small. 

The last figure (Fig. 14.14) shows how optimization error varies during optimization of 

the learning rule. At the beginning of the optimization process, training error on selected tasks 

is very high, but it decreases rapidly during the optimization process. 
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Fig. 14.12. Evolution of generalization error with respect to capacity of the parametric learning rule. Here, 

we used genctic algorithms and tasks were linearly separable. E(7).,, is the generalization error of rule A 

(with 7 parameters) and E(16),,.,. 1s the generalization error of rule B (with 16 parameters). 

4. CONCLUSION 

This chapter explored methods to optimize learning rules in neural networks. Preliminary 

results show that it is possible to optimize a synaptic learning rule for different tasks, while 
constraining the rule to be biologically plausible. Furthermore, we have established the 
conceptual basis permitting to study the generalization properties of a learning rule whose 
parameters are trained on a certain number of tasks. To do so, we have introduced the notion 

of capacity of parametric learning rules. The experimental results described here qualitatively 

agree with learning theory applied to parametric learning rules. 

  

* Gradient descent always fell into local minima and thus was not able to give interesting results.
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Fig. 14.14. Evolution of optimization error with respect to the number of steps during optimization of a 

parametric learning rule. Here, the optimization method is simulated annealing and the rule has 7 paranieters.
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The problems studied so tar were quite simple, and it is important to improve the form 

of the learning rule and the optimization process in order to find rules that can efficiently solve 

more complex problems. In this section we discuss some improvements that should be 
considered for further research. 

Optimization. There are two immediate ways to improve the optimization process. One 

is to refine the cost function by adding terms reflecting the quality of network generalization. 

Other optimization methods such as genetic programming (Koza, 1992) or second-order methods 

should be tested for their efficiency in handling diverse and more complex learning problems. 

Experiments show that a rule optimized to solve a simple task cannot solve a more difficult task, 
whereas the converse is often true (given that the number of tasks used to optimize the rule is 

sufficient). 

Form of Aw( ). Optimization can yield good results only if the learning rule’s constraints 

are soft enough to yield one or more acceptable solutions, but hard enough in order to yield good 

generalization performance and speed up optimization so that such solutions can be found in 

reasonable time. One possibility is to perform a preliminary analysis of the tasks to be learned 
and to "customize" the rule accordingly. Another one is to take in to account known (and 
probably useful) biological synaptic mechanisms such as: 

- Temporal processing in a synapse (different input factors influence synaptic efficacy with 
different delays). 

‘ Limiting the neurons to be excitatory or inhibitory (but not both). This is unlike most 

existing artificial neural network models in which a neuron may have both 
behaviors. 

‘More detailed modeling of operation of the neuron, taking in to account physical distance 
between synaptic sites and local influence of the local potential on the neural 
membrane on the dendritic tree. 

Analysts of Resulting Learning Rules. It is important to analyze the obtained learning 26 

rules. We should systematically compare our resulting rules with other learning techniques such 

as back-propagation and attempt to discover the underlying reasons for differences in their 
behavior. 
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Gail Carpenter's chapter, Spatial Pattern Learning, Catastrophic Forgetting, and 
Optimal Rules of Synaptic Transmission, introduces a neural network signal transduction 
rule. This synaptic transmission rule posits an adaptive threshold as the fundamental unit of 
long-term memory, rather than the traditional path weight, designed to multiply an axonal 
signal. The chapter shows how the adaptive threshold rule solves a type of catastrophic forgetting 
problem that can occur when synaptic transmission obeys the signal-times-weight product rule. 
The threshold rule, combined with a principle of atrophy due to disuse, leads to a new model, the 

distributed outstar, which achieves stable learning with codes that can be either winner-take-all 

or distributed. The distributed outstar generalizes the outstar ( Grossberg, 1968a), in which a 

single source node projects to a field of target nodes. Outstar learning determines weight 
adaptation in the top-down adaptive filter of adaptive resonance theory (ART) models with 
winner-take-all code representations. The distributed outstar replaces the single outstar source 
node with a source field that may have arbitrarily many nodes and that can support arbitrarily 
distributed or compressed code representations. 

Carpenter’s concern with optimal rules for synaptic transmission is shared with the 
chapters by Bengto et al. and Chance et al. Carpenter speculates that this type of investigation 

of different learning rules might help to guide the search by neuroscientists for learning rules in 
biological neurons. Also it can help guide the optimal design of memory units in optical and 
electronic neural networks. As Grossberg pointed out in his talk at the 1992 M.I.N.D conference 
(he could not write a chapter based on his talk due to other commitments), a system for sensory 
pattern classification has different requirements than a system for generating motor behaviors. 
A sensory system, Grossberg said, needs to encode impinging outside inputs in a relatively
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faithful manner, and therefore requires positive feedback such as occurs in outstars and in the 
many versions of ART. A motor system, on the other hand, needs to be able to perform 

preplanned target behaviors, and therefore requires error-correcting negative feedback such as 
occurs in the VAM model he developed with Daniel Bullock and Paolo Gaudiano. (Back 
propagation networks fall in the latter category, even though they are different from VAM in 
other ways.) Hence the work of both Carpenter and Grossberg reinforces the important point that 
optimal design of neural networks varies immensely with the tasks they are designed to perform. 

ABSTRACT 

It is a neural network truth universally acknowledged, that the signal transmitted to a 
target node must be equal to the product of the path signal times a weight. Analysis of 

catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal 

synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, 

a network designed to support stable codes with fast or slow learning, generalizes the outstar 
network for spatial pattern learning. In the outstar, signals from a source node cause weights to 
learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces 
the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern 

may be arbitrarily distributed or compressed. Learning proceeds according to a principle of 

atrophy due to disuse whereby a path weight decreases in joint proportion to the transmitted path 

signal and the degree of disuse of the target node. During learning, the total signal to a target 

node converges toward that node’s activity level. Weight changes at a node are apportioned 
according to the distributed pattern of converging signals. Three types of synaptic transmission, 
a product rule, a capacity rule, and a threshold rule, are examined for this system. The three 

rules are computationally equivalent when source field activity is maximally compressed, or 

winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. 

Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed 

codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system 

IS a Subtractive threshold, rather than a multiplicative weight. 

1. OPTIMAL RULES OF SYNAPTIC TRANSMISSION 

When neural networks became popular in the 1980s, researchers struggled to define neural 

network with words that would include the diverse models in current use. As a step toward this 

definition, consider the question: What, if anything, do all the neural networks of the past fifty 

years have incommon? The answer to this question is, most likely, nothing. However, the large 
majority of neural network models, from the McCulloch-Pitts (1943/1988) neuron to the many 

biological and engineering models at this year’s conferences, have at least one thing in common, 

namely, the rule setting the net signal from a source node to a target node equal to a path signal 

times a synaptic weight (Fig. 15.1). This product rule of synaptic transmission is in such 

universal use that it is almost always treated as a nameless fact rather than a hypothesis, although 

neurophysiology so far neither confirms nor refutes this rule. Why, then, has this particular 

process found such widespread use? One answer is its computational power: the product rule
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sets the sum of weighted signals equal to the dot product of the signal vector and the weight 

vector. This dot product provides a useful measure of the similarity between the active path 

signal vector and the learned weight vector. However, utility and universality do not necessarily 

imply optimality. 

    

     

  

   

source 

node 

path signal 

yj 

transmitted signal 

~ OY ii 

Fig. 15.1. The product rule postulates that the signal transmitted to a target node at a synapse is proportional 

to a path signal (y,) times a weight (w,). This rule is a feature of nearly all ncural network models. 

This chapter describes a neural network learning problem for which the product rule is 

not computationally optimal. Solution of the learning problem requires a neural network design 

to support stable distributed codes. One such design is the distributed outstar (Carpenter, 1993, 

1994), which solves the distributed code catastrophic forgetting problem when the product rule 

is replaced by an equally plausible synaptic transmission rule. This threshold rule postulates that 
the unit of long-term memory (LTM) is a subtractive threshold, rather than a multiplicative 

weight. In the process of solving a particular learning problem, therefore, computational analysis 
questions the optimality of a fundamental neural network design hypothesis. 

2. OUTSTAR LEARNING AND DISTRIBUTED CODES 

An outstar is a neural network that can learn and recall arbitrary spatial patterns 
(Grossberg, 1968a). Outstar learning and recall occur when a source node transmits a weighted 

signal to a target, or border, field of nodes. This network is a key component of various neural 

models of cognitive processing. For example, the outstar has been identified as a minimal neural
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network capable of classical conditioning (Grossberg, 1968b, 1974/1982c). In terms of stimulus 

sampling theory (Estes, 1955), the source node plays the role of a sampling cell. When the 
sampling cell is active, long-term memory traces, or adaptive weights, learn stimulus sampling 
probabilities of border field activity patterns. A sequence of outstars, called an avalanche, forms 

a minimal network for learning and ritualistic performance of an arbitrary space-time pattern 

(Grossberg, 1969). Within the adaptive resonance theory of self-organizing pattern classification, 

outstars learn the top-down expectations that are critical to code stabilization (Grossberg, 

1976/1991). All neural network realizations of adaptive resonance theory (ART models) have 
so far used outstar learning in the top-down adaptive filter (Carpenter & Grossberg, 1987a/1991, 
1987b/1991, 1990/1991; Carpenter, Grossberg, & Rosen, 1991a). The supervised ARTMAP 
system (Carpenter, Grossberg, & Reynolds, 1991) also employs outstar learning in the formation 

of its predictive maps. Outstars have thus played a central role in both the theoretical analysis 

of cognitive phenomena and in the neural models that realize the theories, as well as applications, 

of these systems. 

An outstar is characterized by one source node sending weighted inputs to a target field. 
We here consider spatial pattern learning in a more general setting, in which an arbitrarily large 
source field replaces the single source node of the outstar. This distributed outstar network (Fig. 

15.2a) is similar to the original outstar when the source field F, contains a single node. Then 

weights in the F, — F, adaptive filter track the F, activity pattern when the one F, node is active. 

At first, distributed outstar learning would appear to be modeled already in the ART 

top-down adaptive filter (Fig. 15.3a). However, to date, networks that explicitly realize adaptive 

resonance assume the special case in which F, is a choice, or winner-take-all, network. In this 

case, only one F, node is active during learning, so each F, node acts, in turn, as an outstar 
source node. We here consider how to design a spatial pattern learning network that allows the 

activity pattern at the coding field F, to be arbitrarily distributed (Section 3). That is, one, 

several, or all of the F, nodes may be active during learning. One possible design is simply to 

implement outstar learning in each active path. However, such a system is subject to catastrophic 

forgetting that can quickly render the network useless, unless learning rates are very slow 

(Section 4). In particular, if all F, nodes were active during learning, all F, > F, weight vectors 
would converge toward a common pattern. 

A learning principle of atrophy due to disuse leads toward a solution of the catastrophic 

forgetting problem (Section 5). By this principle, a weight in an active path atrophies, or decays, 

in joint proportion to the size of the transmitted synaptic signal and a suitably defined "degree 

of disuse" of the target cell. During learning, the total transmitted signal from F, converges 

toward the activity level of the target F, node. Atrophy due to disuse thereby dynamically 

substitutes total F, — F, signal for the individual outstar weight. This seems a plausible step 
toward pattern learning by a coding source field instead of by a single source node. Unfortunate- 
ly, this development is, by itself, insufficient. The network still suffers catastrophic forgetting 

if signal transmission obeys a product rule. This rule, now used in nearly all neural models, 

assumes that the transmitted synaptic signal from the j" F, node to the i" F, node is proportional 
to the product of the path signal y; and the path weight w,,. An alternative transmission process, 

used in a neural network realization of fuzzy ART (Carpenter, Grossberg, & Rosen, 1991b;
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Carpenter & Grossberg, 1994), obeys a capacity rule (Section 6). However, catastrophic 

forgetting is even more serious a problem for the capacity rule than for the product rule. 
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Fig. 15.2. Distributed outstar network for spatial pattern learning. During adaptation a top-down weight Wi 

from the j” node of the coding field F, to the 7 node of the pattem registration ficld F,, may decrease or 

remain constant. An atrophy-duc-to-disuse learning law causes the total signal o, from F, to the / F, node 

to decay toward that node’s activity level x,, if Oo, is initially greater than x, Within this context, three 
synaptic transmission rules are analyzed.
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Fortunately, another plausible synaptic transmission rule solves the problem (Sections 
7-9). This threshold rule postulates a transmitted signal equal to the amount by which the 
F, — F, signal y, exceeds an adaptive threshold T;. Where weights decrease during atro- 
phy-due-to-disuse learning, thresholds increase: formally, J; IS identified with 1 — w,. When 
Synaptic transmission is implemented by a threshold rule, weight/threshold changes are bounded 
and automatically apportioned according to the distribution of F, activity, with fast learning as 
well as slow learning. When F, makes a choice, the three synaptic transmission rules are 
computationally identical, and atrophy-due-to-disuse learning is essentially the same as outstar 
learning. Thus functional differences between the three types of transmission would be 
experimentally and computationally measurable only in situations where the F, code is 
distributed. 

Computational analysis of distributed codes hereby leads unexpectedly to a hypothesis 
about the mechanism of synaptic transmission: the unit of long-term memory in these systems 
is conjectured to be an adaptive threshold, rather than a multiplicative path weight. Thresholds 
that determine a node’s output signal have played an essential role in neural network models 
from the start (Hartline & Ratliff, 1957; McCulloch & Pitts, 1943/1988), and adaptive activation 
thresholds are a standard feature of back propagation models (Rumelhart, Hinton, & Williams, 
1986). At the other end of the axon, however, these models all employ the standard signal-times- 
weight product rule to characterize synaptic transmission to a target node. Historically, early 
definitions of the perceptron specified a general class of synaptic transmission rules (Rosenblatt, 
1958/1988, 1962). However, the electrical switching circuit model, which realizes multiplicative 
weights as adjustable gains, quickly became the dominant metaphor (Widrow & Hoff, 
1960/1988). Over the ensuing decades, efficient integrated hardware realization of the linear 
adaptive filter has remained a challenge. In opto-electronic neural networks, the adaptive 
threshold synaptic transmission rule, realized as a rectified bias, may be easier to implement than 
on-line multiplication (T. Caudell, personal communication). Thus, even in networks where the 
product rule and the threshold rule are computationally equivalent, their diverging physical 
interpretations may prove significant in both the neural and the hardware domains. The adaptive 
threshold hypothesis completes the distributed outstar learning law, summarized in Section 10. 
Section 11 explicitly solves the distributed outstar equations, Section 12 illustrates distributed 
outstar dynamics with a network that has two nodes in the source field, and Section 13 concludes 
with a consideration of the physical unit of memory. 

3. SPATIAL PATTERN LEARNING 

The distributed outstar network (Fig. 15.2a) features an adaptive filter from a coding, or 
source, field F, to a pattern registration, or target, field F,. This filter carries out spatial pattern 
learning, whereby the adaptive path weights track the activity pattern of the target field, F,. 
When F;, consists of just one node (N = 1) the network is a type of outstar. During outstar 
learning, weights in the paths emanating from an F, node track F, activity. That is, when the 
J" F, node is active, the weight vector w, converges toward the F, activity vector x of the target, 
or border, nodes at the outer fringe of the filter (Fig. 15.3). Although many variants of outstar
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learning have been analyzed (Grossberg, 1968a, 1972/1982), the essential outstar dynamics are 

described by the equation 

  

Basic outstar: Sw = yx, - W,;)- (1) 
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Fig. 15.3. ART 1/tuzzy ART.



PATTERN LEARNING AND OPTIMAL TRANSMISSION 295 

This is the learning law used in the top-down adaptive filters of ART 1 (Carpenter & Grossberg, 

1987a/1991), ART 2 (Carpenter & Grossberg, 1987b/1991), and fuzzy ART (Carpenter, 
Grossberg, & Rosen, 1991a). By (1), w, = x; when y, > 0. When y; = 0, w;, remains constant. 

The term yx, in Eq. (1) describes a Hebbian correlation whereby the weight tends to increase 

when both the presynaptic F, node j and the postsynaptic F, node i are active. The term —yjWi, 

describes an anti-Hebbian process whereby the weight w. tends to decrease. when the presynaptic 

node j is active but the postsynaptic node i is inactive ("pre- without post-"). The distributed 
outstar network does not constitute a stand-alone pattern recognition system. Like the outstar, 

this module would typically be embedded within a larger neural network architecture for 

supervised or unsupervised pattern learning and recognition. For example, in an ART system the 

top-down F, — F, filter plays a crucial role in ART code stabilization. Additional network 

elements determine which F, code will be selected by an input I in the first place and implement 

search and other mechanisms of internal dynamic control (Carpenter & Grossberg, 1987a/1991). 
This chapter focuses only on design issues pertaining to the top-down adaptive filter. 

4. CATASTROPHIC FORGETTING 

The distributed outstar network for spatial pattern learning (Fig. 15.2a) needs to solve a 

potential catastrophic forgetting problem. Suppose, for example, that all F, nodes are active 

(y, > 0) at some time when the i" F, node is inactive (x; = 0) due, say, to the fact that there is 

no input to that node at that moment (/, = 0). With fast learning, an outstar (Eq. (1)) would send 
all weights w, Y= 1, .... N) to 0. Within an ART system, stability requirements imply that these 
weights then remain 0 forever. Moreover, no future input /, to the /" F, node could even activate 

that node, once F, became active. If similar weight decays occurred at each F, node, all weights 

would decay to 0. The network would thus quickly become useless, quenching all F, activity 
as soon as any F,, code was selected. 

The special class of F, networks called choice, or winner-take-all, systems sidestep this 
catastrophic forgetting problem. A code representation field F, is a choice network when internal 
competitive dynamics concentrate all activity at one node (Grossberg, 1973). An F, code that 

chooses the J" node is described by 

F, choice: y, = ‘ uf J} (2) 

In this case, each F, node is identified with a class, or category, of inputs I. Outstar learning 

(Eq. (1)) permits a weight w, to change only if the j™ F, node is active. When F, chooses the 

node J, all other nodes j # J are inactive. Only the weight w,; tracks activity at the i” F, node, 
SO 

Ww, > X. (3)
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Even if w, decays to 0, all other weights to the “ F, node remain unchanged when the J“ 
category is selected. These other weights w,, (Y # J) are thus reserved and can learn their own 

F, patterns when they later become active. 
Choice represents an extreme form of short-term memory (STM) competition at F,. By 

confining all weight changes to a single category, F, choice protects the learned codes of all the 
other categories during outstar learning. However, outstar learning poses a problem when F, 

category representations can be distributed. If a code y were highly distributed, with all y, > 0, 

then the outstar learning law (Eq. (1)) would imply that all weight vectors w, would converge 

toward the same F, activity vector x but not the asymptotic state of the weights. The severity 
of this problem can be reduced if learning intervals are extremely short. Then, because the rate 
at which w, approaches x is proportional to y,, little change will occur in weights w; with small 

y, If, however, many of the y, values are nearly uniform or if learning is not always slow, 

catastrophic forgetting will occur as all weight vectors approach one common pattern that is 

independent of all prior learned differences. 

An adaptation rule called the distributed outstar learning law solves this problem. Even 

with fast learning, where weights approach asymptote on each input presentation, the distributed 

outstar apportions weight changes across active paths without catastrophic forgetting. In the 
distributed outstar, the rate constant for an individual weight w,, is an increasing function both 
of y,, as in the outstar equation (1), and also of wj;; itself. When w, becomes too small, further 
change is disallowed. Weights, initially large, can only decrease during learning. Small weights 

can decrease further only when y, is close to 1, which occurs when most of the F, STM activity 

is concentrated at node j. When F, activity is highly distributed only large weights, close to their 

initial values, are able to change. Moreover, for highly distributed codes, the maximum possible 
weight change in any single path is small. 

The distributed outstar is derived from the notion that the sum of all F, — F, individual 
path weights tracks target node activity during learning. A principle of atrophy due to disuse 

governs weight change, as described in the next section. Within this context, three signal 

transmission rules are examined (Section 6). An adaptive threshold rule for synaptic transmission 

is more computationally successful than either of the other two rules. 

5. LEARNING BY ATROPHY DUE TO DISUSE 

The principle of atrophy due to disuse postulates that the strength of an active path decays 

when the path is disused. Active "dis-use" is distinct from passive "non-use" (Fig. 15.2b), where 

the strength of an inactive path remains constant, as in outstar learning (Eq. (1)) (Fig. 15.3b). 

To define disuse, a specific class of target fields F, are considered. So far, no assumptions about 

the F, activity vector x have been made. The main hypothesis on F, is that, when F, is active, 

the total top-down input from F, to F, imposes an upper bound, or limit, on the maximum 

activity at an F, node. In addition to a bottom-up input J, to the i" F, node, a top-down priming 
input o, from F, is assumed to be necessary for that node to remain active, once F, becomes 

active. This hypothesis is realized by the inequality 

Top-down prime: 0) s x, s G,, (4)
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where a, is the sum of all transmitted signals S,, from F, to the i" F, node: 

N 

o,=) Sii (5) 
j=l 

(Fig. 15.2a). In particular, when F, is active but o, = 0, no activity can be registered at the i* 
F, node, for any bottom-up input /; € [0, 1]. 

The top-down prime inequality (4) is closely related to the 2/3 Rule of ART (Carpenter 

& Grossberg, 1987a/1991), which implies that the i" F, node will be inactive (x, = 0) if either 

the bottom-up input /, is small or the total top-down input o; is small when F, is active. The 2/3 

Rule was derived both from an analysis of system requirements for input registration, priming, 

and stable, self-organizing pattern learning and classification and from an analysis of the 

corresponding cognitive phenomena. In binary ART 1 systems with choice at F,, the 2/3 Rule 
is realized by allowing the f" F, node to be active, when the J" F, node is active, only if J, = 1 
and if o, exceeds a criterion threshold, where 

CF = YyW3,- (6) 

Fuzzy ART (Carpenter, Grossberg, & Rosen, 1991a), an analog extension of ART 1, realizes the 
2/3 Rule by setting 

x, =F, 0 w, = mind, w, (7) 

when the J" F, node is chosen (Fig. 15.3a). The symbol a in Eq. (7) denotes the fuzzy 

intersection (Zadeh, 1965). By Eqs. (2) and (6), when F, makes a choice, 

O, = Wy. (8) 

Eqs. (7) and (8) suggest setting: 

Xx, = 106, (9) 

to define one class of F, systems that realize o, as a top-down prime, or upper bound, on target 
node activity x;. 

When F, primes F,, by Eq. (4), the degree of disuse D, of the (" F, node is defined to be 

D, = (o, - x.) = 0. (10) 

When Eq. (9) defines F, activity,
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S i (o,-1,Aa,) 

0 ,-1, if 0,2], 

~ 0 if ih (11) 

[o,-7) 

where [...]” denotes the rectification operator 

(8]* = 8 v 0 = max(8, 0) (12) 

where v denotes the fuzzy union (Zadeh, 1965). In this case, the degree of disuse at the i" F, 
node is the amount by which the top-down input o, exceeds the bottom-up input /; at that node. 
A learning principle of atrophy due to disuse postulates that a path weight decays in proportion 

to the degree of disuse of its target node. We here consider a class of learning equations that 

realize this principle in the form 

d 
ae = -5,,D,- (13) 

Weights can then decay or stay constant, but never grow, when S; = 0 and D, = 0. With the 

degree of disuse D, defined by Eq. (10), the learning law (Eq. (13)) becomes: 

Atrophy due to disuse: wy = -5i(9, 7) (14) 

(Fig. 15.2b). In Section 6, three synaptic transmission rules each define Sj; as a function of y, and 

w;, In Sections 7 and 8 we will analyze atrophy-due-to-disuse learning and catastrophic 

forgetting for these three rules. 

Initially, 

w. (0) = 1 (15) 

for’ = 1, ..., M andj = 1, ..., N. The learning law (Eq. (14)) implies that a path weight w, can 

decay when the total top-down signal o, to the @" target F, node exceeds the node’s activity x,. 

The rate of decay is proportional to a path’s contribution, S,, to the top-down signal. By Eq. 

(14), the sum of all weights converging on the f" node obeys the equation: 

d n 

a Wi) = — 9 (0, - x;). (16)
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Thus if the F, pattern x and the F, pattern y are constant during a learning interval, and if o, > x, 
at the start of that interval, then one or more weights w;, must continue to decay until o; 
converges to X,;. 

When F, makes a choice, we see that 

G, = Sy = Wy, (17) 

whereas S;; = 0 (x/), for all three transmission rules. In this case the atrophy-due-to-disuse Eq. 
(14) reduces to 

dw,, 
de Syi(Wyi ~ ¥) 

— (18) 
_ [WW XH) UF Jad 

0 if jel 

Comparing Eq. (18) with Eq. (16) illustrates the sense in which the total weighted signal o, in 

a distributed code replaces the weight w,, in a system where F, makes a choice. Note that w, 

approaches x, at a rate proportional to w,,. Equation (18) is thereby slightly different from the 
outstar equation (1), which reduces to 

  dw,, - ~ - X,) | (19) 

dt 0 ifj*j 

when F, makes a choice. Because w,, = 6, 2 x, x, = 0 if w, = 0. Thus Eqs. (18) and (19) both 

imply that w, — x while other w, remain constant, as long as the J" F, node remains active (Fig. 

15.3b). With fast learning and F, choice the atrophy-due-to-disuse and outstar learning laws are 

equivalent. In this case, neither computational nor experimental analysis can differentiate outstar 
learning from atrophy due to disuse. The three synaptic transmission rules are similarly 

indistinguishable. However, when F, activity y is distributed, qualitative properties of learned 

patterns depend critically on both the learning law and the signal transmission rule, as follows. 

6. SYNAPTIC TRANSMISSION FUNCTIONS 

We now define three synaptic transmission rules. The F, path signal vector y = 

(Vi, +> Vs +> Yr) iS assumed to be normalized: 

N 

dy, =] (20) 
j=l
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but is otherwise arbitrary. Given a signal y, from the j" F, node to the i" F, node, via a path 
with an adaptive weight w,, the net signal S received by the i" F, node is assumed to be a 

function of y, and w,: 
iv 

Si = SO» Wi) (21) 

Each of the three rules corresponds to a physical theory of synaptic signal transmission in neural 

pathways. The present analysis uses computation alone to select one of these three rules over 

the others in a neural system for spatial pattern learning. The first synaptic transmission rule 

postulates that the F, — F, signal is jointly proportional to the path signal y, and the weight w;;: 

Product rule: Si, = yw, (22) 

(Fig. 15.1). Synaptic transmission by the product rule is an implied hypothesis of most neural 

network models. The rule implies that o,, the sum of all transmitted signals to the i F, node, 

equals the dot product between the F, > F, path vector (Vis ever Vin vers Yn) and the converging 

weight vector (Wy, ..) Wis) Wi). That is, the total signal from F, to the i" F, node is a linear 
combination of the path signals y;: 

i) 

N 

0, = YW (23) 
j=l 

with the coefficients w; fixed (McCulloch & Pitts, 1943/1988) or determined by some learning 

law. The total transmitted signal o, thereby computes the correlation between the F, — F, path 

vector and the converging weight vector. Rosenblatt (1962/1988) considered synaptic 
transmission rules in the general form (Eq. (21)) when defining the perceptron. However, the 

product rule (Eq. (22)) and its linear matched filter (Eq. (23)) have since come into almost 

universal use. 

A second synaptic transmission rule assumes that the path signal y; is itself transmitted 

directly to the i F, node until an upper bound on the path’s capacity is reached. With this upper 

bound equal to the path weight w,,, the net signal obeys the: iv 

Capacity rule: S$; = y, A w, = min (y,, w,). (24) 

A capacity rule is suggested by the computational requirements of neural network realizations 

of fuzzy set theory, as in fuzzy ART (Carpenter, Grossberg, & Rosen, 1991b; Carpenter & 

Grossberg, 1994). Figure 15.44 illustrates how the product rule compares to the capacity rule. 
For each, the signal S;; grows linearly when y, is small. However, a product rule signal increases 

with y; for all y, € [0, 1], whereas a capacity rule signal ceases to grow when y, reaches the upper 
bound w;,, The geometry of the graph in Fig. 15.4a suggests a third signal function, to complete 

a transmission rule parallelogram. The third signal function describes a 

Threshold rule: S, = [y,- (1 - w,)]’. (25)
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It is awkward to interpret the transmission rule (Eq. (25)) in terms of the weight Wise 

However, a natural interpretation takes the unit of long-term memory to be a signal threshold i 

rather than the path weight w,. By setting 

t el-w., (26) 
J! J! 

the threshold rule (Eq. (25)) becomes: 

Sis = Di - Gil’ (27) 

In Eq. (27), the transmitted signal from the j" F, node to the 7" F, node is the amount by which 

the path signal y, exceeds an adaptive synaptic threshold Tie 

The three rules, Eqs. (22), (24), and (25), are identical if F, activity is binary, because for 
each rule, 

_ ify, = 1 
_ ji J 

In particular, the three synaptic transmission rules are computationally indistinguishable if F, 

makes a choice, by Eq. (2). However, when a normalized F, code is distributed, an adaptive 

system that uses either the product rule or the capacity rule can suffer catastrophic forgetting. 

The threshold rule solves this problem. 

7. TRANSMISSION RULE COMPUTATIONS 

When an F, code y is maximally compressed, the three synaptic transmission rules (Table 

15.1) are computationally identical. Computations in this section demonstrate how the three rules 

diverge when the F,, code is maximally distributed. Note that the weight adaptation equation (14) 

also learns spatial patterns in a system where x, may sometimes be greater than o,. Then, the 

top-down signal vector o would still track the F, spatial pattern vector x. However, the top-down 
prime hypothesis (Eq. (4)) implies that weights can only decrease, and hence are guaranteed to 

converge to some limit in the interval [0, 1] for arbitrary learning and input regimes. 

Product rule: Si =, (22) 
Capacity rule: S, = y, A (24) 
Threshold rule: s =p, - a - wi)" (25) 

Fable 15.1. Synaptic Transmission Functions.
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[Initial values. Consider an atrophy-due-to-disuse system (Eq. (14)) in its initial state, when 

no learning has yet taken place. Then, all w, = 1, so: 

Sj(O) = y(O) (29) 

for each of the three synaptic transmission rules (Table 15.1). Therefore, since the F, activity 
vector y is normalized (Eq. (20)), 

N 

0,(0) = }) s,,(0) = 1. (30) 
j=l 

The following computations trace an example in which x, = J, a o,, as in Eq. (9). Then 

x(0) = 7, € [0, 1], (31) 

by Eq. (30). The atrophy-due-to-disuse equation (14) then implies that x, will remain equal to 

I; for as long as I remains constant. During that time, as some or all weights w,, decrease, the 

total top-down input o, will decay toward the bottom-up input I,, no matter which transmission 

rule is selected. For each rule, 

d 
ait = -$,,(9,-1) (32) 

Choice at F,. When F, makes a choice, as in Eq. (2), o, = w,, which converges toward 

[,, by Eq. (32). All other weights w;, gy # J) remain constant. Competition at F, hereby limits the 

maximum total weight change at each F, node. In fact, when F, makes a choice, 

N N 

A (>> Wii) = > w,,(0) ~ w,,(e) ] 

joi jl (33) 
=[w,,(0) ~ w,,(©)] 

=(1-1,) 

for all three signal transmission rules. 
Distributed code at F,. An F, code is maximally compressed when the system makes a 

choice. Consider now the opposite extreme, when an F, code is maximally distributed. That is, 
let: 

(34) 
_ 1 

i HW
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for j = 1, ..., MN. All weights w,,, ..., wy; obey equation (32) and all are initially equal, by Eq. 
(15). Therefore the weights w,, = 1, .... N) to a given F, node will remain equal to one another 
during learning, for any transmission function S$, However, these individual weight changes 
under the three transmission rules show significant qualitative differences, despite the fact that 

the total F, — F, signal vector o correctly learns the F, activity vector x = I for all three. In 

particular, the nature of the pattern encoded by a given weight vector and the size of the total 

weight change at each F, node clearly distinguish the three rules, as follows. 
Product rule. With the product rule (Eq. (22)), 

1 
Sii = Wai (35) 

Therefore: 

Ny 1 
Oo. = —w, = — W.. 36 

3 d N ji nm ji ( ) 

and 

N 
d 1 l att rae w,;- 1,). (37) 

Because all weights w,, to the i" F, node remain equal during learning, 

wi >t (38) 

fory = 1, .... NM. Thus the maximum total weight change at an F, node ¢ is 

N 

A()) w,,) = NQ-1)), (39) 
j=l 

which could be anywhere from 0 (when J; = 1) to N (when I, = 0). 

Capacity rule. With the capacity rule (Eq. (24)), 

I if —<w..sl 
1 N u 

Sia = a AM = (40) 
N w. ifQ<w.< —
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Therefore 

.- | ; 
1 fa, sw sl for all j 

O,=\N ' (41) 

a if O<w,,<— for all j 
j=1 

Eq. (41) accounts for all cases since w,, = ... = Wy; during learning. Weights adapt according to 

-p 1 
4 yA if = sw 

—w. = 42 
dt * (4?) N 

. 

-wiC > wi - 1) ifO<sw,<— 
k=1 

N 

By Eq. (42), unless /; = 1, all weights w;, shrink until they enter the interval [0, “I: Thus 

[,. 
W fO<I<1 

wi (43) 
1 iff,=1 

for each J = 1, .... N. The maximum total weight change at the 7" F, node is 

N (N-I,) ifO<sI,<1 

AC wi) = | 0 iff,=1 (44) 

which lies between N - 1 and N, unless /, = 1. 

Threshold rule. With the threshold rule (Eq. (25)), 

I 1 - if (1 - 1 (~~ 6 wid) if ( ws Mas 

Sia = . it (45) 
0 FOswi<s(1- — 7) 

By Eqs. (14) and (45), weight w,, ceases to change as it falls toward (1 - 1). Thus, because 
N 

all w.(0) = 1,
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oO, = 1-SU-w,). (46) 
j=l 

During learning, 

d ! . 
aii = “Gp w= YL med (47) 

SO 

N 

yw, - N-(1-1). (48) 
j=l 

Therefore, because weights to the /" node remain equal as they decay: 

1-T, 
Wi 7 1 - N (49) 

In other words, the threshold 1, = 1 - w,, rises from 0 until: 

1-J 
Ti 7 | , (50) 

  

  
N 

1 . . . . 

Thus t; © [0, —] after learning. The total weight change at the i" node is 
N 

N 

Adi w, = 1-1, (51) 
j=1 

Like the weights, the sum of all threshold changes at the i" node is less than or equal to 1 - J. 

8. TRANSMISSION RULES, CATASTROPHIC FORGETTING, AND STABLE CODING 

Compare now the different asymptotic weights learned under the maximally distributed 
F, code (Eq. (34)) using the three synaptic transmission rules. For all three rules the total 
top-down signal o, converges to the bottom-up signal /; at each F, node i. However, the total 
weight changes vary dramatically (Fig. 15.4b), in contrast to the F, choice case, where the 
maximum total weight change at a given node equals (1 - /) € [0, 1] for all three rules.
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  Product Rule — Catastrophic Forgetting. With distributed F, activity and a product rule, 

all weights w, converge to /; and the maximum total weight change is M(1 - /;) € [0,N]. The full 

range of all weight values is thus spanned upon presentation of the very first input. In particular, 

all weights w, (j = 1, .... N) to the 7 F, node decay to 0 if J, = 0. Because weight values can 

only decrease during learning, these weights would remain equal to zero for all time. Moreover, 
the top-down prime hypothesis (Eq. (4)) implies that F, activity x, would then always be zero for 

any future input I and any F, code y. Thus, the fact that a given component was zero on Just 

one input interval would render that component useless for all future input presentations, unable 

to be registered in LTM or even in STM. Similarly, each J, = /;” value of the first input would 
set an upper bound on all future x, values, because 

N 

XS 9, = DO yw, 
j=l 

(1) ~ (1) ©) sy = 
j=l 

for any F, code y. If a sequence of inputs I‘, I, ... were to activate the fully distributed code 
(Eq. (34)), each weight w,, would converge toward the minimum of [{, (©, ..... Within a few 
input presentations, all weights w, would in, all likelihood, decay toward zero. This problem 

occurs for any distributed code y. In this sense, the product rule leads to catastrophic forgetting. 

Capacity rule — Even-More-Catastrophic Forgetting. The situation with the capacity rule 

is even worse (Fig. 15.4b). When the F, code is fully distributed, all weights w; decay to 

4 e [0, ~) unless J, = 1; and the maximum total weight change at the / node is N(1 - J). 

Thus, unless Tis a binary vector, the entire dynamic range of weight values is nearly exhausted 

upon the first input presentation. 

Threshold Rule — Stable Coding. It is the adaptive threshold rule alone that limits the 

total weight change to (1 - /,) © [0, 1] for maximally distributed as well as maximally 

compressed codes y. In fact, if y is any F, code that becomes active when all w,, are initially 

equal to 1, then 

  

wi 1 - y,U - I) (53) 

as in Eq. (49). Equivalently, 

Gry - 4) (54) 

by Eq. (26). Thus the total weight/threshold change at each F, node ¢ is bounded by 1 — J; for 

any code, provided only that y is normalized. An F, code y would typically be highly 

distributed, with all y, close to 1/N, when a system has no strong evidence to choose one category 

J over another. In this case, the change of each threshold +, is automatically limited to the
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narrow interval [0, y,], reserving most of the dynamic range for subsequent encoding. Only when 
evidence strongly supports selection of the F, category node J over all others, with y, therefore 
close to 1, would weights be allowed to vary across most of their dynamic range. In particular, 
it is only when y, is close to 1 that a weight w, is able to drop, irreversibly, toward 0, if I, is 
small. Even with fast learning, other weights w, to the /" node then remain large, even if all 
y; > 0. This is because, by Eqs. (14) and (25), weight changes cease altogether when 

(a) 1S, = fly) 

Capacity 

  
  

  

      

    

  

  

      

    
  

y; 

W., (co 

(b) ; | w., (0) = 1 
{eee Wace eeceecesees 

1- ~ threshold 

J capacity ¥ 
N A ~ 

0 { | 

Fig. 15.4. (a) A synaptic transmission parallelogram. S,, is the transmitted siznal from the j” F, node to the 
‘ F, node. By the product rule, $= ¥ 4, By the capacity rule, S, = y, a w,. By the threshold rule, Sj, = 
[y,- (lh - w)P = Ly, - ti]? The three rules agree when y is a binary code. (b) Asymptotic weight values 
for a fully distributed code, where y, = 1/N. As a function of /,, the dynamic range of w,,(%) depends critical- 
ly upon the choice of synaptic transmission rule. During learning, weights decrease, from an initial value of 
w.(0) = 1, except when /, = 1.
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ys 1l-w, =, 55) 
J J J 

The adaptive threshold t,, thereby replaces strong F, competition as the guardian, or stabilizer, 

of previously learned codes. 

9. CONFIDENCE-PLASTICITY TRADEOFF 

Figure 15.5 illustrates why the product rule and the capacity rule cause catastrophic 
forgetting and how the threshold rule solves this problem. During atrophy-due-to-disuse learning, 
if the i" F, target node is disused (o, > x,), then the weight w,, will decay in any path that sends 
a signal to the 7" node (S;, > 0) (Fig. 15.5a). When F, makes a choice, each of the three synaptic 

transmission rules allows weight change in only one path to each target node. However, if y; is 
even slightly positive, both the product rule (Fig. 15.5b) and the capacity rule (Fig. 15.5c) allow 

weights w., to decay without limit, unless learning rates are very slow. In contrast, the threshold 

rule (Fig. 15.5d) implies that, even if the J" F, node is active, the signal S,, is still zero if the 

path threshold is large (t,, = y,); or, equivalently, if the path weight is small (w, < 1 - y,). Only 
the positive signals S,, sum to o, and only these signals can atrophy due to disuse. Threshold 1,; 

remains small, and therefore plastic, if y, is always small when o, > x;. If y, is large, t,, may 

increase toward 1. Once this occurs, however, S, = O for all F, codes y except those that 

compress most activity at the J" node. Thus in a recognition system that allows an F, node to 

become highly active only when it is highly confident of its choice, the threshold rule 

automatically links confidence to stability. Conversely, when category selection is uncertain, 
distributed codes retain plasticity. 

10. DISTRIBUTED OUTSTAR LEARNING 

Computational analysis of distributed spatial pattern learning leads to selection of a 

synaptic transmission rule with an adaptive threshold. In terms of the threshold 1; in the path 

from the j" F, node to the i F, node, a stable learning law for distributed codes is defined as 
the 

a _ at, 
Distributed outstar: a = $,(0;- x,) (56) 

where Sj; is the thresholded path signal [y, - 1,]* transmitted from the j" F, node to the i" F, node 
and o, is the sum 

N N 

o,= VS, = by - ty)”: (57) 
j=! j=l 

Initially, 

t, (0) = 0. (58)
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(a) (b) 
  

       

  

      

  

  

  

4 product rule 
atrophy-due-to-disuse 14? vacseascavccvusauanvarcesavauuuuueees 

learning Si = Yi Wi 3 
d N 

—w.=-S. (o,- x.) 
dt ! ji I i 

N 8 

0; = > Si > Xx 
3 

y= I SW. 
fi 

w.. (0) = | : 

I 0 @ | > 
1 yz 

yy yj 

(C) (d) 
Capacity rule . A threshold rule 

=ly (1. + 
Si Ly; (1-w:)] 

  
  

    
Si = ¥) AW;    
      
    

  

Fig. 15.5. (a) Atrophy-due-to-disuse Icarning causes a weight w,, lo decay ata rate proportional to (i) the 

signal from the j” F, node to the i” F, node and (ii) the degree of disuse, which equals the difference between 

total F, —> F, signal to the /" node and activity of that node. (b) When the J" F, node is active, the product 
rule implies that the signal S, to the (" F, node is positive. All weights w,, therefore decay when o, > x,, even 

if those weights are already small, causing catastrophic forgetting. (c) The capacity rule leads to catastrophic 

forgetting for the same reason as the product rule. (d) The threshold rule buffers learned codes against 

catastrophic forgetting by allowing only paths with sufficiently large weights (small thresholds) to contribute 

to the recognition code and hence to be subject to change during learning. 

In a system such as ART 1 or fuzzy ART, the total top-down signal primes F,. That is, o, is 

always greater than or equal to x,. In the example computed in Section 12, x, = J, a o, (see Eq. 

(9)), so this hypothesis is satisfied. When o, 2 x, the distributed outstar allows thresholds T, to 
grow but never shrink. The principle of atrophy due to disuse implies that a threshold J; Is
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unable to change at all unless (a) the path signal y, exceeds the previously learned value of Tis 
and (b) the total top-down signal o; to the /" node exceeds that node's activity x, In particular, 
if t;, grows large when the node j represents part of a compressed F, code, then +, cannot be 

changed at all when node j is later part of a more distributed code, because threshold changes 

are disabled if y, s 1; (Fig. 15.5d). 

11. DISTRIBUTED OUTSTAR SOLUTION 

The form of the distributed outstar system (Eqs. (56)-(58)) is so simple that the equations 

can be solved in closed form. The formulas below give an explicit solution for an arbitrary input 
sequence with either slow or fast learning. Section 12 illustrates the geometry of this solution. 

Assume that an input I activates a distributed outstar field F, at some time ¢ = f, and that I is 

held fixed for some ensuing interval. If o; s x, at ¢ =), then t,, will remain constant during that 

interval, for all j = 1, .... N. Similarly, 1, will remain constant if y, < G, at £ = &. Consider now 

a fixed F, index z such that a> x, at f= 0,. Let 

P= {: y(t) > Tilo) }- (59) 

Forj © ®, 

‘i Ti = OF Blo y-*) ©) 

until y,; and x; change. Geometrically, by Eq. (60), the projected vector of 1 values with j € ®, 

follows a straight line toward the corresponding projected vector of y; values. If all such +, were 

to approach y, then o, would converge to 0, by Eq. (57). Progress halts, however, as the 1%, 

vector approaches the set of points where o; = x, by Eq. (60). Explicitly, for ¢ 2 ¢9, with y, and 

x, constant 

[o (ft) ~ x 

tlt) = t,,(t) + a(t) 3.) Ly, ~ T(t) T° (61) 

where a(t) is an exponential that goes from 0 to 1 as ¢ goes from 4, to %. 

| By Eq. (61), (4) remains constant if ©, (4) s x; or if y, s T(t). If oto) > x; and if 
J ©, t,t) moves from tt) toward 

(9 (%) — Xx,) 

THE) = yo) * (y; ~ T(t) (62) 

as ¢ goes from {, to ~. In particular
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0 ,(~) = os (y; - yi 6d) 

JED, 

(9 ,(t) - ,) 
= DE (y- tyilty)) - Y 6, - tilt) 

jed, Oi(%) fed, (63) 
(t.) - xX. = 9,(h) - ee oi) 

is"0 
= x. 

For the unbiased case where ¢, = 0, so all T(O) = 0, 

S(O) = yj - TO) = y, (64) 

and 

o(0) =X, $,(0) = Sy, = 1. (65) 

Thus 

t..(t) = 1,.(0) + «(1 OA t,,(O)]* ji ji a (0) pos . (66) 
= a(t)(1-x,)y, 

and 

SQ > yx, (68) 

as {> x. By Eq. (68), when the system begins with no initial bias, the signal S;, from the J" F, 

node to the :" F, node begins as y, and converges toward the Hebbian pre- and post-synaptic 
correlation term y.x,. 

12. DISTRIBUTED OUTSTAR DYNAMICS 

The dynamics of distributed outstar learning are now illustrated by means of a 

low-dimensional example. Consider a coding network with just two F, nodes (Fig. 15.6(a)). 

Two top-down paths, with thresholds t,; and t,,, converge on each F, node. Assume that x, = 
I; A o, as in Eq. (9), and fix an F, code y = (y,, ys), with
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Osy,sy,sl. (69) 

(a) (D ) 

    

            
      

Fig. 15.6. (a) A distributed outstar whose coding field F, has two nodes. For each code y, y, + y) = 1 and 

x, =f, a 6, When thresholds start out small cnough, t,, and/or t,, increases toward {(t,, 1): 0, = L}. 

(b) Threshold changes are greatest for small /,. (¢) When J, > y,, the J" node cannot dominate learning. Here, 
I, > y2, SO T,, can change only when 1,; also changes. (d) When /, is large, only small thresholds can change 
at all.
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By the F, normalization hypothesis (Eq. (20)), y, + y, = 1. By Eqs. (10), (11), (27), and (56), 
forj = 1,2 

d + + 

a wi = [y,- t 4] [o,-],] (70) 

where, by Eq. (57), 

a= b.- ty’ + D2 - i)’. (71) 

Figure 15.6(b-d) shows the two-dimensional phase plane dynamics of the threshold vector 

(,, T>,) for a fixed input J; In each plot, trajectories that begin in the set of points where o, > 

I, approach the set where o, = J, Where 1,(4,) < y, and 5,(l9) < ys, the point (1,(0, 1,(0) 

moves along a Straight line from (t,,(t)), ,(4,)) toward (y,, y,), Slowing down asymptotically as 

0; = [y, ~ t,, (0) + Ly, ~ tT, (0) 72 
1 -(4,,(t)+1,,(t)) > 1 (72) 

Only if /; = O does (1,;, t3,) approach (y,, y,). Larger thresholds +, which make o, s I,, are 

unchanged during learning. Small /, values allow the greatest threshold changes (Fig. 15.6b). 

If I, = 0, 

Ti SY; (73) 

as O, decreases to 0. Both thresholds grow if both are initially small. However, if one threshold 

is so large as to prevent F, — F, signal transmission in the corresponding path, the other F, node 

"takes over" the code. For example, if t,,(¢,) 2 y, there is no signal from the F, node J = 2 to 

the i" F, node, hence no threshold change in that path. If, then, t,(t.) < y, — J, 1, increases 
until 

G=Y,- > x = Fi. (74) 

Larger /, values permit threshold changes only for smaller initial threshold values. In Fig. 

15.6c, t,, can change only if t,, changes as well, when both are initially small. In contrast, 

because y, 1s greater than /., t,, may increase, by itself, toward y, - J. Finally, for J, close to 1 
(Fig. 15.6d), adaptive changes can occur only if both t,, and t,; are initially small, as they are 
before any learning has taken place. 

13. THE UNIT OF MEMORY 

The distributed outstar network derives from a computational analysis of stable pattern 

learning by distributed codes. In the distributed outstar, the adaptive threshold rule of synaptic
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transmission solves a catastrophic forgetting problem caused by other rules. Because each formal 

transmission rule corresponds to a physical theory of synaptic transmission, computational 

analysis implies physiological prediction. Each transmission rule assumes a physical memory 

unit: a multiplicative weight (Fig. 15.7a), a fuzzy capacity or sieve (Fig. 15.7b), or a subtractive 

threshold (Fig. 15.7c). Experiments that probe distributed coding in a living organism may be 
able to test for the three types of memory unit. Similarly, distributed outstar computations imply 
distinct physical realizations of optical and electronic neural networks. 

(a) multiplicative weight 

(b} 

  
(C) subtractive threshold 

  

Fig. 15.7. (a) The product rule implics a physical substrate of memory that is a multiplicative weight 

(McCulloch & Pitts, 1943/1988). (b) The capacity rule implics a memory unit that is a fuzzy sieve (Zadeh, 

1965). (c) The distributed outstar implics a memory unit that is a subtractive threshold. 
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The chapter by Hervé Abdi, Dominique Valentin, and Alice O'Toole, A Generalized 

Autoassociator Model for Face Processing and Sex Categorization: From Principal 
Components to Multivariate Analysis, deals with a generalization of the autoassoctator model 
due to James Anderson and Its colleagues. The generalization Abdi et al. perform is essentially 
one of selective attention, that ts, choosing which features to emphasize in a_ particular 

classification problem — in this case, classifying faces (represented by visual pixel patterns) as 

male or female. Thus the ultimate problem can be posed mathematically as a combination of two 

optimization problems. One ts the optimal classification problem for the autoassociator itself, 
which is a subcase of a general problem discussed in Golden's chapter. The other is the optimal 
chotce of coefficients, corresponding to features, 1n the autoassociation matrix. The problem of 

bias between features is dealt with by other chapters in this book, notably those of Leven and of 
Ogmen and Prakash. 

Selective attention is used by Abdi et al. to determine which features are most distinctive 
in deciding the right categories for faces. The criterion they employ is that those features 

occuring least frequently are attended to the most. The rationale is that these are the most 
distinctive, and therefore decisive, features. The result of feature selection is to improve not the
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autoassoctator’s accuracy but its speed of convergence. This is one of many possible ways to use 

selective attention in neural network models. In the chapters of Ogmen and Prakash, and of 

Levine, decistons on which features or attributes to emphasize are made on the basis of 

exploration mediated by outside reinforcement. In the work on consumer preference described 
in Leven’s chapter, decisions on which attributes to emphasize are heavily influenced by the mood 

of the decision maker. The dynamics of selective attention within a feature module, however, 
might well be similar across all these cases, the differences lying in how this attention ts 
influenced by connections from other modules of the network. 

ABSTRACT 

In this chapter we propose a generalized version of the classical linear autoassociator that 

can be shown to implement a generalized least-squares approximation under linear constraints. 

The standard linear autoassociator is known to implement principal component analysis, whereas 

the generalized model implements the general linear model (e.g., canonical correlation). In 

practical terms, this generalization allows for the imposition of a priori constraints that enable 

differential weighting of both individual units of the input code and individual stimuli. As an 
illustration of the utility of the generalized model, we present simulations comparing the accuracy 
and learning speed of the standard and generalized versions of the autoassociator for the problem 
of categorizing faces by sex. We show that while the two models are equally accurate, the 

generalized model learns the task considerably faster than does the standard model. 

1. INTRODUCTION 

Recent years have witnessed a strong resurgence of interest in the field of neural 
networks. Some of the earliest models characterizing this resurgence were simple linear 
associative memory models (Anderson, Silverstein, Ritz, & Jones, 1977; Kohonen, 1977). 

Associative memories are capable of learning associations between input-output pairs such that 

the memory produces the appropriate output in response to a learned or "associated" input. The 

inner workings of these associative models and other related "neural" network models are 

reminiscent of the computational character of the brain. Specifically, the computations required 
to implement the storage and retrieval of information in the network can be carried out in parallel 
and the representation of individual learned associations is not localized in the memory, but 

rather, is "distributed" throughout the entire network. 

The purpose of the present chapter is to propose a generalization of a particular case of 
a linear associator model known as an autoassociator. The autoassociator can act as a content- 

addressable memory in the sense that it learns to associate inputs to themselves. As such, the 

model can operate also as a powerful pattern completion device, capable of reconstructing learned 

input stimuli with memory keys that have been degraded either by adding noise or by ablating 

parts of the code. Kohonen (1977), for example, showed that an autoassociative memory can be 
used to store images of human faces and reconstruct the original faces when features have been 
omitted or degraded.
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When a linear autoassoctative memory is viewed as a "neural network," the values in the 

weight matrix correspond to the connection strengths between the cells or units of the memory. 

Learning, in this framework, amounts to finding a set of connections between input units that 

minimizes the error in reconstructing the input stimuli. In the "standard" or "classical" 

autoassociator, all the units composing the memory are equivalent and independent, and all the 

stimuli to be stored in the memory are of equal importance. Although this kind of model is 

capable of solving many pattern recognition problems, other problems require additional 

constraints. Specifically, many real pattern recognition problems operate under well-established 

a priori constraints that can function either at the level of differentiating parts of the code and/or 
at the level of differentiating individual stimuli as a function of their "importance" in building 

the model representation. 

One example of the way in which different parts of a code can be differentially important 

for solving a problem can be seen in the representational constraints that are implemented in 

many biological vision systems to enhance luminance contrast. Such constraints are required in 

order to make optimal use of the strongly limited bandwidth of the optic nerve, which transmits 
information from the retina to the cortex. The neural scheme operating in these visual systems 
capitalizes on the fact that individual parts of the retinal code are not equally informative. For 

example, areas of the retina that contain information about luminance contrast are more important 

than areas of the retina that are uniformly illuminated. The generalization of the autoassociator 

that we propose allows for a mechanism by which individual unity of the memory can be 

assigned differential importance. 

In addition to implementing representational constraints, it can be useful to implement a 
mechanism that allows for a differential weighting of individual stimuli. For example, to model 
human memory, it is often necessary to take into account factors that differentiate the importance 

of individual stimuli in building a representation of the problem. In the learning of lists, 

temporal interference between successive items is One such factor. This phenomenon can be 

easily simulated by implementing a differential weighting of the stimuli as a function of their 

position on the list. For example, in the case of retroactive interference, a more recent stimulus 

interferes with the memory of previously learned stimuli. More precisely, the importance of any 

given stimulus is inversely proportional to its position in the learning sequence. In addition to 
the differential weighting of parts of the code, the generalized autoassociator allows for the 

implementation of a priori biases in the stimulus set. The differential importance (and 

nonindependence) of both the units and the stimuli are defined as a set of constraints expressed 

via positive definite matrices operating on the autoassociator. 

The classical linear autoassociator has been often analyzed in terms of the eigendecompo- 

sition or singular value decomposition of a matrix. Specifically, it has been shown that storing 
stimuli in an autoassociative memory amounts to creating the cross-product matrix of the stimuli 

and computing its eigendecomposition (Abdi, 1988, 1993, 1994b; Anderson et al., 1977; 

Kohonen, 1977). This is equivalent to computing the principal component analysis of the set of 

features used to describe the stimuli. 

One advantage of this type of analysis is that it makes it clear that classical autoassocia- 

tors implement least-squares approximation (or Wiener filtering; cf. Abdi, 1994a). In terms of 

optimization problems, the interest of the generalized autoassociator described in this chapter is
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that it implements a generalized least-squares approximation or a least-squares approximation 

under (linear) constraints. This technique is used in various settings. In multivariate statistical 

analysis, for example, canonical analysis (and hence the complete set of generalized linear 

models) can be easily derived within this framework (e.g., Mardia, Kent, & Bibby, 1979; 

Greenacre, 1984). As a consequence, neural networks can be easily shown to be equivalent to 
traditional statistical and optimization techniques. 

This chapter is organized as follows. First, the basic features of the classical autoassoci- 

ative model are briefly presented along with their relationship to the linear model of multivariate 

analysis. Then a generalization of this model is described and analyzed in terms of statistical and 

Optimization problems. Specifically, we demonstrate that a generalized linear autoassociator 

implements the general linear model of multivariate statistics. Finally, we show that a linear 

generalized autoassociator implementing correspondence analysis (i.e., a specific case of the 

general linear model) can be used successfully to categorize a set of faces according to their sex. 

We show, in this specific application, that the generalized version of the autoassociator can learn 

the task as accurately as the standard version, but does so more quickly. 

2. CLASSICAL MODEL 

Objects to be stored in an autoassociative memory are represented by J x 1 column 
vectors x, whose J components code the values of the J features used to describe the objects. 
In a neural network implementation, these components represent the activation of the input units 

(i.e., cells). For convenience, the vectors x, are assumed to be normalized so that x,"x, = 1 
(with x," denoting the transpose of x,). The set of K stimuli to be stored in the memory is 

represented by an J x K matrix X in which the k" column is equal to x,. The autoassociative 

memory (or weight matrix) is represented by an / x / matrix W. The values in the weight matrix 
correspond to the connection strengths between the units of the memory. 

The stimuli are stored in the memory by changing the strength of the connections between 

units. This can be done using a simple Hebbian learning rule: 

K 

W = >> x,x,7 = XX7. (1) 
k=] 

Recall of a given stimulus x, is given by %, = Wx,, where X, represents the response of the 

memory. The quality of the response of the system can be measured by computing the cosine 

of the angle between x, and &,: 

a x, 
cos(x,,X,) = (2) 

Ixy NX, I
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where |x,|| is the Euclidean norm of the vector x, (i-e., | x, [| = XX, )- A cosine of 1 indicates 

a perfect reconstruction of the stimulus. 
When the stimulus set is composed of nonorthogonal stimuli, the associator does not 

perfectly reconstruct the stimuli that are stored. On the other hand, some new patterns are 

perfectly reconstructed, creating, in a way, the equivalent of a "false alarm" or "false 
recognition." These patterns are defined by the equation Wu, = A,u, with u,"u,, where u, denotes 

the r” eigenvector of W, and 4X, the eigenvalue associated with that eigenvector. 

From Eq. (1), it can be seen that the matrix W is equivalent to a cross-product matrix, 

and hence is positive semidefinite (i.e., all its eigenvalues are positive or zero). Consequently, 
W can be reconstructed as a weighted sum of its eigenvectors: 

R 

W = SoA .uuy = UAU? with U'U = 1 (3) 
r=] 

where I stands for the identity matrix, A represents the diagonal matrix of eigenvalues and R is 
the rank of the matrix W. The eigenvectors in U are usually ordered according to their 
eigenvalues. This formulation makes clear the close relationship between the classical linear 

autoassociator and some techniques used in multivariate statistical analysis. Specifically, using 

an autoassociative memory to store and recall a set of objects is equivalent to performing a 

principal component analysis on the cross-product matrix of the feature set describing these 

objects (Anderson et al., 1977). 

Associated with the technique of principal component analysis, is the notion of a distance. 
One way of looking at the eigendecomposition of the matrix W is to note that the Euclidean 
distance between stimuli, as well as the Euclidean distance between any stimulus and the average 

stimulus (i.e., the barycenter, or centroid, of the set of stimuli), is now decomposed orthogonally 

along the eigenvectors. Specifically, the Euclidean distance between stimuli & and k’ is computed 

as: 

d7(x,,%,/) = (x, -%) (4, - Xp). (4) 

The distance can be expressed also, through the eigendecomposition as 

d?(x, ,x,/) = d’(g,,8,/) = (g,- 8) "(8,- 8) (5) 

where g, (respectively g,.) is the vector of the projections of stimulus & (respectively k’) onto the 
eigenvectors. This suggests the use of principal component analysis to display the stimuli as they 
are "perceived" by the autoassociative memory. 

A final point worth noting is that the eigenvectors and eigenvalues of the weight matrix 

W can be obtained directly using the singular value decomposition of the original matrix of 

stimuli X. Formally,
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X = UAV’ with V’V = UU =1 (6) 

where U represents the matrix of eigenvectors of XX’, V represents the matrix of eigenvectors 
of X"X, and A is the matrix of singular values that are equal to the square root of the eigenvalues 

of XX’ or X'X (they are the same). The projections, G, of the K stimuli of the training set on 
the R eigenvectors of the weight matrix can be found as 

G = X’U= VA. (7) 

Within the framework of principal component analysis, G is the matrix of the projections of the 

stimuli on the principal components. From Eq. (7), it is easy to derive that the variance of the 

projections on a given eigenvector is equal to the eigenvalue associated with this eigenvector, that 

is, G'G = AV’'VA= A. Likewise, the projections of a set of K’ new stimuli (i.e., not learned by 
the memory), X,.,, on the eigenvectors of W can be computed as G,.. = X,..'U. Within the 
framework of principal component analysis, G,,,, contains the projections of the supplementary 

elements (i.e., stimuli) on the principal components. 

In order to improve the storage capacity of an autoassociative memory, most applications 

use the Widrow-Hoff learning rule. The Widrow-Hoff learning rule corrects the difference 

between the response of the system and the expected response by changing iteratively the weights 
in matrix W as follows: 

Wie. = Wi, + y(X - Wi X)X° (8) 

where y is a constant learning rate. The Widrow-Hoff learning rule can also be analyzed in 

terms of eigenvectors and eigenvalues (Abdi, 1994a). Hence, W at time ¢ can be expressed as 

W,, = Ud,U' with &,, = [I - (1 - nA)']: (9) 

With a learning constant y smaller than 2danav | (Amay Deing the largest eigenvalue), this procedure 
converges toward W,,, = UU’, which indicates that using the Widrow-Hoff error correction 

learning rule amounts to equalizing all the eigenvalues of W (i.e., to sphericizing the weight 
matrix). 

3. GENERALIZED AUTOASSOCIATOR 

3.1. Notation and Definition 

First, the differential importance and nonindependence of both the stimuli and the cells 
of the memory allowed by the generalization are formalized as two sets of weights that 
correspond to the importance of individual stimuli and individual units (i.e., features describing 
the stimuli or equivalently memory cells), respectively. Specifically, the set of constraints 
imposed on the units is represented by a positive-definite matrix of order /x/ denoted B. For 
example, if we want the importance of a unit to be inversely proportional to its use, B will be
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defined as the diagonal matrix of the inverse column margin of matrix X (i-e., b,; = x,,7' with x,, 
representing the total of the 7" row of X, or, equivalently, x,, = 2, x,,). The set of constraints 

imposed on the stimuli is represented by a positive-definite matrix of order KxK denoted M. For 

example, if we want to give a differential importance to each stimulus according to the value of 

its general activation, M will be detined as the diagonal matrix of the row margin of matrix X 

(i.e., m,, = X,, with x,, representing the total of the k" column of X, or, equivalently, x,, = 

2, X;,). Note that choices other than a diagonal matrix are possible for B and M. 
Second, in order to analyze the properties of the generalized autoassociator, we need to 

generalize some basic notions of Euclidean geometry. The generalized norm of vector x, denoted 

B-norm, is given by 

Ix. = /X_ Bx,. (10) 

The biased orthogonality of the pair of vectors x, and x,, denoted B-orthogonality, is given by: 

X,ipX - x, Bx, = 0. (11) 

The generalized cosine, denoted B-cosine, is given by: 

T 

cos, = ———————__. (12) 
Ix, lp IX,/ lls 

Finally, for convenience, the stimuli, x, are normalized in the metric defined by B (ice., 

x, Bx, = 1). 

3.2. Model Description 

As in the classical model, the stimuli are stored in the memory by modifying the intensity 
of the connections between units, with the exception that during learning a differential importance 

is given to each stimulus. Formally, W = XMX'. The effect of the constraints on the units (i.e., 
the bias matrix B) can be interpreted as a filtering or recoding scheme for the original stimuli 

prior to storage in the memory. This effect can be modeled during the recall phase as a 
premultiplication of the stimuli by the matrix B before recall by multiplication through W. 

Specifically, recall of a given stimulus x, is obtained as 

x, = WBx,. (13) 

If the stimuli stored in the memory do not form a B-orthogonal set, recall will not be perfect. 
The memory will add some noise (or cross-talk) to the original stimulus:
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a T 

k 

T T 

kel 
T 

=m,X,X, Bx, + m,cos,(x,x,)x, 

The quality of reconstruction of the stimulus can be evaluated using the generalized cosine 

between x, and x, (cf. Eq. (12)). 

If every pair of stimuli in the learning set is B-orthogonal, then the output of the memory 
will be proportional to the original stimulus: 

R= my /X, + )) M.COsy (x, x) x, 
lek 

= MY %y 

(15) 
with y, being a scalar equal to x,'Bx, When the stimuli stored in the memory are not 
B-orthogonal, some patterns will be perfectly reconstructed by the memory: 

Wi, = 1,0, with a,"Ba, = I. (16) 

The vectors @, are the "generalized eigenvectors" of W (these generalized eigenvectors can be 
computed using a standard eigendecomposition routine, cf. Wilkinson, 1965, and Appendix). 
Because the eigenvectors are B-orthogonal, and the eigenvalues are non-negative, the matrix W 
can be reconstructed as 

BU =I. (17) 

Similarly, the Widrow-Hoff error correction learning rule (cf. Eq. (9)) can be generalized 
and W at time ¢ + 1 can be expressed as 

WwW prety = Wyy t 1X ~ Wy BX)XT 
18 

U[I-(1- nA)*!]07 8) 

Abdi, Valentine, Edelman, and O'Toole (in press) showed that with a learning constant 1y smaller 

than 2A". this procedure converges toward Wie} = UU* where U are the generalized 
eigenvectors of W.
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The generalized eigenvectors and eigenvalues of the weight matrix W can be obtained 
directly using a generalization of the singular value decomposition of the matrix of stimuli X. 
Formally, 

X = UAV’ with V'MV = U'BU =1 (19) 

where U represents the matrix of generalized eigenvectors of XX’, V represents the matrix of 

generalized eigenvectors of X'X, and A is the matrix of generalized singular values. The 

projections, G, of the K stimuli of the training set on the R eigenvectors of the weight matrix 
can be found as 

G = X'™BU = VA. (20) 

From Eq. (20), it is easy to derive that the generalized variance of the projections on one 
eigenvector is equal to the eigenvalue associated with this eigenvector: 

G'MG = AV'MVA =A 

Likewise, the projections of a set of K’ new stimuli (i.e., the test set), X, 
of W can be computed as: 

ew? on the eigenvectors 

G =X" BU. (21) new new 

In terms of distances, the generalized autoassociator represents the stimuli using their generalized 
Euclidean distance. The generalized Euclidean distance between stimuli & and k’ is computed 

as 

da(x,.X,/) = (x, - x)" BOX, - xp). (22) 

The distance between stimuli k and k’ can be expressed also, through the eigendecomposition of 
the generalized weight matrix as 

da(x,.X%,/) = dy(B,,8,) = (8,- 8)" @,-&) (23) 

where g, (respectively %,,) is the vector of the B-projections of stimulus k (respectively k’) onto 

the generalized eigenvectors. 

Generalized Euclidean distances are widely used in a variety of applications. For 

example, Nosofsky (1992, p. 365 ff, Eqs. (1) and (3); see also Ashby, 1992), represents stimuli 

in his generalized context model (GCM) with a parameter standing for the strength of a stimulus, 

and with features weighted by an attentional parameter. Adapting his notation to the present 
chapter, Nosofsky’s model can be seen as equivalent to representing the strength of a stimulus
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by the diagonal terms m,, of M (M being a diagonal matrix in this case), and the attentional 

weights by the diagonal terms b,; of B (B being diagonal also). Categorization can be then 

considered to be a function of the generalized distance to the centers of the categories. Another 

relatively well-known example of a generalized Euclidean distance is the "Mahalanobis" distance 

used in conjunction with discriminant analysis. In this case, the matrix B is the inverse of the 
between-features (or dimensions) correlation matrix. 

4. CATEGORIZING FACES BY SEX 

In recent years, a number of connectionist models have been applied to the problems of 

face recognition and categorization (for a review see Valentin, Abdi, O’ Toole, & Cottrell, 1994). 

These models represent faces explicitly (Sirovich & Kirby, 1987; Turk & Pentland, 1991) or via 

a neural network architecture (Cottrell & Fleming, 1990; O’Toole & Abdi, 1989) in terms of the 

eigendecomposition of a matrix storing pixel-based descriptions of faces. The eigenvectors, in 

this framework, can be thought of as a set of features from which the faces are built. Likewise, 

the projections of the faces onto the eigenvectors can be interpreted as an indication of the extent 

to which each eigenvector characterizes individual faces. This type of approach suggests that 

faces can be efficiently represented using tools derived from multivariate statistical analysis. 

Specifically, previous work showed that complex perceptual discrimination such as the 
categorization of faces along visually derived dimensions (e.g., sex, race, age, etc.) can be 

achieved by a simple linear autoassociator (O’Toole, Abdi, Deffenbacher, & Bartlett, 1991; 

O’Toole, Abdi, Deffenbacher, & Valentin, 1993). Among these perceptual categorization 

problems, sex classification is one of the most biologically important and probably one of the 

easiest and fastest categorizations made by human beings. For example, Bruce, Ellis, Gibling, 

and Young (1987) reported an average sex categorization time of 613 ms for unfamiliar faces and 

620 ms for familiar faces. In a more recent study, Burton, Bruce, and Dench (1993) reported that 
human subjects were able to classify photographs of 179 adults with respect to sex with 96% 

accuracy, even though the hair was concealed by a swimming cap. In this section, a generalized 

linear autoassociator is applied to the problem of categorizing faces according to their sex. To 

evaluate the usefulness of the generalized model, the performance of the generalized autoassoci- 

ator is compared with the performance of a standard autoassociator on the same task. 

In this specific application, the main idea was to have the cells of the memory take on 
differential importance as a function of their use. Specifically, each cell responds as the inverse 
of its use during the learning period. The rationale behind this coding scheme is to make the 

cells more discriminative. So, for example, if a cell is active for all the faces, it does not provide 
any information about a subset of specific faces. On the other hand, a cell that is active 

relatively rarely should be important for the detection of the subset of faces that triggers its 

activity. Formally, this is equivalent to defining B as being an /x/ diagonal matrix with 

b= oe (24)  
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where x, , represents the total of the ¢"" row of the face matrix X and x,, represents the grand total 
of X. 

Because there was no a priori reason to give more importance to some faces than to 

others, the face vectors were normalized (i.e., preprocessed) so that the sum of the pixels 

representing each face was equal to 1 (i.e., 2x,, = 1, and M = I). In addition, to giving an 

identical importance to each stimulus in the learning set, this particular preprocessing has the 

advantage of transforming the matrix X into a "profile" matrix (i.e., each column of X adds up 
to 1). With this specific choice for B and M, the generalized autoassociator implements the 

multivariate statistical analysis known as "correspondence analysis" (Benzécri, 1973; Greenacre, 
1984, Weller & Romney, 1990) or as "dual scaling" (Nishisato, 1994). Strictly speaking, in 

correspondence analysis m,, would be equal to x,,/x,,. However, because x,, = 1, our model 

is a particular case of correspondence analysis (i.e., when all the columns sum to a constant). 

The generalized Euclidean distance associated with this technique is the so-called 

chi-square distance. It is essentially an informational distance. When the sum of squared 
distances of each point to the barycenter or centroid is computed, it produces the usual chi-square 

statistic used to analyze a contingency table in elementary statistics. Specifically, 

x? = x, yom, ,4°(%,,¢) = x.y, m, ,(X,- ¢)"B(x,-c) (25) 
k k 

where ¢c gives the coordinates of the centroid or average face (ct. Benzécri, 1973; or Greenacre, 
1984, for a proof). 

To compare the classical and generalized autoassociators, two series of simulations were 

performed. For each simulation, faces were used as input for both a classical and a generalized 

autoassociator. The two autoassociators were then used to predict the sex of the faces via a 

perceptron approach. The first series of simulations evaluates the accuracy of the sex 

classification achieved by both models when full Widrow-Hoff learning is used. Previous work 
showed that the ability of the linear autoassociator to predict the sex of faces varied as a function 
of the number of faces in the training set and the number of eigenvectors used to reconstruct the 

faces (Abdi, Valentin, Edelman, & O’Toole, 1995; Valentin, Abdi, & O'Toole, 1996). Thus, the 

comparison between classical and generalized models was carried out using training sets of 

different sizes, and faces reconstructed with different numbers of eigenvectors to cover the 

performance range associated with these variations. The second series of simulations evaluates 
the number of iterations (i.e., speed of learning) necessary to reconstruct the faces in a way that 
allows a perfect sex categorization for faces in the training sets. 

In the next two subsections, we show that although there is no difference in the accuracy 

with which faces can be categorized in the standard and generalized autoassociative model (see 

Simulation 1), there is a vast difference in the speed with which the learning takes place in the 

two models (see Simulation 2). The generalized model learns to classify faces by sex much more 

quickly than does the standard autoassociator.
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4.1. Accuracy of Sex Classification 

Stumult: A set of 160 full-face pictures of young Caucasian adults, 80 females, and 80 
males, was used in the following simulation. Each face was first digitized from slide using 16 

gray levels to give a 151x225 = 33975 pixel image. The images were roughly aligned along the 

axis of the eyes so that the eyes of all faces were about the same height. None of the pictured 

faces had major distinguishing characteristics such as beards, glasses, or jewelry. To save 

processing time, each face was then compressed to a 46 x 31 = 1426 pixel image and coded as 
a 1426x1 vector x, concatenated from the rows of the face image. The compression was done 
by local averaging using a 5x5 window. This compression technique reduces the number of 

pixels in an image and as a consequence filters out high frequency information. However, this 
is not a problem because we demonstrated earlier that there is enough information in 46 x 31 
face images to classify them accurately according to their sex (Abdi et al., 1995; Valentin et al., 
1996). 

Procedure. Different samples of N (ranging from 2 to 110) faces were randomly selected 

(under the constraint that half of the faces were male and the other half female) from the original 

set of 160 faces and used as input for both a classical and a generalized autoassociator. The 
remaining faces were used to test the ability of the two models to generalize to new faces. The 
estimation of the sex of the faces was done by using a perceptron as a categorization network. 
The perceptron is a very simple neural network, and is equivalent to discriminant analysis (see 

Levine, 1991; Minsky & Papert, 1969). In the specific case of two face categories, the optimal 

classification procedure is equivalent to computing the coordinates of the barycenter (or center 

of gravity) of each class (i.e., sex), and then computing the distance to both barycenters for the 

face to be classified. The face is then classified as belonging to the sex with the closest 
barycenter (see Fig. 16.1). 

Figure 16.1 illustrates the different steps of the categorization algorithm used in the 
following simulation: 

‘Step 1. For each training set, a classical and a generalized autoassociative memory were 

created from the face images using complete Widrow-Hoff learning and decom- 

posed into eigenvectors. The weight matrix W at infinity was computed as 

W cj = UU’ with U’U = I (26) 

for the classical model, and as 

~ 

W,., = UU" with U'BU = I (27) 

for the generalized model (cf. Eq. (9) and Eq. (18)). 

"Step 2. The projections of all faces (learned and new) onto the eigenvectors of Wi.) were 

computed as
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Q) i fe) = X'UA™! = VW for the learned faces (28) 
Q)

 
t=) = X,.UA~! for the new faces (29) 

for the classical model (cf. Eq. (9)), and 

Gre} 
G 

XTUA™' = V for the learned faces (30) 

[=] XA! for the new faces (31) 

for the generalized model (cf. Eq. (27)). Recall that using a Widrow-Hoff learning 

rule amounts to sphericizing the weight matrix. As a consequence, after complete 

Widrow-Hoff learning, the variance of the projections onto each eigenvector is 
equal to 1 and hence Eqs. (7) and (20) reduce to Eqs. (29) and (31). 

    

            

  

Step 1 Step 2 
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Compute the (generalized) Project a face (old or new) on the 
eigendecomposition of the old faces old (generalized) eigenvectors 

Step 3 Step 4 

dp <dy The face is classified 

as female 

  

    hn 

Compute the distance between the face 
and the male and female barycenters 

  

Fig. 16.1. Different steps used to classify the faces according to their sex.
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- Step 3. For each model the coordinate vectors of the average male (m) and female (f) 

faces were computed by taking the mean of the projections of the male and female 

learned faces onto the L first eigenvectors (i.e., the ones with the largest eigenval- 
ues), respectively: 

J J’ 1 1 y 
m = 7 | > 8 and f = 7 8 (32) 

jeimale faces) j'efemale faces) 

where J represents the number of learned male faces, J’ the number of learned 

female faces, g, the vector of the projections of the j"" male face on the first L 

eigenvectors, and g,” the vector of the projections of the j"" female face on the first 

L eigenvectors. 

‘ Step 4. The categorization of a given face x, was determined on the basis of the 

Euclidean distance between its projection X, onto the first L eigenvectors and the 

average faces: 

d(x,,m) = ||X,-m|| and d(X,,f) = |X, - f]. (33) 

Faces closer to the average female face were classified as female, and faces closer 

to the average male face were classified as male. 

The number of faces per training set (N) ranged from 20 to 110, and the eigenvectors used 

to reconstruct the faces (LZ) varied from 2 to N — 2 (where AN is the rank of W). To ensure that 

the model performance was not sample dependent, the categorization procedure was repeated 50 

times for each condition. 

Results. The average proportion of correct sex classification for both models varied as a 

function of the number of faces used to train the models (N = 20, 50, 80, and 110) and as a 

function of the number of eigenvectors used to reconstruct the faces (L = 2, 10, and N - 2). The 

data are summarized in Table 16.1, which shows that: 

1. The performance of the classical autoassociator is similar to that reported in previous work. 

Specifically, the accuracy of categorization increases as a function of both the number of 

eigenvectors used to reconstruct the faces and the number of faces in the training set. The best 

performance (100% correct classification for the old faces and 85% for the new faces) was 
obtained with a training set of 110 faces and 108 eigenvectors. In previous work, using a similar 
categorization algorithm with a classical autoassociator, we found that with a training set of 158 

faces 90% of the new faces were correctly classified as male or female (Abdi et al., 1995).
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2. No substantial difference in performance accuracy can be seen between the two models. 

In summary, the two models appear to be equally accurate on a sex classification task 

independently of the training set size and of the number of eigenvectors used to reconstruct the 

faces. This is not entirely surprising since the performance of the classical model is already 

impressive and probably difficult to improve. Comparable levels of performance were found 

using different models such as backpropagation networks (Cottrell & Metcalfe, 1991; Golomb, 
Lawrence, & Sejnowski, 1991) or HyperBF networks (Brunelli & Poggio, 1992). This general 

high level of sex categorization performance is probably due to the fact that sex discrimination 
is a linear problem. 

  

  

        

  

        

  

        

  

  

Classical Autoassociator Generalized Autoassociator 

# Eigenvectors Number of faces in the training set: 20 

2 16 73 Sl 14 

10 94 77 93 16 

18 I 78 1 16 

# Eigenvectors Number of faces in the training set: SO 

2 76 75 19 78 

10 85 78 87 718 

48 l SO l 19 

# Eigenvectors Number of faces in the training set: 80 

2 78 80 80 79 

10 84 0) 84 80 

78 1 84 1 84 

# Eigenvectors Number of faces in the training set: 110 

2 718 19 SI 19 

10 84 78 84 18 

108 l 85 l 85 

Old New Old New         
Table 16.1. Proportion of Correct Classifications Obtained with a Classical Autoassociator Versus Proportion 

of Correct Sex Classification Obtained with a Generalized Autoassociator as a Function of the Number of 

Eigenvectors Used to Reconstruct the Faces and of the Number of Faces in the Training Sets. For cach 

condition, the performance is averaged across 50 trials. 

4.2. Learning Speed 

The purpose of this second series of simulations was to compare the learning speed of the 

classical and the generalized model. The number of iterations of the Widrow-Hoff learning rule
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used to reconstruct the faces prior to sex classification was used as an indication of the learning 
speed. Specifically, the learning speed was defined as the minimum number of iterations neces- 

sary to achieve a perfect sex classification. Stimuli: The stimuli were the 160 face images used 

in the first simulation. 

Procedure: For both models (classical and generalized), the complete set of faces (80 
males and 80 females) was stored using a Widrow-Hoff learning rule (Eqs. (9) and (18), 
respectively) with different values of ¢. After each iteration, W,, was decomposed into its 
eigenvectors: 

Wiy = U®,,U" for the classical associator 

Wiy = Uo,,U° for the generalized associator. (34) 

The effect of Widrow-Hoff learning is equivalent to projecting the columns of X onto the 

eigenvectors of W followed by an expansion or dilatation of the projections as indicated by the 

diagonal matrix ®,,"". Specifically, the coordinates of the faces at time ¢ were evaluated as 

1 1 
_ T -] 2 _ 2 

Gy = X UA a = Von (35) 

for the classical autoassociator, and as 

i i 
_ Trra-law2 - 2 

ry = X UA Oy = VO, (36) 

for the generalized autoassociator. 

The faces were then categorized according to their sex using Steps 3 and 4 of the 
categorization algorithm described in the previous section. This procedure was iteratively 

repeated until all the faces were perfectly classified. To make sure that the pattern of results we 
obtained was not due to a specific value of the learning constant n, three simulations were carried 

AT and oh, with A,,,. representing the highest 
nmvax? WX? max 

out using different values of n: oh" 

eigenvalue. 

Results: The minimum numbers of iterations necessary to achieve a perfect sex 

classification with both the classical and the generalized model are presented in Table 16.2. 

Table 16.2 shows that for all three learning constants, the generalized autoassociator discriminat- 
ed between male and female faces much faster than the classical one did. Although it took, on 

the average, 57 iterations to obtain perfect sex categorization with the generalized model, an 

average of 1933 iterations was necessary to obtain the same performance with the classical



AUTOASSOCIATOR MODEL FOR FACE PROCESSING 333 

model. Note that, for both models, the male faces were categorized as "male" much faster than 
the female faces were categorized as "female." This bias can be explained by the fact that, for 

the specific set of faces used in these simulations, female faces are more widely scattered around 

their barycenter than are male faces. In other words, when not perfectly reconstructed by the 

memory, some female faces are closer to the male barycenter than to the female barycenter, and 

hence are categorized as "male". Additional iterations are necessary to reconstruct these specific 
faces to a level that enables differentiation from the male faces. 

  

2 FOOT tree eee 
generalized | 

: classical   

  

  3 4 
eigenvalues 

Fig. 16.2. Plot of first five eigenvalues obtained for the classical and the generalized models. Note that the 

difference between the first two cigenvalues is greater for the classical model than for the gencralized model. 

Classical Generalized 

n Males Females Males Females 

(3/2)rnax 500 1200 15 30 
max 1000 1500 20 50 

(1/2)A,. 1500 3100 50 90 

Table 16.2. Minimum Number of Iterations Necessary to Achieve a Perfect Categorization Using 

Widrow-Hoff Learning as a Function of the Type of Model and the Learning Constant. 

Observation of the eigenvalues associated with the eigenvectors of W and W shows that 

the difference between the tirst and the second eigenvalues is much smaller for the generalized 

model than for the classical one (Fig. 16.2). Because, using a Widrow-Hoff learning rule 

amounts to equalizing iteratively the nonzero eigenvalues of the weight matrix (cf. Eqs. (9) and 

(18)) the faster learning rate of the generalized model might be due to this difference in the 
pattern of eigenvalues. In other words, the superiority of the generalized model in this 
application (i.e., with the specific set of constraints used here) might result from the fact that the 

generalized weight matrix, after simple Hebbian learning, is already almost sphericized. To 

check this hypothesis, we carried out a second series of simulations in which the first and the
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second highest eigenvalues were systematically equalized in both models. The results are 

presented in Table 16.3. 
Table 16.3 shows that equalizing the first and second eigenvalues does reduce the 

difference in learning rate observed between the classical and generalized autoassociators. 

However, the generalized autoassociator is still learning faster than the classical one (56 vs. 83 

iterations on the average). This result indicates that part of the superiority of the generalized 

model is indeed due to the difference in the eigenvalue ranges between the two models. 

However, it is not due to this difference alone. 

5. DISCUSSION 

In this chapter we have proposed a generalized version of the classical linear autoassocia- 

tor. This model is of interest from both a theoretical perspective and a practical reason. First, 

the model makes interesting theoretical links between the neural network "learning" perspective 

and the statistical perspective of least-squares approximation. This analysis makes clear that, 

with a proper choice of constraints, generalized autoassociators can implement all of the 

techniques of the general linear model, including canonical correlation, discriminant analysis, and 

correspondence analysis. Second, numerous practical applications require the a priori imposition 
of constraints operating at the level of individual parts of the input code and at the level of 
individual stimuli. 

Classical Generalized 

n Males Females Males Females 

(3/2)drmax 20 50 15 30 
‘max 40) 70 20 50 

(1/2)A,,x 70 130 50 90 

Fable 16.3. Minimum Number of Herations Necessary to Achieve a Perfect Categorization Using 

Widrow-Hoff Learning as a Function of the Type of Model and the Learning Constant, When the First and 

the Second Eigenvalues are Equalized. 

In these simulations, we applied the generalized model to classifying faces by sex. Our 

method for imposing constraints made the generalized model equivalent to correspondence 

analysis, which differentially weights units of the input code as a function of their informational 

value. Although this manipulation did not change the accuracy of the model, it speeded up the 

learning considerably by biasing individual parts of the code to affect the structure of the feature 
space. Examples of this kind of prewiring constraints are common in many cognitive science 
applications. The simulations indicate that these generalized methods can yield valuable learning 

benefits when adequately utilized. The sex classification task presented here is but one example 

of the many possible schemes available for imposing linear constraints on a learning task. The 

many Statistical "variations on a theme" that are commonly encountered in the literature are 

evidence for the ready applicability of other such schemes. The diversity of the neural network 

literature often makes it difficult to find a common statistical thread through the various models
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proposed to simulate human information processing. The generalized model we have proposed 
provides such a thread through the commonly used linear statistical and neural network models. 

ACKNOWLEDGMENT 

Thanks are due to June Chance and Al Goldstein for providing the faces used in the 

simulations and to Betty Edelman for helpful comments on a previous version of this chapter. 

REFERENCES 

Abdi, H. (1988). A generalized approach for connectionist auto-associative memories: 

interpretation, implications and illustration for face processing. In J. Demongeot (Ed.), 

Artificial Intelligence and Cognitive Sciences. Manchester: Manchester University Press. 

Abdi, H. (1993). Précis de connexionisme. In J. F. Le Ny (Ed.), Intelligence Artificielle et 
Intelligence Naturelle. Paris: PUF. 

Abdi, H. (1994a). Les Réseaux de Neurones. Grenoble: Presses Universitaires de Grenoble. 

Abdi, H. (1994b). A neural network primer. Journal of Biological Systems, 2, 247-282. 

Abdi, H., Valentin, D., Edelman, B. G., & O'Toole, A. J. (1995). More about the difference 

between men and women: Evidence from linear neural networks and principal component 
approaches. Perception, 24, 539-562. 

Abdi, H., Valentin, D., Edelman, B. G., & O’Toole, A. J. (in press). A Widrow-Hoff rule for 

the generalization of the linear autoassociator. Journal of Mathematical Psychology. 

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, 

categorical perception, and probability learning: Some applications of a neural model. 

Psychological Review, 84, 413-451. 

Ashby, F. G. (1992). Multidimensional models of categorization. In F. G. Ashby (Ed.), 

Multidimensional Models of Perception and Cognition (pp. 449-483). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Benzécri, J. P., (1973). L’analyse des Données (Vol. 2). Paris: Dunod. 

Bruce, V., Ellis, H., Gibling, F., & Young, A. W. (1987). Parallel processing of the sex and 

familiarity of faces. Canadian Journal of Psychology, 41, 510-520. 

Brunelli, R., & Poggio, T. (1992, January). HyperBF Networks for sex classification. 

Proceedings of the Image Understanding Workshop, DARPA, San Diego. 
Burton, A. M., Bruce, V., & Dench, N. (1993). What's the difference between men and women? 

Evidence from facial measurement. Perception, 22, 153-176. 

Cottrell, G. W., & Fleming, M. K. (1990). Face recognition using unsupervised feature 

extraction. Proceedings of the International Neural Network Conference, Paris, France 

(pp. 322-325). Dordrecht: Kluwer. 

Cottrell, G. W., & Metcalfe, J. (1991). EMPATH: Face, sex and emotion recognition using 

holons. In R. P. Lippmann, J. Moody, & D. S. Touretzky (Eds.), Advances in Neural 
Information Processing Systems 3 (pp. 564-571). San Mateo, CA: Morgan Kaufmann. 

Golomb, B. A., Lawrence, D. T., & Sejnowski, T. J. (1991). Sexnet: A neural network identifies 

sex from human face. In R. P. Lippmann, J. Moody, & D. S. Touretzky (Eds.), Advances



336 ABDI, VALENTIN, O’TOOLE 

in Neural Information Processing Systems 3 (pp. 572-577). San Mateo, CA: Morgan 
Kaufmann. 

Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. London: 
Academic Press. 

Kohonen, T. (1977). Associative Memory: A System Theoretic Approach. Berlin: Sprin- 
ger-Verlag. 

Levine, D. S. (1991). Introduction to Neural and Cognitive Modeling. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. London: Academic 
Press. 

Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. 
Cambridge, MA: MIT Press. 

Nishisato, S. (1994). Dual Scaling: An Introduction to Practical Data Analysis. Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Nosofsky, R. M. (1992). Exemplar-based approach to relating categorization, identification, and 

recognition. In F. G. Ashby (Ed.), Multidimensional Models of Perception and Cognition 

(pp. 363-393). Hillsdale, NJ: Lawrence Erlbaum Associates. 
O'Toole, A. J.. & Abdi, H. (1989). Connectionist approaches to visually based feature 

extraction. In G. Tiberghien (Ed.), Advances in Cognitive Psychology (Vol. 2, pp. 124- 
140). London: Wiley. 

O’Toole, A. J., Abdi, H., Deffenbacher, K. A., & Bartlett, J. C. (1991). Classifying faces by race 

and sex using an autoassociative memory trained for recognition. In K. J. Hammond & 

D. Gentner (Eds.), Proceedings of the Thirteenth Annual Conference of the Cognitive 

Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates. 
O’Toole, A. J., Abdi. H., Deffenbacher, K. A., & Valentin, D. (1993). A low-dimensional 

representation of faces in the higher dimensions of the space. Journal of the Optical 
Society of America A, 10, 405-411. 

Sirovich, L., & Kirby M. (1987). Low-dimensional procedure for the characterization of human 

faces. Journal of the Optical Soctety of America A, 4, 519-524. 

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neurosci- 
ence, 3, 71-86. 

Valentin, D., Abdi, H., & O'Toole, A. J. (1996). Principal component and neural network 

analyses of face images: Exploration into the nature of the information available for 

classifying faces by sex. In C. Dowling, F. S. Roberts, & P. Thomas (Eds.), Progress in 

Mathematical Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Valentin, D., Abdi, H., O’Toole, A. J., & Cottrell, G. W. (1994). Connectionist models of face 

processing: A survey. Pattern Recognition, 27, 1209-1230. 

Weller, A. C., & Romney, A. K. (1990). Metric Scaling: Correspondence Analysis. Newbury 
Park, CA: Sage. 

Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. New York: Oxford University 
Press.



AUTOASSOCIATOR MODEL FOR FACE PROCESSING 337 

APPENDIX 

Singular Value Decomposition 

The generalized singular value decomposition can be computed from the standard singular 
value decomposition of a matrix. Let X be an /xK rectangular matrix, M be a KxK positive 
definite matrix, and B be an /x/ positive definite matrix. The generalized singular value 
decomposition of X under the constraints of M and B is given as 

X = UAV' with V'MV = U'BU = I. (37) 

The first step is to compute the standard singular value decomposition of the matrix 

N 
|
=
 1 

Y = B?XM 

with 

Viv = UU =I. 

The generalized singular value decomposition is then derived from. the singular value 
decomposition of Y as 

4 i i 
X= B?YM ? = B 7UAV™ 2 = UAV" (38) 

—_ 1 

with U=B 7U, V=M 2V, A=A.. This satisfies the constraints of Eq. (37), namely 

aio 
U'BU = U™B 2BB 2U = UTU =] 

and 

1 1 

V™MV = V™M 2MM 2V = VV =].
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The chapter by Jayadeva and Basalt Bhaumuk, A Neural Netivork for Determining 

Subjective Contours, poses a problem in visual pattern processing. Like the chapter by Abdi 
et al. that solved a different vision-related problem, tt sees the solution to this problem in ternis 

of optimality, using an energy function simular to the famous one used by Hopfield and Tank for 

the traveling salesman problem (TSP). Indeed the authors note the unity between the problem 

of finding subjective contours and the TSP, in that both involve connecting pre-specified points 

using a path of minimum length. The same approach has guided Jayadeva and Bhaumik in 
previous work on other problems in designing neural network for point connection tasks, such 

as the Steiner minimal tree and Steiner circutt problems. 
Jayadeva and Bhaumik do not make a case that their optimality criterta ts what human 

perceivers actually use in constructing contours. But their solution to the network design 
problem, involving differential equations with multiple layers and lateral inhibition, ts strikingly 

similar to designs by Grossberg and Mingolla (whom the authors cite) that are motivated by 

specific psychological data. Thus their work bears out the contention of Golden's chapter i this 
book, that many established neural network designs can be studied within an optimality 

framework, even if optimization was not explicitly used in the network's ortgmal development. 

ABSTRACT 

Subjective contours are amongst the most interesting of visual illusions, and involve a 

perceptual completion of an incomplete image. We first look at dot patterns which give the 

subjective impression of a single object. The contour is obtained by using Sequential 

Unconstrained Minimum Techniques to solve an optimization problem. The problem of finding 
subjective contours when the input image contains directionality information in the form of
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oriented edges is addressed next. The contours thus obtained are sharp or binary in nature, 
though subjective contours in practice have a diffuse appearance. We next propose a model 
where the pattern of activity of a grid of neurons represents the subjective contour, but the 
response of a neuron, which corresponds to the brightness at a point, is analog rather than binary. 

1. INTRODUCTION 

The human visual system is remarkably creative in the sense that it can easily extract 
features even from an incomplete image. Striking illustrations of this phenomenon can be found 
in visual illusions, involving subjective or illusory contours. A simple definition of an illusory 
contour is the boundary of a perceptually occluding surface that can be seen across a physically 
homogeneous region. It has been postulated that the generation of such contours is part of a 
filling-in process (Brigner & Gallagher, 1974; Kanizsa, 1976; Ullman, 1976) and plays an 
important role in vision. The discovery that specific cells in area 18 of the visual cortex respond 
to contours (von der Heydt, Peterhans, & Baumgartner, 1984) lends support to the view that they 
are an integral and important part of pre-attentive or low-level vision. 

The modern era of illusory contour studies probably dates from Gaetano Kanizsa’s work 
in the 1950s, which illustrated the brain’s tendency to assemble disparate features into complete 
and simple forms. He also devised several figures that strikingly demonstrate this effect. Ullman 
(1976) suggested that the contour should be smooth and its curvature should be minimized. 
Grossberg and Mingolla (1987) considered it as a part of the boundary completion process; their 
model consists of a boundary contour system that fills in a boundary, and a feature contour 
system which fills attributes within a closed contour. Geman, Geman, Graffigne, and Dong 
(1990) used stochastic relaxation methods to partition a given image. Biologically oriented 
models of this process include those of Manjunath and Chellappa (1993), Ringer and Skrzypek 
(1993), and Sajda and Finkel (1993). 

In this chapter, we address the problem from the optimality viewpoint. We consider two 
kinds of illusory contour: those arising when orientation information is present and those where 
it is unclear or ambiguous. We argue that an illusory contour is one that is optimal or minimal 
in the sense that it adds the least additional information to a given image. In our model the 
illusory contour is obtained from the pattern of activity on a layer of neurons. We illustrate the 
operation of the network on some typical examples. 

The chapter is organized as follows: In Section 2, we show how an optimality criterion 
may be applied to the problem of determining subjective contours. The subjective contour is 
approximated by a piecewise-linear curve that is constrained to pass through given points of the 
image. The contour is formed by selecting the most activated neurons on a two-dimensional 
continuous grid. We first deal with image data where orientation information is absent. Such 
cases arise in images composed of dot patterns. We next address the case where edges, 
providing orientation information, are present at the given image points. 

In Section 3, we present a model in which the subjective contour is formed by neurons 
on a two-dimensional grid but the activity level, which corresponds to the brightness, is a 
continuous analog function, instead of a binary function as used in Section 2. The activity is
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concentrated along the "subjective contour" but has a definite spread. Section 4 contains 

concluding remarks. 

2. AN OPTIMALITY APPROACH 

Consider the sets of dots in Fig. 17.1. A human subject quickly discerns shapes from 

these dot patterns. The dot patterns contain no actual lines supplying direction or orientation for 

completion, but a connected contour does quickly and automatically appear when we See points 

like this in fairly close proximity. We ask the question: given limited or insufficient information 
in the form of a set of points, what is the contour for which this set of points is a minimal 
representation? We suggest that the shortest tour, or the curve with minimal length spanning the 
points, is such a "minimal" contour. In other words, the curve with minimal length and passing 
through the given set of points is the subjective contour. In general, the "contour" may not be 

closed, and may consist of several segments. 

In this section, we assume that the image is binary. Binarity permits one contrast only, 

such as black and white. Let / be the set of points of the given image, where the 7" point is 

denoted by p,; (¢ = 1, 2, .... N). These points are assumed to lie in a plane, Le., p; = (D1, Pir): 
The contour is composed of a curve which passes through the given points. We propose that the 
curve is optimal in the sense that it minimizes some objective function. The points p,; can be 
connected through any of a number of possible interconnection networks. 

The class of interconnection, or network design, problems deals with such applications. 

Well known cases in this class include the Euclidean and rectilinear Steiner minimal tree, the 

Steiner circuit, and the traveling salesman (TSP) problems. In general, each of these 

interconnection problems is specified by a set of N points p, (¢ = 1, 2, .... N) with coordinates 
(is Pi2s Pixs +) Pip) (in D dimensions) that have to be connected in a specified manner. 

In a particular case we might seek a circuit of minimal length, or the shortest tree 

spanning the points. Further, several choices of length measures are possible, including the L, 

norms. The interconnection network is approximated by a chain of piecewise-linear segments, 

with connections from the fixed (image) points to the chain. Let J be the set of endpoints of 

these segments, each endpoint being denoted by x, = (x,,, ¥5), with J ranging from 1 to M. A 

possible link between a fixed point and a point on the chain either gets connected (1) or does not 
get connected up (respectively 0) to from a link or the edge of the graph we are drawing. The 

decision to connect or not to connect from a specific image point iE / to a point j EJ could, for 

instance, come from a choice function A(d,"), for example, 

1, djj= Min, diz h(d°.) = 
(415) 0, otherwise 

(1) 

where d,* denotes the distance between points p, and x, raised to the power a. 

It has been shown that a large class of such interconnection problems can be solved by 

M M N M 
‘ . ee . a a a . 

a neural network with the energy function Min > »y A,,|x;-%, td, > B,,h(dj)4j; subject 
i=1 j=l i=1 j=1
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to a set of constraints defined by the particular interconnection problem one is solving. From 
here onwards we consider interconnection problems in two dimensions only. Let x, be the 
activity vector of neuron i, i = 1, 2, .... M. This corresponds to a point (x, ,, X,2) lying on an 
approximation to the optimal interconnection network. The variables a and b are positive scalars; 
A and B are weight matrices: 

d;* = |p, - Xi i" (2) 

where ||z||, denotes the L, norm of vector z. |Iz|",, thus describes the L, norm of vector z, raised 
to the power a. 

(a) (b) 

of 
e 

ee of 
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(c) (d) 

Fig. 17.1. A subjective contour can be seen with dot patterns. 

Different choices of parameters in this formulation lead to different interconnection 
problems. For example, the Euclidean Steiner minimal tree problem (Jayadeva & Bhaumik, 
1994a) is obtained with a = 1, b = 2, A, = 9.,., and B; = 1, for all ¢ and Jj; the rectilinear Steiner 
minimal tree problem (Jayadeva & Bhaumik, 1994b) is obtained by letting a = 1, b = 1, A; = 
0... and B,= 1, for all ¢ and j. 

The task of finding the subjective contour is also one from the same class. We propose 
that given a set of "points" p; in a plane, we must find the curve C, which is the solution to the 
following optimization problem:
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Minimize |C| 
subject to the constraints 

dist(p,, C) = 0 (3) 

where |C| denotes the total length of C, and dist(p,, C) is the minimum distance between a point 
p,; and the curve C. 

As mentioned previously in this section, C is approximated in a piecewise-linear manner, 

i.e. we let C consist of M vertices (x,,, X,.) with straight lines joining x, to x,, and x,,,. When 

C is closed, then the indices are read modulo M. The problem (3) can thus be rewritten as 

M 
. a 

Min YP xia -%yl2 
i=l 

subject to the constraints 

Min j..2.m Ipj-4lz = 9, 8= 1, 2,..N (4) 

where |z||, denotes the L, norm of vector z. 

2.1. Finding a Contour of Minimum Length 

Equation (4) can be rewritten in the following form 

M 
Min ¥* |x,,,-%, lo (5) 

i=l 
subject to the constraints 

M 

> A(dj)dj = 0, i=1, 2, ...,N (6) 
j=l 

where d;* is given by Eq. (2) with 6 = 2 and h(d;") is given by Eq. (1). 

Equations (5) and (6) constitute a constrained nonlinear optimization problem, and can 
be solved in many ways. One class of methods that can be used are sequential unconstrained 
minimization techniques (SUMTs). In the next subsection we briefly introduce SUMTs and then 

use them to find the optimal contour. 

2.2. Using SUMTs to Find the Optimal Contour 

Sequential Unconstrained Minimization Techniques (SUMT), were originally proposed 
(McCormick, 1983; Fiacco & McCormick, 1968) as improved techniques for optimizing 

nonlinear constrained systems. Given the problem
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Min f(x), X = (4), %) 5 Xy)" 
subject to the constraints 
g(x) s0,0= 1, ..,N (7), 

one method from the class of exterior point or penalty SUMT methods solves a sequence (p = 1, 

2, ...) of minimization problems of the form 

N 

Min P(x, {7,}) = f(x) +S (7,,)'max[0,9,(x)?,  p =1,2,~ 
i=] 

where r,, are perturbation parameters, which determine the relative contribution of cost and 

constraint terms in the objective function being minimized. The initial or starting point for each 

iteration in the sequence (p = 1, 2, ...) is the solution to the previous iteration. Solutions may 

lie on the boundary or in the interior of the feasible region. As this sequence of problems is 

minimized with an appropriate choice of decreasing r,, we obtain a sequence of local minima 
x,. In the limit, as r,, — 0, the constraint terms become overwhelmingly large and the sequence 

of minima approaches the minimum of the original problem (Eq. (7)), which is our goal. 

The problem of determining the optimal contour (Eqs. (5) and (6)) can therefore be solved 

through minimizing a sequence of expressions of the form 

M N M 

P(x) = > Ix, - x, + > Ca e> h(d;)d, 

i=l j=l t=] 

The proposed network, henceforth referred to as Layer 1, performs a gradient descent to 

minimize P(x). It consists of N + M neurons, each associated with an activity vector (x,,,%;) 

corresponding to the coordinates of a curve vertex ¢. The activation values are therefore real 

numbers denoted by v, where v, = x,,,0= 1, 0... Ms vy =X, 0 = 1,0 Ms ima = Pip b= os 

N3 Vomansi = Pin b=], .., N. The differential equations describing how the state of each neuron 
changes are given by 

=X i,1? 

Mei = Xi2> l= 1,,M 

Vomei = Pi» = 0,i=1,-,N (8) 

MeN +i = Pi = 0, t=1,--,N 

<
.
 
_<
. 

< 

where
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Xik = >> = (55.14% NG Xl + (4214 % 1 - Xl, 

N (9) 

+) (ri) "Ad; ) (Pj g-% 145» k=1,2 
t=1 

where the differential of h(d;) has been taken in the sense of generalized gradient (Clarke, 1983). 

In practice, we approximate the discontinuous function A(d;) by a sequence of continuous 

M 
functions h(d;) = 6(4;,82)/>, (4;,,B,) parametrized by B,, for example, 

k=1 

M 

h(d;) = exp(-dj/B,)/>. exp(-dj/B,)- 
k=1 

The value of the parameter (3, is reduced with time, independent of the parameters r,,. In the 

limit, as B, ~ 0, A tends to the nondifferentiable function A. 

If a in Eq. (9) is assigned a value of 2, we obtain the following differential equations for 

the neurons: 

  
N 

; oP _ 
Se = oF Oe Ht Oe Ht Dd AAO UHH» 40) 

Jk 
i=l 

k= 1,2 

which is similar to the equations used by Durbin and Willshaw (1987) in their elastic net 
approach for the TSP. 

However, reduction in values of the parameters r,; in (9) and (10) is independent of B, 

unlike in the elastic net of Durbin and Willshaw. A comparison between Eq. (9) and the elastic 

net shows (Jayadeva, 1993) that the approach based on SUMTs converges faster, and more often 

to a valid solution; it also yields better solutions (shorter tours) in general. Choosing a = 1 

implies minimizing the Euclidean length rather than its square, and yields better solutions, as 
shown in Table 17.1. 

Figure 17.2 shows a network that can be used to calculate the subjective contour by using 
Eq. (8). The circles in the figure denote activity components of the neurons. Each circle is thus 

labeled with x; ,, X,o, Pits Pir: 

The activities of the neurons labeled p,, or p;, do not change with time and correspond 

to the given points of the image. Changes in the activities of the other neurons are governed by 

Eq. (8). The equation indicates that to update x,, (where ¢ is any arbitrary neuron) requires the 
values of X;1), Xi. and p,,, J = 1, 2,.., NM. The links in Fig. 17.2 depict this dependence for 

one of the components of the activity vector of neuron 7. The dependence of other activity values 

on each other is similarly obtained from Eq. (8).
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ael a=2 a=3 
Convergence obtained in (number of examples) 99 100 88 

Average number of iterations to the first solution 188.03 352.21 303.352 

Average number of iterations to the best solution 304.757 378.32 412.147 

Table 17.1. Choice of the Parameter a. Note: The table summarizes simulation results on a set of 100 

randomly generated examples. Using a = 1 yielded better solutions than a = 2 (respectively, a = 3) in 43 

(respectively, 23) examples; using a = 3 yielded better solutions than a = 2 in 40 cases. 

ce) e) &) ®) &) 
BR A A v L 2, 

Y WV <Q \ De v 

Fig. 17.2. Structure of Layer 1. Updating ¥,, (where é is any arbitrary neuron) requires the values of x;, ,, 

Xap and py, J = 1,2, .., NM. The links in Fig. 17.2 depict this dependence of the activity values for the 

activity component x,, of neuron 7. 

Figure 17.3 shows the minimal tours for some sample sets of points. Note that the 

completed contours correspond to a closed torus of the points, that is, to the solution of the 

traveling salesman problem for the point sets. Indeed, the TSP is the optimal interpolant for the 
given data in an information-theoretical sense. Observe that the perceived subjective contours 
connecting the dots in Fig. 17.1 match the tours (see Fig. 17.3) found with our neural network. 
In fact, the observation that human subjects are quickly able to determine very good TSP 
solutions with a map of the points (cities) visually was employed in a human-machine approach 
to the TSP by Krolak and Felts (1971).
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Fig. 17.3. Tours for some sets of points found in the process of testing the equations described in Section 2.2. 

When a given image consists of several closely spaced points, the contour obtained in the 

manner described in this section consists of a large number of closely spaced line segments. If 

the image points are in close proximity, the grain of the contour becomes very fine, and the 

appearance of a curved contour may result, as in Fig. 17.4. Note that in comparison to Fig. 
17.4(a), Fig. 17.4(b) gives the appearance of having a smooth curvature. 

2.3. Subjective Contours with Orientation Information 

We now extend the network to the case when orientation information is available in the 

form of directionality shown by line segments in the original pattern given. Figure 17.5 shows 
some examples of the subjective contour with orientation information. As may be seen in Fig. 
17.5(c), directional restriction of contours to match even short lines in the initial pattern leads to 

curved shaping. 

We suggest that the "optimal" curve in this case is one found by solving the problem 

subject to the constraints 

2 

Min { dl +a, {{F) dl (11a) 
C Cc 

dist(p,,C) = 0 (11b) 

O(p;) = A, (11c) 

where dl denotes an elemental length of the curve C, and @ denotes the angle between the 

tangent to the curve and the x-axis. Here, the two axes defining the Cartesian plane have been 
denoted by x, and x,. The second term of Eq. (11a) corresponds to the rate of change of this 

angle, that is, it represents the elemental curvature of the curve C; a, is a scalar indicating its
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relative importance. The constraints imply that the curve must pass through a given set of points 

(corners, p, terms), and further, that the first derivative (slope) of the curve at the given points 
must have a specific value at the given points. 

Fig. 17.4. The presence of a large number of closely spaced points can give rise to the appearance of a curved 

contour. The higher density of dots in (b) in comparison to (a) illustrates this effect. 

Following the piecewise-linear curve obtained by the network discussed previously, we 
have a sequence of ordered points joining specified points. Because the curve already passes 
through the specified image points, the constraint (11b) is already satisfied. We therefore need 

only consider the chain of points on the curve that lie between successive points at which the 
orientation is specified. 

Figure 17.6 shows two cases. Figure 17.6(a) shows a point p, of the initial pattern/image, 

whose location is specified along with the orientation of the curve at that point, namely @ = A.. 

Let the point x,=(%, ,, ¥,2) be the point of the curve nearest to p,. In order to minimize the local 
curvature at point p,, xX; must lie on the line passing through p, and making an angle A, with the 

x, axis. This will happen if it moves towards the point q; Shown in the figure. Note that q; and 
x; are equidistant from pj. 

Figure 17.6(b) shows the other possible case, when the point x, is not next to a given 

image point but is any arbitrary point on the curve, with interpolated points x,, and x,,, being 

its neighbours on the curve. The local curvature at x, is minimized if x, lies on the line joining 
X,.. and x,.,, aS well as on the line joining x,,, and x,,,.. In other words, x, must move toward 

q,.. aS well as toward q,,,. Again, note that x, and q,,, are equidistant from x,,,; x, and q,, are 
equidistant from x, ,. 

Consider, once again, a layer of (N + M) neurons, whose activation values are real 

numbers denoted by v,, where the v, are as defined in Section 2.2. The equations of motion of 

these neurons are given in terms of slope angles by
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y= Xp = (Xp 7 Xe DM Xe + (X01 Xe NXE. Xe lle + 
a(d,cos(6, ,)-d,cos(6,,,)), k=1,-,M 

Vuk = %k2 = (Xp 7 Xe MX — XM + (X12 Xe dy. Xl + 
a(d,sin(6, ,)-d,sin(6,,,)) 

where d, = |x, - x,||, and d, = |lx,,, - x,|, and @ is a scalar to adjust the contribution from 
sloping to an appropriate scale compared to what appears in the distance metric terms. 

Fig. 17.5. Examples of patterns providing linear oricntation information that affects the spread of subjective 

contours. 

This layer of neurons, referred to as Layer 2, is also organized as a feedback network. 

Note that in contrast to Layer 1, X, depends on X,, Xy1, Xk-25 Xkais ANd X,,.. The equations of 

motion for points on the curve can now also be written as 

(2) (2) (1) 
Ve = Xe = X + a(d,cos(G, ,)-d,cos(6,,,)), k= 1,-,M 

Vek = Xp = + a(d, sin(®,,)-d,sin(6,,,)), k= 1,-,M 

where v,' and v,* denote the states of corresponding neurons of Layers 1 and 2. respectively. 

Figure 17.6 shows the structure of the network. Figure 17.7 illustrates the operation of the 
network on some examples. The orientation of the curve at each point (X 1, X,) Is shown by a 

small oriented segment through the point. Although the output of Layer 1 yields piecewise linear 
curves connecting the specified points, we have considerably perturbed the initial state in order 

to illustrate the convergence of the network from a random initial state. In practice, the curve 

obtained by Layer 1 is a very good initial state for Layer 2, and convergence is obtained rapidly.
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Fig. 17.6. How a curve point moves to minimize curvature. 

Implementing this scheme appears cumbersome in practice. Furthermore, the contours 
obtained by the methods in Sections 2.2 and 2.3 are sharp, whereas subjective contours in reality 
appear to be diffuse, with a definite spread. We now turn from contour finding that selects only 

the most activated points to look at the associated "spread" of activation in the neighbourhood, 
a phenomenon occurring not only in vision, but also in semantic retrieval and elsewhere. 

3. CONTOURS AS AN ACTIVITY PATTERN 

In this section, we present a model in which the subjective contour is represented by the 
pattern of activity of a grid of neurons. However, the response of a neuron, which corresponds 
to the brightness at a point, is a continuous analog function. The pattern of activity thus obtained 
is concentrated along the "subjective contour," but has a diffuse appearance, with a definite 
spread. This is unlike the contours obtained in Section 2, which are sharp or binary (black and 
white) in nature. We first consider the case when orientation information is available at given 
"points" of the image.
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Fig. 17.7. (a) Specified comers of an image. The specified orientations are indicated by small line segments 

at the points. (b)-(d) Snapshots of the network illustrating the contour being generated. (c) Scaled image of 

the contour. 

3.1. An Activity Based Model for Subjective Contours 

We begin with well-known solutions for excitations in continuous space, using equations 

familiar from thermodynamics, electricity, and magnetism. Consider a thin slab in which the z 

axis is along the thickness, and the x and y axes lie along the plane of the slab. A point in the 
slab is specified by the coordinates (x, y, z). Each point corresponds to a set of neurons. Each 

neuron is maximally sensitive to a unique orientation. The presence of an oriented edge at 

(x, y, Z) would activate a specific neuron sensitive to that orientation. Let u(x, y, z, P) denote 

the response of a neuron at the location (x, y, z) that is maximally sensitive to an orientation ®. 

At any given point, more than one neuron may be active, indicating that there is a spread 

of activation along different directions (orientations) at a point. This gives rise to the perception 

of a diffuse band of orientation at a point. For example, there may be a spread of activity with 
orientations ranging from 50° to 70° at a certain point, with a maximum of 60°. 

Let us consider the response of all the neurons in a plane of given thickness, say at Z. 

If the responses of all these neurons were equal then we would perceive a region of uniform 

brightness. To perceive a contour, some neurons must, therefore, respond more strongly than 

others. When the input image is an incomplete contour, the neurons which receive oriented 
edges as input respond more strongly than others. We postulate that if some region in the 
neuronal plane is relatively more active than other regions, then a flow of activity takes place
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from the region of higher activity to those of lower activity. We denote the flow of activity by 
F,, where F,=k wu. k is a constant of proportionality. 

The total activity inside a volume V with surface S as its boundary is given as a function 
of ® by 

A(o) = [ff u(x,y,z,6)dxdydz (12) 
xyz 

We assume there is no source or sink of activity inside the volume V. Therefore, the activity 

inside V will change only due to a flow of activity through the bounding surface S$. The total 

flux of activity leaving V via S is given by 

[[Fyaas 
5 

where nis a unit vector normal to the surface, and d. is a small element of the surface S. The 

change in activity inside volume V is 

<4 = [ [Fyads. (13) 
5 

From Eqs. (12) and (13), and following arguments similar to those used in the derivation of the 

heat flow equation (Pipes, 1958) we obtain 

ou _y 
a 

14 
ax? dy? az? ( ) 

    

where & is a scalar constant. Because the contour is two-dimensional or planar, we can replace 

u(x, y, Z, P) at a given z by u(x, y, P). In general, the flow may be anisotropic, and the constant 
k may be replaced by constants a and b for the x and y directions. Hence, we can rewrite Eq. 
(14) as 

Ou Ou Pu 
— =@ + b—. 15 
Ob ax? Ay? o>) 

The solution of this equation is obtained as 

u(x,y.b) = (4ngyab)' ff fy,v,) exp(-[(x-v,?/a+(y-v,)")/b1/46) dv, dv, (16) 

for the initial condition
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u(x, y, O) = fx y). (17) 

  

(a) (b) 
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A V               

    (c) 

/ 
Fig. 17.8. (a) A single edye does not lead to the appearance of a subjective contour. (b) Additional edges 

are required in close proximity. (c) The receptive field of a neuron sensitive to subjective contour can be split 

into two halves. (d) Each half must receive input in order for the neuron to fire. 

The initial condition given by Eq. (17) is an image point located at (xj, yy) and having an edge 

with orientation ®). The variable @ is measured with respect to the oriented edge at the input 

image point under consideration. Therefore, Eg. (16) reduces to 

u(x,y,) = (4ngVab) exp(-[(x-x9)’/a+ (y-yo)”)/b1/46) (18) 

When more than one input image point is given, the excitations from each input image point are 

computed and summed. 

Consider an oriented edge as shown in Fig. 17.8(a), and note that no contour is possible 
when there is a single edge. In order for a boundary to be observed, there must be other oriented 
edges in reasonable proximity, as shown in Fig. 17.8(b). The activity will be at points that lie 

between two oriented edges, but not beyond the leftmost and rightmost ends. 

Consider an oriented input with an orientation value of zero; that is, it lies along the 

x-axis and excites all neurons to its right. A neuron whose receptive field is aligned along the 

x axis and that lies to the right of this edge will receive maximal excitation. We assume that the 
receptive field of a neuron sensitive to subjective contours can be split into two halves, as shown 
in Fig. 17.8(c). The neuron will fire only if both halves of its receptive field receive excitation. 
For this to happen, the neuron must lie between at least two edges, whose orientations differ by
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180°, as shown in Fig. 17.8(d). Alternatively, the output of a neuron sensitive to subjective 
contours may be the AND function of inputs from two orientation-sensitive neurons, whose 

selectivities differ by 180°. In the general case, the receptive field of a neuron will not lie 

exactly along the edge, and will receive less than maximum excitation, and its response will be 

weaker. The input to the neuron is then given by the dot product of a unit vector in the direction 

of its receptive field with the "source" excitation. 

From Eq. (18) we find that the net input to a neuron at location (x,y) is of the form 

u(x,y,o) = Kol exp(-[(x-x9)’/a+(y-y9)")/b1/4) cos(B) 

where K is a constant and @ is the angular position of the point (x, y) with respect to the "source" 

at (Xp, Vo), that is, 8 = arctan ((y - yy)A(x - X)). Note that the excitation is confined to points 

at locations such that cos(@) is positive. The excitation to a neuron is obtained by a linear 

superposition of the excitations from different image points. 
The output of the neuron located at position (x, y) and sensitive to an orientation A, that 

is, Vij is given by V.,, = F(U,,;) where 

1,x>1/8 
F(x) = 0,x<0 

Bx,0<x<1/B 

is the activation function, and f is a gain term. In the proposed neural network, neurons lie on 

a uniform grid in the xy-plane, that is, V.,, is defined only at the grid points. Figures 17.9 

through 17.15 show simulation results for some examples where subjective contours are 

perceived. In each figure, the oriented inputs (image points) are shown in part (a). The 

excitation to each half of the receptive field of a neuron is shown in part (b) by a line of 

proportional length with angle @. The excitations have been scaled in order to make them more 

prominent. 
Observe that the activity is confined to a narrow region around the given image points. 

Also note that the excitations are in a narrow range of orientations for neurons close to the image 

point locations. The largest excitations correspond to the preferred direction of the contour. In 

Fig. 17.9, where the input is a set of orientations at the corners of a square, the activity is 

concentrated along the sides of the square. Although the neuron activities are along the edges 

for locations near the corners, they are very diffuse in the middle. Figure 17.10 shows another 

example where the input contains additional oriented edges along two sides of the square. 
Observe that the activity is in a much narrower band along these sides, as compared to Fig. 17.9. 

Figures 17.11 through 17.13 show other examples of a similar nature. Note the effect of 

additional oriented image points near the sides of the square as shown in Fig. 17.11. Increased 

activity can be seen near the top and bottom sides of the square in Fig. 17.12. An activity 

"bulge" is strongly visible along the top and bottom sides of the square in Fig. 17.13. Figure 

17.14 shows an example where the contour forms the outline of a triangle. In the example in 
Fig. 17.15, the activities lie on the outline of a semicircle, and orientations change in a smooth 
manner.
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Fig. 17.9. (a) Input and (b) neuron excitations for an example where a subjective square is perceived. 

(a) 

(b) 

Fig. 17.10. (a) Input and (b) neuron excitations for an example where a subjective square is visible. The 
activity pattern is sharper along two sides of the square in this case as compared to the other two sides.
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Fig. 17.11. (a) Input and (b) neuron excitations for an example where a subjective square is perceived. Note 

the effect of additional oriented image points near the sides of the square: the whole region becomes active. 
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Fig. 17.12. (a) Input and (b) neuron excitations for an example where a subjective square is observed. In this 
example, the bulge near the bottom and top sides of the square is strongly visible.
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Fig. 17.13. (a) Input and (b) neuron excitations for an example where a subjective square is seen. Observe 
the increased activity along the top and bottom sides of the square. 

The model discussed in this section does not include any mechanism for sharpening the 

orientation response. The inclusion of such mechanisms would make it possible to obtain much 
sharper contours. One way to incorporate such effects is to include a winner-take-all mechanism 
between neurons that lie at the same position but that are sensitive to different orientations. 

4. CONCLUSION 

Subjective contours are among the most striking of visual illusions and provide an insight 
into the human visual system. This chapter addresses the problem of determining subjective 
contours by using an optimality criterion. We posit that a subjective contour is one that is 
optimal or minimal in some sense.
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Based on simple examples of dot patterns that give the impression of a single figure, we 
propose that the subjective contour in such cases is the curve of shortest length connecting the 
points. Such a curve adds the least additional information to the image, and is uniquely defined 

by the location of the points in the image. We formulate an optimization problem whose solution 

yields a minimal length contour passing through the dots of the image. The optimization task 

is solved by using sequential unconstrained minimization techniques (SUMTs), and the solution 

is closely related to elastic methods of solving the traveling salesman problem. 

Fig. 17.14. Neuron excitations for an example where a subjective triangle is perceived. 

We next look at images where orientation information is present in the form of directed 

edges at given comers or points of the image. The subjective contour in this case minimizes both 
length and curvature. We solve for the contour in a manner similar to the previous case. The 

contours obtained in this fashion are sharp ones found by selecting endpoints of a piecewise 

linear curve. In practice, subjective contours have a diffuse appearance. We develop a model 

where the contour is represented by the activity pattern of a plane grid of neurons, but the 

activity function, corresponding to brightness, is an analog function. The contours obtained in 
this case have a definite spread of activity. The activity of points in between is computed (filled 
in) in a feedforward manner, depending on relative locations of input points. 

The filling-in process has been postulated as part of preattentive (low level) vision, and 
it has been argued that sequential approaches to early vision are biologically implausible (Marr,
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1982). The criteria used can be extended to determination of three-dimensional subjective 
contours (Carman & Welch, 1992; Redies & Watanabe, 1993), that is, those where an impression 
of depth is perceived. 
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Fig. 17.15. Neuron excitations for an example where a subjective semicircle is seen. 
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A Developmental Perspective 
to Neural Models of 
Intelligence and Learning 

Haluk Omen and Ramkrishna V. Prakash 
University of Houston 

Haluk Ogmen and Ramkrishna Prakash's chapter, A Developmental Perspective to 
Neural Models of Intelligence and Learning, describes a decision-making neural network that 
1S applied to robotics. The choices that the network makes about what objects to approach are not, 
as Ogmen and Prakash point out, based on “minimization of a fixed, predetermined, global 
‘cost function.’ " Instead, the choices are based on three interacting sets of criteria: reinforcement 
(which ts close to a traditional utility function, as Rosenstein’s chapter in this book points out); 
novelty (which ts close to the "diversity generation" criterion of Pruettt’s chapter); and habit. 

Ogmen and Prakash's network combines such design principles as adaptive resonance (see 
also Carpenter's chapter), opponent processing, and lateral inhibition. In this network, the 
interplay between reinforcement, novelty, and habit is dynamic; which of these factors is more 
important ts heavily dependent on the environmental context in which the network (or robot) 
finds ttself. Even the stimulus criteria that maximize remforcement can change dynamically with 
the context. In fact, the network categorizes objects based on a variety of stiniulus attributes, and 
which attribute or feature of the stimulus ts most important changes with context. The network 
modifies previous work of Samuel Leven and Daniel Levine, who interpreted the effects of frontal 
lobe damage on a card sorting task in terms of tnability to change a categorization criterion. A 
similar ability to change the relative weighting of criteria is manifested in the face recognition 
network from the chapter by Abdi, O'Toole, and Valentin, which uses a very different 
architecture (modified brain-state-in-a-box). 

Hence this chapter goes far toward answering the question also raised in Levine's chapter: 
how does a neural network learn to use previous information about reward to develop high-order 
rules for what is rewarding? In addition to providing theories for cognitive functions of several
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brain areas, the capacity for such rule formation and learning will enable neural networks to 
incorporate some of the capabilities of traditional heuristic programs from artificial intelligence. 

ABSTRACT 

In the first part of the chapter, we introduce a general developmental model of intelligence 

and argue that the strict notion of optimization does not constitute a proper level of analysis for 
understanding human intelligence because a fixed, a priori construct (objective function) cannot 

account entirely for the interactive nature of intelligence. In the second part of the chapter we 
address the synthesis question by presenting simulations of a specialized architecture of the 
general model. The synthesis of this architecture was not based on the traditional optimization 
methodology in that the minimization of a fixed, predetermined global "cost function" was not 

the central design principle. No attempt was made to explicitly synthesize such a function. 

Rather we approached the problem in a more dynamical setting by integrating specialized 

architectures whose continuous-time interactions synthesize goals that change according to the 

interactions between the system and the environment. We present several simulations illustrating 

the interplay between system and environmental dynamics and show, for example, how the 
system can change its criterion (modify its "cost function") according to prevailing environmental 
conditions. 

1. INTRODUCTION 

For three decades, artificial intelligence (ATI) research largely ignored the role of 
experience and learning in intelligent behavior. This neglect fueled the resurgence and popularity 
of neural networks during the last decade. However, the reaction has been so strong that most 

neural network models consider experience and learning as the only determinants of intelligent 

behavior. Typically, a homogeneous network ("blank slate") is trained by stimuli ("unsupervised 

learning") or by stimuli and responses ("supervised learning"). As opposed to traditional artificial 

intelligence models where a designer puts a priori constructs in a nonadaptive box (see Fig. 

18.1a), most neural networks can be viewed as an adaptive box devoid of a priori constructs (Fig. 

18.1b). A closer examination of these models reveals, however, that the diagram shown in Fig. 
18.1c is a more appropriate representation because a designer is required to interface these 

networks to the environment. In the absence of a designer, a passive system operating in a 

high-dimensional complex environment will rapidly be overwhelmed by the combinatorial 

explosion of possible stimuli combinations in time. In fact, practice clearly shows the need for 

a designer in these networks to structure the environment (e.g., selection of appropriate features, 

desired response patterns, introducing some a priori bias to the network by selecting the number 
of hidden units, etc.) This problem has been called the bias-variance dilemma (Geman, 

Bienenstock, & Doursat, 1992) or stability-plasticity dilemma (Grossberg, 1980).
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Fig. 18.1. Diagrammatic representation of (a) artificial intelligence, (b, ¢) several neural networks, and (d) 

some behavioristic neural models. 

Once an external designer is introduced, the role of the network is reduced to a 

“continuous memory" capable of interpolating and extrapolating the structures created by the 

designer. Therefore, the main theoretical issue in these networks has been the synthesis of an 

optimal memory according to a criterion selected by the designer. Optimization may be a useful 

and sufficient tool for designing and analyzing such networks. However, the main intelligent 
agent, the designer, is not characterized by such an analysis. In order to link the environment
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to the system without a designer, several behaviorist models introduced "intervening variables" 

such as expectations and drives (reviewed in Zuriff, 1985; see Fig. 18.1d), a tradition that 

continues in some current neural network models (e.g., Sutton & Barto, 1981). The extent to 
which such constructs can solve the problem depends on their origins and nature. If they are 
synthesized purely from experience, then Fig. 18.1d becomes equivalent to the purely empirical 
model shown in Fig. 18.1c. If they are innate and do not change through experience, then we 

are faced with the problem of the construct shown in Fig. 18.1a, namely, the inability for the 
system to expand autonomously its "mental universe." 

2. A DEVELOPMENTAL MODEL OF LEARNING 

Our approach to this problem finds its roots in an invertebrate model of sensory-motor 

reflexes (Ogmen, 1992a) shown in Fig. 18.2. The figure illustrates the general form of the model 

specialized for the landing reflex of the fly (OSmen & Moussa, 1993). The model consists of 

three components: sensory, motor, and sensory-motor gate layers. The necessity of sensory-motor 

gate layers arises from the observation that no matter how well the sensory part is tuned to the 

triggering features of the reflex, since many of these features can occur in a variety of contexts 
in the environment, a context-dependent interpretation of incoming stimuli is necessary. For 
example, an expanding pattern when the fly is in the landed position (e.g., approaching predator) 

triggers the initiation of flight. An expanding pattern during flight either is ignored (background) 

or triggers landing (approach to a site), depending on the internal state (e.g., flight velocity, 

habituation level) as well as on stimulus characteristics (O&men & Moussa, 1993). Context-de- 

pendent filtering of the input is implemented by lateral connections within a sensory-motor gate 
layer, indicating a competition to take control of the motor system between multiple reflexes. 
This input gating is genetically wired. Therefore, this model interacts with the environment 
through innate, a priori structures. However, as we mentioned earlier, although learning can 
fine-tune these reflexes, the system will never be able to go beyond its innate constructs. 

Therefore, although such a model can explain learning in lower species and in some simple 

human reflexes, we suggest that it is inadequate to account for human intelligence in general. 

We generalized this model (Omen, 19924, 1992b, 1995) by using the Piagetian concept 
of scheme with the functions of adaptation (assimilation and accommodation) and organization 
(Piaget, 1963). The augmented model, which we will interpret as a sensorimotor reflex for 
definiteness, is shown in Fig. 18.3. The filled circular symbols represent the sensory and motor 
elements involved in a reflex that plays an essential role in the development of cognitive 

functions. Sucking, grasping, and rooting are examples of such reflexes (Piaget, 1963). The 
scheme is a totality, a property imposed by units that we call affective units. The triangular 
symbol (a°), a primary affective unit, is connected, directly or indirectly, to all elements of the 
scheme and unifies the scheme into a totality. As shown in the figure, the rectangular units, 
which we call secondary affective units, bring an organization to the scheme by imposing a cyclic 
order (in this case 5s, > m,, m, > 83, 8, > m,, Mm, > S$, 8; > my, m, —> s,). Comparing this model 
to its ancestor shown in Fig. 18.2, one can see that the secondary affective units are similar to 

the sensory-motor gate circuits. However, although the model of Fig. 18.2 is organized into a 
totality only by the external stimuli, the totality and closure of the scheme in Fig. 18.3 are its
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inherent organizational properties. When organization and adaptation go hand in hand, learning 
involves not only the modulation of existing local connectivity in a scheme, but also an active 

modulation of cyclic totalities (Ogmen, 1995). 

sensory sensory-motor gate 

  

  
    

motor 

Fig. 18.2. Gencral structure of the invertebrate model for sensory-motor reflexes. Variables x,, X,, X,,, and 

x,, denote environmental, sensory, sensory-motor, and motor variables, respectively. (From Ogmen, 1992a; 

adapted with permission.) 

According to this model, sensory, motor, and affective components are inseparable, and 

more generally all cognitive acts involve affective components which regulate the schemes of the 

subject. The subject is trying to assimilate all possible objects into his or her schemes. In order 

to do so in a complex environment, the subject adapts his or her schemes to the environmental 

data without destroying already existing structures. Each time such a reorganization succeeds 
the subject becomes better adapted to the object. The idea of comparing different equilibria of 

the subject is certainly a useful tool of analysis, and indeed intelligence can be seen as a 

progression from one equilibrium to a better equilibrium. Such a process can be seen as a form 

of optimization. However, we propose that the strict notion of optimization does not offer the 

proper level of analysis because an objective function rooted in ana priori environment and an 

a priori subject cannot cope with an interactively changing system. The need for a repetitive 
updating of the objective function necessitates an understanding of the changing schemes of the 

subject which in turn requires the study of interactions between subject's schemes and the 

environment, the proper level of analysis according to our approach.
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ol 

02 

03   
Fig. 18.3. General developmental model for a simple scheme. Variables 0, s, and m denote environmental, 
sensory, and motor variables, respectively. Triangular and rectangular nodes represent primary and secondary 

affective units, respectively. Solid and dashed lines show connectivities between sensory, motor, and affective 
components. 

In a specific version of this general model, we showed how generalizing and recognitory 
assimilation interfaces the environment in a context sensitive way to the system (Prakash & 
Ogmen, in press) through simulations that were mainly directed to reproducing some 
characteristics of the reflex stage. In the subsequent stages, active target seeking plays a crucial 

role in the modification of existing schemes (secondary circular reactions, Piaget, 1963) and the 
formation of new schemes. In the rest of this chapter, we present a specialized architecture for 
target selection. 

3. TARGET SELECTION ARCHITECTURE 

Having argued against optimization as an analysis tool we now consider whether 
optimization can be an adequate design tool. There is a tradition in modelling literature that 
views model design as a problem in optimization theory (reviewed in Poggio, Torre, & Koch, 
1985; Yuille, 1989). We argued elsewhere that the strict notion of optimization does not 
constitute an adequate design tool for modeling continuous-time vision (O&men, 1993a, 1993b, 
in press). A major shortcoming of the optimization approach is its inability to cope with 
continuous-time interactive nature of biological nervous systems via its fixed a prior! object 
function. We illustrate continuous-time interactions between the environment and our model by 
simulating a specialized part of the general model, the target selection architecture.
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3.1. General Structure 

This architecture is a component of the grasping reflex and fulfills the target selection 
function. The general structure of the network is shown in Fig. 18.4. The shaded pathway from 
visual inputs conveys features (determined in general by the assimilation scheme in which this 
module is inserted) of the visually attended target to categorization networks. The visual 
attention is controlled by the attentive scanning network,which receives Inputs from the spatial 
novelty and categorization networks. The signal from the spatial novelty network biases the 
scanning process toward objects placed in novel locations (e.g., an object that is moved to a new 
location will attract the attention of the system), whereas the signal from the categorization 
network freezes the scanning process so that while the categorization is in process, the input is 
held constant. The first type of categorization ("“good-bad") distinguishes harmful objects and 
prevents the system from grasping such objects. The second type of categorization ("ob- 
ject-type") analyzes the appearance of objects. The output of this categorization network is 
processed by a novelty detector. The target selection process combines signals from the 
categorization networks and determines the object that will be grasped. 

In the following sections, we analyze this network by computer simulations. All neural 
architectures were simulated on an Amdahl supercomputer. The ordinary differential equations 
(ODE) defining the networks were solved using a numerical ODE solver (the Runge-Kutta-Fehl- 
berg 4-5 method) developed by Sandia Laboratories, Albuquerque, NM. The user interface of 
the simulation enabled the modification of external signals (introduction or removal of objects 
and external reinforcement signals) by interrupting the program as and when needed. On 
Interruption all the state variables of the network are pushed onto the stack of the computer and 
the interrupt is handled. On returning back from the interrupt, these state variables are reloaded 
back and the network equations are solved from the same internal state of the network before the 
interrupt occurred. This architecture has also been implemented and tested in a robotic setup 
composed of a camera, a DATACUBE real-time image processing board, and a PUMA 562 
robotic arm with a CYBERNETICS controller (Ogmen & Prakash, 1993), 

3.2. Spatial Novelty and Attentive Scanning 

In a first series of simulations we show how the input stage of the architecture is 
interfaced with the environment. The network attends to novel stimuli while ignoring (filtering) 
others. The spatial novelty network consists of an array of gated dipoles (Grossberg, 1972), each 
sensing a discrete spatial position.' The outputs of the spatial novelty network project to the 
attentive scanning module. This module consists of (a) a "winner-take-all" network wherein each 
neuron excites itself and inhibit all others, and (b) a feedback pathway through additional layers 
(delay and inhibitory neurons) to regulate cyclic scanning of attention (see Fig. 18.5). 

  

' Currently spatial locations have been restricted only to two dimensions by keeping the depth constant.
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Fig. 18.4. Block diagram of the target selection architecture. 

We first demonstrate novelty detection by simulating the gated dipole network along with 
the winner-take-all layer of the attentive scanning module. The combined network was first 

proposed by Levine and Prueitt (1989; see also Levine, 1991) and also forms the seed of the 

object-type novelty detection module (see Figs. 18.4 and 18.16). Equations presented in 

Appendix A.1 were solved numerically for inputs shown in Fig. 18.6. The four panels show the 

input signals at four distinct spatial locations as a function of time. A signal value of 1 (0) 
indicates the presence (absence) of an object at that spatial location. Each panel in Fig. 18.7 
shows the activity of a neuron in the "Winner-take-all network" (see Fig. 18.5) sampling the input 

shown in the corresponding panel of Fig. 18.6. A neuron wins the competition when its activity 

exceeds its threshold value indicated by a dashed line in Fig. 18.7. As one can see from Fig. 

18.6, the temporal order according to which inputs are introduced proceeds from the upper to the
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lower panel. Objects are removed from the environment according to the reverse order. The 
suprathreshold activities of neurons in Fig. 18.7 show that the neuron that samples the most novel 
input wins the competition. Thus, other things being equal, novelty guides the attention of the 
network. Note also that during competition, brief transient signals may go above threshold in 
the winner-take-all network. In order to eliminate such transients an additional feedforward 
on-center-off-surround network is introduced as shown in Fig. 18.5. 

ATTENTIVE SCANNING NETWORK 
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Fig. 18.5. Attentive scanning network. 

Once a neuron wins the competition it will remain the winner as long as the inputs do not 
change. The upper two layers in Fig. 18.5 are added to prevent this and to generate a cyclic 
scanning of all objects in the environment by the attentional system. The cyclic scanning is 
achieved by a delayed inhibitory recurrent signal, which reduces the net input of the winning 
neuron thereby allowing other neurons to win the competition. Simulations illustrating this
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Fig. 18.6. Inputs to the novelty detection network. The four panels in this figure represent the sequence in 

which four inputs at four distinct spatial positions are introduced and removed. A high signal (1) implies the 

presence and a low signal (0) indicates the absence of an object ata particular spatial location. The response 

of the network is shown in Fig. 18.7.



DEVELOPMENTAL PERSPECTIVE ON LEARNING 373 

  

  

               

  

  

  

  

          
  

  

  

  

  

      
  

  

0.3 ~T v Y T T T "T T T 

a 4 C........-} 
a 0.2 

~- 

> 
x(1,3) -— 

5 threshold ----- 
6 O.1- _ 

0 1 i i i i a 1 1 j 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

time 

0.3 | T 7 T T T T T T 

NK a 
> 0.25 — 
- _—_J 

> x (2,3) — 
5 threshold ----: 
% 0.1 # + 

0 1 i L i 4 \ 4 a 2 

0 200 400 600 g00 1000 1200 1400 1600 1800 2000 

time 

0.3 T T T T T T Y T T 

> 0.2 

> 

x(3, 3) 
5 threshold ----- 
oe 0.1 - 

ou 1 1 A a i 4 J i 4 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

time 

0.3 T T T T T T T T TY 

  

  

  

a
c
t
i
v
i
t
y
 oO
 

DO
 

a
 

t
y
 a 

      

x(4,3) -— 

threshold ---- 
0.1 + 

0 4 A SD i i BR A s A 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

time 
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activity exceeds the threshold value indicated in the figure.
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scanning process are shown in Fig. 18.8. The lower panel in Fig. 18.8 shows the sequence of 

presentation of inputs to the network. Three inputs, placed at three different spatial locations,are 

presented successively to the network. The upper three panels show the activities of output 
neurons of the attentive scanning module sampling these three spatial locations. Following the 

introduction of the first input, the system starts to scan this input. When the second and third 
inputs are introduced, all three inputs are scanned serially. As one can see from the simulation 

results, after some time the novelty of inputs vanishes and the system stops scanning the inputs. 

3.3. Good-Bad Categorization 

An important aspect of grasping behavior concerns the avoidance of harmful objects such 

as hot objects. Basic information is provided through simple reflexive circuits and is used in the 

model as "reinforcement" signals. However, because reinforcement signals are unspecific, the 

internal criterion of the network in selecting the relevant features must be dynamic. To 

understand this, consider the situation shown in Fig. 18.9. Before deciding to reach for an object, 

the system has to categorize it as a "good" or a "bad" object. Bad objects are typically those that 

have been correlated with negative reinforcement signals and the system avoids such objects. 
Assume that the pattern shown at the bottom of the figure illustrates the features of the input 

object and that the two patterns shown at the top of the figure illustrate the templates for good 

and bad objects. As'‘seen from the figure, this categorization problem is ambiguous in that if 

color is taken as the categorization criterion then the input will be categorized as a good object, 

whereas if shape is taken as the categorization criterion then the input will be categorized as a 

bad object. The choice of the categorization criterion is guided by habit and reinforcement 

signals. 

The "good-bad" categorization network is a variant of an architecture proposed by Leven 
and Levine (1987; see also Levine, 1991) and is shown in Fig. 18.10. It consists of a cascade 

of two ART networks (Carpenter & Grossberg, 1988): layers F, and F, categorize inputs into 

object-types; layers F, and F, categorize inputs into good and bad categories. As the 

reinforcement signal is nonspecific, one must ensure that it is correctly assigned to the current 

"choice" of internal criterion. This is achieved by the circuitry shown in the left part of the 

figure. Match neurons encode which internal criterion is currently being used by the network to 

achieve categorization. Habit neurons memorize past experiences of the network. Bias neurons 

combine habit and reinforcement cues to select an appropriate internal criterion for categorization. 
This selection of the internal criterion, encoded in the activities of bias neurons, is used to gate 

the bottom-up weights of the F,—F, ART network. Thus this neural network combines 

reinforcement signals with its past experiences to dynamically modify its internal criterion for 

categorizing input objects. The decision and ambiguity neurons were added to the Levine-Prueitt 

model to enable this network to function in a continuous nonalgorithmic fashion in a dynamic 

environment (Ogmen & Prakash, 1992, 1993: Ogmen, Prakash, & Moussa, 1992). The 
categorization layers (F, and F,) of the ART network can generate transients due to competition 

amongst the category neurons during categorization. If this network were interfaced with other 

systems, these transients could introduce undesirable effects. To avoid this, a decision layer was
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added. The decision neurons, which form a feedforward on-center-off-surround network, filter 

transients and pass only the steady-state decisions of the ART network to other systems. 
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Fig. 18.8. The top three panels ilustrate the activities of the output neurons of the atlentive scanning network 

(see Fig. 18.6) sampling the three objects shown in the last panel. The network intermittently scans these 

three objects until their novelty wears out.
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Fig. 18.9. Input object shown at the bottom of the figure has to be categorized into one of two categories 
whose templates are shown at the top of the figure. The template at left may be for example for "good 

objects" that the system has learned to pick; the template at right may be for "bad objects" that the system 

has learned to avoid. The categorization here is ambiguous in that if color is taken as criterion then the input 
is a good object but if shape is taken as criterion then the input is a bad object. 

When the prior history of reinforcement and habits does not allow to resolve ambiguities 
such as the one illustrated in Fig. 18.9, the ambiguity neuron resolves the conflict by biasing one 
of the categories. The ambiguity neuron monitors the decision neuron layer to determine if the 
input object has been categorized within a certain duration of time. This monitoring is achieved 
by integrating a constant input that indicates the presence of an input to be categorized. When 
a categorization is made, the integration is reset. However, if the network fails to reach 
categorization before the integration reaches a threshold value, the ambiguity neuron generates 
an output that biases one of the possible categories over the others. 

In our simulations, objects presented to the network had three features and each feature 
had four possible types. For example, four possible colors could be blue, red, green, and yellow. 
This is illustrated graphically in Fig. 18.11, where for definiteness features are interpreted as size, 
color, and shape. Thus 4 x 4 x 4 = 64 distinct objects could be presented to the network. Each 
object is graphically represented by a three-dimensional vector as shown in Fig. 18.11b. Four 
different bar patterns (solid, thick stripe, thin stripe, and thick-thin stripes) are used to represent 
graphically the four possible types of each feature. The first object shown in Fig. 18.11b consists 
of thick-stripe, solid, and thin-stripe bar patterns. The first thick-stripe bar implies that the object 
is of medium size, the second solid bar implies that the object is blue, and finally the third 
thin-stripe bar implies that the object is a circle. Similarly, the graphical representation for the 
second object consisting of thick-thin-stripe, thick-stripe, and solid bars implies that the object 
is a huge red square. Another aspect of stimuli is the length of time they were presented to the
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network before a categorization was made. This duration is represented graphically by the width 
of the bars. 

The lower part of Fig. 18.12 shows a case in which a medium blue circle was presented 
to the network between 5 and 10 time-unit followed by a huge red square that was presented 
between 40 and SO time-units. The output graphs shown in Fig. 18.12 plot the activity of the 
four category neurons (in layer F, of the network in Fig. 18.10), each representing a particular 
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type a feature can take. By comparing the feature types of the medium blue circle shown in Fig. 

18.12, one can see that it can be categorized to category 2 if size is used as the criterion (medium 

is the second type of feature size as shown in Fig. 18.11), to category 1 if color is used as 
criterion (blue is the first type of feature color), and finally to category 3 if shape is used as 

criterion (circle is the third type of feature shape). The activities of the network category neurons 
are plotted by bars that have the same pattern as those used to represent particular types of 

features to allow an easy identification of the network criterion. That the medium blue circle is 

categorized into category 1 because the network used feature 2 (color) as criterion is made 

explicit by the bar pattern used in plotting the category neuron activity. 

The upper three panels of Fig. 18.13 describe graphically the inputs presented to the 

network at different time instants, with each panel representing an input feature as previously 
described. These inputs are categorized into one of four possible categories. Figure 18.14 shows 

the category chosen by the network for a given input. Each panel represents the activity of a 

neuron in the category layer of F, the ART network (see Fig. 18.10). The suprathreshold activity 

implies that the input is categorized to that particular category. Category neuron activities have 

similar styling as the four possible types of each feature as mentioned before. At any instant of 

time, at most one category has a supra-threshold "bar" indicating that the network classified the 
input object to that category. The feature used by the network to categorize the input can be 

identified by comparing which of the first three panels of Fig. 18.13 has a bar pattern similar to 

the category panel at the given instant. The first input presented to the network is a medium, 
blue circle represented by the thick-stripe, solid, and thin-stripe bar patterns. 

The network categorizes this input to category 3 represented by a thin-stripe bar as shown 

in Fig. 18.14. Thus the internal criterion used by the network was feature 3. The fourth panel 

in Fig. 18.13 represents the reinforcement signal given to the network for its behavior 

(categorization). Initially feature 3 was used by the network to categorize the objects, but on 
receiving two consecutive negative reinforcements at around 380 time-units and 430 time-units 

the network shifts its internal criterion to feature 2. Positively reinforcing the network causes 

it to continue the use of feature 2 as the criterion for categorization. This can be verified by 

considering the input presented to the object just prior to 600 time-units. The input is a huge, 

green circle represented by thick-stripe, thin-stripe, and solid bar patterns, respectively. 

Comparing the category neurons outputs at the same time interval, category 3 neuron’s activity 
represented by thin-stripe bars is above threshold. Thus feature 2 has been used as the criterion 
to classify the input object. Later, a change in the internal criterion to feature 1 is achieved by 

issuing negative reinforcements. This can be verified by observing that the network has 

categorized the object presented just after 1000 time-units using feature 1 as the criterion. 

The upper three panels of Fig. 18.15 display the activities of the bias neurons (see Fig. 
18.10) for the three features used as categorization criteria. These neurons integrate the 
reinforcement and habit signals to modulate the internal criterion used by the network. Initially, 
because the criterion used by the network was feature 3, the bias neuron 3 is active (the dashed 

line represents threshold). After receiving negative reinforcement signals, the activity of bias 

neuron 3 falls below threshold. This results in a rise in the activity of bias neurons 1 and 2 
toward the threshold. Positive reinforcement issued to the network for using feature 2 causes the
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Fig. 18.13. The first three panels describe the features of inputs presented to the network at different time 

instants. Each input possesses three features (¢.g., size, color, and shape) and each feature can take one of 

tour possible values (types). Hence 64 different inputs can be presented to the network. Each of the first 

three panels represents a feature. The four different styles of bars in cach panel represent the four different 

types of a given feature (¢.g., for color they may correspond to blue, red, green, and yellow). At any instant 

of time, the bars represented by the three panels describe the properties of the input presented to the network, 

for example, the first input is of type 2 of feature 1, type 1 of feature 2 and type 3 of feature 3. The 

categorizations performed by the network are presented in) Fig. 18.14. The last panel describes the 

reinforcement signals delivered to the network in response to its categorization of the object.
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Fig. 18.15. The top and bottom three panels plot the activities of the bias and habits neurons, respectively, 

of the good-bad categorization network. 

activity of bias neuron 2 to increase above threshold. Similarly, later when the network uses 
feature 1 and is rewarded, the activity of bias neuron 1 rises above threshold. The lower three 
panels display the activity of the habit neurons (see Fig. 18.10). These neurons encode how 
many times a given feature was used to categorize objects. Initially the activity of habit neuron 

3 increases as feature 3 is used by the network to categorize the objects. However, as features 
2 and 1 are later used for similar durations, the activities of the three habit neurons are nearly
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the same. Notice also the slow decay of habit neurons when the corresponding feature is not 

used, illustrating that previous experiences are not easily forgotten. 
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3.4. Object-Type Categorization, Object-Type Novelty, and Target Selection 

Figure 18.16 shows the architecture of object-type categorization, object-type novelty, and 
target selection modules shown in Fig. 18.4. The first two layers in the lower left part of the 
figure correspond to a categorization network (ART) that categorizes inputs into different object 
types, and the third layer is a buffering layer similar to the layer shown in Fig. 18.10. The
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output of each buffered category neuron feeds a gated dipole to produce an object-type novelty 
detection. Finally, the outputs of these gated dipoles feed to a winner-take-all target selection 

network, which makes the decision regarding the object to be grasped. The decision is buffered 

and sent to motor control circuits. An additional input from the good-bad categorization network 

biases the competition in the target selection layer by inhibiting (exciting) negatively (positively) 

reinforced objects. 
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Fig. 18.17. Effects of positive reinforcement. 

Simulation results shown in Fig. 18.17 illustrate how positive reinforcement can bias the 

target selection process. The lett column shows the timing of visual (input 1 and input 2) and 

reward inputs that were delivered to the network. The upper two panels in the right column plot 
the activities of two neurons, x(1,3) and x(2,3), in the winner-take-all network of Fig. 18.16.
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Because these two neurons compete, only one can be suprathreshold at a given time. When 

activity of x(1,3) (x(2,3)) goes above threshold, the system selects input 1 (input 2). When input 

1 is introduced, the network selects and grasps this input object. When input 2 is introduced, the 

network selects this second object. The novelty of the second input biases the competition. The 
activities x(2,3) and x(1,3) go above and below threshold, respectively. When input 2 is 
removed, the network switches back to input 1. Now, while the network has selected input 1, 

a positive reinforcement is delivered for about 20 time-units as shown in the bottom panel of the 

left column. After this reinforcement, when input 2 is introduced again, the network continues 

to select input 1 although input 2 is relatively more novel. This is the result of the previously 

delivered positive reinforcement that the network associated with input 1. The bottom right panel 

shows the synaptic weight by which the positive reinforcement is encoded into the long-term 

memory of the system. 
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Negative reinforcement, on the other hand, yields opposite effects, as shown in Fig. 18.18. 
When an input is associated with punishment, the network learns to avoid that input. Even when 
the input reappears much later, its novelty is not strong enough to bias the network to select it. 
Thus the network learns to avoid punishing inputs even though they could be relatively more 
novel. The effects of both punishment and reward fade away with time if further reinforcements 
are not issued, and eventually novelty dominates. As one can see by comparing the decay of 
Synaptic weights associated with positive and negative reinforcement, our parameter choice 
implied a longer retention of negative reinforcement. The connections from good-bad 
categorization network to the winner-take-all target selection layer are learned. Encoding of the 
short-term memory activity (STM) of the reward ("good") neuron into long-term memory (LTM) 
follows the classical Hebbian learning rule with decay. This is possible because the reward node 
is connected via excitatory connections to neurons in the target selection layer. As a result, when 
reward is delivered this reinforces the activity of the postsynaptic neuron that is suprathreshold 
(thereby crediting reward to the current choice). This creates a sustained temporal correlation 
of pre- and postsynaptic activities as required by Hebbian learning. 

However, the "punish node" ("bad") has inhibitory connections with the neurons in the 
winner-take-all circuit to depress the activity of the neuron that is above threshold. As a result 
of this inhibitory effect, pre- and postsynaptic activities remain simultaneously active only for 
a brief period of time. This leads to an ineffective coding of the punish neuron activity into 
LTM via a Hebbian learning rule that requires a temporal correlation of pre- and postsynaptic 
activities. To avoid this problem, a delay neuron whose STM trace follows a delayed version 
of the suprathreshold activity of the postsynaptic neuron is introduced along with a modified 
learning rule which is given in the Appendix. Simulations iustrating this learning process are 
presented in Fig. 18.19. Although there is very little temporal overlap between post- and 
presynaptic activities (x(1,3) and punish node, respectively), the overlap between the delay neuron 
and the punish node enables the coding of negative reinforcement into synaptic weights. 

4. CONCLUSION 

In summary, we argued in this chapter that the strict notion of Optimization is neither a 
proper tool of analysis nor a proper tool of design for interactive systems evolving in a dynamic 
and complex environment. The major shortcoming of the optimization technique comes from 
its inability to capture in an a priori fixed function the "goals" of the system. 
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APPENDIX: EQUATIONS AND PARAMETERS USED TO MODEL THE TARGET 

SELECTION NETWORK 

A.1. Spatial Novelty and Attentive Scanning 

The spatial novelty network is implemented using an array of gated dipole networks. The 
differential equations for the transmitter nodes vz,, and vz,, of the gated dipole are given by 

dvz. 

7 = a(BP-vz,)-y¥CU+J5,)vz, = 1,2,-,0 

dvz 
= = a(B-vz,.)- ylvz,, t=1,2,--,n 

where @ is the transmitter replenishment rate, (} is the maximum amount of transmitter, y is the 

rate of transmitter depletion, / and J; are the background and specific inputs, respectively, and 
vx,, and vx;, are respectively the "ON" and "OFF" channel neurons of the i gated dipole.’ 
Shunting equations have been used to model the "ON" and "OFF" channel neurons vx, , and VX; 9: 

dvx. 
1 

| 
it = ~Avx, +(B-vx; )(1+J,) vz, .- vx, 1vz, 4 t=1,2,~,n 

davx. 

where A is the passive decay rate and B is the upper saturation level of their activities. The 
outputs of the spatial novelty network feed into the vx,, neurons of the winner-take-all layer, 

  

Note that although we implemented a two-dimensional array of gated dipoles, tor simplicity the equations 
are written using a single spatial index ¢.
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which along with delay and inhibitory layer neurons s, and J, respectively, regulate attentive 

scanning. The equations for the neurons in these three layers are 

  

dvx, , 
a = -A,vx,, + (B- vx, ,)(C, vx, , +G,8(vx, ,-9)) 

-vx, (+H) f(vx, 5-8) +C, vx; ») i=1,2,--,n 
jei 

ds, 
ro = -As,+(B, -5,)G,g(p, ,- 9,) -5,H,8(a-8,) i=1,2,--,n 

dl, 
—! = -Al,+(B,-1)G,g(s,-8,)  i=1,2,~,n 
dt 

; (5.5x)° . ; 
with f(x) = u(x) and g(x) = xu(x), where A, and A are passive decay 

(0.001 + (5.5x)>) 
rates; B, and B are the upper bounds for activity; H,, C,, G,, G,, and G, are positive gains; and 

8, 8,, and 8, are threshold constants. The term u(x) is the unit step function. @ is the arousal 

neuron which inhibits scanning until the currently attended object is classified. The neurons p;,, 

form the decision layer that buffers transients generated during competition. The equations for 

the arousal neuron and the neurons in the decision layer are presented below. 

2 
da 
at = ~A,a+(By-@)Arousal-aG,) 8,(P; ,- 95) 

j= 

dpx, , . 

dt ~ - App, , + (B,-P,,) Wa (vx, ,-8)-p, Wy 8(vx,,-9) Ej=1,2,-,n 
iti 

with g,(x) = 10.0u(x), where A, and A. are passive decays, B,, and B, are upper bounds for 2 f p | 2 

activity, W and G, are gain constants, 6, is a threshold, and Arousal is a constant positive signal. 

P, Neurons are the decision neurons of the good-bad categorization network. 

A.2. Good-Bad Categorization Network 

This network, which categorizes objects based on experience and reinforcement, consists 
of a cascade of ART networks; the first ART network (F,-F,) ascertains which features should 
be used for categorizing the inputs, and the second ART network (F,-F,) categorizes the 

categories obtained from the first ART network into good and bad categories. The neurons in 

layers F,, F,, and F, are represented by bx,, by, and bz,, respectively. Previous experience is 

encoded by the habit neurons A, which, together with external reinforcement signals R* and R’, 
modulate the selection of the categorization criterion via bias neurons Q,. The match neurons 

@, correlate the nonspecific reinforcement signals with the relevant decision criterion, thus
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ensuring an appropriate credit assignment. The activities of the F, layer neurons are buffered by 
the layer of p,, neurons before they go to the other two networks. The ambiguity neuron a 
ensures that a decision is reached in case of uncertainty. The differential equations for this 
network are 

  

  

  

  

  

dbx 3 : a = -Abx,+(B-bx,)[1,+ > f(by,)bu;,)- bx) f(by,) +0, i= 1,2,--,12 
j=1 f=1 

dby, 2 1 <= = -A by, + (B-by,)[f(by,-9,)+ >> BO sea Px) PMs 
i=1 4 

2 

+ W,(a-0,)' bv,+ >> f(bz,) bu; ;] 
k=1 

2 

- by, (> f (by, - 8,)+ © f(bz,) +0 f= 12,44 
rej k=] 

dbz 
Fe 7 Aba +(B-bz,)Uf(bz,- 04) + > a(by,) bw) 4] 

j=) 
-bz, [> f(bz,-8,)+I]  k=1,2 

rék 

dQ 
a = -E(Q,-6,) +((F-Q,)[(h,-8,)’ +aR*+2(Q,)] 

-Q,[aR°+GY> g(Q,))F(®,) k=1,2,3 
rek 

dh 
= = Hh, {(J-h,)(®,-8,)° -(®,-98,) 7], k=1,2 

d® 4k 4 \ 

* = -A®,+(B-®,) dL 18 (by,- 85) bu, ,|- 1 k=1,2,3 dt i=4k-3 j= 
dp, ; 
7 = AP La * (BP 2)8(B%- 86) ~ Pra] De (02-06) +1) i=1,2 

jei 
“ = -Aa +(B-a)>- g,(1,)-alY> 8 (p, ,-9,) +1] J=1,2; i=1,2,---,6 

i Jj 

with fx) = 11 + e PO), [x]t = xu(x), [x] = -xu(—x), g(x) = xu(x), and g,(x) = u(x-0.05), 
where A, A,, and E are passive decay constants; B, F, and J are the upper bounds for activity; 
Tis a reset signal; w,,' and w,,? are fixed bottom-up weights and u,; and u,.” are fixed top-down 
weights for the two ART networks respectively; a, Y, G, H, and W, are positive gain constants; 
01, 9,, 83, 6,, 05, 8,, and 6, are positive threshold constants; /, is the Input feature-vector of the 
object; and by, are fixed weights from the ambiguity neuron a to the F, layer neurons. These 
weights filter the ambiguity neuron feedback that biases one of the category neurons in situations 
where the input object cannot be uniquely categorized to a particular category.
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A.3. Object-Type Categorization, Object-Type Novelty, and Target Selection Network 

The object-type categorization network is an ART network. The terms fx, and fy, denote 
the activities of the neurons in the input and category layers of this ART network, respectively. 

The various object-type categories are buffered by the layer of p,, neurons to filter transients 
generated during categorization. The output of the buffered layer is fed to the object-novelty 
network via a layer of slowly decaying neurons q, which memorize previous occurrences of 
similar object type. The differential equations for the object-type categorization network are: 

dfx, 
64 64 | 

— -Afx, + (B-fx,) (+o FY) Fu; )- 4, FY) +D i=1,2,--,12 

/=1 j=l 

dfy. 12 | 

dt = -Afy, + (B-fy) GUY) +d) ae) fw, j-fy,C fy, - 9) +1) j= 1,2,-,64 
i=l rey 

dp. i = -Ap, ,+(B-p; 3) W,g(by,-9,)-p, 40), g(by,-8,)+1), i=1,2,--,64 

jei 

“U4 g,+(B = 1,2,-,64 dt qi * ( -Qi)P; 3 b=1,2,-, 

with f(x) = 1/1 + eP°) and g(x) = xu(x), where A and A, are passive decay constants; B is 
the maximal activity of the neurons; J; are the components of the input feature-vector and / is the 

reset signal; w;, and u,; are the bottom-up and top-down weights of the ART network, which are 

fixed; and 8, and 9, are threshold constants. The novelty network comprises of an array of gated 
dipoles similar to the spatial novelty network where cz,, and cz,, are the "ON" and "OFF" 
channel transmitter nodes and cx,, and cx,, are the output neurons of the "ON" and "OFF" 

channels, respectively. The differential equations for the object-novelty network are 

dcz, 

ie = a(B-cz,,)-v[1+8,(9,-9;,)]ez,,  §=1,2,-,64 

dcz, 
OC% 2 = a(B -cz, 2)-vIcz, » i=1,2,--,64 

dt 

d 

7 = ~Acx, ,+(B-cx, ,)[1+8,(q;- 83) ]¢z, ,-x, fez, i= 1,2,-,64 
dcx 

at = ~Acx,,+(B-cx; ,)Icz, - cx, ,[1+8,(g,-93)]ez,, §=1,2,--,64 

with g(x) = u(x), where a is the transmitter replenishment rate, i is the maximum amount of 

transmitter, y is the rate of transmitter depletion, / and q; are the background and specific inputs,
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respectively, A is the passive decay constant, B is the maximal activity of the output neurons, and 

8, is a threshold constant. 
The target selection network consists of a winner-take-all layer of neurons x, ;, and weights 

the novelty of the object versus its good-bad qualities. The p,, neurons ensure that the novelty 

and behavioral qualities of the same object are compared by the cx,, neurons. A buffer layer of 

neurons p,, filter transients that occur during target selection and outputs the appropriate motor 

command decision. The equations for these neurons are 

  

  

dcx, 
= = -Acx,,+(B-cx, ,)[ex,,+G,g(cx, ,-8,)+G,p, 2, Pi 3] 

- cx, ,[¢x, » +HY) f (ex, 5-84) + Gp, 2; Pi 3] i=1,2,--,64 
jri 

dp, , 
7 = - AP; 4+ (B-D, 4) W,8 (cx, 3-8) -P 4M 8(cx, 5-9) i,j=1,2,--,64 

Jt 

,; (5.5x) . , ; 
with f(x) = u(x) and g(x) = xu(x), where A is the passive decay rate, B is 

(0.001 +(5.5x)°) 
the upper bound of neuron activity, G,, G,, H, and W,, are positive gain constants, 0, is the 

threshold constant, and p,, and p,, are the output of the good-bad categorization network. 

The good-bad properties of a given object are encoded in the weights from the category 

neurons to the respective object-type novelty neurons. w,, and w,, encode these good-bad 

properties of a given object and y. neurons trace the activity of the x,, neurons of the object-type 
novelty network. The learning rule for the excitatory weights and the modified learning rule for 

the inhibitory weights are 

  

dw 
a = -A,(w, ,- 85) +(M-w, ,)B,8(, .- 96) 8 (cx, 3-94) +C, 

dw 
7 = ~A,(w, ,- 95) +(M-w, ,)B,8(p, .-96)8(y, - 85) +C, 

dy 
Fr = -A,y,+(B-y,)g (cx, 5-94) 

where A, is the passive decay constant, M and B are the maximum values of the weights can 

assume and the maximum activity of the trace neurons, respectively, 6, 6,, and 0, are positive 

threshold constants, By, is a positive gain, C, is a positive constant to ensure that the weights 
never go to zero, and p,, and p,, are the output neurons of the good-bad categorization network. 

The parameters for spatial novelty and attentive scanning network were: a = 1.0 x 10°, 

y = 1.0 x 10°, B = 10.0, 7 = 1.0, J, = 1.0, Arousal = 3.0, A = 1.0, A, = 0.1, A=10.0, A, = 5.0, 
B= 1.0, B, = 5.0, B, = 2.0, C, = 0.1, G, = 3.0, G, = 500.0, G, = 2.0, G, = 10.0, H = 0.15, H, 

= 100.0, W = 100.0, 6 = 0.24, 8, = 0.6, 8, = 0.4, 8, = 0.55. The parameters for the good-bad
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categorization network were A = 1.0, A, = 0.001, B = 1.0, E = 0.01, F = 3.0, G = 10.0, H = 

0.001, 7, = 10.0, I = 10.0, J = 3.0, W, = 50.0, a = 0.01, 6, = 0.9, 8, = 0.1, 6, = 1.0, 8, = 0.30, 
8, = 0.20, 0, = 0.25, 8, = 0.60, Y = 10.0. The parameters for object-type categorization, object- 

type novelty and target selection network were A = 1.0, A, = 0.0001, A, = 0.01, B = 1.0, B, = 

0.5, C, = 0.01, G, = 0.05, G, = 0.5, H = 95.0, 1 = 1.0, J, = 1.0, | = 10.0, M = 2.0, W, = 10.0, 

a = 0.01, y = 0.01, B = 10.0, 8, = 0.3, 6, = 0.25, 6, = 0.3, 6, = 0.22, 6, = 1.0, 6, = 0.55, 8, 

= 0.1.
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Gershom-Zvt Rosenstein’s chapter, The Income-Choice Approach and Some Unsolved 
Problems of Psychopathology — A "Bridge Over Time,"' is an application of the author’s 
general theory of the brain's affective (reward and puntshment) systems that posits a biological 

variable called income that the organism tries to maximize. His income, defined by analogies 

between psychology and economics, is some "inverted-U" shaped function of the intensity of 

stimulation of the brain's affective systems. Hence, there is some optimal level of stimulation, 
and the organism tries to avoid being overstimulated or understimulated. 

In this chapter, Rosenstein attempts to apply the income-choice approach (ICA) previously 
developed in his 1991 book to understanding many aspects of schizophrenia: for example, positive 
and negative symptoms, stereotyped behavior, and spontaneous remissions. He sees most of the 
symptoms of schizophrenia as attributable to attempts by the organism to maximize income in 

the face of abnormally high affective stimulation. This is of particular interest to those of us 
studying the riddle of optimality, because mental illness is often seen as an exaggeration of 

suboptimal behavior in normals (see, e.g., the discussion of frontal lobe damage in Levine's 

  

' For 15 years (1973-1988) G.-Z. Rosenstein was excluded from organized scientific life because he was a 

"refusenik" in the former Soviet Union — with no right to leave the country and with no scientific position because 

of desire to do so. That is why this article, in which we atlempt to unite old findings with the modern state of the 

art, can be seen as a "bridge over time."
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chapter). Rosenstein, by contrast, describes schizophrenic behaviors and ideations as an optimal 

response to an abnormal biochemical environment in the brain. 

This chapter does not include a detailed neural network theory of the various subcortical 

areas involved in schizophrenia (mainly, those of the dopaminergic reward system). Nor does 

if indicate the network processes by which an expectation of income is calculated and influences 

the positive or negative associations that a person develops to particular sensory stimuli. 
Rosenstein does, however, connect the ICA tentatively with a version of the "dopamine 
hypothesis" of schizophrenia, by identifying one form of income with dopamine inputs to the 
nucleus accumbens. He states that there are other forms of income as well, and leaves a more 

definite biological identification of income to future work. 

The main contribution of lis book was specifying an abstract mathematical function that 

could serve as a useful organizing principle for some theories of neural control of behavior in 
normal and abnormal biochentcal environments. This chapter extends this work by applying it 
to problems of schizophrenia. It also suggests an approach to therapy for schizophrenia, based 
on restoration of normal stimulation, or compensation of abnormal stimulation, by increase or 

decrease of stimulation, by means of increase or decrease of stimulation of selected subdivisions 

of the brain's affective system. 

ABSTRACT 

This chapter aims to outline a unified approach to several unsolved problems of 

behavioral regulation, mainly related to the puzzle of schizophrenia. The income-Choice 

approach (ICA), proposed originally in the 1970s, has recently been summarized in a book 

(Rosenstein, 1991). One of the main problems to which this approach has been applied is 

modeling behavior disturbances. 
Biological income? is a basic variable in the control of biological systems hypothesized 

by the author. This idea is modeled after the notion of money in economics with its all- 

penetrating role in regulation of market activities (including financial market and market of 

information) by price of money variations (inflation-deflation mechanism). Biological income 

is suggested to play a similar role in biological control and choice of behavior on different levels 

of biological organization. The income can be presented in many forms, accumulated, and spent 

on all kinds of activities of the brain and organism. The goal of the model is to maximize the 

income function in the course of the model's lifetime. In Rosenstein (1991), the income is 

defined by assumption on intensities of streams of impulses directed to the reward system. In 

this chapter, besides this dynamic form of representation of "money" in the model, we discuss 

dopamine (and some other substances) as candidates to represent income in a form stable enough 

to be accumulated and distributed among brain subnetworks. 

Specifically, the ICA is applied to modeling the following problems (see Table 19.1): 

  

9 . . . . . one . . . . . . 

~ This income is of the marginal utility function type used in economics to describe, for example, the value of 

utility of a product as dependent on its quantity.
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- The causes of catecholamine distribution change in the schizophrenic brain 
* The role of dopamine in information processing 

* The fact that in schizophrenics, observations prevail over expectations 

- The anhedonia hypothesis of neuroleptic action 

* Explanation of the nature of stereotypic behavior in comparison with adjunctive-type 

behavior 

* The origin of the so-called "positive" and "negative" symptoms in schizophrenia 

No. Problem 

1 Catecholamine distribution 

2 Positive symptoms in schizo- 

phrenia 

3 A main difference between 

the psychology of normal and 

schizophrenic subjects is that 

in schizophrenia "observations 

prevail over expectations." 

4 Anhedonia hypothesis (AH) 

5 Adjunctive behavior (AB) 

Question Answer 

What causes it? CDC phenomena in the schizophrenic brain can 

be caused by augmented streams of impulses (ASI) 

directed to the reward system, In agreement with our 

model (Rosenstein, 1991, 1994; Vaisbord & Rosenstein, 

1968a, 1968b). 

Why are they Positive symptoms can cause increase of income or pre- 

produced by the vent decrease of income when ASI reduce the value 
schizophrenic? — of external sources of income. This is why schizo- 

phrenics produce these symptoms when the brain’s inner 

market needs them. 

Why is this "Observations prevail over expectations" can be seen 

property associ- be secn as a metaphorical description of a theorem 

aled with schizo- proven earlier (Glazunov et al., 1971; Rosenstein, 

phrenia? 1991), in which this property (called "flat mind effect") 

is obtained from our model. 

Can it be sup- Yes. Itseems that AH should be raised to the rank of 

ported by the "theory of anhedonia" because it was presented as a 

income-choice — theory of the phenomena independent of the experi- 

approach (ICA)? mental results from which AH was deduced. 

What is the nat- AB is a subset of the set of behaviors whose common 

ure of AB? property is to be conterred directly with the regulation 

Why does it of the reward system. This idea can be proven by 

occur? experiments with reward system activily registration 

ata time when the animal is producing adjunctive 

behavior. 

Table 19.1. Summary of Basic Topics in This Chapter. 

1. INTRODUCTION 

During the years 1963-1972, the income-Choice approach (ICA) to the problems of 
biological regulation was developed in Moscow by the author and his colleagues (the complete
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bibliography is given in Rosenstein, 1991).° According to the ICA, a reward system calculates 
a certain function (income function of our model) defined on the set of intensities of streams of 
impulses directed to the nucleus of the reward system. The proposed income function is of a 

kind known in economics as a marginal utility curve (MUC) (Fig. 19.1). The input and output 

activities of the system are regulated to maximize the expected income. The streams of impulses 

directed to the reward network are seen as one form of "money" in our model. Other forms of 

"money," more stable and that can be stored, include dopamine and maybe other biochemical 
substances as endorphins. The bioeconomic metaphor as a whole has yet to be adjusted to the 

working brain. The types of currencies, storehouses, currency exchange structures, and so on, 
can be only preliminarily assigned today to definite substances and constructions in the brain. 

The marginal utility curve is of the same type (Fig. 19.1) for each form of currency, not only for 

streams of impulses directed to the reward system.** 
This kind of change of optimal behavior (or of the set of optimal behaviors) under the 

influence of augmented (in comparison to the norm) streams of impulses (ASI) is interpreted as 
a "behavior disturbance" in our model. Note that the same MUC-type income function is 

foreseen for other forms of inner "currency" too (as dopamine), besides the streams of impulses 

directed to the reward network. 

According to our assumption, income is being accumulated, distributed, and spent on 

different activities of the system. Some types of income functions were discussed earlier (Rosen- 
stein, 1991; Vaisbord & Rosenstein, 1965, 1967). It was shown that ASI directed to the reward 

system can change substantially the set of optimal behaviors in our model (Glazunov, Rosenstein, 

& Jablonsky, 1971; Glazunov et al., 1972; Rosenstein, 1991, Chapter 6). This effect is 

recognized in the model as a behavioral disturbance. 

Models of behavior disturbances (Glazunov et al., 1971, 1972; Rosenstein, 1972, 1991; 

Vaisbord & Rosenstein 1968a, 1968b) and of epileptic-type seizure control (Antik, Arshavskii, 

& Rosenstein, 1972; Arshavskil, Meshman, & Rosenstein, 1972; Meschersky & Rosenstein, 1969; 

Rosenstein, 1969, 1991) were proposed in the framework of ICA. 

According to our approach, each one of the possible causes of schizophrenia proposed by 

existing different theories of the illness causes direction of ASI to the reward system or to 

reduction of existing stimulation, thus incurring the phenomenology of schizophrenia. This basic 

phenomenology, that is, the substantial deviation from the set of comprehensible to all ("normal") 

  

* The reader is advised to look at Chapters 1, 4, 6 and 7, Introduction and Conclusion in the 1991 book in the 
course of reading the present chapter. 

The universal character of this U curve is connected to the optimal behavior of systems with limited resources. 

See discussion and examples in Rosenstein (1991), Chapter 1. 

> After the first draft of this chapter was written, there appeared a chapter by Liddle (1994), where he wrote: 

"In rats, the level of locomotor activity produced by administration of dopamine agonists follows a U-shaped curve. 

As dose increases there is initially an increase in amount of activity bul, at higher doses, total activity decreases as 

the animal become engaged in repetitive, stereotypic activity.” See below our discussion of the cause of stereotypic 

behavior in schizophrenics. In the same chapter by Liddle, a discussion can be tound about volition and dopamine 

in schizophrenics that is of interest from the ICA angle.
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behaviors, can be "colored" by the specificity of the particular reason because of what caused the 
stimulation of the reward system to change (whether it is a stress-producing event reflected in 
the memory of a subject, a physiological reason, or a change genetically programmed at a certain 

age in the intensity of streams of impulses from a particular source directed to the reward system, 

etc.). In case of a stress-producing event, for example, the reflection of the event in the memory 

of the subject can become a source of additional stimulation switched on by associations 

connected to the contents of the event. Various types of therapy used in psychopathology 

(particularly in the treatment of schizophrenia) could be seen to correspond with possible methods 

of interruption or compensation of ASI in our model (Rosenstein, 1991; Vaisbord & Rosenstein, 
1968a, 1968b). 
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Hig. 19.1. Income function of marginal utility curve (MUC) type. Terminology: W(a), MUC-like income 

function; a1: density of stream of impulses directed to reinforcement center if the system chooses behavior 

1; a2, density of stream of impulses directed to reinforcement center if the system chooses behavior 2; Aa, 

density of augmented stream of impulses (ASI) directed to reinforcement center; Wal), income received by 

system if behavior 1 chosen; W(a2), income received by system if behavior 2 chosen; W(al+Aa), income re- 

ceived by system with ASI directed to reinforcement center if behavior | chosen, W(a2+Aqa), income received 

by system with an additional center as if behavior 2 was chosen. Without ASI, W(a,) > W(a,), hence 

behavior 2 is preferred. However, W(iu2+Aa) < Wial+Aqa), so with ASI, behavior 1 is preferred.
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According to today’s popular opinion, in schizophrenics observations prevail over 
expectations. This trait of schizophrenic phenomenology (as opposed to normal behavior) is seen 
in learning and conclusion-making tests, such as the Charpentier delusion formation. This trait 
was deduced formally from our model (Glazunov et al., 1971; 1972; Rosenstein, 1991), in which 
the following property was found: The a posteriori distribution of probabilities formed when a 
system with disturbed behavior learns is "closer" to the even distribution than a distribution 
formed when a "normal" system learns. This means that the "disturbed" network can perform 
better in dealing with novel information than the "normal" one (Glazunov et al., 1971, 1972). 

It should be admitted that the modern knowledge of reward networks is yet far from being 
sufficient even in the case of animals, not to mention humans. The notion of income was 

proposed by generalization of limited information obtained from experiments with self-stimulation 

and on the basis of bioeconomic metaphor. One can hope that the applications of income 

presented here can stimulate further studies, and that new income-dependent phenomena will be 
discovered in biological control systems on different levels of their organization. 

2. INCOME-CHOICE APPROACH (ICA) AND NEUROPHYSIOLOGY OF 

SCHIZOPHRENIA 

Our model of behavior disorders (Glazunov et al., 1971, 1972; Rosenstein, 1972, 1991; 

Vaisbord & Rosenstein, 1965, 1968a, 1968b) contains the following basic axioms and theorems: 

1. The model is a system (network) whose goal is to maximize the predicted income 
accumulated during the lifetime of the system. The duration of the life of the system can depend 
on its turn on the quantity of accumulated income. 

Several examples of functionals that can be maximized by biological systems of control 

are discussed in Chapter 3 of Rosenstein (1991). For example, it can be the predicted income 

accumulated by the system in any moment during its lifetime. In humans these goal-functions 

can be to some extent reprogrammed consciously or subconsciously. In animals, the possible 
reprogramming is much more limited and can be done mostly under external pressure. 

2. The income function is of the marginal utility curve (MUC) type (Fig. 19.1). As 

depicted in economic models, it reflects the fact that the derivative of the value of a commodity 

(including money) decreases with an increase in quantity of the commodity (for large enough 

quantities of the commodity possessed by the system). In the general case, it is connected to 

limitations on resources. Examples of optimal control with such limitations are discussed in 
Chapter 1 of Rosenstein (1991). 

The impulses sent to the reward system are seen as one of the forms of "money" in our 
model. 

3. The income of the model is calculated by its reward network. In the variant of the 

model we dealt with in Rosenstein (1991), income is dependent on the stream of impulses sent 

to the reward nuclei at a given moment and on the background intensity of stimulation of these 
nuclei. As stated above, the additional experimental information is needed to develop other 

variants of reward networks. In particular, the interaction of several reward nuclei should be 
taken into account. In the book (Rosenstein, 1991), it was done only in a preliminary way for
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  two — a "positive" and a "negative" nucleus (see Rosenstein, 1991, Chapter 1). In this chapter 

we discuss dopamine as another possible form of biological income. 

4. Disturbed behavior is caused in the model by additional (augmented) streams of 
impulses (ASI) directed to the nucleus of reward system. These ASI can originate from many 
different causes. (A similar idea can be applied to other forms of inner currency of the organism, 

too, if the corresponding reward structures for these forms of currency is discovered). 

It was shown for a particular example of income function where formal analysis has been 

done (Rosenstein, 1991, Chapter 6) that ASI can change the optimal behavior in a substantial part 

of all possible cases. It is an important hint from the side of the theory of optimal control that 

our hypothesized additional stream of impulses directed to the reward network can be the real 
cause for the disturbance of the behavior in the model. 

5. A number of existing theories of schizophrenia refer to different causes of the illness. 

And according to the ICA, each of them should cause a substantial change in the set of impulses 
directed to the reward network. This change can be constant or conditional, that is, dependent 

on time or on some events in the inner physiological world of the sick person. (It is obvious that 

these physiological events can be in their turn produced by psychological, genetic, or in some 

cases even by social factors.) 
6. The normalization of behavior in our model is related to restoration of the set of 

streams or compensation of ASI directed to the reward system. The compensation can be 
provided by a stream of impulses directed to the competing nuclei of the reward system. 

Existing modes of treatment for schizophrenia appear to correspond with various forms of 

interruption and/or compensation of ASI. 

7. It was shown that a characteristic trait of the procedure of learning’ is that the speed 

of formation of the a posteriori distribution during learning in a system with "disturbed" behavior 

is Slower than in a "normal" one. We call this phenomenon the flat mind effect (FME) in 

schizophrenia.’ FME is due to the fact that in our model the reward calculated by the reward 

system of the schizophrenic brain is usually smaller than in the normal brain. The effect is 

caused by ASI directed to the reward system of the schizophrenic brain and by nonlinear 

character of income function that is of the marginal utility curve (MUC) type (see Fig. 19.1, and 

also Fig. 19.3 below). It leads to a kind of phenomena that can be seen as inflation of the 

reinforcement. This inflation can be of two opposite signs: hyperinflation or hypoinflation. We 
will see later that it corresponds on the level of human behavior to so-called "positive" and 
"negative" symptoms in schizophrenic subjects. 

  

6 ooo : . 
We refer to the statistical type of learning procedures. 

The difference between the prior and posterior distributions formed by a schizophrenic subject is less than that 

in a normal subject for the same number of learning steps. In particular, the posterior distributions formed by 

schizophrenics are "flatter" than in the norm for the same quantity of steps of learning if the prior distribution is 

uniform. This is called "flat mind effect" (FME). Tt includes the phenomenon known to clinicians as "flatness of 

affect" but is more general.
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2.1. Biological Income, Calculation, and Representation 

The first question we address is: What is the relationship, if any, between the ICA and 

known models of schizophrenia based on the well-established phenomenon of catecholamine 

distribution change (CDC) in the schizophrenic brain?® 
I recently published an article (Rosenstein, 1994) that offered a preliminary answer to this 

question. More complete information follows. 

2.1.1. Income-Choice Approach (ICA) and Catecholamine Distribution Change (CDC) 

Phenomena in Schizophrenia. The ICA approach is perfectly suited to the CDC, although it is 

not limited by it. The ICA presents explanations for a number of contradictions and limitations 

of the CDC hypothesis of schizophrenia and affords a preliminary answer to the basic question 
of why CDC occurs in the schizophrenic brain. 

Involvement of the catecholamine (CA) system in reward mechanisms of the brain is 

already well established (Crow, 1972; Fibiger & Phillips, 1986; Olds & Yuwiler, 1972; Wise, 

1978). The basic facts are the following: 

1. All hypothalamic nuclei contain dopamine (DA). Sizable quantities of DA and 

noradrenalin were found (Axelrod, 1977) in more than 130 nuclei of the cat brain. Some single 

DA neurons are estimated to have over 0.5 million synaptic endings (Anden, Fuxe, Hamberger, 

& Kokfelt, 1966), suggesting that their function is to modulate the activity of large neuronal 

networks (German & Bowden, 1974). 

2. Ascending catecholamine-containing fiber pathways travel through the lateral 

hypothalamic region, from which high rates of self-stimulation are most consistently obtained 

(Crow, 1972). 

3. Modern studies provide in vivo evidence that increased CA release and turnover in the 

limbic system and frontal cortex is a correlate of intracranial self-stimulation at the origin and 

terminations of the mesolimbic and mesocortical CA pathways (Fibiger & Phillips, 1986; Gratton, 

Hoffer, & Gerhardt, 1988). 

4. Drugs that tmpair central CA transmission diminish or abolish self-stimulation 

responses (Poschel & Ninteman, 1966; Fantie & Nakajima, 1987; Fibiger & Phillips, 1986). 

5. Some drugs that enhance the release of CA by nerve activity — for example, 
amphetamines and cocaine — increase the self-stimulation responses (Crow, 1972). 

  

* The most widely accepted pathophysiological explanation for the symptoms of schizophrenia is the "dopamine 

hypothesis," which suggests that schizophrenic symptoms are due primarily to hyperactivity in the dopamine system. 

Neuroleptic drugs have been shown to produce blockade of dopamine receptors in animals. The drugs that produce 

the strongest blockade in animals are also those most effective in reducing svmptoms of schizophrenia in humans. 

Drugs that enhance dopamine transmission, such as amphetamines, tend to exacerbate the symptoms of schizophrenia. 

Functional hyperactivity of the D2 receptor may be involved in producing some of the symptoms of schizophrenia. 

It may be that other neurotransmitter systems are involved in the neurochemistry of schizophrenia as well, such as 

norepinephrine, scrotonin, and gamma-aminobulyric acid systems (Talbott, Hales, & Yudotsky, 1988). From the 

point of view presented in this chapter, this means that the above neurotransmitters may play a role of "money" along 

with dopamine in the whole "market" or in some "submarkets” of the brain.
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6. Studies dealing with specific drive manipulations tend to support the general hypothesis 
that self-stimulation involves the activation of neuronal pathways ordinarily involved with the 

processes of natural reinforcement (Esposito & Kornetsky, 1978; Olds & Yuwiler, 1972). 

To summarize points 1-6, it can be seen that secretion of CA is dependent on electrical 

stimulation of the reinforcement nuclei, and thus the reward impact of these streams of impulses 

directed to the reinforcement nuclei depends, to a large extent, on the speed of DA secretion. 
It means that additional (or augmented) streams of impulses directed to the reward nuclei of the 
brain can cause the CDC phenomenon (Rosenstein, 1994). These ASI directed to the reward 

nuclei were proposed earlier (Glazunov et al., 1971; Rosenstein, 1991; Vaisbord & Rosenstein, 
1968a, 1968b) as the cause for behavioral disorders. 

It has been shown in a number of cases that a change in quantity of CA (particularly DA) 
present in different subsystems of the brain causes substantial changes in the quantitative and 

qualitative character of their productivity. A few examples are found in the following studies. 

Brozoski, Brown, Rosvold, and Goldman (1979) provided direct evidence showing that DA may 

give selective support to a specific cortical function in monkeys; Ljungberg and Enquist (1987) 
showed that the low doses of D-amphetamine that cause a depletion of DA pools have a 

disruptive effect on the ability of rats to organize behavior into functional sequences; Joyce 
(1983) showed that DA depletion in basal ganglia induces a profound hypokinesia in rats, and 

elevated DA causes locomotor hyperkinesia with stereotyped behavior (Iversen, 1977); and Oke 

and Adams (1987) linked elevated thalamic DA with possible sensory dysfunctions in schizophre- 

nia. Additional examples are found in McKenna (1989) and Reynolds (1989). Infrahuman 
studies have revealed that central DA-containing systems are the crucial element of a broad 
spectrum of goal-seeking behaviors (Fibiger & Phillips, 1986; Panksepp, 1981; Simon, Scatton, 

& LeMoal, 1980). 

The process of mobilization of CA (and, perhaps of some of their predecessors and 

derivatives "from storage pools to the functional pools," Stinus, LeMoal, & Cardo, 1972) and 

their release from these pools by stimulation of the reward system, induced by nerve firing, is 
analogous to a process of exchange of two different "currencies" of the brain — the streams of 

impulses directed to the reward network and the amount of dopamine. The income function, 
Wa), where a is density of streams of impulses directed to the reward system of the brain (see 

Fig. 19.1), was proposed in Vaisbord and Rosenstein (1968a, 1968b) and subsequently discussed 
in detail in Glazunov et al. (1971, 1972) and Rosenstein (1972, 1991, 1994). 

The streams of impulses directed to the reward network seems to present the "inner 

currency" of the organism in dynamic form. Thus the dopamine is a more stable form of this 
currency that can be accumulated, stored and distributed among different subsystems of the brain 
(see Footnote 8). Other forms of presentation of the income can exist too. And they can be as 

distinct from the two forms mentioned above as these forms are distinct from each other, or as 

in economic systems the state’s gold reserve is distinct from records on the hard disk in the bank 

computer. Investigation of the brain’s "system of banks and currencies" can become one of the 

important topics in the neurophysiology of the near future. 

Next we compare the basic premises of the model based of presentation of inner currency 
as streams of impulses directed to the reward network with some of those derived from



INCOME-CHOICE APPROACH AND PSYCHOPATHOLOGY 405 

conceptualizations of the role of CA (in particular DA) in the organization of activities in the 
brain, especially in the schizophrenic brain. 

2.1.2. The Role of Dopamine tn the Processing of Information. "It is generally thought that 

the dopaminergic input has a modulatory rather than an information-carrying role" (Early, Posner, 

Reiman, & Raichle, 1989). 

Stein and Wise (1971) connected the etiology of schizophrenia with progressive damage 
of the noradrenergic reward system. In our model (Rosenstein, 1991; Vaisbord & Rosenstein, 
1968a, 1968b), the etiology of schizophrenia is associated with ASI directed to the reward sys- 
tem. However, this is seen not as damage, but mainly as a cause for a functional (and, in many 

cases, reversible) change in the set of optimal behaviors of the organism. Our model allows for 

remissions, often seen in schizophrenic patients, and makes it possible to correlate between 

several existing theories of the origin of schizophrenia and causes of ASI directed into the reward 
system. Therapeutic approaches to schizophrenia can be associated with possible methods for 

restoration or compensation of ASI. 

Miller (1984) argued that DA acts "to set the threshold for inductive inference." An excess 

of DA permits associations that would normally be rejected as coincidental to become established 

In memory. In other words, the plausible effects of a septo-hippocampal DA excess might be 

not only to induce erroneous attributions of significance — or delusional meaning — but also 

to promote the generation of abnormal inductive inferences or delusional beliefs (McKenna, 
1987). This suggestion reflects known results of learning experiments in animals. However, it 

is completely unclear why the excess permits associations that would normally be rejected. 

Our model clarifies the situation (Glazunov et al., 1971, 1972; Rosenstein, 1991; Vaisbord 

& Rosenstein, 1968a, 1968b). In the model, we can have an excess or a deficit in one of the 

types of currency (stimulation of reward system, dopamine or other possible forms of currency) 
in general or in one of local "storehouses" of the brain. The excess leads to "hyperinflation" on 
the brain market and it is connected to the special verbal, behavioral, and motor production that 

can be called, in the wording of Crow (1980), "positive symptoms" of schizophrenia. The long- 

lasting deficit (when the system fails to find ways to increase the income) is related to the 

“negative symptoms" of schizophrenia. The particular set and type of these symptoms is defined 

by the particular distribution of dopamine, or other possible forms of currency, in the local 
"storehouses" of the brain. 

According to the model, an excess of a given type of currency causes a change in the 

reward received by the organism during learning (training) because of the nonlinear MUC-type 
income function (see Fig. 19.1) that defines the running value of this type of currency on the 

inner market of the brain. In models with "disturbed" behavior relative to models with "normal" 

behavior, this decrease in reward brings all effects enumerated by Miller (1984) and McKenna 

(1987). In particular, it causes a change of threshold for inductive inference, thereby permitting 
associations that would normally be rejected. These experimental phenomena are deducible from 
our theoretical model (Glazunov et al., 1971, 1972; Rosenstein, 1991; Vaisbord & Rosenstein, 

1968a, 1968b). For example, well-known differences in the formation of Charpentier (and other) 

delusions in schizophrenics as compared to normal subjects were obtained by formal analysis of 

the model (Glazunov et al., 1971, 1972; Rosenstein, 1991).
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The "involvement of DA in reinforcement processes" (Beninger, 1983; Crow, 1973; 

McKenna, 1987; Wise, 1978, 1982) is currently viewed as a well-established suggestion. The 

effect of change of DA should depend on the quantity of income (not only in the form of DA!) 

already stored in the "banks" of the brain and on the intensity of the streams of reinforcement 

impulses directed to the reward system of the brain (see Fig. 19.2) at the time. A marginal utility 

curve of the same type as seen in Fig. 19.1 describes the effect of change of the value of the 
“brain currency" in the form of dopamine. 

2.1.3. DA, Nucleus Accumbens, and ICA. Several well known modern attempts to solve 

the puzzle of schizophrenia (see Early et al., 1989; Gray, Feldon, Rawlins, Hemsley, & Smith, 

1991; Swerdlow & Koob, 1987) suggest excess DA in the nucleus accumbens. According to 
Neill (1982), "DA transmission in the nucleus accumbens regulates the amount of effort (energy) 
the animal is willing to expend to achieve a goal and that positive reinforcing stimuli transiently 

enhance DA transmission biasing the animal to expend more effort." 

In Neill’s scheme, "the animal continually monitors the effort (energy) which has been 

expended on a behavior and decides whether to maintain that behavior." It can be seen that the 

quantity of DA in the nucleus accumbens is related to such abstract notions as "effort" and 
"energy." However, to decide “whether to maintain that behavior," we need to be able to 

compare not only future expenditures but also the predicted profit under maintenance versus 
nonmaintenance of the behavior. 

The notion of income is designed to make possible such comparisons, at least in principle. 

We think that DA is one of several forms of this abstract income used to attend to brain activities 

and to be attended by them (because the goal of the system is connected in our model with 

maximization of the income function during the system’s lifetime). Several examples of 
particular income functions are discussed in Rosenstein (1991, Chapter 1). 

What causes excess DA in the nucleus accumbens (NAC)? According to our assumption 
(Rosenstein, 1994), the CDC phenomenon in the schizophrenic brain is caused largely by ASI 

directed to the reward system. This ASI is seen as the main cause for the disturbance of 

behavior (Rosenstein, 1972, 1991; Vaisbord & Rosenstein, 1968a, 1968b), and the CDC phe- 
nomenon Is a secondary effect produced by the ASI. The influence of ASI on the excess of CA 
(and DA in particular) in NAC (mainly in the self-stimulation paradigm) is a fairly well- 
established fact (see Blaha & Phillips, 1990; Nakahara, Ozaki, Niura, Miura, & Nagatsu, 1989; 

Nakahara, Ozaki, Kapoor, & Nagatsu, 1989; Stellar & Corbett, 1989). 

It is interesting to note that, according to Colle and Wise (1988), injection of amphet- 

amine into the nucleus accumbens facilitates the rewarding effects of brain stimulation. This is 

analogous to the effect shown in Fig. 19.2, where a decreased quantity of income in any form 
In the store (as exemplified by amphetamine-binding DA receptors in the NAC) causes an 
Increase in the rewarding value of the streams of impulses directed to the reward system. Our 

view is also supported by data showing that parts of the ventral striatum, such as the nucleus 

accumbens, olfactory tubercle and the ventromedial caudate-putamen are in a unique position to 

mediate motivational and associative influences on behavioral output (Mogenson, Jones, & Yim, 

1980). We view excess DA in the nucleus accumbens — seen in particular as one of the main 
operational pools of income in the brain — as a result of ASI directed to the reward system. It 

means that the basic assumption of several modern approaches to the schizophrenia problem re-
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garding the excess of DA in the NAC of the schizophrenic brain (see Early et al., 1989; Gray 

et al., 1991; Swerdlow & Koob, 1987) can be easily deduced from our model. 
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Fig. 19.2. Income function of marginal uulitv curve tvpe and the hedonic feeling. @ = quantity of currency 

accumulated by the brain’s reward svstem. Wa) = income received by the brain. Zone 1 (superhedonic) — 

AW >>aW,. Zone 2 (hedonic) — al, >> al, >> alV,. Zone 3 (anhedonic zone) — aW, >> aW, 2 0. 

Zone 4 (antihedonic) — aW, < 0. 

Concurrently, we believe that some of the other theoretical approaches (such as the one 

of Gray et al., 1991, emphasizing damage to the subicular input into the nucleus accumbens) 

afford useful models of origination of some schizophrenia-like symptoms. However, to meet the 

challenge of the puzzle of schizophrenia as a whole, we should take into account the basic 

principles of control and information processing in the human brain, along with details of its 

neurophysiology. Optimal control approaches seem to be useful in this context. They "treat rein- 
forcement and operant behavior in the context of the demand law which asserts that as the price 
of a commodity increases the consumption of the commodity decreases" (Sinnamon, 1982). 

It is important to state that in biological systems of regulation, as in economics, one of 

the commodities should be the most "abstract" (the "Money" of the system) that makes it possible 

to compare and interchange other commodities. As in economics, the demand law can be applied 

to each of them and the "money" can be presented in many different forms. The value of other 

commodities and of the income received by the system can be measured using this "money."
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What plays the role of this "most abstract" commodity in biological systems seems to be a crucial 

question of tomorrow’s neuroscience. Additional short discussion of the topic can be found in 
the Afterword to this chapter. 

2.1.4, Various Forms of Currency in the Domain of Brain Activities. Dopamine appears 
to be an important member of the set of currencies representing income in brain activities. 
However, it is only a member of the set. For this reason, according to the ICA, it appears natural 
that "a monolithic DA hypothesis formulating that increased DA activity leads to schizophrenia 

appears to be too simplistic a notion" (van Kammen, 1979). For example, medial forebrain 

bundle self-stimulation is much more dependent on dopamine systems than prefrontal cortex self- 

stimulation (Corbett, 1990) and a major role is seen for accumbens DA in the medial forebrain 

bundle (MFB) reward, but not for the DA in caudate and medial frontal cortex (Stellar & Corbett, 
1989). Unemoto, Takeichi, Kurumiya, and Olds (1984) viewed their experimental results as 
negative evidence for the hypothesis that DA innervations in the medial prefrontal cortex are 

critical neural substrates for self-stimulation. They suggested that activation of intrinsic neurons 

in the MFB is responsible for self-stimulation in the region. A number of researchers supported 

the hypothesis that stimulus-stimulus associative learning occurs even if dopamine function is 

blocked (Benninger, 1982). It is known, for example, that a thalamic rat will learn to obtain 

hypothalamic stimulation (Huston & Borbely, 1974). In this experiment, the cortical, 

hippocampal, striatal, and amygdaloid CA terminals are aspirated, yet hypothalamic stimulation 
can still be effectively used to reward simple responses (Wise, 1978). 

According to Fibiger and Phillips (1986), DA neurons do not form an exclusive link in 

the neuronal systems mediating brain stimulation reward in the lateral hypothalamus and non-DA 

systems exist that can support intracranial self-stimulation. According to Gray (1982), 

noradrenalin and serotonin serve to Jabel incoming stimuli as "important" or "important associated 
with punishment." Dopamine may also act to label incoming stimuli as "important" (perhaps as 

“Important associated with reward"). The word "important" can be naturally translated into the 
language of the present article as "promising a large change in the income." The role of various 

CAs and opiates in relation to self-stimulation were discussed by many researchers (Crow, 1972; 
Esposito & Kornetsky, 1978; Fibiger & Phillips, 1986; Oades, 1985; Wise, 1978). 

The stream of electrical impulses directed to the reinforcement nucleus occurs as one of 

the most widely used and most fundamental "dynamic" forms of the income representation in the 

brain because it causes the production of other (more stable) forms of income by stimulation of 

appropriate nuclei in the brain. In reinforcement experiments these streams represent, it seems, 

the basic form of income in the physiological realm of the brain that can be in use even when 
other forms (see Huston & Borbely, 1974; Wise, 1978) are almost excluded. 

According to the ICA, the presence of many different forms of "currency" in biological 

systems can be expected. What we have termed "biological income" seems to be a notion of 

universal importance behind the various forms of "currency." In the Afterword to this chapter 

we briefly address how the income might be more precisely defined.
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2.2. ICA and the Anhedonia Hypothesis of Neuroleptic Action 

The anhedonia hypothesis (Gray & Wise, 1980; Wise, Spindler, de Wit, & Gerber, 1978) 

is explained briefly as follows. Tests under continuous reinforcement schedules suggest that 
neuroleptics blunt the ability of reinforcers to sustain response at doses that largely spare the 

ability of an animal to initiate response. Neuroleptics can also impair response (although not 

response capacity) that is normally sustained by environmental stimuli (and associated expectan- 

cies — G.R.) in the absence of a primary reinforcer. Neuroleptics also blunt the euphoric impact 

of amphetamine in humans. 

These data suggest that the most subtle and interesting effect of neuroleptics is a selective 

attenuation of motivational arousal that is (a) critical for goal-directed behavior; (b) normally 
induced by reinforcers and associated environmental stimuli, and (c) normally accompanied by 

the subjective experience of pleasure (Wise, 1982). The modified anhedonia hypothesis states 

that the normal functioning of some non-identified dopaminergic substrate (which could be one 

or more of several dopaminergic projections in the brain) and its efferent connections are 

necessary for the motivational phenomena of reinforcement and incentive motivation and for the 

subjective experience of pleasure that usually accompanies these phenomena (Wise, 1982). 

The [CA offers an assumption analogous to the anhedonia hypothesis, as follows. Let the 
feeling of pleasure produced by a stream of impulses to the reward system or by an injected dose 

of neuroleptics’ be measured by the change in value of the income function produced by these 

agents (this proposition agrees with some known theories of emotions — see Simonov, 1965). 

This change is dependent on the quantity of the agent ("Money") received by the organism at a 

given moment, and on the income accumulated (in currency of any form) up to this moment, in 

accordance with a marginal utility curve (see Fig. 19.2). 
It can be seen from Fig. 19.2 that there are four established zones of different feelings: 

Zone 1, where the feeling is very acute; Zone 2, where the feeling is moderate (normal); Zone 

3, where the feeling is substantially blunted, and Zone 4 where the feeling is reversed. This is 

related to functions aW, >> aW, >> aW, = 0 > aW,. 

Zones 2, 3, and 4 can be naturally marked as "hedonic" (Swerdlow & Koob, 1978), 

"anhedonic" (Wise, 1978, 1982; Wise et al., 1978) and "antihedonic"” (Klemm, 1982). It seems 

reasonable to mark Zone 1 as "superhedonic." Evidently, the existence of anhedonic and 
antihedonic zones can be explained by the appearance of ASI directed to the reward zones. 

Many clinicians, beginning with Bleuler, have empirically commented on the chronic 

defect in capacity for experiencing pleasure in schizophrenia (see Rado, 1969). Therefore, the 

relationship between ASI and schizophrenia could be approached from another angle. 

2.2.1. United Reward System of the Brain. We hypothesize that the reward system 
calculates income as a function of streams of impulses directed to the network of interconnected 

  

” As it was shown clsewhere, neuroleptics can be seen not only as agents making an impact on CA pools but 

as ASI producing agents (see Rosenstein, 1991, Chapter 6). A definite dose of neuroleptics could be seen as equal 

to a strcam of impulses of given density and duration directed to the reward system if they produce the same change 

in the quantity of DA accumulated by the organism.
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reinforcement nuclei of an organism. However, it is unclear how different modalities of reward 

and punishment are weighed and compared, even in the case that they are presented only in the 

form of streams of impulses. 

Modern experimental data hint at the existence of unified reward systems in the brain. 

As Mora and Ferrer (1986) stated: "Some findings have given rise to the hypothesis that several 
single feed-back pathways or single circuits exist between points of self-stimulation in the medial 
prefrontal cortex and points of self-stimulation in other areas of the brain." The hypothalamus 
is seen as playing one of the central roles in the unified reward system. 

"The lateral hypothalamus is involved in integrative functions related to emotion, reward, 
aversion and learning. It is, however, unclear whether the medial forebrain bundle (MFB) forms 

a substrate common to the anterior and posterior hypothalamic areas or whether information 

regarding rewarding and aversive stimuli converges on and is integrated by the same 

hypothalamic neuron" (Ono, Nakamura, Nishijo, & Fukuda, 1986). In this context, a subcortical 

control system with the reticular formation, hypothalamus, and thalamus as its principal 
components has been proposed (Pay, 1979, 1981). 

It appears that the motivational or connective aspect is the primary contribution of the 

hypothalamus (Anderson & Haymaker, 1974; Pay, 1979). The limbic system is envisaged as 

sorting and synthesizing an assemblage of information to be fed into the hypothalamus. The 

information concerns thirst and hunger, cognition, and the whole realm of affect and sexual 

function in their somatic and autonomic accompaniments (Pay, 1981). 

According to data of Pribram and his colleagues (Pribram, 1991), "hippocampal resections 
shift bias with which organism in general approaches the situations it is faced with toward 
caution and inferotemporal damage shifts bias toward risk." This means that these structures 

participate in evaluation of future rewards and can be seen in this respect as functional parts of 

the reward system of the organism. However, alternative points of view on the role of 

hippocampal formation were published too (see Ridley, Aitken, & Baker, 1989), 

In fact we are only at the very beginning of understanding how the "banks" of the brain 
work and interact and what kind of "inner currencies" are involved in this interaction. 

3. ICA AND THE PROBLEMS OF NEUROPSYCHOLOGY OF SCHIZOPHRENIA 

3.1. In Schizophrenia "Perceptions Violate Expectations." Why? 

According to the currently prevailing opinion of schizophrenia theorists, "there indeed 
exists a basic psychological dysfunction in schizophrenia; or, at least, only a limited number of 
such dysfunctions" (Gray et al., 1991). It was argued that it is first of all "a weakening of the 

influence of stored memories of regularities of previous input on current perception" (Hemsley, 
1987), “when perceptions violate expectations" (Einhorn & Hogarth, 1980). 

The differences in known behavioral phenomena, such as latent inhibition (Lubow, 1973, 

1989), blocking effect (Kamin, 1968), and partial reinforcement extinction (Gray, 1975), between 

normal subjects and schizophrenics are seen by some authors as confirmation of Hemsley’s 
suggestion. Very similar effects can be produced by dopamine-releasing drugs and modulated 
by neuroleptics in similar experimental paradigms with animals, which is seen as confirmation
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of the role of CDC phenomena in schizophrenia in humans, on one hand, and strong support for 
Hemsley’s suggestion on the other (Gray et al., 1991). A fourth phenomenon (besides latent 

inhibition, blocking effect, and the partial reinforcement estimation) that could be added to the 

list is the change of the gating effect in schizophrenics as opposed to normal subjects (Braff & 

Geyer, 1990; Freedman et al., 1987)."" 

Hemsley’s suggestion can be immediately deduced from our model of behavior distur- 
bances with no additional hypotheses. The "flat mind effect" (FME) mentioned previously in the 

section on ICA and the Problems of Neurophysiology of Schizophrenia (see also Fig. 19.3) was 

deduced from the basic assumptions of our model (Glazunov et al., 1971). FME is the gradual 

elimination of previous experience in the schizophrenic mind, and therefore constitutes "a 

weakening of the influence of stored memories of regularities of previous input on current 

perception," as proposed by Hemsley (1987). Thus, "less and less the subject forms his own 

Impressions, and more and more he is impinged upon by his environment" (Ascombe, 1987). 

In our model, the schizophrenic does not intend to form his or her own impressions 

because he or she does not expect a substantial increase in income, having previously been 

consistently underpaid by his or her reward system due to the ASI directed to the reward network 

(Glazunov et al., 1971, 1972; Rosenstein, 1991; Vaisbord & Rosenstein, 1968a; also see Fig. 

19.1), as explained above. By the general income-choice approach we come to the impairment 

in generation of willed intentions tn schizophrenics noted also by Frith (1987) — however, 
without Frith’s special suggestion that in schizophrenia willed intentions are not correctly 

monitored. 

3.2. The "Searching for Income" Brain 

According to our approach, the brain can be viewed in particular as a system "hunting for 
income." In this model, the new sources of substantial income for the schizophrenic brain are 

much more limited than for the normal brain. Being constantly underpaid (Rosenstein, 1991; 

Vaisbord & Rosenstein 1968a, 1968b) and, therefore, descending step by step to the state of "flat 

mind," the schizophrenic brain is more strongly motivated'' to find new — even if nonhabitual 
or in some sense risky — "fields of hunting," while the milestones of his or her previous 
experience sink into the calm waters of equal probability of expected events (see Fig. 19.3; 
Glazunov et al., 1971; Rosenstein, 1991) that we call the "flat mind" effect. 

In this situation, three main strategies for finding new sources of income should be 

expected. 

  

We plan to publish an analysis of how the gating effect in schizophrenia relates to these three phenomena, and 

to Hemsley’s (1987) proposition, as a separate article now in preparation. 

'' The organism storage pools ("banks") contain less and less income in any form, and often the mobilization 

of DA and other forms of income used on the different levels of the organization is interrupted (Stinus ct al., 1972). 

It brings the organism to a choice — stagnation of the "inner market" (with development of negative symptoms of 

schizophrenia) or intensive search tor new income-producing strategies.
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3.2.1, The Perception Strategy. Finding new perceptual space by variation of thresholds 
of channels of perception — and thereby new programs of stimulation of the reward system of 
the organism — is the perception strategy. It is a kind of "environment switching" discussed by 
us earlier in detail (Meschersky & Rosenstein, 1969; Rosenstein, 1991: Vaisbord & Rosenstein, 
1965, 1967). This strategy could consist of switching on usually underused or nonused channels 
of conscious and subconscious perception. 

  
    

ig. 19.3. Flat mind effect (FME) in the schizophrenic brain. P,.,, denotes a typical a posteriori distribution 
of parameter Q formed by a "normal" brain (a brain without ASI directed to the reward system, Le., Ad = 
Q) in the course of experiments in hypothesis formation. Q is any parameter evaluated by a normal or 
schizophrenic subject in the course of a learning procedure. P_,,, denotes a typical a posteriori distribution 
of Q formed by the schizophrenic brain according to our model (flat mind effect). Puyenm Cenoted the distri- 
bution of the value of Q of an “unexpected” pattern to the subject in the course of the experiment (see 
Rosenstein, 1991, Fig. 7.3). This figure suggests that schizophrenics with FME are "more ready" for 
unexpected expericnces than "normal" subjects (as in Charpentier iusion formation — for other examples 
see Rosenstein, 1991). 

Previous research (Antik et al., 1972; Arshavskii et al., 1972: Meschersky & Rosenstein, 
1969; Rosenstein, 1969, 1991) poses the system of control of brain activity in epileptic seizures 
as an example of this strategy, which can also be viewed as a policy of attention control (see 
Meschersky & Rosenstein, 1969). Thus the known attention problems in schizophrenia can be 
understood from the same point of view of optimal control directed to maximization of the 
income. 

It was shown (Antik et al., 1972; Arshavskii et al., 1972: Rosenstein, 1991) that the 
balance of activities in the lateral and ventromedial nuclei of the hypothalamus can be shifted
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towards the "positive" or the "negative" side by self-regulation of the perception thresholds in 
some channels of perception. In animal models of epilepsy, as predicted in Rosenstein (1969) 
and later shown in experiments, such a shift can substantially decrease or increase the occurrence 
of seizures (Antik et al., 1972; Arshavskii et al., 1972; Rosenstein, 1991). All this can be seen 

as a starting point for origination of a theory of attentional disturbances in schizophrenics. 

3.2.2, The Production Strategy. The brain can develop new production (mental, verbal, 

motor, etc.) to stimulate its reward system. "Some schizophrenics, particularly those who are 
chronically isolated from others, will report that they ‘enjoy’ their hallucinatory experiences" 
(Hoffman, 1986). However, this is usually not the case. 

Hallucinations are in most cases of an unpleasant and highly emotional character. They 

are often formed as messages capable of creating the expectation of great possible loss (according 
to the system of inner values of the subject). Therefore, hallucinations can be an effective inner 

resources mobilizing tool, if they raise readiness to fight and to win'? in defence of the most 

cherished values of the subject. In this way, the expected income of the organism can be 

substantially increased. This approach is in agreement with the observation that self-stimulation 
behavior can be elicited from various "aversive" brain structures (Cazala, 1986). (In this 
connection see Paragraph 3.2.4.) 

3.2.3. "Positive Symptoms" in Schizophrenia. tn previous publications (Rosenstein, 1991; 
Vaisbord & Rosenstein, 1968a, 1968b), we speculated that schizophrenia-like behavioral disorders 

can be determined by an additional (augmented) inward input to the brain reinforcement zones. 

This idea is supported by the observation of parallel participation of brain’s CA in self- 

stimulation (Crow, 1972; Gratton et al., 1988: Olds & Yuwiler, 1972) and in production of 

"positive" symptoms in schizophrenia (Early et al., 1989; Gray et al., 1991; McKenna, 1987; 
Swerdlow & Koob, 1987). Additional arguments for this point of view follow. 

3.2.4. "Positive Symptoms" and Self-Stmulation. Positive symptoms in schizophrenia can 
be considered a peculiar variant of self-stimulation. The subject is so involved in his or her own 

hallucinations and paranoid ideas that he or she almost totally detaches from objective reality and 
Pays no attention to the outside world, as do animals in the process of intensive self-stimulation. 
The brain, obsessed by hallucinations and paranoid ideas, as during classical self-stimulation, is 
a closed system: hallucinatory images and obsessive ideas, because they reflect the electrical 

impulses in the self-stimulation paradigm, have a tendency to self-determination. This means that 

an initial image or idea can produce successive related images and ideas, which can, in their turn, 

stimulate and determine their own reappearance. This clinical observation is supported on a 

physiological level by the fact that vivid and meaningful images (produced, for instance, by the 

review of a movie) cause increased CA secretion (probably not only in the suprarenal glands — 
Carruthers & Taggart, 1973 — but in the brain as well). 

The increased brain CA is consequently able to stimulate the reappearance of the same 
kind of psychic activity that becomes "profitable" in the sense of ICA. The positive feedback 
between quantity of CA and reappearance of symptoms can be partly responsible for maintaining 

  

12 ; ; . os 
An example is rumors spread by newspapers about a would-be war that brings about an increase of patriotic 

feclings and the whole “cnergy" of the society that has to be ready to fight and to win.
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CDC in the schizophrenic brain and can explain, to some extent, the increase of brain CA activity 

in schizophrenia. The ASI mechanism is very likely involved in this process. It means that the 

images of a strong emotional character cause the ASI in the reward network, and the increase of 

DA production follows as explained in Section 2.1.1. 

3.2.5. "Standard" and "Aversive" Symptoms. A special class of schizophrenia production 
is formed by standard images and verbal hallucinations of an "aversive" character. According 

to our model, this phenomenon appears due partly to the optimal strategy of income production 
of the brain that possesses a source of additional stimulation of the reward system. If the 

stimulation is directed to "negative" nucleus of the reward system, the constantly underpaid brain 

can try to synthesize hallucinatory inner messages (visual, auditory, etc.) of "high energy" to fill 

the empty "banks" from new sources of income. 

In some cases, standard blocks of information of "aversive" character are preferred when 
forming these inner messages. The messages of aversive character can be taken from the 
memory of the subject, newly synthesized or allowed to pass the mind filters if received from 

other sources. These standard aversive blocks have two advantages. Being aversive, they 

provoke such feelings as hate, fear, or anxiety and will switch on, at least at the beginning, 

powerful income producing mechanisms of defense. The expected income will increase due to 
mobilization of inner resources and positive mental pictures projected by the sick brain — the 

future victorious battles, overcoming of fatal dangers, ingenious enemies defeated by the bold and 

prudent principal hero, who is the same sick person in search of income for his starving reward 

system. 

Being "standard," these blocks of information do not need new expenditures of income 

to be produced and they can be included with time in new chains of associations and references 

in the subject’s memory for long-lasting usage. These two properties together — aversive and 
standard — are able to guarantee the production of substantial quantities of income for the 
starved brain (see also Section 3.2.2 where the discussion of aversive symptoms begins). 

Through thousands of years, schizophrenics have described visual and audio messages 

"visions" and "voices") mostly of aversive character and of amazing similarity despite huge 

differences in their cultures, social surroundings, and personal experiences. This fact cannot be 

avoided but has to find a place in the future unified theory of the illness. In short it is a strong 

hint that some objective sources of information are allowed to be switched out by informational 

filters of the schizophrenic brain. 

3.3. Stereotyped Behavior 

Stereotyped behavior — one of the typical positive symptoms of schizophrenia and a 

concurrent hyperdopaminergic state — is clearly associated with reinforcement. As Katz (1982) 

said, "Certain repetitive acts, by virtue of their kinesthetic consequences, are intrinsically 

reinforcing." 
Repetitive mental, verbal, or motor production of reinforcing character can be used by the 

organism as a tool for producing positive stimulation of the reward network when the brain has 

a deficit of income in stock. The brain is therefore trying to replenish the stock by such means 

as self-produced stereotyped acts where the organism is in full command and its expenses are
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minimal. Stereotyped behavior can produce a stream of impulses in "positive" centers or restrain 

impulses from other sources directed to the "negative" centers in order to prevent a reduction of 

income. The same mechanism can be responsible for the typical schizophrenic phenomena of 

speaking aloud and continued inner speech (also see the previous paragraph). 

In animals, according to Iversen (1977), "dopamine agonist drug stimulation ... induces 

a general locomotor hyperkinesia which quickly gives way to the phenomena of stereotypy, 

where there is an increasing repetition of one or a few responses from the normal repertoire of 

the animal." McKenna (1987) added: "the normal variability of behavior gradually diminishes 

and is replaced by the incessant performance of simple acts like sniffing, lifting and rearing. The 

conceptualization of dopamine as reinforcement is by no means incompatible with such findings." 

The particular type of behavior may depend on special characteristics of ASI directed to 

the subject’s reward system. If strong outbursts of ASI directed to "negative" nuclei appear, they 

result in rapid attacks of an acute deficit in income such that the lost income should be 

immediately compensated. The stereotyped behavior looks like the most suitable instrument in 
this situation. In the case of long-lasting and not too dramatic deficit in income, it can be 
compensated by self-organization in the network of the brain by an inner source of stimulation 

of the reward system. In some types of personalities it can be a stream of "creative" activities 

as is well-known in the psychology of schizophrenia. This is one of the topics in the framework 

of the income-choice approach that deserves more detailed treatment in the future. 

3.4. "Adjunctive" Behavior 

According to ICA, the same basic idea underlies so-called "adjunctive" behavior and the 
"displacement activities" associated with it (Fibiger & Phillips, 1986) when "irrelevant" behaviors 

are repeatedly produced during periods of tension and uncertainty. These irrelevant behaviors, 

such as "nonmotivated" acts of schizophrenics, cannot be explained in terms of physiological 

deficit. However, they can be seen again as a way to regulate the stream of impulses into the 

reward network. It is natural to expect from the ICA viewpoint that "a lesion of the brain 

dopamine system would disrupt displacement behavior as does a lesion of the lateral 
hypothalamus" (Robbins & Koob, 1980). 

Experiments of the "adjunctive" type accompanied by direct recording of the activity of 

reinforcement nuclei in animals can easily prove or disprove this suggestion. 
~~ 

3.5. Self-Stimulation and Body Resistance 

It has been established that self-stimulation increases body resistance and decreases the 
vulnerability of an organism to various forms of disease (Rotenberg & Arshavsky, 1979; 

Rotenberg, 1984).'* This result can be expected from the ICA point of view: Self-stimulation 

  

'* This development originated in this author’s model of income-dependent control of epileptic: seizures 

(Rosenstein, 1969, 1991). It was predicted (Rosenstein, 1969) and later verified (Antik ct al., 1972; Arshavskii ct 

al., 1972) that the prevention or realization of epileptic attacks in animals can be controlled by proper stimulation 

of the reward system — by increasing or decreasing the income of the organism. Subsequently, it was shown by
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produces a large reserve of income ("free money") in the storehouses of the brain, and this 

reserve is ready to be used to prevent the illness. In parallel, it was established in clinical studies 

that the acute phase of psychotic disorders with obvious positive symptoms is usually accom- 

panied by increased somatic health (Anisman & Zacharka, 1982; Arshavsky & Rotenberg, 1976), 

whereas the suppression of these symptoms by neuroleptics is often accompanied by somatic 
disorders (Rotenberg, 1984). 

These observations show that positive symptoms in schizophrenia can be income 

producing phenomena, and as such, can be provoked by the need of the brain to find or create 
new sources of income. 

3.6. The United Perception-Production Strategy 

The "perception" strategy can be used by the brain in its search for sources of income in 

combination with the "production" strategy. In this case, for example, the threshold of perception 

for inner speech can be decreased (perception strategy) and, at the same time, the informational 

system of the brain can be activated (production strategy) and the "personalities" whose 

conversations are heard by the schizophrenic as inner speech can be “allowed to come," that is, 

released by the filtration system of the brain, or newly synthesized. 

The use of this perception-production strategy means, of course, more Severe Separation 

from everyday reality. This separation increases as more channels of perception of the inner 

world of the subject being brought into the game and as more elaborate "personages" are brought 

from the subject's inner world to the attention of his or her subconscious levels of information 

processing and raised afterwards to the level of consciousness. 

Some of these channels of contact with inner personages, if organized into complex traces 

in the subject’s memory, cannot always be switched off by the brain even if "undesirable" for 
the subject (contradicting his or her former points of view, beliefs or interests). This inability 
can be due to a deficit of income in stock to perform the switching-off process (it can be seen 

as a lack of "willpower" in the person), or it may occur that the subject has become dependent 

on sources of income (even "aversive" ones) and, according to an automatic inner evaluation, the 

risk of living without these sources of income is too big to accept. It is worth mentioning that 

the behavior of the subject depends, to a great extent, on the subject’s evaluation of the future. 

According to our assumption, the reward system of the brain calculates expected income. This 
evaluation can be influenced by the information deduced from the hallucinatory pictures, and thus 
the subject can be literally caught by his or her own perception or production strategies. The 

person masters more and more his or her new inner sources of income and becomes less 
dependent on external events and more distant from his or her social surroundings. 

  

other authors that dopaminergic supersensitivily follows ferric-induced limbic seizures (Csernansky, Bonnet, & 

Hollister, 1985) and dopamine agonists have an anticonvulsant effect (Loscher & Czuczwar, 1986). In addition, our 

model explains the mechanism of origination of schizophrenic-like symptoms in epileptics (see the Conclusion to 
Rosenstein, 1991).
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4. AFTERWORD 

We hope to come, step by step, to the understanding that "effort," "energy", "reward," 

"punishment," "stimulation of reward networks," "catecholamines," "endorphins," and so on, can 

serve as Suitable, through inexact, descriptions of a more universal and subtle concept in control 

of biological systems that we call "biological income." This income is a theoretical abstraction 

of something that all living creatures strive for. 
In another article in progress, | am applying the income theory to the often—discussed 

relationship between schizophrenia and genius. Space does not permit a detailed exposition here, 

but it was shown in the example of the Charpentier illusion (Glazunov et al., 1971, 1972; 

Rosenstein, 1991) why the performance of schizophrenics can be better than that of normals in 

unexpected and hardly predictable situations. This is due to the possibility of less restricted 

associations and ways of drawing conclusions arising from the flat mind effect. This quality of 

schizophrenics, which in our model is due to ASI directed to the reward system of the schizo- 
phrenic brain, is also typical of highly talented people. At the same time, as it was mentioned 

above, the deficit of "income" can serve as a "drive" for creative activities. This observation can 

support the type of interconnection between schizophrenia and talent (genius) suggested in our 

model. 

Again, we come to the bioeconomic metaphor. Various forms of payment ("money") used 

in business life are not completely adequate forms of economic income, either. Processes of 

inflation and deflation that cause dramatic changes in the income in economics express the 
changes of the "value of money," which is explained by economists, in many cases, through such 

human factors as psychological preferences, mass expectations, prejudices, or even epidemic 

madness, leaving in this "value of money” a good deal of mystery. 

Besides economics, there are two other sources of knowledge that lead to the income idea_ 

in the field of biological control. Both of them are even more mysterious than the "value of 

money." One source is the psyclic energy suggested by Carl Jung, which can be seen as one of 

the sources of biological income idea in philosophy of biological control. Another and most 
fundamental among the sources of the income idea is the Chai (“lite energy" in a rough 

translation from Hebrew). It ts partly reflected in other cultures under different names. Streams 

and stocks of this "energy" can be regulated in humans by many means, including rules of ethical 

conduct, meditation, and prayer. 

My feeling is that we are now close to a paradigm in neurophysiology that will be one 
of motive forces of research in the field of biological control and organization in the near future. 
Not only terms such as "hedonic feeling," "pleasure," "joy," but even "delight," "happiness" and 

"love" on their highest levels are much closer to what one may have in mind when thinking about 

income in the control systems of the brain (especially in the human brain) than all the particular 

substitutes of income mentioned in the first lines of this Afterword. It is, in fact, what we strive 

for in the course of our lives, and from whence originate to a large extent, "energy," "resources," 
and "efforts" that are invested to meet the challenges of life. It is well known now in practical 
medical science (see Siegel, 1986) that the old expression "the wounds of the winners are healed 

quicker" is far from being only a motto.
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"Joy is the food of the soul" was written by giants of the spirit long before our time. 
Tomorrow, if not today, this old suggestion has a good chance of becoming a regular part of 
brain and behavioral sciences. 
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Sylvia Candelaria de Ram's chapter, Communication Cognition: Interactive Nets We 
Weave, When We Practice to Perceive, discusses the author's construct called Pragmase- 
mantic™ interactivity operations as optimizers. It deals with modeling the process of 
communication, and how tt arises, functioning to satisfy hunger and other needs of indrotduals 
and societies. With a primary concern with human expression, verbal or gestural, the model 

differs from traditional linguists’ work with surface forms and their syntax in that context is 

integrated at the very start of processing, explaining how words can be meaningful and provoke 

response. In a companton paper (Candelaria de Ram, 1994), the author applies the same 

principles both to human language and to context-dependent lower level processes in a variety 
of animals, such as shocking of potential predators by electric fish and motility of protozoa. 

Candelaria de Ram’s modeling approach ts somewhere on the boundary between connectio- 
nist neural network modeling (although she refers to connectiontst models by others such as 

Helen Gigley and Donald Loritz) and production system modeling from mainstream artificial 

intelligence. She traces processes of sound production, both in infants and adults, through all 

the different neural levels of processing including interactions of auditory, visual, and motor 

systents, using the slogan that we are "cross-modal multi-layer and multi-domain action-percep- 

tion nets" (which is reminiscent of Michael Arbib’s earlier statement that the human brain is an 

"action-oriented, layered, somatotopically organized computer"). The attempt to build a general 
theory of system interactions across different levels is quite similar in spirit to that of Prueitt’s 

chapter tn this volume. The emphasis on communication, trvolving more than one actor and 

depending heawtly on context and affect, ts also quite similar to the discussion of negotiation in 

Leven’s chapter.
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Candelaria de Ram's discussion of optimality seeks a unifying principle that applies both 
to lower level elements in the nets (and low-level motor processes) and to global processes like 

language use. She states that "Optimality ts taken to be systent functionality and continuance" 
— a definition reminiscent of the natural selection approach taken in Elsberry’s chapter. This 

definition leads her away fron search for a global, universal utility function: "... optimality ts 
not everywhere and always the same, but ts relative to temporal, local phenomena." This is not 

equivalent to satisficing; rather, it argues in favor of many linguistic and communication 
processes being optimal, but the nature of the optimization being flexible and acutely sensitive 
to context. She uses these ideas to explain not only changes in communication patterns but drift 

in language itself as cultural groups persist. Paradoxically, this does lead to discovery of an 
evolutionary motivational principle for sensor-based communication among cohorts: Discernment 
x entropy = “discerntropy" results as selective perception and reaction develop so that they 
reduce apparent entropy as evolution ticreases the coniplexity of our wntverse. 

ABSTRACT 

Communication, lending context sensitivity and then knowledge enhancement, becomes 

an ecological essential as cognition advances. Agents that can communicate have an extended 
range of knowing what is going on and of influencing it. From the viewpoint of interactive 
realism, real-world process rather than inventory of surface forms (words, syntax) becomes the 

focus. Communication is seen to be based on cognitive action to "simplify" in the face of 

obvious complexity, to reduce local apparent entropy in the face of ever-increasing system 

entropy. Communicating involves direct action supported by chemo-physical sensor-effectors 

that provide values along sensory parameters. The potential for communication goes way back 

In evolution, to molecular reactions like crystallizing and dissolving that are "sensitive" in 
"seeking" or "fleeing" certain things. Sensors, and cognition with them, develop through’ 

selective recombination. Then, in the face of ever-increasing complexity ("disorder," the 

ever-increasing entropy of the Second Law of Thermodynamics), cognition advances by selecting 

sensory parameters as relevant, and building up a "simpler" (or at least more helpful) cognitive 
meta-universe. 

The key link between cohorts is for communicative gestures to be held in common 
gestures that cue cognitive parameter values and processing. Recent experimental evidence 
Shows that in human infants, mimicry and discriminations matching sound to mouth position are 

instinctive (automatic behavior; Meltzoff & Moore, 1983). Automatic mimicry (along with other 

cognitive symmetries) appears to: push individuals toward sharing code systems under dynamic 

conditions. Search for the cause of linguistic drift whenever languages are in use led Candelaria 

de Ram (1988) to posit the existence and critical function of automatic mimicry even in adults 
as providing ineluctable pull toward new variants. 

Simple neural net models simulating phonemic alternation (Loritz) and multistage, 
multilayer nets for parsing (Gigley) point the way to adequate modeling. Pragmasemantics™ 
process descriptions can be cast within a special grounded, sortal logic (Candelaria de Ram 

1992a) as high-level computer programs. They register real-parameter values and send out 
signals, so as to act as communicators. These artifices are, by virtue of their underlying
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Operational logic, networks. The idea is to make them like natural communicators, exposing 

individual-agent communication reasoning and behavior-control detail. As shown in the 

companion work (Candelaria de Ram, 1994), the operators (functors) of Pragmasemantic logic 

apply for molecular and cellular level process components just as they do in processes at the 

speech act level. Rudimentary operations in a dynamic combinatory system eventually enable 
full-fledged communication. 

1. LANGUAGE SCIENCE: CODE STATES VERSUS COMMUNICATOR STATES 

Today’s questions call for a viewpoint shift from language surface to intimate detail of 
communicative process. 

1.1. Linguists’ Language Vessels 

Linguistics, even when examining language system change, has concentrated on verbal 

surface forms and patterns: "The evidence," wrote Samuels (1972, p. 4) in the introduction to 

Linguistic Evolution with Special Reference to English is "The substance of language, [that] from 
a descriptive point of view, exists in two equally valid and autonomous shapes — spoken and 

written. As a code, each exists in its own right ... for diachronic purposes our choice of evidence 

is far more limited: we must for the most part reconstruct from written records, ... [except for] 

comparisons of the speech of older and younger generations...[or other] present spoken forms of 

cognate dialects and languages." Limitation of evidence to grammar and philology of 

phonemically written language form has limited the methods of historical linguistics as well as 
other branches of language study, and the kinds of answers worked out. 

"The shape of linguistics today was set in large part by Ferdinand de Saussure," wrote W. 
P. Lehmann (1968, p. 5), who drew linguistics into science with his "view of a linguist as an 

observer [that] leads to a concern for language as a state. Today there is a far greater concern 

for language in operation...at the morphological and semantic level, as well as at the phonologi- 

cal." But "recall how explicit Saussure was about the ineffective role of the speaker in initiating, 
and even in controlling, change in language. ... Kurylowicz in contrast views the speaker as 
deciding between alternate forms ...[so he] controls the effects of change in language. Others, 

as do Weinreich, Labov, and Herzog" in setting out A Theory of Language Change (1968, pp. 

97-195) describe mechanisms and come upon "The Transition Problem," where viewpoint has 

to shift from surface artifacts of stimulus-response to language-user’s mind. However, important 

as their work is, they do not make the radical shift from inventorying to modelling mental 
processing or allowing individual intent in selecting code items along with what to say as we do 
here. They vaguely embed formal analysis systems that include a marking of pronunciation 

forms "by the feature archaic/innovating" into theoretical members of a speech group. Any 

individual is seen as a passive "competence," simply a medium for passing code patterns around: 

This transition or transfer of features from one speaker to another appears to take 

place through the medium of bidialectal speakers, or more generally, speakers with 
heterogeneous systems characterized by orderly differentiation. Change takes place
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(1) as a speaker learns an alternate form, (2) during the time that the two forms exist 
In contact within his competence, and (3) when one of the forms becomes obsolete. 

. empirical evidence gathered to date indicates that children do not preserve the 

dialect characteristics of their parents, but rather those of the peer group which 

dominates their preadolescent years. Sometimes in the process ... New groups enter 

the speech community and reinterpret the on-going linguistic change .... The 

advancement of the linguistic change to completion may be accompanied by a rise 

in the level of social awareness of the change and the establishment of a social 
Stereotype. Eventually, the completion of the change and the shift of the variable to 
the status of a constant is accompanied by the loss of whatever social significance 

the feature possessed. (Labov, Weinreich, & Herzog, 1968, pp. 184-187) 

Our refocus on process and action might let us see instead change as stemming from persons 
whose own parameters for interpreting and producing bits of code changed. Communicating 

appears to be partly instinctive, partly volitional, with automatic and learned links in a dynamic 

mental complex. Solving the puzzle of how changing individuals can continue to communicate 
may link the two approaches, and permit us new practical uses of linguistic findings about 
"evidence." 

1.2. Communication Shapers 

The place where "we must search for the general principles of a science of language" is 
not in "the different arbitrary conventions of language codes" but rather in “common potentials 

for developing languages, the shared systems of symbolic representation, the universal 

mechanisms for metaphor and synesthesia — all formed in the interaction of human biology and 

psychology with a fundamentally common environment." So said psycholinguistic semanticist 

Charles Osgood (1963, p. 322). He continued: 

  

Thus because the general laws of perceptual grouping and patterning apply to all 
humans, we ... have more discriminative labels for finger vs. hand and for hand vs. 

arm than tor upper-arm vs. lower-arm or for chest vs. abdomen (i.e., independent 

movement is one criterion for perceptual organization). Similarly, ...[primate brain 

devotion to vision and audition encourages more synasthetic] visual and auditory 

metaphors for touch, taste, smell, and thermal experiences [than vice-versa]. On the 
other hand, since the mapping of nonlinguistic events into linguistic codes is 

essentially arbitrary’ using the sensorimotor discrimination system but independent 
of its structure — we would expect to find psycholinguistic relativity. 

  

' Rather than trying to say how it came about that dilferent-shaped words are used for same-refercnts across 

languages, traditional linguistics begs the question by declaring the connection between form and meaning to be 
“arbitrary” (unknowable, rather than unknown).
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Psycholinguistic relativity, within the present book's framework of analogous biological 

and artificial networks for reasoning, is where characteristic thinking in a member of a speech 

group using a certain code (language) uses its names as thinking terms, its social labels in 

interaction roles, its conventional syntax and genres” organization to order reasoning — either 

in a limiting way (strong linguistic relativity) or as tendency (weak linguistic relativity). 

Conversely, universality arises from cohorts’ having copies of a certain kind of "sensorimotor 
discrimination system" with intrinsic affective response loading (Candelaria de Ram, 1990a, 1991, 

1992a, and elsewhere). "In other words," wrote Osgood (1963, p. 309), "the dominant ways of 
qualifying experience, of describing aspects of objects and events, tend to be very similar, 

regardless of what language one uses or what culture one happens to have grown up in." More 

to the point, as I see it, cohorts that perceive and act "symmetrically" can learn to influence what 

one another will do, by attempting to induce the enabling cognitive states in each other. Therein 

lies the utility of communication. External states (and internal states) can be manipulated. How? 
Ask as Cognitive scientists. 

2. OPTIMALITY AS WORKABILITY AND COMMUNICATION AS TOOL 

Language abilities shown by communication-system makers and carriers like ourselves 

are intrinsic consequences of our structure as processors of energy-patterns. 

2.1. Networks 

Our communication stems trom our being, structurally, cross-modal multilayer and 

multidomain action-perception nets. The nets characteristically have self-modulatory feedback as 

well as reflex response circuits. Our similarity and mimicry result in built-in transmission among 

agents of informational structures expressing perception of real-world states. Optimality is taken 

to be the same thing for this global phenomenon as for low-level mechanisms of molecular and 
cellular size. Optimality is taken to be system functionality and continuance. This is consistent 
because the larger scale phenomena are taken to be composites of low-level events in a 

re-combinant system. Thus, semantic interpretation stems from sensory input, and speech results 

from (myriad) efferent actions. Working models (computable nets) help in understanding 

communication, perhaps the most sophisticated "survival mechanism" evolved to date. 

In being a self-adjusting tool for local, cooperative activity involving reward in the real 
world, communication may, if and when used to keep the world running well, perdure along with 
it. That is optimality, as concerns communication. This is to say that optimality is not 

everywhere and always the same, but is relative to temporal, local phenomena. The kind of "best 

operation” that appears to apply to true-to-life phenomena like communication is thus concisely 

described by saying that functionally, optimality is workability. Optimality is not function itself, 

but a meta-property that concerns how well a mechanism functions. 

Our discussion now proceeds to show the relevance of networks given our definition of 

communicating as being a real-world phenomenon involving cognition (thinking-and-act- 
ing-and-remembering-and-feeling). Questions that cognitive science faces about workable 

systems, agency, mutuality, and will are duly taken note of. Then we get to our three cases of
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natural and artificial or computer-encodable nets for communication and language. Starting 
small, these are nets for real-world property measuring and integrating of parameters into 
concepts and name-systems or languages: First is a small neural net serving as a simple "meter" 
of the voice onset time (VOT) of speech sounds (like "voiced" /b/ vs. "voiceless" /p/ with long 

VOT), proposed by Loritz (1991). Second is a multilayer parser net; it is designed (Gigley, 

1985b) for time-synchronized processes and proves its worth in reproducing mistiming 

malfunctions seen in aphasia. Third is a multilayer, multidomain system, Pragmasemantics™ 
(Candelaria de Ram, 1990b, 1990c, 1990d, 1992b). This is a grounded net of processing 

connectivities, connectivities that begin with energy patterns from peripheral sensors and proceed 

through interpretive and integrative operations to higher-level concept constructs and 

reasoning. In Pragmasemantic'™ nets meaning and form are processed together from the 

outset. The illustration shows key communication functions, naming and speech acts. Detailed 

dependence on physiological mechanisms is indicated. The trio of networks culminates with one 

that involves an individual's being provoked to try to communicate.” Because Pragmasemantic™ 
Operators are real processes, executing them takes time. Effort underlies the learning where 

instincts are combined into a higher perceptual option: So, for example, a child learns to mimic 
a grin and affect a hunger-appeasing agent. 

2.2. What Communication Is: Interacting Extended to Cohorts 

Possible Postulate: In order for you and me or anyone else to converse, our individual efforts 
must evoke like responses in each other. 

That means a couple of things. For one, if no one makes the effort then no conversation 

will take place. There will be no discourse, no communication. For another, there has to be a 

cycle of responding between those making the effort to get through. Effort amounts to having 

and applying suitable operators even if that is not trivial. The interlocutors — a technical term 
for agents who talk to each other (loc as in loquacious) — must act, trying in turn to get the 
other guy(s) to jabber or gesture or whatever back. The need for interagent effort cycles may 

entail motivation mechanisms, such as molecular reward for sensing something expected (i.e., 

something whose subnet is primed). 

Networks are quite suited to modeling intrinsic cycles and sequences of events. Further 

work to pinpoint cycle endpoints ought to look at exactly how communicators’ "like responses" 
are alike; word-sequence identity is not sufficient; there may be many kinds of efforts that can 
be effective for communicating. Consider whole-body action, pheromones, speech, electric 

pulses, or even "brainwaves" as communication media. Nor is there any claim made at this 

juncture that if one interlocutor uses words the response will be words; response could just as 

well be a covert, cognitive adjustment, a change in what the interlocutor thinks due to what the 

conversational partner did. Communication is prior to verbal language. 

  

’ . . . . . . 

~ By speech acts we mean communication acts generally. A facial expression or a dance or a book chapter is 

as much a "speech act" as a telephone conversation: they carry an agent’s intent-1o-conve y-or-express.
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2.3. Interactive Realism and Optimality 

As agent capabilities increase by aggregating molecules, cells, and organs, capacities for 
complex operations can develop. Cells palpate food versus poison molecules; cell aggregates like 

jellyfish share. Such is the nature of our universe that localized aggregates with special-function 

components can recur (in separated locations). Replication of complexes can occur, and, further, 

cohorts are reproduced with same-function components. A natural outgrowth of synthesizing 

operations into complexes is, then, that operations for monitoring of both internal state and 

external environment conditions may be shared among cohorts. Response to internal and external 
states extends naturally to actions pendant on perceived cohort states. Acting so that information 
is conveyed somehow to adjacent cohorts is next. As the agents become larger and range farther 
afield, perception of what is going on beyond immediate place and time becomes relevant. 

The interactive realism approach we take is a fairly new one. It is related to ideas of 

affordances — the possibilities inherent in a configuration of objects and forces that frame an 

action. But interactive realism stems from basic principles of the way things in our chemo-phy- 

sical real world necessarily react with each other (contrasts drawn in Candelaria de Ram, 1990b). 

As back-to-basics scientific philosophy, interactive realism lets us take a fresh look at prime 
questions like optimality. 

A first question about optimality is whether having interactive realism’s principle of 
necessary interaction is good or not when you are building a world. The answer is something 

we can read from the real world — our (best, worst and only) "interactive-real system." In 

reality, some optimality is seen under certain conditions: 

Possible Postulate: The interactive-real system is Workably Optimal when local interaction 
necessarily occurs. 

We have two new terms to deal with in this definition of optimality. First, what is a local 

interaction? It is a response to some action that happens only in "nearby" things; what is local 

for that action depends on what kind it is. Suppose an action is a magnetic change; nearness 

follows a "cylindrical-surround space" symmetry with an axis direction following that of the 

action, which generates a magnetic pole: Dendritic spines change their conformation in response 

this way. This localness effect is distinct from others that apply for gravity or radiowave or other 
light. Communication interaction is concrete. Thus if I try to speak to you but you can’t hear 

me, you're not likely to answer unless you also see me writing or flapping my jaw or sending 

you some other signal to cue you to do so. Till this age of electronic communication, those who 

spoke the same language were invariably interlocutors living within speaking distance — not just 

in geolocal proximity but also within socially reachable roles that allowed them to make mutual 

efforts to communicate. Paper documents changed things so that, as now, some communica- 
tion-artifact had to be brought into proximity. Artifact reception could be delayed. "Extended 

localness" admits of a lot more slippage. Still, there is some sort of contact that defines 

communication groups. We see special kinds of dialect boundaries these days in the lingos among 

stock traders, hackers, and TV-show watchers. Even for such complex phenomena our cognitive
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process perspective can show up multiple-stage linkings among communicators who, albeit 
Separated in time and place, still influence one another via locally reproduced artifacts. 

Second, what is workably optimal? There are standard quantitative definitions of 
optimality that set "optimal" as a statistical calculation result over numerical measures of a 
(relatively simple) completely and statically parametrized problem space, but that won’t do for 
communication. To assume that kind of parametrizability for one of the most complex of known 
phenomena is at least premature, at worst wrong. An optimality concept more suitable for 
dynamic, complex systems is needed. "Workably Optimal" is a qualitative description of system 
functionality that entails the system's dynamic continuity. Necessary interaction according to the 
energy-matter conditions underlies stable dynamism. Our natural universe's properties of time 
monotonicity and ever-increasing total system entropy contribute the necessity of change, in 
balancing properties of conservation of energy-matter that underlie stability. Workably Optimal 
means that the thing works out as a whole over the long term — so we confidently expect our 
world to be chugging along merrily every sun-up, thank goodness. A system that continues to 
function shows itself to be workably optimal; further, dynamic system structure enhances 
optimality because it permits restructuring that enables nontrivial continuity, or workability. 

For a complex system to be workable is very obviously a major achievement of what is 
optimal! Optimality as it is relevant to communication phenomena in the real world is, in some 
sense, a bigger, better version of Darwin's appeal that enduring is more powerful. Workably 
Optimal is "bigger and better" than the Law of Survival of the Fittest in the sense that 
workability applies not just to species, but is an absolute requirement on system structure as a 
whole. It is interesting that effort should be part of the scheme. That might be so because effort 
Increases how workable the world is — trying makes it better. There wouldn't be communica- 
tion without it, and maybe communication increases workability. We can see that communication 
is evolving; it is becoming ever more complex, with language varieties for science as well as 
poetry, with writing and electronic encoding joining speech, with graphical and verbal messages 
zooming across distances, both geolocal and social. If we ask, Why is communication evolving 
and becoming increasingly complex?, one part of the answer may be simply that everything is. 
The whole system is evolving and entropy is increasing, making communication complexity 
increasingly possible. Prior skill in communicating permits building fancier tools. Now maybe 
it isn't everything that is getting more complex, but there are pressures for selected parts of the 
system to do so. It could be that communication increases system workability, that the world 
works better for having communication in it. How? 

On the Dynamics of Workable Optimality: There appears to be general growth and continual 
reoptimization of real-world communication systems. 

Communication, consisting of processes that take place in real time, is part of the natural 
world and subject to its boundary conditions. Natural languages such as Malay and Spanish are 
specialized communication (sub)systems that have grown up in societies bounded geolocally. 

Environmental conditions such as visibility, noise, and social prestige affect the utility and 
longevity of each language variety. Gesture and writing have advantages for immediate 
conversing in a very noisy environment, for example. Some communication modes, such as
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music, have expressive potential that others lack. Arranged selections from systems of signs 

(e.g., letters, logos) for referents — "linguistic surface structures" like sentences, ads, diagrams, 

symphonies — can be used during social interaction, but residual cognitive and bodily changes 

may be the most significant results of communication — cognitive adjustment may be what 

makes communication enhance the workability of our dynamic world. 
In summary, from the point of view of interactive realism, it isn’t surprising that our 

communication (a) is systematic, (b) takes place within the boundary conditions of the real-world 

system, and so (c) is characterized by necessary local interactivity. With a new definition of 

optimality in hand we are now taking the first steps toward modeling the precise workings of 

what Is very possibly the most sophisticated phenomenon yet evolved. We may not be able to 
ascertain yet whether communication makes our world more Workably Optimal, but the 

possibility should be kept in mind. Relevant information on the issue should be gathered. 

2.4. To Know IT Say: Bonus Questions of Agency, Will, and Self-Recognition 

The present description of communicating as effortful, if mutual, response cycles avoids 

some sticky questions. One such question is whether planning is intending and means the 

responders have free will (rather than just will). Another one is the question of "I think therefore 

I am" — a philosophers* claim that awareness of one’s own existence as a thinker is basic to 

having a mind or soul — or whether computers can be thinkers if and only if they know they 

are thinking (to think if they think they think they think ...! 

because they think"). 

  an old tautology "they think 

2.5. To Know We Answer: Essential Recognition of Mutuality 

Nevertheless, describing communicating as a process like this leads straight into the 

question of how the interlocutors know there is response back and forth. That might look like 

an easy one — we observe the response, make the connection, and plan our own next effort. But 

how did we know that what is going on is response to each other in a mutual effort cycle? 

Aren't we starting to go around in circles saying we communicate because we communicate? 

No, because cohorts parametrize similarly. In this chapter we see, in the form of several 

networks, how an agent can begin to respond to systematic communication (discriminate 

distinctive features in the sound stream, coordinate sequencing expectations and syntax), how the 
connections between agents can be made, what context and instincts have to do with it. These 

understandings have immediate and valuable applications for cognitive interchange tasks ranging 
from socialization/teaching, to rehabilitation after brain injury or other cognitive trauma, to 

naturalistic human/computer interaction. 

2.5.1, Voice Onset Time. Loritz accomplishes the decomposition of a phonemic or 

“distinctive sound feature" with a neural-network style meter that shows how switching could 

account for sensory discrimination on a universal parameter of voice onset time — a feature so 
universal that other mammals (chinchillas, even) can discriminate among human words on this 

basis. Thus a neural net for phoneme voicing accounts with a minor mechanism for what is 

customarily treated in standard linguistics as atomic or unanalyzable. Similarly, the theoretically
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categorical feature that linguists call [ + voice], noted Loritz (1991, p. 306), can be modeled as 
a process using a standard bit of neural net. The processor is a neural net junction construed as 
taking outputs from thousands of cilia in the inner ear. The junction is basically a cumulator, 

looking for fundamental frequency in a sound until a timer runs out so as to measure whether 

voice onset time (VOT) is over threshold. If the fundamental is on long enough, the speech 

sound ts classified as voiced — [+ voice] for /b/, /d/, or /g/ as opposed to [- voice] for /p/, /t/, 
or /k/, for example (Lisker & Abramson, 1964). In practice, the harmonic structure of the whole 

sound would have to be recognized and first harmonic distinguished from fundamental, but the 

idea is simple. Loritz (1991; see Fig. 20.1) showed a standard neural net crossover gate but with 

a built-in timer measuring gaps in fundamental frequency in a speech stream for voiced sounds. 

(This is somewhat analogous to the use of gating to make decisions about the relative importance 
of stimulus attributes in Levine & Leven, 1992.) Gap threshold adjustment would allow reuse 
of such meters for different individuals, dialects, or languages; variation of VOT with language 
was a property that led to its discovery (Lisker & Abramson, 1964). 

2.5.2. Time-Taking Parsing Net. Integrating this phonetic-to-phonemic decision level with 

successive ones, Gigley (1985a, 1985b, 1988, 1992; see Fig. 20.2) uses a multilayer net with 

built-in timing. Gigley’s HOPE takes speech sound analysis through "time-slice" diagrams 
representing linked-step parsing that yields the traditional sort of syntactic structures for 

sentences. 

As with Loritz’ net, threshold settings and numerous timers are used to classify portions 

of the input stream into units used in traditional linguistic analysis. Using such things as 

activation duration and decay rates, phonemic, then word, then categories like Subject-Noun and 

Verb are associated with sound input from certain intervals. HOPE uses assumptions that 

Subject, Verb, and Object enter in fixed order, reasonable for some languages and for a first 
approximation. The abstracted words tagged with part-of-speech are strung together, forming 
standard-order SVO sentences with an associated traditional parse. This achievement is again 

using a net to turn morpho-syntactic and syntactic analysis into a series of processes that take 

time. (By virtue of this, messed-up timings cause it to produce various kinds of aphasic 

misfunctions, another achievement that shows the clinical applicability of cognitive modelling 

of communication.) Gigley’s net is more complex than Loritz’ in explicitly having several 

concurrently operating processing "layers," with the syntactic part-of-speech category conditional 
on what word was identified, the words having been built on the phonemes. Beyond showing 
how analytic rules adopted from linguistics can be expressed with nets, as Loritz’ "feature meter" 

does with its durational threshold, Gigley’s HOPE demonstrates that durational thresholds 

between stages more generally are so appropriate in modelling linguistic cognition that running 

the program with messed up settings replicates real-world cognitive misfunctions affecting 

communication — blocked access to verbs, for example, seen in certain kinds of aphasias from 
brain damage (cf. Vroman, 1987). These models make a start for constructing artificial nets that 
fairly directly model biological processes instrumental to use of language.
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Fig. 20.1. Neural net model of energy flow measurement of a linguistic feature. The parameter is VOT (voice 

onset time); the measure is At, the ms duration of a consonant sans fundamental frequency vibrations. 

In (a), /p/ stimulates the Ieft pole of a voicing detector dipole. The right pole is inhibited via the inhibitory 

interneuron [uv and a nonlinear feedback signal is established via u2. ul persists in suppressing v1 even 

though Tuv subsequently stimulates the right pole. An unvoiced percept is emitted from the dipole. In (b), 

a /b/ also stimulates the left pole tirst, but before the left pole feedback loop can be established, it is inhibited 

by the more rapid onset voicing in the right pole. The dipole emits a voiced percept. (From Loritz, 1991. 

Adapted with permission.) 

2.5.3. Communication Thinking-and-Actng. With an eye to modeling actual physiological 

events comprising communication reception, understanding, answering, and memory, Candelaria 

de Ram (1992b and elsewhere) developed a system for specifying even more cognitive process 

detail for high-level and low-level processes. Candelaria de Ram’s multilayer, multidomain nets 

have tools for more specific description of process times; for input/output conversions and 
transformations (reinterpretations); for physiological structure conditions, current states,
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self-modifications in the system; and off parametrization at the level of social interaction as well. 
Emphasis in Candelaria de Ram’s modelling is on cognition regardless of whether or not the 

exigencies of process are addressed by terms set out in linguistic analysis for contrasting 

language surface structures. The approach, Pragmasemantics'™, seeks to discover how meaning 

is apprehended and expressed through cognition and communication. Primary vocal responses 

and concepts, for instance, may be more reflex than other vocalization: Bodily structures, 
connections, and motivations as well are provided in neonates, for example, for certain crées 

including pain, hunger, and lovely-eating. Absence of or difference in those cries or perceptions 

indicates abnormalities in the agent, much as do the aphasias where connections are not made 
at the right times. 

Candelaria de Ram (1991a) illustrated how the simplest of concepts, such as loudness, 

may be built out of reflexive processing that enters into communication processing. (Decreased 

gain protecting the middle ear from loud sounds is measurable as muscle tension in the stapedius, 
so loudness is a graded qualitative concept with a direct basis in small physiological structures.) 

Cohorts can have the same processor structures and concept capabilities: critical among them are 

naming, case relations among referents, and speech acts, our next three examples. 

2.6. Pragmasemantic’™! Operations 

The accompanying diagrams show some of the process operations and parametrizations 
of Pragmasemantics'™, where the key linguistic relation, of naming, is an efficient and concrete 
Operator or connective between energy patterns (Fig. 20.3). In this case a coreference connection 

is made between interpretations of two directly perceived events in the same modality. The 

referent is a brass bell ringing; the verbal token is another audible stimulus comprised of energy 

patterns proceeding through layers of the net where first phonetic and then phonemic 
identifications are made. Interpretation occurs as the stimuli flow through memory/skill 
processors with appropriate energy-passing and sorting capacities. Via neural/structural meters 

like the VOT subnet seen above, the stimulus is figured out to be first a voice- and dialect-spe- 

cific phonetic image [bel] and then a more abstract phonemic form /bel/ suitable for the nets of 

morphophonemic tactics. 

Pragmasemantic™ nets can be diagrammed. They can be set forth as high-level 
propositions in a grounded logic, and written in equation forms specifying appropriate parameters 

such as process locations, times, and energy pattern specifics as well as durations such as seen 

in Gigley’s HOPE. These, illustrated above, can in turn be programmed readily in high-level 

programming languages like Prolog, as illustrated below. 

A remarkable new feature of Candelaria de Ram’s Pragmasemantic'™ techniques is that 
interpreted stimuli and context are processed together from the beginning, so Pragmasemantics™ 
captures the cognitive fact that signiticance and sign are inextricably connected at all levels of 
processing. Babies always have the capacity for at least rudimentary "symbolic" thought in that 
sense. It further appears that from birth they have the capacity for making like vocal and gestural 

responses as well, as described next.
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Fig. 20.2. Reinterpretive process stages: Expected sequencing in speech stream leads to a net with time steps 

for lookup of aspects of significance depending on what is found a bit carlier at a different level. 

Phonemicization is shown as the first level (cl. linguistics tradition and Loritz’ feature detector nets). (From 
Gigley, 1985b. Adapted with permission.)
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Fig. 20.3. Multistage discrimination of pattern types. Linguistic and referential appear parallel, contiguous 

(versus traditional separation into linwuistic levels in Prazmasemantic!™ nets.) 

Consider again Fig. 20.3, showing a Pragmasemantic™ net transducing perceptual 

information, making various discriminations at various stages of processing by using the operators 

of that respective level, joining various streams, and coming up with a referential connection
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between a verbal name and a perceived thing. Naming, a key property of language, is shown in 
Pragmasemantic™ nets to be vested in multistage processing near the peripheral sensors. The 

process of discovery of a relation between two sound patterns where one refers to the other — 

a word token bel refers to the ringing sound of a brass bell — is a sequence of processes 

building on each other's input energy patterns. This form of Pragmasemantics™ notation sets 
out relations (e.g., &—coreferential) among energy-patterns occurring at specific times, durations 

and processor locations; the items appearing within angled brackets < > in the portion below of 
one formula rendered in high-level computing language propositions (Prolog) are just stand-ins 
for actual energy patterns which are repeatedly converted as energy is routed through the system 
for analysis and storage. In this example the two stimuli occurred at the same time and a 
simultaneity relation (e.g., &—cotemporal) serves as a prior condition for figuring out that one 
stimulus names the other. 

++ Pragmasemantic'’ INFORMATION STREAM LINKOR OPERATOR ++ 

Sensor S1 -> Language-domain S1°, Level L2(conversion of outputs from +1,2) 

Prolog rendition of part of intralevel processing where (1) data supports stimuli co-occurrence 
check (2), which fulfills condition for secondary recombination of data as referent and name that 
has been/can be used to point at it. 

{Capitalization indicates variables for parameter values from sensors. } 

[ % high-level tagging in square brackets, then signal in <> 

[ % referential relation pair 
[token, TOKEN], % cross-binding of relational values TOKEN & REFT 

[referent, REFT]], 

[*&co-temp’, % simultaneity condition (3rd branch of net node) 

[voice, TOKEN], % “meter” finds this stimulus has voice structure 

[occurrence, REFT]] % stimulus is left as phonetic image 

<TOKEN>, <REFT>, % ACTUAL ENERGY VALUES, not tags here 

[’&co-temp’,w,b]@[S1,L2], % transduced/interpreted energy Sensorl,Level2 

[attime, T3, DUR6]], % DURation within same-time window 

2 < C,V+>, % syllable, bell-sound patterned energies 

[&co-ret’, w,bJ@[S1,L1,L2,L2,2], % name relation node energies 

[attime, T4, DUR7] 

A remarkable aspect of Candelaria de Ram’s Pragmasemantics'™ nets is that context and 

signal are processed together. (This is not true of many neural nets nor of classical semantics 

such as Weinreich, 1963/1966.) Its focus on cognition brings out this marvelous contrast with 

the long-traditional presumption in linguistics that semantics and/or pragmatics is not accessed 

until some late stage after syntax. 

In Pragmasemantics “ communicative tokens have significance immediately because they 
occur in context; as discriminations accumulate during further processing, the significance 
accumulates. For example, a lexicon of parametric property-based condition definitions of basic



COMMUNICATION COGNITION 439 

concepts might contain reasoning network specifications that can be illustrated again in the 
propositional computing language Prolog. The variables (capitalized terms) here get values 

coming from "meters," not for VOT, but for things like locations of sensed objects in 

[loc, LA,of,A] and movements at some point like [state,S2,[move,A]], and amount of insertion like 

[degree,DIN1,[A,in,B]] or found at some level to fulfill some relation like further-in for [DIN] 

> DIN2], or in-time-sequence for [tseq,S1,S2,S3], the last being rather in the manner of temporal 
logic except that here the arguments are not tags but energy patterns grounded in sensory 
perception. 

++ Pragmasemantic'™™ CASE-RELATION OPERATORS (GROUNDED CONCEPTS) ++ 
Pragmasemantic™ reasoner Lexical Entries 
(Prolog at left, explained at right after %) (Candelaria de Ram 1992b, pp. 196-197) 

interp([A,in,B], % concept "in"; used by "across," 

"into," etc. 

[[state, S1, % there Is a State S] 

[loc,LA, of, A],[loc, LB, of, B], % in which A has location LA, etc. 

[extent,EB,of,B], (extent, EA,of,A]], % B is so-big, ete. 

[EA < EB], [LA,at,LB], % B bigger than A, A & B same place 
[focus,A],[focus,LA]], % \inguistic use focuses on A & 

where’s A 

Evaln). % concrete energy processing 

Interp([A,into, B], % concept "into"; uses "in," is learned 

later 

[[state,S1, [degree,DIN1,[A,in,B]] J, % there's a state S1 when A is in B 
[state,S2,[/[move,A]], % then A moves 

[state,S3,[degree,DIN2, [A,in,B]] ], % so it’s in Ba different amount DIN2 
[DIN2 > DIN1], % namely farther in 
[tseqg,S1,S2,S3], [focus.A],[focus,S2,S3].[ground,B] ], % that’s the point 

Evatn). % concrete energy processing 

This structuring is designed to be consistent with processing phenomena indicated by 
psychological experimenting on semantic priming and other spreading activation phenomena. 
Pragmasemantics™ levels can be elaborated, so we can use and develop them as we learn more 
specifics about mechanism in the neurophysiologically differentiated, interconnected domains in 

the nervous system. Pragmasemantic™ nets have capacity for any number of processing levels 
and levels of various types. 

2.7. Mimicry: Built-In Bootstrap Effects Self-Adjusting System Drift 

Our most fundamental communication response seems to be mimicry. Reflexive mimicry 

of speech, hand, and body gestures from birth gives babies a no-delay start in social exchange. 

The physiological connectivities provide for chunking of information by cross-correlating stimuli 

from different modalities; equivalents in a network model (Pragmasemantics'™) are complex



440 CANDELARIA DE RAM 

measurement predicates or parameters. (So, for example, the measured degrees of "in"-ness in 
Statel and State3 above may come one from touch, one from vision.) Automatic mimicry also 

provides, by default, for constant system update across its speech community. Details follow. 
Granted that certain vocalizations and concepts are ready to be used in the system, an 

agent has some tools to use in communicating. But how does the communication cycle start? 
It would be consistent with the observations made above that primary concepts and vocal 
responses are founded in reflex, automatically accessible, circuitry. In particular, there should 
be some reflexes in neonates that get them started performing communication actions as 
responses. There is in fact evidence from careful psychology experiments with 40 newborns 
averaging 32 hours old — less than 2 days — (Meltzoff, 1990; Meltzoff & Moore, 1983) that 
neonates imitate the position of oral articulators of someone in front of them. As shown in 
photos from the experiments (Fig. 20.4 from Meltzoff & Moore, 1977), newborn humans mimic 

pursing of the lips (lip-rounding, a universal phonetic feature), opening of the mouth and 
Spreading of the lips (enabling capturing both /a/ and /i/ distinctions, as well as /u/ typing), and 
tongue protrusion (which gives them a handle on /I/ sounds and consonant frontness versus 
backness) as the voice is turned on and off in cooing. Imitation of head and finger movements 
are also found in newborns (Meltzoff, 1990, p. 35). Similar imitative exchanges are found at all 
ages in humans, indicating that we have identified the key agent feature that starts and restarts 
the communication cycle: built-in communication mimicry actions. 

2.7.1, Sensor Integrator Subnets Connected to the Jawbone. By the age of 4 months 
infants do things like selectively match /i/ mouth position with /i/ sounds, although in a few 
months they take closer looks at a bad match. Capacities such as these require matching up 
visual cues and sounds. How is it possible for mimicry and cross-modal connections to be set 
up within the same system? Briefly, the deep portions of the superior colliculus at the top of the 
brainstem have multimodal image cells that get sensor image inputs and coordinate eye and 
sound, and so on. In fact, intracell response measurement shows that among these "meters" some 

are multimodal additive, whereas in some of the cells, characteristic firing rates for single-mo- 
dality stimulus become inhibited by cross-modal co-occurrence (Stein & Meredith, 1990). Built-in 
lags in these multimodal image cells compensate for systematic differences in stimulus energy 
arrival times due to length of the nerves from eye (55-125 ms) and ear (10-30 ms). 

Stein and Meredith (1990, p. 61) figure that the system provides for selective attention 
to multisignal events, probably from birth (Diamond in Stein & Meredith, 1990, p. 69). Such 
bundling of multimodal stimuli corresponds to multimodal parameters or higher-order predicates 
of Pragmasemantics™, for instance, measurement of an object A’s extent EA could be through 
multiple sensors (note specifications of sensor and level as well as time, in examples below 
shown as variables S2, L2; Ti, DURi; implemented through the evaluation map Evaln). Motor 
projections from the superior colliculus also provide for image-coordinated movement (e.g., 
Figure 2 of Stein & Meredith, 1990, p. 53, cf. ascending neural bundles). The brainstem, 
sensors, and cerebellum are tightly linked with reflex action circuits that control significant 
sequences of fine muscle movements such as vocal articulators, so that copying of communicative 
actions can be transferred quickly before conscious monitoring can interfere. 

Copying is a low-load process, but apparently subject to emotion gating (to participate or 
not, Candelaria de Ram, 1989). Therefore, besides being instrumental in starting off a newborn’s
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language skill exercises, imitation appears to be a source of linguistic drift, pushing speech 
communities into new language varieties, making communication adapt as time goes on, just 
because variants get automatically integrated into the system (Candelaria de Ram, 1990a). Hence 
related-language cognates such as reign in some communities and rAjA in their cousins’. Note 
that the intermodality of these automatic processes means that drift is to be expected for all 
modalities of communication at once, gesture, speech, and all. 

  
Fig. 20.4. Photographs of 2- to 3-week-old infants imitating facial gestures presented to them by an 

adult experimenter. Automatic mimicry and spontaneous vocalization at birth mean spoken communication 

can begin immediately (far before the age of 1 year as traditionally claimed). Quick learning of speech act 

cognition can appear as in the Pragmasemantic™ COMMUNICATION OPERATOR shown below. From 

A. N. Meltzoff & M. K. Moore, 1977, “Imitation of facial and manual gestures by human neonates.” 

Science, 1977, 198, 75-78. Reprinted by permission. 

Although reflexive imitation may start us off as lifelong communicators, what motivates 
us to intentionally communicate? Reward. Simple principle, reward, and well documented by 
psychological experimentation at the macro level as action consolidator and motivator. Reward 
is beginning only now to be understood as an extraordinarily complicated molecular-level 
phenomenon of substance balancing (e.g., hunger and thirst satiation, opiates interacting with 
neurotransmitter manufacture). But, fortunately, simple high-level handling in Pragmaseman- 
tics'™ works fine as we see in the example that follows. Note how the multilevel net is designed 
for being elaborated with details of component (or overall) process as they become available, so
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that, for instance, ACT can become a large relational complex of known and sought values, and 
GRIN can be specified in terms of muscle tightenings. Learning takes place as values for person 

P and EGO are interchanged so EGO observes and learns to use a grin. 

++ Pragmasemantic'™ COMMUNICATOR OPERATOR (NON-VERBAL) ++ 

See a Speech Act, Do a Speech Act: Pragmasemantic'™ Cognispaces™ with Intent and Copy 
Originally, a believer Bx (Manuela) might not represent ‘grin’ as a speech act, but only as an 

environmental occurrence. How would grinning with social purpose come about? By mimicry, 
reasoning by analogy over intentionally caused event sequences: (For further discussion see 
Candelaria de Ram, 1992b, pp. 154-159 and prior work.) 

Beliefs of Manuela, attime Tx, loc Lx 

Domain: grin 

[EGO | MANUELA], 
[believe, Agent | Properties J], 
[PropertiesJ, 

[occur, [[attime | AnyCurrentT], EGO], 
AO, GRIN, A, P, S1, S2, X, ... ], 

[obj, X], 
[person, EGO], 

[person, P], [agent, P], 
[GRIN, [agent,P] | TEMPORARY-FACIAL-POSITION-OF-P], 
[tsequence, [attime,T02], % a grin from P bridges states 1 and 2 

[state,S1], [act, P, GRIN], [state,S2]], 

[[state,S2], [do_act,G,A0], % agent AO does G during state 2 
[G,[give,[agent,AO],[patient,P],[obj,X]]], % namely AO gives X to P 

[[state,S1], [not, possessor_of,X,P]], 
[state,S2], [possessor_of,X,P], 

[want,X,P] ... 

wroneoeee Manuela applies reasoning/net-connection, this-level’s combination-rule 

[sensor,Sx],{level,Lx],[combination_rule,Cx, % rule execution defined 

[causal sequence, % rule constitutes recognition of cause-effect 
[tsequence, [attime | Ti], % event-sequence 

[state | SAi], [act | ACTi], [state | SBi]], % act(s) bridge state(s) 

[tsequence, [attime | Tj], 
[state | SAj], [act | ACT}], [state | SBj]], 

[verisimil, [SAi,SAj], [ACTi,ACTj], [SBi,SBj]]], 
% pair of events similar 

worceceee Manuela wants to get like P did, mimics P’s GRIN: rebinds agency to self
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[want,X,P], % hmm, X wanted P while 

[want,SB,P], % | want SB 

[intend, GRIN,P], 

% and P grinned (he meant to); reflex 

recognition of P’s agency 
[intend,SB,P] % so I intend to too: 

% WHEN INTENT IS BOUND TO AGENT EGO 

% RUNNING COMPUTATION PUTS ENERGY INTO BEHAVIOR CIRCUITS. 

This analogical reasoning is doubtless little different at base than babies’ instinctive 
mimicry of communicative gesture. Grinning to get something and use of a name to point out 

something are the kinds of actions from which communication systems can be built up. 

Eventually any number of acts ACT) may be involved, leading to full-fledged discourse. 

Discourse structuring, with agent turn-taking, is a matter of chained time sequences of acts with 

agents (tsequence ...fact...agent as seen in the last example). 

Note, however, that motivation, intent to act, effort, comes into the picture as pointed out 

earlier in this chapter. It seems to be a real-world fact that motivation involves reward as a 
necessary consequence in cyclical interaction sequence patterns. Further, effort to communicate 

with other agents results in recognizing their efforts and coordinating information about those 
events with other information. 

3. LOCALIZED OPTIMIZING THROUGH DISCERNING REDUCTION OF 

APPARENT ENTROPY 

In sum, specialized memory and perception organs develop. By measuring some domain 

of perception, say smell, taste, sound, or light, filtering organs let composite organisms impose 
order. 

As the complexity of the agent-in-context system increases, then, percepts — which are 

made of critical measurable values or value ranges — reduce the apparent disorder. (Physics has 

a descriptive term for disorder — entropy. Disorder as it relates to kinetic processes refers to 

where a [sub]system’s homogeneity lowers its capacity to fall into a lower-energy state and so 

to do work consisting of of moving something. Defined for the Second Law of Thermodynamics 

in terms of heat, entropy change from S later-state to S earlier-state is greater than or equal to 

the integral (from earlier to later) of the change in heat absorbed divided by the system 

temperature (Halliday & Resnick, 1960, pp. 546-552). For compound systems like agents, the 

trick is not to fall into an undifferentiated state.) Percepts, because they constitute added 

superstructure that is cognitive In nature, may not actually reduce the ever-increasing entropy of 

irreversible natural process as evolution spins forward in spacetime, but they counter apparent 

disorder for agents by selectively registering only certain real properties through real organs of 

perception. Sensors are therefore filters (see Candelaria de Ram, 1990b); they measure sequences 

of parameter values within select ranges; the cognitive processing they support reduces local 
entropy; the cognitive structures constitute an opposite quality to constrain entropy. 
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Possible Postulate: Reducing apparent complexity lets agents recognize things. 

Recognition is an artifice to induce apparently conserved entropy so that certain parts of 

a later situation seem to depend "only on the state of the system and not on how it got there from 

a previous state" as with reversible processes where entropy does not increase (ibid.). When the 

description of a later state is reduced to the description of an earlier one with the same parameter 
value(s), the organism is able to isolate with what appears to be a reversible process, and can 

repeat a prior successful reaction to the state as perceived. 

This idea about how communication comes about may be coalesced with a new term, 
discerntropy, detined as follows: 

Discerntropy: The capacity of discernment to reduce apparent entropy locally (i.e., for agents), 

a capacity pendant on perception and developed naturally over the course of evolution to counter 
increasing complexity of the natural world which has concomitant ever-increasing entropy 

(following from general operation of the Second Law of Thermodynamics).° 

Communication enhances discerntropy. According to Pragmasemantics'™ (Candelaria de 

Ram's cognition theory), sensors introduce parameters, which can be combined in perceptual 

constructs, so that a "simplifying" meta-universe is built as cognition develops by successive 

recombination of parameterized percepts grounded in sensing of external (and internal) environs. 
In sum, this is the scenario. As agent capabilities increase by aggregating molecules, cells, 

and organs, capacities for complex operations can develop. Cells palpate food versus poison 

molecules; cell aggregates like jellyfish share. Such is the nature of our universe that localized 

aggregates with special-function components can recur (in separated locations). Replication of 

complexes can occur, and, further, cohorts are reproduced with same-function components. A 

natural outgrowth of synthesizing operations into complexes is, then, that operations for 

monitoring of both internal state and external environment conditions may be shared among 
cohorts. Response to internal and external states extends naturally to actions pendant on 

perceived cohort states. Acting so that information is conveyed somehow to adjacent cohorts is 

next. As the agents become larger and range farther afield perception of what is going on 

beyond immediate place and time becomes relevant. So they set up to convey and recapture state 

information. 

Discerning selected things in one’s locale works with ability to react selectively. 

Eventually complex agents with similar perceptual structures can act so as to inform each other 
of extra-local conditions including their own internal states: En fin, communication arises 
ineluctably with evolution of social agents. 

  

> Coined in multilingual form by Candelaria de Ram (in press): English discerntropy etymology is dis-cern (to 

separate by distinguishing, judging) + entropy (roughly, system inhomogeneity or "disorder"). Cognates of the 

English term discerntropy (already reduced from discernentropy, so as to incorporate sandhi) include Spanish 

discierntropia (DISCERNIR + ENTROPIA --> discieritropia) and hyphenated form for Hindustani (which normally 

borrows English scientific terms) DEwy-entropy (dr:ST (discern) --> DEwy - entropy). (See American Heritage, 
1994; Aptc, 1884/1974; Platts, 1884/1974; Random House, 1994: Smith, 1971.)
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4. CONCLUSION 

Communication is seen to arise as chemo-physical complexities of the world increase, 

with larger molecules, living entities, and eventually mobile agents. Communication appears to 

be a mechanism for meta-optimization: As real-world entropy increases, systematized 
communication among now-distinct agents allows some control over dangers from excessive 
disorganization. The more free-wheeling the agents, the more elaborate the communication 
system. Paradoxically, this leads to a new kind of complexity, namely, information complexity. 

Our decades have seen mighty increases in mobility of groups of agents sharing languages and 

cultures more generally. Ready transport of records of communications (¢.g., book, phone, film, 

fax, computer file transfer) makes for delayed and extended local access. The deluge of 

communiquées is being channeled with tools for handing on and handling information which far 

exceed speech, traditionally held to be the root of language, while tools like electronic encoding 
are extending transcription techniques like phonetic and logographic writing (including music 
transcription). Communication evolution is an optimizing process now in full swing. 

Although a great deal more study is essential for understanding how communication 

results in cognitive adjustment, we have now laid out some of the basic functional mechanisms 

of how it occurs. There are built-in similarities in how communicative agents perceive and 

reason, so they cognize each other (and their environments) similarly. They can (a) share 

communicative significance of acts, and (b) figure out what cognitive adjustment to expect in 

their interlocutors. They have group discerntropy. Communication is therefore a tool for shaping 

the world, dynamic by the very nature of our chemophysical universe, significant by virtue of 

the operations that constitute the very cognition that drives communication acts, both overt and 

covert. These are real world operations that are concrete and contextual — pragmatic — and 

semantic in that they interpret happenings as significant for a cognitive agents. Communicating 
communities of agents may hold operations in common. This leads to languages: changing 

communication conventions that form evolving usage systems. If communication is used to make 

the world continue on its merry way, it too will doubtless perdure as an optimality maker. 
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Raymond Trevor Bradley and Karl Pribram’s chapter, Communication and Optimality 
in Biosocial Collectives, ts unique among the chapters mn this book in that it deals with 
optimality in social systents composed of people, rather than individual nervous systems composed 
of brain regions. It is related to this book's other chapters, however, because of the strong 
analogies between different levels within complex nonlinear dynanucal systems. Just as typical 
neural networks, whose nodes are brain regions rather than individual neurons, include effects 
that can be described by the average of effects in single neurons, social networks include effects 
that can be described by the average of effects in individual brains. 

Bradley and Pribram describe tivo key variables in the dynamics of urban communes that 
need to be in optimal ranges for a commune to have a good chance of surviving over periods of 
four years or more. These two variables they call flux and control. Flux is defined as the 
density of interactions between different members of the commune. Because flux ts related in 
some sense to the amount of "excitement" or "stimulation," optimal flux appears to be related 
to the criterion, developed in Rosenstein’s chapter of thts book, of optimal "income" within an 
individual brain. Control is defined as the extent to which rules or hierarchies govern these 
interactions. 

The optimal patterns of flux and control can be related in many ways to theories of 
individual brains and neural networks. Pribram relates these variables, by analogy, to physical 
energy variables, and concludes that the stable states correspond to configurations that obey some 
kind of least action principle. Previously, tn jomnt work with Diane McGuinness, Pribram had 
related such principles to optimal functioning of a brain system that includes the frontal lobes
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and hippocampus, among other areas. Also, the optimal states can be described as states that lie 
ma region, as Bradley and Pribram say, "between total randomness and total organization." 

These states are described by a thermodynamic analogy also used in neural networks developed, 

for example, by John Hopfteld, Geoffrey Hinton, and Terrence Sejnowskt. 

Bradley and Pribram’s chapter can be considered part of the same project as Leven’s 

chapter in this book (and, to some degree, the chapters by Levine, Prueitt, and Werbos). That 

project aims to bring insights from neural network theory and cognitive science to bear on 
developing new theories in the soctal sctences (in the case of this chapter, soctology). This project 
should address the sore need tn the social sctences for foundations that (a) are quantitative and 

at the same time (b) integrate the dynamics of real human behavior and emotions. 

ABSTRACT 

A theory of communication ts developed to explain optimization in the social collective: 

to explain how energy expenditure interacts with control operations to form an efficient 
information processing system that results in a stable, effective collective. The theory shows how 

two orders of social relations, flux and control, act on the biosocial energy of the collective’s 

members to create quantum-like, elementary units of information. Each unit of information 

contains a description of the collective’s endogenous organization. Constructing and distributing 

such descriptions throughout the collective on a moment-by-moment basis, the interaction 

between the two orders operates as a communication system that in-forms (gives shape to) the 
expenditure of energy and results in stable, effective collective action. Results from a 
longitudinal study of 57 social collectives offer empirical support for the theory. Only those 

configurations of flux and control that produced a path of least action — one which entailed the 

smallest amount of turbulence — resulted in a stable and thus effective social collective. 

One has the vague feeling that information and meaning may prove to be something like 
a pair of canonically conjugate variables in quantum theory, they being subject to some 
joint restriction that condemns a person to the sacrifice of the one as he insists on having 
much of the other. (Shannon & Weaver, 1949, p. 117). 

1. INTRODUCTION 

The picture of reality that science portrays reflects the way science is organized. Broadly 

speaking, this organization divides science into distinct disciplines (e.g., sociology, psychology, 

biology, chemistry, and physics), each perceiving the natural world by way of its own perspective 

and techniques. Reflecting this organization, most behavioral science is a single-level enterprise 

generating bodies of data and theory specific to the phenomena of concern. This is especially 

true of contemporary sociological research which, since Emile Durkheim’s Les Regles de la 

Methode Soctologique (1895/1938), has treated (human) social interaction as a separate order best 
understood by studying the ways social organization constrains the behavior of the individual and
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that of collectives of individuals (e.g., Burt, 1992; Coleman, 1990; White, 1992: a notable 

exception is Collins, 1975). 

Essential as single-level enterprises are, some of the most exciting moments in the history 

of science have come when data collected from adjoining levels provide insights that point to the 

possibility that scientific knowledge can be woven into a single coherent tapestry. Such insights 

are the product of multilevel investigations that focus on the interlinkages between systems of 
organized behavior at adjacent levels. 

The broader aim of this chapter, therefore, is to relate social phenomena to basic concepts 

that have developed in physics and control engineering. Beyond the urgency and importance of 

the development of a common scientific language (Bishop, 1995), we take this approach because 

single-level research in social science has not been successful in predicting the behavior of social 

collectives, and because we believe that the development of this understanding can be informed 
by concepts that have proven useful in these fields. 

Two steps are usually required to obtain insights when using a multi-level approach. The 

first step is to discern commonalities in the behavior of collectives operating at different levels 

and to describe these in a common terminology. For instance, an assembly of neurons in the 

brain is conceived to obey the same laws of communication as an assembly of people in a social 

group. A formal approach to this step was taken by General Systems Theory (Miller, 1968; von 

Bertalanffy, 1969). The second step seeks an understanding of the intimate relations that connect 
two adjacent levels of inquiry. Ideally, the operation of these relations, formally described as 

transfer functions (transformations), must account for the results obtained in the first step (see 

Nicolis & Prigogine, 1977; Pribram, 1991). As an explanation of the periodic table of chemical 

elements, atomic number theory is a prime example of this second step (Bohr, 1921a, 1921b). 

In this report we take only the first of these steps to explain optimization in the social collective: 

to explain how energy expenditure interacts with control operations to form an efficient 
communication system that results in a stable, effective collective. 

We draw our insights and formalisms from thermodynamics and information measurement 

theory to help understand the communicative structure of small social collectives. In a 

subsequent work, we plan to describe the transfer functions (rules) by which the processes these 

formalisms embody are translated into psychological and sociological mechanisms operative in 

the collective. Thus the multilevel strategy is not being employed in the service of reductionism: 
indeed, as essential as single-level science is, we believe it must be complemented with 
multilevel work if a general scientific account of the behavior of collectives is to be achieved. 

Scientific exploration is often dependent on the invention and application of new 

technology. One of our premises is that ideas derived from the formalisms of mathematics 

provide a technology that can be applied to data acquisition and analysis, especially as 

implemented in computer programs. The formalisms provide ways of expressing, in precise 

form, problem-solving algorithms, that is, ways of thinking about data sets. Mathematics in this 
sense is the technology of thinking. ' 

  

' This view of mathematics was expressed explicitly by Grassmann (Lewis, 1977, p. 104) who founded an 

algebra to represent the thought process. On the basis of Grassmann’s work, Clifford developed an cight-valued 

(two-quaternion) algebra used by David Bohm and Basil Hiley (1993) in formulating issues in quantum mechanics.
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Our report can be conceived, therefore, as an experiment in which we are tentatively 

applying computational devices, algorithms, found useful in stating and solving problems in other 
scientific endeavors. Computers are to the behavioral sciences what test tubes are to 

biochemistry. Both are "in vitro," silicon-based technologies, means by which energy relation- 

ships, control processes, and information transmission can be studied. 

In what follows, we present a theory of global communication in social collectives. By 

global communication we mean a process by which information about the collective’s internal 

organization is gathered, processed, and distributed throughout the system as a whole. A social 

collective is defined as a durable arrangement of individuals distinguished by shared membership 
and interaction in relation to a common purpose or goal. The theory shows how two orders of 
social relations act on the biosocial energy of the collective’s members to create elementary units 

of information. Each of these units of information contains a description of the collective’s 
endogenous organization. Constructing and distributing such descriptions throughout the 

collective on a moment-by-moment basis, the interaction between the two orders operates as an 

efficient communication system that informs the expenditure of energy to effect stable, effective 

collective action. We ground our understanding on the empirical results of a study of 57 social 
collectives. 

2. PURPOSE AND APPROACH 

The approach we develop differs in a number of important respects from the kind of 

understanding generally offered by social science in accounting for social behavior. A basic 

difference is our focus on an elemental order of communication, an order that is more inclusive 

than the restricted concept of (human) communication generally employed in social science. 
Emphasizing the cultural basis of Auman sociation, the term is generally used to denote 

interaction that involves the exchange of normatively defined meanings and understandings 

among purposetul social actors (Cherry, 1966). Irrespective of whether it occurs in an 

interpersonal or a collective context, communication is viewed as centered on the individual — 

transpiring between or among self-conscious actors, either in the pursuit of their own goals or 

in the roles they play as agents for collectives (Rogers & Kincaid, 1981; Jablin, Putnam, Roberts, 
& Porter, 1987). 

The broader concept of communication that we develop here is similar to the notion of 

communication that underlies the "“connectionist" computational models of "brain-style 

processing" (Rumelhart, 1992, p. 69). In these models synchronous parallel distributed 

processing among densely connected artificial "neural networks" is shown capable of encoding 

and "learning" quite complex patterns of "knowledge" and behavior (see Rumelhart, McClelland, 
& the PDP Research Group, 1986, and McClelland, Rumelhart, & the PDP Research Group, 

1986, for examples). Here, information processing (computation) occurs in the pattern of 

excitatory and inhibitory relations that interconnect all of the "neuron-like" nodes of the "neural 

network," it does not occur in the nodes themselves. This is the same core idea in our concept: 

a field of relations in which it is the interaction among different orders of social connection that 

processes and transmits information throughout the collective. Rather than being centered on the 

individual social actor, as is the case in the "block model" analyses (Freeman, White, & Romney,
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1989; White, Boorman, & Breiger, 1976) and the "system dynamics" models of social systems 
(Forrester, 1968; Legasto, Forrester, & Lyneis, 1980), the locus of communication in our concept 
is the interaction among networks of social relationships connecting all members. 

Another difference concerns our use of formalisms in place of the metaphorical analogies 
often used to portray aspects of the social collective that appear to endow it with the qualities 
of a sentient entity. Emile Durkheim used the notion of "collective consciousness" to portray 
what he believed to be the collective’s psychic capabilities: 

The collective consciousness is the highest form of the psychic life, since it is the conscious- 
ness of the consciousnesses. Being placed outside of and above individual and local 
contingencies, it sees things only in their permanent and essential aspects, which it crystallizes 
Into communicable ideas. At the same moment of time that it sees from above, it sees farther; 
at every moment of time it embraces all known reality; that is why it alone can furnish the 
mind with the molds which are applicable to the totality of things and which make it possible 
to think of them. (Durkheim, 1915/1965, p. 492) 

More recently, largely in response to the emergence of so-called “cognitive science," a 
growing number of social scientists have drawn parallels between the organization of information 
processing in the brain and communication and behavior in the social collective (Bougon, 1983; 
Bradley, 1987; El Sawy, 1985; Garud & Kotha, 1994: Glazer, 1986; Hutchins, 1991; MacKenzie, 
1991; Morgan & Ramirez, 1984; Sandelands & Stablein, 1987, Weick & Roberts, 1993). For 
instance, Hutchins (1991) drew on the distributed properties of neural processing to describe how 
redundancy in “overlapping” cognitive knowledge among individuals within a collective forms 
a system of mutual constraints to coordinate actions at the collective level. Sandelands and 
Stablein (1987) extended the analogy further and argued that in the same way that connections 
among neurons encode concepts and ideas in the brain, connections among social activities 
encode concepts and ideas in the collective. And although Weick and Roberts (1993) 
acknowledged that such metaphorical reasoning is a “shaky basis” for a theory of “organizational 
mind,” they nonetheless contended that connectionism's sociological utility lies in the “insight” 
it offers, namely, that “relatively simple [social] actors may be able to apprehend complex inputs 
if they are organized in ways that resemble neural networks” (Weick and Roberts, 1993, p. 359; 
our addition). 

However, although these analogies may offer descriptive Imagery with which to character- 
ize these poorly understood features of collective organization, there is always the risk of false 
attribution, which can yield obfuscation instead of explanation. Thus, we use the more neutral 
term communication instead. Because the formalisms we employ provide explicit principles that 
appear to account tor such properties of collective organization, they offer a rational basis — one 
based on reason and logic — for building scientific understanding. 

Social science has long recognized the importance of two basic patterns of social 
Organization. Although these have been expressed in a variety of terms — formal versus 
informal organization (Roethlisberger & Dickson, 1939), rational versus natural systems 
(Selznick, 1948), sociotechnical versus socioemotional systems (Trist & Bamforth, 1951), 
mechanistic versus organic organization (Burns & Stalker, 1961), instrumental versus expressive



454 BRADLEY, PRIBRAM 

leadership (Bales, 1958) among others — underlying these conceptualizations is a deeper (often 

implicit) dimensionality: a distinction between hierarchical and heterarchical forms of 

organization, between a pattern of organization based primarily on explicit relations of social rank 

and social control and a pattern of social connection that is more fluid and transitory involving 

an equivalence among individuals. 

Previous analyses of the groups in this study (Bradley, 1987; Bradley & Roberts, 1989a, 

1989b), have shown that these two patterns of organization form the communicative structure of 
the social collective — a heterarchical field of energy expenditure (that we refer to here as flux) 

and a constraint system of hierarchical controls (see Fig. 21.1). The heterarchical field, a 
distributed, massively parallel network of symmetrical relations in which members of the 

collective are essentially interchangeable, activates and unifies the biosocial energy of individuals. 

The hierarchical controls, a densely interconnected stratified order of asymmetrical relations in 

which the position of each individual is unique, operate on this field to produce an information 

processing network. By constraining the paths of energy expenditure, the controls render the 

potential for an informed pattern of collective action. 

Following up on these earlier findings, the question posed here is whether insights and 

formalisms derived from thermodynamics can illuminate the biosocial interactions that compose 

the heterarchical order, and whether insights and formalisms derived from control engineering 

can illuminate the functions of the hierarchical order. Finally, our purpose is to enquire whether 

the interaction between heterarchy and hierarchy can be best understood as an instance of 

information processing in which data about flux (unfolding sequences of relations) and position 
(spatial-temporal location) are combined to create elementary units of information that provide 

optimal, moment-by-moment descriptions of the collective’s endogenous organization. 

3. THEORY 

3.1. Assumptions 

We begin our experiment in theory by limiting our task in four ways. First, our interest is 

restricted to collectives that have an explicit boundary distinguishing members from nonmembers; 

our account does not include partially bounded structures such as cliques or open-ended entities 

such as social networks.’ Second, we leave aside any influence that normative elements, such 

as cultural values, norms, and roles, may have on the organization and action of social 

collectives, and on the behavior of their members. Third, apart from their biosocial potential — 

their capacity for physical and social activity — we ignore effects that the characteristics of the 

  

It is important to note that a// members of the collective are included; this follows from our concept of 

communication, the interaction among networks of relations connecting all individuals ina collective. As mentioned, 

it is the same notion that underlies connectionist models of "neural networks.” This is a different approach than that 

employed by most social networks researchers and system dynamics modelers in which the criterion of "mutual 

rclevance" (Laumann, Marsden, & Prensky, 1982) is used to include only those actors who are (contextually) relevant 

to cach other in the system.
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collective’s members, as individuals (e.g., gender, age, personality etc.), may have on system 
behavior. 

Our fourth restriction is to limit our focus to the endogenous operations that characterize 

the collectives under study. Here we make the simplifying assumption that, to be exogenously 

effective, the collective must be stable. Our interest lies in exploring the efficiency of the 

endogenous processes by which stability is achieved, of developing an understanding of which 

patterns of endogenous organization are optimal for the collective’s actions that result in stability 
(Coleman, 1990, p. 42). We will leave for a later discussion the question of the collective’s 
effectiveness in its environment. 

3.2. Energy and Least Action 

The distinction between effectiveness and efficiency is derived from a rigorous definition of 

energy. Because energy is a rarely used term in social science — one that when it is used, is 
used as a metaphor (e.g., Collins’, 1990, notion of "emotional energy") instead of as a scientific 
concept, we turn to the natural sciences for our use of the concept. 

In the physical and biological sciences, energy is a measure of an amount of (physical) 
work that can be accomplished (McFarland, 1971). Two types of energy can be distinguished, 

kinetic and potential. When work is actually being done in producing change, it is defined as 

kinetic energy; the measure is directly proportional to the amount of kinesis, that is, to the 

amount of physical activity required to produce change. Potential energy is inferred from an 
estimate of the amount of possible work that a situation provides. It is an inference based on 
similarity to conditions that have been previously observed to transform potential into work. 

In most physical and biological systems, there is a tendency to minimize work in order 

to conserve energy. This is known as the least action principle or the system’s Hamiltonian 

function. In its general formulation, the principle holds that a system is maximally stable (i.e., 

at equilibrium) under conditions that maintain potential energy at a minimum (Considine, 1976, 

p. 1454). This means that any departure from equilibrium — any disequilibrating change in the 

system’s structure — creates potential energy. For example, a pendulum at rest is at equilibrium: 
any change in conditions that disequilibrates the pendulum pushes or pulls it into positions in 
which the potential energy for returning to equilibrium becomes greater than that at equilibrium. 

In order to return to equilibrium, the system must expend the potential energy by performing 
work to use it up. 

The initial measure of efficiency came from building steam engines. The aim was to 

convert the action of steam into useful work by minimizing its dissipation into friction and other 
useless generators of heat. Much experimentation with different engines was required to achieve 
this objective; it took effort to develop an efficient steam engine. Effort, in this sense, is directly 

related to internally attaining efficiency; whereas effectiveness deals with the total amount of 

work necessary to accomplish an external goal, irrespective of how much effort is expended 

(Pribram & McGuinness, 1975; Pribram, 1991, Chapter 9).
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To apply these concepts of energy, we assume that the members of the social collective 

are biologically capable of work — of engaging in physical behavior and activity, and that this 

capability is measurable as potential energy. When activated by the collective, the members’ 

potential energy is converted into biosocial potential, the capability for engaging in social 
behavior or interaction. Actualizing this biosocial potential entails work; work is measured as 

kinetic energy. Because the dynamic operation of a collective requires an almost constant 

transformation of energy back and forth between potential and kinesis, as the collective 

continuously adjusts to internal and external changes, we use the term flux to characterize the 

medium of this continuous transfer of energy. 

In its striving towards an efficient use of energy, the collective transforms potential to 
kinetic energy. The tendency to energy conservation requires effort on the part of the collective 

to explore and identify alternative paths of action to devise those that allow work to proceed 

efficiently, that is, with the least amount of dissipation. 

How is a course of least action implemented? In the physical sciences a least action path 

(one that is optimal for the system) is determined by piecewise subtraction of potential by kinetic 

energy. Potential energy is reduced — through a series of successive fluctuations between 

potential and work — until its minimum level ts reached. 
One may conceive the path in this process as being determined by a landscape of 

constraints that channel the pattern of the actualization of potential into work. An example is 

when a river emerges from a mountain lake to course its way, by virtue of gravity, down the 

hillsides to the sea. Although at each point of the flow the river's potential energy is determined 

by the point’s elevation above sea level, the flow path of the river — the pattern of its 

actualization of potential into work — is influenced by constraints obtaining to the terrain such 

as climate, vegetation, topography, geology, and so forth. A region of hard rock will interpose 

turbulence and require more effort than that of soft rock for the river to carve a direct, and thus 

an energy-efficient, path to the sea. 
In an analogous fashion, a social collective constructs a landscape of social constraints 

to channel the actualization of the potential energy of its members into useful collective work. 

To the extent that least action holds, the effort demanded is that of seeking and then imple- 

menting an optimal landscape of endogenous relations that promote efficient group action. For 

instance, Henry Ford experimented with different ways of joining together the energy of his 

factory workers to find the maximally efficient organization for manufacturing cars (Lacey, 
1986). To do this, he implemented a set of constraints, based on his invention of the production 

line and its associated techniques of mass production, that directed and thus optimized the action 

paths among the collective of workers; he produced automobiles at minimum cost, which, tn turn, 

proved effective in the market place. 

3.3. Conjunction and Control 

Within this theoretical framework, two processes can be identified that act to generate 

descriptions of the collective’s internal organization. The first is conjunction, which joins the 

biosocial potentials of the individuals composing the collective. The second is control, the 

construction of a landscape of social constraints that efficiently directs the transformation of 

potential into action. As detailed shortly, the landscape determines a communication processing
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network that generates patterns of actualization of the potential of the collective. The intricacy 

(complexity) of each successive configuration of these patterns is processed by the collective as 

a measure of information — as the means for describing its endogenous organization. Thus, the 

measure of information provides moment-by-moment descriptions of the endogenous order that 

are communicated by a holographic-like process throughout the collective (Bradley, 1987, 
Chapter 9). 

Conjunction is achieved within a field of reciprocally equivalent (eqgut-valent, of equal 

value) relations among individuals. Within such a field a heterarchical order operates in which 

there is an absence of differentiation in terms of social status or rank, so that all individuals share 

in common a connection of social equality. As a result, the individuals are mutually open to 

each other and, by extension, open to the collective as a whole. Thus, the field of heterarchical 
relations describes the potential biosocial energy — the potential for work — of the collective. 

In the absence of other factors, initial conditions (such as negative feelings like fear, 

hatred, or jealousy) will block the efficient conversion of potential to kinetic energy; in non-linear 

dynamics such systems are characterized by negative Lyapunov exponents leading to stasis, 

ossification (complete [physical] equilibrium), or to fluctuations described by relaxation 

oscillators (Abraham, 1991). On the other hand, as elaborated below, initial conditions such as 

admiration, awe, or love create a kind of harmonic resonance in the relations among members 

that will enhance the conversion of potential to kinetic energy. The danger here, if this enhanced 

kinetic energy is unconstrained, is that undue dissipation of energy will ensue: in the language 
of nonlinear dynamics, chaos will result. 

The second process is control, a landscape of social constraints that influences the 

conversion of potential energy to kinetic energy, that is, the patterning of flux. Control is 

achieved by a transitively ordered structure of social relations among members that prevents the 
dissipation of kinetic energy. By precluding undue dissipation, the controls shape the paths of 

flux, thereby in-forming — giving shape to — the relations among individuals.’ 

3.4. Information and Efficiency of Communication 

Surprisingly, given the rich, dense flow of verbal and nonverbal signals that comprise 
human interaction, information is rarely used as a rigorous concept in social research; in three 
recent influential works (Coleman, 1990; Burt, 1992; White, 1992) it is employed as an undefined 

term. Irrespective of whether the term is explicitly defined (e.g., Rogers & Kincaid, 1981, pp. 

48-51) or not, its use in social science corresponds to Shannon's (1949) concept of information, 

that is as a reduction of uncertainty through choice among alternatives. In this conception the 

smallest unit of information is the bit, the binary digit — nowadays corresponding to the smallest 
standard unit of information in computational information systems. Shannon's concept of 
information applies to symbol-based communication systems, like human language. In such 

systems each unit of information in a sequence contributes to resolution of the signal’s message 
by reducing the probability of alternative meanings. 

  

' This conception is similar to Bohm and Hiley's notion of “active information” (sce Bohm & Hiley, 1993, 

pp. 35-42, 59-71).
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There is, however, a second concept of information used in the physical and biological 

sciences, virtually unknown in the social sciences. Because we employ this second concept to 

show how the interaction between heterarchy and hierarchy operates as a communication system 

to construct and distribute information, we turn to the natural sciences for our use of this concept. 

Our discussion is informed by work on signal processing in telecommunications (see 

Cherry, 1966, for an excellent review). Two distinct properties of the signal have been utilized 

for transmission in telecommunication. One is the signal as a sequence of discrete pulses 
encoded in time, as in the use of Morse (or similar) code for telegraphic communication. The 
other encodes the signal as a pattern of energy oscillations across a waveband of frequencies, as 

in the encoding and transmission of vocal utterances for telephonic communication. Although 
the frequency aspects of a signal's oscillation are irrelevant for telegraphy, for telephone 
communication they are critical as fidelity is dependent on the spectral components of the signal 

(frequency, amplitude, and phase). It took some time, though, in the early part of this century, 

to realize that there was a relation between the rate of transmission of a given quantity of 

information and frequency bandwidth (Nyquist, 1924; Kupfmueller, 1924). This relation was 
generalized by Hartley (1928, p. 525): "the total amount of information which may be transmitted 
... IS proportional to the product of frequency range which is transmitted and the time which is 

available for the transmission." 

Gabor (1946) formalized this relationship in his "Theory of Communication." He noted 

that there is a restriction to the efficiency with which a set of telephone signals can be processed 

and communicated. The restriction is due to the limit on the precision to which concurrent 

measurements of spectral components and the (space)time epoch of the signal can be made. This 
restriction is illustrated in the top of Fig. 21.2, in which time and frequency are treated as 

orthogonal coordinates. Although the frequency of a harmonic oscillation, represented by a 

vertical line, is exactly defined, its duration in time is totally undefined. Conversely, a sudden 

surge (a "unit impulse function") or change in the signal, the horizontal line, is sharply defined 

in time, but its energy is distributed evenly throughout the whole frequency spectrum. Thus, 

although accurate measurement can be made in time or in frequency, t¢ cannot be simultaneously 
made in both beyond a certain limit (Gabor, 1946, pp. 431-432). 

Gabor was able to show, mathematically, that this limit could be given formal expression 

by Heisenberg’s uncertainty principle (Heisenberg had developed his mathematical formulation 

of uncertainty to define the discrete units of energy, quanta, emitted by subatomic radiation). 

In its rigorous form the uncertainty relation is given as At Af = &, which states that ¢ (time) and 

f (frequency) cannot be simultaneously defined in exact terms, but only with a latitude of greater 
than or equal to one-half in the product of their uncertainties. Since certainty can be obtained 
only by minimizing uncertainty on both coordinates, the minimum measurement of the signal in 

time and frequency is At Af = ¥, which defines an elementary unit of information (Gabor, 1946, 
pp. 431-437). 

This unit of information both minimizes uncertainty and provides the maximally efficient 

description of communication (the minimum space or time of transmission occupied by the signal 

that still maintained the fidelity of telephonic communication). Gabor called his unit of optimal 
efficiency a logon, or a quantum of information (illustrated in the middle of Fig. 21.2), and 

showed that the signal that occupies this minimum area "is the modulation product of a harmonic 

oscillation of any frequency with a pulse in the form of a probability function" (Gabor, 1946, p.
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435). This fundamental unit of information is a sinusoid variably constrained by space-time 
coordinates; it differs from Shannon's unit of information, the binary digit (BIT), which is a 
Boolean choice between alternatives (Pribram, 1991, p. 28). 
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Fig. 21.2. (Top) Limits of concurrent measurement of time (4) and frequency (f) of a signal. (Middle) 
Representation of a signal by logons. (Bottom) Representation of the overlap of logons. (From Gabor, 1946, 
Figs. 1.3 and 1.7. Adapted with permission.)
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A final point concerns an important implication of the use of these mathematics for the 

role of causality in communication involving these elementary units of information. Because 
logons are not discrete units but occur as overlapping sinusoids, each wrapped in a Gaussian 

probability envelope (illustrated in the bottom of Fig. 21.2), each logon contains, in Gabor’s 

words, an "overlap (with) the future." This is a result of using time as one of the (measurement) 

dimensions because "the principle of causality requires that any quantity at an epoch ¢ can depend 

only on data belonging to epochs earlier than ¢. ... In fact, strict causality extsts only in the ’tume 
language" (Gabor, 1946, p. 437; our emphasis). What is of special interest here is the extent 
to which this overlap (interference) among logons yields a communicative system in which the 
data in succeeding logons is contained, in a nontrivial way, in the logons that preceded them: in 

other words, that information about the "future" order is enfolded into the elementary units of 

information being processed in the "present" (see Bradley, 1996, for more on this). 
The Gabor elementary function, as it is often referred to, has been found to characterize 

perceptual processing in the cerebral cortex (see Pribram, 1991, for a review). It is, therefore, 

an alternative unit for biological information processing to Shannon’s (1949) unit of information, 

the BIT. Moreover, two previous findings from the social collectives examined in this study 

document an order of communication that does not seem describable within the terms of 
Shannon's concept but appears more readily understood within Gabor's terms. One is a 
holographic-like order in which information about the organization of the collective as a whole 

was found to be distributed as a nonlocalized order to all individuals, and the second is that this 

order was found to be constrained by a system of hierarchical relations (see Bradley, 1987, Chs. 

8 and 9, respectively). 

To summarize (Fig. 21.3), two very different modes of organization characterize the 
hierarchical and heterarchical operations of relations within the collective. Because individuals 

are asymmetrically connected in the hierarchical order, the system of controls operates 
differentially on the collective’s members, both with respect to their particular socio-spatial 
location as well as with respect to actualization during particular frames of time. By contrast, 

the symmetric bonds of the heterarchical order indicate that individuals are essentially equivalent 

in terms of the pattern of distribution of flux within this endogenous field. As this field is an 

energy field, it lies within the spectral domain (energy is measured in terms of frequency times 
Planck’s constant) and is related to space and time by way of a transformation (the Fourier 
transform). 

The operation of hierarchical controls on the heterarchical distribution of flux generates 

a moment-by-moment — quantized — description of the collective in terms of both structure 

(spatial-temporal position) and flux (frequencies of oscillation of unfolding relations). By 
providing, thus, a succession of descriptions within space-time and spectral coordinates, quantum- 
like Gabor units of information are constructed and communicated, via a holographic-like 

process, throughout the collective. These units of information characterize the endogenous order 

as it evolves in a continuing series of interactions. Because each unit of information overlaps 

with the unit that succeeds it, each unit contains information about the future (potential) order 

of the collective. However, whenever there is an imbalance between the amount of distribution 

of flux and the amount of control, the efficient operation of the collective becomes impaired and 

the probability of instability is increased. This impairment is due to what Ashby (1956) 

characterizes as the necessity for "requisite variety."
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Fig. 21.3. Logic of theoretical model. 

4. METHOD AND DATA 

The data were gathered over a decade ago as part of a nationwide longitudinal field study 
of 60 urban communes (Zablocki, 1980); a commune was operationally defined as a minimum 
of three families, or five non-blood-related adults (persons aged 15 years or older), who shared, 

to some degree, common geographical location, voluntary membership, economic interdepen- 
dence, and some program of common enterprise, usually spiritual, social-psychological, political, 

cultural, or some combination of these (Bradley, 1987, p. 14). Stratified on a number of basic 

social characteristics, and sampled in equal numbers from six Standard Metropolitan Statistical 

Areas (Atlanta, Boston, Houston, Los Angeles, Minneapolis-Saint Paul, and New York), various 

formal and informal methods were used to study the communes. Data from 57 communes are 
used in this report; three communes from the original sample were not included as membership 
In these groups was not completely voluntary (for more detail on the methods and sample of the 
original study, see Zablocki, 1980, & Bradley, 1987). 

In terms of the sample's social characteristics (Table 21.1) at the time of the first wave 

of data collection (the summer of 1974), the communes ranged in size from 5 to 35 permanent 

adult members (mean size = 10 members) and had been in existence from 3 months to 9 years 

(mean commune age = 3 years). A total of 566 adults (15 years and older; mean age = 25 

years), with slightly more men than women, were residing in the communes; most had never 

been married. Being a generally well-educated population, most reported working at a full-time 

white collar or professional job. In terms of social organization, the communes covered a wide 

spectrum of cultural values and included Christian religious, Eastern religious, personal growth, 

family, countercultural, and political ideologies. Most communes had special requirements for 

membership, and most also had incorporated elements of formal organization into their social 
Structure (e.g., chore rotation, mandatory rules, positions of leadership and office, decision- 
making procedures, group rituals ete.).
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Characteristics of Adult Population (15 years and older; N = 545) 

Median age 25 years 

Percentage male 54% 

Percentage single, never married 712% 

Percentage with college diploma 50% 

Percentage with white collar or professional occupation 63% 

Percentage with full time or part time job 67% 

Characteristics of Communes (N = 57) 

Mean size (adult members) 9.9 

Percentage existed two or more years 42% 

Percentage with "many" rules 21% 

Percentage assign or rotate chores 51% 
Percentage have communal business or jobs 16% 

Percentage requiring novitiate or trial membership 33% 

Mean percentage members holding formal positions or office 41%! 

Percentage ideology "important" to group 19% 

Percentage without leaders 30% 

Ideological Type: 

Religious 40% 

Political or counter-cultural 26% 

Personal growth, houschold, or family 34% 

100% 

Table 21.1. Urban Communes Sample: Social Characteristics of Adult Population and Communes. 

Formal and informal methods were used to collect two panels of data, 12 months apart, 

during the summers of 1974 and 1975. Data on commune survival status were also gathered for 

an additional 2 years. A number of structured interviews and questionnaires were administered 

to all permanent adult members to gather information on social background, communal 

involvement, self-concept, and attitudes. Data on the organization and activities of each 

commune were collected by field worker observations and taped interviews during the summer. 
A sociometric instrument (Table 21.2), the primary source of the data presented in this report, 

was administered to map the structure of social relationships in each commune. Each adult 

member was asked about the content of his or her relationship to each other member, thus 

providing an exhaustive mapping of the N(N-1) possible pairwise (dyadic) relations in the group 

(where N = the number of permanent adult members). The instrument was administered under 

strict field worker supervision to ensure that there was no collusion among members in answering 
the questions. 

Although all except 1 of the 57 communes cooperated with the administration of the 

sociometric instrument, the quality of responses in 11 groups was unsatisfactory in that missing 

  

'N = 273, respondents to the "Long Form" interview.
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data (“no answer,” “incomplete,” or an “uncodeable™ response) were greater than 25% of the total 

of possible relations in these groups, and contained, therefore, an unacceptable level of potential 

structural bias (see Bradley, 1987, p. 24, note 19; p. 98, note 3). As in the original study, these 

11 communes were excluded from the structural analysis. This means that the sociometric results 

presented in this report are based on data from 46 communes. 

4.1. Operationalization 

To test the theory, the following procedures were used to operationalize the primary 
concepts, flux, control, and stability, with the data from the communes. Sociometric procedures, 

following Bradley and Roberts’ (1989b) measurement guidelines, were used to operationalize the 

concepts of flux and control. Administered to every adult member in each commune, the 

sociometric instrument, mentioned above, generated an enumeration of all possible dyadic 

relations in which the relation between each pair of individuals, ¢ and J, was measured from both 

sides of the dyad, that is, from ¢ to J, and from / to 
Flux, the activation of biosocial potential, was indicated by a positively reciprocated 

response (an answer of "yes") by both individuals to either the "loving," "improving," or 

"exciting" questions (see Question 5g, Table 21.2). This operationalization follows both from 
the theory regarding the expected role that positive affect plays in enhancing the distribution of 

flux (see above under Conjunction and Control), and also from the original study in which it was 

found that measures of negative affect had little descriptive or explanatory utility (see Bradley, 

1987, pp. 83-94). To translate these responses into a group-level dyadic measure of flux, the 

mean proportion of loving, improving, or exciting relations in each commune was calculated. 
Control, the operation of constraints on the activation of potential energy, was measured 

by the "power" question (Question Se, Table 21.2). Only those responses that indicated the 

asymmetric ordering of the relationship — that is, which of the two individuals (the respondent, 

i, or the other member, J) held the "greater amount of power" — were used. 

The subsets of relations that met these two operational definitions were then translated 

into a symmetric and an asymmetric sociomatrix of relations of flux and control, respectively, 
to encode the disposition of these dyadic relations among all members in each group. A binary 
coding was used in which, for flux, a value of 1 indicated the presence of a reciprocated relation, 

and for control, a value of 1 indicated the presence of an ordered relationship (i.e., 2 J = 1, 

control flows from i to J; J ~ 2 = 1, control flows from sj to 4; any other condition, for either flux 

or control, was indicated by a value of 0. The mean results for all communes on these dyadic 

definitions of flux and control are provided in the Appendix. 

The final step entailed the use of triadic analysis (Holland & Leinhardt, 1976) — a 
technique for analyzing the structural organization of social networks — as the means to build 
structural indices of flux and control. This technique first subdivides the sociomatrix into triads, 

and then, through a census of all possible triadic configurations, classifies the array of triads for 

the group into 16 isomorphic triad types (See Fig. 21.4).
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The following set of items is from "page three" of the "Relationship Questionnaire” (sce Bradicy, 1980, for the complete 

instrument) and is the source of most of the relational data Bradley employed in his study. Each respondent received a 

questionnaire with multiple copics of "page three" inserted in it — one page for cach other adult resident. A respondent 

in a commune with a population of nine, for example, would receive a questionnaire with cight page threes. Each of these 

page threes had one of the communc members” names typed in at the top (¢.g., "This sheet is about "). 

By completing this questionnaire, cach respondent supplicd information systematically describing his/her realtionship with 
cach of the other members of their commune. 

5. This sheet is about 

a. How long have you known the above named person? 

Years Months 

b. In your own words briefly characterize the changes which have occurred in your unigue relationship with this person 

s a fellow commune member over the last twelve months or, if less, for the time you have known cach other. 

  

c. How many hours in a typical week do you spend just by yourselves? 

  

d. If you happen to know it, state what kind of work (his/her) father did while the person named above was growing 

up. 

e. Even the most equal of relationships sometimes has a power clement involved. However insignificant it may be in 

your relationship with this person, which of you do you think holds the greater amount of power in your 

relationship? 

  

f. If this commune did not exist, would you want to have a close relationship with this person? 

  

g. For the list of descriptions below, indicate if the following are involved in your relationship with the person named 

above by checking the appropriate answer. Please answer cach of the following: 

Work together Yes No Sometimes | 

Spend free time together Yes No ____ Sometimes 

Mind children together Yes No ____ Sometimes | 

Sleep together Yes No ____ Sometimes 

Confide in each other Yes No ____ Sometimes | 

Loving Yes No ____ Sometimes | 
Exciting Yes No ____ Sometimes 
Awkward Yes No ____ Sometimes 
Feel close to cach other Yes No Sometimes | 

Tense Yes No ___ Sometimes 

Jealous Yes No Sometimes | 

Agree on communal policy Yes No ____ Sometimes | 

Fee] estranged from cach other Yes No ____ Sometimes | 
Exploitive Yes No ____ Sometimes | 
Hateful Yes No _____s Sometimes 
Improving Yes No ___s Sometimes 

Sexual Yes No Sometimes     
h. Do you feel that the overall relationship between the two of you is more important to you, or do you feel it is more 

important to the above named person? 

____ More important to you —___ More important to him/her 

i. In your relationship with this person, docs he/she ever act to you as a father or mother, sister or brother, son or 
daughter, or none of these? 

  

Table 21.2. Sociometric Instrument.
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Fig. 21.4. Holland and Leinhardt’s 16 isomorphic triad types: the 16 isomorphism classes for digraphs with 

g = 3 (that is, the triad types). Triad labeling convention: the tirst digit is the number of mutual dyads; the 

second digit is the number of asymmetric dyads; the third digit is the number of null dyads; trailing letters 

further differentiate among the triad tvpes. Four symmetric triad types (unbroken circle) were used in the 

structural analysis of flux relations and seven asymmetric triad types (broken circle) were used in the analysis 

of control relations; the "vacuous" 003 triad was used in both analyses. From Holland and Leinhardt (1976, 

p. 6, Fig. 2. Adapted with permission.) 

The triad types are distinguished from one another structurally by their composition in 

terms of three kinds of dyads: mutual dyads (M), in which a symmetric relation connects the two 

individuals; asymmetric dyads (A), involving an ordered or directed relation between the two; 
and null dyads (N), in which there is no relation between the two, Hence each triad type can be 

uniquely identified and labeled in terms of its dyadic composition. For example, the 012 triad 

(see Fig. 21.4) has no mutual relations, one asymmetric relation, and two null relations. 

Of the 16 triad types, 3 are symmetric in form in that they are composed exclusively of 

positively reciprocated dyads (see Fig. 21.4: the 102, 201, and 300 triad types, enclosed by a 
solid circle). Aggregated across the “loving,” ~ improving,” and “exciting” relations, the mean 
sum of these three triads as a proportion of all possible triads in a commune was used to measure 

the amount of flux. A bar graph in Fig. 21.5 plots the results of this procedure and shows a
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positively skewed distribution for the measure of flux (mean sum = .629, standard deviation [SD] 
= .196). 

Seven other triad types (enclosed by a broken circle in Fig. 21.4) are composed 
exclusively of asymmetric dyads. Based on their successful use in previous analyses (Bradley, 
1987; Bradley & Roberts, 1989a), three of these triad types (the 021C, the 021D, and the 030T, 
summed and expressed as the proportion of all possible triads) were used to measure the amount 
of control. Aggregated for “power” relations, the three triad types constituted just over half 
(.509), on average, of all possible triads of control in the communes. A bar graph of the result 
for all communes is shown in Fig. 21.5 in which a flatter distribution is evident (mean sum = 
510, SD = .218). The mean results of the triadic census for all communes for symmetric 
relations of flux and the asymmetric relations of control are provided in the Appendix. 

Stability, the degree to which the collective is able to maintain itself as an enduring, self- 
sustaining entity, was measured by a commune’s survival status at a specific moment in time. 
Classified into one of two categories, survivor or nonsurvivor, each commune’s stability was 
determined at each of the four successive 12 month intervals that observations were collected; 
Time 0 is the point in time when a commune was founded and Time 1 is moment of the first 
wave of data collection (August 1974). Starting with Time 1, measurement of each commune’s 
stability (survival status) was made at 12-month intervals for the succeeding 4 years, that 1s, 
through Time 5. Twenty-two (48%) of the 46 communes survived the 48-month observation 
period. A pattern of declining instability over time was observed, from 24% by the end of the 
first 12 months, at Time 2, to 8% after 60 months, at Time 5 (see Appendix). ! 

5. EMPIRICAL ANALYSES 

5.1. Verification of the Theory 

Testing the theory entailed an analysis to determine the degree to which the observed 
patterns of commune behavior with respect to our measures of flux, control, and stability were 
consistent with the expected patterns. Among other techniques, a spatial representation of the 
data was derived as the theory rests on a field-theoretic concept of energy — a conceptualization 
of the collective’s potential for action as an endogenous field of biosocial energy that operates 
along two dimensions: an unordered dimension of equi-valent, symmetrical relations (flux); and 
an ordered dimension of (transitive) asymmetric relations differentiated by spatiotemporal position 
(control). 

  

‘Although the communes ranged in group age from 3 months to 9 years at Time 1, there is little evidence 
that “period effects” (differences in group age at the time data collection commenced) explain the variability in 
survival status. Dividing the sample into “voung” (2 of less years; N = 23) and “old” (more than 2 years; N = 23) 
categories of group age at Time 1, and cross-tabulating these classifications by survival status grouped in three 
categories (dissolved by Time 2 or Time 3: N = 17; dissolved in Time 4 or Time 5: N = 7: survived beyond Time 
5: N = 22) shows nonexistent (0%) to modest (12%) honstatistically significant differences between the “young” and 
“old” categories of communes (chi-square coefficient with two degrees of freedom = 1.260, pr. = .533).
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Distribution of Flux at Time 1 
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Theoretically, it was expected that an efficient communication processing network 
required a certain amount of flux in interaction with a certain amount of control, and that the 

tendency toward least action would result in an increasingly closer correspondence in their 

respective values at higher magnitudes of flux. This is because there would be an increased risk 

of turbulence, resulting from undue dissipation of kinetic energy, when the conversion of 

potential to kinetic energy is enhanced at higher levels of flux. Data bearing on the relationship 

between flux and control are shown in the scatterplot in Fig. 21.6. In accordance with the 

dimensionality of our concepts of flux and control, the measure of control is the vertical ordinate 
and that for flux is the horizontal ordinate. It can be seen that the null hypothesis — an equal 

or random distribution of groups over all locations in the endogenous field — does not hold, and 

that the low nonsignificant correlation (Pearson's r = .12; pr. > r, .43) actually masks a nonlinear 

association. Moreover, with the exception of five outlying cases (hollow dots in Fig. 21.6), the 

observed pattern — a triangular distribution with a wide base and {ts apex in the high-flux/high- 

control region (upper right quadrant) — is consistent with the theory. Thus, there is an absence 

(with one exception) of communes in the high-flux/low-control region (lower right quadrant), an 
absence in the low-flux/high-control region (upper left quadrant), and (with two exceptions) an 

absence of communes in the low- flux/low-control region (lower left quadrant). 

In addition to the relative amounts of flux and control involved, theoretically it was 

expected that there also was a limit on the total amount of information processed by a collective
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in a given unit of space or time. Thus, when the total amount of information exceeds the 

processing capacity of the communication system, it is processed as "noise" and results in 

unsynchronized action with a high likelihood of turbulence and instability; on the other hand, 

when the total amount of information is insufficient to convey current descriptions of the ever- 
evolving endogenous order, collective action will be largely uninformed and ineffective, with 
dissolution a likely result. 

A measure of the total amount of information processed by a collective at a given moment 
in time was computed by summing and averaging, for each commune, the total for flux and 

control at Time 1 (mean for all communes = .569, median = .552, and SD = .155). The values 

for all communes were grouped into .10 intervals and, holding these values on this measure 

constant at Time 1, the sample was partitioned by survival status and the distribution of survivors 
and nonsurvivors was plotted on a time series of bar charts at 12-month intervals, that is, from 

Time 2 through Time 5 (see Fig. 21.7). 

Examining the pattern of results in Fig. 21.7, two things stand out. First, the distribution 

for the total amount of information for all communes at Time 1 is bell-shaped with 67% falling 

within one standard deviation of either side of the mean. Second, this bell-shaped distribution 

gradually devolves over time into (wo contrasting patterns that are virtually the inverse of each 

other by Time 5: a single-peaked distribution for the 22 survivors with its mode (9 cases, 41%) 
in the .SO00—.599 interval; a bi-modal distribution for the twenty-four nonsurvivors with its 
trough (2 cases, 8%) in the .SOQ0—.599 interval and its twin peaks (6 cases (24%) each) in the 
two adjacent intervals of .400—.499 and .600—.699. This difference in survival rates between 

the groups in .500-.599 interval and the other groups outside this range is statistically significant 

(chi-square = 6.695, pr. = .010). 

Taken together, these two patterns appear to mark the bounds of a region where the 
probability of stability ts maximized, that is in the SO00—.599 interval. So that although, in this 
interval, the rate of instability for all communes is lowest (18%, 2 of 11 groups), it rises sharply 

in the adjoining intervals: 60%, 6 of 10 groups in the each of the .400—.499 and .600—.699 

intervals; 75%, three of four groups in each of the .300—.399, .700—.799, and .800—.899 

intervals. When computed for the communes in these adjoining intervals at Time 1, the rate of 

instability by Time 5 for these two sets of intervals is 63% (twelve of nineteen groups at .600 

and above, and ten of sixteen groups at .499 and below), which is significantly different than the 
18% for the eleven groups in the .S00-.599 interval (chi-square = 6.966, pr. = .035). Thus it 

would appear that the total amount of information in the intervals above .599 was excessive in 

terms of information processing capacity, whereas the amount of information in the intervals 

below .500 was insufficient to sustain a viable collective. 

Two further interrelated theoretical expectations were investigated. The first of these was 

that there would be restrictions on the relative amounts of flux and control involved in 

communication — that there would be both a dower and an upper limit on the amounts of each 
of these processed by an effective collective. Combinations of flux and control that fall outside 

the limits were expected to result in collective dysfunction. The second expectation, for 

collectives operating within these limits, was that the disposition of the collective at a future 

moment would be enfolded in the information processed by the communicative structure in the 

present. This follows from the overlap among these logon-like elementary units of information 

by means of which the present order is in-formed (given shape to) by the order implicit in the
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series of succeeding moments (see Bradley, 1996). Thus, combinations of flux and control within 
the limits at a given moment were expected to yield an increased potential for effective action 
in succeeding moments. 

Figure 21.8 presents a time-series of scatterplots showing the relationship between flux 
and control at Time 1 to stability at Time 2 and at Time 3--in other words, the relationship 
between the composition (in terms of flux and control) of the information provided by a 
collective’s communication system at a given point in time, and the stability of the collective at 
two successive moments in the future. The scatterplot on the far left-hand side is for all 
communes plotted by their values for flux (horizontal ordinate) and control (vertical ordinate) at 
Time 1, the first point of measurement. Holding the values for each commune on flux and 
control constant at Time 1, the scatterplots for Time 2 and Time 3 are divided into a plot for 
survivors (top row of scatterplots in Fig. 21.8) and a plot for nonsurvivors (bottom row). This 
provides a view of the relationship between information on the endogenous order at a given 
moment in time and collective stability at twelve and at twenty-four months later.! 

Starting with the baseline pattern at Time 1 for all communes, three related patterns 
become increasingly evident as survival status is plotted at Time 2 and Time 3. First, instability 
tends to be highest for groups in the peripheral regions of the field — that is, for groups with 
the greatest imbalance between flux and control. Second, with the exception of three stable 
groups in the high-flux/high-control region, survivors tend to form a triangular pattern with most 
groups clustered together in the mid-region. And third, that location in this mid-region at Time 
1 is strongly related to survival at Time 3, 24 months into the future. What is most striking 
about the results is that the pattern for survivors is virtually the complement of that for 
nonsurvivors: there ts a complete absence of nonsurvivors in the mid-region where the greatest 
concentration of survivors is observed. 

Looking more closely at the pattern for the 17 nonsurvivors, two bands of instability 
become clearly apparent by Time 3: the upper band of 12 (71%) nonsurvivors, marks a region 
of high instability; the lower band formed by the other 5 nonsurvivors, appears to define a lower 
bound to the region of stability. In short, the two bands of instability seem to distinguish 
functional from dysfunctional combinations of flux and control. 

To test the veracity of this interpretation, we divided the full sample of communes into 
stable and unstable sets such that the probability of survival was maximized for the former while 
being minimized for the latter. Operationally, this entailed establishing partitions that would 
mark the upper and lower bounds to the region where stability is optimized. 

The boundary of the lower bound was established by the four communes (see the 
scatterplot for nonsurvivors, Time 3, Fig. 21.8) on a line in the lower band of instability 
orthogonal to the low-flux-low control/high-flux-high control axis. A total of six communes was 
observed in this region, of which five (83%) had become nonsurvivors by Time 3. For 

  

'This time series of scatterplots on Stability was run out across the full 48 months (i.c., Time 1 through Time 
3) for which observations were collected on the communes. The results for the first 24 months (i.c., through Time 
3 as shown in Fig. 21.8) suggest this is a reasonable period over which to ageregate survival status to accumulate 
cnough nonsurviving cases (nonsurvivors at Time 3 = 17 cases) for the analysis; the scatterplots for Time 4 and Time 
S (not displayed) show evidence of a deterioration in the "predictive power" of the information provided by flux and 
control at Time 1 for stability beyond 24 months.
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comparison, the baseline rate of instability over all communes was 37%, 17 nonsurvivors out of 

46 groups. 
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Fig. 21.8. Scatlerplots of communes on Hux and control at Time 1 by stability (survival status) at Times 2 

and 3. 

For a boundary marking the upper bound to the region of maximal stability, there were 

two possibilities. The first is the line (orthogonal to the axis just mentioned) established by the 

three communes at the bottom of the upper band of instability; this is no¢ an optimal partition 
because although the probability of survival is maximized (100%; there are no nonsurvivors) for 

the 15 groups in the area defined by this line and the lower bound, the probability of instability 

is not maximized tor the 25 groups classified by this line as belonging to the upper band region 

of instability (nonsurvivors = 12 communes, 48%). The second possibility is the line (orthogonal 

to the same axis) established by the four nonsurvivors immediately above the three communes. 

This second line meets our two criteria for an optimal partition. First, between the lower bound
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and this line marking the upper bound, 25 communes were observed, 22 (88%) of which survived 
through Time 3 — some 24 months beyond the initial measures of flux and control at Time 1. 
And second, on this line and above, 15 communes were observed, 9 (60%) of which had become 
nonsurvivors by Time 3. 

The results of this procedure are shown in the scatterplot for all communes in Fig. 21.9. 
This scatterplot is identical to the scatterplot at Time 1 in Fig. 21.8 with the following additions: 
first, the two lines marking the thresholds of lower and upper regions of instability, as just 
established, are indicated; and second, the survival status for each commune is shown at Time 
3 (nonsurvivors are shown as hollow dots in Fig. 21.9). It is clearly evident that the two 
partitions separate an area of stability in the mid-region from two adjoining regions characterized 
by a high probability of collective instability; the differences in the rates of instability, by Time 
3, between the groups in the three regions are statistically significant (chi-square = 15.641, pr. 
= .0004). In addition to its extraordinarily high stability over the twenty-four month period from 
the point of initial measurement, the mid-region also is distinguished by the lack of dispersion 
of communes along the low control-high flux/high control-low flux axis. Instead, there is a 
strong tendency to locate between these extremes of rapid (high) flux and rigid (high) control in 
the area expected to define efficient information processing. 

Finally, also shown in Fig. 21.9 are four communes that had a charismatic leader living 
in residence with the group (circled in Fig. 21.9). Of all communes in the sample, these were 
the collectives most intent on achieving a radical restructuring of social order. Although there 
are too few cases for a (statistically) reliable result, all four of these transformation-oriented 
(charismatic) communes — three of which were still in existence by Time 3 — are concentrated 
exclusively in the apex of the high flux/high control region; the fifth group (a nonsurvivor) is a 
noncharismatic commune whose members expressed a strong desire for charismatic leadership 
as the means to facilitate their efforts at social change. As established elsewhere (Bradley, 1987, 

pp. 167-193; 264-268), charismatic leadership is not only correlated with enormous increases in 
flux and control, but when these two are linked in a balanced coupling, charismatic leadership 
also is associated with an increase in the probability of group survival. However, for other 
(noncharismatic) collectives, not only were such high levels of flux and control rare, but when 
these conditions were observed they were found to be highly associated with instability. 

5.2. A Multivariate Model of Optimality 

To this point, our analysis has employed simple largely bivariate statistical techniques, 
which, given the small number of cases available, has been both necessary and appropriate. But 
because it was possible that the optimality we identified was the result of a more complex 
relationship between flux and control and a number of other sociological factors measured in the 
original study, a discriminant function analysis was conducted to ensure that this was not the case 
and, therefore, to confirm the veracity of our results. 

Two features of discriminant analysis made it especially appropriate: first, the procedure 
aims to construct a multivariate linear (discriminant) function that maximizes the separation 
between two or more mutually exclusive categorical groupings of data; second, it offers a test 
of predictive power by comparing the a priori group classifications against those made by the 
discriminant function/s. As a measure, thus, of statistical optimality, discriminant analysis
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provides a rigorous means of verifying the finding that, in relation to the other factors examined 

here, our measures of flux and control provide the best means of predicting optimal collective 

action. 
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Fig. 21.9. Scatterplots of communes on tux and control at Time | by stability (survival status) at Time 3, 

and showing transformational communes (charismatic leader in residence). 

To perform the discriminant analysis, the communes were classified into one of the three 

categories of stability at Time 3 established above, as shown in Fig. 21.9: namely, location in the 

upper region of instability (V = 15; survivors = 6 [40%] communes); location in the stable (mid) 

region (N = 25; survivors = 22 [88%] communes); or location in the lower region of instability 
(N = 6; survivors = 1 [17%] commune). For the purposes of this analysis, we will refer to these 

three groupings of the communes as nonoptimal — upper region, optimal — mid region, and 

nonoptimal — lower region, respectively. Along with our measures of flux and control, eight 

sociological variables with limited missing data were used as independent variables for the
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stepwise multivariate analysis. The univariate statistics (means, SDs, Wilks' lambda, and 
univariate F ratio) are given in Table 21.3a. 

Table 21.3a 

Discriminant Function: Univariate Statistics 

  

  

            

  

  

  

  

  

  

  

  

  

          

Optimality Groupings 

Optimal — Nonoptimal Nonoptimal 
Mid Region — Upper — Lower Total 

Region Reyion 

Variable Mean SD Mcan SD Mean SD Mean SD Wilks’ Univar- Pr. 

Lambda | tate F 

Ratio 

(N) (25) (15) (6) (46) 
Admission 1.96 .93 1.87 99 2.00 9 1.93 93 997 062 940 
requirements’ 

Extent of 1.52 5] 1.47 52 1.33 52 1.48 St 985 326 723 
authority” 

Affiliated to 

a larger 48 1 33 49 33 52 41 50 978 A484 620 
organization‘ 

Control 457 178 688 136 286 231 S10 218 603 14.156 000 

Flux 381 149 802 122 396 174 629 196 17 20.055 000 

Mean group 3.36 1.91 2.20 1.08 2.67 1.51 2.89 1.69 S899 2.413 102 
age, years 

Degree of 

ideological 1.40 30 1.47 52 1.00 00 1.37 49 908 2.174 126 
consensus? 

Mean propn. 

old 46 29 8 34 4 35 46 31 995 V7 890 
members‘ 

Formal rules’ | 1.40) | .50 1400] 51 150 | 55 141 50 995 AO 904 

Group size* 9.20 4.44 §.20 2.08 8.67 2.73 8.80 3.59 84 358 702               
Note: SD, standard deviation, Wilks’ lambda, U-statistic, pr., statistical significance with 2 and 43 degrees of 
freedom. 
“Admission requirements: | = if room/see individual; 2 = trait required/group ready; 3 = trial membership/novitiate 
required/group closed 

"Extent of authority: 1 = none/a little; 2 = some/a lot 

‘Affiliated to a larger organization: 0 = not affiliated: 1 = affiliated 
“Degree of ideological consensus: | = a little/some; 2 = a Jot/umity 
“Mean propn. old members = proportion of adull members who joined commune betore 1973 
‘Formal rules: 1 = none/few; 2 = some/many 

"Group size = number of adult members (2 15 vears old)
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Table 21.3b. Discriminant function analysis of optimality classification of communes by selected 

characteristics: Stepwise results and canonical analyses 

Wilks’ Minimum Equivalent 

Variable Step Lambda Pr. 1 Pr. KF Pr. 
Flux 1 517 0000 = 1.656 = .0070 8.011 .0070 

Control 2 .214 000 6.028 .0000 14.245 .0000 

*Maximum significance of F-statistic to enter = .050; minimum significance of F-statistic to remove = .100. 

Summary of Stepwise Analysis * 

Test of Differences Between Pairs of Groupings After Step 2 

Pairs of Groupings F-statistic Significance’ 

Optimal/Nonoptimal — Upper 43.848 0000 
Optimal/Nonoptimal — Lower 14.246 0000 

Nonoptimal — Upper/ 64.45] 0000 

Nonoptimal — Lower 

*With 2 and 42 degrees of freedom. 

Canonical Discriminant Functions 

Function 1 Function 2 

Canonical Correlation 887 O02 

Squared Canonical Correlation .786 0005 

Percent of Variance 99.99 01 

Eigenvalue 3.674 001 

Unstandardized Canonical Discriminant Function Coefficients 

Function | Function 2 

Control 6.080 3.546 

Flux 7.652 -3.574 

(Constant) -7.911 440 

Table 21.3c. Discriminant Function ... Classification Results 

Predicted Group 

Actual Group Optimal — Nonoptimal — Nonoptimal — Total 

Mid Region Upper Region Lower Region 

N % N % N % N % 
Optimal — Mid Region 25 100.0 0 0.0 0 0.0 25 100.0 

Nonoptimal — Upper Region 1 6.7 14 93.3 0 0.0 15) 100.0 

Nonoptimal — Lower Region 1 16.7 0 0.0 5 83.3 6 100.0 

Total 27° 58.7 14 30.4 5S 10.9 46 100.0 

Prior Probability 4 33 13 100.0 

Table 21.3. Discriminant Function Analysis of Optimality Classification Of Communes by Selected 

Characteristics. (a) Univariate statistics. (b) Stepwise results and canonical analyses. (c) Classification 

results.
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Maximizing the minimum Mahalanobis distance (D? — a measure of separation) between 
the three groupings of communes was the selection rule used for the stepwise multivariate 

analysis, the statistical significance of the F statistic was used as the criterion to enter (pr. < .050) 
and remove (pr. = .100) the independent variables. A summary of the stepwise results is 
presented in the first section of Table 21.3b. 

As is clearly evident from the results (see Table 21.3b), the only two variables selected 

in the stepwise procedure are our two measures of flux and control; all of the other variables fail 

the selection criteria. Flux, the variable with the strongest discriminating power, was entered into 

the stepwise analysis at the first step (D° = 1.656, pr. = .0070; Wilks’ lambda, a multivariate 

measure of association between groups = .517; pr. = .0000). At Step 2, control was entered as 

the next most powerful discriminating variable (D° = 6.028: pr. = .0000.) Wilks’ lambda 

decreased substantially (to .214; pr. =.000), indicating that only a low association between the 

three groupings of communes remained. The (F-statistic) test, after Step 2, of the differences 

between each pair of groupings shows that there are moderate (14.246) to strong (64.451) 
differences between each pair of groupings that cannot be explained by chance. 

The rest of Table 21.3b provides information on the nature and statistical power of the 

two canonical (multivariate) discriminant functions formed by flux and control; a minimum of 

two discriminant functions is required to discriminate among three groupings of data. (The 

canonical discriminant functions are statistically independent of each other; each is a linear 

combination of the variables entered in the stepwise analysis — similar to a multiple regression 

equation, and should be thought of as a latent variable (not measured directly), a statistical 

artifact comparable to a factor constructed by factor analysis.) Comparing the statistical 
information on the two discriminant functions shows that first function possesses much greater 
discriminating power than the second function. The canonical correlations (a measure of the 
association between the discriminant scores and the groupings) are .887 and .022, respectively, 

and indicate that first function possesses most of the discriminating power — approximately 79% 

compared to .05% (squared canonical correlation = .786 and .0005, respectively). This is 

confirmed by the huge difference in the eigenvalues for the two functions, 3.674 versus 0.001. 

Table 21.3b also presents the unstandardized canonical discriminant function coefficients, 
which were used to compute the discriminant scores (one for each discriminant function) for each 

case. The two discriminant scores were then used to classify individual cases into one of the 

three optimality groupings of communes established prior to the discriminant analysis. 

Comparing the a priori grouping to the posterior classification provides a means of determining 

the predictive power of the two discriminant functions in correctly assigning cases. 

The results in Table 21.3c show that the two discriminant functions are able to correctly 
predict the optimality grouping for each commune in 44 of 46 cases, an overall success rate of 
96%. Thus, all 25 (100%) of the communes belonging to the optimal — mid region category 

  

were correctly classified, 14 (93%) of the 15 in the nonoptimal — high region grouping were 

correctly classified, and 5 (83%) of the 6 communes in the nonoptimal — low region grouping 

were correctly classified. Moreover, these prediction rates are substantially higher than the prior 

probabilities of commune membership in these groupings (.54, .33, and .13, respectively). 

The results of the discriminant function analysis confirm our conclusion based on more 
simple statistical procedures: namely, that flux and control are predictive of optimal collective 

action. The fact that the multivariate results show no evidence of any statistically significant



480 BRADLEY, PRIBRAM 

latent relationships between our measures of flux, control, optimality, and the other sociological 

variables we examined is particularly noteworthy, for it flies in the face of conventional 

sociological theory (see Turner, 1986). This would suggest that location in the region of optimal 

stability may have its basis in a different logic and dynamics than that embodied by current 
sociological thinking (e.g., Burt, 1992; Coleman, 1990; White, 1992). It is toward an 

understanding of these dynamics and their implications that the following discussion is directed. 

6. DISCUSSION 

6.1. Model of Global Communication 

Drawing on the theory and empirical results presented above, a model of the commu- 

nicative structure of the collective was constructed (see Fig. 21.10). In the terms of this model, 

the communicative structure is formed by the interaction of networks of endogenous relations 

organized along two dimensions in which the values allocated in each dimension define points 

within a relational field (Bradley & Roberts, 1989a). The values ascribed to the horizontal 

dimension represent flux, the amount of activation of potential energy in a social collective. The 

values ascribed to the vertical dimension represent the amount of control (the degree to which 
individuals are interconnected by a transitive network of relations) exercised at that location. The 
coordinates representing the dimensions bound a phase space within which each value represents 

an amount of information (in Gabor’s terms) characteristic of the communicative structure of the 

collective. 

Two regions of stability can be distinguished within the phase space. These are regions 

associated with viable patterns of global communication. They are located within a larger region 
in which the minimum values for global communication are not met so that various forms of 
collective dysfunction result. 

All regions are separated from each other, marked, in the terms of nonlinear dynamics, 

by a phase transition from psychosocial instabilities to [far-from-(physical)-equilibrium] psycho- 
social stabilities in collective organization (Prigogine & Stengers, 1984). The region of optimal 

function represents, therefore, a qualitative change in psychosocial organization. The phase 

transition from dysfunctional to stable collective forms (which includes the area between the two 

stable regions) is described by fluctuations in potential and control that end in a point (the 

bifurcation point) where the patterns of energy activation and expenditure no longer dissipate into 
the environment — no longer average out to equal the energy levels of the surrounding context, 

but coalesce to crystallize as an emergent stable collective order. To defy the tendency toward 

entropy (disorder), and sustain the stable collective order, requires minimizing the fluctuations 

by linking the activation of potential to the control operations so that the energy expenditure of 

all members is in-formed in relation to the collective’s action. In the dysfunctional region, the 
patterns of potential and control are therefore either unable to establish or unable to sustain stable 
forms of collective organization. Values of low potential and low control (the area labeled as 
insufficiency in Fig. 21.10) fail to provide stability because, in addition to requiring a certain 
minimum of kinetic energy, stability also requires at least a minimum of direction given to that 
energy. As shown above, this direction comes from the interaction between flux and control that 
in-forms the paths by which kinetic energy is expended in action. Thus, in terms of the data



OPTIMALITY IN BIOSOCIAL COLLECTIVES 481 

presented in Fig. 21.1, stable organization requires both a minimum of flux and a minimum of 
control: a network of reciprocal egui-valent connections linking every individual to at least one 
other person; this connection must be coupled to a transitive ordering of asymmetric relations 
linking the action of each individual to that of at least one other person. Failing to meet these 
minima, a collective would devolve into a loose aggregation of disjointed cliques and isolated 
individuals unable to communicate and, consequently, function as a social collective. 
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Fig. 21.10. Model of dynamics of communication and collective action. 

Two other combinations are also shown. to produce instability. Coordinate values 
representing high control and low flux (labelled oyyification in Fig. 21.10) delineate a rigid 
Organization in which insufficient flux is available for global communication. The lack of 
communication means that the paths to action are fixed, not adequately informed by current 
circumstances, and are therefore unable to adapt and evolve as the situation changes.
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At the other extreme, combinations of high flux and low control (labelled volatility) 

delineate a turbulent situation in which little of the enormous flux is guided by hierarchic 

controls. Communication is inadequate as insufficient information about the ever-changing 

situation is distributed. 

The region of dysfunction surrounds the region of optimal collective function which is 

centered along a main diagonal of the phase space, and which, as noted, embodies a qualitative 

change in psychosocial organization. The lower and upper boundaries of this region define the 

values representing efficient information processing; this region is consistent with thermodynami- 

cally inspired connectionist models of neural networks (e.g., Hinton & Sejnowski, 1986, 

Hopfield, 1982). In such models efficient pattern matching is found to occur in a region between 

total randomness and total organization: in our terms, between rapid flux and rigid organization. 

The relationship between flux and control narrows progressively from many degrees of freedom 

at the low end of the phase space, to an almost one-to-one correspondence at the high end. Thus 

the shape of the space of optimal function is triangular. Figure 21.10 shows that this space can 

be subdivided into two distinct kinds of global communication: functional and transformational. 

Transitions from one subregion to another are not gradual but involve qualitative change; distinct 

types of communication can be defined. In between subregions is a phase transition characterized 

by turbulence and instability. Each subregion is composed of different combinations of values 

of flux and control so that a social collective can only have one of these communication patterns 

at any given time. 
Furthermore, there is considerable difference in vulnerability to collective dysfunction 

between the patterns constituting the subregions. At the low end of the functional subregion, the 

range of combinations of flux and control is great and there are thus many different viable 

patterns of communication possible. As a result of this loose articulation between flux and 

control, communication tends to be effortless but minimally efficient. At the high end of this 

subregion, there is a close articulation between flux and control so that the patterns of 

information processing here tend to be optimal — maximally efficient and highly stable. 
Beyond this, at the apex of the viable region, is a small subregion, labeled transfor- 

mational (separated from the region of stability by a turbulent gap), defined by an almost one-to- 

one ratio between flux and control. To assure stability this ratio must be maintained, a not-so- 

easy task: the greater the flux the more control must be exercised and vice versa, taking much 

effort. Often, when such an effortful course is in operation, a sudden organizational spasm 

occurs. The spasm has two possible outcomes. One is a structural transformation in the pattern 

of information processing, resulting in total reorganization to form a novel, qualitatively different 

collective. The other is structural devolution; the complete breakdown and collapse of the 
collective as a viable social entity. 

7. SUMMARY AND IMPLICATIONS 

7.1. Efficiency of Communication and Optimal Collective Action 

Our model concerns the internal structure of the collective. This internal structure is conceived 

to be based on the biological potential of the individuals composing the collective to engage in 

work, measured as energy. This biological potential appears to be heterarchically organized and,
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when activated by the collective, is made available for social interaction and behavior as a pool 
or field of latent biosocial energy. We have labeled this dimension of the endogenous order flux. 

In the other dimension, individuals are connected hierarchically. We have labeled this 
dimension control because it appears to direct and regulate the activation of the biosocial energy 
of the collective. Controls over the activation and distribution of flux result in global 
communication by way of quantum-like units of information (logons) — moment-by-moment 
descriptions, in terms of space-time and spectral coordinates, of the collective’s endogenous 
organization. Because these elementary units of information overlap as a series, the collective’s 
order at a given moment is informed by the order implicit in the units of the succeeding 
moments. 

A simplifying assumption was that stability can be identified with survival. Unless the 
collective remains a stable, durable social entity, there is little to enquire about. Thus in order 
to understand how stability is accomplished, we have restricted our concern to the structure and 
internal dynamics of the collective, and have left aside its behavioral effectiveness as an entity 
operating on its environment. It may well be that less stable collectives could be more effective 
under certain conditions than hyperstable ones (Roberts & Bradley, 1988). 

The efficiency of the internal dynamics, and its relationship to the collective’s action, was 
found to display an optimal (energy conserving) combination of flux and control that is 
associated with stable collective action. Our results thus show that for the group to survive as 
an effective working unit, an efficient communicative structure was required. Only those 
configurations of heterarchy and hierarchy that produced a path of least action — one that 
entailed the smallest amount of turbulence — resulted in a stable, effective collective. The 
findings indicate, in the terms of Shannon and Weaver (1949) at the opening of this chapter, that 
heterarchy and hierarchy are related as conjugate orders: that within the limits of its biosocial 
energy, the social collective must achieve an optimal combination of flux and control to produce 
efficient communication. 

A final point concerns the implications of this multilevel investigation for the single-level 
approach generally pursued by social science. In contrast to such discipline-specific accounts of 
collectives, our approach has been to seek a common scientific language — to explore the degree 
to which insights and principles from thermodynamics and information measurement theory could 
be used to build a rigorous and testable understanding of the communicative structure of social 
collectives. Although this account has drawn little from (and found little empirical support for) 
the normative sociological concepts usually employed to explain the behavior of social collectives 
(viz., ideology, values, formal organization, role structure, leadership, member commitment etc.; 
see the review by Turner, 1986, or Jablin et al., 1987, for examples), we believe that our results 
demonstrate the utility of an approach that grounds explanation in the commonalities and 
dynamics of collectives more generally. This is not to say that the factors identified by single- 
level descriptions are unimportant, but rather that a general understanding of collectives will only 
arise as a result of complementary work on the interlinkages between systems of organized 
behavior at different levels (e.g., Csinyi, 1989). In this way the relationship between general 
principles of system behavior and the specific conditions that obtain at different structural levels 
will be addressed and a general science of social behavior will be born.
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APPENDIX 

Summary Statistics for the Operational Procedures Used 
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Reinforcement, 6, 9, 15, 22, 27, 231, 232, 

235, 237-239, 363, 369, 374, 376, 380, 

381, 385-388, 400, 402, 404-410, 415 

excitatory and inhibitory, 238 

negative, minimization of, 4, 229 

positive, maximization of, 4, 229 

Reinforcement learning, 22, 31, 229, 235, 

237 

Representations, 112, 113, 261, 319 

internal, 106 

Resource utilization, 80 

Reward system, 399-410, 413-417 

Robotics, 363 

Rule induction, 161, 162, 167, 174, 179 

Rules, 363 

inappropriate use of, 46 

S 

Satisficing, 9, 78, 80, 85, 145, 155, 156, 

203, 425 

activity, 80 

projective, 80 

Scheme (Piaget’s concept of), 366-368 

Schizophrenia, 396-408, 410-417 

attentional disturbances in, 413 

negative symptoms, 396, 398, 402 

observations prevail over expectations, 

398, 401 

perceptions violate expectations, 410 

positive symptoms, 396, 398, 405, 413, 

414, 416 
relationship to genius, 417 
spontaneous remissions, 396, 405 

Selective attention, 111, 112, 317, 318, 371 

Self-actualization, 4-6, 9-14 

and information processing, 13, 14 

Self-image, 106, 112, 114, 115 
Self-organising Fourier perceptron (SOP), 

162, 163, 172, 174, 176-178, 180, 181, 183 

Self-punishment, 4 

Self-recognition, 432 

Self-similar phenomena, 116 

Self-stimulation, 401, 403, 404, 406, 408, 

410, 413, 415 
Semantics, 47, 53, 439 

Sensory-motor reflexes, 366-369, 374, 439- 

44] 
Septo-hippocampal system, 405 
Sequential unconstrained minimization, 338, 

342, 344, 357 

Serotonin, 14, 408 

Shannon-Hartley Law, 162, 163, 168, 169, 

183 
Simulated annealing, 10, 11, 265, 267, 272, 

273, 279-284 
Single neuron, 230-232, 239, 243, 257, 260, 

261 

network within, 260 

Social customs, 

maladaptive, 6 

Society of mind, 45 

Sociology, 450, 480, 483 

Sociometric instrument, 464-466 
Somatic marker (Damasio’s), 11 

Soul, 20, 24, 31-34, 36-40, 418 
believed in by 70% of Ph.D.s, 33 

Speech recognition, 164 

Stability-plasticity dilemma, 51, 308, 364 

Stable coding, 306, 308 

Stable coexistence, 12 
Stable states, 212, 213, 214 

Steiner circuit, 338, 340 

Steiner minimal tree, 338, 340, 341 

Stereotyped behavior, 398, 414, 415 

Stimulus representation, 109, 111, 113 

Stimulus-response events, 109 

Stimulus sampling theory, 290 
Streams of impulses, 399-402, 404-406, 

408-412, 414, 415 

Stress, 400 

Suboptimality 

(see Nonoptimality) 

Synapses, 115, 131, 133, 267-269 
adaptation of, 232-234, 257 

biological mechanisms in, 285 

formation of, 186 
number of, in different creatures, 133 

reconfiguration of, 187 

transmission rules for, 299-307, 313, 314 

useless, 61 

Synchronization problem, 259



System architecture, 99 
System image, 106, 111, 112, 115, 117, 119 

T 

Target selection, 369, 370, 384, 385, 388 

Thalamic reticular nucleus, 29 

Three brains, 14, 47 

Threshold rule, 300, 301, 304, 306 

Transitivity, violations of, 155, 156 

Trash, 71 

Traveling salesman problem (TSP), 203, 

338, 340, 344, 345 

Triune brain 

(see Three brains) 

Turing machines, 24, 29, 34 

Turing test, 127, 128 

U 

Unconditioned response, 231, 234 

Understanding, 127, 128, 130, 133, 434 

Understimulation, 396 
Utility function, 4, 14, 24, 27, 112, 203, 425 

maximizing over time, 27 
normative, 4 

(see also Cost function; Objective 

function) 
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Vv 

VAM model, 289 

Vision, 319, 338, 339, 356, 427 

Visual attention, 369 

Visual cortex, 107-109, 339 

Visual illusions, 338, 339, 356 

W 

Winner-take-all behavior, 12, 14




