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Abstract
With the advent of powerful parallel computers, efforts have commenced to simulate complete mammalian brains. How-
ever, so far none of these efforts has produced outcomes close to explaining even the behavioral complexities of animals. In 
this article, we suggest four challenges that ground this shortcoming. First, we discuss the connection between hypothesis 
testing and simulations. Typically, efforts to simulate complete mammalian brains lack a clear hypothesis. Second, we treat 
complications related to a lack of parameter constraints for large-scale simulations. To demonstrate the severity of this issue, 
we review work on two small-scale neural systems, the crustacean stomatogastric ganglion and the Caenorhabditis elegans 
nervous system. Both of these small nervous systems are very thoroughly, but not completely understood, mainly due to 
issues with variable and plastic parameters. Third, we discuss the hierarchical structure of neural systems as a principled 
obstacle to whole-brain simulations. Different organizational levels imply qualitative differences not only in structure, but 
in choice and appropriateness of investigative technique and perspective. The challenge of reconciling different levels also 
undergirds the challenge of simulating and hypothesis testing, as modeling a system is not the same thing as simulating 
it. Fourth, we point out that animal brains are information processing systems tailored very specifically for the ecological 
niches the respective animals live in.
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Introduction

Materialist philosophy dictates that brain function should 
be explainable in terms of physical processes. Modern neu-
roscience has made indeed impressive progress in finding 
such explanations. To show the consistency of these results, 
and extend their insight into new and emerging questions, 
computational neuroscience aims to construct quantitative 
models of neuronal dynamics. Exciting progress has been 
made in simulating subcellular, cellular, and network mod-
els. Naturally progressing from these simulations of parts 
of nervous systems are efforts to simulate complete animal 
brains. In the last decade several ambitious projects have 
been attempting to simulate the whole rat (Markram et al. 

2015), cat (Ananthanarayanan et al. 2009; Merolla et al. 
2014), and generalized mammalian (Izhikevich and Edel-
man 2008) brains. A project by Eliasmith used a simulation 
of 2.5 million neurons to operate a simulated robotic arm 
performing a variety of tasks (Eliasmith et al. 2012). These 
projects differ in their aims, with some attempting bottom-up 
assemblies of data, and others trying to connect sensation to 
behavior with a brain-like architecture. What they have in 
common are large numbers of simulated neurons (of vary-
ing levels of complexity) and claims that their simulation 
encompasses the dynamics of a complete or whole brain.

Despite massive investments in computing hardware, 
these attempts have not (yet?) produced results that are 
remotely satisfactory for explaining human or animal cog-
nition and behavior on the basis of brain function.

In this article, we outline several principled reasons that 
we believe contribute to this shortcoming. We start by dis-
cussing the role of simulations in hypothesis testing and the 
creeping, rather than sweeping, nature of progress in neuro-
science. We then review the work on two of the most thor-
oughly understood neural systems, the crab stomatogastric 
nervous system and the complete Caenorhabditis elegans 
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nervous system. We outline the difficulties that the research-
ers attempting to understand these small systems have faced, 
especially in regards to parameter constraints for simula-
tions. The issues faced when simulating small nervous sys-
tems harbor lessons for modeling the immensely more com-
plex vertebrate nervous systems. Additionally, the multilevel 
nature of neural computation is likely more important when 
simulating larger nervous systems. We also discuss how the 
specific ecological specialization of an animal relates to its 
brain function, and to the simulation of this brain function.

Interestingly, due to the issues mentioned above the lit-
erature lacks a consistent definition of a whole brain simu-
lation, which is usually considered a simulation of a large 
number of neurons, approaching the number of neurons in 
an animal’s brain, often at a level of detail currently only 
achievable for smaller simulations (Markram 2006).

Simulations as Quantitative Hypothesis

Testing hypotheses is at the core of the scientific method. 
A numerical simulation of a neural system corresponds to 
a set of inferences concerning a theoretical explanation of 
that system (Winsberg 2001). These inferences concern 
predictions about the system’s behavior over time. This 
often amounts to testing the quality or consistency of that 
explanation compared to different sets of experimental data. 
For example, we can ask if our knowledge of ion channel 
properties and distributions and cellular morphology is suf-
ficient to explain the synaptic potential waveform observed 
in a single neuron. Since this empirical knowledge is com-
plex, no one can figure out the answer by simply reading the 
measurements and thinking about them. Human intuition is 
not capable of deducing a potential waveform from dozens 
of nonlinear relationships between components of the neu-
ron. Numerical simulations thus provide a solution to this 
dilemma by calculating the dynamics of the all-biological 
components represented in the model (Izhikevich 2010).

However, the usefulness of a simulation depends on a 
number of factors. Simulations do not provide explanations 
for a phenomenon per se, but rather a measurable means 
of imitating a real-world system under a set of idealizing 
assumptions (Hartmann 1996; Winsberg 2003). When imita-
tion is a goal or requirement of the use of a simulation, crite-
ria for evaluating the fidelity of the simulation in capturing 
aspects of the target system need to be elaborated. For this, a 
mediating theoretical model is usually required (Krohs 2008, 
pp. 283–284; Winsberg 1999). A mediating model is one 
that coordinates the workings of a phenomenon of inter-
est (given a description derived by the mechanism that the 
model’s workings summarize) with the simulation’s dynam-
ics. “Within the context of simulations,” Krohs explains, 
“primarily dynamic models are of interest (Hartmann 1996, 

pp. 82–83), especially those that refer to the internal mech-
anism bringing about the dynamics. Such models may be 
regarded as not only describing, but also as explaining, the 
process under consideration” (Krohs 2008, p. 178). That is, 
a theoretical model is needed to mediate between the simu-
lation and the world, with the model identifying (perhaps 
ostensibly) the parts of the real-world system that figure in 
producing the phenomenon to be explained. This coordi-
nates the phenomenon with the simulation, in turn creating 
standards against which the simulation can be judged as to 
whether it is faithfully imitating the part of the world it is 
supposed to mimic.

An example of a mediating model is the Reichardt motion 
detector model used to represent (and sometimes simu-
late) motion adaptive responses in the fly brain (Borst and 
Egelhaaf 1989). The Reichardt model is a correlation-type 
motion detector that offers a mathematical description of 
light entering individual ommatidia of the fly’s eyes from 
two input channels, which become correlated at later stages 
of processing. On the one hand, the Reichardt detector is 
a proxy for numerous anatomical and electrophysiologi-
cal studies of the fly brain (for a summary and history see 
Brooks 2014). These studies provide crucial mechanistic 
details for the workings of motion adaptation, i.e., the ability 
of the visual system to modulate its response to continuous 
stimulation. On the other hand, the Reichardt detector acts as 
a model upon which to simulate motion adaptive scenarios. 
For instance, stimulation of the visual system with motion 
will first provoke a high response from motion-sensitive tan-
gential cells (measured in number of spikes per second), but 
then will rapidly decay towards a semi-steady state upon 
continuous stimulation with the same motion velocity. This 
stereotypical response profile can be approximately pre-
dicted by simulating motion stimulation with a Reichardt 
detector (de Ruyter van Steveninck et al. 1986).

Thus, the Reichardt motion detector mediates between 
a simulation and the real-world details of the target system 
of investigation, here the visual system of the fly. It coordi-
nates between explanations of the phenomenon, given by 
the mechanistic details that inform the overall structure of 
the model, and the output simulations that seek to track and 
predict neuronal output when exposed to various motion 
stimuli. The upshot of this mediating relation is that simu-
lations based on such a theoretical model can be assessed 
according to their ability to faithfully mimic the real-world 
counterpart to the simulation. More importantly, this mediat-
ing relation works even in the absence of a full mechanistic 
explanation, as when exploratory use of simulations is meant 
to help identify or supplement the characterization of the 
real-world target system provided by a model (Egelhaaf and 
Borst 1993). Obviously, the extent to which simulations cor-
respond (or don’t) to their target systems remains a compli-
cated and contingent question (Parker 2009).
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In addition to mediating models, the usefulness of simu-
lations is based on other factors as well. Another important 
factor is the rule that the hypotheses used with simulations 
should clearly identify what it is about the target system 
that is being tested. In our first example, we may ask if our 
knowledge of synapse location, synaptic glutamate recep-
tor kinetics, dendritic thickness and branching pattern, and 
voltage-gated ion-channel kinetics and distribution explain 
the rising slope of the postsynaptic potentials measured 
at the neuron’s soma. Note that we are testing a specific 
question (about the synaptic potential’s rising slope) here, 
and are not attempting to first recreate a universal artificial 
neuron. Relatedly, the questions asked also determine the 
degree of abstraction used (ion channels and dendrites, in 
our example). Besides confirming or falsifying the consist-
ency of our understanding of the system, the simulations 
provide predictions. These predictions will be at the chosen 
degree of abstraction, about properties of the cell that have 
not been used to construct the model, and possibly have not 
been measured yet. An example would be a prediction about 
the waveform of a second synaptic potential evoked briefly 
after the first one. The waveform would be altered due to 
remaining ion channel activation stemming from the first 
synaptic potential. We have again asked a very specific ques-
tion about a biological system at one degree of abstraction, 
and have gotten an answer, plus answers to closely related 
questions about the same system. We have not, for instance, 
gained any answers about the possible rearrangement of the 
cytoskeleton during synaptic activation (no equations in our 
model describe the cytoskeleton, since we assumed that the 
synaptic potentials are not influenced by its dynamics on a 
fast scale).

The situation is altogether different when trying to simu-
late the brains of mammals with a high level of biological 
accuracy. In this case, the numerical simulation is supposed 
to answer any reasonable question about the neural system 
under investigation—the whole brain. This, in our opinion, 
puts the cart before the horse. The direction a simulation 
takes in scientific investigation should be guided by some 
criteria of usefulness like those we detailed above. The mas-
sive increase in computational power needed to simulate 
such an open-ended and hence much more expansive system 
(Markram 2006) is a technical issue (albeit a hard one), and 
will not concern us any further here.

The lack of a clear hypothesis and lack of mediating 
model when attempting to simulate a complete mammalian 
brain is one issue, and a fundamental one, which impedes 
such an undertaking. Ideally, the hypothesis will stand at the 
beginning of the simulation project and will inform the con-
ceptual work that shapes the simulation code. The elements 
of the simulation will correspond to the questions raised by 
the hypothesis; it would be difficult to impose a hypothesis 
onto a simulation that was constructed with a different aim.

The type of progress historically seen in neuroscience 
is at odds with the breakthrough type of progress promised 
by such whole-brain simulations. We will discuss this issue 
next. Then we will elaborate on the massive complexities 
of mammalian brains, which also have fundamental con-
sequences for attempted whole-brain simulations. These 
consequences are the role of parameter constraints and of 
multiple levels of organization in neurobiology. Finally, we 
will discuss the specialized roles of animals in their ecologi-
cal niches, and how that affects efforts to simulate complete 
brains and their behavioral outputs.

Parameter Constraints

Small Nervous Systems

To understand the difficulties arising from simulating bio-
logical systems with multiple parameters at multiple levels 
let us first look at efforts to simulate much smaller nervous 
systems than those of mammals. Nervous systems in the 
animal kingdom span many orders of magnitude in their 
complexity. Two well-studied small nervous systems are the 
decapod crustacean (crab and lobster) stomatogastric gan-
glion (STG) and the nematode worm nervous system.

The following paragraphs are in no way meant to be a 
comprehensive review of the neurobiology of the STG, but 
rather to give an idea of the complications faced when trying 
to understand a ganglion composed of only a small number 
of neurons. These complications then compose a stepping-
stone to estimating the challenges when attempting to simu-
late much larger complete mammalian brains.

The STG is not a complete nervous system, but a central 
pattern generator producing the peristaltic rhythms of the 
crustacean digestive system. While it only constitutes a part 
of the crab’s nervous system, it acts in relative isolation from 
the sensory and motor components. Its neurons are also rela-
tively large and easy to record from, and the same neurons 
occur in every individual crustacean. All of this makes it an 
attractive study object. A total of 30 neurons in six classes 
generate the two rhythms (pyloric and gastric) produced 
by the STG. The neurons are connected with chemical and 
electrical synapses. Some of the neurons are electrically 
quiet when not stimulated, while others are intrinsic oscil-
lators. These oscillations occur due to an interplay of de- and 
hyperpolarizing ion channels. The intrinsic oscillators force 
their rhythmicity onto the intrinsically quiet neurons, and the 
complete network generates the intestinal rhythms of use to 
the crab (Selverston 2008).

The ion channel densities of the currents giving rise to 
these oscillations are curiously not conserved between neu-
rons. While each neuron of one type in every individual 
crab produces the same output patterns, these patterns are 
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the result of very different ion channel density combina-
tions. Every neuron has an individual ion channel parameter 
set, which generates identical output dynamics (Schulz et al. 
2006). Interestingly, the STG produces very similar, albeit 
somewhat faster output patterns when the ambient tempera-
ture rises. This is a very important issue since the body tem-
perature of marine invertebrates is identical to the ambient 
temperature, which in temperate oceans varies greatly over 
the course of a year (Marder et al. 2015).

A number of neuromodulators also change the properties 
of the neurons in the STG. These messenger molecules are 
broadcast from other parts of the crustacean nervous sys-
tem to the STG, and they modify the behavior of individual 
neurons by altering some of their ion channel conductances. 
These neuromodulators cause a reconfiguration of the whole 
STG, and cause it to output different rhythms (Hamood et al. 
2015). Their effect, when looking at it from the point of view 
of a simulation, amounts to a change of multiple parameters 
causing altered output patterns.

Hence, even a neural system composed of only 30 neu-
rons has turned out to be surprisingly complex. While 30 
neurons is a small number for a neuroscientist, a system of 
30 coupled nonlinear oscillators (each describing one neu-
ron, with several dimensions each) is massive for a math-
ematician. Closed form (analytic) solutions of such systems 
are realistic only for low dimensions (and impossible even 
in many low-dimensional systems), and are out of the ques-
tion here. It’s necessary to numerically simulate the STG to 
predict its output.

Work in nonlinear time series analysis and machine learn-
ing provides an estimate for the amount of data necessary 
for a dynamical system of a certain dimensionality. A vari-
ety of methods have been used for this purpose, such as 
maximum likelihood methods, Kalman filters, Monte Carlo 
statistics-based methods, and Bayesian methods (Ching et al. 
2006; Toni et al. 2009). Naturally, the number of data points 
increases when the dynamical system becomes more com-
plex. Relationships between dimensionality and the amount 
of data required for a parameter estimate depend on the exact 
algorithm, but encompass computational complexities simi-
lar to O(L3) (with L being the state dimension, the computa-
tional requirements growing with the third power of the state 
dimension; van der Merwe and Wan 2001).

Hence, a dimensionality that seems low to moderate to 
the neuroscientist is in fact massive when it comes to math-
ematical treatment and parameter estimation for numerical 
simulation.

One magnitude larger in terms of the number of neurons 
is the nematode C. elegans, a small worm with a total of 302 
neurons. As in many other invertebrate nervous systems, 
these neurons have reproducible identities between individ-
ual worms (each worm has the same number and types of 
neurons in the same positions). C. elegans has served as a 

very popular subject for research in molecular developmen-
tal biology (Meister et al. 2010; Varier and Kaiser 2011), and 
we know a great deal about this small organism, including 
its complete genome (Gerstein et al. 2010). Several attempts 
have been made to integrate the knowledge about the C. 
elegans nervous system in quantitative models (Si elegans: 
Blau et al. 2014; Machado et al. 2014; OpenWorm: Palyanov 
et al. 2012; Szigeti et al. 2014), but none of these projects 
has produced a complete working model yet. In contrast to 
the STG, the neurons of C. elegans are small, and it is dif-
ficult to record from them. This difficulty has only recently 
been mastered with the development of imaging methods 
that allow multi-neuron recordings in freely moving worms 
(Faumont et al. 2011; Schrödel et al. 2013). The data to 
begin simulating a whole-worm nervous system has thus 
not been available for very long. The lack of a functioning 
complete model of this small nervous system might therefore 
be due either to fundamental difficulties or to the short time 
frame modelers have had for the task.

The recently initiated OpenWorm project (Szigeti et al. 
2014) is a new effort at a complete simulation of this small 
animal. Interestingly, the project stresses an open-source 
approach and flexibly incorporating new data from a com-
munity of researchers for testing a variety of hypotheses, 
rather than one “correct” master model of the worm. The 
project includes a simulation engine that can cope with mod-
els at different levels of complexity, and a fluid dynamics 
simulation of the body of the worm. The latter module incor-
porates a feedback from the physical system (ecosystem, in a 
simple way) surrounding the worm into the simulation. This 
integrated, open-ended approach is well in accord with some 
of the points we make here.

The common theme we find in the attempts to simulate 
the STG and the C. elegans nervous system are nontrivial 
problems with a lack of parameter constraints. In the case 
of the more thoroughly explored STG, different parameter 
regimes (due to the individuality of neurons and differ-
ent channel kinetics at different temperatures) can lead to 
surprisingly similar neural output. Conversely, a moderate 
modification of cellular parameters via neuromodulators can 
completely change the behavior of the system. In the case 
of C. elegans, despite the small number of neurons and a 
completely known neuroanatomy, no whole-nervous system 
approach has come to fruition yet—probably at least par-
tially due to a lack of neurophysiological data until recently.

The issues regarding a lack of parameter constraints are 
not only due to a lack of experimentation and subsequent 
parameter fitting of models. Rather, this seems to be a fun-
damental issue, and involves significant variability between 
individuals, parameter modification in response to changes 
in external conditions and internal modulators, and many-
to-one mappings of parameter sets to model behaviors. 
There seems to be no one “correct” set of parameters for 
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the complete STG. We have hence seen a number of serious 
difficulties in modeling supposedly simple nervous systems, 
and can next ask how these issues will translate to mamma-
lian nervous systems.

Large Nervous Systems

The STG with its 30 neurons and the C. elegans nervous sys-
tem with 302 neurons are both much simpler than the nerv-
ous systems of the mouse (approximately 7 × 107 neurons), 
cat (109 neurons), or a human (8 × 1010 neurons). How do the 
aforementioned issues of incomplete parameter constraints 
and brain-body dependence affect simulations of such much 
larger nervous systems? There is no reason to assume that 
they don’t weigh proportionally heavier in these much larger 
and massively more complex (105 times the number of neu-
rons, mouse versus C. elegans) nervous systems.

An issue that could in fact worsen the problem of parame-
ter constraints is that neurons in vertebrates are not develop-
mentally deterministic; unlike in most invertebrates, where 
each neuron can be reproducibly identified across individu-
als, no such determinism exists in vertebrates. Thus, instead 
of dealing only with variable ionic conductance densities 
giving rise to the same function in otherwise identical neu-
rons (as in the STG), modelers of cortical circuits could be 
facing local circuits with identical function but comprising 
variable neuron numbers, types, and connectivity patterns. 
A computational scientist simulating large nervous systems 
will likely be facing the issues regarding constraining the 
parameters seen in small nervous systems, and additional 
issues peculiar to mammalian nervous systems.

Levels of Organization

Tightly connected with this issue of parameter constraints 
(or lack thereof) is the aforementioned concept of organiza-
tional levels (Sejnowski and Churchland 1994; Craver 2007). 
Levels of organization comprise compositional layers in 
nature1: neural tissue is organized in modules, composed of 
structured assemblies of modules of the lower level. Brain 
areas are composed of neural networks, and these networks 

are in turn composed of neurons, which are composed of 
membranes and ion channels. And so on. Indeed, the idea 
of levels is widespread not only to the neurosciences, but 
in and across most biological disciplines (Wimsatt 2007). 
Germane to this view is that there are qualitative differences 
inherent to each level that demarcate not only natural units 
(e.g., cells, genes, proteins, and molecules), but also research 
regimes that make up independent ventures into the brain. 
This, for one thing, makes comprehensive understanding of 
even any one level, in isolation, insufficient to explain or 
understand whole phenomena under consideration. That is, 
knowledge of cells does not exhaust knowledge of tissues, 
nor molecules or proteins. Instead, levels of organization in 
a complex natural system such as the brain indicate that mul-
tiple research areas and even disciplines will overlap in their 
efforts to explain the phenomena engendered by that system.

Though the intent of these multiple research areas may 
very well converge on explaining or understanding a com-
mon phenomenon, reconciling the differences in techniques, 
aims, and even the vocabulary between the different level-
bound perspectives is a daunting challenge for any integra-
tive program. This understandably makes attempts to unify 
or integrate multiple levels into a singular framework an 
extremely attractive position to advertise. However, when 
citing the leveled structure of the brain, one must be wary 
of invoking more promise than substance (Guttman 1976). It 
is easily granted that cells are “qualitatively different” than 
the things composing them; proteins, chemicals, and biomol-
ecules simply do different things than cells do. So, what does 
it mean for a model, simulation, or explanation to “encom-
pass multiple levels”? A number of specific approaches have 
been proposed, but until now none have reached consensus 
(Eronen and Brooks 2018). Minimally, we believe that any 
attempt to integrate levels together should include demon-
strating that different putative levels are arranged in a precise 
way within the model such that our understanding of the 
target phenomenon is improved.

This highlights a number of concrete challenges for 
simulation and modeling. For one thing, it is not a priori 
clear what inter-level dependencies exist in different neural 
systems; these must be explored and characterized. Are the 
parameters on the lower level not related one-to-one to the 
dynamics on the higher level, as seen in the STG neurons’ 
rhythmic output activity (several parameter combinations 
can produce the proper rhythmic output)? Or are there corre-
lations between parameters on different levels? For instance, 
are the connection probabilities (a lower-level property) 
increased between neurons encoding similar stimuli (a 
higher-level property) in the mammalian cortex? Though 
this is sometimes the case (Hubel and Wiesel 1968), myriad 
other such inter-level rules are conceivable as well, and their 
existence is rarely investigated.

1  We understand the hierarchical organization of the nervous sys-
tem as one mediated primarily by part-whole relations, where what 
is considered a whole at one level (say, a cell) is a part at another 
level (say, the tissue level). This is a distinction from other concep-
tions of hierarchical organization, such as van Essen and Maunsell’s 
(1983) hierarchy of functional streams in the visual cortex, and from 
David Marr’s (1982) trilevel distribution of the algorithmic, computa-
tional, and implementational levels. The chief difference here is that 
these conceptions of level focus on the transmission of information 
between functional units, rather than track compositional relations 
between units of nature.
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Two frequent, qualitative inter-level relations relevant for 
integrative brain studies, in addition to composition, include 
emergence and downward causation. Emergence captures 
the idea that features or properties located at one level 
appear as unpredictable or irreducible properties between 
levels (Stephan 1999). Downward causation, on the other 
hand, refers to the ability of higher-level properties to influ-
ence or change lower-level properties (Campbell 1974). 
Naturally, lower-level parameters can also influence higher-
level parameters (such as behavior), and if the higher-level 
system is close to a bifurcation (at a point of high parameter 
sensitivity), they are more likely to do so. But conversely, 
causal power in systems characterized by indeterminism 
and/or degeneracy can be most pronounced at a macro level 
(Hoel et al. 2016).

Moreover, the choices involved in abstraction lie at the 
core of this issue of the leveled structure of the brain. Sim-
ulations and models of neural phenomena, including the 
whole brain, are premised on, even defined by, abstracting 
away from the actual details of the systems they represent in 
their simulating efforts. This contrasts with stronger claims 
of realism in models and simulations that promise highly 
“biologically accurate” depictions of the target phenom-
enon (e.g., Markram 2006; see also Almog and Korngreen 
2016). Just because one can construct a simulation does not 
guarantee what one is simulating. Above we noted that suc-
cessful simulations are accompanied by a mediating theo-
retical model, which maps the simulation’s elements at least 
roughly and tentatively onto real-world counterparts. In the 
absence of such a model, it is entirely unclear what is being 
simulated.

Turning to one simulating venture we have in mind, 
Markram (2006, p. 153) interestingly does refer (quite prom-
inently) to the organizational levels of the nervous system 
as a primary motivation for his Blue Brain Project (BBP). It 
is especially noteworthy that he acknowledges particularly 
the “qualitative differences” between these levels. He writes:

Atoms are differentially combined to produce a spec-
trum of molecules, which are qualitatively very dif-
ferent from atoms in terms of their properties and the 
information they contain.…Different combinations of 
proteins produce qualitatively different types of cell 
that can be combined in various ways in the brain to 
produce distinct brain regions that contain and process 
qualitatively different types of information. (Markram 
2006, p. 153; emphasis added)

From the leveled structure of the brain, however, 
Markram derives an “ultimate question,” which we feel is 
problematic:

The ultimate question, therefore, is whether the inter-
action between neurons drives a series of qualitative 

leaps in the manner in which information is embodied 
to represent an organism and its world. As computers 
approach petaFLOPS speeds, it might now be possible 
to retrace these elementary steps in the emergence of 
biological intelligence using a detailed, biologically 
accurate model of the brain. (2006, p. 153; emphasis 
added)

This, in our opinion, puts the cart before the horse. Pro-
curing a “biologically accurate model of the brain” should 
represent a challenge that levels of organization pose, rather 
than an opportunity promised, to researchers (see especially 
our discussion of promise over substance above). When lev-
els are taken seriously, it is irrelevant how fast our computers 
are (a quantitative point) when we are concerned with the 
qualitative differences that are engendered by moving from 
one type of (level-bound) data, such as single-cell record-
ings, to another type of (level-bound) data, such as gene 
expression. Redescribing these things using one language, 
i.e., computer programming languages, abstracts away from 
all but the most rudimentary differences (and similarities) in 
level-bound empirical structures. This puts pressure on the 
tantalizing claim that “[a] new approach is now possible that 
involves a quantum leap in the level of biological accuracy 
of brain models” (Markram 2006, p. 154).

If we have not emphasized enough, this is all perfectly 
fine scientific work. The question we are posing concerns 
rather what kinds of scientific aims are or can be legitimately 
served with such projects as the BBP. For even when a 
model is in place, the fidelity of the simulation in mimick-
ing the real-world system itself remains a major undertaking 
to be explored and evaluated by multitudes of researchers 
from different research areas. Balancing between realism 
and abstraction comprises an active array of choices that 
neuroscientific modelers and simulators face in articulating 
the findings of their research (Herz et al. 2006; see also Grim 
et al. 2013).2 Here it is clear that we cannot serve all possible 
research goals with one simulation. Goals like realistically 
capturing the details of a system or producing general con-
clusions require trading off between the goals that simulation 
and modeling may wish to achieve (Levins 1966). That is, 

2  One important issue that appears here concerns when abstrac-
tion (removing detail until a desired grain of description is attained) 
crosses the line into an idealization (actively distorting factual details 
of a system). Though both idealization and abstraction play positive, 
even necessary roles in science, there are distinct issues when one or 
the other is pursued. Presumably, modelers and simulators of whole 
brains are interested in abstraction, given their claims of producing 
“accurate” models of neural systems (see especially the preceding 
discussion). Nonetheless, we’d like to point out that such aims may 
pass into the realm of idealization, where a different set of issues crop 
up (see especially Potochnik 2017). Many thanks to an anonymous 
reviewer for bringing this to our attention.
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realism and abstraction come at a price: realistic simula-
tions may capture actual details of the target system, but 
the generality of the product’s significance will thereby be 
hindered. Likewise, increasingly abstract simulations may 
be successfully generalizable, but at the cost of sacrificing 
realistic details in what they represent. This is simply a con-
sequence of analyzing extremely complex systems whose 
constituents are either unknown or contain too many vari-
ables to be faithfully reproduced.

A further note about realism: too much detail also threat-
ens to decrease the explanatory value of a simulation model. 
Take as an analogy a map of a given city: tourists visiting 
and navigating European cities would hardly benefit from 
a 1:1 recreation of Venice, as they will be inundated with 
irrelevant information that far exceeds the interests and aims 
of their recreational visit. Rather, a map or maps containing 
the relevant information concerning good restaurants or pub-
lic transportation (and abstracting away from, for instance, 
personal addresses of the city’s inhabitants) would be a more 
relevant description of the city given the tourists’ desires 
in visiting Venice. Likewise, in a neuroscientific context, 
a description should strike a balance between realism and 
abstraction (Herz et al. 2006). Getting lost in the details sac-
rifices this relevance and abstraction to full-blown descrip-
tive realism, which is unable to serve anyone’s explanatory 
goals.

So, combining abstraction with the issue of organizational 
levels results in the following dilemma: either we wish to 
emphasize the contributions or findings that are related to 
one or several levels whose relationships are well specified, 
or instead we abstract too far away from these differences to 
find a more general pattern. Since each level of organization 
presumably deals with its own set of qualitative properties 
(cells differ fundamentally from tissues, and molecules from 
cells), abstracting away from these level-bound differences 
will smear rather than sharpen our focus of the issues aris-
ing from the specific structures whose dynamics we seek to 
uncover by simulation. The issue of levels is of course tightly 
connected to the choice of the degree of abstraction men-
tioned above. It’s perfectly valid to model the mammalian 
cortex as a two-dimensional mean-field if that is appropriate 
for the specific question asked in the study. But a “complete” 
simulation of a mammalian brain should be able to address 
an exceptionally wide variety of reasonable questions about 
that brain, making the choice of the degree of abstraction 
much more difficult. This strong claim is made, explicitly 
or implicitly, by the groups developing these simulations. 
Claims that brain pathologies will emerge from the finished, 
“complete” simulation are in this category.

Without a specific hypothesis to test, any cut-off above 
a certain degree of abstraction will necessarily be arbitrary. 
Novel multi-scale simulation methods might only partially 
solve this problem—rather they will alleviate its symptoms. 

The arbitrary cut-off will likely simply be shifted to lower 
(smaller and faster) levels, and not abolished. It is to be seen 
if a lower bound exists where the physical reality is not rel-
evant anymore for the functioning of the nervous system, 
and if simulations can reach down to that level.

Frequently, the current practice of constructing neural 
simulations runs in the other direction, from model to ques-
tion, but we consider this bad practice from an epistemologi-
cal point of view. The situation is akin to someone who built 
a randomly connected network of integrate-and-fire neurons, 
to study a generic case of the propagation of neural excita-
tion. Then, this modeler starts to use this same model to 
address the spread of epilepsy in one very specific brain 
area. This will necessarily fail, due to a lack of specificity of 
the model for the question at hand. The main mistake here 
is that the model came before the scientific question. When 
the claim is to build a “complete” simulation of the brain, a 
vast number of simulations will be like the situation of the 
modeler in our example. In contrast to the simple example 
with the network of integrate-and-fire neurons, this short-
coming is not as easy to see in a more complex simulation.

For this reason, although simulation modelers note the 
leveled structure of the nervous system as a target of their 
integrative efforts, we believe the challenge of levels to be 
one in which one poses the problem that one seeks to investi-
gate rather than a promise concerning the goods to be deliv-
ered in a full-brain simulation. However, this challenge can 
also be reformulated as a promising concrete aim. When 
proper attention is paid to the work bearing on integrat-
ing, e.g., the molecular, genetic, and overarching network 
dynamics of nervous system activity into one simulation, 
this certainly would offer something more than others can: 
namely, a more appropriate, relevant, or complete view of 
the target system of interest.

Animals and Their Ecological Niches

We would like to make a final point. One is unlikely to 
achieve a satisfactory understanding of the mouse or cat 
brain without taking the ecological niches of these animals 
into consideration. A mouse is a nocturnal herbivore that 
shows an unusually fast reproductive cycle for mammals; a 
cat is a solitary, nocturnal visually guided ambush predator 
with an extended period of maternal care, and their brains 
are specialized for these ecological niches. One of many 
examples is the tapetum in the back of the eye of the cat. 
These reflective layers increase the photon yield of vision 
by reflecting photons back onto the photoreceptor cells in 
the retina. The gain in photon yield is achieved by a loss in 
visual resolution, since the reflected photons might not be 
reflected in a direct 180° angle. This adaptation, a trade-
off between a lower light detection threshold and reduced 
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resolution, is useful for a nocturnal predator. The retina and 
all subsequent structures in the cat visual system have to 
cope with this trade-off. Already at the very first stage of 
the visual system, the feline visual system is significantly 
different from the human visual system (Oliver et al. 2004).

Neither the cat’s nor other animals’ brains are scaled-
down models of human brains, as which they are often 
treated. Rather, they are brains of specialized vertebrates 
that evolutionarily split tens of millions of years ago from 
a common, shrew-like ancestor. As the late Ted Bullock 
noted, “Neuroscience is part of biology, more specifically 
of zoology, and it suffers tunnel vision unless continuous 
with ethology, ecology, and evolution” (Bullock 1984).

The relationship between an animal’s ecological niche 
and a complete simulation of its brain is twofold. Given the 
specialized nature of nervous systems, it is of limited use to 
attempt to simulate “the mammalian brain” or “the cortex,” 
since these structures will widely differ between species. 
Furthermore, the inputs given to a whole brain simula-
tion will have to be tailored to the percepts experienced by 
that specific animal in its natural environment; otherwise 
the dynamics of the nervous system will be incompletely 
explored. As an example, a simulation of the brain—includ-
ing the visual system—of the aforementioned cat would not 
be meaningful if not tested in conditions akin to hunting at 
low light. Both the ecological relevance of the simulation 
would be limited without such a test, and, from a dynamical 
systems point of view, the parameter regime of the simula-
tion would be incompletely explored. Basically, we believe 
that the environmental niche determines the statistics of the 
sensory inputs an animal receives in a very fundamental 
way. This will have influenced the evolution of this nervous 
system, and the statistics of the neural connections will be 
determined by these input statistics as determined by the 
niche. Any successful, realistic whole-brain simulation will 
have to incorporate such connection statistics. Furthermore, 
testing of the model only makes sense with inputs akin to 
those faced by the animal in its natural environment. Oth-
erwise, the response will be somewhat of an in silico lab 
artifact.

Summary

We have argued that efforts to “simulate the brains of mam-
mals” have so far not succeeded not because of a lack of 
effort or computer capacities, but due to several fundamental 
limitations. These are the relationship between simulations 
and hypothesis testing (and a lack of hypotheses), the com-
plications arising from a lack of clear parameter constraints, 
the multilevel nature of neural computation, and the specific 
ecological specializations of animals and their brains.

We are under the impression that the multilevel nature 
of neural computation and the issues regarding parameter 
constraints are taken seriously by the community engaged in 
large-scale brain simulations. Issues relating to multi-scale 
simulations are not yet solved, and there is no consensus if 
they will eventually prove to be prohibitive for successful 
whole-brain simulations. A significant amount of work is 
dedicated to them (Breakspear and Stam 2005; Robinson 
et al. 2005; Honey et al. 2007; Torben-Nielsen and Stiefel 
2009). However, the issues arising from a lack of a clear 
hypothesis are less well addressed in large-scale full-brain 
simulations. The issues relating to the very specific ecologi-
cal specializations of different animals seem to be largely 
ignored in the course of whole-brain simulation efforts, as 
indicated by multiple models of generic mammalian brains 
or generic mammalian cortices.
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