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Abstract

In the last 20 years the Turing test has been left further behind by new develop-

ments in artificial intelligence. At the same time, however, these developments have 

revived some key elements of the Turing test: imitation and adversarialness. On the 

one hand, many generative models, such as generative adversarial networks (GAN), 

build imitators under an adversarial setting that strongly resembles the Turing test 

(with the judge being a learnt discriminative model). The term “Turing learning” has 

been used for this kind of setting. On the other hand, AI benchmarks are suffering an 

adversarial situation too, with a ‘challenge-solve-and-replace’ evaluation dynamics 

whenever human performance is ‘imitated’. The particular AI community rushes to 

replace the old benchmark by a more challenging benchmark, one for which human 

performance would still be beyond AI. These two phenomena related to the Turing 

test are sufficiently distinctive, important and general for a detailed analysis. This is 

the main goal of this paper. After recognising the abyss that appears beyond super-

human performance, we build on Turing learning to identify two different evaluation 

schemas: Turing testing and adversarial testing. We revisit some of the key ques-

tions surrounding the Turing test, such as ‘understanding’, commonsense reasoning 

and extracting meaning from the world, and explore how the new testing paradigms 

should work to unmask the limitations of current and future AI. Finally, we discuss 

how behavioural similarity metrics could be used to create taxonomies for artificial 

and natural intelligence. Both testing schemas should complete a transition in which 

humans should give way to machines—not only as references to be imitated but also 

as judges—when pursuing and measuring machine intelligence.
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1 Introduction

Twenty years ago, on the fiftieth anniversary of the introduction of the imita-

tion game (Saygin et  al. 2000), there seemed to be momentum and consensus 

to move beyond the Turing test (Hernández-Orallo 2000). It was high time, I 

argued, to look for intelligence tests that should be “non-Boolean, factorial, non-

anthropomorphic, computational and meaningful”. In these two decades, AI has 

changed significantly, and the Turing test is not part of the everyday vocabulary 

of AI researchers any more, not even as a future landmark (Marcus 2020). Rather, 

the notions of artificial general intelligence (AGI) and superintelligence have 

replaced the old wild dreams of AI, and are used as arguments exposing the limi-

tations of a great majority of AI applications—fuelled by deep learning—that can 

still be considered very narrow.

Somewhat surprisingly, a particular type of “generative models”, exemplified 

by generative adversarial networks (GAN), refine a generator by relying on a dis-

criminative model, a judge telling between the true object and the generated one. 

Because of this analogy, this paradigm has been dubbed “Turing learning” (Li 

et al. 2016; Groß et al. 2017), and deserves a technical and philosophical analysis 

on its own. Relatedly, there is an adversarial situation in AI benchmarks, suf-

fering a ‘challenge-solve-and-replace’ evaluation dynamics (Schlangen 2019). 

New benchmarks appear every year, but ‘superhuman performance’ is achieved 

very quickly. In many cases this performance is reached by using shortcuts or 

tricks, from obscure statistical properties in the data to plain cheating, a phenom-

enon that is usually referred to as the Clever Hans of AI (Sebeok and Rosenthal 

1981; Sturm 2014; Hernández-Orallo 2019a). The discovery that benchmarks can 

be gamed prompts their replacement by more complex ones, hopefully captur-

ing that elusive challenging part of the task the system fails to understand or is 

thought to be key to intelligent behaviour.

The very concept of ‘superhuman performance’ has similar grounds to the 

Turing test, and in this paper we dissect the problems that emerge when extrap-

olating beyond ‘the human level’: how can we evaluate real breakthroughs in 

AI and determine the paths to follow beyond human performance? Somewhat 

paradoxically, the solution to these problems goes through the Turing learn-

ing paradigm mentioned above. From here, two adversarial evaluation settings 

can be introduced: Turing testing (where imitation is kept) and Adversarial 

testing (where imitation is eliminated). In both cases the human judge turns 

into a machine, which improves its assessment performance as the evaluation 

progresses.

The rest of the paper is organised as follows. Section  2 summarises the rea-

sons why the Turing test should have been left behind for AI evaluation, and 

what has changed in AI in the last 20 years. Section  3 discusses the problems 

of using humans as a reference when trying to extrapolate beyond them. Sec-

tion 4 discusses Turing learning, and ways in which we should train the judges 

in competitions and benchmarks, through two settings: Turing testing and Adver-

sarial testing. Section 5 addresses the evaluation of elusive capabilities related to 
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‘thinking’, such as understanding the world and extracting meaning from it, and 

whether this is possible if the machine judge in the testing setting lacks those 

capabilities. Section 6 converts ‘equivalence’ tests into ‘similarity’ tests leading 

to metrics that can be used to arrange and categorise behaviour (either natural 

or artificial) into taxonomies. Finally, Sect. 7 closes the paper with a discussion 

about the lessons learnt in the last 20 years and what needs to be done to really 

move beyond the Turing test once and for all.

2  The Turing Test: A Beacon or a Relic?

In the context of this paper, and 70 years after the imitation game was introduced, 

it is very appropriate to remember that Turing’s original paper (1950) was meant to 

counteract nine arguments against the idea of intelligent machines. The term ‘test’ 

and the current interpretation of the game was only adopted after some interviews 

(e.g., Turing , 1952) and the huge amount of literature that flourished in the follow-

ing decades. This kept a different debate alive, such as whether the imitation game 

could be a sufficient and necessary test for intelligence (Fostel 1993; Hayes and Ford 

1995; Copeland 2000; French 2000; Proudfoot 2011). For the reader that is unfamil-

iar with this history, I suggest some insightful surveys (Moor 2003; Copeland and 

Proudfoot 2008; Oppy and Dowe 2011; Proudfoot 2017) or in better alignment with 

the rest of this paper, sections 5.3 and 5.4 in (Hernández-Orallo 2017b), covering 

the variants of the Turing test, some of their philosophical interpretations and their 

use as evaluation instruments for artificial intelligence.

For the purpose of this paper, it is just necessary to recall that the Turing test 

has three parties: player A (the imitator), player B (the authentic reference) and the 

judge, who must tell who the impostor is. In the original Turing’s imitation game, 

the judge was a human, player A was a computer (pretending to be a woman) and 

player B was an actual woman. In the standard interpretation of the Turing test used 

today, gender is considered irrelevant; the judge is a human, player A is a computer 

pretending to be a human and player B is a human. Following this generalisation, 

some interesting variants have followed, as Table 1 summarises.

Going top-down in the table, Victorian parlour games, represented in the first 

row, challenged a human who should tell between a man and a woman through writ-

ten notes. These games were played in Victorian times, and could have well inspired 

Turing to propose his imitation game. Note that we distinguish the original imita-

tion game in the second row, as introduced in (Turing 1950), where gender still 

appears explicitly, and the Standard Turing test, in the third row, as was understood 

more commonly in subsequent years (Turing 1952). The Visual/Total Turing test 

(Zillich 2012; Borg et  al. 2012) is a variant where the agents are embodied in a 

(simulated) world and can see each other. BotPrize was a competition taking place 

in the game Unreal Tournament (Hingston 2009), with the goal of creating an AI 

player that would be indistinguishable from a human by the human judges. A Turing 

test with compression is an idea first introduced in (Dowe and Hajek 1997, 1998), 

arguing that some compression problems should be included to show understanding. 

Matching pennies is a binary version of rock-paper-scissors that has been discussed 
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as an elementary intelligence test, or at least a prediction test (Hibbard 2008, 2011; 

Hernández-Orallo et al. 2012, 2012). The inverted Turing test is the first proposal 

of a test where the judge is a machine (Watt 1996), but quite surprisingly, it is the 

judge that is evaluated. If the judge can tell between machines and humans, then it is 

intelligent. This is very different from the reverse Turing test (von Ahn et al. 2004, 

2008), with its implementations usually known as CAPTCHAs, where the judge is 

not evaluated, as in all other versions. The relevance of the reverse Turing test is that 

it is totally automated, as the human or machine to be detected does not have to be 

compared against a real human. Usually, the kind of exercises are quite trivial for 

humans, but challenging to state-of-the-art AI. We will especially discuss the appro-

priateness of human judges in the following sections.

It is now relevant to recall some of the reasons why the standard Turing test 

should have been left behind many decades ago. The first one is that the Turing test 

does not measure intelligence, but “humanity”’ (Fostel 1993). The incarnations of 

the Turing test, such as the Loebner Prize, have raised little enthusiasm from the AI 

community. For instance, referring to a recent edition of the prize (Shah and War-

wick 2015), Moshe Y. Vardi, editor-in-chief of the Communications of the ACM 

responded: “the details of this 2014 Turing Test experiment only reinforces my 

judgement that the Turing Test says little about machine intelligence” (Vardi 2015). 

Even assuming that we really wanted to measure likeness to human behaviour—

more on this at the end of this paper—, a second objection would be that the Turing 

test is not a good testing instrument. The interaction is too open-ended to have good 

properties of measurement invariance and reliability. Precisely because of this, one 

can argue that virtually anything can be added to correct the Turing test, from sen-

sorimotor interaction (Harnad 1992; Schweizer 1998; Zillich 2012) (e.g., fourth and 

fifth rows in Table 1) to compression questions (Dowe and Hajek 1997, 1998) (sixth 

row in Table 1). Most of these variants do not solve the issues but rather introduce 

new ones. It is important not to blame Turing for this, as Sloman (2014) puts it: 

Table 1  Several variants of the Turing test

W, M, H and C represent general woman, man, human and computer respectively, with subindexes refer-

ring to particular individuals. The columns for player A and B represent the imitator and the authentic 

agent. The arrows represent “pretending to be”. The final column indicates what kind of communication 

is allowed between the players and the judge. [Adapted from (Hernández-Orallo 2017b, Table 5.1).]

Variant Judge Player A Player B Interaction

Victorian parlour game H M → W W → W Written notes

Turing’s imitation game H C → W W → W Textual teletype

Standard Turing test H C → H H → H Textual teletype

Visual/Total TT H C → H H → H Visual/embodied

BotPrize H C → H H → H Video game

TT with compression H+size C → H H → H Textual teletype

Matching pennies − CA →  CB CB →  CA Binary teletype

Inverted TT C C → H H → H Textual teletype

Reverse TT: CAPTCHA C C → H − Any
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“[Turing] did not propose his ‘imitation game’ as a test for intelligence, though he 

occasionally slipped into calling his non-test a test!”.

By the end of the previous century, the accumulated criticisms were sufficiently 

substantial against the Turing test as an actual test for intelligence. The time was 

ripe to move beyond it. In (Hernández-Orallo 2000), I used the title “Beyond the 

Turing Test” with a double interpretation: (1) we should be leaving the Turing test 

behind, and (2) future machine intelligence may go well beyond (and deviate signifi-

cantly) from human abilities. The question of what is beyond humans, in a universal 

landscape of intelligence, is the exciting question for philosophy and AI research. 

However, evaluating (machine) intelligence was still an open problem, and really 

moving beyond the Turing test required an alternative.

In (Hernández-Orallo 2000) I proposed a measure of intelligence that could be 

non-Boolean (i.e., gradual rather than passing or not a test), factorial (i.e., non-

monolithic, capturing several capabilities), non-anthropocentric (i.e., not using 

humans as references), computational (i.e., considering intelligence some kind of 

information processing) and meaningful (i.e., knowing what we are measuring). The 

key idea was defining intelligence test items using algorithmic information theory 

(Hernández-Orallo and Minaya-Collado 1998), an approach that was followed by 

many other proposals in the next two decades, from the very influential “universal 

intelligence” (Legg and Hutter 2007) to the recent “measure of intelligence” (Chol-

let 2019). However, while some of these proposals have had an important impact on 

the understanding of what intelligence is, its relation to compression (Dowe et al. 

2011), difficulty (Hernández-Orallo 2015; Hernandez-Orallo 2015) and generality 

(Martinez-Plumed and Hernandez-Orallo 2018), the adoption of some of these tests 

(or associated definitions) in practice has been very limited.

It is no surprise that many other papers tried to investigate what lies “Beyond the 

Turing Test”. What is more surprising is that most of them used the same or very 

similar titles (Alvarado et al. 2002; Cohen 2005; Arel and Livingston 2009; French 

2012; You 2015; Schoenick et  al. 2017), including an AAAI 2015 workshop and 

special issue in the AI magazine with, yet again, the same title: “Beyond the Turing 

Test” (Marcus et al. 2015, 2016). This led to yet again the same titles for the head-

lines by Forbes,1 the New York Times2 and even a whole programme by the Tem-

pleton World Charity Foundation.3

This failure to find—or agree on—an operative alternative to the Turing test that 

could serve as a beacon for AI (or AGI) partly explains why the Turing test still 

lingers on in discussions and initiatives about AI evaluation. But there are some 

other reasons. The Turing test is usually associated with the concept of Human-

Level Machine Intelligence (HLMI), either because the former is still thought to 

be a test for the latter, or because both have the same philosophical and conceptual 

1 https ://www.forbe s.com/sites /jenni ferhi cks/2015/09/20/beyon d-the-turin g-test/#e7206 bf224 11.
2 https ://opini onato r.blogs .nytim es.com/2015/02/23/outin g-a-i-beyon d-the-turin g-test/?ref=opini on&_

r=0.
3 https ://www.templ etonw orldc harit y.org/our-work/diver se-intel ligen ces.

https://www.forbes.com/sites/jenniferhicks/2015/09/20/beyond-the-turing-test/#e7206bf22411
https://opinionator.blogs.nytimes.com/2015/02/23/outing-a-i-beyond-the-turing-test/?ref=opinion&_r=0
https://opinionator.blogs.nytimes.com/2015/02/23/outing-a-i-beyond-the-turing-test/?ref=opinion&_r=0
https://www.templetonworldcharity.org/our-work/diverse-intelligences
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assumptions: an anthropocentric view of intelligence and a monolithic scale, where 

human “level” would be placed at the pinnacle, as far as we know today.

The concept of HLMI is associated with a machine possessing the intelligence 

of an average human, which ‘can carry out human professions at least as well as a 

typical human” (Bostrom 2014, p. 19), or “capable of matching humans in every (or 

nearly every) sphere of intellectual activity” (Shanahan 2015). HLMI is frequently 

presented with other definitions and names, such as ‘human-level artificial intelli-

gence’, ‘high-level machine intelligence’ or even just artificial general intelligence 

(McCarthy 1983; Preston 1991; Nilsson 2006; Zadeh 2008; Bostrom 2014). How-

ever, “some [...] feel that the notion of a ‘human level’ of artificial intelligence is 

ill-defined” (Bostrom 2014,  p. 20). The moment ‘it’ will be achieved is also said 

to be “ill-posed” (McDermott 2007). Predictions around the term are hence said to 

have failed or, more precisely, are simply unverifiable (Armstrong and Sotala 2015). 

In the same vein are concepts such as superhuman performance or superintelligence, 

which are directly or indirectly assuming humans as a yardstick. We will address 

how to circumvent this issue in the following section.

Apart from these associations, there are some other reasons why the Turing test is 

still a matter of discussion. They have to do with two key components of the Turing 

test: imitation and adversarialness (Hernández-Orallo 2017b).

Imitation is intrinsic to the Turing test, which is ultimately an imitation game, and 

as such, it would be sufficient for the impostor to imitate humans well. This can be 

achieved by learning good mind models, an important aspect of social intelligence. 

Imitation is a more general phenomenon, though, as we will discuss more exten-

sively in the following sections in the context of Turing learning, and machine learn-

ing in general; many AI systems just learn by imitating the outputs or the behaviours 

of other systems, either by a sample of their behaviour (datasets or demonstrations) 

or by interacting with them.

Adversarialness appears because imitators and judges are opposed. As the imi-

tator gets better the judge must get better too, otherwise it will be fooled. Con-

sequently, when an imitator fools a judge, this might mean either or both of two 

things: the imitator is good or the judge is bad. It is important to realise that much 

of the progress in evolution, and social evolution in particular (with conspecifics or 

heterospecifics), is the result of adversarial co-evolution, from insects and flowers to 

predators and preys. In sport terms we would say that one gets better when compet-

ing against good rivals.

The simplest game that combines imitation and adversarialness (and where both 

players act as imitators and judges) is ‘matching pennies’ (a binary version of rock-

paper-scissors). This game has been suggested as a minimal intelligence test (Hib-

bard 2008, 2011; Hernández-Orallo et al. 2012, 2012), and can be regarded as yet 

another variant of the Turing test (seventh row in Table 1).

The role of imitation and adversarialness in AI has always been important, but 

several phenomena have made them more relevant in the past two decades. Imita-

tion has become a principle behind many machine learning settings, from super-

vised learning to reinforcement learning. Inverse reinforcement learning and prefer-

ence learning, in particular, try to model different aspects of humans or other agents. 

Adversarialness has been a traditional drive in games, a domain that has been 
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associated with some of the most important breakthroughs in AI (e.g., Campbell 

et  al. 2002; Silver et  al. 2017b). Recently, self-play (Silver et  al. 2017a) has been 

vindicated as a very powerful way of making game playing algorithms improve by 

competing against themselves. The combination of imitation and adversarialness is 

perfectly captured by Turing learning, a term that generalised generative adversarial 

models and other kinds of settings where a generator (an imitator) and a discrimina-

tor (a judge) play against each other. We will explore this in more detail and its rela-

tion to the Turing test in Sect. 4.

3  The Abyss Beyond Superhuman Performance

Even in specific areas of AI where the Turing test is not used or even mentioned, 

we find countless references to human performance. For instance, Fig. 1 shows the 

progress in performance for CIFAR10 (Krizhevsky 2009), a very popular image 

recognition benchmark. This kind of plot is usually portrayed in reports about the 

state of AI such as the ‘AI index’ (Shoham 2017), repositories such as ‘Papers with 

Code’ (http://www.paper swith code.com) and interactive exploratory tools such as 

the ‘AI collaboratory’ (http://www.aicol labor atory .org). These plots usually repre-

sent human performance as a horizontal line, calculated using a human expert or a 

sample of humans (see, e.g., Russakovsky et al. 2015).

But what does it mean to have the same accuracy as humans? And, more conspic-

uously, what is the meaning of being 100% correct? Images are labelled by humans, 

meaning that ground truth depends on human experts or collective human perfor-

mance. What is superhuman machine vision if better-than-human performance can 

only happen because the average human makes mistakes on images that are labelled 

by other humans?

Human Level

75
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90

95

2012 2014 2016 2018

Date
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c
c
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ra

c
y

CIFAR−10 Image Recognition

Fig. 1  Evolution of AI performance on the CIFAR10 corpus, with the horizontal dashed line represent-

ing average human performance. [Image from the AI Collaboratory (Martínez-Plumed et al. 2020).]

http://www.paperswithcode.com
http://www.aicollaboratory.org
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In other cases, the extrapolation is even less clear. For instance, the Hybrid 

Reward Architecture (HRA) has reached the maximum score of 999,990 points for 

Pac-Man. Compare this to the average and best performance of an average human 

player, which are estimated to be around 15,693 points and 266,330 points respec-

tively (Van Seijen et al. 2017). We can calculate its ‘Absolute Turing Ratio’ (Masum 

et al. 2002), the quotient between the performance of the AI system and humans, 

which would be approximately 4 if using best human performance as a reference. 

Clearly, this ratio is meaningless, as score scales in games are simply arbitrary.

It is then quite common that whenever human performance is reached, competi-

tions are usually discontinued and replaced by more challenging benchmarks. This 

is a ‘challenge-solve-and-replace’ evaluation dynamics (Schlangen 2019), or a ‘data-

set-solve-and-patch’ adversarial benchmark co-evolution (Zellers et  al. 2019). For 

instance, CIFAR10 is accompanied by the more challenging CIFAR100 (Krizhevsky 

2009), SQuAD1.1 gets replaced by SQuAD2.0 (Rajpurkar et  al. 2018), GLUE by 

SUPERGLUE (Wang et al. 2019), and Starcraft by Starcraft II (Vinyals et al. 2017). 

The underlying problem behind these replacements relies on using human intelli-

gence as a yardstick, limiting our vision beyond these benchmarks. But how can we 

extrapolate without human yardsticks?

In machine vision, we can get rid of the human reference—and even any human 

labelling—and define benchmarks in non-anthropocentric terms. For instance, 

we can create new images (in real or virtual worlds) from scratch, by varying the 

number of objects, the similarity between them, the locations, etc. We can also add 

psychophysical distortions, such as rotation, contrast, size, etc. (Rajalingham et al. 

2018; Leibo et  al. 2018) or increase cognitive difficulty by adding more elements 

or relations, as done in some human intelligence tests (Dowe and Hernández-Orallo 

2012; Hernández-Orallo et al. 2016). However, some other tasks are more strongly 

linked to humans. For instance, natural language tasks rely on collected corpora 

from humans. In machine translation, it is hard to conceive how humans should not 

be taken as a reference. For instance, in machine translation, the original text is gen-

erally written by a human and the target of the translation is again given by a human. 

The quality of the translation between two languages A and B depends on obtaining 

the same effect on humans whose native language is A as on those humans whose 

native language is B.

Fig. 2  Four situations when extrapolating beyond human performance. The ‘Ceiling’ (C) category sets 

humans  as a goal of a one-dimensional space (1D) and nothing cannot go beyond (e.g., Turing test). 

The ‘Projectional’ (P) category extrapolates the original dimension, even if the magnitude of the score 

has no actual meaning (e.g., Pac Man). The ‘Transitional’ (T) category extends a one-dimensional space 

with new, more complex instances once human performance has been reached (e.g., ImageNet 2012) 

using distortions or modifications in many dimensions (mD). Finally, the ‘Universal’ (U) category 

defines a (multidimensional, mD) space from the very conception of the task (e.g., brain cancer diagno-

sis)
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From these and other cases, we can identify different categories, as shown in 

Fig.  2. The first category, ‘Ceiling’, represents tasks that cannot be extrapolated, 

either because the ground truth is human or the task measures humanity. The Turing 

test is a clear example of this category, but some other problems (e.g., realistic 

human voice generators) also fall under this category. There is an abyss beyond 

human performance. The second category, ‘Projectional’, captures those domains 

for which, once AI reaches human performance, the score can be projected numeri-

cally. Video game scores, such as Pac Man, are an example of this category. How-

ever, the score is meaningless, because the magnitude is arbitrary or ill-defined. The 

third category, ‘Transitional’, represents those problems where instance variations of 

different difficulty can be created. For instance, we can add Gaussian noise and blur 

to ImageNet (Dodge and Karam 2017).

Finally, the fourth paradigm in Fig.  2 is originally non-anthropocentric. For 

instance, the ground truth in brain cancer diagnosis is given by whether a patient 

develops cancer in a given time window (e.g., 5 years), independently of what 

human experts predicted. For this problem, we can identify what values make the 

problem harder, and derive a multidimensional space of performance, where AI 

systems—and any particular physician—can be located. The key issue behind any 

extrapolation, and especially the ‘universal’ category, is a well-defined scale of 

measurement, where units are meaningful (Hernández-Orallo 2017b; Flach 2019; 

Hernández-Orallo 2019b, 2020). When figuring out these dimensions we need to 

consider instances that are cognitively harder than those humans could solve. Never-

theless, in order to really break the ‘ceiling’, humans (or other systems) must be able 

to conceive instances that humans cannot solve.

We definitely reach a conundrum. Thinking of challenging tasks for AI is becom-

ing more and more difficult for humans, because humans have limited capabilities to 

produce and verify test instances that are difficult enough for many AI benchmarks 

today. This has happened in areas such as planning and board games, but it is also 

happening in natural language. For instance, can humans think of a chess position 

way-out that computers cannot find nowadays? Can humans find easy translation 

examples where computers fail? These questions arise whenever more challeng-

ing benchmarks are asked to replace the old ones. Can we really keep up with this 

‘challenge-solve-and-replace’ phenomenon (Schlangen 2019), with humans being 

required as the judges who have to find and verify the new challenges?

The crux of the problem can be found in what I call the “cognitive-judge prob-

lem”: by this I refer to a failure to recognise the manual or automatic cognitive effort 

that is necessary for producing and verifying instances, and distinguish it from the 

effort of solving them.4 Some tasks (e.g., producing a random block world and 

checking whether the agent has survived after 1,000 time steps) require no cognitive 

4 This separation is well-known in computer science, at least between solving and verifying. For 

instance, NP problems can be verified easily (in polynomial time), but unless P=NP, we know that solv-

ing these problems is much harder than verifying them. For the “cognitive-judge problem” we must dis-

tinguish producing, solving and verifying instances, and realise that any of the three can be harder than 

the others.
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effort on the side of the evaluation. But some other tasks do require cognitive effort 

for producing the instances and/or verifying the solutions. Therefore, effective eval-

uation depends on finding these resources, usually by relying on previous cogni-

tive human labour (e.g., existing corpora with translations) or by ad-hoc verification 

effort (e.g., checking each translation made by the machine).

In some domains, producing instances requires more cognitive effort than verify-

ing the solution. Some examples of this situation are:

– A challenging theorem for an automated theorem prover. Producing the instance 

(making the conjecture) and solving it are usually harder than verifying the solu-

tion.

– A small but difficult maze for a navigation robot. Producing a challenging maze 

that is hard to solve (and of course solving it) is harder than verifying the solu-

tion (the robot is out of the maze).

– An image of a bird species for an image recognition system. Finding different 

species of birds and labelling them is harder than verifying the solution (check-

ing the label).

– A borderline patient record for a cancer screening system. Selecting such a 

patient case and solving it is harder than verifying the solution (looking at the 

evolution of the patient).

In many of these cases, verifying the solution is so easy that it can be done auto-

matically, using simple procedures or metrics.5 In other cases, however, automated 

procedures and metrics usually fail to do a proper job assessing when answers are 

correct. The result ends up being verified by a human. For instance:

– A poetic passage to be translated by a machine translation system. Finding an 

appropriate translation and verifying it is usually complicated.

– A set of facial traits for a face generator to build a composite. Verifying the accu-

racy of the facial composite is hard—even if an actual photo to compare with is 

ultimately available.

– An image for a caption generator system. Verifying that the caption makes sense 

with the image is cognitively hard.

– A trip destination for a routing device. Verifying that the route is the optimal 

one requires the evaluation of many other alternative routes, which is cognitively 

hard.

We tend to think that cognitively hard verification mostly happen in natural language 

processing tasks, but the examples above show that the phenomenon happens in 

5 In some of the cases above, we are assuming that labelling requires human cognitive effort, such as 

the bird species example where a human must look at the images. But labelling could have been done in 

other ways, such as a DNA test.
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other areas, especially in generative models (Kynkäänniemi et al. 2019), with human 

judges being used in the end.6 Of course, there are some other cases where both 

producing and verifying instances require cognitive effort, such as writing the first 

part of a new poem and asking a language model to complete it. In all these cases, 

but especially when cognitive verification is required, relying on humans to judge 

the result usually leads to problems of subjectivity, bias, reliability and scalability. 

These problems will get worse as tasks become more complex and AI becomes 

more powerful.

But it is precisely the case of generative models that suggests a possible path-

way, and solution, to this problem: replace the judges by machines. Indeed, we have 

seen this change in some recent and popular variants to the Turing test: inverted and 

reverse Turing tests, as shown in the two bottom rows of Table 1. Let us explore 

a whole area of AI for which the judge—the discriminator—is a machine. This is 

known as Turing learning.

4  From Turing Learning back to Testing

The solution to the “cognitive-judge problem” comes precisely from one of the areas 

of AI that has experienced most progress and attention in the past decade: genera-

tive adversarial networks (GANs) (Goodfellow et al. 2014a). Adversarial situations 

have been exploited in AI as early as some systems played against themselves (self-

play) in board games such as checkers (Samuel 1959). But it is the division of two 

Fig. 3  Schematic representation of Turing learning, for which generative adversarial networks are just a 

particular case. An object or behaviour coming from a real entity A (e.g., an image from the real world 

or text produced by humans) is compared against an object or behaviour coming from a machine imitator 

B (e.g., an image produced by a generator or text produced by a language model). The discriminator is a 

machine model (a classifier) that has to tell which one is real and which one is an imitation

6 In language models, ‘perplexity’ is a very common automatic metric, which basically measures how 

well the model anticipates the next words in a sentence, and a proxy of how well the model compresses 

the data. Compression has been connected with the Turing test and (machine) intelligence evaluation 

a few times (Dowe and Hajek 1997, 1998; Mahoney 1999; Dowe et  al. 2011). Despite the correlation 

between perplexity and other evaluation metrics used by human judges, the latter are still used as ground 

truth to evaluate conversational agents (see, e.g., Adiwardana et al. 2020).
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different roles, the generator and the discriminator, which really shapes a new para-

digm, covering the production and verification issues of the “cognitive-judge prob-

lem”. Also, the setting is more closely resembling the Turing test than self-play.

More generally, GANs and other architectures—not necessarily using neural 

networks—that follow the same paradigm are known as ‘Turing learning’ (Li et al. 

2016; Groß et al. 2017). Figure 3 shows a schematic representation of Turing learn-

ing. In this game, a real entity A produces some object (e.g., an image) or some 

behaviour (e.g., a human conversation). At the same time, a machine generator B 

tries to generate a similar object or imitate A’s behaviour. The discriminator, also a 

machine, has to tell which of A and B corresponds to the genuine entity and which 

one corresponds to the imitator. The whole procedure is trained by informing the 

discriminator and the generator of the discrimination error, which will affect nega-

tively on the discriminator (whose goal is to tell correctly between A and B), and 

will affect positively on the generator (whose goal is to fool the discriminator).

There are variants of this schema. For instance, as depicted in Fig. 3, the discrim-

inator receives two entities and may simply tell which one is the authentic entity and 

which one is not (more like the Turing test). However, in many implementations, 

the discriminator just takes one object at a time, and must tell whether it is authentic 

or generated. It is also important to clarify that there are some constraints about the 

way the generator can operate. For instance, the generator cannot simply copy the 

objects or behaviours A produced by the real entity. Typically, the generator works 

by compressing the training data (a set of objects or behaviours) into a smaller latent 

space, using some kind of encoding or compressor, such as an autoencoder (Hinton 

and Zemel 1994; Goodfellow et al. 2016). By choosing some combination of these 

latent variables (perhaps randomly) the generator can create new objects or behav-

iours B that can be compared with some of the real ones. Usually, generator and 

discriminator are trained in batches, and not at the same time.

Figure 4 shows the result of three generated images using BigGAN (Brock et al. 

2018), a large scale GAN for generating high-fidelity images.7 The first cock on the 

Fig. 4  Three 256 × 256 synthesised images of the category ‘cock’ using BigGAN (Brock et al. 2018). 

‘Truncation’ and ‘noise seed’ parameters are set to 0.5 and 20 respectively. All other parameters are kept 

as their default values in the Colab implementation

7 This was implemented using Colab over TensorFlow (https ://colab .resea rch.googl e.com/githu b/tenso 

rflow /hub/blob/maste r/examp les/colab /bigga n_gener ation _with_tf_hub.ipynb ).

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
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left is realistic, although there is something strange with its legs. Something went 

clearly wrong with the one in the middle, looking more like conjoined cock twins. 

The one on the right is the most realistic one.

The idea of combining a generator and a discriminator goes beyond neural net-

works—actually precedes it, see e.g., Li et  al. (2013)—and can be generalised in 

many ways, not only by considering images, video, audio or text generators, but by 

the creation of agents whose behaviour is to be discriminated. In particular, Groß 

et al. (2017) suggest that the discriminators could be turned into “interrogators”, à 

la Turing test. When interaction is present, the discriminator can do some informa-

tion-based adaptation, such as adaptive sampling, (computerised) adaptive testing or 

active learning.

In adaptive sampling (Seber and Salehi 2013), the sampler selects the instances 

that are most discriminating according to the information that it has about the phe-

nomenon of interest in a particular distribution or population. Adaptive testing (Vale 

and Weiss 1975; Wainer 2000; Weiss 2011) is a kind of adaptive sampling for the 

specific purpose of evaluation, where the characteristics of the questions (known as 

items) are chosen adaptively so that the variables to be measured converge faster 

than by batch, non-adaptive testing. It is quite common to use adaptive testing with 

Item Response Theory (IRT) (van der Linden 2008), a technique that extracts latent 

factors about the items, such as difficulty and discrimination. IRT has recently been 

brought to machine learning and artificial intelligence (Martínez-Plumed et  al. 

2019). Finally, in active learning (Settles 2009), the situation is determined by a 

learner that can choose questions to be answered by an oracle (e.g., instances to 

be labelled in a classification problem) in such a way that the learner can refine its 

boundaries and areas where it requires more information.

However, the key idea of the Turing test and Turing learning is discrimination, 

aiming at distinguishing the real thing from the impostor. But Turing learning aims 

at building a good generator and a good discriminator together, whereas for the 

purpose of intelligence evaluation, we are mostly interested in building a good dis-

criminator. Distilling on this observation, Fig. 5 represents ‘Turing testing’, a frame-

work in which the discriminator (a machine) adapts its queries (to either or both the 

Fig. 5  Schematic representation of Turing ‘testing’. In this setting a machine discriminator adapts its 

queries to a natural player (real entity) and/or an artificial player (a machine imitator), as long as it gets 

information from both players, learning throughout the process. The two players and the discriminator 

may have had access to the real world prior to the test, but this access must be controlled during the test 

to avoid interference
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real entity and the imitator) such that depending on their response to the query, it 

can refine its decision. On top of this, the discriminator also learns during the pro-

cess, whenever the discrimination error is available. In the Turing testing setting, 

whether the imitator gets feedback about the discriminator is optional. If it happens 

then the imitator learns as the discriminator learns, and we have a proper adversarial 

situation.

In brief, what we are considering here is that judges should be machines, and they 

should be learning as they interact with the real entity and the impostor. The schema 

is intentionally asymmetric between imitator and discriminator, and in this way it 

differs significantly from other adversarial settings such as matching pennies and 

self-play in games—in both cases the situation is symmetric and there is no need for 

a judge as the outcome is automatic. The schema in Fig. 5 is much more similar to 

the inverted and reverse Turing test variants in Table 1.

Figure  5 suggests that evaluation should be as confined as possible, and this 

should be the case to avoid interference (e.g., the discriminator finds information 

about the imitator on the Internet). However, this does not mean that the two play-

ers and the discriminator should not have access to the real world. The two play-

ers and the discriminator may have had previous access to the real world before the 

evaluation begins, especially for the evaluation of capabilities related to common-

sense reasoning or requiring embodiment in the real world. Access to the real world 

during evaluation may still be possible depending on how the three systems work, 

but it must be well controlled to avoid interference. This extra care is quite usual in 

many competitions and evaluation platforms in AI. We mention this access to the 

real world because it is important to highlight that the discriminator does not need 

to start from scratch, as in many GAN architectures. The discriminator may have 

been devised and pre-trained to be a good discriminator. Whether the discriminator 

is configured to keep on learning and improving during the test is a matter of design, 

taking advantage that the evaluations of some subjects may be useful to refine the 

evaluator for other subjects.

While this schema mimics Turing learning very naturally, we can refine it, while 

keeping some of the principles. If we remove the imitation part of the game but 

keep the adversarial part, we have a new schema, ‘Adversarial Testing’, as shown in 

Fig. 6  Schematic representation of Adversarial Testing. In this scenario we get rid of the reference player 

A, and we only have the machine to be evaluated (called ‘testee’) and the judge (called ‘tester’). They 

engage in an adversarial game, where the testee tries to get good scores from the evaluator, while the 

tester tries to find problems that are most informative for determining the evaluator’s ability (items that 

are neither too hard nor too easy for the testee). The testee and tester may have had access to the real 

world prior to the test, but this access must be controlled during the test to avoid interference
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Fig. 6, where the discriminator becomes a tester. The imitator has nothing to imi-

tate and simply becomes a testee. The schema becomes very similar to computer-

ised adaptive testing, with the difference that the tester and the testee are thought to 

work in an adversarial way and learn from each other. The critical part of this setting 

compared to Turing testing is that we no longer have a reference to imitate. Conse-

quently, the tester must have a measure of progress in the dimensions it is measur-

ing, given by the transitional and universal cases we saw in Fig. 2.

The idea of a machine intelligence test along the principles of adaptive test-

ing predates the concept of Turing learning and was first introduced in (Hernán-

dez-Orallo and Dowe 2010), under the concept of an “anytime universal test”. In 

this test, the tester would adapt its questions according to the previous interaction 

between tester and testee, looking for more informative problems, as in adaptive 

testing. Note that very easy and very difficult queries are both uninformative, so 

the evaluator must find those problems that are at the right level. A test with this 

design can become anytime if the accuracy of the estimation increases as more time 

is given to the test, which can be stopped at any time.

The schema becomes easier to automate when the production and verification of 

instances is easier than solving them, as happens in many scenarios we discussed 

in the previous section around the “cognitive-judge problem”. But the adaptation 

becomes more complicated as the judge needs to analyse cognitive contraptions and 

behaviours. As discussed early on in this paper, we need to evaluate whether an AI 

system does, for example, a great literary translation from Chinese to English, cre-

ates an impactful logo for a new design project, cleans a house appropriately, etc. 

While these applications are usually evaluated by humans, despite the associated 

cost and time, the real problem about humans as judges comes from the realisation 

that not only are humans bad judges for the Turing test, but they have also many 

limitations for all these other AI evaluation settings. And these limitations become 

more noticeable as the tasks that AI is solving become more cognitively complex.

As happens with the Turing test and many other tasks, we can select and train 

humans to become better judges. They can even learn and improve as they do more 

evaluations, but in the end they will reach an evaluation quality plateau because of 

their mental resources, motivation and capability. This plateau can nonetheless be 

broken by machines. There is evidence so far that artificial intelligence is becoming 

better than humans at capturing some cognitive behaviours. For instance, in social 

networks, machine learning techniques are now much better than humans at telling 

the personality or even the IQ of human users (Youyou et al. 2015; Burr and Cris-

tianini 2019).

Turing learning works by maximising both the quality of the generator and the 

quality of the discriminator. Under some conditions, this is a game that must reach 

an equilibrium between generator and discriminator. Understanding this game, and 

its relation to generalisation, is a very active area of research in AI at the moment 

(see, e.g., Arora et  al. 2017). In adversarial testing, both the testee and the tester 

evolve and have opposed goals too. However, as we said above, the goal of the tester 

is not to find cases for which the testee fails—this would be just done by choosing 

very difficult instances—, but to find those that are most informative. For instance, 

as in adaptive testing, the tester produces instances with high entropy, which in a 



 J. Hernández-Orallo 

1 3

binary setting would mean a probability of the testee getting them right around 0.5. 

This usually means finding items at the right level of difficulty (Vale and Weiss 

1975; Wainer 2000; Weiss 2011), which in AI depends on finding scales and units 

of difficulty (Hernández-Orallo 2019b) or instances that are surprising in terms of 

unexpected behaviours (predicted easy but failed by the testee, or vice versa). This 

is an area of enormous interest recently, not coincidentally referred to as ‘adversarial 

examples’ (Goodfellow et al. 2014b).

Summing up, in this section we have started from Turing learning and we have 

distilled some of its principles (many shared with the Turing test) into two different 

kinds of testing: Turing testing and adversarial testing. There are two main condi-

tions we have identified. The first one is that we should convert human judges into 

machines that improve adversarially with the systems to be tested. In the future, this 

can be more (economically) efficient than using humans in general. Machines can be 

the answer to the limited capacity and robustness of humans to discriminate good 

solutions in many applications—including the Turing test—, and also to the ‘chal-

lenge-solve-and-replace’ problem (Schlangen 2019). For instance, in multi-agent 

pathfinding (Stern et  al. 2019), we can replace human experts scoring how good 

a plan or route is by a machine that uses optimality metrics instead, and learns to 

generate more challenging routes conditioned to previous results of the agents. The 

second condition, which takes from Turing testing to adversarial testing, is that we 

should also eliminate the reference (player A) in as many evaluation settings as pos-

sible. Having a reference, especially if it is anthropocentric, introduces subjective-

ness and costs, and does not help going beyond the reference level. For instance, in 

self-driving cars, setting the goal as driving like an average human is absurd when 

we can aim at better targets in terms of metrics such as accident rates, efficiency, 

pollution, etc. In the end, it is only under these two conditions (no human judges and 

no human reference) that we will be able to devise true measurement instruments, 

with absolute scales that can extrapolate without ceilings.

5  Non‑thinking Judges and Understanding

Turing replaces the question of thinking machines with a game, for which objections 

at the time were expected to be less belligerent: can we create a machine whose 

behaviour is indistinguishable from a human’s? Turing does not claim that creating 

such a machine and passing the ‘test’ would answer the question of what ‘think-

ing’ is. Indeed, determining whether a machine, a human or an animal thinks is a 

much more complex question, related to issues such as whether the subject shows 

true understanding or is able to extract meaning from the world. Because these are 

still unresolved questions, needing proper definitions of ‘understanding’ or ‘mean-

ing’, they tend to be replaced by some other elements, such as whether the subject 

is able to create models of the world, can perform simulations with them or solves 

analogies and metaphors (Mitchell 2019, ch. 14, 15). On other occasions thinking 

is associated with ‘common sense’, identified as one of the great challenges in AI 

since its inception (Levesque 2017; Davis and Marcus 2015; Gunning 2018). Com-

mon sense has an important component that must be anthropocentric, as it should 
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capture what humans usually see and understand in common situations. Common 

sense is also aligned with some interpretations of the Turing test as “a guarantee [...] 

of culturally-oriented human intelligence” (French 1990).

However, there is another component about understanding, or “that which gets 

the same meaning out of a sequence of symbols as we do” (Hofstadter 1980), which 

is more essential, and less dependent on previous knowledge. Under this interpre-

tation of understanding, it is not that “the computer will always be unmasked if it 

has not experienced the world as a human being has” (French 1990), but that the 

computer will be unmasked if not capable of extracting the right meaning in other 

more abstract situations. Examples of these more abstract, culture-independent, situ-

ations are the experiments with the Bongard problems8 (Bongard 1970), the Copy-

cat project9 (Hofstadter and Mitchell 1994), many abstract IQ tests using series or 

analogies10 (Hernández-Orallo et al. 2016), comprehension tests based on algorith-

mic information theory, such as the C-test11 (Hernández-Orallo 2000) or the new 

Abstraction and Reasoning Challenge (ARC)12 (Chollet 2019).

The new evaluation paradigms represented in Figs. 5 and 6 are meant to be appli-

cable to any task or ability. They are general evaluation procedures. The paradigms 

could be used for evaluating tasks or even capabilities that would not require thinking, 

understanding or common sense. However, a fundamental question arises were we to 

use these paradigms, and especially ‘adversarial testing’, to evaluate ‘understanding’ 

or the capability of extracting ‘meaning’ in a range of situations. This would re-con-

nect this evaluation paradigm to many of the variants of the Turing test seen in Table 1 

that were targeting ‘thinking’, the original question that motivated Turing’s imitation 

game. In what follows we analyse the advantages and caveats of using this paradigm 

for the evaluation of the elusive notions of thinking, understanding and meaning.

One key motivation why using machines instead of humans for testing understand-

ing comes from the realisation of how easy it is to fool humans into thinking that they 

are facing a system that understands, when it really does not. This is a well-known 

phenomenon: humans ascribe agenthood and meaning to the simplest behaviours, 

what Dennett would refer to as the ‘intentional stance’ (Dennett 1971). And this 

8 Bongard problems are pattern recognition puzzles, where the diagrams on the left have something in 

common (e.g., only containing convex polygons) that the diagrams on the right do not (e.g., containing 

concavities). Telling where a new diagram should belong correctly (left or right) is assumed to reveal 

that there is understanding of the underlying concept.
9 The Copycat project explored systems that could solve analogies such as “abc is to abd as ijk is to 

what?”, where giving the right answer should reveal the understanding of the mechanism that generated 

the strings.
10 IQ tests usually include abstract questions with diagrams or numbers. For instance, “What’s the odd 

out of 40, 3, 20 and 80?” assumes understanding of a common pattern behind three elements but not the 

fourth.
11 The C-test generated letter series using patterns whose algorithmic complexity and ‘unquestionability’ 

could be estimated from first principles. For instance, solving instances such as “Continue the series: 

abbcccdddde...” assumes understanding of the pattern that generates the series.
12 ARC is also inspired by algorithmic information theory, but the actual instances resemble pixelated 

versions of the Bongard problems, where there is a pattern that converts some images into others by 

playing some algorithmic transformation (e.g., filling the closed areas in the image, mirroring an image, 

etc.). Finding the pattern should indicate understanding of how the transformation works.
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stance is very biased in favour of those behaviours that are similar to the beholder, a 

human in this case. In Watt’s words, humans have the “tendency to ascribe mentality 

and mental states to others in proportion to their similarity to the ascriber [...] This 

natural faculty biases the [Turing] test, showing up as false positives or negatives” 

(Watt 1996). More blatantly, humans are “willing to ascribe understanding and con-

sciousness to computers, based on little evidence” (Mitchell 2019).

Another key motivation for the use of the evaluation paradigms in Fig. 6 is the 

difficulty of discovering the mechanisms behind some behaviour by simple obser-

vation, if the testee has no say of what instances are tested. For instance, many AI 

generators work well when creating an image or a text using an appropriate latent 

representation or prompt, and there is no further interaction with the generator about 

what it would do in other situations. For instance, some recent language models 

such as GPT-3 (Brown et al. 2020, Fig. 3.11) generate text in some domains (e.g., 

news articles) that are virtually indistinguishable from articles written by humans; 

the accuracy of human judges detecting them is close to chance (52%). The results 

fool humans in domains such as humour or poetry. For instance, the following text.13 

is a continuation generated by GPT-3 for Sonnet 1814

As surprising and realistic some generated text might look like, these examples 

usually are accompanied by other examples of how meaningless and pointless some 

continuations are. The interesting thing is that the evaluation of these systems by 

humans has become an adversarial game, but not because the system is interrogated 

in the form of a question/answer system or a conversational bot, but rather in a more 

fundamental way. In order to use these systems, humans must look for contexts and 

prompts (texts that are used as inputs to the language model) such that they get the 

desired continuation (right or wrong, depending on the purpose). Apart from the 

many different ways in which a context can lead to a bad answer, it is especially 

interesting to see what happens with questions that challenge factual knowledge and 

require some degree of understanding. For instance, this is a simple example that 

takes GPT-3 to its (short) limits.15

13 Taken from https ://www.gwern .net/GPT-3.
14 This sonnet was also used by Turing in some of his examples about the imitation game (Turing 1950).
15 Taken from https ://lacke r.io/ai/2020/07/06/givin g-gpt-3-a-turin g-test.html.

https://www.gwern.net/GPT-3
https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html
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This does not really show a lack of knowledge, and the inference makes some 

sense (although most of the area of the United States at the time was either inhabited 

by Native Americans or was under the control of a different colonial Empire). It 

seems more that the language model per se is not using its estimated probabilities to 

do some primitive metacognition (an ‘I don’t know’ answer or any diversion trick), 

and is not dealing with related knowledge about the question. Of course, a language 

model is not a full model of the world for which inferences—and not only continua-

tions—could be done about any of its particular states.

In this context, we picture new research looking for automatically generated 

prompts for language models and other sophisticated AI engines. In particular, Jiang 

et  al. (2020b) are able to paraphrase questions in various ways and combine the 

answers to make a language model give more robust solutions to Q/A tasks. While 

this may show some increase of performance in some ‘language understanding’ 

tasks, the use of an ensemble to derive the answer to a question may raise more 

brows as whether the system is actually having a model of the world, not to say 

understanding its own outputs. Nevertheless, for our purposes, it is more interest-

ing to think of the opposite situation: machine-generated prompts that are able to 

detect lack of understanding. The automatic generation of instances or distractors for 

human testing in psychology is commonplace, but it has only become common in AI 

recently.

For instance, SWAG (Situations With Adversarial Generations) (Zellers et  al. 

2018) takes the true video caption for the next event in a video sequence and gener-

ates three distractors (incorrect answers) automatically. These answers are “adver-

sarially generated and human verified, so as to fool machines but not humans”. This 

means of course that the generation is not fully automated, as human cognition is 

needed at the end of the loop. This is again a consequence of the way the benchmark 

is conceived, using humans as a reference. In other cases, the reliance on humans is 

even more explicit. For instance, adversarial NLI (Nie et al. 2019) is a benchmark 

that asks humans for questions that are easy for them but that can fool a model, 

which is provided to the human. While in this case the human is assisted by a model 

to produce new questions, the key idea in Fig.  6 is whether we can take humans 

out of the loop completely. For instance, Zhou et al. (2020) generate probes using 

syntactically different but logically-equivalent expressions. This is simply very 

effective: the results show that pre-trained language models are no better than ran-

dom guessing. Related ideas using explicit or implicit patterns for the generation of 

instances in AI evaluation have been used before in benchmarks such as Winograd 

Schema Challenge (Levesque et al. 2012), or the extended version of the challenge, 

Winogrande (Sakaguchi et al. 2019), which also uses adversarial filtering inspired 
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by SWAG. Other approaches combined templates and human computation (Amazon 

Turk) to generate adversarial datasets (Rozen et al. 2019).

When dealing with language understanding or commonsense reasoning, the use 

of patterns or other mechanisms to generate instances automatically is aiming at tak-

ing humans out of the loop, in the same direction of Figs. 5 and 6. However, the 

adversarial mechanism must be responsive and customised. This is basically what 

an interactive dialogue provides (as originally conceived with the imitation game), 

unleashing all the power of an interview-like evaluation. Not all kinds of evalua-

tion following the paradigms of Turing testing and adversarial testing must be in 

the form of an interview. However, there must be some reactive interaction, such 

that the question or problem that comes next depends on the previous answers or 

solutions by the particular agent the tester is evaluating. For instance, it may well 

be that a common sense test is conducted in a video game setting for reinforcement 

learning agents (Jiang et al. 2020a). In other words, the test must be adaptive, inde-

pendently of the kind of communication and modality (and there are many options 

in the variants in Table 1 and in many other benchmarks in AI). Adaptive testing 

(Vale and Weiss 1975; Wainer 2000; Weiss 2011) makes testing more efficient when 

evaluating some other capabilities, as already mentioned in previous sections, but it 

turns crucial when evaluating ‘understanding’, ‘commonsense’ or being able to find 

‘meaning’. Let us analyse why this is so.

The question of assessing whether agent A understands a concept or idea, repre-

sented by a model M, implies taking the model to its limits, to find the borderline 

cases where the answers are most informative about whether A really works with 

model M internally. We have seen this with the example about the president of the 

United States in 1600. For most instances, statistically, many other models of the 

world are compatible with what the AI system is outputting. High performance can 

be obtained with the wrong model, à la Clever Hans. It is then important that the 

focus of the tester soon moves from the overall performance provided by statisti-

cally-easy instances to peculiar situations that can rule out some other interpreta-

tions of the observed performance. This is specifically what other non-adaptive tests 

do, such as Raven matrices, letter series, Copycat, the C-test or ARC, mentioned 

above. But given a machine evaluator in an interactive setting, the goal should be to 

select the most informative questions. This does not necessarily mean that the tester 

must be more capable than the testee. The evaluator may simply generate models 

at random using some appropriate representations, as done in automatically gener-

ated test instances for humans or machines. In some situations dealing with the real 

world, the evaluation is more constrained. For instance, it is harder—but not impos-

sible—to imbue the subtleties of naive physics or naive psychology into an evaluator 

such that it generates situations adaptively for a particular testee. In the absence of 

these models of the world, the evaluator can simply act as a learner, as in an active 

learning situation (Settles 2009), to check the properties of the model identified by 

the testee.

In many domains, such as music, a person can recognise a good performer even 

if they do not perform themselves. If evaluating is simpler than performing then the 

cognitive-judge problem can be circumvented. Of course, this may not be the case 

for all domains. Actually, for humanlike intelligence, Watt (1996) actually argued 
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that being able to distinguish humans from machines was a criterion for intelligence. 

I disagree with the sufficiency of this criterion. The success of machines quantify-

ing and categorising human behaviour in social networks, from personality to IQ 

(Youyou et al. 2015; Burr and Cristianini 2019), as we mentioned before, is a sign 

that this may be possible. In sum, we should explore the possibility of non-intel-

ligent machine judges that may still do a good job at telling between humans and 

machines. CAPTCHAs will explore this route for a time. In a more long term, there 

is the philosophical question about whether a system that is not thinking can reliably 

determine whether another system is thinking or not, or the related question of how 

much intelligence is needed to test intelligence. These are open questions, especially 

if we are not more specific about what we are testing and how we would evaluate the 

intelligence of the tester and the testee independently. What is more certain is that 

a race has started to build ‘machine judges’.16 This originated with the detection of 

Clever Hans phenomena in AI systems (Sturm 2014), a problem that is very much 

related to the increasingly important area of explainable AI, but will continue with 

the challenge of building more comprehensive tester machines.

6  Building Behavioural Taxonomies

Turing learning is now consolidated as a technique that makes generator and dis-

criminator reach high levels of competence. This suggests new applications of 

Turing testing for determining how similar two behaviours are, beyond images, vid-

eos, audios and text.

The first thing we need to understand is that for any task, the imitator creates a 

latent space in which any two points can be interpolated. For instance, Fig. 7 shows 

several images that are generated from the category ‘cock’ to the category ‘hen’ 

(using the same BigGAN technology as in Fig. 4). As we see in the progression, the 

intermediate images are points in this space that are midway a male and a female, 

points that do not exist in the real world. When thinking about creating new AI 

behaviours such as agents and other kinds of systems that are not necessarily genera-

tors, it is important to visualise this continuous space.

Fig. 7  Five 256 × 256 synthesised images going from the category ‘cock’ to ‘hen’ using BigGAN inter-

polation (Brock et al. 2018). ‘Truncation’ and ‘noise seed’ parameters (for both categories) are set at 0.5, 

0 and 0 respectively. All other parameters are kept as their default values in the Colab implementation

16 These judges may have a particular training and developmental process, as child machine judges.
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Consider that we want to analyse whether two agents have the same behaviour. 

The discriminator should think of those test instances—environments in this case—

such that it can tell between the two agents. However, if both agents are stochastic, 

some of these different behaviours may not really imply that they are different. Actu-

ally, by taking the same agent twice (as both player A and B), we could observe 

different behaviours, just because it is stochastic. Again, the latent space solves 

the conundrum. Even if the behaviours are sometimes different because of random 

effects, what matters is whether the two agents are close in the latent space. For 

humans we use abstract traits such as cognitive abilities and personalities, and we 

should do similarly for every kind of agent, be it natural or artificial (Hernández-

Orallo 2017b). The discriminator must also learn to build this abstract latent space 

in which the distances can be converted into meaningful similarity metrics.

With an appropriate design of these discriminators, we would use Turing testing 

to output a similarity value, a similarity metric that could be used to cluster agents 

together. This would be a very powerful tool for mapping the intelligence of differ-

ent kinds of behaviours (Bhatnagar et al. 2017), including the comparison between 

machine learning families (Fabra-Boluda et al. 2020), AI systems and humans (Insa-

Cabrera et al. 2011b, a), AI systems and animals (Hernández-Orallo 2017b; Crosby 

et  al. 2019, 2020) or humans, animals and different deep learning architectures 

(Schrimpf et al. , 2018, using the so-called Brain Score17). Of course, for n agents, 

we would need to create a similarity matrix of size 
n×(n−1)

2
 , which may be impractical 

if n is large—but clustering with sparse similarity matrices is an option.

An alternative approach relies on the other testing setting seen in the previous 

section: adversarial testing. Whereas the development of measurement instruments 

that follow the adversarial testing is still incipient, and has not progressed signifi-

cantly since (Hernández-Orallo and Dowe 2010; Hernández-Orallo et al. 2012), it 

adapts according to one or more dimensions, as per the transitional and universal 

cases in Fig. 2. Assuming each dimension is defined by a difficulty metric (Mishra 

et al. 2013; Hernández-Orallo 2015; Hernandez-Orallo 2015; Martinez-Plumed and 

Hernandez-Orallo 2018; Martínez-Plumed et al. 2019; Hernández-Orallo 2020), we 

have a multidimensional space for which the adversarial testing can derive the loca-

tion of the testee in this space. By doing this, similarities and clustering are calcu-

lated in this space, with no need of exploring all the 
n×(n−1)

2
 combinations when n 

agents are being analysed.

In this taxonomical endeavour, as many others where humans play a part, 

two of the most relevant questions are (1) the location of humans in this space 

and (2) the comparisons of other systems against humans. For instance, it has 

taken enormous scientific and pedagogic effort to see humans as a particular 

kind of ape. While this is generally accepted today, many other species are com-

pared against humans—from cognition to immune systems—, for the insight and 

applicability of the comparison. Despite this preponderance, we must see the 

landscape in a non-anthropocentric way. For instance, we should not associate 

general intelligence exclusively with humans. There is general intelligence in 

17 http://www.brain -score .org/.

http://www.brain-score.org/
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animals (Burkart et  al. 2017), taking very different forms and manifestations. 

Some of the intelligent behaviours that are common in all humans are similar to 

those we find in some other animals. For particular capabilities, some animals 

sometimes score beyond humans. It is also a fact that humans show enormous 

differences in behaviour, and really determining how much a particular human 

is able to understand, depending on their developmental stage and their capabili-

ties—or disabilities—is a hard question. Representing humans as a point in the 

space rather than a cloud is a mistake, even when we compare against AI sys-

tems. In the end, when we see humans as a distribution, and we realise the fewer 

constraints we have when devising AI systems, it is easier to consider other ways 

in which machines can develop and display general intelligence.

Despite the non-anthropocentric perspective, devising tests of humanlike 

cognitive behaviour is important scientifically. For many applications it is also 

key to build AI systems that learn and infer like us, so that communicating 

with them will be easier, as well as anticipating their behaviour. Efforts such 

as DiCarlo’s ‘brain score’ (Schrimpf et al. 2018), mentioned above, measuring 

how humanlike other perception mechanisms are, is a major contribution in this 

direction. But it is also crucial to develop metrics to test capabilities indepen-

dently of how humanlike they are. It is especially interesting in philosophical 

terms, and in connection with some of the debates about the Turing test. The 

success in many of the abilities that resist AI technology today, such as under-

standing and making sense of the world, may lead to AI systems that differ very 

much from humans. Consequently, these difference would be be detected in 

a Turing test (and not only because of what Turing called “human fallibility” 

(Turing 1950)). It would also be scientifically enlightening to overhaul human 

variability in behaviour under this magnified view, and understand how humans 

will be moving in this space as the result of using cognitive enhancers fuelled 

by AI (Hernández-Orallo and Vold 2019), to the point that humans of the future 

may not be ‘humanlike’ any more. This falls into a more long-term endeavour of 

characterising humanlike behaviour in this landscape of cognition, and under-

standing what humanlike really represents.

There are many more questions about machine behaviour (Rahwan et  al. 

2019) that go well beyond comparing them to humans. As in comparative cog-

nition, comparing all kinds of systems between them and against some other 

imaginary or interpolating systems can give enormous scientific and philosophi-

cal insight about artificial and natural intelligence, mapping them into the same 

space (Bhatnagar et al. 2017), given or latent (Hernández-Orallo 2001). The two 

schemas seen in the previous section, Turing testing and adversarial testing, can 

exploit the power of artificial judges—adversarial and adaptive testers—to boost 

this process, as we have witnessed in the area of Turing learning in the past few 

years. Initiatives such as the AI collaboratory (Martínez-Plumed et al. 2020) can 

benefit from increasingly more numerous and accurate data deriving from these 

evaluations.
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7  Discussion

The Turing test is perhaps one of the most insightful thought experiments about 

the mind. However, several problems have been widely recognised when repur-

posed as a measurement instrument. Some of these problems are rooted in its 

anthropocentrism. Whereas the imitation game was introduced to argue that intel-

ligence could be incarnated by machines, the two other players in the game, the 

reference and the judge, were set to be human. Philosophically, using humans as 

references seems natural from the standpoint of humans, and pragmatically the 

Homo Sapiens represents many capabilities we would like to imitate in intelli-

gent machines. However, the use of humans as a reference has been criticised, 

not only for evaluation, but also in obscure terms such as human-level machine 

intelligence. Anthropocentrism makes extrapolation beyond humans cumber-

some, if not impossible. When considering humans in a vast space of intelligence, 

locating them as yet another point in this space becomes a Copernican revolu-

tion, leading to the really interesting and challenging questions about intelligence 

and the mind (Hernández-Orallo et al. 2011; Hernández-Orallo and Dowe 2013; 

Dowe and Hernández-Orallo 2014; Hernández-Orallo et al. 2014).

One of these challenges is choosing who plays the judge when evaluating AI 

systems at present, in the upcoming years and especially in the distant future. We 

have argued that replacing human judges by machines is supported by the success 

of new AI contraptions such as Turing learning. There, a machine discriminator 

learns from the interaction with a second system whose performance is boosted 

and evaluated as the result of an adversarial process. It is this adversarial feature 

of the Turing test that lives on with Turing learning, and can be adapted in set-

tings such as Turing testing and adversarial testing introduced here. In order to 

make these schemas work successfully we need to focus on the following issues:

– We should scrutinise any task used in AI whose production and verification 

is not fully automated (i.e., human judges). We have seen that discriminators 

can be automated. Discriminators can be extended to an adaptive evaluation 

setting where they figure out questions and instances that are of the right dif-

ficulty and discriminating power, better than the questions humans could do.

– We should explore the best ways in which testees and testers can work adver-

sarially, exploring different configurations and loss functions for them. This 

can mimic the way GANs were extended to Turing learning, with different 

architectures and loss functions being explored so far.

– We should separate humanlike behaviours from intelligent behaviours, so that 

we can properly understand the intersection. Notions such as ‘understanding’ 

or extracting meaning from the world may take different forms beyond the 

standard human, as happens with the diversity of human populations and the 

huge diversity in animal cognition. AI behaviour is only expected to be more 

diverse.

– We should understand how much computational effort we need for the tester 

in comparison with the computation effort for the testee. While we have dis-
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cussed some similes (e.g., NP vs P) where testers are more lightweight than 

testees, we need to analyse this question for specific and general domains in 

AI evaluation (Hernández-Orallo 2017a; Hernández-Orallo et  al. 2017), in 

experimental and theoretical ways.

– We should identify the dimensions of each domain we need to evaluate and 

the difficulty metrics for each of them. Again, the latent spaces created by the 

machine testers can be very useful to build and refine the space, as AI progresses. 

This abstraction will move us from a task-oriented evaluation to an ability-ori-

ented evaluation (Hernández-Orallo 2017a).

We can see plenty there that needs to be done to make the new testing settings work, 

first in a range of AI domains and then more broadly for the comparison of systems 

that display some general intelligent behaviour. There is also plenty that needs to be 

done to use the information from these evaluations in a more insightful way, through 

the use of taxonomies and the development of new theories of cognition. In the end, 

it is no surprise that AI can be useful for cognitive measurement; indeed, it can also 

be useful for comparative cognition and it may replace human judges in any evalu-

ation setting in the future. In Turing’s words (1950): “we may hope that machines 

will eventually compete with [humans] in all purely intellectual fields”: intelligence 

evaluation is just one of these fields.
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