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Biological cognition is based on the ability to autonomously acquire knowledge,

or epistemic autonomy. Such self-supervision is largely absent in artificial neural

networks (ANN) because they depend on externally set learning criteria. Yet

training ANN using error backpropagation has created the current revolution in

artificial intelligence, raising the question of whether the epistemic autonomy

displayed in biological cognition can be achieved with error backpropagation-

based learning.We present evidence suggesting that the entorhinal–hippocampal

complex combines epistemic autonomy with error backpropagation. Specifically,

we propose that the hippocampus minimizes the error between its input and

output signals through a modulatory counter-current inhibitory network. We

further discuss the computational emulation of this principle and analyze it in

the context of autonomous cognitive systems.

The Problem of Epistemic Autonomy in Brains and Machines

The current revolution in artificial intelligence (AI) is driven by a relatively small set of core ideas

stemming from the field of artificial neural networks (ANN), most notably, the use of learning

rules like error backpropagation (see Glossary) that implement gradient descent in, so called,

deep learning (DL) networks [1,2]. If advanced AI systems that emulate neural processing can

be realized based on a few generic computational principles, the question becomes whether

similar principles govern the organization of their biological counterparts.

Within the field of machine learning and computational neuroscience, this question has been

addressed by considering the properties of cortical networks [3,4]. For instance, DL

networks that capture core physiological features of the primate ventral visual stream can

be generated by combining gradient descent and decorrelation [5]. Alternatively, the

complex position-invariant response fields of the grid cells of the rodent entorhinal cortex

(EC) can be acquired through supervised learning [6]. These two examples, however, also

illustrate opposite approaches towards understanding neural processing. Whereas the

former model is generative by creating a physiologically plausible ventral visual stream of a

behaving agent by optimizing the intrinsic learning objective of variance minimization, the

latter is descriptive by deriving an error measure from an a priori defined response target

(i.e., recorded grid cell responses).

Despite their ability to generate activity patterns like the physiological responses of the brain either

through learning plausible filter properties or mimicking prespecified output patterns, both

approaches face challenges with respect to their biological plausibility. Indeed, the biological

plausibility of DL methods has been debated for the last 30 years [7] and, for now, no clear

solution seems to be in sight with respect to the mapping of the underlying algorithms to the

biological substrate [8].
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However, this debate might obscure the possibly more critical challenge of achieving epistemic

autonomy, or the ability of biological cognitive systems to acquire knowledge in the absence of

external supervision through explicit learning criteria targeting the representational substrate

[9,10] (Box 1). Hence, despite spectacular progress in the third wave of ANN-driven AI and their

success in superseding human performance in several tasks, they are still critically dependent on

human engineering and supervision. This limitation restricts both the scalability of ANN and their

relevance for our understanding of biological cognition. Here, we propose that recent insights in

the learning networks of the medial temporal lobe, in particular the EC and hippocampus, shed a

new light on these two challenges.

Towards a Framework of Self-Supervised Learning in the Hippocampus

In the field of machine learning a range of learningmethods are used, which are classified as either

supervised or unsupervised. The former methods classify input data based on known input–output

relationships driven by an explicit error signal, while the latter learn to represent their inputs without

such a priori criteria. The brain is considered an unsupervised learning system [11] because of its

ability to discriminate and categorize novel stimuli and patterns without direct external supervision.

However, the underlying neurophysiological mechanisms of learning appear to follow a more

complex and multiscale organization, which is not easily captured in the supervised–unsupervised

juxtaposition. Local unsupervised learning dynamics at the neuronal level are critically dependent

on dedicated brain systems tomodulate and gate plasticity at various stages of processing depen-

dent on various error signals [12–14]. Hence, the question is how this multiscale cellular, circuit, and

system level organization of learning supports epistemic autonomy andwhether it implements error

backpropagation to achieve it?

Although there is little understanding of how the complete bootstrapped learning architecture

underlying the epistemic autonomy of the brain is organized, recent anatomical and physiological

results on the organization of the entorhinal–hippocampal complex (EHC) suggest how it can

be achieved using gradient descent-based self-supervised learning (Box 2). The EHC is believed

to implement a prediction error-driven learning circuit, where the EC compares the difference

between neocortical states, or the primary input, and signals produced by the hippocampal

loop itself, or the reconstructed input [15] (Figure 1). Anatomically, the hippocampal circuit

forms a nested loop (Figure 1A). The feed-forward information flow of the hippocampal trisynaptic

pathway is mainly excitatory and comprises layer-specific projections from EC to the dentate

gyrus (DG), CA3, and CA1, CA3 projections to CA1, and CA1 projections back to EC via the

Box 1. Historical Foundations of Epistemic Autonomy: The Symbol Grounding Problem in AI

In the 12th century, Adelard of Bath in his treatise Natural Questions laid the foundations for the emergence of empirical

science by proposing that nature should be treated as an epistemologically closed system, where natural phenomena

must be explained as being exclusively caused by natural agents, which later led to the notion of nature as ontologically

closed. Epistemic autonomy focuses this foundational consideration on cognition and intelligence as natural phenomena,

where an agent acquires knowledgewithout any dependence at the level of the substrate of its knowledge on other agents

as, for instance, through an error gradient derived from externally defined prior learning objectives [10]. Indeed, this

challenge of epistemic autonomy formed one of the main stumbling blocks of traditional symbolic AI, which dominated

cognitive science from its rise in the 1950s until the late 1980s. This problem is well illustrated in Searle’s classic Chinese

room argument in which a sentient operator emulates a Turing machine by following a program for manipulating Chinese

symbols. The generated output can lead outside observers to believe that the operator understands Chinese symbols and

thus passes the Turing test of being a Chinese speaker. Yet, Searle’s argument goes, the operator actually does not need

to understand the symbols to perform the input–output transformation [77]. This quandary was subsequently dubbed the

symbol grounding problem [78]. In other words, is the knowledge of an artificial system grounded in its own experience

or in the prespecifications provided by its designers? We argue that if we speak of the biological plausibility of models of

cognition, epistemic autonomy is a critical benchmark as well as the ability to address constraints derived from the

anatomy and physiology of the brain and the behavior it generates [79].
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subiculum. This places the EC at a critical junction, on the one hand, as the pinnacle of the signal

transduction pathways of the cortical sheet, and on the other, closing the EHC loop. This

recurrent circuit displays a variety of spatial and temporal properties that contribute to the

multiplexed coding of past, current, and future states of the animal within its environment [16],

scaling to complex semantics in humans [17].

We analyze evidence that the EHC realizes a continuous and self-supervised gradient descent

optimization of its learning dynamics. First, we outline how the EHC and its dynamics can be

abstracted as a self-supervised process that minimizes an error as the difference between its

input (EC superficial layer II to DG) and output layers (CA1 to EC deep layers V and VI). This

error minimization is presumably achieved through a forward excitatory network and a

counter-current inhibitory error-driven one. Second, we show that these properties of

the EHC account for its pertinent features, including the formation of place cells, rate remapping,

nonspecific grid cell field expansion, and place cell firing field elongation, as observed in the

rodent. Third, we note that the self-contained EHC learning system displays intrinsic novelty

detection and generalization capabilities.

Altogether, we propose that the generic computational role of the hippocampus is to continuously

and autonomously minimize the input–output mismatch it detects in the signals from the neocortex

via the EC through a process of gradient descent. This distinct computation performed by

the counter-current architecture of the EHC can explain the main physiological properties of the

hippocampus and shares key features with autoencoder networks [18]. However, our proposal

goes beyond the simplistic interpretation of identifying the EHC as an autoencoder. Rather, we

suggest that the input–output minimization carried out by an autoencoder optimized by error

backpropagation captures one fundamental computational principle of the EHC: error-driven

self-supervision supporting epistemic autonomy (Box 2). Importantly, it demonstrates that this

core memory system is epistemically closed.

Box 2. Achieving Epistemic Autonomy: The Hippocampal Spatial Code as a Benchmark

The dynamics of hippocampal learning have been addressed through computational modeling studies, providing insights

into the transformation from grid cell tessellations to position-specific activity, as observed in place cells. Among these

studies, mechanisms of neural selectivity [74,80,81], network structure [82], and rate remapping [16] have been proposed

for the emergence of place cell-like rate activity and its modulation. Moreover, the role of novelty detection in driving

learning within hippocampal networks has been pursued experimentally [83] and computationally [15]. Despite the diversity

ofmodelswith varying degrees of self-supervision and pretuning of the network’s synaptic distribution, amodel that captures

both pertinent features of the EHC and displays autonomous and continuous adaptation to environmental modifications has

thus far not been formulated.

Building upon the theoretical and experimental insights summarized in this article we have defined such a computational

model that can replicate many critical physiological benchmarks of EHC dynamics (Figure 2) [70]. Our model comprises a

set of layers organized in a feed-forward architecture following the EHC trisynaptic loop and whose input signals mimic the

physiological rate maps of the rodent medial and lateral EC during open field navigation (following [16]). The input and out-

put layers represent the cortical and hippocampal signals, respectively, that converge in the EC comparator. In turn, the

mismatch between both signals defines a gradient descent vector in the synaptic landscape to achieve a local minimum.

When driven by input signals mimicking those of the rodent medial and lateral entorhinal cortex layer II during spatial

navigation [84,85], the model’s entorhinal input–output mismatch minimization led to the development of spatially tuned

cells, akin to the place cells found in the rodent [86]. Moreover, we observed that these hippocampal cells modulated their

activity responding to environmental modifications consistent with the notion of hippocampal rate remapping [87]. Such

environmental modifications influenced the network’s population vector output. In addition, the sole manipulation of the

sensory input (LEC cells) led to increases in the firing field size of reconstructed grid cells, an effect observed in rodent

experiments [88], thus supporting the findings that spatial cues modulate grid cell activity [89]. Furthermore, with the sole

purpose of minimizing the EC input–output mismatch error, the network was able to perform novelty detection and

relearning in response to environmental modifications. For more detailed results on the model, see [70].
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Glossary

Autoencoder: a type of artificial neural

network that is normally characterized

by a convergent–divergent topology and

that has as a learning objective the

reconstruction of its own inputs, thus

minimizing an input–output mismatch

error function and making it a self-

supervised system.

Counter-current inhibition: inhibitory

neuronal and synaptic activity that is

systematically projected in a reverse

direction with respect to a feed-forward

excitatory pathway. These inhibitory

counter-current projections seem to play

an important role in modulating synaptic

plasticity of their target excitatory

neurons.

Deep learning (DL): a form of machine

learning realized in artificial neural

networks that combines multiple

interconnected layers of neuron-like

elements to incrementally extract higher-

level features from input data through the

backpropagation of the error between

network generated output and a learning

objective predefined by the designers of

the system.

Entorhinal–hippocampal complex

(EHC): the interconnected subregions

within the cortico-hippocampal system

forming a closed loop with forward

excitatory and feedback inhibitory

projections originating within the medial

and lateral entorhinal cortex projecting to

the hippocampus comprising the

dentate gyrus, CA3, and CA1 regions.

Epistemic autonomy: the capacity of

an agent to bootstrap and learn from its

environment without explicit and direct

external supervision at the level of its

representational substrate.

Error backpropagation: an algorithm

used for training multilayer artificial neural

networks to optimize the weights of their

connections based on a gradient

defined by the difference, or error,

between a predefined learning objective

and the network’s generated output

given a specific input. The error is then

iteratively backpropagated to modulate

weight changes across the entire

network.

Gradient descent: an iterative

optimization algorithm that allows an

efficient implementation of error

backpropagation by changing the

weights of a neural network following the

gradient generated by the error relative

to the learning objective.

Symbol grounding problem: a

system that manipulates symbols,



Learning and Error Propagation in the EHC

In mapping the algorithms of DL networks to the brain, several possibilities have been considered,

such as multicompartment integration, variations on spike time-dependent learning, and predic-

tive coding (for reviews see [8,21]). Yet, it is not clear whether the brain implements an equivalent

solution to error backpropagation and how it could realize it in a self-supervised fashion. In order

to begin to resolve these issues, several questions must be answered, including the substrate of

the error signal and its reference, the propagation of this error signal across the underlying

network, and the specifics of the error-driven control of plasticity. In the following sections, we

review critical pieces of evidence in support of our hypothesis that the EHC performs the

functional equivalent of error backpropagation to support epistemic autonomy.

Considering the Comparator Function of the EC as an Error Signal

Any degree of autonomous learning requires periodic assessment of the network’s performance

without relying on externally labeled data or error signals. This raises the question of what the

substrate of the error signal may be within the EHC.

The signal flow of the hippocampal formation involves a closed-loop circuit with cortical signals

being projected onto entorhinal neurons and sequentially transformed through the trisynaptic

loop and finally returning to the EC (Figure 1A). This organization puts the EC in the position to

gate and compare both the ‘cortical-input’ and ‘hippocampal-output’ signals [15]. The EC

comparator performs a continuous computation of the error between cortically derived signals

reflecting states of both the environment [lateral entorhinal cortex (LEC)] and the agent [medial

entorhinal cortex (MEC)] and their associated hippocampal memory states. Indeed, novelty

detection depends on the hippocampus [22] and the related error signals are believed to be

computed by the EC via inhibitory competitive dynamics [23]. Notably, it has been recently

observed that MEC sublayers play a key role in generating states of synchronized spiking activity

supporting a neuronal mechanism for coincidence detection between cortical inputs and hippo-

campal outputs [24]. Novelty detection based on such a mismatch computation by necessity

relies on previously stored information and the discrepancy between a cortical input state and

its EHCmemory reference will gate either the retrieval of previous or encoding of new experiences

[25]. The former entails both pattern separation and completion within DG and CA, by virtue of the

dense excitatory recurrence in CA3, facilitating the reactivation of spatiotemporal patterns similar

to those observed during encoding [26].

We propose that the novelty detection attributed to the EHC, a process that is critical in regulating

learning, cognitive control, and attention [9,27,28], can be better seen as an error function that

serves the definition of gradient descent learning dynamics in the trisynaptic loop. Associative

encoding in the EHC requires the reorganization of multiple synaptic connections along the

forward excitatory hippocampal pathway. To this end, error signals generated by the EC compar-

ator can modulate the process of learning through dopamine release within the hippocampus,

enabling memory consolidation [27] as a ‘print now’ signal [29]. Besides the control of plasticity

via dopamine release, we propose that error detection serves a second function more akin to

error backpropagation: to define a gradient that shapes the overall learning dynamics. As in

current and traditional machine learning models, learning occurs by updating the presynaptic

weights across layers in order to minimize the error between a predefined target and actual

network output [2]. Similarly, we suggest that synaptic weight updates processed in the forward

excitatory hippocampal loop minimize the discrepancy between cortical inputs and their hippo-

campal reconstruction [21,30]. Indeed, earlier theoretical work has also demonstrated that this

shift from correlation to reconstruction error-based learning is a critical transition to obtain stable

performance in the combined perceptual and behavioral learning of real-world agents in the face
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Figure 1. Forward Excitatory and Counter-Current Inhibitory Circuitry of the Entorhinal–Hippocampal Complex (EHC) Supporting Self-Supervision and

Epistemic Autonomy. (A) Forward and backward hippocampal circuits. Left. The feed-forward information flow of the hippocampal trisynaptic pathway and its

constituents [19]. The pathway (grey arrow) comprises projections from layer II entorhinal cortex (EC) stellate cells to the dentate gyrus (DG) and CA3 via the medial

(MPP, light green) and lateral (LPP, yellow) perforant path (PP), mossy fiber projections of DG granule cells to CA3 pyramidal neurons (dark green), and CA3 projections

to CA1 pyramidal neurons (the Schaffer collaterals, pink). The feedforward input is completed with direct projections from layer III EC neurons projecting to CA1 [19].

The output of the hippocampus (HPC) originates in CA1 and passes via the subiculum (not shown) to the EC LV/VI (purple). Right. Cortical input and hippocampal

output coincide in EC, allowing the EHC comparator to compute the mismatch between the two signals. (B) Left. Counter-current inhibitory circuit complementing the

forward excitatory loop (Box 3). Right. We hypothesize that this counter-current circuit carries error signals (yellow) that define a gradient that shapes synaptic plasticity

along the forward excitatory loop, therefore implementing a biological version of error backpropagation. (C) Top. The synergy between the forward and feedback

circuits shapes the continuous synaptic update in the forward loop such that it increasingly minimizes the error between the HPC input and output signals of the EC

comparator. Middle. In this self-supervised learning scenario, environmental change (pink line) is reflected in the error amplitude, where error magnitude activates

distinct physiological and behavioral responses. Bottom. Small amplitude errors perturbate the firing rate of principal cells, for instance, expressed as firing rate

modulation in spatial navigation tasks. In contrast, large magnitude errors signal novelty and drive relearning supporting the reconstruction of this novel signal, leading

to global remapping (see [20] for a possible threshold-triggered synaptic mechanism based on neuronal depolarization levels). (D) Left. The interplay between excitatory

and inhibitory cells in the EHC comparator. Cortical signals coded by input neurons (yellow) are propagated throughout the trisynaptic circuit (green arrow) to neurons

reflecting the HPC reconstruction of the input signal (blue). Comparator neurons (brown) receive both the reconstruction and an inhibitory copy of the input activity

(grey), which in turn modulate the firing level of counter-current GABAergic interneurons that backpropagate the error signal (orange line). At this stage, recurrent

GABAergic projections within the HPC modulate network-level synaptic distributions, leading to a convergence of cortical and hippocampal signals and thus

performing self-supervision. Right. Dependent on its magnitude, mismatch error activates a range of molecular, physiological, and behavioral phenomena observed

during spatial navigation. See [36,42,91–93].
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of sampling bias and high correlations in sensory signal streams [31]. This raises the question of

which substrate in the EHC could support the propagation of the error signal defined by the EC

comparator. We propose that this is achieved by the counter-current inhibitory EHC network.

Counter-Current Inhibition Supports Plasticity and Error Backpropagation in the EHC

So far, we have proposed and provided evidence that learning in the EHC involves an error signal

that originates in the EC comparator. However, since this error signal is the one presumably

training the EHC, we ask whether there is evidence for a functional equivalent of backpropagation

of error along the EHC loop and what its substrate may be?

In the standard neuroanatomical view, it has generally been held that the hippocampal formation

has a canonical feed-forward information flow, as represented by the so-called hippocampal

trisynaptic pathway first documented by Ramón y Cajal (Figure 1A) [32–34]. The standard view

also holds that hippocampal principal cells receive feed-forward or feedback inhibition through

local interneurons, with their axonal arbors restricted to the hippocampal subfield where their cell

bodies reside. Principal excitatory neurons in the hippocampus by far outnumber the inhibitory

interneurons [35], but the role of the latter in EHC information processing is not well understood.

Here, we advance the hypothesis that EHC interneurons provide a substrate for the backpropagation

of error based on their distinct anatomical and physiological properties.

Supporting this view are recent findings challenging the classical anatomical view that reveal a far

more complex picture of the organization of hippocampal circuitry and the role of inhibitory

interneurons in its function [36–45] (Figure 1B). Several studies indicate that some of the axons

of hippocampal interneurons cross the anatomically defined boundaries of the hippocampal sub-

fields (Box 3). These results indicate that the ‘extended’ interneuronal network of the hippocampal

formation comprises diverse cell types beyond that of the traditionally considered interneuronal

Box 3. Substrate of Error Backpropagation in the EHC: The Counter-Current Inhibitory Network

We propose that learning in the EHC is driven by a counter-current GABAergic network. This counter-current inhibitory

circuit, which complements the forward excitatory loop, consists of: (i) entorhinal layers II–III projecting back to the CA1

[91]; (ii) theta waves traveling from CA1 to CA3 [92]; (iii) feedback inhibition from the CA1 area to CA3 and DG [93];

(iv) CA3 and CA1 GABAergic neurons convey CA activity to DG [36]; and (v) deep layers of EC give rise to GABAergic

projections to DG [94] (Figure 1B).

It has been shown that the axons of GABAergic neurogliaform cells in the DG not only innervate the molecular layer

comprising the dendrites of the principal excitatory GCs, but also form collaterals in the adjacent CA1 and subiculum

subfields [38]. A recent study using a dual retroviral and rabies virus tracing strategy showed that boundary-crossing

projections constitute a mesoscale GABAergic network comprising all major GABAergic cell types [36], extending beyond

local circuits and subfields. Retrograde trans-synaptic labeling of the GCs of the DG revealed nonprincipal presynaptic

cells located in both the CA1 and CA3 regions (i.e., downstream in terms of the trisynaptic loop). Subsequent analysis

showed that the relative numerical abundance of PV+ and SOM+ interneurons located in the CA1 and CA3 regions con-

tributed to about 20% of the total volume of presynaptic PV/SOM GABAergic neurons innervating the GCs [36].

Further, GABAergic cells in the EC have been shown to directly project to CA1 [27,42] running counter to the standard

feed-forward information flow. A similar pattern is shown by the inhibitory projections from the subiculum to CA1, reported

several times over the last decades [45]. More recently, this pattern was confirmed in a study using a genetically modified

rabies-based tracing method that found significant direct GABAergic inputs from the subiculum to both CA1 excitatory

and inhibitory cell populations [95]. This counter-current inhibition is repeated in the interaction between CA3 and the

DG. Specifically, glutamatergic excitatory pyramidal neurons in CA3 form DG projecting collaterals to hilar mossy cells

and other GABAergic neurons that in turn inhibit the excitatory DG granule cells [42].

Overall, a plethora of recent anatomical and physiological studies challenge the standard view of inhibitory interneurons in

the EHC operating at the local and within-subfield scale, suggesting that a complex mesoscale GABAergic network runs

counter-current to the trisynaptic loop.
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classes and that these neurons form a counter-current inhibitory mesoscale circuit. Therefore,

these boundary-crossing projections may constitute a surprisingly robust mesoscale GABAergic

system that comprises all major GABAergic cell types [36] extending beyond local within-area

circuits yet more restricted than genuinely long-distance projecting cells.

The studies discussed earlier suggest that a complex boundary-crossing inhibitory counter-

current network exists in the EHC that forms a potential neural substrate for error

backpropagation (Figure 1B). However, a functional relationship between the counter-current

inhibitory network and its effects on plasticity and learning needs to be further clarified to effec-

tively link the former to error backpropagation. In this regard, the boundary-crossing interneurons

in the CA1 and CA3 regions have been shown to relay activity back to the DG during sharp-wave

ripples [36], which are high-frequency oscillatory events that are involved in episodic memory

replay and have been linked to the stabilization of hippocampal place fields [46]. Other studies

provide evidence of the involvement of this hippocampal inhibitory circuit in driving network-

level synaptic reconfiguration and support the idea that GABAergic neurons might critically gate

hippocampal plasticity. For example, the inactivation of EC somatostatin (SOM) interneurons

diminishes spatial tuning of EC grid cells [47], GABA levels are correlated with memory retrieval

accuracy [48], brainstem GABAergic neurons can control hippocampal contextual memories

[49], and CA1 interneuron circuits are reconfigured during goal-oriented spatial learning through

modification of their inputs from pyramidal cells [50] (Figure 1B). One often overlooked element of

inhibitory interactions in addition to hyperpolarization is the shunting of depolarizing dendritic

currents [51]. Early theoretical work had predicted that such shunting inhibition gates learning

by neutralizing backpropagating action potentials required for spike time-dependent plasticity

(STDP) [29]. This prediction has been experimentally confirmed in both the neocortex [52] and

the hippocampus [53]. Hence, the broad counter-current inhibitory network of the hippocampus

can serve as a substrate for the system level control of plasticity across all functional regions of the

hippocampus through the direct control of STDP.

The mismatch between the input provided by the neocortex and the feed-forward reconstruction

generated by the hippocampus has long been hypothesized to drive plasticity in the hippocampus.

Further, it has been suggested that hippocampal pyramidal cells might multiplex and integrate

feed-forward and feedback signals through dendritic segregation [54] (i.e., apical and basal

dendrites [55]) and plateau potentials, respectively, serving the computation of the quantities

driving synaptic changes as prescribed by error backpropagation [8]. Indeed, plasticity and feature

selectivity in pyramidal neurons in CA1 have been shown to depend on conjunctive inputs from

EC (feedback signal) and CA3 (feed-forward signal) onto different dendritic segments [56].

Furthermore, SOM+ and parvalbumin-positive (PV+) inhibitory interneurons in CA1 differentially

target apical and basal dendrites of pyramidal cells, modulating feed-forward and feedback signals,

respectively, while implementing distinct plasticity rules [57]. Thus, hippocampal and neocortical

pyramidal neurons can detect coincident input to proximal and distal dendritic regions arising

from distinct sources [58,59] and evidence suggests that neocortical signals that are integrated

in the distal apical dendrites of hippocampal pyramidal cells have a strong impact on synaptic

plasticity and feature selectivity [56]. Moreover, theoretical studies have also shown how these

compartments can be coupled through the regulation of the dendritic length through

neuromodulation [60]. In addition, hippocampal interneurons have highly convergent inputs

and extensive divergent axonal projections [35], which suggests a key role in the overall gain

control of the EHC [61].

These observations suggest that inhibitory interneurons may serve to minimize the error between

cortical states and their hippocampal reconstruction, by dynamically gating the interactions
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across dendritic compartments via plateau potentials and backpropagating action potentials

[8,55] and thus modulating the spatiotemporal window in which STDP operates on coincident

feed-forward and feedback signals.

The Relationship of Mismatch Error Minimization, Backpropagation, and Epistemic Autonomy

We have advanced our analysis on the premise that identifying the neuronal substrate of error

backpropagation will help us understand how the brain realizes epistemic autonomy. For this,

we have turned to the EHC and have shown that it performs a comparison at the level of the

EC between cortical states and the hippocampal reconstruction they trigger via the forward

excitatory trisynaptic loop. We have also provided evidence to support the hypothesis that the

resulting error term is projected back into the hippocampal loop via a mesoscopic counter-

current inhibitory stream. Finally, we have shown that plasticity in the forward excitatory loop

can be modulated by core elements of this recurrent inhibitory network. Combining these

elements would allow for the continuous assessment of the reconstruction error and to define

a learning gradient across the EHC through inhibitory backpropagation (Figure 1C,D). As the

network iterates, the mismatch error tends to decrease.

We hypothesize that error magnitude translates into the rate of changes in synaptic efficacy within

the network that find an expression in molecular, physiological, and behavioral signatures of

learning observed in rodent navigation (Figure 1D). In such a spatial navigation scenario, our

model predicts that the EHC increasingly improves the reconstruction of the cortical input

conveying environmentally relevant information such as landmarks (LEC) and their relation to

movement in space (MEC). After learning, changes in the environment would lead to an increased

reconstruction error in the EHC, now interpretable as novelty, which the network would progres-

sively minimize (Figure 1C). The impact of error and novelty on the network will depend on the

magnitude of the associated reconstruction error. With small environmental changes, only a slight

modulation of the activity and plasticity of individual cells will occur, akin to the rate modulations in

the feed-forward network observed in environmental morphing [62]. Conversely, stronger error

magnitudes signal novelty, engaging the counter-current GABAergic system and inducing

error-driven global remapping [63] (Figures 1C,D and 2C,F). The former case would facilitate

the more accurate representation of a known environment, while the latter would initiate the

acquisition of a map of a new environment. These different rate modulations triggered by novelty

are well captured in our model and depend strongly on error backpropagation within the EHC

(Box 2 and Figure 2). However, just because the error backpropagation algorithm turned

Rosenblatt’s perceptron into powerful DL models, does not necessarily mean that the brain

must implement that algorithm as well. Although the core computational principles underlying

hippocampal information processing remain unclear, we can point to several lines of further

evidence suggesting that backpropagation-like processes provide a plausible candidate

mechanism for learning in the hippocampus.

Error backpropagation is considered anatomically and biophysically implausible because it uses

symmetric weights in the forward and backward directions to compute exact gradients. This

contradicts neuroanatomical observations, which show a more heterogeneous organization.

Yet, computational research indicates that random weights can be used in the backward

direction without significantly degrading the speed or accuracy of learning [64]. Furthermore,

computational studies show that error backpropagation can be approximated in ANN relying

only on locally available signals and without the need to explicitly represent the error gradients

[8,65]. Moreover, algorithmic analysis has shown that backpropagation is optimal on several

key performance metrics of gradient descent algorithms by maximizing information rate while

minimizing computational cost [66]. Thus, assuming that biological learning algorithms have
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Figure 2. A Computational Model of Entorhinal–Hippocampal Complex (EHC) Self-Supervised Learning Captures Key Physiological

Observations of the Rodent’s Hippocampus. (A) Entorhinal rate activity as observed in the rodent during spatial navigation propagates along the

hippocampal trisynaptic pathway (feed-forward flow). The match–mismatch error is computed by the difference between entorhinal cortex (EC) (cortical

inputs) and EC′ (hippocampal output) following the circuit shown in Figure 1A. Backpropagation of the error via an inhibitory network serves network-

level synaptic modifications to minimize the reconstruction error between EC and EC′. (B) Spatial representations and rate adaptation derived from the

model’s CA1 show spatially-tuned place cells similar to those found in the rodent and single cell and network-level modulation to environmental

modifications reflecting rate remapping and novelty detection. (C) Effects of the magnitude of environmental change in EC reconstruction error.

Navigation within a stable environment promotes learning EHC spatial representations (1) where the error magnitude determines the modulation rate of

hippocampal activity (2) with a novelty threshold determining the onset of learning of a new environment (3). (D) Environmental change leads to changes

in the activity of the model neurons as observed in the EHC. With increasing environmental sensory modifications, the model displays GC rate

remapping equivalent [87] together with place-field expansion [88]. (E) The model replicates the increased firing field size of grid cell activity following

EHC generated reconstruction [88] (Top) together with novelty detection following increased EC comparator error (Bottom). (F) Simulation of

environmental changes and morphing leads to place-tuned receptive fields, rate modulation, global remapping, and field elongation. (G) The model

replicates place field elongation when stretching the simulated environment along the horizontal axis [90]. See [87]. Abbreviations: DG, dentate gyrus;

HPC, hippocampus; PV, parvalbumin.

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 9



optimized similar constraints of capacity and efficiency, it is reasonable to hypothesize that

the brain implements approaches that are functionally similar to backpropagation in order to

maximize its performance.

In addition, biologically detailed computational models inspired by the theta phase separation of

encoding and retrieval [23] have shown that error-driven learning can be implemented in the EHC

by allowing the EC to set a target pattern in CA1 that has to be subsequently reconstructed by the

CA3 feed-forward projections at every theta cycle [67]. Indeed, this error-driven learning rule

emerges from the differences in activity patterns between the peak and trough phases at each

theta cycle and can be argued to approximate error backpropagation [65]. Subsequent studies

have shown that such learning dynamics can lead to better performance and higher memory

capacity than when the same network would only implement Hebbian plasticity [67].

Overall, given the available empirical evidence and computational results, we suggest that an

approximation of error backpropagation across the trisynaptic loop instantiated by a counter-

current inhibitory network, is likely to underlie self-supervised learning in the EHC.

From Hippocampal Backpropagation to Autonomous Cognitive Machines

We have outlined how the cortico-hippocampal system may combine a self-generated error

signal with the gating of synaptic plasticity in the EHC following the principle of error

backpropagation. The error originates in the comparison of cortical input, or scene, with its asso-

ciated mnemonic reconstruction. In turn, the backpropagation of the error may be realized via an

extensive counter-current inhibitory network. The most straightforward interpretation of this

arrangement is captured in the ‘comparator hypothesis’ [15], where plasticity in the hippocampus

is driven to minimize the mismatch error between its input and output. We have then argued that

backpropagating the mismatch error to optimize learning leads to self-supervision that in turn

explains core physiological and behavioral features of EHC (Box 2).

What does our hypothesis mean for the design of autonomous cognitive machines? Potential

solutions to epistemic autonomy and its possible implementation in the brain and cognitive

behaving machines must acknowledge that the system must trade-off a number of constraints,

including: the consolidation of existing memories against losing them due to the formation of

new memories (i.e., catastrophic forgetting [68]); its associated cost of redundancy, capacity

limitations, and metabolic commitments [61]; and the recency effects or biases due to the

shaping of input sampling by existing memories (i.e., behavioral feedback [31]). The error signal

generated in the EC serves to satisfy these trade-offs, which are partially expressed in the

phenomenon of remapping, whereby the spatial tuning of hippocampal place cells switches

completely its population code when the new environment or context is significantly different

from the already experienced one [69]. Indeed, our hypothesis is able to explain hippocampal

remapping when a high mismatch error signal (signifying novelty) is reached, thus rapidly

relearning new population codes in previously unseen environments (Box 2 and [70]). In addition,

we hypothesize that the counter-current GABAergic network, besides regulating plasticity

directly through inhibitory control over dendritic integration and STDP, also controls the optimiza-

tion of these trade-offs through different subpopulations of interneurons. For instance, vasoactive

intestinal peptide (VIP) interneurons have been shown to regulate the balance between PV+ inter-

neurons and SOM+ interneurons, representing local and global inhibition, respectively [71]. This

inter-inhibitory balance control by VIP interneurons (as well as by neuromodulators like acetylcholine)

has been suggested to regulate the learning dynamics of cortical circuits [72]. Concretely, explora-

tion and exploitation of sensory cues can be traded off on the basis of input uncertainty to find an

optimal learning rate that also conserves the pre-existing sensory representations, thus providing
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a potential solution to the problem of catastrophic forgetting. Hence, we propose that inter-inhibitory

regulation within the counter-current GABAergic network, implementing error backpropagation in

the EHC, is partly responsible for optimizing gradient descent learning according to the aforemen-

tioned efficiency and capacity trade-offs.

In addition, we can consider how the computations of the cortico-hippocampal system may

overcome fundamental bottlenecks in real-time control and computation with hardware that is

orders of magnitude slower than what is achieved using engineered silicon systems, while consum-

ing only fractions of the energy budget of the hardware used for computer-based gradient descent.

The brain has conserved locality in space and time in its operations, which has become a key feature

in optimizing computation in the post-Moore era, where we have saturated our ability to increase the

transistor density on silicon wafers [73]. The cortico-hippocampal network we describe here shows

how this may be achieved, at the expense of increasing physical connectivity, in the form of dedi-

cated inhibitory networks. An interesting optimization we can propose for machine learning algo-

rithms based on our proposal is that the EHC embeds its slow learning dynamics in a distinct

competitive fast theta-gamma code where only the most strongly feed-forward driven neurons will

be active [69,74]. This implies that given an EC cortical state, only a small subset of neurons across

the trisynaptic loop will be active, the synapses of which will subsequently be subject to plastic

changes under the control of the recurrent inhibitory network. Hence, winner-takes-all mechanisms

by specialized inhibitory interneurons enforcing decorrelation and sparseness across layers could

help solve the credit assignment problem more efficiently by restricting the synaptic updates to

only a selected subset of neurons. This is in stark contrast to the standard implementations of

error backpropagation in ANN, which usually update all neurons and synapses at each iteration.

We propose that this might partly explain the remarkable learning speeds that are displayed by

the EHC in contrast to the known challenges of slow convergence in machine learning systems.

In conclusion, we have outlined how one of the main targets of AI, epistemic autonomy,

may be achieved in a brain system of episodic memory (Box 4), providing a plausible route to

Box 4. Error-Driven Learning throughout the Brain

Brains are learning machines that bootstrap their knowledge and behavioral policies from simple priors in interaction with

the environment [96]. Although we focus on the EHC as both generating error signals and utilizing these to shape learning,

other brain areas display similar processes. Indeed, it has been suggested that prediction, comparison, and error minimi-

zation are fundamental properties of information processing throughout the brain [97]. The challenge, however, is to

understand the qualitative difference between the various forms of error prediction and correction that the brain displays

[98]. For instance, both in the prefrontal cortex (PFC) [99] and supplementary motor area (SMA), neural dynamics are

regulated by the error in the performance of goal-oriented action [100]. In addition, learning in the cerebellum is regulated

by the comparison of peripheral error and its internally generated prediction [101], which can be recast as gradient descent

on motor error [102]. Our analysis suggests that in all three cases epistemic autonomy is achieved through subsystem-

specific error monitoring (i.e., motor error for the cerebellum, memory reconstruction error in the case of the

hippocampus, and errors in achieving behavioral goals for the PFC and SMA). This raises the important question of

how these different forms of error processing could be interlinked.

Notably, the EC and hippocampus share dense direct and indirect interactions with the PFC, with the PFC guiding goal-

oriented recall (for a review, see [103]). We propose that the system-level epistemic autonomy of cognitive agents results

from the interaction between subsystems that each are epistemically closed yet constrained by other systems. For

instance, given our proposed framework, we can hypothesize that the PFC can exert top-down control over episodic

memory not only biasing memory recall but also memory formation itself relative to the goals of the agent. This hypothesis

is supported by the direct coupling of the PFC top-down pathway with the inhibitory counter-current circuit at the level of

the EC [104]. Further, the hippocampus coordinates mnemonic responses in the cortex [105], which in turn drive the EC

inputs. Hence, we see the EHC as embedded in a more elaborate system where the learning dynamics are driven by a

broader interaction between the hippocampus and the cortex. From this perspective, we can speculate that

the mesoscopic inhibitory counter-current network of the cortico-hippocampal system is a generic substrate for self-

supervised gradient descent learning in the context of the overall brain architecture comprising dynamically coupled

perceptual, cognitive, and motor systems [106] that each in turn are organized as epistemically closed.
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take the hurdle of the symbol grounding problem and to speak of truly autonomous AI

systems.

Concluding Remarks

A fundamental feature of biological cognition and a major challenge for artificial systems is

epistemic autonomy. We hypothesize that the cortico-hippocampal system provides an example

of how evolution might have solved this challenge. Specifically, that the EHC may function as a

self-contained gradient descent learning system, continuously minimizing the input–output mis-

match between states of the neocortex represented by the EC and its associated hippocampal

engram. Here the engram is stored in the synapses of the excitatory forward trisynaptic loop

and the error signals are propagated via a counter-current inhibitory network. Our hypothesis

suggests that opposite flows of activity can thus respectively subserve recall and training in

neuronal networks. This simple, yet powerful computation, which is based on a functional

equivalent of error backpropagation, appears to be supported by several physiological and

anatomical properties of the EHC.

Although we have presented evidence supporting the mechanisms of self-supervised

learning in the hippocampus, we are still far away from having a full understanding of the

EHC (see Outstanding Questions). One promising line of future research is to explore the

implications of the attractor memory features of CA3 (e.g., recurrent connections

performing pattern completion) combined with the pattern separation performed by DG in

learning generative features of the environment, thus endowing the system with sequence

generation [75] and predictive processing capabilities beyond current state of the art sys-

tems (such as variational autoencoders [76]). We have outlined how one of the fundamental

problems of AI, epistemic autonomy, may be resolved within our learning framework based

on prediction, comparison, and error minimization processes in which a hierarchy of distinct

subsystems self-generate learning objectives while acting upon inputs that have been

processed or modulated by other subsystems ultimately grounded in embodied real-world

action. Hence, while in this paper we focused on the EHC, these computational principles

are more generic and we predict that they are also exploited by several other brain learning

systems, interaction of which shall provide a route to genuinely autonomous and biologically

grounded AI systems.
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