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INTRODUCTION: The pattern of light that
strikes the eyes is processed and re-represented
via patterns of neural activity in a “deep” series
of six interconnected cortical brain areas called
the ventral visual stream. Visual neuroscience
research has revealed that these patterns of
neural activity underlie our ability to recog-
nize objects and their relationships in the
world. Recent advances have enabled neuro-
scientists to build ever more precise models
of this complex visual processing. Currently, the
best such models are particular deep artificial
neural network (ANN) models in which each
brain area has a corresponding model layer
and each brain neuron has a corresponding mod-
el neuron. Such models are quite good at pre-
dicting the responses of brain neurons, but their
contribution to an understanding of primate
visual processing remains controversial.

RATIONALE: These ANN models have at least
two potential limitations. First, because they
aim to be high-fidelity computerized copies of
the brain, the total set of computations per-
formed by these models is difficult for humans
to comprehend in detail. In that sense, each
model seems like a “black box,” and it is un-
clear what form of understanding has been
achieved. Second, the generalization ability
of these models has been questioned because
they have only been tested on visual stimuli
that are similar to those used to “teach” the
models. Our goal was to assess both of these
potential limitations through nonhuman pri-
mate neurophysiology experiments in a mid-
level visual brain area. We sought to answer
two questions: (i) Despite these ANN models’
opacity to simple “understanding,” is the knowl-
edge embedded in them already useful for a

Collection of images synthesized by a deep neural network model to control the activity of
neural populations in primate cortical area V4. We used a deep artificial neural network to
control the activity pattern of a population of neurons in cortical area V4 of macaque monkeys by
synthesizing visual stimuli that, when applied to the subject’s retinae, successfully induced the
experimenter-desired neural response patterns.

Bashivan et al., Science 364, 453 (2019)

3 May 2019

potential application (i.e., neural activity con-
trol)? (ii) Do these models accurately predict
brain responses to novel images?

RESULTS: We conducted several closed-loop
neurophysiology experiments: After matching
model neurons to each of the recorded brain
neural sites, we used the model to synthesize
entirely novel “controller” images based on the
model’s implicit knowledge of how the ventral
visual stream works. We then presented those

images to each subject to
test the model’s ability to
Read the full article ~ control the subject’s neu-
at http://dx.doi. rons. In one test, we asked
org/10.1126/ the model to try to con-
science.aav9436 trol each brain neuron so
strongly as to activate it
beyond its typically observed maximal activa-
tion level. We found that the model-generated
synthetic stimuli successfully drove 68% of
neural sites beyond their naturally observed
activation levels (chance level is 1%). In an
even more stringent test, the model revealed
that it is capable of selectively controlling an
entire neural subpopulation, activating a par-
ticular neuron while simultaneously inactivat-
ing the other recorded neurons (76% success
rate; chance is 1%).

Next, we used these non-natural synthetic
controller images to ask whether the model’s
ability to predict the brain responses would
hold up for these highly novel images. We
found that the model was indeed quite ac-
curate, predicting 54% of the image-evoked
patterns of brain response (chance level is
0%), but it is clearly not yet perfect.

CONCLUSION: Even though the nonlinear
computations of deep ANN models of visual
processing are difficult to accurately summa-
rize in a few words, they nonetheless provide a
shareable way to embed collective knowledge
of visual processing, and they can be refined
by new knowledge. Our results demonstrate
that the currently embedded knowledge already
has potential application value (neural control)
and that these models can partially generalize
outside the world in which they “grew up.”
Our results also show that these models are
not yet perfect and that more accurate ANN
models would produce even more precise
neural control. Such noninvasive neural con-
trol is not only a potentially powerful tool in the
hands of neuroscientists but also could lead to
a new class of therapeutic applications. m
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Particular deep artificial neural networks (ANNSs) are today’s most accurate models of the
primate brain’s ventral visual stream. Using an ANN-driven image synthesis method, we
found that luminous power patterns (i.e., images) can be applied to primate retinae to
predictably push the spiking activity of targeted V4 neural sites beyond naturally occurring
levels. This method, although not yet perfect, achieves unprecedented independent control
of the activity state of entire populations of V4 neural sites, even those with overlapping
receptive fields. These results show how the knowledge embedded in today’s ANN models
might be used to noninvasively set desired internal brain states at neuron-level resolution, and
suggest that more accurate ANN models would produce even more accurate control.

articular deep feedforward artificial neural
network models (ANNS) constitute today’s
most accurate “understanding” of the initial
~200 ms of processing in the primate ven-
tral visual stream and the core object re-
cognition behavior it supports [see (I) for the
currently leading models]. In particular, visu-
ally evoked internal “neural” representations
of these specific ANNs are remarkably similar
to the visually evoked neural representations in
mid-level (area V4) and high-level (inferior tem-
poral) cortical stages of the ventral stream (2, 3)—
a finding that has been extended to neural re-
presentations in visual area V1 (4), to patterns of
behavioral performance in core object recogni-
tion tasks (5, 6), and to both magnetoencepha-
lography and functional magnetic resonance
imaging (fMRI) measurements from the human
ventral visual stream (7, 8). Notably, these prior
findings of model-to-brain similarity were not
curve fits to brain data; they were predictions
evaluated using images not previously seen by
the ANN models. This has been construed as
evidence that these models demonstrate some
generalization of their ability to capture key func-
tional properties of the ventral visual stream.
However, at least two important potential
limitations of this claim have been raised. First,
because the visual processing that is executed by
the models is not simple to describe, and because
the models have only been evaluated in terms
of internal functional similarity to the brain, per-
haps they are more like a copy of, rather than a
useful “understanding” of, the ventral stream.
Second, because the images to assess similarity
were sampled from the same distribution as that
used to set the model’s internal parameters (pho-
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tograph and rendered object databases), it is
unclear whether these models would pass a
stronger test of functional similarity—specifically,
whether that similarity would generalize to en-
tirely novel images. Perhaps the models’ reported
apparent functional similarity to the brain (3, 7, 9)
substantially overestimates their true functional
similarity.

‘We conducted a set of nonhuman primate vis-
ual neurophysiology experiments to assess the
first potential limitation by asking whether the
detailed knowledge that the models contain is
useful for one potential application (neural activ-
ity control) and to assess the second potential
limitation by asking whether the functional sim-
ilarity of the model to the brain generalizes to
entirely novel images. Specifically, we used one
of the leading deep ANN ventral stream models
(i.e., a specific model with a fully fixed set of
parameters) to synthesize new patterns of lumi-
nous power (“controller images”) that, when ap-
plied to the retinae, were intended to control the
neural firing activity of particular, experimenter-
chosen neural sites in cortical visual area V4 of
macaques in two settings: (i) neural “stretch,”
in which synthesized images stretch the maximal
firing rate of any single targeted neural site well
beyond its naturally occurring maximal rate, and
(ii) neural population state control, in which
synthesized images independently control every
neural site in a small recorded population (here,
populations of 5 to 40 neural sites). We tested
that population control by aiming to use such
model-designed retinal inputs to drive the V4
population into an experimenter-chosen “one-
hot” state in which one neural site is pushed to
be highly active while all other nearby sites are
simultaneously “clamped” at their baseline acti-
vation level. We reasoned that successful exper-
imenter control would demonstrate that at least
one ANN model can be used to noninvasively
control the brain—a practical test of useful, causal
“understanding” (10, I1).
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We used chronic implanted microelectrode ar-
rays to record the responses of 107 neural multi-
unit and single-unit sites from visual area V4
in three awake, fixating rhesus macaques de-
signated as monkeys M, N, and S (ny = 52, ny =
33, ng = 22). We first determined the classical
receptive field (cRF) of each site with briefly
presented small squares (see methods). We then
tested each site using a set of 640 naturalistic
images (always presented to cover the central
8° of the visual field that overlapped with the
estimated cRFs of all the recorded V4 sites), as
well as a set of 370 complex-curvature stimuli
previously determined to be good drivers of V4
neurons (12) (location-tuned for the cRFs of the
neural sites). Using each site’s visually evoked
responses (see methods) to 90% of the natu-
ralistic images (n = 576), we created a mapping
from a single “V4” layer of a deep ANN model
(13) (the Conv-3 layer, which we had established
in prior work) to the neural responses. We selec-
ted the model layer that maximally predicted
the area V4 responses to the set of naturalistic
images using linear mapping with two-fold cross-
validation (this model layer selection was also
consistent with similarity analysis using a repre-
sentational dissimilarity matrix; see methods and
fig. S8). The predictive accuracy of this model-to-
brain mapping has previously been used as a
measure of the functional fidelity of the brain
model to the brain (7, 3). Indeed, using the V4
responses to the held-out 10% of the naturalistic
images as tests, we replicated and extended that
prior work. We found that the neural predictor
models correctly predicted 89% of the explain-
able (i.e., image-driven) variance in the V4 neural
responses (median over the 107 sites, each site
computed as the mean over two mapping/testing
splits of the data; see methods).

Besides generating a model V4-to-brain V4
similarity score (89% in this case), this mapping
procedure produces a potentially powerful tool:
an image-computable predictor model of the
visually evoked firing rate of each of the V4
neural sites. If truly accurate, this predictor mod-
el is not simply a data-fitting device and not just
a similarity scoring method; instead, it must
implicitly capture a great deal of visual knowl-
edge that may be difficult to express in human
language but is hypothesized (by the model) to
be used by the brain to achieve successful visual
behavior. To extract and deploy that knowledge,
we used a model-driven image synthesis algo-
rithm (see Fig. 1 and methods) to generate con-
troller images that were customized for each
neural site (i.e., according to its predictor model)
so that each image should predictably and repro-
ducibly control the firing rates of V4 neurons in a
particular, experimenter-chosen way. That is, we
aimed to test the hypothesis that experimenter-
delivered application of a particular pattern of
luminous power on the retinae will reliably and
reproducibly cause V4 neurons to move to a par-
ticular, experimenter-specified activity state (and
that the removal of this pattern of luminous
power will return those V4 neurons to their back-
ground firing rates).
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Fig. 1. Overview of the synthesis procedure. (A) Schematic illustration of
the two tested control scenarios. Left: The controller algorithm synthesizes
novel images that it believes will maximally drive the firing rate of a target
neural site (stretch). In this case, the controller algorithm does not attempt to
regulate the activity of other measured neurons (e.g., they might also
increase as shown). Right: The controller algorithm synthesizes images that it
believes will maximally drive the firing rate of a target neural site while
suppressing the activity of other measured neural sites (one-hot population).
(B) Top: Responses of a single example V4 neural site to 640 naturalistic
images (averaged over ~40 repetitions for each image) are represented by
overlapping gray lines; black line at upper left denotes the image presentation
period. Bottom: Raster plots of highest and lowest neural responses to
naturalistic images, corresponding to the black and purple lines in the

top panel, respectively. The shaded area indicates the time window over

Central 82 Visual Field

which the activity level of each V4 neural site is computed (i.e., one value
per image for each neural site). (C) The neural control experiments are
done in four steps: (1) Parameters of the neural network are optimized by
training on a large set of labeled natural images [Imagenet (35)] and then
held constant thereafter. (2) ANN “neurons” are mapped to each recorded
V4 neural site. The mapping function constitutes an image-computable
predictive model of the activity of each of these V4 sites. (3) The resulting
differentiable model is then used to synthesize “controller” images for either
single-site or population control. (4) The luminous power patterns specified
by these images are then applied by the experimenter to the subject’s retinae,
and the degree of control of the neural sites is measured. AlT, anterior
inferior temporal cortex; CIT, central inferior temporal cortex; PIT, posterior
inferior temporal cortex. (D) Classical receptive fields of neural sites in
monkey M (black), monkey N (red), and monkey S (blue; see methods).

Although there are an extremely large number
of possible neural activity states that an experi-
menter might ask a controller method to try to
achieve, we restricted our experiments to the V4
spiking activity 70 to 170 ms after retinal power
input (the time frame where the ANN models are
presumed to be most accurate), and we have thus
far tested two control settings: stretch control
and one-hot-population control (see below). To
test and quantify the goodness of control, we ap-
plied patterns of luminous power specified by the
synthesized controller images to the retinae of the
animal subjects while we recorded the responses
of the same V4 neural sites (see methods).

Each experimental manipulation of the pat-
tern of luminous power on the retinae is col-
loquially referred to as “presentation of an
image.” However, here we state the precise mani-
pulation of applied power that is under experi-

Bashivan et al., Science 364, eaav9436 (2019)

menter control and fully randomized with other
applied luminous power patterns (other images)
to emphasize that this is logically identical to
more direct energy application (e.g., optogenetic
experiments) in that the goodness of experi-
mental control is inferred from the correlation
between power manipulation and the neural re-
sponse in exactly the same way in both cases [see
(11) for review]. The only difference between the
two approaches is the assumed mechanisms that
intervene between the experimentally controlled
power and the controlled dependent variable
(here, V4 spiking rate). These are steps that the
ANN model aims to approximate with stacked
synaptic sums, threshold nonlinearities, and nor-
malization circuits. In both the control cases pres-
ented here and the optogenetics control case,
these intervening steps are not fully known but
are approximated by a model of some type; that

3 May 2019

is, neither experiment is “only correlational” be-
cause causality is inferred from experimenter-
delivered, experimenter-randomized application
of power to the system.

Because each experiment was performed over
separate days of recording (1 day to build all the
predictor models, 1 day to test control), only
neural sites that maintained both a high signal-
to-noise ratio and a consistent rank order of
responses to a standard set of 25 naturalistic
images across the two experimental days were
considered further (72y; = 38, ny = 19, and ng = 19
for stretch experiments; ny; = 38 and ng = 19 for
one-hot-population experiments; see methods).

Stretch control: Attempt to maximize
the activity of individual V4 neural sites

We first defined each V4 site’s “naturally ob-
served maximal firing rate” as that which was
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found by testing its response to the best of the
640 naturalistic test images (cross-validated over
repeated presentations; see methods). We then
generated synthetic controller images for which
the synthesis algorithm was instructed to drive
the firing rate of one of the neural sites as high as
possible beyond that rate, regardless of the other
V4 neural sites. For our first stretch control ex-
periment, we restricted the synthesis algorithm
to operate only on parts of the image that were
within the cRF of each neural site. For each
target neural site (12 = 21, 7y = 19, and ng = 19),
we ran the synthesis algorithm from five different
random image initializations. For 79% of neural
sites, the synthesis algorithm successfully found
at least one image that it predicted to be at least
10% above the site’s naturally observed maximal
firing rate (see methods). However, in the interest
of presenting an unbiased estimate of the stretch
control goodness for randomly sampled V4 neu-
ral sites, we included all sites in our analyses,
even those (~20%) that the control algorithm
predicted that it could not stretch. Visual inspec-
tion suggested that the five stretch controller
images generated by the algorithm for each neural
site are perceptually more similar to each other
than to those generated for different neural sites
(see Fig. 2 and fig. S1), but we did not psycho-
physically quantify that similarity.

An example of the results of applying the
stretch control images to the retinae of one
monkey to target one of its V4 sites is shown in
Fig. 2A, along with the ANN model-predicted re-
sponses of this site for all tested images. A closer
visual inspection of this neural site’s “best” nat-
ural and complex-curvature images within the
site’s cRF (Fig. 2A, top) suggests that it might be
especially sensitive to the presence of an angled
convex curvature in the middle and a set of con-
centric circles at the lower left side. This is con-
sistent with extensive systematic work in V4 using
such stimuli (2, 14), and it suggests that we had
successfully located the cRF and tuned our stim-
ulus presentation to maximize the firing rate by
the standards of such prior work. Interestingly,
however, we found that all five synthetic stretch
control images (red) drove the neural responses
above the response to every tested naturalistic
image (blue) and above the response to every
complex-curvature stimulus presented within
the cRF (purple) (Fig. 2A).

To quantify the goodness of this stretch con-
trol, we measured the neural response to the
best of the five synthetic images (again, cross-
validated over repeated presentations; see meth-
ods) and compared it with the naturally observed
maximal firing rate (defined above). We found
that the stretch controller images successfully
drove 68% of the V4 neural sites (40 of 59)
statistically beyond its maximal naturally observed
firing rate (P < 0.01, unpaired-samples ¢ test
between distribution of highest firing rates for
naturalistic and synthetic images; distribution
generated from 50 random cross-validation sam-
ples; see methods). Measured as an amplitude,
we found that the stretch controller images ty-
pically produced a firing rate that was 39%

Bashivan et al., Science 364, eaav9436 (2019)

higher than the maximal naturalistic firing rate
(median over all tested sites; Fig. 2, B and C).

Because our fixed set of naturalistic images
was not optimized to maximally drive each V4
neural site, we considered the possibility that our
stretch controller was simply rediscovering image
pixel arrangements that are already known from
prior systematic work to be good drivers of V4
neurons (12, 14). To test this hypothesis, we tested
19 of the V4 sites (ny = 11, ng = 8) by presenting,
inside the cRF of each neural site, each of 370
complex-curvature shapes (14)—a stimulus set that
has been previously shown to contain image fea-
tures that are good at driving V4 neurons when
placed within the cRF. Because we were also con-
cerned that the fixed set of naturalistic images did
not maximize the local image contrast within
each V4 neuron’s cRF, we presented the complex-
curvature shapes at a contrast that was matched
to the contrast of the synthetic stretch controller
images (fig. S4). Interestingly, we found that for
each tested neural site, the synthetic controller
images generated higher firing rates than the
most effective complex-curvature shape (Fig. 2D).
Specifically, when we used the maximal response
over all the complex-curvature shapes as the ref-
erence (again, cross-validated over repeated pre-
sentations), we found that the median stretch
amplitude was even larger (187%) than when
the maximal naturalistic image was used as the
reference (73% for the same 19 sites). In sum, the
ANN-driven stretch controller had discovered pixel
arrangements that were better drivers of V4 neural
sites than prior systematic attempts to do so.

To further test the possibility that the relatively
simple image transformations might also achieve
neural response levels that were as high as those
elicited by the synthetic controller images, we
carried out extensive simulations to test the pre-
dicted effects of a battery of alternative image
manipulations. First, to investigate whether the
response might be increased simply by reducing
surround suppression effects (15), we assessed
each site’s predicted response to its best natural-
istic image, spatially cropped to match the site’s
cRF. We also adjusted the contrast of that
cropped image to match the average contrast
of the synthetic images for the site (also mea-
sured within the site’s cRF). Over all tested sites,
the predicted median stretch control gain achieved
using these newly generated images was 14% lower
than the original naturalistic set (n = 59 sites; see
fig. S7). To explore this further, we optimized the
size and location of the cropped region of the
natural image (see methods). The stretch con-
trol gain achieved with this procedure was 0.1%
lower than that obtained for the original natural-
istic images. Second, we tested response-optimized
affine transformations of the best naturalistic
images (position, scale, rotations). Third, to place
some energy from multiple features of natural
images in the cRF, we tested contrast blends of the
best two to five images for each site (see methods).
The predicted stretch control gain of each of these
manipulations was still far below that achieved
with the synthetic controller images. In summary,
we found that the achieved stretch control ability
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is nontrivial, in that even at high contrast, it
cannot be achieved by complex-curvature features,
simple transformation on naturalistic images,
combination of good naturalistic images, or op-
timization of the spatial extent of the image (see
methods and fig. S7).

One-hot-population control: Attempt
to activate only one of many V4
neural sites

Similar to prior single-unit visual neurophysio-
logy studies (16-18), the stretch control experi-
ments attempted to optimize the response of each
V4 neural site individually, without regard to the
rest of the neural population. But the ANN mod-
el potentially enables much richer forms of pop-
ulation control in which each neural site might
be independently controlled. As a first test of
this, we asked the synthesis algorithm to try to
generate controller images with the goal of driv-
ing the response of only one “target” neural site
high while simultaneously keeping the responses
of all other recorded neural sites low (i.e., a one-
hot-population activity state; see methods).

We attempted this one-hot-population con-
trol on neural populations in which all sites were
simultaneously recorded (experiment 1, 7 = 38
in monkey M; experiment 2, 7 = 19 in monkey S).
Specifically, we randomly chose a subset of neu-
ral sites as “target” sites (14 in monkey M, 19 in
monkey S) and we asked the synthesis algorithm
to generate five one-hot-population controller
images for each of these sites (i.e., 33 tests in
which each test is an attempt to maximize the
activity of one site while suppressing the activity
of all other measured sites from the same monkey).
For these control tests, we allowed the controller
algorithm to optimize pixels over the entire 8°
diameter image (which included the cRFs of all
the recorded neural sites; see Fig. 3), and we then
applied the one-hot-population controller images
to the monkey retinae to assess the goodness of
control. The synthesis procedure predicted a
softmax score of at least 0.5 for 77% of population
experiments (as a reference, the maximum soft-
max score is 1 and is obtained when only the
target neural site is active and all off-target neu-
ral sites are completely inactive; see Fig. 3A for
an example near 0.3).

Although the one-hot-population controller im-
ages did not achieve perfect one-hot-population
control, we found that the controller images
were typically able to achieve enhancements in
the activity of the target site without generating
much increase in off-target sites (relative to na-
turalistic images; see examples in Fig. 3A). To
quantify the goodness of one-hot-population
control in each of the 33 tests, we computed a
one-hot-population score on the responses of the
activity profile of each population (softmax score;
see methods) and referenced that score to the
one-hot-population control score that could be
achieved using only the naturalistic images (i.e.,
without the benefit of the ANN model and
synthesis algorithm). We took the ratio of these
two scores as the measure of improved one-
hot-population control, and we found that the
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Fig. 2. Maximal drive of individual neural sites (stretch). (A) Results
for an example successful stretch control test. Normalized activity level of
the target V4 neural sites is shown for all of the naturalistic images (blue
dots), complex-curvature stimuli (purple dots), and five synthetic stretch
controller images (red dots; see methods). Best driving images within
each category and a zoomed view of the receptive field are shown at the
top. (B) Difference in firing rate in response to naturalistic (blue) and
synthetic images (red) for each neural site in three monkeys. Controller

image synthesis was restricted within the receptive field of the target
neural site. Error bars denote range of the data. (C) Histogram of increase
in the firing rate over naturalistic images for cRF-restricted synthetic
images. (D) Histogram of increase in the firing rate over complex-curvature
stimuli. Black triangle with dotted black line marks the median of the
scores over all tested neural sites. Red arrow highlights the gain in firing rate
in each experiment achieved by the controller images. N indicates the
number of neural sites included in each experiment.

controller typically achieved an improvement
of 57% (median over all 33 one-hot-population
control tests; Fig. 3, B and C) and that this
improved control was statistically significant
for 76% of the one-hot-population control
tests (25 of 33 tests; P < 0.01, unpaired-samples
t test).

We considered the possibility that the im-
proved population control was a result of the
nonoverlapping cRFs that would allow neural
sites to be independently controlled simply by

Bashivan et al., Science 364, eaav9436 (2019)

restricting image contrast energy to each site’s
cRF. To test this possibility, we analyzed a sub-
sample of the measured neural population in
which all sites had strongly overlapping cRFs
(Fig. 3D). We considered a neural population of
size 10 in monkey M and of size 8 in monkey S for
this experiment with largely overlapping cRFs
(Fig. 3D). In total, we performed the experiment
on 12 target neural sites in two monkeys (four in
monkey M and eight in monkey S) and found
that the amplitude of improved control was still

3 May 2019

40% (Fig. 3D). Thus, a large portion of the im-
proved control is the result of specific spatial
arrangements of luminous power within the ret-
inal input region shared by multiple V4 neural
sites that the ANN model has implicitly captured
and predicted and that the synthesis algorithm
has successfully recovered (Fig. 4).

As another test of one-hot-population control,
we conducted an additional set of experiments in
which we restricted the one-hot control synthesis

algorithm to operate only on image pixels within
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Fig. 3. Neural population control. We synthesized controller images that
aimed to set the neural population in a one-hot state (OHP) in which one

target neural site is active and all other recorded neural sites are suppressed.
(A) Two example OHP experiments (left and right). In each case, the neural

activity of each of the validated V4 sites (see methods) in the recorded
population is plotted (most have overlapping cRFs), with the target

V4 site (dark blue or red) indicated by an arrow. Note that responses are
normalized individually on a normalizer image set to make side-by-side
comparison of the responses meaningful (see methods). Top row: Activity
pattern for the best (“best” in the sense of OHP control; see methods)
naturalistic image (shown at right). Bottom row: Activity pattern produced
by retinal application of the ANN model-synthesized controller image
(shown at right). The red dashed oval marks the extended receptive field
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(B) Distribution of control scores for best synthetic and naturalistic images
for all 33 OHP full-image controller experiments (ny = 14, ng = 19). Control
scores are computed using cross-validation (see methods). Error bars
denote range of the data. (C) Histogram of OHP control gain (i.e.,
improvement over naturalistic images) for results in (B); (i) and (ii) indicate
the scores corresponding to example experiments shown in (A). (D) Same
experimental data as (C) except analyzed for subpopulations selected so that
all sites have highly overlapping cRFs [see cRFs below (C) to (E); black,
monkey M; blue: monkey S]. (E) OHP control gain, where gain is relative to
the best complex-curvature stimulus in the shared cRF (see text) and the
controller algorithm is also restricted to operate only in that shared cRF

(n = 14 OHP experiments). In (C) to (E), N indicates the number of
experiments in each setting; red arrow highlights the median gain in control
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(2 SD) of each site. Error bars denote 95% confidence interval.

the shared cRF of all neural sites in a subpopula-
tion with overlapping cRFs (Fig. 3E). We compared
this within-cRF synthetic one-hot-population con-
trol with the within-cRF one-hot-population control
that could be achieved with the complex-curvature
shapes (because the prior experiments with these
stimuli were also designed to manipulate V4 re-
sponses only using pixels inside the cRF). We
found that for the same set of neural sites, the
synthetic controller images produced a very large
one-hot-population control gain (median 112%;
Fig. 3E) and the control score was significantly
higher than the best complex-curvature stimulus
for 86% of the neural sites (12 of 14).

Does the functional fidelity of the ANN
brain model generalize to novel images?

Besides testing noninvasive causal neural control,
these experiments also aimed to ask whether
ANN models would pass a stronger test of func-
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tional similarity to the brain than prior work had
shown (2, 3)—specifically, whether this model-to-
brain similarity would generalize to entirely novel
images. Because the controller images were
synthesized anew from random pixel arrange-
ment and were optimized to drive the firing rates
of V4 neural sites both upward (targets) and
downward (one-hot-population off-targets), we
considered them to be a potentially novel set of
neural-modulating images that is far removed
from the naturalistic images. We quantified and
confirmed this notion of novelty by demonstrat-
ing that synthetic images were indeed statistically
less similar to any of the naturalistic images than
the naturalistic images were to themselves (mea-
suring distances in pixel space, recorded V4 neu-
ral population space, and model-predicted V4
population space; see methods and fig. S6).

To determine how well the V4 predictor model
generalizes to these novel synthetic images, for
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(black triangle) achieved in each case.

each neural site we compared the predicted re-
sponse to every tested synthetic image with the
actual neural response, using the same similarity
measure as prior work (2, 3), but now with zero
parameters to fit. That is, a good model-to-brain
similarity score required that the ANN predictor
model for each V4 neural site accurately predict
the response of that neural site for all of many
synthetic images that are each very different
from those that we used to train the ANN (pho-
tographs) and also very different from the images
used to map ANN “V4” sites to individual V4
neural sites (naturalistic images).

Consistent with the control results (above),
we found that the ANN model accounted for
54% of the explainable variance for the set of
synthetic images (median over 76 neural sites
in three monkeys; fig. S3). Although the model
overestimated the neural responses to synthesized
stimuli on many occasions and the model-to-brain
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Fig. 4. Example of
independent control

of each neural site

on a subset of V4 neural
sites with highly
overlapping cRFs.
Controller images were
synthesized to try to
achieve a one-hot
population over

a population of eight

neural sites (in each
control test, the target
neural site is shown in

dark red and designated

by an arrow). Despite
highly overlapping receptive
fields (center), most of 1
the neural sites could be
individually controlled to
a reasonable degree.
Controller images are
shown along with the
extended cRF (2 SD) of
each site (red dashed
ovals). Error bars [ n o8

IS

Measured Neural
Firing Rate (a.u.)

- o

denote 95% confidence 1 3
interval. Neural Site
Number

similarity score was somewhat lower than that
obtained for responses to naturalistic images
(89%), the model still predicted a substantial
portion of the variance, given that all parameters
were fixed to make these “out of naturalistic
domain” image predictions. We believe this to be
the strongest test of generalization of today’s
ANN models of the ventral stream thus far, and
it again shows that the model’s internal neu-
ral representation is remarkably similar to the
brain’s intermediate ventral stream representa-
tion (V4), although it is still not a perfect model
of the representation. We also note that be-
cause the synthetic images were generated by
the model, we cannot assess the accuracy of
predictions for images that are entirely “out of
model domain.”

How do we interpret these results?

Our results show that a deep ANN-driven con-
troller method can be used to push the firing
rates of most V4 neural sites beyond naturally
occurring levels and that V4 neural sites with
overlapping receptive fields can be partly—but
not yet perfectly—independently controlled. In
both cases, we show that the goodness of this
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Target Site ¥

control is unprecedented in that it is superior to
that which can be obtained without the ANN.
Finally, we find that with no parameter tuning
at all, the ANN model generalizes moderately
well (54%) to predict V4 responses to synthetic
images that are strikingly different from the
real-world photographs used to tune the ANN
synaptic connectivity and map the ANN’s “V4”
to each V4 neural site. We believe that these
results are the strongest test thus far of today’s
deep ANN models of the ventral stream.
Beginning with the work of Hubel and Wiesel
(19, 20), visual neuroscience research has closely
equated an understanding of how the brain rep-
resents the external visual world with an under-
standing of what stimuli cause each neuron to
respond the most. Indeed, textbooks and impor-
tant recent results tell us that V1 neurons are
tuned to oriented bars (20), V2 neurons are tuned
to correlated combinations of V1 neurons found
in natural images (21), V4 neurons are tuned to
complex-curvature shapes in both two and three
dimensions (17, 22) and tuned to boundary infor-
mation (72, 14), and inferior temporal (IT) neurons
respond to complex object-like patterns (I8) includ-
ing faces (23, 24) and bodies as special cases (25).
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Whereas these efforts have been essential to
building both a solid foundation and intuitions
about the role of neurons in encoding visual
information, our results show how they can be
further refined by current and future ANN models
of the ventral stream. For instance, we found that
synthesis of only a few images leads to higher
neural response levels than was possible by search-
ing in a relatively large space of natural images
(n = 640) and complex-curvature stimuli (n = 370)
derived from those prior intuitions. This shows
that even today’s ANN models—which are clearly
not yet perfect (I, 6)—already give us new ability
to find manifolds of more optimal stimuli for
each neural site at a much finer degree of gra-
nularity and to discover such stimuli uncon-
strained by human intuition and the limits of
human language (see examples in fig. S1). This
is likely to be especially important in middle and
later stages of the visual hierarchy (e.g., in V4
and IT cortex), where the response complexity
and larger receptive fields of neurons make man-
ual search intractable.

In light of these results, what can we now say
about the two important critiques of today’s
ANN models raised at the outset of this study
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Example
Site 1

Example
Site 2

Stretch

One-Hot
Population

Example
Site 3

Example
Site 4

Example
Site 5

Example
Site 6

Fig. 5. Example controller images synthesized in stretch and one-hot population settings for six example target neural sites. Controller images
were synthesized from the same initial random image but optimized for each target neural site and for each control goal (stretch or one-hot
population; see text). Visual inspection suggests that for each target site, the one-hot-population control images contain only some aspects of the image

features in the stretch images.

(understanding and generality)? In our view, the
results strongly mitigate both of those critiques,
but they do not eliminate them. An important
test of understanding is the ability to use knowl-
edge to gain improved control over things of
interest in the world, as we have demonstrated;
however, we acknowledge that this is not the
only possible view, and many other notions of
“understanding” remain to be explored to see
whether and how these models add value. With
respect to generality, we found that even today’s
ANN models show good generalization to demon-
strably novel images, so we believe these results
close the door on critiques that argue that cur-
rent ANN models are extremely narrow in the
scope of images they can accurately cover. How-
ever, we note that although 54% of the explain-
able variance in the generalization test was
successfully predicted, this is somewhat lower
than the 89% explainable variance that is found
for images that are “closer” to (but not identical
to) the mapping images. This not only reconfirms
that these brain models are not yet perfect, but
also suggests that a single metric of model sim-
ilarity to each brain area is insufficient to char-
acterize and distinguish among alternative models
[e.g., ()]. Instead, multiple similarity tests at
different generalization “distances” could be use-
ful, as we can imagine future models that show
less decline in successfully predicted variance as
one moves from testing images “near” the train-
ing and mapping distributions (typically photo-
graphs and naturalistic images) to “far” (such as
the synthetic images like those used here) to
“extremely far,” such as images that cannot even
be synthesized under the guidance of current
models and thus remained untested here.
From an applications standpoint, the results
presented here show how today’s ANN models of
the ventral stream can already be used to achieve
improved noninvasive population control (e.g.,
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Fig. 4). However, the control results are clearly
not yet perfect. For example, in the one-hot pop-
ulation control setting, we were not able to fully
suppress each and every one of the responses of
the “off-target” neural sites while keeping the
target neural site active (see examples in Figs. 3
and 4. Post hoc analysis showed that we could
partially anticipate which off-target sites would
be most difficult to suppress: They were typically
(and not surprisingly) the sites that had high
patterns of response similarity with the target
site (r = 0.49, P < 10™*; correlation between res-
ponse similarity with the target neural site over
naturalistic images and the off-target activity
level in the full image one-hot population experi-
ments; n = 37 off-target sites). Such results raise
interesting scientific and applied questions of
whether and when perfect independent control
is possible at neuron-level resolution. Are our
current limitations on control due to anatomical
connectivity that restricts the potential population
control, the nonperfect accuracy of the current
ANN models of the ventral stream, nonperfect
mapping of the model neurons to the individual
neural site in the brain, the fact that we are
attempting to control multi-unit activity, inade-
quacy of the controller image synthesis algorithm,
or some combination of all of these and other
factors?

Consider the synthesis algorithm: Intuitively,
each particular neural site might be sensitive to
many image features, but perhaps each site is
only sensitive to a few features that the other
neural sites are not sensitive to. This intuition
is consistent with the observation that, using
the current ANN model, it was more difficult for
our synthesis algorithm to find good controller
images in the one-hot-population setting than
in the stretch setting (the one-hot-population
optimization typically took more than twice as
many steps to find a synthetic image that is
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predicted to drive the target neural site res-
ponse to the same level as in the stretch setting),
and visual inspection of the images suggests that
the one-hot-population images have fewer iden-
tifiable “features” (Fig. 5 and fig. S2). As the size
of the neural population to be controlled is in-
creased, it would likely become increasingly dif-
ficult to achieve fully independent control, but
this is an open experimental question.

Consider the current ANN models: Our data
suggest that future improved ANN models are
likely to enable even better control. For example,
better ANN V4 population predictor models gen-
erally produced better one-hot-population con-
trol of that V4 population (fig. S5). One thing is
clear already: Improved ANN models of the ven-
tral visual stream have led to control of high-level
neural population that was previously out of
reach. With continuing improvement of the
fidelity of ANN models of the ventral stream
(1, 26, 27), the results presented here have likely
only scratched the surface of what is possible
with such implemented characterizations of the
brain’s neural networks.

Methods
Electrophysiological recordings
in macaques

We sampled and recorded neural sites across
the macaque V4 cortex in the left, right, and left
hemisphere of three awake, behaving macaques,
respectively. In each monkey, we implanted one
chronic 96-electrode microelectrode array (Utah
array), immediately anterior to the lunate sulcus
(LS) and posterior to the inferior occipital sulcus
(IOS), with the goal of targeting the central visual
representation (<5° eccentricity, contralateral
lower visual field). Each array sampled from
~25 mm? of dorsal V4. On each day, recording
sites that were visually driven as measured by
response correlation (Pearson 7 > 0.8) across
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split-half trials of a fixed set of 25 out-of-set
naturalistic images shown for every recording
session (termed the normalizer image set) were
deemed “reliable.”

‘We do not assume that each V4 electrode was
recording only the spikes of a single neuron.
Hence, we use the term “neural site” throughout
the manuscript. But we did require that the
spiking responses obtained at each V4 site
maintained stability in its image-wise “fingerprint”
between the day(s) that the mapping images
were tested (i.e., the response data used to build
the ANN-driven predictive model of each site;
see text) and the days that the controller images
or the complex-curvature images were tested
(see below). Specifically, to be “stable,” we re-
quired an image-wise Pearson correlation of at
least 0.8 in its responses to the normalizer set
across recording days.

Neural sites that were reliable on the experi-
mental mapping day and the experimental test
days, and were stable across all those days, were
termed “validated.” All validated sites were in-
cluded in all presented results. (To avoid any
possible selection biases, this selection of vali-
dated sites was done on data that were com-
pletely independent from the main experimental
result data.) In total, we recorded from 107 vali-
dated V4 sites during the ANN-mapping day,
including 52, 33, and 22 sites in monkey M (left
hemisphere), monkey N (right hemisphere), and
monkey S (left hemisphere), respectively. Of these
sites, 76 were validated for the stretch control
experiments (ny; = 38, ny = 19, ng = 19) and 57
were validated for the one-hot-population con-
trol experiments (7y; = 38, ng = 19).

To allow meaningful comparisons across re-
cording days and across V4 sites, we normalized
the raw spiking rate of each site from each re-
cording session (within just that session) by sub-
tracting its mean response to the 25 normalizer
images and then dividing by the standard devia-
tion of its response over those normalizer images
(these are the arbitrary units shown as firing
rates in Figs. 2A, 3A, and 4). The normalizer image
set was always randomly interleaved with the main
experimental stimulus set(s) run on each day.

Control experiments consisted of three steps.
In the first step, we recorded neural responses to
our set of naturalistic images that were used to
construct the mapping function between the ANN
activations and the recorded V4 sites. In a second,
offline step, we used these mapping functions (i.e.,
a predictive model of the neural sites) to syn-
thesize the controller images. Finally, in step 3, we
closed the loop by recording the neural responses
to the synthesized images. The time between step
1 and step 3 ranged from several days to 3 weeks.

Fixation task

All images were presented while monkeys fix-
ated a white square dot (0.2°) for 300 ms to ini-
tiate a trial. We then presented a sequence of five
to seven images, each ON for 100 ms followed
by a 100-ms gray blank screen. This was followed
by a water reward and an intertrial interval of
500 ms, followed by the next sequence. Trials
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were aborted if gaze was not held within +0.5° of
the central fixation dot during any point. To
estimate the cRF of each neural site, we flashed
1° x 1° white squares across the central 8° of the
monkeys’ visual field, measured the correspond-
ing neural responses, and then fitted a 2D
Gaussian to the data. We defined 1 SD as the
cRF of each site.

Naturalistic image set

We used a large set (N = 640) of naturalistic
images to measure the response of each recorded
V4 neural site and every model “V4” neural site
to each of these images. Each of these images
contained a 3D-rendered object instantiated at
a random view overlaid on an unrelated natural
image background; see (28) for details.

Complex-curvature stimuli

We used a set of images consisting of closed
shapes constructed by combining concave and
convex curves (12). These stimuli are constructed
by parametrically defining the number and con-
figuration of the convex projections that con-
stituted the shapes. Previous experiments with
these shapes showed that curvature and polar
angle were quite good at describing the shape
tuning (72). The number of projections varied
from 3 to 5, and the angular separation between
projections was in 45° increments. These shapes
were previously shown to contain good drivers of
V4 neurons of macaque monkeys (12, 14). The
complex-curvature images were generated using
the code generously supplied by the authors of
that prior work (http://depts.washington.edu/
shapelab/resources/stimsonly.php). The stimuli
were presented at the center of the receptive
field of the neural sites (detailed below).

Cross-validation procedure for
evaluating control scores

To evaluate the scores from the neural responses
to an image set, we divided the neural response
repetitions into two randomly selected halves.
We then computed the mean firing rate of each
neural site in response to each image in each
half. The mean responses from the first half
were used to find the image that produces the
highest score (in that half) and the response to
that image was then measured in the second
half (this is the measurement used for further
analyses). We repeated this procedure 50 times
for each neural site (i.e., 50 random half splits).
For stretch and one-hot-population experiments,
the score functions were the “neural firing rate”
and “softmax score,” respectively. We computed
each score for the synthetic controller images and
for the reference images (either the naturalistic or
the complex-curvature sets; see text). The synthetic
“gain” in the control score is calculated as the dif-
ference between the synthetic controller score and
the reference score, divided by the reference score.

V4 encoding model

To use the ANN model to predict each recorded
neural site (or neural population), the internal
“V4-like” representation of the model must first
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be mapped to the specific set of recorded neural
sites. The assumptions behind this mapping are
discussed elsewhere (9), but the key idea is that
any good model of a ventral stream area must
contain a set of artificial neurons (“features”) that
together span the same visual encoding space as
the brain’s population of neurons in that area
(i.e., the model “layer” must match the brain area
up to a linear mapping). To build this predictive
map from model to brain, we started with a
specific deep ANN model with locked parameters.
Here we used a variant of Alexnet architecture
trained on Imagenet (13), as we have previously
found the feature space at the output of Conv-3
layer of Alexnet to be a good predictor of V4
neural responses (we refer to this as model “V4”).
We used the same training procedure as de-
scribed in (13), except that we did not split the
middle convolutional layers between graphics
processing units (GPUs).

In addition, the input images were transformed
using an eccentricity-dependent function that
mimics the known spatial sampling properties
of the primate retinae (see below). We termed
this the “retinae transformation.” We had pre-
viously found that training deep convolutional
ANN models with retinae-transformed images
improves the neural prediction accuracy of V4
neural sites (an increase in explained variance
by ~5 to 10%). The retinae transformation was
implemented by a fisheye transformation that
mimics the eccentricity-dependent sampling
performed in primate retinae (code available at
https://github.com/dicarlolab/retinawarp). All
input images to the neural network were pre-
processed by randomly cropping followed by
applying the fisheye transformation. Parameters
of the fisheye transformation were tuned to mimic
the cones density ratio between the fovea and 4°
peripheral vision (29).

We used the responses of the recorded V4
neural sites in each monkey and the responses of
all the model “V4” neurons to build a mapping
from the model to the recorded population of V4
neural sites (Fig. 1). We used a convolutional
mapping function that significantly reduces the
neural prediction error compared to other meth-
ods such as principal component regression. Our
implementation was a variant of the two-stage
convolutional mapping function proposed in (30)
in which we substituted the group sparsity reg-
ularization term with an L2 loss term to allow
for smooth (nonsparse) feature mixing. The first
stage of the mapping function consists of a learn-
able spatial mask (W) that is parameterized
separately for each neural site (n) and is used to
estimate the receptive field of each neuron. The
second stage consists of a mixing pointwise con-
volution (W) that computes a weighted sum of
all feature maps at a particular layer of the ANN
model (Conv3 layer in our case). The mixing
stage finds the best combination of model fea-
tures that are predictive of each neural site’s
response. The final output is then averaged over
all spatial locations to form a scalar prediction of
the neural response. Parameters are jointly op-
timized to minimize the prediction error £. on
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the training set regularized by combination of £,
and smoothing Laplacian losses Ly spiace (defined
below). By factorizing the spatial and feature di-
mensions, this method significantly improves the
predictivity of neural responses over the tradi-
tional principal component regression. We inter-
pret this improved predictive power as resulting
from the fact that it imposes a prior on the model-
to-brain mapping procedure that is strongly in
line with an empirical fact: that each neuron in
area V4 has a receptive field. That neuron is thus
best explained by linear combinations of simu-
lated neurons that have similar receptive fields.

=2 (Wi X) e w e )
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We evaluated our model using two-fold cross-
validation and observed that ~89% of the explain-
able variance could be explained with our model
in three monkeys (EVy; = 92%, EVy = 92%, EVg =
80%). The addition of the retinae transformation
together with the convolutional mapping func-
tion increased the explained variance by ~13%
over the naive principal component regression
applied on features from the model trained with-
out the retinae transformation (EVy; = 75%, EVy =
80%, EVs = 73%). Ablation studies on data from
each monkey suggested that on average about
3 to 8% of the improvements were due to the
addition of the retinae transformation (see table
S1). For constructing the final mapping function,
adopted for image synthesis, we optimized the
mapping function parameters on 90% of the
data, selected randomly.

The resulting predictive model of V4 (ANN
features plus linear mapping) is referred to as the
mapped V4 encoding model and, by construc-
tion, it produces the same number of artificial V4
“neurons” as the number of recorded V4 neural
sites (52, 33, and 22 neural sites in monkeys M,
N, and S, respectively).

Retinae transformation

To retain the resolution of the retinae-transformed
images as high as possible, we did not subsample
the input image with a fixed sampling pattern.
Instead, our implementation of the retinae sam-
pling uses a backward function r = g(’) that
maps the radius of points in the retinae-
transformed image (7') to those in the input
image (7). In this way, for every pixel in the
output image, we can find the corresponding
pixel in the input image using the pixel-mapping
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function g. To formulate the pixel-mapping func-
tion g, we take advantage of the known rate of
change of cones density (p) in the primate re-
tinae that exponentially decreases with eccen-
tricity (29):
1

p= i exp(—ar’) (6)
where d is the distance between nearby cones
and 7’ is the radial distance from the fovea in the
transformed image. From this, we can write d as
a function of 7"

d= % exp <a2r’> (7)

The ratio between the cones density in the fovea
and the outmost periphery, given the specific
visual field size in which the stimulus has been
presented in the experiment, can be written as
Pt

Pp

= exp(ar'max) (8)

where p; and p, are the cone densities at the
fovea and periphery, respectively, and 7', is the
highest radial distance in the output image (e.g.,
150 for an image of size 300). From Eq. 8, we can
calculate a as a function of p, pp,, and 7' max:

o — nPe/py) ©)

7 max
The p¢/p, ratio is known given the size of the
visual field in which the stimuli were presented
(e.g., 10 for fovea to 4° in this study) and the
output image size (e.g., 300 in this study). We can
now formulate the function g(+’) as the sum of all
the distances d up to radius 7 weighted by a

factor b:
b = b = ar
1= 280 2 S eo(®)
T Ti=o
b 1—exp (ar’)

where b is found so that 7,./8(""max) = 1. In our
implementation we use Brent’s method to find
the optimal b value.

Finding the best representation in the
ANN model

We used linear mapping from model features to
neural measurements to compare the representa-
tion at each stage of processing in the ANN model.
For features in each layer of the ANN model, we
applied principal components analysis and ex-
tracted the top 640 dimensions. We then fitted a
linear transformation to the data using Ridge
regression method and computed the amount
of explained variance (EV) by the mapping func-
tion. For each neural site we normalized the EV
by the internal consistency of measurements
across repetitions using two-fold cross-validation.
The median normalized EV across all measured
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sites was used to select the best representation in
the ANN model (fig. SS8A). We also quantified the
similarity of representations at each layer of the
ANN model and the neural measurements using
the image-level representational dissimilarity matrix
(RDM) that followed the same pattern as that which
was obtained from linear mapping method (fig.
S8B). RDMs were computed using the principal
components of the features at each layer in re-
sponse to the naturalistic image set (n = 640).

Synthesized “controller” images

The “response” of an artificial neuron in the
mapped V4 encoding model (above) is a differ-
entiable function of the pixel values f:7*"*¢ >R
that enables us to use the model to analyze the
predicted sensitivity of neurons to patterns in
the pixels space. We formulate the synthesis op-
eration as an optimization procedure during which
images are synthesized to control the neural firing
patterns in the following two settings:

1) Stretch: We synthesized controller images
that attempt to push each individual V4 neural
site into its maximal activity state. To do so, we
followed an approach first introduced in (37) and
iteratively changed the pixel values in the direc-
tion of the gradient that maximizes the firing rate
of the corresponding model V4 neural site. We
repeated the procedure for each neural site using
five different random starting images, thereby
generating five stretch controller images for each
V4 neural site.

2) One-hot population: Similar to the stretch
scenario, except that here we chose the optimiza-
tion to change the pixel values in a way that (i)
attempts to maximize firing rate of the target V4
neural site, and (ii) attempts to maximally sup-
press the firing rates of all other recorded V4
neural sites. We formalized the one-hot popula-
tion goal in the following objective function that
we then aimed to maximize during the image
synthesis procedure:

S = softmax;(y) = exp(y:)

B Z exp(y;)

(1)

where ¢ is the index of the target neural site,
and y; is the response of the model V4 neuron ¢
to the synthetic image.

For each optimization run, we started from an
image that consists of random pixel values drawn
from a standard normal distribution and opti-
mized the objective function for a prespecified
number of steps using a gradient ascent algorithm
(steps = 700). We also used the total variation
(defined below) as additional regularization in the
optimization loss to reduce the high-frequency
noise in the generated images:

Lry = (Miy1j — Tijlla + 1 i1 — Tilla) (12)
i.j

During the experiments, monkeys were required
to fixate within a 1° circle at the center of the
screen. This introduced an uncertainty on the
exact gaze location. For this reason, images were
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synthesized to be robust to small translations of
maximum 0.5° At every iteration, we translated
the image in random directions (i.e., jittering)
with a maximum translation length of 0.5° in
each direction, thereby generating images that
were predicted to elicit similarly high scores re-
gardless of the translations within the range. The
total variation loss and the translation invariance
procedure reduced the amount of high-frequency
noise patterns in the generated images commonly
known as adversarial examples (32, 33). In addi-
tion, at every iteration during the synthesis pro-
cedure, we normalized the computed gradients
by its global norm and clipped the pixel values
at-1and 1.

Contrast energy

It has been shown that neurons in area V4 res-
pond more strongly to higher contrast stimuli
(84). To ask whether contrast energy (CE) was
the main factor in stretching the V4 neural firing
rates, we computed the contrast energy within
the receptive field of the neural sites for all the
synthetic, naturalistic, and classic V4 stimuli. Con-
trast energy was calculated as the ratio between
the maximum and background luminances. For
all images, the average luminance was used as the
background value. Because the synthetic images
consisted of complex visual patterns, we also
computed the contrast energy using an alter-
native method based on spectral energy within
the receptive field. We calculated the average
power in the cRF in the frequency range of 1 to
30 cycles per degree. We ensured that for all
tested neural sites, CE values within the cRF
for synthetic stretch controller images were less
than or equal to the classic, complex-curvature
V4 stimuli (fig. S4).

cRF-cropped contrast-matched
naturalistic stimuli

For each neural site, we first produced a new
naturalistic image set by cropping the older
naturalistic image set at the estimated cRF of
the respective site. We then matched the con-
trast of these naturalistic images (within the cRF
of that neuron) to the average contrast across all
five synthesized images (generated for the same
neural site). We then computed the predicted
neural responses to all these new cRF-masked,
contrast-matched naturalistic images and eval-
uated the stretch control gain achieved with this
set over the original naturalistic images. The
stretch control gain using these images showed a
14% decrease in the median gain over all target
neurons. This meant that the original naturalistic
image set without the cRF masking and contrast
matching contained better drivers of the neural
sites measured in our experiments. We noticed
that masking the images with the estimated cRF
was responsible for most of the drop in the ob-
served stretch control gain (11%; see fig. S7). We
also noted that the contrast energy within the
cRF was higher for best naturalistic images com-
pared to synthetic images for most sites (median
ratio of synthetics contrast to best naturalistic
images was 0.76 over all tested sites).

Bashivan et al., Science 364, eaav9436 (2019)

Monte Carlo mask optimization

We estimated the optimal mask parameters for-
mulated as a 2D Gaussian function (i.e., , 6, G, p)
for each neural site via Monte Carlo simulations
(n = 500). We sampled each parameter from the
corresponding distribution derived from the mea-
sured neural sites in each monkey. For each
Monte Carlo simulation, we sampled the mask
parameters from the above-mentioned distributions
and constructed a 2D mask. We then masked
the naturalistic images with the sampled mask
(cropped at 1 SD) and matched image contrasts
to the average contrast of synthetic images pro-
duced for each neural site within the mask. For
each neural site, we chose the optimal mask pa-
rameters that elicited the maximum average firing
rate (predicted) across all images in the natural-
istic set. The maximum predicted output for each
neural site in response to these images was used
to evaluate the stretch control gain that showed a
nonsignificant gain over the naturalistic images.

Affine transformations of the
naturalistic image set

There might be simple image transformations
that could achieve the same level of control as
that obtained by the synthetic images. To test
this, we conducted an additional analysis in which
we randomly transformed the best naturalistic
image for each neural site using various affine
transformations (i.e., translation, scale, and rota-
tion; n = 100) and calculated the predicted res-
ponses to those images. We considered four
experiments with the following transformations:
(i) random scaling between 0.5 and 2, (ii) random
translation between -25 and 25 pixels in each
direction, (iii) random rotation between 0° and
90° and (iv) mixture of all three transformations.
For each experiment, we evaluated the stretch
control gain over the naturalistic image set
achieved with these new images that showed
significantly lower gains for all of the alternative
methods compared to our proposed model-based
method (see fig. S7).

Combining best driver images

Images that are good drivers of the measured
neurons could be combined together to form
new mixed images that might drive the neurons
even higher. To test this hypothesis, we com-
bined the top naturalistic images for each neu-
ron by taking the average pixel value over all
select images and matched the contrast (within
cRF of each neural site) of the mixed image to the
average contrast across synthetic images gener-
ated for each neuron. We tried various numbers
of top images to create the mixed image (i.e., top
2, 3,4, and 5). We computed the predicted stretch
control gain using these mixed images over the
naturalistic image set and found that these
images were considerably weaker drivers of
the same neurons (see fig. S7).

Quantifying the novelty
of synthetic images

We hypothesized that if the synthetic stimuli are
indeed novel, they should be less similar (i.e.,
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correlated) to any of the naturalistic images than
the naturalistic images are to themselves. We
computed the distances between synthetic and
naturalistic images in pixel space as well as in
the space of neural responses. To test this, we
measured the minimum Euclidean distance (in
the space of measured neural responses) between
each synthetic image and all naturalistic images
and compared them with minimum distances
obtained for naturalistic images. Figure S6 shows
the distribution of minimum distances of syn-
thetic and naturalistic images to any naturalistic
images and illustrates the point that the responses
to synthetic images are significantly farther from
the distribution of responses to naturalistic images
than expected from sampling within the natural-
istic space (fig. S6, A, C, E, and F) or by applying
simple image transformations on images sampled
from that space (fig. S6, B and D). Therefore, we
can quantifiably call these images “out-of-domain”
[Wilcoxon rank-sum test; Z(3798) = 30.8; P <
0.0001]. We also computed the distances be-
tween synthetic and naturalistic images in the
pixel space using the correlation distance (1 - p)
that showed a similar distinction between the
two [Wilcoxon rank-sum test; Z(37120) = 29.3;
P < 0.0001].
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Predicting behavior of visual neurons

To what extent are predictive deep learning models of neural responses useful for generating experimental
hypotheses? Bashivan et al. took an artificial neural network built to model the behavior of the target visual system and
used it to construct images predicted to either broadly activate large populations of neurons or selectively activate one
population while keeping the others unchanged. They then analyzed the effectiveness of these images in producing the
desired effects in the macaque visual cortex. The manipulations showed very strong effects and achieved considerable
and highly selective influence over the neuronal populations. Using novel and non-naturalistic images, the neural network
was shown to reproduce the overall behavior of the animals' neural responses.
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