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ABSTRACT

One can infer from the broken window theory that the perception

of a city street’s safety level relies significantly on the visual appear-

ance of the street. Previous works have addressed the feasibility of

using computer vision algorithms to classify urban scenes. Most

of the existing urban perception predictions focus on binary out-

comes such as safe or dangerous, wealthy or poor. However, binary

predictions are not representative and cannot provide informative

inferences such as the potential crime types in certain areas. In

this paper, we explore the connection between urban perception

and crime inferences. We propose a convolutional neural network

(CNN) - StreetNet to learn crime rankings from street view images.

The learning process is formulated on the basis of preference learn-

ing and label ranking settings. We design a street view images

retrieval algorithm to improve the representation of urban percep-

tion. A data-driven, spatiotemporal algorithm is proposed to find

unbiased label mappings between the street view images and the

crime ranking records. Extensive evaluations conducted on images

from different cities and comparisons with baselines demonstrate

the effectiveness of our proposed method.
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1 INTRODUCTION

The broken window theory is a criminological theory of the norm-

setting and signaling effect of urban disorder and vandalism on

additional crime and anti-social behavior. The theory was first pro-

posed by James Wilson and George Kelling in The Atlantic Monthly

in March 1982 [42]; quotes: Consider a building with a few broken

windows. If the windows are not repaired, the tendency is for van-

dals to break a few more windows. Eventually, they may even break

into the building, and if it’s unoccupied, perhaps become squatters

or light fires inside. Similar to the rapid development of the idea

that social network’s justify the six degrees of separation theory

in sociology, the broken window theory in criminology may find

its endorsement in our era of big data. Previous studies on urban

crime analysis [22, 36, 37] have addressed significant associations

between the locations of crime offenses and the categories of the

offenses. However, all those works neglect the impact of street view

images on urban safety perception problems.
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Figure 1: Spatial Distributions of Different Categories of

Crime

With the advent of image-based crowdsourcing services such as

Flickr and Instagram, users can easily generate image data. Panoramic



image services such as Google Street View are also ubiquitously ac-

cessible from the Internet. Previous studies have presented spatial

correlations between crime levels and residences of offenders due to

the fact that most offenders prefer to commit illegal activities close

by, and offenders will follow the same criminal patterns while they

are committing illegal activities. For example, a person with bur-

glary records is likely to commit burglary in the future [3]. Further

assumptions are made for our exploration that different types of

crimes will affect the urban visual appearance in a variety of ways.

For instance, convenience stores located in suburban areas with

high robbery rates will be equipped with substantial barriers or

even bulletproof armor; a lot of graffiti will be witnessed in places

with inadequate law enforcement. Figure 1 illustrates crime rate

heat maps for different offense categories for both Washington D.

C. and New York City. Figure 1 also shows that different areas of

the cities are represented by different urban perceptions, and such

distinctions can be utilized to infer hidden crime rankings. This is

the main focus of our paper.

Learning crime rankings from urban perception or street view

images can be challenging. This poses the following three issues:

1) Features of images for crime ranking are not explicit. Rep-

resentations of urban appearances from street view images vary

substantially due to changes in camera direction and imaging and

lighting conditions. Previous studies [11, 43] in image classification

extract features from clustered bag-of-visual-words (BOVW) meth-

ods, but the extracted features are not interpretable. 2) Prior ge-

ographical knowledge should be considered for street view

images retrieval. Learning hidden knowledge from street view

image datasets is different from traditional image classification

problems. The selection of camera directions significantly affects

the prediction results. Optimal camera directions are ones that are

perpendicular to the streets’ direction because this direction can

minimize the noise introduced by recorded vehicles or pedestri-

ans. 3) Lack of labeled datasets. To learn crime rankings from

street view images, reasonable and unbiasedly labeled training

data is required. However, there are no existing labeled street

view image data available for crime ranking tasks. In addition,

the techniques of feature engineering request tedious labor, and

the human-annotated corpora are insufficient for training practi-

cable models to identify crime rankings. 4) Insufficient urban

perception study on multi-label analysis. Previous studies on

urban perceptions only focus on binary classifications of income

and safety levels for neighborhoods [16, 32, 33], which provide less

informative inspections than the multi-label learning for residents

and law enforcement agencies.

Themethods proposed in this paper effectively address the above-

mentioned issues. The proposed convolutional neural network ex-

tracts hidden features from street view images, and we formulate

the crime rank learning problem under the preference learning

framework. Improving upon previous works on safety level predic-

tion [32], we demonstrate the feasibility of inferring crime ranking

knowledge from cities’ visual appearances.According to the pre-

vious assumption, we utilize spatiotemporal correlations between

street view images and criminal offenses to construct crime ranking

labels. The major contributions of this paper can be summarized as

follows:

•Propose a convolutional neural network (CNN) based pref-

erence learning approach for crime ranking inference from

street view images: A convolutional neural network is proposed

and trained on street view images labeled with crime rankings from

multiple cities. We formulate the problem under the settings of

preference learning and label ranking.

•Develop a street view image retrieval algorithm with im-

proved abilities in representing actual urbanperceptions: An

efficient street view image retrieval algorithm is designed and imple-

mented while generating the image datasets. The retrieved image

datasets provide better urban perception representations than the

previous datasets for those places. Such improvement assists our

model in achieving a better prediction performance.

•Design a data-driven spatiotemporal street view image

and crime ranking labeling strategy: A spatiotemporal based

street view images and criminal offense record mapping algorithm

is designed for labeling the images. The proposed labeling scheme

is more representative and efficient than previous methods because

the process is unbiased and systematic.

•Extensive experiments andmake comparisons to validate

the effectiveness and efficiency of the proposed techniques:

We compare our proposed convolutional neural network with var-

ious methods. Conventional methods for learning label rankings

are selected for comparisons. Evaluations of various metrics and

detailed case study analysis are presented illustrating the effective-

ness of the proposed method. Interesting discoveries for street view

images’ perception radius (in feet) are also presented and discussed.

The rest of our paper is structured as follows. Related works

are reviewed in section 2. In section 3, we describe the problem

setup of our work. In section 4, we present a detailed discussion of

our proposed methods for predicting potential crime rankings from

street view images. In section 5, extensive experiment evaluations

and comparisons are presented. In the last section, we discuss our

conclusion and directions for future work.

2 RELATED WORKS

In this section, we provide a detailed review of the current state

of research for urban crime perception problem. There are sev-

eral threads of related work of this paper: urban perception from

street view imagery data, scene recognition and classification, and

preference learning on multi-label learning.

Urban Perception. The earliest studies on urban perception [3,

4] indicate strong spatial coherence between the locations of illegal

offenses and the residences of the offenders; these studies confirm

that offenders who commit robberies, residential burglaries, thefts

from vehicles, and assaults are more likely to target their current

and former residential area than similar areas they never lived

in. Previous works [10, 13, 20, 40] addressed problems of regional

public safety and urban appearance perception. For example, corre-

lations between a high initial level of homicide and losses in total

population are observed [30] in suburban areas adjacent to a large

city like Chicago. However, without street view images under a city-

wide coverage, these previous works drew conclusions based on

experiments with small datasets (160 manually taken photographs),

which is insufficient for mining latent patterns for the majority

of the urban appearances. In contrast, the method proposed in



this paper is trained on 44,694 street view images from two cities:

Washington, D.C., and New York City.

Recent branches of works in urban perception applied computer

vision and deep learning techniques to improve the resolution,

precision, and scale. Ordonez et al. [34] proposed a regression

model to predict the perceptual characteristics of places for wealth,

uniqueness, and safety. The proposed model utilized features such

as Gist, SIFT and Fisher Vectors. Such hand-craft features were

not representative enough for large street view datasets and were

outperformed by deep learning-based algorithms. Dubey et al. [12]

proposed a convolutional neural network to quantify the urban per-

ception along six perceptual attributes: safe, lively, boring, wealthy,

depressing and beautiful. Andersson et al. [1] proposed a novel

4-Cardinal Siamese convolutional neural network to predict urban

crime rates. However, this model applied four pre-trained VGG-16

architecture, which is not representative of the urban perception

tasks. Liu et al. [26] also proposed a convolutional neural network

for urban safety perception based on the crime dataset. Most of the

deep learning based urban perception methods for safety inference

focus on crime rate prediction and safety level comparison. Sub-

jective labels are inevitably introduced in the previous works as

most of the evaluations of the studies are performed by humans.

In this paper, we inspirationally address the correlations between

the urban appearance and the crime types. We also objectively

labeled and evaluated based on official crime records as the golden

standard.

Scene Recognition and Classification. Previous works have

demonstrated the feasibility of considering images of the appear-

ance of city streets as an indicator of hidden urban inferences such

as safety, wealth, and aesthetics [2, 14, 49]. Several previous works

have proposed computer vision techniques based on supervised

classification algorithms such as SVM or convolutional neural net-

works (CNN) for predicting the safety level of a specific urban area.

Although the question, “Does this place look safe?" has been re-

solved, previously proposed works only consider binary classes of

safety levels or solving the safety index regression problem. Var-

ious research ideas on street view images have been proposed in

recent years. Zamir et al. [45, 46] proposed a street view image loca-

tion retrieval approach with SIFT vocabulary trees and generalized

minimum clique graphs. Similar research problems of recognizing

objects such as street numbers [17], storefronts [31], and other

object recognition [15, 44, 48] also were addressed recently. Other

works focusing on 3-D reconstruction and city modeling based on

street level imagery have been proposed [7, 29].

Preference Learning. Preference learning algorithm for rank-

ing was previously proposed in [19] for multi-label learning prob-

lems. Previous researchers utilized constraints derived from multi-

label instances to enforce that the ranking of relevant classes is

higher than the irrelevant ones. Based on the proposed preference

learning structure, further applications of multiple-object detection

and image tag ranking problems [23, 24] have been studied under

such a problem setting. Most of the previous works in multi-label

ranking applied the pairwise model [6]. However, the pairwise

model for learning label preferences often suffers from the expen-

sive computation. We formulate crime preference learning using a

convolutional neural network. Such a design exploits convolutional

layer’s advantages for image feature extraction and deep neural

network’s learning ability for multi-label tasks.

3 PROBLEM STATEMENT

With machine learning algorithms on a huge street view image

dataset, it may be feasible for a human to perceive or inference the

types of criminal acts that are mostly likely to be committed to him

in a certain area.

Consider a setting where potential crime rankings are inferred

based on the given street view image in a certain area. We name

this procedure a perceptional crime rank inference.

In the problem setting, we are given a street view image space I

and a finite set of crime labels C = {c1, c2, ..., ck }. The assumption

has been made that there is a hidden correlation between the phys-

ical appearances of the city areas and the crime rankings in those

areas. We denote the training dataset ofn inferences asDn ⊆ I×C.

The general goal is to learn a “crime ranker” in the form of a

I → SC mapping, where the output space SC is given by the set of

all permutations of the set of crimes C. Thus, label ranking can be

seen as a generalization of conventional classification, a complete

ranking is associated with a street view image I :

cπ −1
I
(1)≻I cπ −1

I
(2)≻I ...≻I cπ −1

I
(k ) (1)

where πI is a permutation of {c1, c2, ..., ck } such that π−1
I
(i) is

the position of crime ci i in the ranking associated with the given

street view I .

We formulate the problem of crime ranking from street view

images as a pointwise preference learning problem on different

crime types. The goal is to learn a relevance score fi (I ) = reli
prediction function for each crime type ci from the street view

images, and a set of pairwise preferences of the form ci≻I c j from

the training data Dn . Such an outcome suggests that for street

view image I , ci is preferred to c j . For each rank judgment on crime

pairs ci and c j , the goal is to estimate a function f ∈ I → R and

F = { f | fi (I ) > fj (I ) ⇔ ci≻I c j ; (i , j)}, where fi represents a

prediction function for crime type i . To generalize the proposed

problem, we present the following:

f ∗ ∈ argmin
f ∈F

∑
Dn

R∗ (f ) + Ω (f ) (2)

where R∗(f ) corresponds to the empirical risk whose perfor-

mance is controlled by the selection of the loss function. A general

representation of the empirical loss is given by:

R∗(f ) =
1

|Dn |

∑
(I ,C)∈Dn

L(y, f (I )) (3)

To compare with the baseline algorithms, we discuss loss func-

tion selections for the conventional rank learning settings. The loss

function L(y, f (I )) in the empirical risk determines the descending

direction of the learning process. Note that y is the true relevance

score of an image I for a given crime type. Under the pairwise pref-

erence learning setting, various loss functions can be chosen. In this

paper, two loss functions are considered: 1) the logistic loss/cross

entropy loss and 2) the squared Hinge loss for the SVMs. Both loss

functions are smooth and convex. Consequentially, squared hinge

loss and logistic loss are formed respectively:



Lhinдe2 =
∑
Dn

max2(1 − ϕ(wT FI + b), 0) (4)

Ωl2 (f ) = λ‖w‖2 (5)

In Equation 5, Ω(f ) is the regularization term for controlling

the complicity of the model. For the SVM classifiers, only l2 norm

regularization is utilized, shown in Equation 5, where λ is the trade-

off parameter controlling the complexity of the model.

4 METHODOLOGY

In this section, we discuss the design of the proposed convolutional

neural network and its training and solution processes. We also

provide detailed discussions of the direction-based, street view

image retrieval algorithm.

4.1 StreetNet

In conventional image classification tasks, performance is greatly

dependent on feature selection. However, information loss is in-

evitably introduced to the classifier with such feature extraction

mechanisms. In contrast, convolutional neural networks signifi-

cantly keep complete image information. We propose an convo-

lutional neural network - StreetNet for crime type inference from

street view images. The structure of the proposed network is pre-

sented in Figure 2. The first several layers of the neural network are

convolutional layers, and they can be considered as feature extrac-

tion operators on the images globally. The difference between our

convolutional neural network based rank learning and other point-

wise rank learning algorithms is that we can learn the relevance

score simultaneously for different crime types. This advantage

is introduced by the structures of the fully connected layers and

output layer of our convolutional neural network.

4.1.1 Latent Features Extraction. Convolutional layers are im-

plemented for extracting latent features of street view images. A

Convolutional layer performs a convolution operation with a filter

size of k × k on the output of its previous layer. The convolutional

layer is represented:

I
n
j = f

©­«
Ln−1∑
i=1

I
n−1
i ∗Wn

i j + b
n
j
ª®¬

(6)

where I is the image feature matrix, n represents the nth layer of

the convolutional neural network;W is the flattened filter with a

size of k × k ; bnj is the bias of the feature filterW; f is the specified

activation function; and ∗ is the 2D convolution operation. The

max-pooling layer calculates the maximum activation on the areas

that are not overlapping with the filterW. The max-pooling layer

down- samples the street view images by the size of the filter.

4.1.2 Hidden Features Classification. Fully connected layers are

utilized for inferring relevance scores from the extracted latent

features. For each crime type, our goal is to learn a regression

of the relevance score for the given street view image. A linear

operation with weight matrix w and bias b is performed on the

output features of the last convolutional layer. The result of this

linear operation is fed into a rectified linear unit (ReLU ) activation

function. For each hidden node in the fully connected layer, ReLU

outputs an activation. In the last output layer, we sum the acti-

vations and multiply the sum of the activations by a vector of 1s.

While training, the root-means- squared-error (RMSE) is selected

as the loss function for the fully connected layers. The design of

our convolutional neural network is shown in Figure 2.

4.1.3 Parameter Optimization. Various selections of optimiza-

tion methods are available to optimize the empirical risk minimiza-

tion problem in convolutional neural networks. In our experiment,

we use AdaDelta [47], a variation of gradient descent, for optimizing

the neural network.

The AdaDelta on the other hand restricts the window of accu-

mulated past gradients to some fixed size w. This method reduces

the aggressively decreasing learning rate compared to the previous

methods. For representation simplicity, we define: дt = ∇wR
∗(w).

The updating expectation E[д2]t at time t depends on the previous

expectation and the current gradient:

E[д2]t = γE[д
2]t−1 + (1 − γ )дt

2 (7)

where γ is similar to the momentum term. In our settings, we

set γ to 0.9, and we set the learning rate η to 0.05. We can rewrite

the parameter update vector term:

∆wt = −
η√

E[д2]t + ϵ
дt (8)

where ϵ is a smoothing term that avoids division by zero. As the

denominator is just the root mean squared error criterion of the

gradient.

The RMS[∆w]t is approximated with the root mean squared

error of parameter updates until the previous time step. Then the

final AdaDelta updated rule is:

∆wt = −
RMS[∆w]t−1

RMS[д]t
дt (9)

wt+1 = wt + ∆wt (10)

By using the AdaDelta method, our model is less dependent on

the learning rate determination, since it is diminished from the

update rule.

4.2 Direction based Street View Retrieval

To reduce street view image noise introduced by recorded vehicles

or pedestrians, we select camera directions perpendicular to the

streets’ directions. The street view image retrieval process con-

siders urban roadway structures as geographical prior knowledge.

Under such consideration, the camera directions for the retrieved

street view images are always perpendicular to the direction of the

roadway. Compared to existing street view image datasets with

fixed compass directions (UCF Google Street View Dataset [46],

SUN dataset [35]), our dataset preserves a better representation of

the real urban perception. Such improvement can be quantified

explicitly from the experiment results in the following section of

this paper.

Details of direction based street view retrieval are presented in

Figure 3, the red dots represent the crime point locations reported

from the crime record datasets; the arrows represent the directions;

and the dashed blue lines represent the roadway networks. This
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algorithm preserves the urban surroundings with better represen-

tations; most of the previous works did not consider the directions

of the street view images [38]. Directions that are perpendicular

to the roadway are calculated based on the topological structure

information of the target city. CycloMedia GlobalSpotter API1 takes

the directions as queries retrieving the street view images.

Based on the given topological structures of the target cities’

roadways, the structure can be represented by a shapefile2 or a

spatial database: Shp = {r1, r2, r3, ..., rn } where ri represents one

road in the target city. The procedure of identifying the directions

perpendicular to the roads is presented in Algorithm 1, where the

operations <Ps , ri>, proj(ri , Ps ), and perp(Pv , ri ) are spatial func-

tions. <Ps , ri> calculates the spatial distance between the sample

point Ps and the road ri ; the function proj(ri , Ps ) finds the projec-

tion point of Ps on the road ri ; the function perp(Pv , ri ) returns the

directions that are perpendicular to the tangent line of the road ri
at the tangency location Pv [25].

4.3 Crime Rank Labeling

While calibrating ground truth street view images dataset with

crime rankings, we build spatiotemporal associations between offi-

cial crime records datasets of two cities and the street view images.

We utilize crime records datasets of Washington D. C. and New

York City. In the official crime records datasets, key information

of a crime record such as reported time, offense type, and geolo-

cation specified by latitude and longitude is provided. Street view

images with timestamps and geolocations are labeled with a lo-

calized crime density ranking. For a given street view image I tisi
with a timestamp ti and geolocation pair si = {lat, lon}, we define

1https://globespotter.cyclomedia.com/us/
2http://doc.arcgis.com/en/arcgis-online/reference

Algorithm 1: Direction based Street View Retrieval

Rc : Crime Records;

Shp : Topological Structure of the Roadways;

Ps : Location of a Sampled Point;

Function Directions(shp, Ps )

for Ps ∈ Crime Ranдe : Rc do

Closest Distance : Dc ←∞;

for all ri ∈ Shp do

if <Ps , ri> < Dc then

Dc ← <Ps , ri> ; // update closest road

end

end

Pv ← proj(ri , Ps ) ; // project direction to road

end

direct ion1, direct ion2← perp(Pv , ri );

return direct ion1, direct ion2
for Ci ∈ Crime Records : Rc do

{Ps1 , Ps2 , ..., Psn } ← Gaussian(Ci .дeom, Std );

for Psi ∈ {Ps1 , Ps2 , ..., Psn } do

direct ion1, direct ion2← Directions(Shp, Psi );

Imд_Retr (direct ion1, direct ion2)

end

end

a time window τ and a radius r . The local crime set is defined:

C = {C
tc
sc |ti − τ < tc ≤ ti + τ and dist(Sc , Si ) ≤ r }, where Ctc

sc rep-

resents the crime record with a report time at tc and a location at sc ;

the function dist() returns the distance between two points. Then

the crime types are ranked based on the local crime density with

a descending order. The density for crime type k is calculated by:

Dk = |Ck |/|C|. The labeling process is presented in Figure 4. We

manipulate the radius parameter r and generate street view crime

ranking datasets under multiple levels of resolutions. The radius

selected are 1 thousand feet and 2 thousand feet, which generates

four datasets for two cities: DC-1k, DC-2k, NYC-1k, and NYC-2k.

5 EXPERIMENT

In this section, we present the experiment environment, dataset in-

troduction, evaluation metrics and comparison methods, extensive

experimental analysis, and discussions of case studies.

5.1 Experimental Environment and Datasets

The convolutional neural network model is implemented utilizing

both Caffe and Keras frameworks respectively. All convolutional

neural network experiments were proceeded on a NVIDIA Tesla



Dataset Method nDCG@3 nDCG@5 nDCG@7 P@3 P@5 P@7 MAP

DC-1k

rSVM-HOG 0.6026 0.5620 0.6951 0.3421 0.6058 0.8549 0.4433

rSVM-SIFT 0.5882 0.6465 0.7098 0.3084 0.6752 0.9433 0.4880

RLS-HOG 0.5154 0.5312 0.6178 0.2865 0.5475 0.8322 0.4672

RLS-SIFT 0.6052 0.7054 0.7984 0.3612 0.7097 0.8579 0.5896

AlexNet 0.5598 0.5713 0.7823 0.4476 0.6884 0.8831 0.4568

VGGNet 0.6119 0.6546 0.6802 0.3782 0.6790 0.9217 0.5337

PlacesNet 0.6251 0.6619 0.7682 0.4146 0.6853 0.8964 0.6209

StreetNet 0.6809 0.7530 0.8210 0.4353 0.7079 0.9393 0.6340

NYC-1k

rSVM-HOG 0.6286 0.7051 0.8105 0.3315 0.6049 0.9213 0.4684

rSVM-SIFT 0.6569 0.8177 0.7290 0.3086 0.6639 0.8775 0.5181

RLS-HOG 0.4691 0.5138 0.6271 0.3822 0.6050 0.7849 0.4650

RLS-SIFT 0.6333 0.7114 0.7522 0.4071 0.6781 0.8797 0.5388

AlexNet 0.5092 0.6389 0.7256 0.4133 0.7233 0.8673 0.5376

VGGNet 0.6007 0.5873 0.7145 0.3997 0.6980 0.9103 0.6231

PlacesNet 0.6182 0.7378 0.7953 0.4586 0.7360 0.9353 0.6315

StreetNet 0.6793 0.7512 0.8226 0.4297 0.7438 0.9206 0.6245

DC-2k

rSVM-HOG 0.5469 0.5972 0.7356 0.3724 0.6294 0.7136 0.5006

rSVM-SIFT 0.3777 0.6093 0.6694 0.3469 0.5778 0.8483 0.5062

RLS-HOG 0.3940 0.4644 0.6376 0.3730 0.4956 0.7185 0.3624

RLS-SIFT 0.5511 0.6372 0.6856 0.3992 0.6730 0.8612 0.5493

AlexNet 0.5440 0.5891 0.6936 0.3522 0.6358 0.7983 0.498

VGGNet 0.5880 0.6780 0.7008 0.3208 0.5984 0.8439 0.5594

PlacesNet 0.6081 0.6300 0.7149 0.3722 0.7123 0.8280 0.5368

StreetNet 0.6116 0.6769 0.7583 0.3695 0.6728 0.9124 0.5637

NYC-2k

rSVM-HOG 0.6313 0.4937 0.7659 0.2797 0.4386 0.8337 0.4538

rSVM-SIFT 0.4390 0.5397 0.6922 0.2729 0.5947 0.7587 0.5195

RLS-HOG 0.4364 0.4139 0.6261 0.3359 0.5371 0.6932 0.4166

RLS-SIFT 0.5698 0.5725 0.6987 0.2745 0.6569 0.8947 0.5277

AlexNet 0.4793 0.5839 0.6704 0.3792 0.6002 0.8576 0.4796

VGGNet 0.5338 0.6193 0.7423 0.2860 0.5784 0.8233 0.5207

PlacesNet 0.6100 0.6455 0.7804 0.3557 0.6507 0.9204 0.5781

StreetNet 0.6139 0.6771 0.7602 0.3645 0.6718 0.9120 0.5516

Table 1: Crime Ranking Performance

Figure 4: Image Label Strategies

K20 GPU. For support vector machine and regression models, we

run the experiments on an Intel Core i7-4790 3.60GHz CPU with

32 GB memory. Standard libraries such as LibSVM and LibLINEAR

are utilized as baseline methods.

The experiments are conducted on street view datasets of twoma-

jor locations: Washington, D.C., and New York City. We trained our

proposed models on a set of 44,694 images for the physical appear-

ances for the street view, which is significantly more images than

in previous works [18, 39]. The street view images for the Wash-

ington, D.C., area are obtained from the CycloMedia GlobalSpotter

API. The CycloMedia GlobalSpotter is an interactive web-based

application that provides access to CycloMedia’ s panoramic street

level images. The Atlas PanoramaRendering Service of the Cyclo-

Media GlobalSpotter API provides a controllable RESTful API for

requesting street view images. The retrieved street view images are

directed horizontally and vertically after being given geo-location

and a spatial reference index.

Street view images for New York City were extracted from the

Google Street View data set [46]. Total of 23,764 images are pro-

vided by the New York City Google Street View data set. There

are 5,941 unique location points contained in this data set, each

location consists of 4 directions, and each direction represents one

view. Each image from the data set is geo-tagged with latitude and

longitude. Note that the image quality of the New York City Google

Street View data set is lower than the Cyclomedia GlobalSpotter

generated street view data set, and the camera view compass direc-

tions for the New York City Street View dataset are fixed to 0◦, 90◦,

180◦, and 270◦. As we will show in the later sections, this camera

direction mismatch to the street direction shows its insufficiency

in representing the actual street view.



Crime record datasets for Washington, D.C.,3 and New York

City4 are utilized for extracting the spatiotemporal correlations

between the street view images and the crime types. Nine types of

common crimes are considered as ranking labels: theft, theft from

auto, robbery, motor vehicle theft, burglary, assault with dangerous

weapon, sex abuse, homicide, and arson5. 36,484 cases of criminal

offenses in Washington, D.C., and 102,327 cases in New York City

are collected.

5.2 Baseline Methods

We compare the proposed method to the two major branches of

methods in urban perception and scene recognition areas. Firstly,

we implement hand-craft feature extraction methods on traditional

supervised learning methods. These methods include ranking-SVM

with HOG features (rSVM-HOG), ranking-SVM with SIFT features

(rSVM-SIFT ), regularized least squares with HOG features (RLS-

HOG), and regularized least squares with SIFT features (RLS-SIFT ).

Note that we utilize RBF kernel while solving the ranking-SVM.

HOG [9] is a popular feature descriptor used in computer vision

and image processing for multiple purposes of learning tasks. In

our experiments, descriptor blocks with a size of 8 by 8 are utilized

for HOG feature generation. Using scale invariant feature trans-

form (SIFT) [27] as a key point extraction mechanism has become

increasingly popular in recent years. variousus previous works

have justified its effectiveness [5, 28]. In this paper, SIFT key points

are extracted for each street view image to construct a bag of key

points; this method is referred to as the bag of words paradigm [8].

The other branch of baseline methods is deep regression networks

for urban perception problems. Baseline method of this branch

includes AlexNet [21], VGGNet [41], and the PlacesNet [49]. We

used the pre-trained models of the deep regression networks and

fine-tuned all these baseline methods on our street view image

dataset separately.

5.3 Evaluation Metrics

The effectivenesses of the nDCG@k , Precision@k , and MAP are

analyzed for all the comparison methods and the proposed method.

5.3.1 nDCG@k. The first metric is normalized discounted cu-

mulative gain at top k (nDCG@k) to evaluate the accuracy of the

crime ranking produced by a given crime ranking prediction model.

nDCG@k was first defined as an information retrieval (IR) evalua-

tion metric to consider the degree of relevance in retrieved results.

The more relevant results retrieved at top positions in the rank

would accumulate higher score to the top k gain. This metric

is chosen because it is suited for crime rankings that have mul-

tiple levels of assessment. For a given ground truth crime rank

{c1, c2, ..., ck } and its prediction {ĉ1, ĉ2, ..., ˆck }, the relevance scores

{ ˆrel1, ˆrel2, ..., ˆrelk } of the prediction ranking are firstly permutated

by the indexes of the ground truth; then nDCG@k is measured on

the permutation in the form of:

3http://data.octo.dc.gov/
4https://data.cityofnewyork.us/Public-Safety/Historical-New-York-City-Crime-
Data/hqhv-9zeg
5http://crimemap.dc.gov/CrimeDefinitions.aspx

nDCG@k =
1

Z

k∑
i=1

2r eli − 1

loд(1 + i)
(11)

The term Z is a normalization factor derived from a perfect

ranking of top k articles so that it would yield a nDCG@k of 1.

5.3.2 Precision@k. Precision measures in (IR) consider the num-

ber of relevant documents among the top k documents. In our

evaluation, relevant crime types in the predicted crime ranking

refer to the crime types that are also presented in the ground truth

crime ranking at cutting off point k . However, unlike nDCG@k , the

Precision@k measurement is incapable of capturing the order of in-

formation within the top k rankings. The Precision@k is measured

in the form of:

P@k =
|Predicted_Crimes@k ∩Ground_Truth_Crimes@k |

k

5.3.3 MAP. Mean average precision (MAP ) for a set of street

view images is the mean of the average precision scores for each

street view image. MAP has been shown to have especially good

discrimination and stability. TheMAP of a given set of rankings is

calculated:

MAP =
1

|I |

|I |∑
j=1

1

k

k∑
i=1

Precision@i (12)

where I is the complete set of the street view images for valida-

tion.

5.4 Experimental Analysis

In this section, we demonstrate the results of the crime type predic-

tion from street view urban perceptions. Experimental evaluations

of our proposed methods and extensive comparisons to the baseline

methods are conducted.

5.4.1 Crime Ranking Prediction. As shown in Table 1, our pro-

posed StreetNet outperforms the baseline methods in general. Such

performance increase is even more significant when the parameter

k is relatively small for both nDCG@k and precision@k. This result

also implies that the process of feature selection and extraction is

critical for image label ranking tasks, and the convolutional lay-

ers in the convolutional neural networks achieve better feature

extraction.

We compare the performance of our proposed convolutional

neural network and competing methods for crime ranking predic-

tion on different datasets. We generate four datasets out of two

major cities, Washington, D.C., and New York City, with two levels

of street view perception radius: 1,000 feet and 2,000 feet.

Table 1 shows that crime ranking prediction performance gener-

ally decreases as the street view perception radius becomes larger.

For example, comparing theDC-1k andDC-2k datasets, the nDCG@k

score of the DC-1k is 4% greater than the score of DC-2k; for the

metric precision@k , the prediction results of the DC-1k also out-

perform the results of DC-2k by 2% in general; the MAP of the

DC-1k also exceed DC-2k by 6%. From the previous experimental

observations, we find that the increase of the precision@k metric

is not as significant as the increase of the nDCG@k metric. This
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Figure 5: Street View Perception Radius Analysis

may be caused by the different properties of the evaluation metrics:

nDCG@k considers ordering of the crime relevance scores, while

precision@k is calculated based on the number of crime intersected

with the true crime set.

From the crime type ranking prediction results, interesting per-

formance patterns can be observed. Firstly, for metrics nDCG@k

and Precision@k, when the ranking parameter k is relatively small

(k = 3 or k = 5), some of the hand-craft features based methods

can outperform the deep neural networks (AlexNet, VGG-16, and

PlacesNet) . On the other hand, when the ranking parameter k is

set to be relatively large (k = 7), the deep neural networks can

outperform the hand-craft features based methods. Secondly, the

PlacesNet achieves better performance than other baseline methods

when trained on the NYC-1k and NYC-2k datasets. This is because

the pre-trained PlacesNet model was trained on an imagery dataset

with higher diversity. While handling street view images on urban

perception task, the PlacesNet will converge faster.

5.4.2 Street View Perception Radius Analysis. Further analysis

of the correlations between the selection of the radius and the

evaluation metrics are studied. The results help us to learn, in an

empirical way, the best crime rank representation area (resolution)

of a given street view image. Such a finding is highly practical in

the study of urban perception. For example, given a street view

image with geo-location, one is always interested in questions such

as: Can the street view represent the crime rank for the whole

city? Or can the street view only represent the crime rank for a

small neighborhood? What is the resolution? Figure 5 shows the

evaluation metrics results by varying the selections of the street

view perception radius. We find that for different learning methods,

the optimal radius varies. For nDCG@5, our proposed convolutional

neural network outperforms other comparison methods, and the

optimal radius for our method locates at 1,200 feet; ranking-SVM

with SIFT features locates its optimal selection of radius at 900 feet

for the same metric. In order to achieve the best of precision@5,

our method locates the optimal radius selection at 1,500 feet; and

ranking-SVM at 1,000 feet.

5.4.3 Direction-based Street View Image Retrieval Analysis. As

proposed in the methodology section, the direction-based street

view image retrieval algorithm is applied for retrieving the street

views with higher- quality urban representation. The street view

image datasets DC-1k and DC-2k are retrieved by our algorithm;

on the other hand, the other two street view image datasets are

retrieved with fixed compass directions of 0◦, 90◦, 180◦, and 270◦.

As in Table 1, we find that the performances of our method on

the NYC-1k and NYC-2k datasets is not as stable. This result is

intuitive, because a tremendous amount of noise can be introduced

to street view images with camera directions not perpendicular

to the streets. For example, if the camera direction is always the

same as the street’s direction, the retrieved street view image will

always present the street surface or the sky. In other words, the
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Figure 6: Crime Type Inferences from Street Views

resulting street view images will not be representative enough for

the real street view; image content like the front of a store or the

appearance of a building will be neglected.

5.5 Case Studies Discussions

In this section, a number of interesting crime ranking prediction

patterns are observed discovered by the proposed convolutional

neural network. The top 5 crime types with the highest relevance

scores learned are listed for each input street view image in Fig-

ure 6. The corresponding relevance scores are also presented. From

Figure 6, we can find interesting correlations between urban ap-

pearance and the predicted crime rankings. For example, crime

types such as robbery and motor vehicle theft are more likely to be

inferred from the street views of downtown areas. Such findings

are presented in Figures 6(a), 6(b), and 6(f). On the other hand, from

the street view images of residential areas or suburbs, crime types

such as burglary and theft are more likely to be predicted by our

approach; the results are shown in Figures 6(c), 6(g), and 6(h). As

presented in Figure 1, the predicted crime ranking results for both

downtown areas and the suburbs fit the crime distributions in those

places. The consistency with official crime records indicates the

feasibility of inferring crime rankings or other safety information

from street view images or other forms of urban perception.

In order to test the performance of our model, we manually

extract street view images from Google Maps, and selected areas

with no public crime records accessible. The results are shown in

Figures 6(d), 6(e), 6(i), and 6(j). Similar crime ranking prediction

patterns can be witnessed from these results. From these tests, we

show that our model is highly practical for application scenarios

such as 1) areas and cities with no easy access to public crime

records data and 2) end users traveling to an unfamiliar area with

no idea how safe it is.

6 CONCLUSION

This paper presents a novel convolutional neural network solu-

tion to the problem of inferring crime rankings from street view

images of an area. The convolutional neural network model is

designed based on the settings of a preference learning framework.

By taking road structure data as prior knowledge, the proposed

direction-based street view image retrieval method presents better

preservation of urban perceptions. By exploiting the spatiotempo-

ral correlations between the street view images and official crime

records datasets, we generate labeled training data in a data-driven

way, which greatly reduces bias. Comparisons with previous im-

age feature extraction and ranking learning algorithms show that

the proposed convolutional neural network approach outperforms

the baseline methods in learning crime rankings from street view

images. Extensive experiments based on multiple street view im-

age datasets and crime records confirm the feasibility of inferring



hidden knowledge such as crime ranking from urban perception

data.
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