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Automated Facial Recognition Systems (AFRS) are used by governments, law enforcement agencies,

and private businesses to verify the identity of individuals. Although previous research has compared

the performance of AFRS and humans on tasks of one-to-one face matching, little is known about how

effectively human operators can use these AFRS as decision-aids. Our aim was to investigate how the

prior decision from an AFRS affects human performance on a face matching task, and to establish

whether human oversight of AFRS decisions can lead to collaborative performance gains for the

human-algorithm team. The identification decisions from our simulated AFRS were informed by

the performance of a real, state-of-the-art, Deep Convolutional Neural Network (DCNN) AFRS on the

same task. Across five pre-registered experiments, human operators used the decisions from highly

accurate AFRS (.90%) to improve their own face matching performance compared with baseline (sen-

sitivity gain: Cohen’s d = 0.71–1.28; overall accuracy gain: d = 0.73–1.46). Yet, despite this improve-

ment, AFRS-aided human performance consistently failed to reach the level that the AFRS achieved

alone. Even when the AFRS erred only on the face pairs with the highest human accuracy (.89%), par-

ticipants often failed to correct the system’s errors, while also overruling many correct decisions, raising

questions about the conditions under which human oversight might enhance AFRS operation. Overall,

these data demonstrate that the human operator is a limiting factor in this simple model of human-

AFRS teaming. These findings have implications for the “human-in-the-loop” approach to AFRS over-

sight in forensic face matching scenarios.
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verification
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Facial appearance is commonly used for identification, includ-

ing when buying age-restricted products, opening a bank account,

or crossing international borders. Identification often occurs as a

one-to-one face matching task, where an observer must decide

whether a form of photographic identification (e.g., passport, driv-

er’s license) matches the identity of the person presenting it for

inspection. Despite the apparent simplicity of this task, matching

unfamiliar faces (i.e., those that have not been seen before) is sur-

prisingly difficult (Bruce et al., 1999; Hancock et al., 2000; Kemp

et al., 1997). Error rates of approximately 10% to 20% are often

reported in face matching tasks with high-quality images captured

under favorable conditions (Burton et al., 2010), whereas error

rates above 30% are common in tasks with image variability that

is more representative of applied scenarios (Carragher & Hancock,

2020; Fysh & Bindemann, 2018b). But there are also considerable

differences in face matching ability, such that some individuals

struggle to achieve chance performance, while others perform

with near perfect accuracy (Bobak et al., 2016; Burton et al.,
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2010). These individual differences persist among professionals

who regularly perform face matching (Weatherford et al., 2021;

White et al., 2014; Wirth & Carbon, 2017). As a group, passport

issuance officers recorded the same average level of unfamiliar

face matching performance as an untrained participant sample;

however, the accuracy of individual officers ranged from 57% to

95% correct (White et al., 2014).

The fallibility of human face matching ability has spurred the

development of Automated Facial Recognition Systems (AFRS).

In just seconds, these systems can compare a single probe face

with another face to verify an individual’s identity (e.g., compar-

ing a traveler to their passport image) or with an entire database of

known faces (e.g., comparing an image from CCTV to a database

of known offenders). Although the computational architecture

underlying these AFRS is remarkably complex (Noyes & Hill,

2021), simply stated, these systems must find a face in the submit-

ted image (either an image file or live-feed video) and then process

it to output a simple vector of typically 128–512 numbers. In veri-

fication tasks, the vectors from the two specified images are com-

pared. For recognition, the vector from the single input image is

compared with all those stored in the database. In both cases, a

threshold value can be set for the AFRS, which determines the

level of vector similarity that is required before accepting two

images to be an identity “match”; setting a high threshold will

reduce false matches (two different people incorrectly judged to

be the same) at the cost of excluding some correct matches. Recent

technological advancements, including the development of Deep

Convolutional Neural Networks (DCNNs), have seen the accuracy

of these AFRS increase dramatically over the last two decades

(Grother et al., 2021; Phillips & O’Toole, 2014), such that many

state-of-the-art systems now outperform all but the very best

human observers (Phillips et al., 2018), even on tasks with highly

challenging novel stimuli (Carragher & Hancock, 2020; Ngan

et al., 2020).

With these advances in accuracy, AFRS are now used to secure

highly sensitive infrastructure, including border crossings (Ritchie

et al., 2021). Electronic passport gates (“e-Gates”) are a form of

Automated Border Control (ABC) commonly found in interna-

tional airports (Fysh & Bindemann, 2018a). These e-Gates contain

a document reader, which extracts a stored digital copy of the trav-

eler’s passport image, and a camera, which is used to capture

images of the traveler’s current appearance. AFRS software in the

e-Gate then creates and compares vector templates for the two

images (passport photograph, current appearance). Templates with

a similarity value above a certain threshold are deemed to be an

identity match, and the traveler is allowed through the e-Gate

(MacLeod & McLindin, 2011).

Despite the high accuracy of many modern AFRS, a human op-

erator is still needed to monitor the performance of the e-Gates for

errors or inconclusive judgments (FRONTEX, 2015; Fysh &

Bindemann, 2018a), because even highly accurate AFRS can

make errors that are obvious to a human observer (Hancock et al.,

2020). Instances in which the e-Gate returns an identity mismatch,

or is unable to process an individual, are also referred to a human

agent for manual processing (FRONTEX, 2015; MacLeod &

McLindin, 2011). Although such “human-in-the-loop” models of

AFRS oversight are already in use (FRONTEX, 2015), little is

known about the way prior decisions from an AFRS affect the

final identification decisions made by the human operator. By

investigating how humans use AFRS as a decision-aid in face

matching tasks, we hope to shed light on the factors that might

affect the efficacy of these human-in-the-loop models of AFRS

oversight.

Initial investigations of human-algorithm teaming in face recog-

nition focused on “fusion”, a process wherein the independent

judgments of humans and AFRS are combined in a weighted aver-

age to produce a final identification decision (O’Toole et al.,

2007). Much like the “wisdom of the crowds” effect (Galton,

1907), whereby averaging judgments from many observers pro-

duces more accurate face matching performance than that of most

individuals (Jeckeln et al., 2018; White et al., 2013), fusing the

decisions of humans and algorithms can also result in higher accu-

racy then either achieves alone (Phillips et al., 2018). These prom-

ising results from fusion approaches would seem to suggest that

human-AFRS teaming could lead to collaborative performance

gains in face matching tasks. However, fusion treats the decisions

made by the AFRS and the human as separate events. As such,

this approach does not reflect the nature of a sequential decision-

Figure 1

Examples of (a) Match and (b) Mismatch Trials From the Expertise in Facial Comparison Test

(EFCT)

Note. To preserve the integrity of the EFCT, the two pairs shown here are among those with the highest accuracy

for human observers. These images are from the EFCT image set (White, Phillips, et al., 2015). See the online arti-

cle for the color version of this figure.
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making process in which the human is aware of the decision made

by the AFRS prior to making their own judgment. This sequential

process is potentially consistent with a scenario in which the

human operator reviews the decisions made by the AFRS (Fysh &

Bindemann, 2018a).

Even though humans (Bruce et al., 1999; Megreya & Burton,

2006) and AFRS (Grother et al., 2019; Grother et al., 2021) can

both make face matching errors, it is still possible for a human-

algorithm team to achieve a level of performance exceeding that

which either achieves alone (Wickens & Dixon, 2007). In an over-

sight scenario, this collaborative gain would be realized if the

human operator followed the system’s correct decisions and over-

ruled its incorrect decisions. Theoretically, optimal collaborative

performance could be achieved if the AFRS shared direct evidence

information about a decision with the human operator, who after

making their own independent decision, was capable of weighing

the two judgments by the reliability of each source’s past decisions

(Bahrami et al., 2010; Robinson & Sorkin, 1985; Sorkin et al.,

2001). However, such optimal performance is rarely observed in

human-algorithm teams (Bartlett & McCarley, 2017; Boskemper

et al., 2021). Instead, human use of automated aides is often typi-

fied by misuse or disuse, wherein the operator over- or under-relies

on the decisions from the system (Parasuraman & Riley, 1997),

reducing the possible collaborative performance of the pairing

(Bahrami et al., 2010; Bartlett & McCarley, 2017).

There are several reasons to think that suboptimal performance

is likely to characterize human use of AFRS in verification tasks.

First, although an individual’s decision confidence relates to their

face matching accuracy on a trial-by-trial basis (Stephens et al.,

2017), observers only have a moderate insight into their own gen-

eral face identification abilities (Bobak et al., 2019; Matsuyoshi &

Watanabe, 2021; Zhou & Jenkins, 2020), which could contribute

to inappropriate use of the AFRS, whether by misuse or disuse

(Lee & Moray, 1994; Parasuraman & Riley, 1997). Second,

human performance has already been shown to be a limiting factor

in AFRS assisted one-to-many face matching tasks (Heyer et al.,

2018; White, Dunn, et al., 2015). White, Dunn, et al. (2015) used

a commercial AFRS to return a candidate list of the 8 faces that

were most similar to each probe identity from a database contain-

ing millions of images. Participants only correctly identified the

adult target face from the candidate list in 44% of trials where it

was present, while also only correctly rejecting target absent

arrays on around 45% of trials (Experiment 1). Concerningly, both

the student sample and the professional passport review officers—

who used AFRS in their daily work—made errors on more than

50% of trials (White, Dunn, et al., 2015). In a similar study, Heyer

et al. (2018) reported that both novices and professional facial

reviewers made more errors as the number of faces in the candi-

date list returned by the AFRS increased.

Although these studies offer the first indication that human

ability might constrain the potential benefits of human-AFRS

teaming (Heyer et al., 2018; White, Dunn, et al., 2015), the task

demands of a one-to-many array search differ substantially from

those of the one-to-one matching task that is performed in many

identity verification scenarios. To the best of our knowledge,

only two studies have investigated how human performance on a

one-to-one face matching task is influenced by the prior decision

of an AFRS. Fysh and Bindemann (2018a) had participants com-

plete a matching task in which each face pair was accompanied

by a decision label (“same” or “different”) from a fictitious

AFRS that was correct on 60% of trials, incorrect on 20% of tri-

als, and “unresolved” on 20% of trials (i.e., offered no decision).

Human performance was highest on trials that were correctly la-

beled and fell when the labels were incorrect or unresolved.

Likewise, Howard et al. (2020) showed participants 12 face

pairs, each with an identity decision from a fictitious AFRS that

was correct on 50% of trials. Human ratings of similarity for

each face pair shifted toward the decision label, regardless of its

accuracy. Both studies concluded that humans were biased to-

ward accepting decisions made by the AFRS, even if erroneous

(Fysh & Bindemann, 2018a; Howard et al., 2020).

Yet, both studies suffer limitations that affect their generaliz-

ability (Fysh & Bindemann, 2018a; Howard et al., 2020). First,

neither measured the unaided face matching performance of the

participants. As such, whether, and to what extent, human per-

formance changes when working with an AFRS remains unclear.

Second, neither study used a real AFRS; instead, the researchers

randomly selected and counterbalanced the pairs of faces that

were shown with erroneous decision labels. Although this meth-

odological choice is appropriate from an experimental perspective,

real AFRS will only err on the mismatch pairs they calculate to

have the highest vector similarity (or identity matches with the

lowest similarity ratings). Third, these fictitious AFRS had unchar-

acteristically low accuracy, which can reduce the operator’s reli-

ance on a decision-aid (Wickens & Dixon, 2007), and limits the

generalization of these findings to operational settings with more

accurate systems. For example, the European Border and Coast

Guard Agency requires that false acceptance of a mismatch by

ABCs occurs on fewer than 0.1% of trials, with false rejections of

a true match occurring on less than 5% of trials (FRONTEX,

2015). Finally, neither study informed participants about the exact

accuracy of the AFRS, which constrains the ability of the observer

to appropriately weigh the AFRS’s decisions against their own to

achieve optimal performance (Bahrami et al., 2010; Robinson &

Sorkin, 1985). Together, these limitations mean that many ques-

tions remain about how the prior decision from an AFRS affects

human face matching performance, which could have implications

for the successful implementation of various models of human-

in-the-loop AFRS oversight.

The overarching aim of this project was to investigate how the

prior decision from an AFRS affects human performance on a

face matching task, and to establish whether human oversight of

AFRS decisions in a simplified paradigm can lead to perform-

ance gains for the collaborative pair. Importantly, and in contrast

to previous studies, the decisions given by the simulated AFRS

in each experiment were informed by the performance of a real,

state-of-the-art, DCNN AFRS on the same face matching task

(see Carragher & Hancock, 2020). Although two previous stud-

ies have shown that human decisions are biased toward those

made by a fictitious AFRS (Fysh & Bindemann, 2018a; Howard

et al., 2020), many basic questions remain about the collabora-

tive performance of these human-algorithm teams. Across five

pre-registered experiments, we investigated whether it is possi-

ble for human operators to improve their own face matching per-

formance when using a simulated AFRS as a decision-aid, and

tested whether this level of aided performance exceeds that of

the AFRS alone. We also examined whether the efficacy of this

arrangement varies depending on how the AFRS communicates
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decisions (Experiment 1b), whether participants know accuracy

of the AFRS (Experiment 2b), or the difficulty of the trials (high

vs. low human accuracy) that the AFRS errs on (Experiment 3).

A summary of the conditions in each experiment is reported in Ta-

ble 1. These experiments were designed to further our limited under-

standing of collaborative human-algorithm teaming in complex

identity verification scenarios.

General Method

All five experiments (1a, 1b, 2a, 2b, 3) rely on the same basic

methodology. We outline this general method here and highlight

any differences in the experiments as they are reported in turn.

Transparency and Openness

We report all manipulations and measures, participant exclu-

sions, as well as how we determined the sample size in each

experiment. The aims, hypotheses, design, and analyses for each

experiment were pre-registered prior to data collection. Explora-

tory analyses are clearly identified in each results section. All ana-

lyzed data are available online. These pre-registrations and data

files can be found on the Open Science Framework (OSF; https://

osf.io/d4vkm/). All statistical analyses were performed in JASP

0.14.0 (JASP Team, 2020).

Participants

All participants were recruited online through Prolific (https://

prolific.co/). Participants were at least 18 years old, reported living

in the U.K., and met our minimum Prolific experience criteria (had

completed at least five previous experiments with an accepted

completion rate above 90%, but had not participated in any other

study from our laboratory).

To maintain data integrity, we applied pre-registered exclusion

criteria to these data prior to analysis. All data were excluded from

participants who: completed the task too quickly (,8 minutes) or

slowly (.60 minutes); did not understand task instructions (indi-

cated by baseline d0 , 0); failed to give the correct response to

both attention check trials (see below); had missing data (or failed

to complete the task); or started the face matching task multiple

times.1 Finally, in Experiment 2b we pre-registered an additional

criterion (that we also applied retroactively to Experiments 1a and

2a), to exclude all data from participants who gave a response to

one of two end-of-task questions that was either inconsistent with

their actual experimental condition (e.g., control condition partici-

pants incorrectly reporting that they were in the AFRS condition),

or indicated that they did not recall the stated accuracy of the

AFRS (from a multiple choice question with two options). We

only report the demographics of the final samples in the main text.

Participant exclusions for each experiment are reported in the

online supplemental materials.

Ethics

The General University Ethics Panel at the University of Stir-

ling approved this research. All participants gave informed consent

before starting an experiment, were debriefed on completion, and

received £2.50 for their time.

Design

Each experiment had a mixed measures design. Participants

were randomly allocated to an Aid Condition for the duration of

the experiment (between-participants). All participants completed

a face matching task (see below), which was presented in two

phases (within-participants). In the baseline phase, all participants

completed the face matching task alone. In the test phase, partici-

pants in the AFRS condition(s) were shown the identification deci-

sion from a simulated AFRS prior to making their own response,

whereas those in the control condition did not receive any assis-

tance. Thus, each experiment consisted of the within-participants

factor of Task Phase (baseline, test) and the between-participants

factor of Aid Condition (AFRS, control).

Expertise in Facial Comparison Test

Participants completed the Expertise in Facial Comparison Test

(EFCT; White, Phillips, et al., 2015), which consists of images

from the Good, the Bad, and the Ugly stimulus set (Phillips, Bev-

eridge, et al., 2011). This image set contains multiple images of

the same individuals, which were collected in unconstrained natu-

ralistic settings on different days, ensuring transient characteristics

(e.g., clothing, hairstyle) do not cue identity (see Figure 1). The

EFCT consists of face pairs with high error rates among computer

algorithms (of the time) and human observers (O’Toole et al.,

2012; White, Phillips, et al., 2015). The test has 168 trials and

includes both male and female face pairs.

We divided the EFCT into two sets (A, B) of equal difficulty

(Carragher et al., 2022; White, Phillips, et al., 2015), which each

had 42 match pairs and 42 mismatch pairs. The presentation of

each set (A, B) in the baseline or test phase of the experiment was

counterbalanced between participants. Trial order was randomized

within each set. Custom written code rotated each face to align the

eyes horizontally in the center of the image. The stimuli were pre-

sented in color. Each image was 2523 357 px in size (approximately

8.0 3 11.5 cm when presented though Qualtrics on a 230 0 1,920 3

1,080 px monitor).

Automated Facial Recognition Systems

Like the two previous studies in this field (Fysh & Bindemann,

2018a; Howard et al., 2020), we chose to simulate the AFRS in

each experiment, which allowed greater experimental control over

the performance characteristics of the decision-aid. However, our

approach advances on the fictitious AFRS in these previous studies

because the decisions from our simulated AFRS were based on

those of a real, state-of-the-art, DCNN on the EFCT.

Real AFRS

This DCNN was developed by the University of Surrey, which

we had access to through the FACER2VM project. This DCNN

produces a similarity score that is the cosine of the angle between

the 512 element vectors of the two faces being compared. These

similarity scores can range from �1.0 to þ1.0, where scores of

þ0.40 and above are indicative of a “same” identification decision.

We have previously shown that the classification accuracy of the

1
See the pre-registration of Experiment 1a for further detail.
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FACER2VM DCNN exceeds that of three commercial DCNNs on

the Stirling Famous Face Matching Task (Carragher & Hancock,

2020). Further information about this DCNN can be found in our

previous work (Carragher & Hancock, 2020).

Simulated AFRS

The real FACER2VM DCNN correctly classified all 168 pairs

in the EFCT (see the online supplemental materials). However, to

address our research questions, each simulated AFRS needed to

give several incorrect decisions throughout the task. As such, we

selected the match/mismatch pairs in each EFCT set (A, B) that

were closest to the DCNN’s decision threshold as those that would

be shown as “errors” in each experiment.2 The exact number of tri-

als with incorrect labels varies in each experiment, depending on

the level of AFRS performance required. During the aided test

phase for the AFRS condition, the AFRS gave a binary identifica-

tion decision (“same”, “different”).

Attention Check

We added two attention check trials to the EFCT so that we

could screen the data for inattentive or inauthentic participants

(Carragher et al., 2022). These were pairs of famous faces that

were obvious identity mismatches (Pair 1: former presidents Bar-

ack Obama & Donald Trump; Pair 2: Queen Elizabeth II & Prime

Minister Boris Johnson). For the attention check trial in the test

phase of each experiment, the AFRS did not offer an identification

decision—instead, the system showed that it was “offline” to all

conditions. Participants who failed to respond “different” to both

attention check trials were excluded from all analyses.

Procedure

Each experiment was run online using Qualtrics survey software.

These experiments could not be accessed on mobile devices. The

initial instructions informed participants that they were to complete

a face matching task. They were then told of our interest in how

people complete these tasks when assisted by state-of-the-art facial

recognition computers. All participants were told that in the second

half of the experiment, some participants would be able to see the

decisions made by a simulated AFRS we had created for the experi-

ment. The participants were told exactly how accurate the decisions

from the AFRS would be. Participants were instructed that they

would still need to give their own identification decision, and that

they should correct the AFRS when they thought it had provided

the incorrect answer.

On each trial, two faces were presented simultaneously. Partici-

pants responded to the question “Do these photographs show the

same person, or two different people?” by clicking either “same” or

“different.” The faces remained on screen until a response was made.

After completing the first half of the EFCT on their own (baseline),

participants could take a short break. Participants were then reminded

that some respondents would see the identity decision made by our

simulated AFRS for each pair in the second half of the task and were

told again exactly how accurate these decisions would be.

The second half of the task (test) only differed to the first (base-

line) in that below the main prompt question there was a new line

that read “Computer says: . . .”. For participants in the AFRS con-

dition(s), the AFRS gave a binary identification judgment (“same”

or “different”) to each pair. For participants in the control condi-

tion, the AFRS always gave the response “offline” (i.e., they

received no assistance). All participants still gave their own iden-

tity judgment for each pair.

Following the face matching task, participants were asked several

exploratory questions about their beliefs regarding the accuracy of

humans and AFRS on face matching tasks. These exploratory data

are not reported in the current paper; instead, they were included in

the task to inform our future research. Across all five experiments,

participants took an average of 18 minutes (SD = 8.1) to finish the

task.

Table 1

The Characteristics of Each Automated Facial Recognition Systems (AFRS) in All Five Experiments

AFRS characteristics

Experiment Aid condition Decision type System accuracy Error trials Overall accuracy d 0

1a AFRS Binary Known DCNN similarity 97.6% 3.962
Control — — — — —

1b AFRS Similarity Known DCNN similarity 97.6% 3.962
Control — — — — —

2a AFRS93 Binary Known DCNN similarity 92.9% 2.930
AFRS55 Binary Known DCNN similarity 54.8% 0.239
Control — — — — —

2b AFRS93 Binary Unknown DCNN similarity 92.9% 2.930
AFRS55 Binary Unknown DCNN similarity 54.8% 0.239
Control — — — — —

3 AFRS-High Binary Known High human accuracy 90.5% 2.618
AFRS-Low Binary Known Low human accuracy 90.5% 2.618
Control — — — — —

Note. “Decision Type” shows whether the AFRS gave a binary identification decision (same, different) or a decision supplemented with a similarity rat-
ing (0.00–1.00). “System Accuracy” indicates whether the participants were told the exact accuracy of the AFRS prior to the task (known, unknown).
“Error Trials” describes how the trials that were errors for the AFRS were selected (Deep Convolutional Neural Network [DCNN] similarity ratings,
human accuracy). Overall accuracy and d 0 show the level of performance each AFRS achieved alone.

2
When the DCNN gave the same similarity rating to multiple face pairs,

we selected the pair with the lowest average human accuracy as the error
trial. These accuracy values came from the “pre-training” responses to the
EFCT reported in the supplementary materials of Carragher et al. (2022).
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Analysis

Responses to each trial were recorded as hits (correctly respond-

ing “same” on a match trial) and false alarms (incorrectly respond-

ing “same” on a mismatch trial), which were used to calculate the

signal detection measures (Green & Swets, 1966) of sensitivity

(d0, “dee-prime”) and criterion using the formulae in Stanislaw

and Todorov (1999). Sensitivity describes how well participants

can distinguish identity matches from mismatches, independent of

response bias. With a minor adjustment for extreme performance

(Stanislaw & Todorov, 1999), the maximum possible value of d0

in each half of the EFCT is 4.52. A d0 of 0 indicates chance per-

formance. As per our pre-registrations, we consider sensitivity to

be our primary measure of performance. However, we also report

a complete secondary analysis of overall accuracy to provide a

description of performance that is more familiar to all readers. In

the online supplemental materials, we analyze accuracy for match

and mismatch trials separately (Megreya & Burton, 2007).

Criterion is a measure of response bias, which shows whether

participants tended to respond “same” or “different” across trial

types (Macmillan & Creelman, 2004). As such, criterion is not a

measure of performance or ability; rather, criterion offers a de-

scriptive measure of response strategy. Negative values indicate a

liberal response bias (responding “same”), whereas positive values

signal a conservative response bias (responding “different”). To

foreshadow the results from all five experiments, participants in all

conditions consistently showed a conservative response bias at

baseline, which weakened—but often remained significant—in the

later test phase. This response bias drift is consistent with normal

response behaviors in long face matching tasks (Alenezi et al.,

2015), and occurred when we previously used the EFCT (Carra-

gher et al., 2022), indicating that it is completely unrelated to our

AFRS manipulation. For brevity, the pre-registered one-sample

t tests comparing criterion to neutral responding for each condition

are reported in the online supplemental materials for each experiment.

As per our pre-registrations, we have supplemented frequentist

t tests (one- and paired-samples) with equivalent Bayesian t tests.

For consistency, all reported Bayes factors test for evidence in

favor of the alternative hypothesis (BF10). The following classifi-

cation scheme (JASP Team, 2020) can be used to characterize the

strength of our Bayes factors (Goss-Sampson et al., 2020); Bayes

factors of 1–3 provide anecdotal evidence in favor of the alterna-

tive hypothesis, while factors of 3–10, 10–30, 30–100 and .100

provide moderate, strong, very strong, and decisive evidence,

respectively. Conversely, values between 1.00–0.33 provide anec-

dotal evidence in favor of the null hypothesis, while factors of

0.33–0.10, 0.10–0.033, 0.033–0.010, and ,0.010 provide moder-

ate, strong, very strong, and decisive evidence, respectively. All

Bayesian analyses use default priors (JASP Team, 2020).

Regardless of measure (d0, overall accuracy, criterion), each

mixed measures analysis of variance (ANOVA) reported in Experi-

ment 1 (a, b) has Task Phase (baseline, test) as a within-participants

factor and Aid Condition (AFRS, control) as a between-participants

factor. In Experiment 2 (a, b) and Experiment 3, Aid Condition is a

between-participants factor with three levels. The interaction

between Task Phase and Aid Condition is the key comparison in

each ANOVA. Significant interactions are interpreted using simple

main effects analysis.

Experiment 1a

We began by investigating how the prior decisions from a highly

accurate AFRS would influence human face matching performance.

Participants were randomized into two between-subjects Aid Condi-

tions (AFRS, control). The simulated AFRS gave correct responses

to 41 of 42 match trials and 41 of 42 mismatch trials, for an overall

accuracy of 97.6% (d0 = 3.962).

We expected to find a significant interaction between Aid Con-

dition (AFRS, control) and Task Phase (baseline, test), such that

the performance of the AFRS condition when aided at test would

improve compared to baseline. No change was expected for the

control condition. However, we also expected that those in the

AFRS condition would fail to use the decision-aid in an optimal

way (Bartlett & McCarley, 2017), such that their aided sensitivity

in the test phase would be significantly lower than that of the

AFRS alone.

We also pre-registered testing whether an individual’s face

matching ability was related to their capacity to use the AFRS de-

cision-aid effectively. We expected to find a correlation between

sensitivity at baseline and the change to sensitivity in the aided

task; however, because this was an exploratory analysis, we

offered no formal prediction regarding the direction of this rela-

tionship. This analysis could reveal whether certain individuals are

suited to roles that use AFRS as a decision-aid, which might have

consequences for personnel selection in applied settings.

In addition to examining human performance, we also investi-

gated how the accuracy for each face pair changed in the aided test

phase for the AFRS condition. Across counterbalances the AFRS

gave incorrect responses to 4 of 168 trials (i.e., one match and one

mismatch error in both Set A and Set B). We expected that accu-

racy for these four error trials would be lower for the AFRS condi-

tion in the aided test phase than at baseline, whereas accuracy for

the correctly labeled trials should increase. Because there were so

few errors, we simply report the descriptive statistics for the

change in accuracy (accuracy at test minus accuracy at baseline)

for pairs that were shown with correct and incorrect AFRS labels.

To infer meaningful differences, the changes in accuracy that

occur in the AFRS aid condition should exceed those that occur in

the control condition.

Method

Sample Size

Experiment 1 (a, b) has a 23 2 mixed measures design. However,

we could not identify an appropriate prior effect size for an interaction

in this paradigm to use in a power analysis. Instead, we conducted our

power analysis using the arbitrarily selected medium-to-large effect

size of g2
p = .09. Our a priori power analysis (G*Power; Faul et al.,

2007) indicated that 82 participants (total) were required to achieve

80% power to detect an interaction effect of g2
p = .09 in a mixed

measures ANOVA with a two-level within-participants factor (Task

Phase) and a two-level between-participants factor (Aid Condition) at

an alpha of a = .05. To account for participant exclusions, we aimed

to recruit 55 participants to each Aid Condition, so that data from

approximately 50 participants would remain in each condition for the

final analysis. This was also true of Experiment 1b.
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Participants

The final sample consisted of 53 participants in the AFRS con-

dition (M = 33.0, SD = 11.7, 30 females, 23 males) and 46 partici-

pants in the control condition (M = 29.6, SD = 9.9, 32 females, 13

males, 1 other).

Results

Participant Performance

Sensitivity. The main effects of Task Phase, F(1, 97) = 31.35,

p , .001, g2
p = .24, and Aid Condition, F(1, 97) = 8.71, p = .004,

g
2
p = .08, were significant, as was their interaction, F(1, 97) =

23.93, p , .001, g2
p = .20 (see Figure 2a). Simple main effects

analysis revealed that sensitivity increased in the test phase for the

AFRS condition, while there was no change for the control condi-

tion (see Table 2). Despite this improvement, a one-sample t test

revealed that the aided sensitivity of the AFRS condition at test

was significantly lower than that of the AFRS alone (d0 = 3.962),

t(52) = �12.92, 95%CI of mean difference [�1.88, �1.37], p ,

.001, d = �1.77, BF10 = 7.55e þ 14.

Is Face Matching Ability Related to Effective AFRS Use? We

investigated whether an individual’s face matching ability was

related to their capacity to use the AFRS decision-aid effectively, as

measured by the change to their sensitivity in the aided test phase

(test phase d0 minus baseline d0). This relationship was nonsignifi-

cant, r(52) = �0.11, 95% CI [�0.37, 0.17], p = .448. This result is

supported by further analyses reported in the online supplemental

materials for Experiment 1b.

Overall Accuracy. The main effect of Task Phase was signif-

icant, F(1, 97) = 25.82, p , .001, g2
p = .21, as was the main effect

of Aid Condition, F(1, 97) = 7.63, p = .007, g2
p = .07, and their

interaction, F(1, 97) = 23.59, p , .001, g2
p = .20 (see Figure 2b).

Overall accuracy increased in the test phase for the AFRS condi-

tion. There was no change for the control condition (see Table 2).

Criterion. The main effect of Task Phase was significant,

F(1, 97) = 16.46, p, .001, g2
p = .15. Participants had a larger con-

servative response bias at baseline (M = 0.36, SD = 0.44) than at

test (M = 0.20, SD = 0.50). This conservative response bias indi-

cates that participants tended to respond “different” across all

pairs. The main effect of Aid Condition was nonsignificant, F(1,

97) = 0.71, p = .400, g2
p = .01, as was the interaction, F(1, 97) =

0.01, p = .932, g2
p = .00.

Image Pair Analysis

AFRS Accuracy Change. To complete our analysis, we

investigated the change in accuracy for each image pair when

shown with a decision label (correct or incorrect) from the AFRS.

We have calculated “change in accuracy” as a simple difference

score (i.e., the change from 55% to 65% is a 10% change). Among

the AFRS condition, the average change in accuracy for the cor-

rectly labeled pairs was positive, while the average change for

error pairs was negative, suggesting that participants generally fol-

lowed the decision from the AFRS (see Table 3). Curiously, how-

ever, only once did the largest negative change across all 84 trials

(82 correctly labeled, two incorrectly labeled) in an identity condi-

tion (match, mismatch) come from an error pair (mismatch error,

Figure 2

(a) Sensitivity and (b) Overall Accuracy of Each Aid Condition (AFRS, Control) in the Task

Phases (Baseline, Test) of Experiment 1a (Binary Decisions) and 1b (Similarity Decisions)

Note. The dashed bars show the performance of the Automated Facial Recognition Systems (AFRS) alone.

All error bars show the standard error of the mean (SEM). See the online article for the color version of this

figure.
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Set A), suggesting that factors other than the AFRS decision label

might influence accuracy. We investigate this possibility in

Experiment 3. Nonetheless, the average change values for both the

correctly and incorrectly labeled trials in the AFRS condition were

more extreme than the corresponding values in the control condi-

tion, indicating participants tended to follow the decisions of the

AFRS, correct or otherwise. This conclusion is supported by the

rank change position for the error pairs, which were more extreme

when shown with the incorrect label in the AFRS condition than

in the control condition.

Exploratory Image Analysis. The average accuracy for each

face pair at baseline was related to the change in accuracy that pair

experienced when shown at test with the correct label from the

AFRS, r(163) = �0.70, 95% CI [�0.77, �0.61], p , .001 (see

Figure 3). Although this relationship persisted among the control

condition, r(163) = �0.36, 95% CI [�0.48, �0.21], p , .001,

Fisher’s r-to-z transformation confirmed that the two correlations

differed significantly, z = 4.40, p , .001 (Weiss, 2011). Thus, the

difficulty of the face pair is related to the benefit from the AFRS,

over and above any change that can be attributed to factors such as

practice effects or mean reversion. Perhaps unsurprisingly, partici-

pants were most likely to benefit from the AFRS when it gave the

correct response to the most difficult pairs.

Discussion

Participants significantly improved their face matching perform-

ance compared to baseline when aided by the highly accurate

AFRS at test. However, this level of aided performance was still

far below that of the AFRS alone, indicating that collaborative per-

formance was suboptimal (Bartlett & McCarley, 2017). Failing to

reach the level of performance achieved by the AFRS alone dem-

onstrates that participants often overruled correct decisions from

the AFRS, even though they were truthfully told the system would

be accurate on 97.6% of trials. Thus, even though participants

improved their own performance by following the decisions of the

AFRS (Fysh & Bindemann, 2018a; Howard et al., 2020), our data

suggest that this bias is somewhat incomplete, because further

improvement is possible with greater reliance on the AFRS.

Yet, there would be little point to human-algorithm teaming if

collaborative performance only equaled that which the AFRS

could achieve alone. Collaborative performance gains require the

human operator to follow the system’s correct decisions and over-

turn incorrect decisions. Yet, our data also show that accuracy fell

on trials that were labeled incorrectly by the AFRS, demonstrating

that participants often endorsed these erroneous decisions. When

considered alongside the tendency to overturn correct decisions,

these findings suggest that participants have limited insight into

the accuracy of the AFRS on any one trial. Finally, the baseline

ability (d0) of the participants did not predict their ability to use

the AFRS effectively, but an analysis of item accuracy showed

that correct AFRS decisions were of the greatest benefit for the

most difficult face pairs. Although this result is consistent with the

notion that participants might defer to the AFRS on trials they find

particularly challenging, it might also simply reflect the fact that

more improvement was possible for the most difficult face pairs.

Table 2

Simple Main Effects Analyses for Experiment 1a (Binary Decisions) and 1b (Similarity Decisions), Showing Sensitivity and Overall

Accuracy for Each Aid Condition (AFRS, Control)

Measure Aid Baseline Test t df 95% CI p d BF10

Experiment 1a
Sensitivity AFRS 1.67 (0.62) 2.34 (0.91) 6.61 52 [0.47, 0.88] ,.001* 0.91 635,293

Control 1.59 (0.66) 1.64 (0.66) 0.63 45 [�0.10, 0.19] .533 0.09 0.193
Accuracy AFRS 75.45 (8.14) 83.49 (10.82) 6.58 52 [5.59, 10.50] ,.001* 0.90 556,137

Control 74.87 (8.27) 75.05 (8.48) 0.18 45 [�1.86, 2.23] .859 0.03 0.162
Experiment 1b
Sensitivity AFRS 1.63 (0.47) 2.52 (0.71) 8.85 47 [0.69, 1.10] ,.001* 1.28 6.53eþ8

Control 1.68 (0.56) 1.74 (0.70) 0.80 46 [�0.09, 0.21] .426 0.12 0.215
Accuracy AFRS 76.17 (6.35) 86.61 (7.03) 10.10 47 [8.36, 12.52] ,.001* 1.46 3.36eþ10

Control 76.60 (8.72) 76.87 (9.49) 0.29 46 [�1.69, 2.25] .777 0.04 0.165

Note. 95% CI are given for the mean difference between the baseline and test task phases. Asterisks indicate statistically significant comparisons.

Table 3

Difference in Accuracy From Baseline (%) in the Test Phase, Reported Separately for the 82 Correctly Labelled Trials and 2 Error

Pairs (One per Image Set: A, B) in Each Identity Condition (Match, Mismatch)

Correct (n = 82) Error (n = 2)

Aid cond. Pair Average change (SD) Max Min Average change (SD) Set A error (Rank All) Set B error (Rank All)

AFRS Match 14.20 (12.19) 54.57 �12.46 �4.97 (9.43) �11.64 (83) 1.69 (69)
Mismatch 3.12 (8.94) 31.75 �16.92 �14.83 (5.96) �19.05 (84) �10.62 (78)

Control Match 2.53 (11.72) 33.36 �26.61 5.23 (6.66) 9.94 (23) 0.52 (46)
Mismatch �2.86 (10.54) 33.65 �26.78 �2.60 (0.72) �3.11 (45) �2.09 (41)

Note. “Max” and “Min” show the maximum and minimum change values from the 82 trials shown with the correct decision label from the Automated Facial
Recognition Systems (AFRS). “Set A (Rank All)” and “Set B (Rank All)” show the change in accuracy for the single error pair in each EFCT set (A, B), along with
the rank order of that change out of all 84 match/mismatch trials in the EFCT (with 1 being the largest increase in accuracy, and 84 the biggest decrease).
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Experiment 1b

In Experiment 1a, the AFRS communicated identity judg-

ments as binary decisions. While AFRS might ultimately give a

binary identification decision, these judgments are based on the

underlying “similarity” score the AFRS calculates between the

two images. In Experiment 1b, we examined whether having

the AFRS report a similarity value for each pair, in addition to

the binary decision, would influence AFRS-aided face matching

performance. This similarity value might be interpreted by the

observer as an indication of the AFRS’s “confidence” in each

judgment, which is the type of additional information that can

be used to weigh decisions appropriately in order to achieve

optimal collaborative performance (Bahrami et al., 2010; Sor-

kin et al., 2001).

We expected to replicate the pattern of results from Experi-

ment 1a, and as such, offer identical hypotheses for the analysis

of Experiment 1b. Crucially, we also pre-registered a direct

comparison between Experiments 1a and 1b, to test the effect

of Decision-Type (between-participants; binary, similarity).

We expected to find a significant three-way interaction, such

that the increase in sensitivity for the AFRS condition at test

would be larger in Experiment 1a than 1b. Although communi-

cating direct evidence information should improve aided deci-

sion-making, Experiment 1a showed that participants had a

tendency to overrule the AFRS. We speculated that a smaller

increase in AFRS-aided accuracy might occur in Experiment 1b

because participants could be more willing to overrule the

AFRS on pairs with similarity values closer to threshold.

Because the AFRS still had an overall accuracy of 97.6%, over-

ruling the system more often would lead to lower aided

performance.

Method

Participants

The final sample consisted of 48 participants in the AFRS con-

dition (M = 31.2, SD = 10.2, 34 females, 14 males) and 47 partici-

pants in the control condition (M = 34.6, SD = 12.7, 37 females,

10 males).

Design

The only change from Experiment 1a was that, in addition to the

binary identification decision, the AFRS gave a “similarity value” for

each face pair (e.g., “Computer says: 0.75 (same)”). These similarity

values were based on those from the real DCNN, such that they

maintained the true rank order of the face pairs. However, we created

a new set of normally distributed values (M = 0.23, SD = 0.09) for

the 41 correctly labeled mismatch trials, before creating a mirrored

distribution (1.00 minus the mismatch similarity value) for the match

trials, ensuring identical distributions in both identity conditions

(match, mismatch). The same similarity values were used in Set A

and Set B. The new similarity values ranged from 0.00–1.00, and

participants were told that the threshold for the simulated AFRS to

declare a match was 0.50. The two “error” trials in each set were

given similarity values of 0.45 (match pair declared “different”) and

0.55 (mismatch pair declared “same”). Both errors were the closest

pair to the decision threshold in each identity condition,3 consistent

with the proposition that the “AFRS” was least sure about the classi-

fication of these pairs.

Figure 3

The Correlation Between Item Accuracy at Baseline and the Change in Accuracy

When the Automated Facial Recognition Systems [AFRS] Gave the Correct

Answer in the Test Phase

Note. For illustrative purposes, this correlation is plotted separately for match (blue circles)

and mismatch (red squares) trials. See the online article for the color version of this figure.

3
In addition to being equidistant to the 0.50 decision threshold, the

similarity values for both error pairs were also 0.03 units away from the
closest correctly labelled pair.
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Results

Sensitivity

The main effects of Task Phase, F(1, 93) = 57.37, p , .001,

g
2
p = .38, and Aid Condition, F(1, 93) = 11.14, p = .001, g2

p = .11,

were significant (see Figure 2a), as was the interaction between

the two factors, F(1, 93) = 43.86, p , .001, g2
p = .32. Sensitivity

increased in the aided test phase for the AFRS condition. No

change occurred for the control condition (see Table 2). Despite

their improvement, the aided sensitivity of the AFRS condition at

test was significantly lower than that of the AFRS alone (d0 =

3.962), t(47) = �14.03, 95% CI of mean difference [�1.65,

�1.23], p, .001, d = �2.03, BF10 = 2.62e þ 15.

Overall Accuracy

The main effect of Task Phase was significant, F(1, 93) = 56.58,

p , .001, g2
p = .38, as was the main effect of Aid Condition, F(1,

93) = 9.94, p = .002, g2
p = .10, and the interaction between the fac-

tors, F(1, 93) = 50.85, p , .001, g2
p = .35. Overall accuracy

increased in the aided test phase for the AFRS condition, whereas

no change occurred for the control condition (see Table 2).

Criterion

The main effect of Task Phase was significant, F(1, 93) = 21.19,

p, .001, g2
p = .19, with a larger conservative response bias at base-

line (M = 0.29, SD = 0.47) than at test (M = 0.13, SD = 0.52). The

main effect of Aid Condition was nonsignificant, F(1, 93) = 1.49,

p = .226, g2
p = .02. The interaction was also nonsignificant, F(1,

93) = 0.67, p = .414, g2
p = .01.

Cross Experiment Analysis: The Effect of Decision-Type

A mixed measures ANOVA with Task Phase as a within-

participants factor, and Aid Condition and Decision-Type (binary,

similarity) as between-participants factors revealed that the effect of

Decision-Type was not significant at any level (All Fs , 1.68,

ps . .196, g2
p , .01; see the online supplemental materials for full

ANOVA). Therefore, aided performance did not differ depending

on whether the AFRS communicated decisions using binary deci-

sions alone or including similarity values.

Discussion

Seeking to improve the aided performance achieved by the

human operator, binary identity decisions (“same”, “different”)

from the AFRS were supplemented with a similarity value (0.00–

1.00). Although we replicated the improvement in performance

seen in Experiment 1a, our cross-experiment analysis revealed no

effect of “decision-type” on aided performance. This nonsignifi-

cant effect of decision-type is consistent with previous findings in

the automation literature about the nonsignificant effect of cue

type on aided decision-making (Bartlett & McCarley, 2019). Over-

all, Experiment 1 demonstrates that while human operators can

improve their face matching performance when assisted by a

highly accurate AFRS, this level of aided performance fails to

reach that of the AFRS alone.

Experiment 2a

Although we’d hope that AFRS deployed in real world scenarios

are highly accurate, like those in Experiment 1 (FRONTEX, 2015),

the accuracy of individual systems can vary substantially (Grother

et al., 2021). As such, the aim of Experiment 2 was to investigate

whether decisions from a low accuracy AFRS would impair human

face matching performance. To this end, we added an AFRS with

low accuracy (54.8%) to the between-participants factor of Aid

Condition. The accuracy of the high performing AFRS was lowered

to 92.9% (see below). The two AFRS are designated AFRS93 (high

accuracy) and AFRS55 (low accuracy), in reference to their overall

accuracy. Participants were randomly allocated to one of three Aid

Conditions (AFRS93, AFRS55, control) for the entire experiment.

Because prior work has shown that automated aids with low

reliability can impair performance (Wickens & Dixon, 2007), and

that participants are biased to follow the decisions from an AFRS

(Fysh & Bindemann, 2018a), we expected to find a significant

interaction between Task Phase (baseline, test) and Aid Condition

(AFRS93, AFRS55, control), such that sensitivity would increase

at test compared to baseline for the high accuracy AFRS93 condi-

tion (replicating Experiment 1) but decrease for the AFRS55 con-

dition. No change was expected for the control condition.

However, as in Experiment 1, we also predicted that the aided sen-

sitivity of the AFRS93 condition at test would be significantly

lower than the AFRS alone (d0 = 2.930). Conversely, we expected

that the aided sensitivity of the AFRS55 condition would exceed

that of the AFRS alone (d0 = 0.239), but only because the average

participant already had a baseline d0 = 1.63 in Experiment 1a (see

also [Bartlett and McCarley, 2021]).

Method

Sample Size

Again, we could not identify an appropriate prior effect size for

a 3 3 2 mixed measures interaction in this paradigm that we could

use in a power analysis for Experiment 2 (a, b) and Experiment 3.

As in Experiment 1, we conducted our power analysis using the

arbitrarily selected medium-to-large effect size of g2
p = .09. This a

priori power analysis (Faul et al., 2007) indicated that 102 partici-

pants (total) were required to achieve 80% power to detect an

interaction effect of g2
p = .09 in a mixed measures ANOVA with a

two-level within-participants factor (Task Phase) and a three-level

between-participants factor (Aid Condition) at an alpha of a = .05.

Although adequate power could be achieved with 34 participants

in each aid condition, we committed to recruiting 55 participants

to each condition to be consistent with Experiment 1.

Participants

The final sample consisted of 45 participants in the AFRS93

condition (M = 31.5, SD = 9.1, 33 females, 11 males, 1 other), 46

in the AFRS55 condition (M = 34.2, SD = 9.7, 34 females, 12

males) and 45 in the control condition (M = 29.0, SD = 9.0, 33

females, 11 males, 1 response withheld).

Design

This experiment only differs from Experiment 1a in that there

were two AFRS conditions. The first, AFRS93, gave correct deci-

sions on 39/42 match and 39/42 mismatch trials (92.9% accuracy,
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d0 = 2.930), while AFRS55 was accurate on 23/42 match and 23/42

mismatch trials (54.8% accuracy, d0 = 0.239). These levels of per-

formance were determined using the baseline EFCT performance

of all participants from Experiment 1a (n = 99, Mean d0 = 1.63,

SD = .63) such that the sensitivity of AFRS93 was 2.05 SD above

average human performance, whereas AFRS55 was 2.20 SD

below.4

Results

Sensitivity

The main effects of Task Phase, F(1, 133) = 10.43, p = .002,

g
2
p = .07, and Aid Condition, F(2, 133) = 12.64, p , .001, g2

p =

.16, were significant (see Figure 4a), as was the interaction

between the two factors, F(2, 133) = 24.61, p , .001, g2
p = .27.

Sensitivity increased in the aided test phase for the AFRS93 condi-

tion. There was no change at test for the AFRS55 or control condi-

tions (see Table 4).

As expected, the aided sensitivity of the AFRS93 condition at

test was significantly lower than that of the AFRS alone (d 0 =

2.930), t(44) = �6.80, 95% CI [�0.84, �0.46], p , .001, d =

�1.01, BF10 = 581,721. Conversely, the aided test sensitivity of

the AFRS55 condition exceeded their AFRS (d 0 = 0.239),

t(45) = 12.29, 95% CI [1.00, 1.39], p , .001, d = 1.81, BF10 =

1.13eþ13. However, because those in the AFRS55 condition

did not improve their sensitivity from baseline when working

with the AFRS, this result is not an example of a collaborative

performance gain.

Overall Accuracy

The main effect of Task Phase was significant, F(1, 133) =

9.72, p = .002, g2
p = .07, as was the main effect of Aid Condi-

tion, F(2, 133) = 10.87, p , .001, g2
p = .14, and their interac-

tion, F(2, 133) = 18.83, p , .001, g2
p = .22 (see Figure 4b).

Overall accuracy increased at test for the AFRS93 condition.

There was no change for the AFRS55 or control conditions (see

Table 4).

Criterion

The main effect of Task Phase was significant, F(1, 133) =

20.25, p , .001, g2
p = .13, with a larger conservative response bias

at baseline (M = 0.28, SD = 0.43) than at test (M = 0.15, SD =

0.43). The main effect of Aid Condition was nonsignificant, F(2,

133) = 2.50, p = .086, g2
p = .04. The interaction was also nonsigni-

ficant, F(2, 133) = 1.55, p = .217, g2
p = .02.

Discussion

Participants improved their face matching performance com-

pared to baseline when assisted by the highly accurate AFRS93,

but failed to outperform the AFRS alone, replicating Experiment

1. Surprisingly, decisions from the low accuracy AFRS55 did not

impair participant performance. This is despite previous research

suggesting that automated aids with low reliability can impair per-

formance (Wickens & Dixon, 2007). Rather, there was simply no

change to the face matching performance of the AFRS55 condi-

tion. One possible explanation for this result is that participants

decided to give minimal weighting to the decisions from AFRS55

after learning that it would only give the correct response on

54.8% of trials.

Experiment 2b

In each experiment so far, participants were told precisely how

accurate their AFRS was before the task. But human operators of

real AFRS technology might not be aware of their system’s exact

accuracy. Without knowing the accuracy of the system, the opera-

tor is left to guess how much weight they should give the decisions

from the AFRS, which could impair collaborative performance if

assessed incorrectly. Here we conducted a direct replication of

Experiment 2a, but without telling participants the accuracy of the

AFRS before the task. The aim of this experiment was to test how

decisions from AFRS of unknown accuracy would influence aided

face matching performance.

For the results of Experiment 2b itself, we pre-registered identi-

cal hypotheses to those given in Experiment 2a. Crucially, we also

pre-registered a cross experiment comparison to investigate whether

knowing the accuracy of the AFRS prior to the task would influence

aided performance. We expected to find a significant three-way

interaction between Task Phase, Aid Condition, and Accuracy

Knowledge (between-participants; known, unknown), such that the

increase in sensitivity for the AFRS93 condition would be larger in

Experiment 2a than Experiment 2b, and that there would be a

decrease in performance for the AFRS55 condition in Experiment

2b as opposed to no change in Experiment 2a. We expected that

these results would arise from participants in the AFRS93 condition

under-utilising the decision-aid when not told of its high accuracy

before the task, and those in the AFRS55 condition over-relying on

the decisions from their aid with undisclosed low accuracy.

Method

Participants

The final sample consisted of 52 participants in the AFRS93 condi-

tion (M = 32.5, SD = 11.5, 37 females, 15 males), 49 in the AFRS55

condition (M = 28.0, SD = 7.7, 30 females, 19 males) and 47 in the

control condition (M = 32.8, SD = 10.6, 30 females, 17males).

Design

The only methodological change from Experiment 2a was that

participants were not told the exact accuracy of the AFRS before the

task. Instead, all participants were simply told that the AFRS would

be correct on “most” trials, which was true of both AFRS conditions.

Results

Sensitivity

The main effects of Task Phase, F(1, 145) = 5.02, p = .027,

g
2
p = .03, and Aid Condition, F(2, 145) = 3.98, p = .021, g2

p = .05,

were significant (see Figure 4a), as was the interaction between the

4
An additional exclusion criterion was retroactively applied to data

from Experiment 1a (see General Method), after we had already used the
original sample to determine the performance of these two AFRS. The
original calculation included data from 107 participants (Mean d 0 = 1.59,
SD = 0.65), such that AFRS93 was 2.06 SD above average human
sensitivity, whereas AFRS55 was 2.09 SD below.
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two factors, F(2, 145) = 18.40, p , .001, g2
p = .20. Sensitivity

increased in the aided test phase for the AFRS93 condition. No

change occurred for the AFRS55 or control conditions (see Table 4).

The level of aided performance achieved by the AFRS93 condi-

tion at test was significantly lower than that of the AFRS alone

(d0 = 2.930), t(51) = �8.79, 95% CI [�1.05, �0.66], p, .001, d =

�1.22, BF10 = 1.06eþ9. Once again, the aided sensitivity of the

AFRS55 condition exceeded the AFRS alone (d0 = 0.239), t(48) =

14.05, 95% CI [1.06, 1.42], p, .001, d = 2.01, BF10 = 4.20eþ15.

Overall Accuracy

The main effect of Task Phase was significant, F(1, 145) = 5.62, p =

.019, g2
p = .04, but the main effect of Aid Condition was not, F(2,

145) = 1.33, p = .268, g2
p = .02. The interaction between the two factors

was significant, F(2, 145) = 16.24, p, .001, g2
p = .18 (see Figure 4b).

Overall accuracy increased at test for the AFRS93 condition. There

was no change for the AFRS55 or control conditions (see Table 4).

Criterion

The main effect of Task Phase was significant, F(1, 145) =

39.39, p , .001, g2
p = .21, with a larger conservative response bias

at baseline (M = 0.26, SD = 0.41) than at test (M = 0.08, SD =

0.44). The main effect of Aid Condition was nonsignificant, F(2,

145) = 0.56, p = .575, g2
p = .01. The interaction was also nonsigni-

ficant, F(2, 145) = 1.27, p = .283, g2
p = .02.

Figure 4

(a) Sensitivity and (b) Overall Accuracy for Each Aid Condition (AFRS93, AFRS55, Control) in the

Task Phases (Baseline, Test) of Experiment 2a (Known Accuracy) and 2b (Unknown Accuracy)

Note. The dashed bars show the performance of each Automated Facial Recognition Systems (AFRS) alone.

All error bars show the SEM. See the online article for the color version of this figure.

Table 4

Simple Main Effects Analyses for Experiment 2a (Known Accuracy) and 2b (Unknown Accuracy), Showing Sensitivity and Overall

Accuracy for Each Aid Condition (AFRS93, AFRS55, Control)

Measure Aid Baseline Test t df 95% CI p d BF10

Experiment 2a
Sensitivity AFRS93 1.70 (0.46) 2.28 (0.64) 7.30 44 [0.42, 0.74] ,.001* 1.09 2.94eþ6

AFRS55 1.51 (0.59) 1.43 (0.66) �0.88 45 [�0.25, 0.10] .386 0.13 0.229
Control 1.62 (0.54) 1.54 (0.58) �1.28 44 [�0.20, 0.05] .208 0.19 0.346

Accuracy AFRS93 76.64 (6.71) 84.02 (8.51) 6.72 44 [5.17, 9.60] ,.001* 1.00 453,180
AFRS55 73.94 (7.25) 73.55 (8.53) �0.33 45 [�2.74, 1.96] .741 0.05 0.169
Control 76.27 (7.07) 75.13 (8.58) �1.17 44 [�3.11, 0.83] .250 0.17 0.304

Experiment 2b
Sensitivity AFRS93 1.55 (0.49) 2.08 (0.70) 5.15 51 [0.32, 0.73] ,.001* 0.71 4,244

AFRS55 1.57 (0.65) 1.48 (0.62) �1.20 48 [�0.25, 0.06] .238 0.17 0.304
Control 1.77 (0.57) 1.67 (0.59) �1.52 46 [�0.24, 0.03] .135 0.22 0.464

Accuracy AFRS93 74.25 (6.45) 81.20 (8.33) 5.29 51 [4.32, 9.60] ,.001* 0.73 6,641
AFRS55 75.97 (8.89) 75.02 (8.67) �0.88 48 [�3.12, 1.22] .384 0.13 0.223
Control 77.81 (8.04) 76.60 (8.78) �1.15 46 [�3.34, 0.91] .255 0.17 0.295

Note. 95% CI are given for the difference between the baseline and test task phases. Asterisks indicate statistically significant comparisons.
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Cross Experiment Analysis: The Effect of Accuracy

Knowledge

A mixed measures ANOVA with Task Phase as a within-

participants factor, and Aid Condition and Accuracy Knowl-

edge (known, unknown) as between-participants factors

revealed that the effect of Accuracy Knowledge was not sig-

nificant at any level (all F’s , 2.37, p’s . .096, g2
p , .02; see

the online supplemental materials for full ANOVA). There-

fore, aided performance did not differ whether the accuracy of

the AFRS was known in advance or not.

Discussion

The results of Experiment 2b directly replicate those of Experi-

ment 2a, even though participants were not told the exact accuracy

of either AFRS. Thus, the unchanged performance of participants

in the AFRS55 condition cannot be attributed to a deliberate strat-

egy to reduce the weighting given to decisions from the AFRS,

because the participants did not know they would be low accuracy.

Instead, these results suggest that participants can gauge, at least

to some degree, the accuracy of the AFRS they are working with.

This conclusion is consistent with previous research showing that

human operators come to rely on reliable aids more than unreliable

aids, despite not being told of their reliability (Ross et al., 2008).

One possibility is that participants gauge the likely accuracy of the

AFRS based on the difficulty of the trials the system errs on. An

AFRS that makes errors on face pairs that can be correctly

resolved by the human operator might come to be seen as “low ac-

curacy” over time because participants are more likely to notice

such mistakes.

Experiment 3

Despite differing in accuracy, the AFRS in Experiments 1 and 2

made “errors” on face pairs that were selected according to the

similarity values from the real DCNN. However, the correlation

between the DCNN’s similarity ratings and human accuracy is

imperfect. Using human accuracy at baseline for each face pair

from Experiments 1a, 2a and 2b (n = 383; Set A = 192, Set B =

191), we find a large positive correlation with the DCNN’s simi-

larity ratings for match trials, r(83) = 0.56, 95% CI [0.39, 0.69],

p , .001, and a small negative correlation for mismatch trials,

r(83) = �0.27, 95% CI [�0.46, �0.06], p = .013 (see Figure 5).

This result is consistent with Hancock et al. (2020), who also

reported a larger correlation between human accuracy and DCNN

similarity ratings for match trials than mismatch trials.

Despite being correlated across both match and mismatch trials,

Figure 5 shows that human accuracy and the DCNN’s similarity

ratings can differ substantially for some face pairs. For example,

there are some pairs that the DCNN gives a similarity rating rela-

tively close to threshold, suggesting that the pair might be challeng-

ing due to their similarity, but human accuracy exceeds 90%.

However, there are also cases where the DCNN returns a value far

from threshold, suggesting that the pair should be easily resolved, but

human accuracy is below 50%. Therefore, even though we previ-

ously selected error trials based on their proximity to the DCNN’s

threshold, Figure 5 shows that there is substantial variability in the

difficulty of these pairs for human observers. This final experiment

tested whether the difficulty of trials (high human accuracy, low

human accuracy) that the simulated AFRS errs on can influence the

level of aided performance achieved by the human operator.

We created two AFRS conditions. “AFRS-Low” made errors on

the face pairs with the lowest human accuracy when shown at

Figure 5

The Correlation Between Human Accuracy (%) on the Expertise in Facial

Comparison Test (EFCT) at Baseline (From Experiments 1a, 2a and 2b) and the

Similarity Ratings for Each Pair From the Real Deep Convolutional Neural

Network (DCNN)

Note. The DCNN’s true decision threshold (þ0.40) is shown by the vertical gray dashed

line. See the online article for the color version of this figure.
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baseline (i.e., “hard” errors), whereas “AFRS-High” made errors

on the trials with the highest human accuracy (i.e., “easy” errors).

Importantly, both AFRS (-High, -Low), made errors on four match

and four mismatch trials, giving them the same overall accuracy of

90.5% (d0 = 2.618).

Because the exploratory image analysis in Experiment 1a revealed

that participants benefit most from seeing correct AFRS decisions to

the hardest face pairs, we predicted a significant interaction between

Task Phase (baseline, test) and Aid Condition (AFRS-High, AFRS-

Low, control), such that the increase in sensitivity at test would be

larger for the AFRS-High condition than the AFRS-Low condition.

This pattern of results would occur if participants overruled the

obvious errors made by AFRS-High and followed its correct judg-

ments on all other trials, which included the most difficult face pairs.

No change was expected for the control condition.

In contrast to our previous predictions and findings, we

expected that the aided test phase sensitivity of the AFRS-High

condition would exceed that of the AFRS alone, because partici-

pants should correct the AFRS when it errs only on trials that most

humans answer correctly. Conversely, we expected that the aided

test phase sensitivity achieved by the AFRS-Low condition would

be significantly worse than their AFRS, because the participants

would be less likely to notice when the AFRS errs on trials with

the lowest human accuracy.

As in Experiment 1a, we also examined the change in accuracy

for each face pair when shown with decisions from the AFRS in

the aided test phase. Once again, we present the descriptive statis-

tics for the change in accuracy separately for each AFRS decision

label condition (correct, incorrect, control). Our overarching pre-

diction was that accuracy would decrease when error pairs were

shown with an incorrect label from the AFRS but would increase

when the label was correct. To infer meaningful differences, these

change values should exceed those that occurred when the images

were shown in the control condition (i.e., without a decision label

from the AFRS).

Method

Participants

The final sample consisted of 38 participants in the AFRS-High

condition (M = 34.1, SD = 11.6, 27 females, 11 males), 47 in the

AFRS-Low condition (M = 32.7, SD = 9.6, 35 females, 11 males,

1 other) and 45 in the control condition (M = 33.4, SD = 10.8, 32

females, 12 males, 1 other).

Design

Aid Condition (AFRS-High, AFRS-Low, control) was a between-

participants factor, and Task Phase (baseline, test) was a within-

participants factor. Table 5 shows the baseline human accuracy for

the pairs selected to be errors for AFRS-High and AFRS-Low.

Results

Participant Data

Sensitivity. The main effects of Task Phase, F(1, 127) =

55.06, p, .001, g2
p = .30, and Aid Condition, F(2, 127) = 3.74, p =

.026, g
2
p = .06, were significant (see Figure 6a), as was their

interaction, F(2, 127) = 18.19, p , .001, g2
p = .22. Sensitivity

increased in the test phase for both AFRS conditions, but not the

control condition (see Table 6). The increase in sensitivity did not

differ between the two AFRS conditions (see the online

supplemental materials).

In contrast to our prediction, the aided performance of the

AFRS-High condition at test was significantly lower than that of

their AFRS alone (d0 = 2.618), t(37) = �2.57, 95% CI [�0.62,

�0.07], p = .014, d = �0.42, BF10 = 3.06. The aided test perform-

ance of the AFRS-Low condition was also below that of their

AFRS (d0 = 2.618), t(46) = �5.47, 95% CI [�0.67, �0.31], p ,

.001, d = �0.80, BF10 = 9,548.

Overall Accuracy. The main effect of Task Phase was signifi-

cant, F(1, 127) = 49.39, p , .001, g2
p = .28, as was the main effect

of Aid Condition, F(2, 127) = 3.56, p = .031, g2
p = .05, and the

interaction between the two factors, F(2, 127) = 14.48, p , .001,

g
2
p = .19 (see Figure 6b). Overall accuracy increased at test for the

AFRS-High and AFRS-Low conditions, but not the control condi-

tion (see Table 6).

Criterion. The main effect of Task Phase was significant,

F(1, 127) = 29.08, p , .001, g2
p = .19, with a larger conservative

response bias at baseline (M = 0.27, SD = 0.44) than at test (M =

0.12, SD = 0.46). The main effect of Aid Condition was nonsigni-

ficant, F(2, 127) = 1.54, p = .219, g2
p = .02. The interaction was

also nonsignificant, F(2, 127) = 0.20, p = .819, g2
p = .00.

Image Pair Analysis

Finally, we examined the effect of the AFRS decision label on

the accuracy for each face pair.5 By counterbalancing the presenta-

tion order of EFCT Sets A and B, each AFRS (-High, -Low) gave

correct answers to 152 face pairs and made errors on 8 match and

8 mismatch trials across participants. But because AFRS-High

made errors on the pairs with the highest average human accuracy

(“easy errors”), whereas AFRS-Low erred on those with the low-

est (“hard errors”), each error pair was also shown with the correct

label to some participants. Thus, there are 136 face pairs that were

only ever shown with the correct label, whereas the 16 error pairs

from AFRS-High and 16 error pairs from AFRS-low were shown

with correct and incorrect labels. Each pair was also shown with-

out a decision label in the control condition.

When the AFRS gave the correct decision, accuracy increased

across all image conditions (see Figure 7). Conversely, an incor-

rect decision from the AFRS resulted in decreased accuracy

across both error conditions. The change in accuracy (both posi-

tive and negative) for the “hard” errors was more extreme than

for the “easy” errors, which is consistent with the suggestion that

participants relied more on the AFRS for the most difficult pairs,

potentially because they were less certain about their own answer

to those trials. For both correct and incorrect AFRS decision

labels, the change in accuracy exceeded that of the control condi-

tion (less than 3% in each condition), demonstrating that the

AFRS decision labels had a significant effect on human

5
Figure 7 represents a minor deviation from our pre-registered analysis

plan as we have not plotted the change in accuracy separately for images
from Sets A and B of the EFCT. A very similar pattern of results occurred
for images from Sets A and B, and these data are available on the OSF.
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responses. Similar patterns were observed when examining match and

mismatch trials separately (see the online supplemental materials).

Discussion

Contrary to our predictions, aided performance at test did

not differ between the AFRS-High and AFRS-Low condi-

tions. Participants improved their sensitivity compared to

baseline when aided by either AFRS. Although we expected

that participants would achieve higher collaborative perform-

ance by overruling AFRS-High on obvious errors and follow-

ing its other decisions, this did not occur. Instead, the aided

test phase performance of the AFRS-High condition failed to

reach that of the AFRS alone, as did that of the AFRS-Low

condition. Notably, average item accuracy still fell when

AFRS-High made errors, demonstrating that human operators

are not certain to correct the AFRS, even when it makes

errors that should be obvious to most observers (baseline ac-

curacy . 89%). Taken together, these data raise questions

about which conditions, if any at all, would enable human

operators to produce AFRS-aided performance exceeding that

of a highly accurate AFRS alone.

General Discussion

Summary

Across five pre-registered experiments, we have shown that

human operators can improve their face matching performance when

using a highly accurate AFRS as a decision-aid. However, aided

human performance failed to reach, let alone exceed, the level of per-

formance that each highly accurate AFRS offered alone. Supple-

menting the AFRS’s binary identity decision with a similarity value

did not further increase aided performance. But we also report some

encouraging findings. Human performance was not impaired by the

low accuracy AFRS55, indicating that participants did not follow the

system’s decisions uncritically. Moreover, this result was replicated

when participants were unaware of the system’s exact accuracy, sug-

gesting that operators might be able to gauge the approximate accu-

racy of their AFRS over time. Ultimately, however, participants

often overruled correct decisions from the AFRS and failed to correct

errors, suggesting that they had little insight into the accuracy of the

AFRS on any one trial. Considered together, these findings offer fur-

ther support for the notion that human ability likely limits the

Table 5

Baseline Human Accuracy (n = 383; Set A = 192, Set B = 191) for the Match and Mismatch Pairs Selected to Be Easy (AFRS-High)

and Hard (AFRS-Low) Errors in Experiment 3, Shown Separately for Expertise in Facial Comparison Test (EFCT) Sets A and B

Set A Set B

Errors Identity Pair 1 Pair 2 Pair 3 Pair 4 Avg. Pair 1 Pair 2 Pair 3 Pair 4 Avg.

Easy Match 96.4 96.9 97.9 99.0 97.5 89.0 91.1 93.7 95.3 92.3
Mismatch 94.8 96.9 96.9 97.4 96.5 95.3 96.3 96.9 98.4 96.7

Hard Match 21.9 31.8 34.4 35.9 31.0 22.5 34.6 36.6 42.4 34.0
Mismatch 32.8 56.8 59.9 62.5 53.0 34.6 68.1 68.6 69.6 60.2

Note. All values show accuracy (%).

Figure 6

(a) Sensitivity and (b) Overall Accuracy for Each Aid Condition (AFRS-High, AFRS-Low,

Control) in the Task Phases (Baseline, Test) of Experiment 3

Note. The dashed bars show the performance of each Automated Facial Recognition Systems (AFRS) alone.

All error bars show the SEM. See the online article for the color version of this figure.
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collaborative performance of a human-algorithm face verification

team (White, Dunn, et al., 2015). These findings have implications

for “human-in-the-loop”models of AFRS oversight.

Implications for Applied Settings

Many state-of-the-art AFRS can outperform most humans on face

matching tasks (Phillips et al., 2018); for example, the DCNN used

as the basis for the simulated AFRS in these experiments achieved

100% accuracy on the EFCT (see the online supplemental materials),

while the average baseline accuracy of our participants was between

74 and 78% in each experiment. However, real AFRS can still make

surprising errors (Hancock et al., 2020), and as such, ABC e-Gates

require human oversight (FRONTEX, 2015; Fysh & Bindemann,

2018a; MacLeod & McLindin, 2011). This directive is presumably

based on the assumption that the human operator will catch and over-

turn any incorrect decisions from the AFRS. But in Experiment 1,

we found that an incorrect decision from the AFRS caused item ac-

curacy to fall by an average of 5% for match trials and 15% for

mismatches compared to baseline (or 10% and 12%, respectively, if

compared with the change in performance of the control condition in

the same task phase). Crucially, item accuracy also fell in Experiment

3 when AFRS-High made errors on face pairs with the highest accu-

racy among human observers. These findings demonstrate that

humans are not certain to overturn errors from the AFRS, even when

the correct decision should be clear to most observers.

Suboptimal Human-Computer Interaction

Several factors can help to explain why our participants often

failed to correct errors from the AFRS. First, unfamiliar face

matching is simply an error-prone task among both ordinary

observers (Burton et al., 2010; Megreya & Burton, 2006) and

many professional groups (White et al., 2014; Wirth & Carbon,

2017). As noted in the introduction, average accuracy on many

standardized face matching tasks falls in the range of 70% to 90%

correct (Burton et al., 2010; Carragher & Hancock, 2020; Fysh &

Bindemann, 2018b). Second, the benefit of human-algorithm

teaming would be greatest if the human and AFRS were uncorre-

lated in their errors (e.g., if humans were just as likely to correctly

resolve a face pair that the AFRS errs on as they are any randomly

selected pair). But Experiment 3 revealed significant correlations

between human accuracy and the real DCNN’s similarity ratings

for match and mismatch pairs. Thus, not only is unfamiliar face

matching already a difficult task (Jenkins et al., 2011), but it is

likely even harder for the face pairs that AFRS tend to err on. Con-

cerningly, it is possible that these issues might be compounded by

ethnicity, both of the human operator and the faces being exam-

ined. With reports of racial biases in some AFRS (Grother et al.,

2019; Phillips, Jiang, et al., 2011), and other race effects (Meissner

& Brigham, 2001) documented in the unfamiliar face matching

performance of humans (Megreya et al., 2011; Meissner et al.,

2013), further research is needed to examine how human-AFRS

teams perform when matching faces of various ethnicities.

We must also consider how human operators tend to use auto-

mated decision-aids (Parasuraman & Riley, 1997). Despite improv-

ing compared with baseline, aided human performance failed to

surpass that of the AFRS alone because participants often overruled

the system’s correct decisions. This finding is consistent with previ-

ous reports of suboptimal performance in human-automation teams

(Bartlett & McCarley, 2017; Boskemper et al., 2021). An operator’s

reliance on their decision-aid is strongly influenced by their trust in

the aid and the confidence they have in their own ability (Lee &

Moray, 1994; Lee & See, 2004). Automation use is more likely

when trust in the system is high and self-confidence is low, whereas

Table 6

Simple Main Effects Analyses for Experiment 3, Showing Sensitivity and Overall Accuracy for Each Aid Condition (AFRS-High, AFRS-

Low, Control)

Measure Aid Baseline Test t df 95% CI p d BF10

Sensitivity AFRS-H 1.58 (0.63) 2.27 (0.83) 5.94 37 [0.46, 0.93] ,.001* 0.96 22,323
AFRS-L 1.67 (0.59) 2.13 (0.62) 5.65 46 [0.29, 0.62] ,.001* 0.83 17,297
Control 1.66 (0.43) 1.62 (0.52) �0.58 44 [�0.16, 0.09] .567 0.09 0.189

Accuracy AFRS-H 75.28 (9.55) 82.90 (10.81) 5.18 37 [4.64, 10.59] ,.001* 0.84 2,468
AFRS-L 76.52 (8.18) 83.08 (7.62) 6.30 46 [4.46, 8.66] ,.001* 0.92 138,987
Control 76.03 (6.46) 75.71 (7.23) �0.34 44 [�2.18, 1.54] .733 0.05 0.171

Note. 95% CI are given for the difference between the baseline and test task phases. Asterisks indicate statistically significant comparisons.

Figure 7

The Average Change in Accuracy (Test Minus Baseline) From

Baseline for Face Pairs That Were Always Shown With the

Correct Label (n = 136), Those That Were the “Easy” Errors (n =

16) for AFRS-High, and Those That Were “Hard” Errors (n = 16)

for AFRS-Low, When Shown With Control, Correct, and Incorrect

AFRS Decision Labels

Note. Error bars show 1 SD around the mean. See the online article for

the color version of this figure.
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disuse can occur when trust in the system is low and self-confidence

is high (Lee & Moray, 1994). Because humans only have moderate

insight into their own general face identification abilities (Bobak

et al., 2019; Zhou & Jenkins, 2020), and may know little about the

capabilities of modern AFRS (Ritchie et al., 2021), naïve participants

might struggle to weigh the AFRS decision against their own appro-

priately (Hoff & Bashir, 2015), which is required for optimal collab-

orative decision making (Bahrami et al., 2010; Sorkin et al., 2001).

Finally, it should be considered that the propensity of our participants

to overrule the AFRS, evenwhen it was correct, suggests that the col-

laborative performance of human-AFRS teams is not likely to be

improved just by focusing on increasing the accuracy of the AFRS.

Further research is needed to examine and develop strategies to

improve the ability of the human to weigh the decision from the

AFRS appropriately.

Improving Human-AFRS Oversight

If the performance of human-algorithm teams is limited by human

ability, how can necessary human oversight be applied to enhance the

performance of an AFRS? In the introduction, we discussed “fusion”

(O’Toole et al., 2007), a process wherein combining independent judg-

ments from humans and AFRS in a weighted average can produce

gains in accuracy above either individual source (Phillips et al., 2018).

Although this procedure does not reflect the sequential nature of some

oversight models (Fysh & Bindemann, 2018a), fusion might offer a

route to improved human-AFRS teaming in operational settings. By

asking the human operator to make their judgment independently of

the AFRS, complex issues relating to the AFRS decision biasing the

human response can be avoided (Howard et al., 2020). Moreover, a

fusion algorithm could potentially be used to weigh the independent

judgments of the human operator and the AFRS by the accuracy of

their past performance in similar circumstances, a task left to the human

operator in the current paradigm. Future research should investigate

whether a fusion-based approach might produce the collaborative per-

formance gains that were lacking from our simplified sequential model

of human-in-the-loop AFRS oversight. However, any such approach

would still need to provide a mechanism for the human operator to flag

any egregious errors from the AFRS (Hancock et al., 2020).

Limitations and Future Directions

This project was designed to answer several basic questions

about the collaborative performance of human-AFRS teams on

tasks of one-to-one face matching. However, there are limitations to

be acknowledged and addressed in future studies. First, because our

participants were lay people who were recruited in exchange for a

small payment, it is possible that they did not undertake the task

with the seriousness expected of professionals who use these sys-

tems daily. Moreover, experience using an accurate automated aid

can contribute to trust in the system (Hoff & Bashir, 2015), which

in turn can lead to greater reliance on the decision-aid (Lee &

Moray, 1994; Lee & See, 2004). As such, future research should

investigate whether individuals who use AFRS in their work (e.g.,

border control officers) are able to achieve levels of AFRS-aided

performance higher than those reported in the current study. But the

fact that our sample consisted of lay people does not invalidate our

conclusions. Many professionals have average face identification

abilities (Weatherford et al., 2021; White et al., 2014), even when

they are incentivized to perform well (Kemp et al., 1997). This

work also speaks to the issues that may arise with placing lay peo-

ple in roles that require evaluation of AFRS decisions, which will

likely become more common with the proliferation of AFRS tech-

nologies across sectors (Centre for Data Ethics and Innovation,

2020; Noyes & Hill, 2021; Ritchie et al., 2021).

Second, although we advanced on previous methodologies by

basing the performance of our simulated AFRS on that of a real

DCNN (Carragher & Hancock, 2020), the real DCNN did not

make any errors on the EFCT (see the online supplemental

materials). As such, we selected “error” pairs based on the proxim-

ity of their similarity rating to the DCNN’s decision threshold. Of

course, the realism of future research would benefit from using an

AFRS that makes genuine errors on the chosen stimulus set. Yet,

there are also reasons that this approach was not optimal here. For

example, the images in the EFCT are relatively high quality,

showing the subject front on and free of occlusions (White, Phil-

lips, et al., 2015). Many state-of-the-art AFRS perform with re-

markable accuracy under these conditions (Grother et al., 2021),

as should those that are used in “e-Gates” (FRONTEX, 2015).

Nonetheless, future research is needed to replicate our results with

different AFRS, because the performance of every system on the

EFCT will be unique (either in accuracy or similarity ratings).

Alternatively, future researchers might choose to investigate the

collaborative performance of human-AFRS teams for highly chal-

lenging tasks with low quality images that are likely to create gen-

uine performance errors.

Finally, it should be considered that we have presented a simpli-

fied model of human oversight of AFRS decisions in identity veri-

fication tasks. Our paradigm was based on those implemented by

Fysh and Bindemann (2018a) and Howard et al. (2020), along

with documented accounts of workflows used in some ABC e-

Gates scenarios (FRONTEX, 2015; MacLeod & McLindin, 2011).

However, it is entirely possible, if not likely, that there will be

operational differences in how human oversight is implemented by

different organizations or in different applied settings. Yet, our

aim was not to test a single specific model of human AFRS over-

sight. Rather, we sought to investigate how knowing the prior de-

cision of the AFRS would affect the final identification decision

offered by the human operator. Our central finding, that humans

overrule correct AFRS decisions while also failing to correct errors,

is relevant to the implementation, whether existing or planned, of

human AFRS oversight in many scenarios.

Conclusion

Automated facial recognition systems are becoming more com-

mon in society, whether securing sensitive infrastructure or in pub-

lic surveillance and national security settings (Noyes & Hill,

2021). Despite significant advances in accuracy, human oversight

of these systems is still required to catch errors or resolve incon-

clusive judgments (Fysh & Bindemann, 2018a; White, Dunn,

et al., 2015). Using a simulated AFRS and samples of lay partici-

pants, we demonstrate that despite significant increases to human

accuracy, the AFRS-aided performance of the human operator

fails to equal that of the AFRS alone. Concerningly, participants

did not always correct the system when it made errors that should

be obvious to most humans, which is one of the central reasons

why humans are used to perform oversight of AFRS decisions.
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These data strongly suggest that, at least in the current paradigm,

human performance is likely limiting the potential benefits of

AFRS, both by failing to correct errors and by overruling correct

decisions. Careful consideration must be given as to how the nec-

essary human oversight of AFRS can be implemented in a way

that enhances the performance of the system.
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