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Abstract. Self-supervised pretraining has shown impressive perfor-
mance in recent years, matching or even outperforming ImageNet weights
on a broad range of downstream tasks. Unfortunately, existing methods
require massive amounts of computing power with large batch sizes and
batch norm statistics synchronized across multiple GPUs. This effectively
excludes substantial parts of the computer vision community from the
benefits of self-supervised learning who do not have access to extensive
computing resources.

To address that, we develop FastSiam with the aim of matching Ima-
geNet weights given as little computing power as possible. We find that
a core weakness of previous methods like SimSiam is that they compute
the training target based on a single augmented crop (or “view”), lead-
ing to target instability. We show that by using multiple views per image
instead of one, the training target can be stabilized, allowing for faster
convergence and substantially reduced runtime. We evaluate FastSiam
on multiple challenging downstream tasks including object detection,
instance segmentation and keypoint detection and find that it matches
ImageNet weights after 25 epochs of pretraining on a single GPU with a
batch size of only 32.
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1 Introduction

Self-supervised pretraining aims at learning transferable representations given
large amounts of unlabeled images. The resulting weights can be used as initial-
ization for finetuning on a small, labeled dataset.

In recent years, methods that compare views of images have increasingly
attracted attention [3,6,8,17,18]. The underlying idea is that even if it is
unknown what kind of object is depicted on an image, two augmented crops of
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Fig. 1. Finetuning pretrained weights for object detection on MS COCO [22] following
the 1x evaluation protocol with a Mask R-CNN and FPN-backbone as first described
in MoCo [18]. FastSiam matches ImageNet weights if trained with a batch size of 32 on
a single GPU for 25 epochs. FastSiam uses 4 views per image whereas SimSiam uses
2. Because of that FastSiam requires twice as long per epoch than SimSiam does but
overall runtime to match SimSiam is still cut by a factor of more than 5.

it should still result in similar features. State-of-the-art methods based on this
idea such as BYOL [17] and SwAV [3] have been shown to match or even outper-
form ImageNet weights. These approaches are typically trained with large batch
sizes (i.e. up to 4096) and batch-norm statistics synchronized across multiple
GPUs for up to 1000 epochs. Just reproducing them requires massive amounts
of computing power. We argue that the dependence on large batch sizes and
long training schedules effectively excludes large parts of the computer vision
community from the benefits of self-supervised learning.

To understand why conventional self-supervised methods are very compute-
intensive, compare them to supervised learning. The training targets in super-
vised learning are determined by the respective labels for each image that do not
change throughout training. Conversely, the training targets of self-supervised
pretraining methods are usually computed on the fly and change throughout
training, depending on many factors including which crops are sampled for tar-
get computation. This property of ever-changing training targets slows down
convergence.

In addition, self-supervised methods typically require large batch sizes to
work well. One reason for this is that some methods contrast a positive view with
another positive view from the same image and thousands of negative views from
other images [6]. Only if many negative examples are included in a batch, the
task of distinguishing views from the same image from those of other images gets
sufficiently difficult. Even methods that do not use negative examples explicitly
like BYOL [17] observe a decrease in performance if the batch size is small.
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In contrast, SimSiam [8], which also does not use negative examples, is some-
what less dependent on large batches and works best with a batch size of 256.
Our method FastSiam improves upon the shortcomings of SimSiam, in partic-
ular, by stabilizing the training target using multiple views per image instead
of one. The suggested changes allow for training with smaller batch sizes, i.e.
less unique images (32 vs. 256) and fewer views (128 vs. 512), and lead to much
faster convergence and reduced computing requirements (see Fig. 1).

We show in experiments that FastSiam matches ImageNet weights on a vari-
ety of downstream tasks including object detection, instance segmentation and
keypoint detection after 25 epochs of self-supervised pretraining on a single GPU
with a batch size of only 32. We believe these findings to be very relevant for
a large number of computer vision researchers who have only limited access to
computing resources. FastSiam may allow them to benefit from recent progress
in self-supervised pretraining. Overall, our contributions can be summarized as
follows:

– We propose FastSiam, a self-supervised pretraining method that works best
with small batch sizes and that converges much faster than competing meth-
ods.

– We identify target instability as a core reason why existing methods require
very long training schedules and large batch sizes. We show that by stabilizing
the training target, convergence can be reached much faster and a batch size
of only 32 is found to be best.

– Weights trained by FastSiam for only 25 epochs on a single GPU match or
improve upon ImageNet weights on a variety of downstream tasks including
object detection, instance segmentation and keypoint detection.

2 Related Work

Self-supervised pretraining attempts to learn transferable image representations
by only having access to a large number of unlabeled images. Early methods in
the field focus on handcrafted pretext tasks including colorization [20], rotation
prediction [16], clustering [2], solving jigsaw puzzles [24] and others [14].

In recent years, approaches that compare views of images have gained atten-
tion [3,6–8,10,15,17,18,33]. Some of these methods are called contrastive meth-
ods because they compare views of the same image with those of other images,
either maximizing or minimizing feature similarity [6,7,10,15,18,33]. Among
them, SimCLR [6] shows that contrastive methods benefit from strong data
augmentation, large batch sizes and many epochs of training. Different from
contrastive methods, BYOL [17] and SimSiam [8] find that using negative exam-
ples is not even necessary if an asymmetric architecture, as well as a momentum
encoder or a stop-gradient operation, are applied. Moreover, SwAV [3] uses an
online clustering of output features and enforces consistency between cluster
assignments. Instead of contrasting per-image features, some methods compare
class predictions [4].
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One property of all these approaches is that they compute a global feature
vector or a per-image class prediction. Conversely, other self-supervised meth-
ods are specifically designed for object detection or segmentation downstream
tasks by comparing local patches [5,13,23,28,31] or even pixels [25] across views
instead of entire images.

Recently, self-supervised methods that were originally developed for convo-
lutional neural networks have also been applied to transformers [10,32] and vice
versa [4]. Furthermore, some approaches have been developed which make use
of transformer-specific properties [1,12,34].

While the vast majority of methods that compare views of images use two
of them, some approaches include more than that [3,4]. The clustering-based
approach SwAV [3], in particular, combines two views of the normal resolution
with multiple smaller ones, resulting in an increase in performance. However,
SwAV does not observe a speedup of convergence.

Typically, self-supervised methods are trained between 200 and 1000 epochs
with batch sizes of up to 4096. While several methods report a strong decrease in
performance given smaller batch sizes [17], others show only a moderate decline.
For example, the performance of SwAV [3] only decreases somewhat if the batch
size is reduced from 4096 to 256 unique images (with 6 to 8 views per image, some
of which are of lower resolution). Different from competing methods, MoCov2 [7]
is trained with a batch size of 256 by default, which is made possible by keeping
a large queue of negative samples. By doing so, MoCov2 decouples the batch
size from the number of negative instances used in the loss. Moreover, DINO
[4] shows only a moderate decline in performance with a batch size of 128 when
evaluating on a k-NN classification task. In addition, SimSiam [8], DenseCL [28]
and DetCo [31] use a batch size of 256 by default.

Overall, some methods are moderately robust to small batch sizes, but they
still observe a substantial decrease in performance for batch sizes lower than 128.
No method matches ImageNet weights with a very short training schedule on a
single GPU while only requiring a small batch size. This essentially means that
there is no self-supervised method that is suited for computer vision researchers
who have limited access to computing power. FastSiam addresses this issue and
matches ImageNet weights after only 25 epochs of training on a single GPU with
batch size as low as 32.

3 Method

In this section, we describe the core properties of FastSiam, which allow for
fast convergence and training with small batch sizes on a single GPU. Fast-
Siam extends upon SimSiam and addresses a core weakness of it, namely target
instability.

3.1 Background

SimSiam inputs two augmented crops of an image, x1 ∈ R
H×W×C and x2 ∈

R
H×W×C . The view x1 is fed into the prediction branch which consists of an
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encoder network f (e.g. a ResNet50 with an MLP on top) and a predictor head
h (e.g. another MLP), resulting in prediction p1 � h(f(x1)). The target branch
computes a vector that serves as a target by processing x2 through the same
encoder f that the prediction branch also uses, i.e. z2 � f(x2). Gradients are
not backpropagated on the target branch as a stop-gradient operation is applied.
Overall, the network is trained to make the output features from the prediction
branch similar to those of the target branch by minimizing their negative cosine
similarity (see Eq. 1).

L(p1, z2) = −
p1

‖p1‖2
·

z2

‖z2‖2
(1)

3.2 Stabilizing the Training Target

SimSiam and other methods that compare views of images implicitly assume
that the sampled views show at least parts of the same object. However, this is
often not the case when applying the usual cropping strategy to object-centric
images. Maximizing the feature similarity of views that show different objects
is arguably not an ideal training strategy and may lead to training instability.
Furthermore, even if both views show parts of the same object, target vectors
may differ strongly depending on which views are sampled and how they get
augmented.

Computing the target vector for all possible views of an image results in a
multivariate distribution. Assume, for simplicity, that this distribution has the
mean µ and the variance Σ. We argue that SimSiam and other self-supervised
methods suffer from target instability because they sample only one instance T1

from this distribution (see Eq. 2). After all, a target vector generated from a sin-
gle view may differ substantially from the overall properties of the distribution
like the mean value, leading to target instability.

E(T1) = µ, V ar(T1) = Σ (2)

To address this issue, we propose to use multiple views for target computa-
tion to get a more stable estimate of the mean value. This can be seen as a way
of avoiding outliers to determine the training target. Sampling and averaging
K independent and identically distributed target vectors is equivalent to sam-
pling from a distribution with the same mean but reduced variance (see Eq. 3).
Increasing the number of samples by a factor of four reduces the variance by a
factor of four and the resulting standard error of the mean by a factor of two
if samples are uncorrelated. More details on this connection are included in the
supplementary material.

E(T̄K) = µ, V ar(T̄K) =
Σ

K
(3)

Figure 2a depicts the distribution of the first dimension of a 2048-dimensional
vector in the case of varying amounts of samples K that were drawn from N (0, I).
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(a) (b)

Fig. 2. Target statistics for varying numbers of sampled views if the underlying distri-
bution is Gaussian. The more views are used for target computation, the sharper the
distribution of target vectors centers around its mean (a), and the smaller the average
Euclidean distance to the target vector computed based on all possible views becomes
(b). For visualization purposes, we only plot results for the first of 2048 dimensions of
the target vector in (a).

The more views are used for target computation, the sharper the resulting dis-
tribution centers around its mean. Based on that, Fig. 2b shows the decreasing
average Euclidean distance between the sampled target and the mean of using
all possible views. If few views are provided, adding one more results in a strong
decrease. Conversely, if already many views are available, including another one
has only a small effect.

FastSiam makes use of the connection that averaging multiple samples
reduces the standard error of the mean (see Fig. 3). By doing so, the training
target becomes much more stable, allowing for faster convergence and training
with smaller batch sizes both in terms of unique images and the total number
of views. The resulting loss function in which multiple views are combined for
target generation is shown in Eq. 4.

L(z1, z2, z3, ..., zK , pK+1) = −
pK+1

‖pK+1‖2
·

1
K

K∑
i=1

zi

‖ 1
K

K∑
i=1

zi‖2

= −
pK+1

‖pK+1‖2
·

T̄K

‖T̄K‖2

(4)

The total loss that is optimized is formulated in Eq. 5. Each view is passed
through the prediction branch once and the remaining views are used for target
computation. We find K = 3 to be best, meaning that the combination of three
views is used for target computation.

Ltotal =

K+1∑

i=1

1

K + 1
L({zj |j �= i ∧ 1 ≤ j ≤ K + 1}, pi) (5)
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Fig. 3. Overall setup of FastSiam. On the target branch, FastSiam combines the infor-
mation from multiple views to increase target stability. Gradients are not backprop-
agated, meaning that the target vector can be seen as a constant. On the prediction
branch, only one view is used. The resulting prediction is trained to be similar to the
output of the target branch. By increasing target stability, convergence can be reached
much faster and with smaller batch sizes both in terms of unique images and the total
number of views.

4 Experiments

The overall experimental setup is divided into two parts. First, FastSiam is pre-
trained without labels. Second, the resulting weights are evaluated by finetun-
ing them on a diverse set of downstream tasks. These include object detection,
instance segmentation and keypoint detection on MS COCO [22] and CityScapes
[11]. We show that FastSiam matches or exceeds the performance of ImageNet
weights and is competitive with other self-supervised methods while requiring
much less computing power.

4.1 Experimental Setup

Pretraining Setup. For self-supervised pretraining we use ImageNet [26],
which contains 1.2 million images from 1000 classes. We follow the training setup
in SimSiam [8] including, for example, the augmentation pipeline. By default, we
train for 25 epochs with a cosine learning rate decay schedule. The learning rate
is set to 0.125 for a batch size of 32. In the case of larger batch sizes, the learning
rate is scaled linearly. We use three views per image for target computation.

Evaluation Protocols. We evaluate the pretrained weights on a variety of
downstream tasks using common protocols that are implemented in Detec-
tron2 [29]. We adopt two different protocols for evaluating object detection and
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instance segmentation on MS COCO. Following DenseCL [28] and InfoMin [27]
we use a Mask R-CNN detector [19] with a FPN backbone [21] and the 1×
schedule with 90,000 steps for evaluating object detection and instance segmen-
tation on MS COCO. Furthermore, like in MoCo [18] and DetCo [31] we use
a ResNet50-C4 backbone [19] in combination with a Mask R-CNN and the 1×
schedule. Moreover, we use the evaluation protocol for instance segmentation on
CityScapes [11], a dataset covering urban street scenes for autonomous driving,
from MoCo [18] and DetCo [31]. In addition, we also evaluate keypoint detection
on MS COCO again following MoCo [18] and DetCo [31]. SimSiam weights after
100 epochs were downloaded from the author’s github website [9] and used in
evaluations.

Table 1. Object Detection and Segmentation on MS COCO with a ResNet50-FPN
Backbone. FastSiam matches ImageNet weights and performs comparably to other
self-supervised methods.

Method Epoch Batch Views AP
bb

AP
bb
50 AP

bb
75 AP

mk
AP

mk
50 AP

mk
75

Random - - - 32.8 50.9 35.3 29.9 47.9 32.0

ImageNet 90 256 1 39.7 59.5 43.3 35.9 56.6 38.6

InsDis [30] 200 256 1 37.4 57.6 40.6 34.1 54.6 36.4

MoCo [18] 200 256 2 38.5 58.9 42.0 35.1 55.9 37.7

MoCov2 [7] 200 256 2 38.9 59.4 42.4 35.5 56.5 38.1

SwAV [3] 200 4096 8 38.5 60.4 41.4 35.4 57.0 37.7

DetCo [31] 200 256 20 40.1 61.0 43.9 36.4 58.0 38.9

SimCLR [6] 200 4096 2 38.5 58.0 42.0 34.8 55.2 37.2

DenseCL [28] 200 256 2 40.3 59.9 44.3 36.4 57.0 39.2

BYOL [17] 200 4096 2 38.4 57.9 41.9 34.9 55.3 37.5

SimSiam [8] 100 256 2 38.4 57.5 42.2 34.7 54.9 37.1

FastSiam 10 32 4 38.9 58.3 42.6 35.2 55.5 37.9

FastSiam 25 32 4 39.7 59.4 43.5 35.7 56.5 38.2

4.2 Main Results

Object Detection and Instance Segmentation on MS COCO. Table 1
shows the results on MS COCO for object detection and instance segmentation
using a ResNet50-FPN backbone. FastSiam trained for 25 epochs with a batch
size of 32 results in comparable performance to state-of-the-art self-supervised
methods and also matches ImageNet weights. Even if FastSiam is only trained
for 10 epochs, performance is comparable to many other self-supervised methods
including SimSiam trained for 100 epochs while greatly outperforming a random
initialization. Furthermore, in Table 2 we report results on MS COCO with a
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ResNet-C4 backbone. If FastSiam is trained for 25 epochs, performance matches
ImageNet weights and most other self-supervised methods. Notably, FastSiam
clearly outperforms SimSiam trained for 100 epochs and almost matches the
performance of it trained for 200 epochs. In the case of training FastSiam for only
10 epochs, performance remains competitive with other self-supervised methods
while greatly improving upon a random initialization.

Table 2. Object Detection and Instance Segmentation on MS COCO with a ResNet50-
C4 Backbone. FastSiam matches ImageNet weights and performs comparably to other
self-supervised methods

Method Epoch Batch Views AP
bb

AP
bb
50 AP

bb
75 AP

mk
AP

mk
50 AP

mk
75

Random - - - 26.4 44.0 27.8 29.3 46.9 30.8

ImageNet 90 256 1 38.2 58.2 41.2 33.3 54.7 35.2

InsDis [30] 200 256 1 37.7 57.0 40.9 33.0 54.1 35.2

MoCo [18] 200 256 2 38.5 58.3 41.6 33.6 54.8 35.6

MoCov2 [7] 200 256 2 38.9 58.4 42.0 34.2 55.2 36.5

SwAV [3] 200 4096 8 32.9 54.3 34.5 29.5 50.4 30.4

DetCo [31] 200 256 20 39.8 59.7 43.0 34.7 56.3 36.7

SimSiam [8] 200 256 2 39.2 59.3 42.1 34.4 56.0 36.7

SimSiam [8] 100 256 2 35.8 54.5 38.7 31.7 51.5 33.7

FastSiam 10 32 4 37.3 56.9 40.2 32.8 53.8 34.7

FastSiam 25 32 4 38.5 58.0 41.6 33.7 54.8 35.8

Instance Segmentation on CityScapes. Table 3 shows results for instance
segmentation on CityScapes. FastSiam trained for 25 epochs outperforms Ima-
geNet weights and is competitive with other self-supervised methods while being
trained for fewer epochs and with much smaller batch size. Even when training
FastSiam for only 10 epochs, downstream performance almost matches ImageNet
weights while being clearly superior to a random initialization.

Keypoint Detection on MS COCO. In Table 4 we report results for keypoint
detection on MS COCO. FastSiam trained for only 10 epochs improves upon
ImageNet weights and performs comparably to other self-supervised methods
including SimSiam while requiring much less computing power. If FastSiam is
trained for 25 epochs, detection performance is only slightly better than after
10 epochs.

Runtime Analysis. In this section, we compare the runtime of FastSiam with
that of SimSiam. In particular, we investigate how much runtime by FastSiam is
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Table 3. Instance Segmentation on CityScapes. FastSiam matches competing methods
and improves upon ImageNet weights.

Method Epoch Batch Views AP
mk

AP
mk
50

Random - - - 25.4 51.1

ImageNet 90 256 1 32.9 59.6

InsDis [30] 200 256 1 33.0 60.1

MoCo [18] 200 256 2 32.3 59.3

MoCov2 [7] 200 256 2 33.9 60.8

SwAV [3] 200 4096 8 33.9 62.4

DetCo [31] 200 256 20 34.7 63.2

SimSiam [8] 100 256 2 32.9 60.9

FastSiam 10 32 4 32.6 59.9

FastSiam 25 32 4 34.0 60.7

Table 4. Keypoint Detection on MS COCO. FastSiam matches competing methods
and outperforms ImageNet weights.

Method Epoch Batch Views AP
kp

AP
kp
50

AP
kp
75

Random - - - 65.9 86.5 71.7

ImageNet 90 256 1 65.8 86.9 71.9

InsDis [30] 200 256 1 66.5 87.1 72.6

MoCo [18] 200 256 2 66.8 87.4 72.5

MoCov2 [7] 200 256 2 66.8 87.3 73.1

SwAV [3] 200 4096 8 66.0 86.9 71.5

DetCo [31] 200 256 20 67.2 87.5 73.4

SimSiam [8] 100 256 2 66.4 87.1 72.2

FastSiam 10 32 4 66.5 87.2 72.4

FastSiam 25 32 4 66.6 87.2 72.6

needed to match the performance of SimSiam and supervised ImageNet weights.
Figure 4 shows results for AP bb for object detection on MS COCO and APmk for
instance segmentation on CityScapes. FastSiam requires almost exactly twice as
much time per epoch as SimSiam because it uses four views per image instead of
two. Therefore, four forward and backward paths are computed instead of two.
Test are conducted on NVIDIA GeForce RTX 2080 Ti. Because time measure-
ments in GPU hours depend on the specific hardware, we report the relative
runtime measured in equivalents of FastSiam epochs. In terms of computing
requirements, 100 epochs of SimSiam are equivalent to 50 FastSiam epochs.
However, the total runtime of FastSiam is between 5 and 10 times lower because
training converges significantly faster due to increased target stability.
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(a) Object Detection on MS COCO with
a ResNet50-C4 Backbone.

(b) Instance Segmentation on CityScapes
with a Mask RCNN.

Fig. 4. Runtime comparison between FastSiam and SimSiam. Performance of pre-
trained weights is evaluated on object detection and instance segmentation. FastSiam
reaches the same downstream performance as SimSiam with a speedup between factor
5 and 10.

4.3 Ablations

The Optimal Number of Views. We investigate what number of views is
optimal for target computation. Figure 5 shows downstream performance for
object detection on MS COCO and instance segmentation on CityScapes given
a varying number of views for target computation, ranging from one to four. To
ensure a fair comparison, we use a fixed amount of computing power (equivalent
to 50 epochs in case of three views) and the same number of views per batch
(512). If only one view is used like in SimSiam, the training target is unstable.
Conversely, one could use as many views as fit in the batch taken from a single
image. While this would maximize target stability, the diversity within each
batch would be very low. We find that using three views for target computation
offers the best trade-off and results in the highest transfer performance, hence
we choose it as our default.

Effect of Batch Size on Performance. We investigate the effect that the
chosen batch size in FastSiam has on the downstream performance. In Table 5
we compare AP bb for object detection on MS COCO, APmk for instance seg-
mentation on CityScapes and AP kp for keypoint detection on MS COCO given
different batch sizes in pretraining. We find that increasing batch size from the
default of 32 to 64 or 128 does not lead to better downstream performance.
Whereas other self-supervised methods [17] report that reducing the batch size
to 256 or below decreases performance, FastSiam even works best with a batch
size of 32. Reducing the batch size below 32 has no practical value because it
already fits on a single GPU.
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(a) Detection on MS COCO with FPN. (b) Instance Segmentation on CityScapes.

Fig. 5. The downstream performance for varying numbers of views used for target
computation, three being the default in FastSiam. Total compute as well as the number
of views per batch is the same for all settings.

Table 5. Effect of Batch Size on Downstream Performance. We compare AP
bb for

object detection on MS COCO, AP
mk for instance segmentation on CityScapes and

AP
kp for keypoint detection on MS COCO given different batch sizes in pretraining.

Method Epoch Batch COCO FPN COCO C4 CityScapes Keypoint

Random - - 32.8 26.4 25.4 65.9

ImageNet 90 256 39.7 38.2 32.9 65.8

FastSiam 25 32 39.7 38.5 34.0 66.6

FastSiam 25 64 39.7 38.4 33.6 66.6

FastSiam 25 128 39.8 38.5 33.3 66.6

Activation Maps. We visualize activation maps for FastSiam trained for 25
epochs and SimSiam trained for 100 epochs (see Fig. 6). FastSiam activates more
precise object regions than SimSiam does. This property is particularly impor-
tant for downstream tasks that involve localization.

Qualitative Analysis. In this section, we qualitatively analyze which views of
images result in target vectors that are either close to the mean vector or very
far away from it. For this, we input 200 views for each randomly selected image
in an untrained encoder network. We then determine the views corresponding
to the three most similar and three most distant target vectors relative to the
mean vector. The result is shown in Fig. 7. The first column depicts the original
image. Columns 2–4 show the views corresponding to the three target vectors
with the smallest difference to the mean. The remaining columns 5–7 show the
three views which lead to the most distant target vectors. These outlier vectors
result from views that either do not contain the object of interest (e.g. a dog) or
are very heavily augmented (e.g. strong color jitter or conversion to greyscale).
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Fig. 6. Activation maps for FastSiam (middle column) and SimSiam (right column).
FastSiam generates more precise object regions than SimSiam does.

Fig. 7. Views of images that result in target vectors that are closest or most distant
to the mean target. Column 1 shows the original image, columns 2–4 the three views
which result in target vectors with the smallest distance to the mean, whereas columns
5–7 shows the three views that result in the most distant target vectors. Views corre-
sponding to outlier vectors often do not contain the object of interest (e.g. a dog) or
are heavily augmented.

5 Conclusion

In this work, we propose FastSiam, a self-supervised pretraining method that
is optimized for fast convergence, small batch sizes and low computing require-
ments. On a diverse set of downstream tasks including object detection, instance
segmentation and keypoint detection, FastSiam matches ImageNet weights and
performs comparably to other self-supervised methods while requiring much less
computing power. We believe that FastSiam is of particular interest for com-
puter vision researchers who have only limited access to computing resources,
finally allowing them to benefit from self-supervised pretraining.
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