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A B S T R A C T   

Visibility in foggy weather is of great value for traffic management and pollution monitoring. However, vision- 
based fog visibility estimation methods are usually based on a single image to approximate the visibility in foggy 
weather, and most existing data-driven machine learning models struggle to capture effective features and 
achieve high estimation accuracy due to the severe image degradation caused by reduced visibility and lack of 
real scene images. Therefore, this paper proposes a novel deep learning framework based on multi visual feature 
fusion for fog visibility estimation, named VENet, which comprises of two subtask networks (for fog level 
classification and fog visibility estimation) constructed in a cascade structure. A special feature extractor and an 
anchor-based regression method (ARM) are proposed to help improve the accuracy. Further, a standard Fog 
Visibility Estimation Image (FVEI) dataset containing 15,000 images of real fog scenes is established. This dataset 
greatly bridges the lack of suitable data in the field of vision-based visibility estimation. Extensive experiments 
have been conducted to demonstrate the performance of the proposed VENet, where the error of fog visibility 
estimation is less than 5% at 500 m and the fog level classification accuracy is at least 92.3%. In addition, the 
proposed VENet has been applied on Yunnan Xiangli and Mazhao Expressway surveillance with promising 
performance in practice.   

1. Introduction 

Fog is a common weather phenomenon and a potential threat to 
public safety, especially in transportation. Traffic control in foggy 
weather has become one of the most challenging tasks in traffic man-
agement due to reduced visibility. According to the statistics of domestic 
traffic accidents in China (Traffic Administration Bureau of the Ministry 
of Public, 2021), highway accidents account for about 11.3% of the total 
number of fatalities, of which about 1/4 are caused by severe weather 
conditions such as dense fog, with a fatality rate of over 40%. Therefore, 
accurate visibility estimation in foggy weather is key to alleviating 
transportation-related mishaps, and is also a part of supporting intelli-
gent transportation systems (Xue, Xu, & Du, 2022). 

In general, there are two main approaches for fog visibility estima-
tion, namely sensor-based methods and vision-based methods. Sensor- 

based methods (Wang, Jia, Li, Lu, & Hua, 2020; Xian, Han, Huang, 
Sun, & Li, 2018) are supported by optical theories and can achieve high 
accuracy. However, these methods require special equipment which are 
often expensive and require specific installation conditions; therefore, 
they can only be applied in a limited number of observatories. In addi-
tion, such observatories are geographically scattered, making it difficult 
to detect the occurrence of fog. With the development of computer 
vision, vision-based methods can leverage preinstalled road surveillance 
cameras for the task, without relying on special equipment. Further-
more, with the high installation density of existing surveillance cameras, 
vision-based methods (You, Jia, Pei, & Yao, 2022) can help establish a 
real-time fog visibility observation system. Therefore, compared with 
traditional sensor-based methods, vision-based fog visibility estimation 
methods are superior in terms of both cost and efficiency, and are of 
great value in traffic management and pollution monitoring. It is also a 
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popular development technology in the field of intelligent trans-
portation systems in recent years, which can support cutting-edge 
technologies such as autonomous driving. 

Vison-based methods for fog visibility estimation can be divided into 
two categories: fog level classification and fog visibility estimation. Fog 
level classification involves separating images into different classes 
based on visibility. In a previous study, Li, Lu, Tong, and Zeng (2014) 
classified fog levels via statistical methods, which can effectively classify 
images but cannot achieve high accuracy. To overcome this disadvan-
tage, Wang, Jia, Li, Lu, and Hua (2020) proposed the construction of a 
fog level classifier based on machine learning models. Compared with 
previous methods, the classification accuracies were improved; how-
ever, their performance drops rapidly when the fog level increases. The 
main reason is that image degradation becomes more serious as the fog 
level increases, thereby causing difficulties in capturing effective 
features. 

Fog visibility estimation can be considered as a regression problem of 
estimation, which is usually applied in the autonomous driving assis-
tance system. This method requires special landmarks in the scene, such 
as lanes, sky, etc., which limits its application. To address this issue, 
learning-based methods with higher robustness are proposed (You, Lu, 
Wang, & Tang, 2018). However, due to the lack of sufficient data and 
suitable estimation models, it is difficult for existing methods to achieve 
high accuracy in visibility estimation. 

To address the above research gaps, a novel fog visibility estimation 
network named VENet is proposed, which consists of two subtask net-
works, including a fog level classification network and a fog visibility 
estimation network. Inspired by Dai, He, and Sun (2016) a cascade 
structure using these two networks is constructed. The results of fog 
level classification are first input to the fog visibility estimation network 
to realize a coarse-to-fine process; then, an anchor-based regression 
method (ARM) is proposed to improve the estimation accuracy. More-
over, to overcome the challenges posed by image degradation, a special 
feature extractor that captures effective features from fog-scene images 
is built. 

It is worth noting that a standard Fog Visibility Estimation Image 
(FVEI) dataset containing 15,000 images of real fog scenes is estab-
lished. The construction of this dataset took nearly a year of hard work, 
including site selection, data acquisition, data preprocessing, data 
annotation, and acceptance. There are 10 experts in the field of trans-
portation and meteorology invited to participate in the data annotation 
task. The dataset of FVEI greatly makes up for the lack of data in the field 
of vision-based visibility estimation. 

Extensive experiments were subsequently conducted to demonstrate 
the performance of the proposed VENet. The error of fog visibility 
estimation was observed to be less than 5% at 500 m, and the fog level 
classification accuracy was approximately 92.3% or higher. The main 
contributions of this study are summarized as follows:  

• A standard fog visibility estimation image (FVEI) dataset has been 
constructed containing 15,000 annotated images, where each image 
is annotated with two labels including fog level and visibility.  

• Multi feature fusion methods are used to simultaneously extract 
multiple features for classifier training to achieve feature comple-
mentarity and reduce the impact of inherent defects in a single 
feature. By analyzing the characteristics of fog images, the RGB three 
channel features, dark channel features, and edge features are fused 
together to achieve fog visibility estimation.  

• A deep learning based fog visibility estimation network (VENet) on 
multi visual feature fusion is proposed, which adopts a multitask 
network cascade structure to realize a coarse-to-fine recognition 
process. Extensive experiments are performed and the results show 
that the proposed model can achieve accurate visibility estimation 
with an error of less than 5% in the range of 500 m.  

• The VENet has been applied on Yunnan Xiangli and Mazhao 
Expressway surveillance, and has achieved promising results in 
practice. 

2. Literature review 

2.1. Visibility estimation 

Vision-based visibility estimation has garnered increasing attention 
in recent years. The estimation methods can be mainly divided into two 
categories: rule-based methods and learning-based methods. Rule-based 
methods usually apply graphical operators to exact image features and 
then build visibility estimations according to statistical analysis. For 
example, Hautiere, Tarel, Lavenant, and Aubert, (2006) developed an 
automatic fog detection system for visibility estimation using Kosch-
mieder’s laws; Bronte, Bergasa, and Alcantarilla, (2009) proposed visi-
bility estimations based on the sky-road limit using a monocular camera. 
These methods are advantageous in terms of efficiency, but their main 
drawback is lack of accuracy. Learning-based methods are data-driven 
methods that use machine learning to build visibility estimations. In 
the early exploration stage of these methods, models were constructed 
with handcrafted features. Pavlić, Belzner, Rigoll, and Ilić, (2012) pro-
posed a classifier based on image descriptors that were extracted using 
fast Fourier transform (FFT) and support vector machine (SVM). Asery, 
Sunkaria, Sharma, and Kumar, (2016) proposed the gray-level co- 
occurrence matrix features to train an SVM-based classification model. 
These approaches achieve good accuracy in the classification of foggy 
and non-foggy images. With the development of deep-learning ap-
proaches, You, Lu, Wang, and Tang, (2018) proposed a relative con-
volutional neural network and recurrent neural network (CNN-RNN) 
model for feature detection and built visibility estimation models based 
on SVM or support vector regression (SVR). Palvanov, and Cho, (2019) 
proposed Visnet model using three streams of deep integrated CNNs 
which can further solve the problem of fog level classification. 

2.2. Multitask learning 

Multitask learning (MTL) is a learning paradigm in machine learning 
that aims to exploit useful information contained in multiple related 
tasks to improve the generalization performances across all tasks. This 
approach has been successfully applied in many machine learning ap-
plications ranging from natural language processing to computer vision 
(Crawshaw, 2020). 

In general, MTL is performed by parameter sharing of the hidden 
layers, and multiple tasks are processed separately. For example, Mul-
tiNet was proposed for the detection, classification, and semantic seg-
mentation (Teichmann123, Weber, Zöllner, & Cipolla, 2018). A novel 
end-to-end CNN-based multitask weather recognition network with 
multi-scale weather cues was proposed (Xie, Huang, Zhang, Qin, & Lyu, 
2022). MTL is tailored for multiple tasks that are internally related with 
no apparent progressive relationship. For multiple tasks with a pro-
gressive relationship, constructing a multitask cascade would be a better 
solution. 

2.3. Image dataset 

Datasets are the cornerstone of any data-driven machine learning 
model and are of great significance in driving the development of 
various applications. For example, early efforts on the handwriting 
dataset MNIST (LeCun, Bottou, Bengio, & Haffner, 1998), face recog-
nition dataset (Georghiades, Belhumeur, & Kriegman, 2001), face 
expression dataset (Lyons, Akamatsu, Kamachi, & Gyoba, 1998), and 
object recognition dataset (Griffin, Holub, & Perona, 2007) have greatly 
stimulated popular interest in these fields, which drives the develop-
ment of many computer vision models. Datasets in recent years are often 
built on a large scale, such as the natural scene image dataset ImageNet 
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(Deng, Dong, Socher, Li, Li, & Li, 2009) and Microsoft-COCO (Lin et al., 
2014), and more area-specific ones such as the medical image dataset 
MURA (Rajpurkar et al., 2018) and cartoon image dataset Danbooru 
(Branwen, & Gokaslan, 2019). These datasets have advanced the 
development of machine learning technologies while rendering the 
vision tasks more vivid and interesting. 

However, for vision-based visibility estimation, there are only the 
synthetic dataset FROSI (Belaroussi, & Gruyer, 2014), FRIDA (Tarel, 
Hautière, Cord, Gruyer, & Halmaoui, 2010) and FRIDA2 (Tarel, 
Hautière, Caraffa, Cord, Halmaoui, & Gruyer, 2012) which contain 
multiple synthetic scenes and traffic signs, and the annotation accuracy 
of fog concentration levels can only meet the classification requirements 
to a certain extent. Moreover, since the dataset is not composed of real 
scene images, it cannot accurately describe uneven fog concentrations in 
real scenes. It only contains the fog concentration levels without detailed 
information such as accurate visibility values. The lack of data limits the 
application of data-driven model in visibility estimation. To bridge the 
gap, this study presents a new dataset (i.e., FVEI) of real fog-scene im-
ages. The comparison of FVEI with FROSI, FRIDA, and FRIDA2 is shown 
in Table 1. 

3. Pipeline of the proposed method 

The pipeline of the proposed method is illustrated in Fig. 1, which 
consists of five main steps: (1) fog image construction, (2) multi features 
extraction, (3) the proposed multi-network cascade structure to realize 
fog level classification and fog visibility estimation, (4) experiment 
verifications, and (5) engineering application. 

Convolutional neural network models are data-driven, so first it need 
to build a dataset of images with fog level and visibility value labels to 
train the network model (see Section 4). Secondly, the quality of image 
features is critical to the final recognition, greatly affecting the accuracy, 
efficiency, and generalization performance of classification of deep 
learning network. Therefore, it is necessary to extract and select features 
that can effectively capture the fog image through comparative analysis, 
such as dark channels, edge features, et al. (see Section 5). Thirdly, a 
novel deep learning framework based on multi visual feature fusion for 
fog visibility estimation, which comprises of two subtask networks 
constructed in a cascade structure (see Section 6). Finally, the validity of 
the deep learning network model is verified and an application system is 
built for practical application at expressways (see Section 7). 

4. Dataset 

As convolutional neural network models are data-driven, in this 
section a dataset of images with fog level and visibility value labels is 
built to train the neural network model. The boom in datasets has fueled 
the development of computer vision methods in all walks of life and 
industry. In previous studies, only a few datasets were available for 
vision-based fog visibility estimation. Furthermore, these datasets usu-
ally use synthetic image data that lack real visibility measurement; thus, 
they are inadequate for actual scenes. The amount of actual scenes 
visibility data is very limited, which might lead to over fitting or under- 
fitting. In this work, a real fog-scene image dataset is built (named the 
FVEI dataset), where the data comes from three real highway 

monitoring scenes, as shown in Fig. 2. This dataset greatly compensates 
for the lack of data in the field of vision-based visibility estimation, and 
provides great support for future research. The dataset with its ground 
truth is partly publicly available (https://pan.baidu.com/s/ 
1JP8WBue5C2WTG5I_plc9ew?pwd=s427). 

4.1. Collection of images 

When setting up the data collection points, scenes with rich back-
grounds are prioritized. The main reason for this is that reduced visi-
bility can lead to severe image degradations, which are mainly 
manifested by reduced contrast and color saturation. Therefore, the fog 
visibility of an image is estimated from the presence of background in-
formation. In addition, locations with point light sources in the back-
ground are selected so as to enable visibility estimation of fog at night. 

After determining the locations at which equipment should be 
installed, the devices are set up accordingly. The equipment chosen for 
capturing the data is the dome camera (camera model: DH-SD6A82C- 
HN), and the visibility measurement equipment is PWD22. They are 
mounted at the same location and separated by a distance of less than 50 
cm to avoid inconsistencies between images and visibility measurements 
due to uneven distribution of fog concentration. 

4.2. Image labelling 

The dome camera and visibility measurement equipment are located 
in the same location, less than 50 cm apart. The visibility data of the 
visibility measurement equipment is consistent with the visibility data of 
the image captured by the dome camera. First, the images have to be 
aligned with the time stamps of the measurement data from the visibility 
meter to obtain the fog visibility data for each image, while the invalid 

Table 1 
Comparison between the FROSI, FRIDA, FRIDA2, and FVEI datasets.  

Statistic FROSI FRIDA FRIDA2 FVEI 
Number 3024 90 330 15,000 
Image 

Size 
640*480 640*480 640*480 1920*1080 

Scenes 16 18 66 3 
Source Synthetic Synthetic Synthetic CCTV Camera 
Label Fog level 

only 
Fog level 
only 

Fog level 
only 

Fog level and 
visibility  

Fig. 1. Pipeline of the proposed multi visual feature fusion based fog visibility 
estimation method. 
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image data would be removed. If the camera lens is covered by dew or if 
data is lost due to encoding and decoding distortions during image 
transmission, the image is considered invalid data. Further, there may be 
errors in the visibility meter measurements due to inconsistencies with 
the scene; therefore, in order to avoid the interference of visibility- 
related errors, such abnormal data will also be discarded. 

After performing the above processing steps, the data are ready for 
annotation. The whole annotation process is divided into three stages. In 
the first stage, according to national standards in China (GB/T 31445- 
2015 Standard for expressway traffic safety control under fog weather 
conditions), the visibility levels are divided according to Table 2, where 
images that are obviously inconsistent with the current levels are 
deleted. In the second stage, the images are checked at each level, and 
are deleted or adjusted if they are inconsistent with visibility sorting via 
comparisons between images. In the third stage, the data within the 
boundaries of each category is focused to delete those that are obviously 
ambiguous and cannot be classified accurately. At the end, the results of 
annotations by all the experts and output data with the same annotation 
are combined. In all, about 15,000 images (some instances are shown in 
Fig. 3) are compiled in the dataset. 

4.3. Characteristics of the dataset 

The size of the image in the final dataset is 1920*1080, and the total 
number of images in the dataset is approximately 15000. Due to that 
there are fewer cases of dense fog and heavy fog in the actual environ-
ment, the dataset is distributed as follows: clear: 28%, low fog: 20%, 
medium fog: 20%, high fog: 18% and dense fog: 14%, among them, the 
distribution of visibility value for each category is uniform. The images 
comprise data of different seasons (spring, summer, autumn and winter), 
lighting conditions (from 6 am to 7 pm), and different weathers (sunny, 
snowy, rainy, foggy and cloudy), along with the overall data distribu-
tion. Some examples of the dataset are shown in Fig. 4. 

Compared with the existing visibility dataset, our new dataset FVEI 
has a larger amount of data, and the images are real scenes, which can 
better represent the differences between the real conditions and object 
concentration changes in the images. Furthermore, the FVEI dataset not 
only includes classifications based on visibility levels, but also has more 
accurate ground truth visibility measurements. 

5. Fog image multi visual features 

The quality of image features is critical to the final recognition, 
greatly affecting the accuracy, efficiency, and generalization perfor-
mance of classification of deep learning network. Therefore, in this 

section it is necessary to extract and select features that can effectively 
capture the fog image through comparative analysis. In image recogni-
tion problems, a feature is usually only sensitive to changes in certain 
characteristics of the image, while not sensitive to changes in other 
characteristics. Therefore, when two types of images have different 
feature sensitive features, classifiers based on single feature training 
cannot output correct classification. In addition, the complex back-
ground noise in the image will also lead to the degradation of feature 
data. One way to solve this problem is to use multi feature fusion 
methods to simultaneously extract multiple features for classifier 
training to achieve feature complementarity and reduce the impact of 
inherent defects in a single feature. By analyzing the characteristics of 
fog images, dark channel and edge features are extracted based on the 
three channel features of RGB. 

5.1. Dark channel features 

The concept of dark channel is defined after statistical analysis of a 
large number of exterior fog-free images, which means that in most local 
areas not covered by the sky, some pixels typically have very low in-
tensity values in at least one color (R, G, B) channel. The minimum value 
of light intensity in this area is very small, approaching zero, and is 
therefore called a dark pixel (He, SUN, &Tang, 2011). Some image ex-
amples as show in Fig. 5 (a-c). The dark-channel Id is computed by: 
Id = miny∈Ω(x)(minc∈{r,g,b}Ic(y)) (1)  

where Ic(y) represents a color channel, andΩ(x) represents the window 
at pixel x. 

5.2. Edge features 

Fog can cause the boundary lines of objects in the image to become 
more blurred, as shown in some image examples in Fig. 5 (d-f). There-
fore, edge features are also one of the important factors to distinguish 
foggy images and clear images. The sobel operators are used, as shown 
in Equation (2), to detect the edges of the collected images. 

Δxf =

⎡

⎣

−1 0 1

−2 0 2

−1 0 1

⎤

⎦ Δyf =

⎡

⎢

⎢

⎣

−1 −2 −1

0 0 0

1 2 1

⎤

⎥

⎥

⎦

(2) 

Each point in the image is convolved using these two operators. Δxf 
corresponds to the maximum horizontal edge response, and Δyf corre-
sponds to the maximum vertical edge response. The maximum value of 
the two convolutions is taken as the output point value, as shown in 
Equation (3). 
s(i, j) = max(|Δxf |, |Δyf |) = max(|(f (i − 1, j − 1) + 2f (i − 1, j) + f (i − 1, j

+ 1)) − (f (i + 1, j − 1) + 2f (i + 1, j) + f (i + 1, j + 1))|, |(f (i − 1, j − 1)

+ 2f (i, j − 1) + f (i + 1, j − 1)) − (f (i − 1, j + 1) + 2f (i, j + 1) + f (i + 1, j

+ 1))|)

(3)  

where s(i, j) is the output point value, and f(i, j) is the input point value. 

Fig. 2. Three real expressway surveillance scenes in the FVEI dataset.  

Table 2 
Correspondence between visibility and fog levels.  

Traffic control level Fog level Visibility (m) 
Null Clear 500 ≤ V 
Null Low fog 200 ≤ V < 500 
Fourth level Medium fog 100 ≤ V < 200 
Third level High fog 50 ≤ V < 100 
First/Second level Dense fog V ≤ 50  
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Fig. 3. Differences between dense fog and high fog images. The First line is the raw image in FEVI dataset. The red boxes show the main differences between the two 
types of images. The Second line is dark channel image. The third line is its corresponding key local region. The last line is the fog visibility value. 

Fig. 4. Instances in FVEI dataset.  
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6. Methods 

In this section, the visibility estimation deep learning network is 
proposed, namely VENet, which is a cascade multi-network designed to 
estimate the visibility of a scene accurately from a single image. Given 
an input image Iraw ∈ RH×W×3, VENet aims to predict the fog level and 
visibility. As shown in Fig. 6, the framework of VENet consists of two 
modules, namely the feature extractor module and multitask deep 
learning network cascade module. 

6.1. Feature extractor module 

A special feature extractor consisting of a global feature extractor 
and a key local feature extractor are built to capture the discriminative 
features from a fog-scene image. The details for the construction of the 
global and local feature extractors are as follows. 

6.1.1. Global feature extractor 
In fog-scene images, severe image degradation leads to loss of 

effective information, which makes accurate visibility estimation diffi-
cult. To address this problem, a multi-channel integration strategy is 
adopted by introducing an additional dark channel Id to the data input, 
which is obtained by Equation (1). 

In addition, it is difficult to extract effective features from the general 
network in a fog-scene image; therefore, it is necessary to design a 
specialized network for feature detection. By comparing images with 
different fog concentration levels, the number of image edges and color 
saturation significantly decrease as the fog level increases. 

Inspired by Qin, Yu, Liu, and Chen (2018) a feature extractor with 
only four convolutional layers and one fully connected layer are 
designed. It is worth noting that the information extracted by a shallow 
CNN mainly includes image edges and colors. Atrous convolution (Chen, 
Papandreou, Schroff, & Adam, 2017) is thus adopted in the first two 
layers to increase the receptive field without introducing too many pa-
rameters. The whole process is expressed as follows: 

Fig. 5. Examples of fog image features, the first column illustrates the original image, the second column illustrates the corresponding dark channel image, the third 
column illustrates the corresponding edge image. 

Fig. 6. Framework of VENet. The input is a single image, and the entire framework consists of two modules, namely the feature extractor module (module 1) and 
multitask cascade module (module 2). In module 1, the global features Fg and key local features Fk are extracted. In module 2, the fog level classification and fog 
visibility estimation networks are cascaded. 
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Iin = Id ⊕ Ir (4)  

Fg = softmax(ωg, Iin) (5)  

where Ir is the RGB three-channel image, Iin is the multichannel image 
after channel fusion, ⊕ is the concatenation operation, and ωg denotes 
the weights of the feature extraction network. 

6.1.2. Key local feature extractor 
As the fog level increases, there are only subtle differences among 

images, as shown in Fig. 7, where the red boxes are the key local regions. 
The network cannot accurately estimate the visibility by only relying on 
global features and more information is needed. In this case, the key 
local features extracted from the key local regions of an image provide 
the essential details. This idea mainly comes from the data annotation 
process. When labelling the FVEI dataset, since the human visual system 
is not sensitive to slight differences in the scene, the annotators often 
combined regions with obvious texture features for comprehensive 
judgment. To define key local regions in an image, the local regions with 
the highest densities of edge points are considered, since regions with 
high densities of edge points often tend to contain more texture 
information. 

Based on this definition, the key local feature extractor is built. First, 
the key local region Ik is obtained using Algorithm 1. Then, it is inserted 
into the feature extraction network, which has the same structure as the 
global feature extractor. The key local feature extractor is calculated by: 
Fk = softmax(ωk, Ik) (6)  

where Ik denotes the key local region, ωk denote the network parame-
ters, and Fk is a feature vector. The fused feature F is obtained by 
concatenating Fg and Fk as: 
F = Fk ⊕ Fg (7)   

Algorithm 1: The capture of key local region in a fog-scene image. 
Input: 
The original fog-scene image, Iraw; 
The target size of the key local region, S× S; 
Output: 
The key local region image, Ik; 
1: Convert RGB image Iraw to Gray image Igray; 
2: Convert Igray to edge image Iedge using sobel operator; 
3: Let px ← 0, py ← 0, W ← 1920, H ← 1080; 
4: R = [R0,R1,⋯RW−1],Ri =

∑H−1
j=0 Iedge(i, j); 

5: C = [C0,C1 ,⋯CH−1],Cj =
∑W−1

i=0 Iedge(i, j); 
6: Px = argmax

x
(
∑x+S

i=x Ri) and x ∈ [0,W − S] ∧ x ∈ Z; 
7: Py = argmax

y
(
∑y+S

j=y Cj) and y ∈ [0,H − S] ∧ y ∈ Z; 
8: Cropping Iraw based on the left high position (px, py) and size S, obtain Ik; 
9: return Ik;  

6.2. Multitask network cascade 

Fog level classifications and visibility estimation are highly related 
tasks. Essentially, fog level classification is a form of visibility estimation 
with lower accuracy. Therefore, a multitask deep learning network 
cascade module based on the idea of coarse-to-fine refinement is con-
structed. Fog visibility estimation relies on the results of fog level clas-
sifications, whose framework is illustrated in Fig. 8, and the relevant 
parameters in the figure are explained in the latter section. 

6.2.1. Fog level classification network 
First, a simple network is built consisting of two fully connected 

layers, and the exponential linear unit (ELU) (Clevert, Unterthiner, & 
Hochreiter, 2015) is adopted as the activation function. The network 
outputs a vector P, and the network can be denoted as: 
P = softmax(ωcls,F) = [P0,P1,⋯,PN - 1]

T (8)  

where P is a vector with N elements, and each element Pi represents the 
probability of the corresponding fog level i. And N is the number of fog 
levels, ωcls represents all the classification network parameters to be 
optimized, and the fog level Vf is the maximum index of P given by: 
Vf = argma

i

xPi (9)  

6.2.2. Visibility value estimation network 
In the second stage, the fused convolutional features F and stage-1 

probability P are used as input, and the fog visibility estimation value 
is output. When a neural network is applied to solve the regression 
problem, it requires a large amount of evenly distributed data as sup-
port. However, the amount of visibility data is limited in our study, 
which might lead to over fitting or under-fitting. Further, as shown in 
Fig. 9, the distribution of the visibility data is uneven, which will affect 
the convergence of the training process. 

Fig. 7. Differences between dense fog and high fog images. The red boxes show the main difference between the two types of images.  

Fig. 8. Structure of the multitask network cascade module.  
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Inspired by the research on target detection (Dai, He, & Sun, 2016), 
an anchor-based regression method is proposed (ARM), by introducing 
additional anchor data whereby the regression problem of a single value 
is transformed into the estimation problem of multiple coefficients. At 
the same time, the introduction of anchors increases the constraints for 
model training, which allows the model to converge more easily. The 
procedure of this method is as follows. 

First, the mean values of the visibility data for each fog level class are 
obtained and consider these mean values as the anchors A: 
A = [A0,A1,⋯,AN - 1] (10)  

Ai =
1

n - 1

∑

n - 1

j=0

v
j
i (11)  

where Ai is the ith anchor data, n is the number of images in the fog level 
i, and vj

i is the raw visibility data at the fog level i. In particular, all these 
data are obtained from the training set. 

Then, the same network used for classification is adopted to obtain 
the coefficients E = {E0, E1, E2, E3, E4} for each anchor data. 

Finally, the classification results P and coefficients E are multiplied in 
a pointwise manner with the anchors A. The final estimation result is 
computed by 

Vd = P⋅A × E =
∑

N

i=0

Pi⋅Ai⋅Ei (12)  

where Vd is the result from visibility estimation. 

6.3. Loss function 

In this section, the multitask deep learning network cascade module 
is presented. To support end-to-end training, the loss function of the 
entire cascade is defined as: 
L = γ ∗ Lcls(P)+ (1 − γ) ∗ Lreg(Vd|P) (13) 

This loss function contains two parts: classification loss Lcls and 
regression loss Lreg, while γ is a hyper-parameter that is set to 0.25. For 
the first part, a normal cross-entropy loss is adopted, which can be 
calculated as: 

Lcls(P) = −
1

m

∑

m

i=1

∑

k

j = 1

log(Pij[lable]) (14)  

where m is the number of samples, k is the number of the fog levels, and 
Pij[lable] represents the probability of the ground truth. 

For the second part, the visibility estimation results depend on the 
output of the classification, which might pose a challenge for back-
propagation. Here the classification results to visibility estimation 
through pointwise multiplication is fused, and the calculation process is 
derivable, which ensures backpropagation. The expression of Lreg is: 

Lreg(Vd|P) =
1

m

∑

(Vd − V′

d)
2 (15)  

where V′
d is the ground truth fog visibility value. 

7. Experiments 

In this section, the validity of the deep learning network model is 
verified and an application system is built for practical application at 
expressways. 

7.1. Implementation details 

The experimental setup consists of a single computer with two Intel 
Xeon-E5 CPUs, a 4 × TITAN RTX GPU, and 64 GB RAM. The models 
were implemented using Pytorch-1.4.1 and CUDA-10.0. 

For model training, an end-to-end process is applied where the model 
is trained using a learning rate of 0.001 for 100 iterations. The stochastic 
gradient descent (SGD) method is adopted to optimize the model. The 
weight decay is set to 0.0001, momentum is set to 0.9, batch size is 32, 
and hyper parameter γ is set to 0.25. The FVEI dataset is divided into 
70%, 10%, and 20% sets for training, validation, and testing, respec-
tively. The raw images are downsampled to sizes of 448 × 448. The size 
of the key local region is also set as 448 × 448. 

The performance of fog level classification is evaluated based on the 
precision and recall rates. For fog visibility estimation, the absolute error 
is calculated by: 

error =
|y′ − y|

500
(16)  

where y′ and y are respectively the regressed value and ground truth, 
while the range of visibility value is 0–500 m. 

7.2. Effectiveness of the feature extractor module 

To verify the effectiveness of the proposed feature extractor module, 
the proposed model is compared with the following models: AlexNet 
(Krizhevsky, Sutskever, & Hinton, 2017), VGG16, VGG19 (Simonyan, & 
Zisserman, 2014), ResNet-50, ResNet-101, ResNet-150 (He, Zhang, Ren, 
& Sun, 2016), and Vision transformer (Dosovitskiy et al., 2020). It is 
worth noting that all these models are used as feature extractors that 
only output a single feature vector; then the feature vector (1280D) is 
processed using a multitask network cascade module. The comparison 

Fig. 9. Histogram of the visibility data distribution.  

Table 3 
Comparison of the feature extraction abilities of AlexNet, VGG16, VGG19, 
ResNet-50, ResNet-101, ResNet-152, Vision transformer, VENet without key 
local features (VENet-NK), and VENet.  

Model Precision (%) Recall (%) Error (%) 
AlexNet  88.3  87.9  6.9 
VGG16  89.1  88.4  6.4 
VGG19  88.0  86.6  7.3 
ResNet-50  86.1  86.0  7.5 
ResNet-101  87.3  86.1  7.0 
ResNet-152  86.6  86.5  7.4 
Vision transformer  86.2  86.1  7.2 
VENet-NK  91.7  91.2  6.0 
VENet  92.3  90.8  4.6  
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results are shown in Table 3. 
In addition, an ablation experiment is conducted where the perfor-

mances of the feature extractors with and without key local features are 
compared, and the recognition accuracy of different fog levels in detail 
are also compared in the confusion matrix, as shown in Fig. 10. In the 
confusion matrix, the horizontal axis is the ground truth, namely, the 
true fog level classification, and the vertical axis is the predicted fog 
level classification. 

From Fig. 10, the following observations can be obtained: (1) 
Compared with other models, the proposed VENet achieves better per-
formance for visibility estimation with at least 2.2% and 2.4% 
improvement in accuracy and recall, and at least 1.8% reduction in 
absolute error. (2) In the ablation experiment, the feature extractor with 
added key local features shows better accuracy in visibility estimation, 
and the error is reduced by 1.4%. It is also found from the confusion 
matrix that by adding key local feature, the recognition accuracy of high 
fog and mid fog are highly improved. The results promisingly demon-
strate that the proposed feature extractor has advantages in capturing 
effective features from the fog-scene images, and adding key local fea-
tures could help capture subtle differences between images. 

7.3. Effectiveness of ARM 

In this subsection, the effectiveness of ARM in improving the accu-
racy of visibility estimation is verified. A baseline model is constructed 
with the same network structure as VENet but without adopting ARM 
(VENet-NA). And the training process and test results of these two 
models are compared. 

In the training process (Fig. 11), VENet has a greater convergence 
speed and better convergence effect than VENet-NA. Then, 200 samples 
are randomly selected for testing, as shown in Fig. 12. From the test 
results, it can see that the accuracy and stability of VENet are clearly 
better than those of VENet-NA. The reasons for the significant 
improvement with ARM include the following: 1) The introduction of 
anchors can provide a better initial solution for the regression model, 2) 
Anchors contain some prior information that can help the model obtain 
accurate estimations. 

7.4. Effectiveness of the multitask network cascade module 

This subsection aims to answer the following question: does the 

cascade structure help improve model performance? Three models for 
comparison with VENet are set as follows: 1) a single task network for 
fog level classification (FLC), 2) a single task network for fog visibility 
estimation (FVE), and 3) a multitask network without a cascade struc-
ture (VENet-NC). Table 4 illustrates the results of the comparison among 
the four models. It can be seen that the proposed cascade structure has 
the best performance in fog visibility estimation. It is also noted that 
these models have similar performance in the classification of fog level. 
It is feasible to build a multitask network cascade to achieve a coarse-to- 
fine process from the fog level to visibility. 

7.5. Engineering application and verification 

In Yunnan Province, the Xiangli Expressway is routed along high 
altitude ridges, and along the line, there are abundant water systems 
such as the Jinsha River and Chongjiang River. During rainy seasons in 
winter or summer, due to differences in the distribution of temperature 
and humidity inside and outside the tunnels, there are frequent fogs in 
the short connection sections between tunnels and the tunnel entrance 

Fig. 10. The confusion matrix of VENet with key local feature (VENet) and VENet without key local feature (VENet-NK).  

Fig. 11. Comparison of the training processes between VENet-NA and VENet; 
in particular, the ordinate represents the absolute error calculated by (16). 
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and exit area, leading to prominent traffic safety issues. To address this 
issue, the technology proposed in the paper has been applied and 
deployed at the entrance and exit of two tunnels of Xiangli Expressway 

surveillance (see Fig. 2: two images on the left), and the detection ac-
curacy of fog visibility has reached over 90%. Fig. 13 is the real-time 
visibility analysis and warning system interface based on video images 
for Yunnan Expressway, the system can display real-time tunnel 
entrance and exit scene images per minute, and output fog levels and 
visibility values. 

The system has been in operation since June 2021, and has been 
connected to the identification data of the visibility sensors. When there 
is a significant error between the system identification results and the 
visibility sensors identification results, manual verification is conducted. 
Fig. 14 is a comparison diagram of the system, visibility sensors, and 
manual verification results for 8000 pieces of data. Based on the results 
of manual verification, the accuracy rate of system recognition reached 
92.1%. Due to the good operation of the system, the proposed VENet has 
been popularized and applied at the entrance and exit of a tunnel on 
Yunnan Mazhao Expressway surveillance (see Fig. 2: the image on the 
right) 

8. Conclusion 

The advantage of the proposed approach compared to similar 
schemes are threefold, firstly, a deep learning based multi visual feature 
fusion network is proposed, named VENet for fog visibility estimation 
from a single image. Secondly, a multitask deep learning network 
cascade is constructed, consisting of a fog level classification network 
and a fog visibility estimation network. In particular, an anchor-based 
regression method is proposed that can help the network achieve fast 
convergence and accurate predictions. A special feature extractor is also 
introduced to obtain the discriminative features from fog-scene images. 
Thirdly, it is also worth emphasizing that a standard Fog Visibility 
Estimation Image (FVEI) dataset is constructed, which greatly com-
pensates for the lack of data in the field of vision-based visibility esti-
mation and can provide significant support for future research. The 
results of extensive experiments have demonstrated that the proposed 
VENet can achieve excellent performance for both fog level classifica-
tion and fog visibility estimation. In addition, the proposed VENet has 
been applied on Yunnan Xiangli and Mazhao Expressway surveillance, 

Fig. 12. Comparison of the test results between VENet and VENet-NA, where 
the ordinate represents the absolute error, and the abscissa represents the 
sample number. 

Table 4 
Performance comparison among the single task networks (FLC, FVE), multitask 
network (VENet-NC), and multitask network cascade (VENet).  

Model Precision (%) Recall (%) Error (%) 
FLC  91.6  90.3  – 

FVE  –  –  6.0 
VENet-NC  92.1  91.3  6.3 
VENet  92.3  90.8  4.6  

Fig. 13. The real-time visibility analysis and warning system interface based on video images for Yunnan Expressway.  
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and has achieved promising application results. 
More interesting future work can be extended from this study such as 

the incorporation of meta learning and transfer learning into the feature 
fusion task in the proposed VENet. For now, though the proposed model 
is able to achieve a high estimation accuracy on the existing data, a 
limitation of the proposed approach is that there may be overfitting is-
sues. One way to solve the issue is to optimize the model from the 
perspective of improving the robustness of the algorithm and exploring 
more ways to enhance the data (for example, through the GAN 
(Generative Adversarial Networks) to generate more fog-scene images). 
It is pertinent to expand the data set to include a wider variety of 
scenarios. 
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