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Abstract

We present a new dataset of image caption

annotations, Conceptual Captions, which

contains an order of magnitude more im-

ages than the MS-COCO dataset (Lin et al.,

2014) and represents a wider variety of

both images and image caption styles. We

achieve this by extracting and filtering im-

age caption annotations from billions of

webpages. We also present quantitative

evaluations of a number of image cap-

tioning models and show that a model

architecture based on Inception-ResNet-

v2 (Szegedy et al., 2016) for image-feature

extraction and Transformer (Vaswani et al.,

2017) for sequence modeling achieves the

best performance when trained on the Con-

ceptual Captions dataset.

1 Introduction

Automatic image description is the task of pro-

ducing a natural-language utterance (usually a sen-

tence) which correctly reflects the visual content

of an image. This task has seen an explosion in

proposed solutions based on deep learning architec-

tures (Bengio, 2009), starting with the winners of

the 2015 COCO challenge (Vinyals et al., 2015a;

Fang et al., 2015), and continuing with a variety of

improvements (see e.g. Bernardi et al. (2016) for a

review). Practical applications of automatic image

description systems include leveraging descriptions

for image indexing or retrieval, and helping those

with visual impairments by transforming visual sig-

nals into information that can be communicated via

text-to-speech technology. The scientific challenge

is seen as aligning, exploiting, and pushing further

the latest improvements at the intersection of Com-

puter Vision and Natural Language Processing.

Alt-text: A Pakistani worker helps

to clear the debris from the Taj Ma-

hal Hotel November 7, 2005 in Bal-

akot, Pakistan.

Conceptual Captions: a worker

helps to clear the debris.

Alt-text: Musician Justin Timber-

lake performs at the 2017 Pilgrim-

age Music & Cultural Festival on

September 23, 2017 in Franklin,

Tennessee.

Conceptual Captions: pop artist

performs at the festival in a city.

Figure 1: Examples of images and image descrip-

tions from the Conceptual Captions dataset; we

start from existing alt-text descriptions, and auto-

matically process them into Conceptual Captions

with a balance of cleanliness, informativeness, flu-

ency, and learnability.

There are two main categories of advances re-

sponsible for increased interest in this task. The

first is the availability of large amounts of anno-

tated data. Relevant datasets include the ImageNet

dataset (Deng et al., 2009), with over 14 million

images and 1 million bounding-box annotations,

and the MS-COCO dataset (Lin et al., 2014), with

120,000 images and 5-way image-caption anno-

tations. The second is the availability of power-

ful modeling mechanisms such as modern Con-

volutional Neural Networks (e.g. Krizhevsky et al.

(2012)), which are capable of converting image pix-

els into high-level features with no manual feature-

engineering.

In this paper, we make contributions to both

the data and modeling categories. First, we

present a new dataset of caption annotations∗,

Conceptual Captions (Fig. 1), which has an or-

der of magnitude more images than the COCO

∗https://github.com/google-research-datasets/conceptual-
captions
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dataset. Conceptual Captions consists of about

3.3M 〈image, description〉 pairs. In contrast with

the curated style of the COCO images, Concep-

tual Captions images and their raw descriptions

are harvested from the web, and therefore repre-

sent a wider variety of styles. The raw descriptions

are harvested from the Alt-text HTML attribute†

associated with web images. We developed an au-

tomatic pipeline (Fig. 2) that extracts, filters, and

transforms candidate image/caption pairs, with the

goal of achieving a balance of cleanliness, informa-

tiveness, fluency, and learnability of the resulting

captions.

As a contribution to the modeling category, we

evaluate several image-captioning models. Based

on the findings of Huang et al. (2016), we use

Inception-ResNet-v2 (Szegedy et al., 2016) for

image-feature extraction, which confers optimiza-

tion benefits via residual connections and com-

putationally efficient Inception units. For cap-

tion generation, we use both RNN-based (Hochre-

iter and Schmidhuber, 1997) and Transformer-

based (Vaswani et al., 2017) models. Our results

indicate that Transformer-based models achieve

higher output accuracy; combined with the reports

of Vaswani et al. (2017) regarding the reduced num-

ber of parameters and FLOPs required for training

& serving (compared with RNNs), models such as

T2T8x8 (Section 4) push forward the performance

on image-captioning and deserve further attention.

2 Related Work

Automatic image captioning has a long history (Ho-

dosh et al., 2013; Donahue et al., 2014; Karpa-

thy and Fei-Fei, 2015; Kiros et al., 2015). It

has accelerated with the success of Deep Neu-

ral Networks (Bengio, 2009) and the availability

of annotated data as offered by datasets such as

Flickr30K (Young et al., 2014) and MS-COCO (Lin

et al., 2014).

The COCO dataset is not large (order of 106 im-

ages), given the training needs of DNNs. In spite

of that, it has been very popular, in part because

it offers annotations for images with non-iconic

views, or non-canonical perspectives of objects,

and therefore reflects the composition of everyday

scenes (the same is true about Flickr30K (Young

et al., 2014)). COCO annotations–category label-

ing, instance spotting, and instance segmentation–

are done for all objects in an image, including those

†https://en.wikipedia.org/wiki/Alt attribute

in the background, in a cluttered environment, or

partially occluded. Its images are also annotated

with captions, i.e. sentences produced by human an-

notators to reflect the visual content of the images

in terms of objects and their actions or relations.

A large number of DNN models for image cap-

tion generation have been trained and evaluated

using COCO captions (Vinyals et al., 2015a; Fang

et al., 2015; Xu et al., 2015; Ranzato et al., 2015;

Yang et al., 2016; Liu et al., 2017; Ding and Soricut,

2017). These models are inspired by sequence-to-

sequence models (Sutskever et al., 2014; Bahdanau

et al., 2015) but use CNN-based encodings in-

stead of RNNs (Hochreiter and Schmidhuber, 1997;

Chung et al., 2014). Recently, the Transformer ar-

chitecture (Vaswani et al., 2017) has been shown

to be a viable alternative to RNNs (and CNNs) for

sequence modeling. In this work, we evaluate the

impact of the Conceptual Captions dataset on the

image captioning task using models that combine

CNN, RNN, and Transformer layers.

Also related to this work is the Pinterest image

and sentence-description dataset (Mao et al., 2016).

It is a large dataset (order of 108 examples), but its

text descriptions do not strictly reflect the visual

content of the associated image, and therefore can-

not be used directly for training image-captioning

models.

3 Conceptual Captions Dataset Creation

The Conceptual Captions dataset is programmat-

ically created using a Flume (Chambers et al.,

2010) pipeline. This pipeline processes billions

of Internet webpages in parallel. From these web-

pages, it extracts, filters, and processes candidate

〈image, caption〉 pairs. The filtering and process-

ing steps are described in detail in the following

sections.

Image-based Filtering The first filtering stage,

image-based filtering, discards images based on

encoding format, size, aspect ratio, and offensive

content. It only keeps JPEG images where both

dimensions are greater than 400 pixels, and the

ratio of larger to smaller dimension is no more than

2. It excludes images that trigger pornography or

profanity detectors. These filters discard more than

65% of the candidates.

Text-based Filtering The second filtering stage,

text-based filtering, harvests Alt-text from HTML

webpages. Alt-text generally accompanies images,
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[Alt-text not processed:
undesired image format, 

aspect ratio or size]

ALT-TEXT

“Ferrari dice”

“The meaning of life”

“Demi Lovato wearing a 
black Ester Abner Spring 
2018 gown and Stuart 
Weitzman sandals at the 
2017 American Music 
Awards”

IMAGE

[Alt-text discarded]

CAPTION

“pop rock artist 
wearing a black 
gown and sandals 
at awards”

[Alt-text discarded:
Text does not contain 

prep./article]

[Alt-text discarded:
No text vs. 

image-object 
overlap]

Image 
Filtering

Text 
Filtering

Img/Text 
Filtering

Text 
Transform

PIPELINE

IMAGEIMAGEIMAGE

Figure 2: Conceptual Captions pipeline steps with examples and final output.

and intends to describe the nature or the content of

the image. Because these Alt-text values are not in

any way restricted or enforced to be good image

descriptions, many of them have to be discarded,

e.g., search engine optimization (SEO) terms, or

Twitter hash-tag terms.

We analyze candidate Alt-text using the Google

Cloud Natural Language APIs, specifically part-

of-speech (POS), sentiment/polarity, and pornogra-

phy/profanity annotations. On top of these annota-

tions, we have the following heuristics:

• a well-formed caption should have a high

unique word ratio covering various POS tags;

candidates with no determiner, no noun, or no

preposition are discarded; candidates with a

high noun ratio are also discarded;

• candidates with a high rate of token repetition

are discarded;

• capitalization is a good indicator of well-

composed sentences; candidates where the

first word is not capitalized, or with too high

capitalized-word ratio are discarded;

• highly unlikely tokens are a good indicator of

not desirable text; we use a vocabulary VW of

1B token types, appearing at least 5 times in

the English Wikipedia, and discard candidates

that contain tokens that are not found in this

vocabulary.

• candidates that score too high or too low on

the polarity annotations, or trigger the pornog-

raphy/profanity detectors, are discarded;

• predefined boiler-plate prefix/suffix sequences

matching the text are cropped, e.g. “click to

enlarge picture”, “stock photo”; we also drop

text which begins/ends in certain patterns, e.g.

“embedded image permalink”, “profile photo”.

These filters only allow around 3% of the incoming

candidates to pass to the later stages.

Image&Text-based Filtering In addition to the

separate filtering based on image and text content,

we filter out candidates for which none of the text

tokens can be mapped to the content of the image.

To this end, we use classifiers available via the

Google Cloud Vision APIs to assign class labels to

images, using an image classifier with a large num-

ber of labels (order of magnitude of 105). Notably,

these labels are also 100% covered by the Vw token

types.

Images are generally assigned between 5 to 20

labels, though the exact number depends on the
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Original Alt-text Harrison Ford and Calista Flockhart attend the premiere of ‘Hollywood Homicide’ at the
29th American Film Festival September 5, 2003 in Deauville, France.

Conceptual Captions actors attend the premiere at festival.

what-happened “Harrison Ford and Calista Flockhart” mapped to “actors”; name, location, and date dropped.

Original Alt-text Side view of a British Airways Airbus A319 aircraft on approach to land with landing gear
down - Stock Image

Conceptual Captions side view of an aircraft on approach to land with landing gear down

what-happened phrase “British Airways Airbus A319 aircraft” mapped to “aircraft”; boilerplate removed.

Original Alt-text Two sculptures by artist Duncan McKellar adorn trees outside the derelict Norwich Union
offices in Bristol, UK - Stock Image

Conceptual Captions sculptures by person adorn trees outside the derelict offices

what-happened object count (e.g. “Two”) dropped; proper noun-phrase hypernymized to “person”; proper-
noun modifiers dropped; location dropped; boilerplate removed.

Table 1: Examples of Conceptual Captions as derived from their original Alt-text versions.

image. We match these labels against the candi-

date text, taking into account morphology-based

stemming as provided by the text annotation. Can-

didate 〈image, caption〉 pairs with no overlap are

discarded. This filter discards around 60% of the

incoming candidates.

Text Transformation with Hypernymization

In the current version of the dataset, we consid-

ered over 5 billion images from about 1 billion

English webpages. The filtering criteria above are

designed to be high-precision (which comes with

potentially low recall). From the original input can-

didates, only 0.2% 〈image, caption〉 pairs pass the

filtering criteria described above.

While the remaining candidate captions tend

to be appropriate Alt-text image descriptions (see

Alt-text in Fig. 1), a majority of these candidate

captions contain proper names (people, venues,

locations, etc.), which would be extremely diffi-

cult to learn as part of the image captioning task.

To give an idea of what would happen in such

cases, we train an RNN-based captioning model

(see Section 4) on non-hypernymized Alt-text data

and present an output example in Fig. 3. If auto-

matic determination of person identity, location,

etc. is needed, it should be attempted as a sepa-

rate task and would need to leverage image meta-

information about the image (e.g. location).

Using the Google Cloud Natural Language APIs,

we obtain named-entity and syntactic-dependency

annotations. We then use the Google Knowl-

edge Graph (KG) Search API to match the named-

entities to KG entries and exploit the associated hy-

pernym terms. For instance, both “Harrison Ford”

and “Calista Flockhart” identify as named-entities,

Alt-text (groundtruth):

Jimmy Barnes performs at the

Sydney Entertainment Centre

Model output: Singer Justin

Bieber performs onstage during

the Billboard Music Awards at

the MGM

Figure 3: Example of model output trained on

clean, non-hypernymized Alt-text data.

so we match them to their corresponding KG en-

tries. These KG entries have “actor” as their hyper-

nym, so we replace the original surface tokens with

that hypernym.

The following steps are applied to achieve text

transformations:

• noun modifiers of certain types (proper nouns,

numbers, units) are removed;

• dates, durations, and preposition-based loca-

tions (e.g., “in Los Angeles”) are removed;

• named-entities are identified, matched against

the KG entries, and substitute with their hy-

pernym;

• resulting coordination noun-phrases with the

same head (e.g., “actor and actor”) are re-

solved into a single-head, pluralized form

(e.g., “actors”);

Around 20% of samples are discarded during this

transformation because it can leave sentences too

short or inconsistent.

Finally, we perform another round of text analy-

sis and entity resolution to identify concepts with

low-count. We cluster all resolved entities (e.g.,
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“actor”, “dog”, “neighborhood”, etc.) and keep

only the candidates for which all detected types

have a count of over 100 (around 55% of the can-

didates). These remaining 〈image, caption〉 pairs

contain around 16,000 entity types, guaranteed to

be well represented in terms of number of examples.

Table 1 contains several examples of before/after-

transformation pairs.

Conceptual Captions Quality To evaluate the

precision of our pipeline, we consider a random

sample of 4K examples extracted from the test split

of the Conceptual Captions dataset. We perform a

human evaluation on this sample, using the same

methodology described in Section 5.4.

GOOD (out of 3)
1+ 2+ 3

Conceptual Captions 96.9% 90.3% 78.5%

Table 2: Human evaluation results on a sample

from Conceptual Captions.

The results are presented in Table 2 and show

that, out of 3 annotations, over 90% of the captions

receive a majority (2+) of GOOD judgments. This

indicates that the Conceptual Captions pipeline,

though involving extensive algorithmic processing,

produces high-quality image captions.

Examples Unique Tokens/Caption
Tokens Mean StdDev Median

Train 3,318,333 51,201 10.3 4.5 9.0
Valid. 28,355 13,063 10.3 4.6 9.0

Test 22,530 11,731 10.1 4.5 9.0

Table 3: Statistics over Train/Validation/Test splits

for Conceptual Captions.

We present in Table 3 statistics over the

Train/Validation/Test splits for the Conceptual Cap-

tions dataset. The training set consists of slightly

over 3.3M examples, while there are slightly over

28K examples in the validation set and 22.5K ex-

amples in the test set. The size of the training set

vocabulary (unique tokens) is 51,201. Note that the

test set has been cleaned using human judgements

(2+ GOOD), while both the training and valida-

tion splits contain all the data, as produced by our

automatic pipeline. The mean/stddev/median statis-

tics for tokens-per-caption over the data splits are

consistent with each other, at around 10.3/4.5/9.0,

respectively.

4 Image Captioning Models

In order to assess the impact of the Conceptual Cap-

tions dataset, we consider several image captioning

models previously proposed in the literature. These

models can be understood using the illustration in

Fig. 4, as they mainly differ in the way in which

they instantiate some of these components.

Encoder

<GO> people playing frisbee

Decoder

people playing frisbee in

Image Embedding

X

H

Y

Z

Figure 4: The main model components.

There are three main components to this archi-

tecture:

• A deep CNN that takes a (preprocessed) im-

age and outputs a vector of image embeddings

X = (x1,x2, ...,xL).

• An Encoder module that takes the image

embeddings and encodes them into a tensor

H = fenc(X).

• A Decoder model that generates outputs zt =
fdec(Y1:t,H) at each step t, conditioned on

H as well as the decoder inputs Y1:t.

We explore two main instantiations of this architec-

ture. One uses RNNs with LSTM cells (Hochreiter

and Schmidhuber, 1997) to implement the fenc and

fdec functions, corresponding to the Show-And-

Tell (Vinyals et al., 2015b) model. The other uses

Transformer self-attention networks (Vaswani et al.,

2017) to implement fenc and fdec. All models in

this paper use Inception-ResNet-v2 as the CNN

component (Szegedy et al., 2016).

4.1 RNN-based Models

Our instantiation of the RNN-based model is

close to the Show-And-Tell (Vinyals et al., 2015b)

model.

hl , RNNenc(xl,hl−1), and H = hL,

zt , RNNdec(yt, zt−1), where z0 = H .
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In the original Show-And-Tell model, a single im-

age embedding of the entire image is fed to the first

cell of an RNN, which is also used for text gener-

ation. In our model, a single image embedding is

fed to an RNNenc with only one cell, and then a dif-

ferent RNNdec is used for text generation. We tried

both single image (1x1) embeddings and 8x8 parti-

tions of the image, where each partition has its own

embedding. In the 8x8 case, image embeddings are

fed in a sequence to the RNNenc. In both cases, we

apply plain RNNs without cross attention, same as

the Show-And-Tell model. RNNs with cross atten-

tion were used in the Show-Attend-Tell model (Xu

et al., 2015), but we find its performance to be

inferior to the Show-And-Tell model.

4.2 Transformer Model

In the Transformer-based models, both the encoder

and the decoder contain a stack of N layers. We

denote the n-th layer in the encoder by Xn =
{xn,1, . . . ,xn,L}, and X0 = X, H = XN . Each

of these layers contains two sub-layers: a multi-

head self-attention layer ATTN, and a position-wise

feedforward network FFN:

x′
n,j =ATTN(xn,j ,Xn;W

e
q ,W

e
k,W

e
v)

,softmax(〈xn,j W
e
q ,Xn W

e
k〉)Xn W

e
v

x(n+1),j =FFN(x′
n,j ;W

e
f )

where We
q, We

k, and We
v are the encoder weight

matrices for query, key, and value transformation

in the self-attention sub-layer; and We
f denotes the

encoder weight matrix of the feedforward sub-layer.

Similar to the RNN-based model, we consider us-

ing a single image embedding (1x1) and a vector

of 8x8 image embeddings.

In the decoder, we denote the n-th layer by

Zn = {zn,1, . . . , zn,T } and Z0 = Y. There are

two main differences between the decoder and en-

coder layers. First, the self-attention sub-layer in

the decoder is masked to the right, in order to pre-

vent attending to “future” positions (i.e. zn,j does

not attend to zn,(j+1), . . . , zn,T ). Second, in be-

tween the self-attention layer and the feedforward

layer, the decoder adds a third cross-attention layer

that connects zn,j to the top-layer encoder repre-

sentation H = XN .

z′n,j =ATTN(zn,j ,Zn,1:j ;W
d
q ,W

d
k,W

d
v)

z′′n,j =ATTN(z′n,j ,H;Wc
q ,W

c
k,W

c
v)

z(n+1),j =FFN(z′′n,j ;W
d
f )

where Wd
q , Wd

k, and Wd
v are the weight matrices

for query, key, and value transformation in the de-

coder self-attention sub-layer; Wc
q, Wc

k, Wc
v are

the corresponding decoder weight matrices in the

cross-attention sub-layer; and Wd
f is the decoder

weight matrix of the feedforward sub-layer.

The Transformer-based models utilize position

information at the embedding layer. In the 8x8 case,

the 64 embedding vectors are serialized to a 1D

sequence with positions from [0, . . . , 63]. The po-

sition information is modeled by applying sine and

cosine functions at each position and with differ-

ent frequencies for each embedding dimension, as

in (Vaswani et al., 2017), and subsequently added

to the embedding representations.

5 Experimental Results

In this section, we evaluate the impact of using

the Conceptual Captions dataset (referred to as

’Conceptual’ in what follows) for training image

captioning models. To this end, we train the

models described in Section 4 under two exper-

imental conditions: using the training & devel-

opment sets provided by the COCO dataset (Lin

et al., 2014), versus training & development sets

using the Conceptual dataset. We quantitatively

evaluate the resulting models using three differ-

ent test sets: the blind COCO-C40 test set (in-

domain for COCO-trained models, out-of-domain

for Conceptual-trained models); the Conceptual

test set (out-of-domain for COCO-trained mod-

els, in-domain for Conceptual-trained models); and

the Flickr (Young et al., 2014) 1K test set (out-

of-domain for both COCO-trained models and

Conceptual-trained models).

5.1 Dataset Details

COCO Image Captions The COCO image cap-

tioning dataset is normally divided into 82K images

for training, and 40K images for validation. Each

of these images comes with at least 5 groundtruth

captions. Following standard practice, we combine

the training set with most of the validation dataset

for training our model, and only hold out a subset

of 4K images for validation.

Conceptual Captions The Conceptual Captions

dataset contains around 3.3M images for training,

28K for validation and 22.5K for the test set. For

more detailed statistics, see Table 3.
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COCO-trained

RNN8x8
a group of men standing

in front of a building

a couple of people walk-

ing down a walkway

a child sitting at a table

with a cake on it

a close up of a stuffed

animal on a table

T2T8x8
a group of men in uni-

form and ties are talking

a narrow hallway with a

clock and two doors

a woman cutting a birth-

day cake at a party

a picture of a fish on the

side of a car

Conceptual-trained

RNN8x8
graduates line up for

the commencement cer-

emony

a view of the nave
a child ’s drawing at a

birthday party

a cartoon business-

man thinking about

something

T2T8x8
graduates line up to re-

ceive their diplomas

the cloister of the cathe-

dral

learning about the arts

and crafts

a cartoon businessman

asking for help

Figure 5: Side by side comparison of model outputs under two training conditions. Conceptual-based

models (lower half) tend to hallucinate less, are more expressive, and handle well a larger variety of

images. The two images in the middle are from Flickr; the other two are from Conceptual Captions.

5.2 Experimental Setup

Image Preprocessing Each input image is first

preprocessed by random distortion and cropping

(using a random ratio from 50%∼100%). This

prevents models from overfitting individual pixels

of the training images.

Encoder-Decoder For RNN-based models, we

use a 1-layer, 512-dim LSTM as the RNN cell. For

the Transformer-based models, we use the default

setup from (Vaswani et al., 2017), with N = 6
encoder and decoder layers, a hidden-layer size of

512, and 8 attention heads.

Text Handling Training captions are truncated

to maximum 15 tokens. We use a token type min-

count of 4, which results in around 9,000 token

types for the COCO dataset, and around 25,000

token types for the Conceptual Captions dataset.

All other tokens are replaced with special token

〈UNK〉. The word embedding matrix has size 512

and is tied to the output projection matrix.

Optimization All models are trained using MLE

loss and optimized using Adagrad (Duchi et al.,

2011) with learning rate 0.01. Mini-batch size is 25.

All model parameters are trained for a total number

of 5M steps, with batch updates asynchronously

distributed across 40 workers. The final model

is selected based on the best CIDEr score on the

development set for the given training condition.

Inference During inference, the decoder predic-

tion of the previous position is fed to the input of

the next position. We use a beam search of beam

size 4 to compute the most likely output sequence.

5.3 Qualitative Results

Before we present the numerical results for our

experiments, we discuss briefly the patterns that

we have observed.

One difference between COCO-trained models

and Conceptual-trained models is their ability to

use the appropriate natural language terms for the

entities in an image. For the left-most image in

Fig. 5, COCO-trained models use “group of men”

to refer to the people in the image; Conceptual-

based models use the more appropriate and infor-

mative term “graduates”. The second image, from

the Flickr test set, makes this even more clear. The

Conceptual-trained T2T8x8 model is perfectly ren-

dering the image content as “the cloister of the

cathedral”. None of the other models come close

to producing such an accurate description.

A second difference is that COCO-trained mod-

els often seem to hallucinate objects. For instance,

they hallucinate “front of building” for the first im-

age, “clock and two doors” for the second, and

“birthday cake” for the third image. In contrast,

Conceptual-trained models do not seem to have

this problem. We hypothesize that the hallucina-

tion issue for COCO-based models comes from

the high correlations present in the COCO data

(e.g., if there is a kid at a table, there is also cake).

This high degree of correlation in the data does not

allow the captioning model to correctly disentan-

gle and learn representations at the right level of

granularity.
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Model Training 1+ 2+ 3+

RNN8x8 COCO 0.390 0.276 0.173
T2T8x8 COCO 0.478 0.362 0.275

RNN8x8 Conceptual 0.571 0.418 0.277
T2T8x8 Conceptual 0.659 0.506 0.355

Table 4: Human eval results on Flickr 1K Test.

A third difference is the resilience to a large

spectrum of image types. COCO only contains nat-

ural images, and therefore a cartoon image like the

fourth one results in massive hallucination effects

for COCO-trained models (“stuffed animal”, “fish”,

“side of car”). In contrast, Conceptual-trained mod-

els handle such images with ease.

5.4 Quantitative Results

In this section, we present quantitative results on

the quality of the outputs produced by several im-

age captioning models. We present both automatic

evaluation results and human evaluation results.

5.4.1 Human Evaluation Results

For human evaluations, we use a pool of profes-

sional raters (tens of raters), with a double-blind

evaluation condition. Raters are asked to assign a

GOOD or BAD label to a given 〈image, caption〉
input, using just common-sense judgment. This

approximates the reaction of a typical user, who

normally would not accept predefined notions of

GOOD vs. BAD. We ask 3 separate raters to rate

each input pair and report the percentage of pairs

that receive k or more (k+) GOOD annotations.

In Table 4, we report the results on the Flickr

1K test set. This evaluation is out-of-domain for

both training conditions, so all models are on rel-

atively equal footing. The results indicate that the

Conceptual-based models are superior. In 50.6%

(for the T2T8x8 model) of cases, a majority of an-

notators (2+) assigned a GOOD label. The results

also indicate that the Transformer-based models are

superior to the RNN-based models by a good mar-

gin, by over 8-points (for 2+) under both COCO

and Conceptual training conditions.

Model Training CIDEr ROUGE-L METEOR

RNN1x1 COCO 1.021 0.694 0.348
RNN8x8 COCO 1.044 0.698 0.354
T2T1x1 COCO 1.032 0.700 0.358
T2T8x8 COCO 1.032 0.700 0.356

RNN1x1 Conceptual 0.403 0.445 0.191
RNN8x8 Conceptual 0.410 0.437 0.189
T2T1x1 Conceptual 0.348 0.403 0.171
T2T8x8 Conceptual 0.345 0.400 0.170

Table 5: Auto metrics on the COCO C40 Test.

Model Training CIDEr ROUGE-L SPICE

RNN1x1 COCO 0.183 0.149 0.062
RNN8x8 COCO 0.191 0.152 0.065
T2T1x1 COCO 0.184 0.148 0.062
T2T8x8 COCO 0.190 0.151 0.064

RNN1x1 Conceptual 1.351 0.326 0.235
RNN8x8 Conceptual 1.401 0.330 0.240
T2T1x1 Conceptual 1.588 0.331 0.254
T2T8x8 Conceptual 1.676 0.336 0.257

Table 6: Auto metrics on the 22.5K Conceptual

Captions Test set.

Model Training CIDEr ROUGE-L SPICE

RNN1x1 COCO 0.340 0.414 0.101
RNN8x8 COCO 0.356 0.413 0.103
T2T1x1 COCO 0.341 0.404 0.101
T2T8x8 COCO 0.359 0.416 0.103

RNN1x1 Conceptual 0.269 0.310 0.076
RNN8x8 Conceptual 0.275 0.309 0.076
T2T1x1 Conceptual 0.226 0.280 0.068
T2T8x8 Conceptual 0.227 0.277 0.066

Table 7: Auto metrics on the Flickr 1K Test.

5.4.2 Automatic Evaluation Results

In this section, we report automatic evaluation re-

sults, using established image captioning metrics.

For the COCO C40 test set (Fig. 5), we report

the numerical values returned by the COCO on-

line evaluation server‡, using the CIDEr (Vedantam

et al., 2015), ROUGE-L (Lin and Och, 2004), and

METEOR (Banerjee and Lavie, 2005) metrics. For

Conceptual Captions (Fig. 6) and Flickr (Fig. 7)

test sets, we report numerical values for the CIDEr,

ROUGE-L, and SPICE (Anderson et al., 2016)§.

For all metrics, higher number means closer dis-

tance between the candidates and the groundtruth

captions.

The automatic metrics are good at detecting in-

vs out-of-domain situations. For COCO-models

tested on COCO, the results in Fig. 5 show CIDEr

scores in the 1.02-1.04 range, for both RNN- and

Transformer-based models; the scores drop in the

0.35-0.41 range (CIDEr) for the Conceptual-based

models tested against COCO groundtruth. For

Conceptual-models tested on the Conceptual Cap-

tions test set, the results in Fig. 6 show scores

as high as 1.468 CIDEr for the T2T8x8 model,

which corroborates the human-eval results for the

Transformer-based models being superior to the

RNN-based models; the scores for the COCO-

based models tested against Conceptual Captions

groundtruth are all below 0.2 CIDEr.

The automatic metrics fail to corroborate the

‡http://mscoco.org/dataset/#captions-eval.
§https://github.com/tylin/coco-caption.
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human evaluation results. According to the auto-

matic metrics, the COCO-trained models are su-

perior to the Conceptual-trained models (CIDEr

scores in the mid-0.3 for the COCO-trained con-

dition, versus mid-0.2 for the Conceptual-trained

condition), and the RNN-based models are supe-

rior to Transformer-based models. Notably, these

are the same metrics which score humans lower

than the methods that won the COCO 2015 chal-

lenge (Vinyals et al., 2015a; Fang et al., 2015),

despite the fact that humans are still much better

at this task. The failure of these metrics to align

with the human evaluation results casts again grave

doubts on their ability to drive progress in this field.

A significant weakness of these metrics is that hal-

lucination effects are under-penalized (a small pre-

cision penalty for tokens with no correspondent

in the reference), compared to human judgments

that tend to dive dramatically in the presence of

hallucinations.

6 Conclusions

We present a new image captioning dataset, Con-

ceptual Captions, which has several key character-

istics: it has around 3.3M examples, an order of

magnitude larger than the COCO image-captioning

dataset; it consists of a wide variety of images,

including natural images, product images, profes-

sional photos, cartoons, drawings, etc.; and, its

captions are based on descriptions taken from orig-

inal Alt-text attributes, automatically transformed

to achieve a balance between cleanliness, informa-

tiveness, and learnability.

We evaluate both the quality of the resulting

image/caption pairs, as well as the performance of

several image-captioning models when trained on

the Conceptual Captions data. The results indicate

that such models achieve better performance, and

avoid some of the pitfalls seen with COCO-trained

models, such as object hallucination. We hope that

the availability of the Conceptual Captions dataset

will foster considerable progress on the automatic

image-captioning task.

References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. SPICE: semantic proposi-
tional image caption evaluation. In ECCV .

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In Proceedings of ICLR.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on intrinsic and ex-
trinsic evaluation measures for machine translation
and/or summarization.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn. 2(1):1–127.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott,
Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis,
Frank Keller, Adrian Muscat, and Barbara Plank.
2016. Automatic description generation from im-
ages: A survey of models, datasets, and evaluation
measures. JAIR 55.

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert Henry, Robert Bradshaw,
and Nathan. 2010. Flumejava: Easy, effi-
cient data-parallel pipelines. In ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI). 2 Penn Plaza, Suite
701 New York, NY 10121-0701, pages 363–375.
http://dl.acm.org/citation.cfm?id=1806638.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A large-scale hierarchical im-
age database. In CVPR.

Nan Ding and Radu Soricut. 2017. Cold-start reinforce-
ment learning with softmax policy gradients. In
NIPS.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2014. Long-term
recurrent convolutional networks for visual recog-
nition and description. In Proc. of IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Sri-
vastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xi-
aodong He, Margaret Mitchell, John Platt, et al.
2015. From captions to visual concepts and back. In
Proc. of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. JAIR .



2565

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong
Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,
Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. 2016. Speed/accuracy trade-offs
for modern convolutional object detectors. CoRR
abs/1611.10012.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2015. Unifying visual-semantic embeddings
with multimodal neural language models. Transac-
tions of the Association for Computational Linguis-
tics .

A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. Im-
agenet classification with deep convolutional neural
networks. In NIPS.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of ACL.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR abs/1405.0312.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama,
and Kevin Murphy. 2017. Optimization of image
description metrics using policy gradient methods.
In International Conference on Computer Vision
(ICCV).

Junhua Mao, Jiajing Xu, Yushi Jing, and Alan Yuille.
2016. Training and evaluating multimodal word em-
beddings with large-scale web annotated images. In
NIPS.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR
abs/1511.06732.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems. pages 3104–3112.

Christian Szegedy, Sergey Ioffe, and Vincent Van-
houcke. 2016. Inception-v4, inception-resnet and
the impact of residual connections on learning.
CoRR abs/1602.07261.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. Cider: Consensus-based image
description evaluation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015a. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. pages 3156–3164.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015b. Show and tell: A neural
image caption generator. In Proc. of IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: Neural image
caption generation with visual attention. In Proc.
of the 32nd International Conference on Machine
Learning (ICML).

Z. Yang, Y. Yuan, Y. Wu, R. Salakhutdinov, and W. W.
Cohen. 2016. Review networks for caption genera-
tion. In NIPS.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. TACL 2:67–78.


