

CHAPTER S

Learning Internal Representations
by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. 1. WILLIAMS

THE PROBLEM

We now have a rather good understanding of simple two-layer associ­
ative networks in which a set of i nput patterns arriving at an input layer
are mapped directly to a set of output patterns at an output layer. Such
networks have no hidden uni ts. They involve only input and output

units. In these cases there is no internal representation. The coding pro­
vided by the external world must suffice. These networks have proved
useful i n a wide variety of appl ications (cf. Chapters 2 , 17, and 18).
Perhaps the essent ial character of such networks is that they map simi­
lar i nput patterns to si mi lar output patterns. This is what al lows these
networks to make reasonable general izations and perform reasonably on
patterns that have never before been presented. The s imilarity of pat­
terns in a PDP system is determi ned by their overlap . The overlap in
such networks is determi ned outside the learning system itself-by
whatever produces the patterns.

The constraint that similar input patterns lead to similar outputs can
lead to an inabi lity of the system to learn certain mappings from input
to output . Whenever the representation provided by the outside world
is such that the s imilarity structure of the input and output patterns are
very different , a net\\C),*Jy�ijfltetttMatt8i8h1 representations (Le. , a

8. LEARN ING I NTERNAL REPRESENTATIONS 319

network without hidden un i ts) wi l l be unable to perform the necessary
mappings. A classic example of this case is the exclusive-or (XOR)
problem illustrated in Table 1. Here we see that those patterns which
overlap l east are supposed to generate identical output val ues . This
problem and many others l i ke it cannot be performed by networks
without hidden units with which to create their own internal representa­
tions of the input patterns. It is interest ing to note that had the input
patterns contained a thi rd input tak ing the value 1 whenever the fi rst
two have value 1 as shown in Table 2 , a two-layer system would be able
to solve the problem.

Minsky and Papert (I969) have provided a very careful analysis of
conditions under which such systems are capable of carrying out the
required mappings . They show that in a large number of interest ing
cases , networks of this ki nd are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out , if there is a
layer of simple perceptron-like h idden un i ts , as shown in Figure 1 , with
which the original input pattern can be augmented, there is always a
recoding (i . e., an internal representat ion) of the input patterns i n the
hidden units in which the s imi larity of the patterns among the h idden
units can support any required mapping from the input to the output
units. Thus, if we have the right connections from the input units to a
large enough set of h idden units, we can always find a representat ion
that wi l l perform any mapping from input to output through these hid­
den units . In the case of the XOR problem, the addit ion of a feature
that detects the conjunction of the i nput units changes the similarity

Input Patterns

00

01
1 0
11

Input Patterns

TABLE 1

Output Pat terns

TABLE 2

o
1
I
o

Output Patterns

000 0

010 1
100 1
111 0

Copyligflted Mate/iai

320 BASIC MECHANISMS

Output Patterns

Input Patterns

Internal

Representation

Units

FIGURE I. A multilayer network. In this case the information coming to the input
units is reroded into an internal representation and the outputs are generated by the inter·
nal representation rather than by the original pattern. Input patterns can always be
encoded, if there are enough hidden units, in a form so that the appropr iate output pat·
tern can be generated from any input pattern.

structure of the patterns sufficiently to al low the solution to be learned .
As i l lustrated in Figure 2 , this can be done wi th a single hidden uni t.
The numbers on the arrows represent the strengths of the connections
among the units . The numbers wri tten i n the ci rcles represent the
thresholds of the units . The value of + 1. 5 for the th reshold of the hid­
den unit insures that it wi l l be turned on only when both input units
are on. The value 0 . 5 for the output unit insures that i t will tu rn on
only when it receives a net posi tive input greater than 0 . 5 . The weight
of - 2 from the h idden uni t to the output unit insures that the output
unit wi l l not come on when both input units are on. Note that from the
po int of view of the outpu t unit, the hidden unit is treated as simply
another input unit . It is as jf the jOP'ut . p'atterns consisted of three
rather than two uni ts .

Copynghted Matenal

8. LEARNING INTERNAL REPRESENTATIONS 321

Hidden Unit

Input Units

FIGURE 2. A simple XOR network with one hidden unit. See text for explanation.

The exi stence of networks such as t h i s i l lustrates the potential power
of hidden units and i n ternal rep resen tations. The problem, as noted by
Minsky and Papert , is that whereas there is a very simple guaranteed
learning rule for all problems that can be solved without hidden units,
namely , the percept ron convergence procedure (or the variation due
origi nally to Widrow and Hoff, 1960, wh ich we call the delta rule; see
Chapter 1 1), there is no equally powerful rule for learning in ne tworks
with hidden units. There have bee n three basic responses to this lack.
One response is represented by competit i ve learning (Chapter 5) in
which si mple unsupervised learn ing ru les are employed so that useful
hidden units develop. Although these approaches are prom i si ng , there
is no external force to insure that hidden units appropriate for the
requ ired mappi ng are developed. The second response is to si mply
assume an internal representation that, on some a priori grounds, seems
reasonable. Thi s is the tack taken in the chapter on verb learning
(Chapter 18) and in the i nteracti ve activat ion model of word perception
(McClelland & Rumelhart, 1981; Rumelhart & McClel land , 1982) .
The third approach is to attempt to develop a learning procedure capable
of learning an i nternal representation adequate for performing the task
at hand. One such development is presented in the discuss ion of
Boltzmann machines in Chapter 7. As we have seen, this procedure
invol ves the use of stochastic units , requ i res the network to reach
equi l ibri um in two d ifferent phases, and is l i m ited to symmetric net­
works. Another recent approach, also employing stochastic units, has
been developed by Bart�18ed MlDaria/of his col leagues (cf. Barto

322 BASIC MECH ANISMS

& Anandan , 1985). In this chapter we present another alternat ive that
works with determinist ic units, that involves only l ocal computations,
and that is a clear general ization of the delta rule . We cal l this the gen­
eralized delta rule. From other considerations, Parker (1985) has
independently deri ved a s imi lar general ization , which he cal ls learning­
logic. Le Cun (1985) has also studied a roughly s imi lar learning
scheme. In the remainder of this chapter we fi rst derive the general­
ized delta rule , then we i l lustrate its use by providing some results of
our s imulations , and finally we indicate some further general izations of
the basic idea.

THE GENERALIZED DELTA RULE

The learn ing procedure we propose involves the presentation of a set
of pai rs of input and output patterns. The system fi rst uses the input
vector to produce its own output vector and then compares this with
the desired output, or target vector. If there is no difference, no learning
takes place. Otherwise the weights are changed to reduce the differ­
ence. In this case , with no h idden units, this generates the standard
delta rule as described in Chapters 2 and 11 . The rule for changing
weights following presentation of input/ output pai r p i s given by

(1)
where tpj is the target input for jth component of the output pattern for
pattern p, Opj is the jth element of the actual output pattern produced
by the presentation of input pattern p, ip; is the value of the ith ele­
ment of the input pattern , 8pi = tpi - 0pi' and flp wi} is the change to be
made to the weight from the ith to the jth uni t fol lowing presentation
of pattern p .

The delta rule and gradient descent. There are many ways of deriv­
ing this rule. For present purposes, it is useful to see that for l inear
units it minimizes the squares of the differences between the actual and
the desi red output values summed over the output units and al l pairs of
input/ output vectors . One way to show this is to show that the deriva­
t ive of the error measure with respect to each weight is proportional to
the weight change dictated by the delta rule, with negative constant of
proportionali ty. This corresponds to performing steepest descent on a
surface in weight space whose height at any point in weight space is
equal to the error measure . (Note that some of the fol lowing sections

Copyrighted Material

8. L EARNING INTERNAL REPRESENTATIONS 323

are written in ital ics . These sections consti tute i n formal deri vations of
the claims made i n the surrounding text and can be omitted by the
reader who finds such derivations tedious')

To be more specific, then, let

1
Ep = 2'1;: «(pj - Opj)2

I

be our measure of the error on input/output pattern p and let E = LEp be our

overall measure of the error. We wish to show that the delta rule implements a gra­
dient descent in E when the units are linear. We will proceed by simply showing
that

which is proportional to Lip Wj; as prescribed by the delta rule. When there are no
hidden units it is straightforward to compute the relevant derivative. For this purpose
we use the chain rule to write the derivative as the product of two parts: the deriva­
tive of the error with respect to the output of the unit times the derivative of the out­
put with respect to the weight.

aEp aEp aOpj
aWj; = aOpj aWj; •

(])

The first part tells how the error changes with the output of the j th unit and the
second part tells how much changing Wj; changes that output. Now, the derivatives
are easy to compute. First, from Equation 2

aEp
-

!l
- = - (tpj - op) = - apj'

uOpj
(4)

Not surprisingly, the contribution of unit Uj to the error is simply proportional to a pj .
Moreover, since we have linear units,

Opj = LWjlip;.
i

from which we conclude that

aOpj .
-!l - = 'pi' u Wj;

Thus, substituting back into Equation 3, we see that

aEp .
- -!l- = apj/PI UWji

Copyrighted Material

(6)

324 BASIC MECHANISMS

as desired. Now, combining this with the observation that

aE
=

1: aEp
aWj; p aWj;

should lead us to conclude that the net change in Wj; after one complete cycle of pat­
tern presentations is proportional to this derivative and hence that the delta rule
implements a gradient descent in E. In fact, this is strictly true only if the values of
the weights are not changed during this cycle. By changing the weights after each
pattern is presented we depart to some extent from a true gradient descent in E.
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi­
ciently small, this departure will be negligible and the delta rule will implement a very
close approximation to gradient descent in sum-squared error. In particular, with
small enough learning rate, the delta rule will find a set of weights minimizing this
error function.

The delta rule for semilinear activation functions in feedforward
networks. We have shown how the standard delta rule essentially
implements gradient descent in sum-squared error for l inear activation
functions. In this case , without h idden units , the error surface is shaped
like a bowl with only one minimum, so gradient descent is guaranteed
to find the best set of weights . With hidden units, however, it is not so
obvious how to compute the deri vatives , and the error surface is not
concave upwards , so there is the danger of gett ing stuck in local
min ima. The main theoretical contri bution of this chapter is to show
that there is an efficient way of computing the deri vat ives. The main
empi rical contr ibut ion is to show that the apparently fatal problem of
local min ima is i rrelevant in a wide variety of learning tasks.

At the end of the chapter we show how the general ized delta rule can
be appl ied to arbitrary networks , but , to begin With , we confine our­
selves to layered feedforward networks . In these networks , the input
un i ts are the bottom layer and the output units are the top layer. There
can be many layers of h idden units i n between , but every unit must
send its output to h igher layers than its own and must receive i ts input
from lower layers than i ts own. Given an i nput vector, the output vec­
tor is computed by a forward pass which computes the activity levels of
each layer in turn using the already computed acti vity levels in the ear­
l ier layers.

Since we are primari ly interested in extending th is result to the case
wi th h idden units and since, for reasons outl i ned in Chapter 2 , hidden
units with l inear acti vat ion functions provide no advantage , we begin by
general iz ing our analysis to the set of non l inear act i vation functions
which we cal l semilinear (see Chapter 2). A semi l i near acti vation func­
t ion is one in wh ich the output of a unit is a nondecreasi ng and dif­
ferentiable function of t�d>MfJl8tjal

8. LEARNING INTERNAL R EP R ES ENTATIONS 325

where 0; = i; if u n it i is an i nput unit. Th us, a semi l i near act i vat i on
function i s one i n which

(8)
and f is differen tiable and nondecreasi ng. The gene ral i zed del ta rule
works if the network consists of units having semilinear activation func­
tions. Notice that li near threshold units do not sati sfy the requirement
because their derivat i ve is infi nite at the threshold and zero elsewhere.

To get the correct generalization of the delta rule. we must set

aEp ap wji ex: - -!\-,
V wji

where E is the same sum-squared error function defined earlier. As in the standard
delta rule it is again useful to see thiS derivative as resulting from the product of two
parts: one part reflecting the change in error as a function of the change in the net
input to the unit and one part representing the effect of changing a particular weight
on the net input. Thus we can write

aEp aEp anetpj

aWji
=

ane/pj aWji .

By Equation 7 we see that the second factor is

Now let us define

aEp 0 · = - --
PJ anel .. PJ

(9)

(JO)

(By comparing this to Equation 4. note that this is consistent with the definition of
o pj used in the original delta rule jor linear units since Opj = netpj when unit Uj is
linear.) Equation 9 thus has the equivalent form

aEp
--!\- = OpjOp;.

VWji

This says that to implement gradient descent in E we should make our weight
changes according to

6.p Wji = TjOpjOph (IJ)
Copyrighted Material

3 26 BASIC MECHANISMS

just as in the standard delta rule. The trick is to figure out what 8pj should be for
each unit U) in the network. The interesting result, which we now derive, is that
there is a simple recursive computation 0/ these 8 's which can be implemented by
propagating error signals backward through the network.

aE
To compute 8 p) = - �, we apply the chain rule to write this partial deriva-onetp)

tive as the product 0/ two factors, one factor reflecting the change in error as a /unc­
tion 0/ the output 0/ the unit and one reflecting the change in the output as a /unc­
tion 0/ changes in the input. Thus, we have

aEp aEp aop) 8p) = --- = ------,

anetpj aOpj anetpj

Let us compute the second factor. By Equation 8 we see that

aOpj _ I
-�-- - I ; (netpj), onetpj

(1)

which is simply the derivative 0/ the squashing /unction Ij for the j th unit,
evaluated at the net input netp) to that unit. To compute the first factor, we con­
sider two cases. First, assume that unit Uj is an output unit 0/ the network. In this
case, it /ollows /rom the definition 0/ Ep that

aEp
-�- = - (tpj - Opj),
OOp)

which is the same result as we obtained with the standard delta rule. Substituting
for the two factors in Equation 11, we get

(J3)

for any output unit U). /fUj is not an output unit we use the chain rule to write

12 flEp anetplc = 12 aEp -a-Lwk;op;= 12 aEp Wkj=-L8p1cWkj' k anetpk aOpj k anetpk aOpj ; k anetpk k

In this case, substituting /or the two factors in Equation 12 yields

8 pj = I 'j (netpj) 128 pic Wkj (J4)
k

whenever u) is not an output unit. Equations J3 and 14 give a recursive procedure
for computing the 8 's for all units in the network, which are then used to compute
the weight changes in the network according to Equation 11. This procedure consti­
tutes the generalized delta rule for a /eed/orward network 0/ semilinear units.

These results can be summarized in three equations. First, the gen­
eralized delta rule has exactly the same form as the standard delta rule
of Equation 1 . The weight on each line should be changed by an
amount proportional to ctbp� MfJitftialrror signal, 8 , available to

8. LEARNING INTERNAL REPRESENTATIONS 327

the unit receiving input along that l ine and the output of the unit send­
ing activation along that l ine. In symbols ,

The other two equations specify the error signal. Essential ly, the deter­
mination of the error signal is a recursive process which starts wi th the
output units. If a unit i s an output uni t , i ts error signal is very simi lar
to the standard delta rule. It is given by

Spj = (tpj - Opj)/ j (netpj)
where / j (netpj) is the derivati ve of the semi l inear act ivati on function
which maps the total input to the uni t to an output value. Finally, the
error signal for hidden un i ts for which there is no specified target is
determined recursively i n terms of the error signals of the uni ts to
which i t di rectl y connects and the weights of those connect ions. That is ,

S pj = / j (netpj) I,s pk Wkj
k

whenever the unit is not an output uni t .
The applicat ion of the general i zed delta rule , thus, involves two

phases: During the first phase the i nput is presented and propagated
forward through the network to compute the output value Opj for each
unit. This output is then compared wi th the targets, resulting in an
error signal Spj for each output unit . The second phase involves a
backward pass through the network (analogous to the initial forward
pass) during which the error signal is passed to each uni t in the net­
work and the appropriate weight changes are made. This second, back­
ward pass al lows the recursive computation of 8 as indicated above.
The first step is to compute S for each of the output uni ts. This is s im­
ply the difference between the actual and desi red output values t imes
the derivati ve of the squashing function. We can then compute weight
changes for all connections that feed into the final layer. After this is
done, then compute 8 's for all units in the penul timate layer. This
propagates the errors back one layer, and the same process can be
repeated for every layer. The backward pass has the same computa­
tional complexity as the forward pass , and so it is not unduly expensive.

We have now generated a gradient descent method for findi ng
weights in any feedforward network wi th semi l inear uni ts. Before
reporting our resu l ts wi th these networks , it i s useful to note some
further observations. I t i s interesting that not all weights need be vari ­
able. Any number of weights i n the network can be fixed . In this
case, error is st i ll propag��.YIfghrJW'M�"GOxed weights are simply not

328 BASIC M ECH ANISMS

modified . It should also be noted that there is no reason why some
output units might not recei ve inputs from other output un i ts i n earl ier
layers. In th is case, those uni ts recei ve two differen t ki nds of error:
that from the di rect comparison with the target and that passed through
t he other output u n i ts whose acti vation it affects. In th is case , the
correct procedure is to si mply add the weight changes dictated by the
direct comparison to that propagated back from the other output uni ts.

SIMULATION RESULTS

We now have a learn ing procedure which could, in principle, evolve
a set of weights to produce an arbit rary mapping from input to output.
However, the procedure we have produced is a gradient descent pro­
cedure and, as such, is bound by all of the problems of any hill climb­
ing procedu re-namely, t h e problem of local maxima or (i n our case)
min i ma. Moreover, there is a quest ion of how long i t might take a sys­
tem to learn. Even if we could guarantee t hat i t would eventual ly find
a solution , there is the question of whether our procedure could learn
in a reasonable period of t i me. It is i n terest ing to ask what hidden
units the system actually develops in the solution of part icular prob­
lems. This is the question of what kinds of in ternal representat ions the
system actually creates. We do not yet have defin i tive answers to t hese
quest ions. However, we have carried out many simulat i ons which lead
us to be opt i mist ic about the local mi nima and t i me questi ons and to be
surprised by the kinds of represen tations our learning mechan ism dis­
covers. Before proceeding with our results, we must describe our simu­
lat ion system in more detail. In part icular, we must specify an activa­
t ion function and show how the system can compute the deri vative of
th is function.

A useful activation function. In our above deri vations the derivative
of the act i vation funct ion of unit u), r j (net), always played a role.
This implies that we n eed an act i vation funct ion for wh ich a deri vative
exists. It is in terest i n g to note that the linear threshold funct ion, on
whi ch the percept ron is based, is d iscontinuous and hence will not suf­
fice for the generalized delta rule. Simi larly, since a linear system
achieves no advantage from hidden un i ts, a linear activat ion function
will not suffice e i ther. Thus, we need a contin uous, nonlinear activa­
t ion function. In most of our experi ments we have used the logistic
act i vation function i n w��Jyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 329

(1 5)

where () j is a b ias similar i n funct ion to a threshold . 1 I n order to apply
our l earning ru le, we need to k now the derivative of th is funct ion with
respect to i ts total i nput, netpj, where netpj = L, wJ; op; + () J. It is easy to
show that this derivative is given by

aOpj
-!l-- = Opj 0- op) .
unetpj

Thus, for the logist ic act i vation function, the error signal, Bpj, for an
output unit is given by

Bpj = (tP) - Opj)op} (1 - op}),

and the error for an arbitrary hidden Uj is given by

Spj = op}O - op})L,SpkWk}'
k

It should be n oted that the derivative, Opj (1 - op), reaches its max­
imum for Opj = 0.5 and, since 0::::; Opj::::; 1, approaches i ts m i n i mum as
Opj approaches zero or one. Since the amount of change in a given
weight is proportional to this deri vat i ve, weights will be changed most
for those units that are near the i r midrange and, in some sense, not yel
committed to being e i ther on or off. Th is feature, we bel ieve, contri­
butes to the stability of the learning of the system.

One other feature of this activation function should be noted. The
system can not actual ly reach its extreme values of 1 or 0 without infin­
itely large weights. Therefore, in a pract ical learni ng situation i n which
the desired outputs are b inary (O, 1), the system can never actually
ach ieve these val ues. The refore, we typ ica l ly use the val ues of 0 .1 and
0.9 as the targets, e ven though we wi l l talk as if values of (0, I} are
sought.

The learning rate. Our l earn i ng procedu re requires only that the
change in weight be proportional to aEp/aw. True gradient descent
requires that infinitesimal steps be taken. The constant of proport ional­
ity is the learning rate in o u r procedure . The large r th is constant, the
larger the changes in the weights. For practical purposes we choose a

I Note that the values of the bias, OJ, can be learned just like any other weights. We

simply i magin e that OJ is the w.s:.ight frpm a unit that i!l always on.
c;opynghted Matenal

330 BASIC MECHANISMS

learning rate that is as large as possi ble wi thout leading to osci l lation .
This offers the most rapid learning. One way to increase the learning
rate without leading to osc i l lation is to modify the general ized delta rule
to include a momentum term. This can be accomplished by the follow­
ing rule:

(16)

where the subscript n i ndexes the presentation number, 'T/ i s the learn­
i ng rate, and a i s a constant which determi nes the effect of past weight
changes on the current di rection of movement in weight space . This
provides a kind of momentum in weight space that effecti vely fi l ters
out high-frequency variations of the error-surface i n the weight space.
This is useful i n spaces containing long ravines that are characterized by
sharp curvature across the ravine and a gently sloping floor. The sharp
curvature tends to cause divergent osci l l ations across the ravine. To
prevent these i t is necessary to take very small steps, but this causes
very slow progress along the ravine. The momentum fi l ters out the
high curvature and thus al lows the effect ive weight steps to be bigger.
In most of our simulations a was about 0.9. Our experience has been
that we get the same solutions by sett i ng a = 0 and reducing the size of
'T/, but the system learns much faster overall wi th larger values of a
and TJ.

Symmetry breaking. Our learning procedure has one more problem
that can be readi ly overcome and this is the problem of symmetry
breaking. If al l weights start out with equal values and if the solution
requi res that unequal weights be developed, the system can never learn .
Th is is because error is propagated back through the weights in propor­
tion to the values of the weights. This means that all hidden uni ts con­
nected directly to the output inputs wi l l get identical error signals , and,
since the weight changes depend on the error signals , the weights from
those units to the output units must always be the same. The system is
start ing out at a k ind of local maximum. which keeps the weights equal ,
but i t is a maximum of the error function , so once i t escapes i t wil l
never return. We counteract this problem by start ing the system with
smal l random weights. Under these condit ions symmetry problems of
this kind do not arise.

The XOR Problem

It is useful to begin wi th the exclusive-or problem since i t is the clas­
sic problem requi ring h idden units and since many other difficul t

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 331

problems involve an XOR as a subproblem. We have run the XOR
problem many times and with a couple of exceptions discussed below,
the system has always solved the problem. Figure 3 shows one of the
solutions to the problem. This solution was reached after 558 sweeps
through the four stimulus patterns with a learn ing rate of." = 0.5. In
this case, both the hidden unit and the output unit have positive biases
so they are on unless turned off. The hidden unit turns on if neither
input unit is on. When it is on, it turns off the output unit. The con­
nections from input to output units arranged themselves so that they
turn off the output unit whenever both inputs are on. In this case, the
network has sett led to a solution which is a sort of mirror image of the
one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of
times. Sometimes we have used a single hidden unit and di rect con­
nections to the output unit as il l ustrated here, and other times we have
allowed two hidden uni ts and set the connections from the input units
to the outputs to be zero, as shown in Figure 4. In only two cases has
the system encountered a local minimum and thus been unable to solve
the problem. Both cases involved the two hidden units version of the

Output Unit

-4.2 I 1
I

\-42
\

\ I -9.41

I
I �

I __ X
\ Hidden Unit

\
\ --

-6.4

Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows

and the biases are written in eO circle�
1t
fcf��&���ve bias means that the unit is on

unless lltrned off. pyn!}

3 32 BASIC MECHANISMS

FIGURE 4. A s imple architecture for solving XOR with two hidden units and no direct
connections from input to output.

problem and both ended up i n the same local mInimum. Figure 5
shows the weights for the local minimum. In this case, the system
correctly responds to two of the pat terns-namely, the patterns 00 and
10. In the cases of the other two patterns 11 and 0 1 , the output unit
gets a net input of zero. This leads to an output value of 0.5 for both
of these patterns. This state was reached after 6,587 presentations of
each pattern wi th 'T/=O.25. 2 Although many problems require more
presentations for l earning to occur, further trials on this problem
merely increase the magni tude of the weights but do not lead to any
improvement in performance. We do not know the frequency of such
local min ima, but our experience wi th this and other problems is that
they are quite rare. We have found only one other s i tuation in which a
l ocal min imum has occurred i n many hundreds of problems of various
sorts. We wi l l discuss this case below.

The XOR problem has proved a useful test case for a number of
other studies. Using the architecture illustrated in Figure 4, a student
in our laboratory, Yves Chauvin, has studied the effect of varying the

2 If we set 11 � 0.5 or abov'Cb'*�,s.t,I;m.AS�1!Wt minimum. In general, however,
the best way to avoid local minlrnf(.f� 'tWb'6�y'lb ... t.l�'li'�ry small values of 11.

8. LEARNING INTERNAL REPRESENTATIONS 333

FIGURE 5. A network at a local minimum for the exclusive-or problem. The dotted
lines indicate negative weights. Note that whenever the right most input unit is on it
turns on both hidden units. The weights con necting the hidden units to the output are
arranged so that when both hidden units are on, the output unit gets a net input of zero.
This leads to an output value of 0.5. In the other cases the network provides the correct
answer.

number of hidden units and varying the learning rate on t ime to solve
the problem. Using as a learning criterion an error of 0 .01 per pattern ,
Yves found that the average number of presentations to solve the prob­
lem with '1/ = 0.25 varied from about 245 for the case with two hidden
units to about 120 presentations for 32 hidden units . The results can
be summarized by P = 280 - 3310g2H, where P is the required
number of presentations and H i s the number of hidden units
employed. Thus, the t ime to solve XOR is reduced l inearly with the
logari thm of the number of hidden units. This result holds for values of
H up to about 40 i n the case of XOR. The general result that the time
to solut ion is reduced by increasing the number of hidden uni ts has
been observed in virtually a l l of our s imulations. Yves also studied the
time to solut ion as a function of learn ing rate for the case of eight h id·
den un i ts . He found an average of about 450 presentations wi th
'1/ = 0.1 to about 68 presentations with '1/ = 0.75. He also found that

Copyrighted Material

3 34 BASIC MECHANISMS

learning rates larger than this led to unstable behavior. However,
within this range larger learning rates speeded the learning substantially.
In most of our problems we have employed learning rates of '11 = 0.25
or smaller and have had no difficulty.

Parity

One of the problems given a good deal of discussion by Minsky and
Papert (t 969) is the parity problem, in which the output required is 1 if
the input pattern contains an odd number of Is and 0 otherwise . This
is a very difficult problem because the most similar patterns (those
which differ by a single bit) require different answers . The XOR prob­
lem is a parity problem with input patterns of size two. We have tried a
number of parity problems with patterns ranging from size two to eight .
Generally we have employed layered networks in which di rect connec­
t ions from the input to the output units are not al lowed, but must be
mediated through a set of hidden units. In thi s archi tecture, it requires
at least N hidden units to solve parity with patterns of length N. Fig­
ure 6 i llustrates the basic paradigm for the solutions discovered by the
system. The solid lines in the figure indicate weights of + 1 and the
dotted l ines indicate weights of -1 . The numbers in the circles
represent the biases of the uni ts. Basically, the hidden units arranged

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn­
ing system. See text for explanation.

Copyrighted Material

8. LEARNING INTER NAL R EPRESENTATIONS 3 3 5

themselves s o that they count the number o f inputs. In the d iagram,
the one at the far left comes on if one or more input un its are on , the
next comes on if two or more are on , etc . All of the h idden units
come on if all of the input l ines are on. The fi rst m h idden units come
on whenever m bits are on in the input pattern . The hidden units then
connect with alternately positi ve and negative weights . In this way the
net i nput from the h idden units is zero for even numbers and + 1 for
odd numbers. Table 3 shows the actual �ol ution attained for one of our
simulations with fou r input l ines and four h idden units . This solution
was reached after 2 ,825 presentations of each of the si xteen patterns
with "fI = 0 . 5 . Note that the solution is roughly a mirror image of that
shown in Figure 6 in that the number of h idden units turned on is
equal to the number of zero i nput values rather than the number of
ones. Beyond that the princi ple is that shown above. It should be noted
that the i nternal representation created by the learni ng rule is to
arrange that the number of h idden units that come on is equal to the
number of zeros in the i nput and that the particular hidden units that
come on depend only on the number, not on which i nput un its are on .
This is exactly the sort of recoding required by parity . I t is not the k ind
of representation readi ly d iscovered by unsupervised learning schemes
such as competitive learning.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1 985) have posed a problem i n
which a set o f orthogonal input patterns are mapped to a set o f orthogo­
nal output patterns through a small set of hidden units. In such cases
the internal representations of the patterns on the h idden units must be
rather efficient. Suppose that we attempt to map N input patterns onto
N output patterns. Suppose further that log2N h idden units are pro­
vided. In th is case, we expect that the system wi l l learn to use the

Number of On
Input Units

TABLE 3

Hidden Unit
Patterns

o 1111

1 1011

2 1010

3 0010

4 Copynghted lIfINerial

Output
Value

o
1
o
1
o

336 BASIC MECHANISMS

N Output Units

log N Hidden Units 2

N Input Units

FIGURE 7. A network for solving the encoder problem. In this problem there are N
orthogonal input patterns each paired with one of N orthogonal output patterns. There
are only log2N hidden units. Thus, if the hidden units take on binary values, the hidden
units must form a binary number to encode each of the input patterns. This is exactly

what the system learns to do.

hidden units to form a binary code with a distinct binary pattern for
each of the N input patterns. Figure 7 i llustrates the basic archi tecture
for the encoder problem. Essential ly , the problem � tt. learn an encod­
ing of an N bit pattern into a l og2N bit pattern and then learn to
decode this representat ion into the output pattern . We have presented
the system with a number of these problems. Here we present a prob­
lem with eight input patterns, eight output patterns, and three hidden
units. In this case the required mapping is the identity mapping illus­
trated in Table 4 . The problem is simply to turn on the same bit in the

Input Patterns

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

TABLE 4

Output Patterns

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Copyi igflted Matel iaJ

8. LEARNING INTERNAL REPRESENTATIONS 337

output as in the input . Table 5 shows the mapping generated by our
learning system on this example . I t i s of some interest that the system
employed i ts abil ity to use intermediate values in solving this problem.
I t could , of course, have found a solut ion in which the hidden units
took on only the values of zero and one . Often i t does just that , but in
this instance, and many others , there are solutions that use the inter­
mediate values , and the learning system finds them even though i t has
a bias toward extreme values . It is possible to set up problems that
require the system to make use of intermediate values in order to solve
a problem. We now turn to such a case.

Table 6 shows a very simple problem in which we have to convert
from a distributed representation over two units into a local representation
over four uni ts . The similarity structure of the distributed input pat­
terns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of
constraints which made i t especially difficu l t . The two input units were
only allowed to connect to a single hidden unit which , in turn, was
allowed to connect to four more h idden uni ts. Only these four hidden
uni ts were allowed to connect to the four output uni ts. To solve
this problem, then , the system must first convert the distributed

TABLE 5

Input Hidden Unit Output

Patterns Patterns Patterns

10000000 .5 0 0 10000000
01000000 0 1 0 0 1 000000

00100000 1 1 0 00100000

00010000 1 1 1 00010000

00001 000 0 1 1 00001000

00000100 .5 0 1 00000100

00000010 1 0 .5 00000010

00000001 0 0 .5 00000001

TABLE 6

Input Patterns Output Patterns

00

01

10

11

1000
0100

0010

0001

Copynghled Malerial

338 BASIC MECHANISMS

representation of the input patterns into various intermediate values of
the s ingleton hidden unit in which different activation values
correspond to the different input patterns. These cont inuous val ues
must then be converted back through the next layer of hidden uni ts­
first to another distributed representation and then , final ly, to a local
representation. This problem was presented to the system and i t
reached a solution after 5,226 presentations with", = 0.05.3 Table 7
shows the sequence of representations the system actual ly developed in
order to transform the patterns and solve the problem. Note each of
the four input patterns was mapped onto a particular activation value of
the singleton hidden unit . These values were then mapped onto distr i­
buted patterns at the next layer of h idden uni ts which were finally
mapped into the required local representation at the output level . In
pri nci ple, this trick of mapping patterns in to activation values and then
converting those act i vation values back into patterns could be done for
any number of patterns, but i t becomes increasingly difficult for the
system to make the necessary distinctions as ever smal ler differences
among acti vation values must be dist inguished. Figure 8 shows the
network the system developed to do this job. The connection weights
from the hidden un i ts to the output units have been suppressed for
clarity. (The sign of the connection, however, is i ndicated by the form
of the connection -e.g. , dashed l ines mean inh ibi tory connections) .
The four different acti vation values were generated by having relatively
large weights of opposite sign . One input l ine turns the hidden unit full
on, one turns it fu l l off. The two d iffer by a relati vely smal l amount so
that when both turn on , the unit attains a value intermediate between 0
and 0.5. When nei ther turns on , the near zero bias causes the unit to
attain a value sl ightly over 0.5. The connections to the second layer of
hidden uni ts is l i kewise i nteresti ng . When the hidden unit is ful l on,

TABLE 7

Input Singleton Remaining Output
Patterns Hidden Unit Hidden U nits Patterns

1 0 0 1 1 1 0 0010
1 1 .2 1 1 0 0 0001
00 .6 .5 0 0 . 3 1000
0 1 1 0 0 0 1 0 1 00

3 Relati vely small learning rates make un its employing intermediate values easier to
obta in.

Copyrighted Material

8. LEAR N I NG INTERNAL R EPRESENTATIONS 339

Output
Un its

H idden
U n i ts

I n p u t
U n i ts

FIG U R E 8 . The network i l lustrat ing t he use o f intermediate values i n sol ving a problem .
See text for explanation .

the right-most of these hidden uni ts is turned on and all others turned
off. When the h idden uni t i s turned off, the other three of these hid­
den uni ts are on and the left-most un i t off. The other connections
from the si ngleton hidden unit to the other hidden units are graded so
that a distinct pattern i s turned on for i ts other two values. Here we
have an example of the flexib i l i ty of the learning system .

Our experience i s that there is a propensity for the hidden uni ts to
take on extreme values , but, whenever the learn ing problem cal ls for i t ,
they can learn to take on graded values. It is l i kely that the propensity
to take on extreme values fol lows from the fact that the logistic is a sig­
moid so that increas ing magnitudes of its inputs push i t toward zero or
one. This means that in a problem in which in termediate values are
required, the i ncoming weights must remain of moderate size . It i s
interesti ng that the derivation of the general ized delta ru le does not
depend on all of the units having identical acti vat i on functions. Thus,
i t would be possible for some units , those requi red to encode informa­
tion in a graded fashion , to be l i near whi le others might be logisti c .
The l inear unit would have a much wider dynamic range and could
encode more different values. This would be a useful role for a l inear
uni t in a network with h�8p9r_d Material

340 BASIC M ECHANISMS

Symmetry

Another interesting problem we studied i s that of class ifying input
strings as to whether or not they are symmetric about the ir center. We
used patterns of various lengths with various numbers of hidden units.
To our surprise, we discovered that the problem can always be solved
with only two hidden units . To understand the derived representat ion,
consider one of the solutions generated by our system for strings of
length s ix . This solut ion was arri ved at after 1 ,208 presentat ions of each
s ix-bit pattern with 'T1 = 0. 1 . The final network is shown in Figure 9 .
For simplici ty we have shown the s ix input un i ts i n the center of the
diagram with one hidden unit above and one below. The output unit ,
which signals whether or not the string is symmetric about i ts center, is
shown at the far right . The key point to see about this solut ion is that
for a given hidden unit , weights that are symmetric about the middle
are equal in magnitude and opposi te i n sign . That means that if a sym­
metric pattern is on , both hidden un i ts will rece ive a net i nput of zero
from the input units , and, since the h idden units have a negative bias,
both wil l be off. In this case , the output unit, having a posi t ive bias,

."

./

.....
..... 9 .44

./
./

.....

+ 8 .3 t /. 3 . 1 7
./

./
./

./

.,. .,.
.,.

.,.. .,. .,.. ·9A4

.,. .,;

.....

.,. .,.. .,.

.....
'Q output Y Unit .,; .,; .,;

FIGURE 9. Network for solv ing the symmetry problem. The s i x open ci rcles represent
the i nput units . There are two hidden units, one shown above and one below the input
units. The output unit i s shown to the far right. See text for explanation.

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 34 1

wil l be on . The next most important th ing to note about the sol ution is
that the weights on each side of the midpoint of the str ing are in the
ratio of 1 : 2:4 . This i nsures that each of the eight patterns that can
occur on each side of the midpoint sends a unique activat ion sum to
the hidden uni t . This assures that there is no pattern on the left that
wi l l exactly balance a non-mi rror- image pattern on the right . Final ly ,
the two hidden uni ts have ident ical patterns of weights from the in put
units except for sign. This insures that for every nonsymmetric pat­
tern , at least one of the two hidden units wi l l come on and turn on the
output uni t . To summarize, the network is arranged so that both hid­
den units wi l l receive exact ly zero activation from the input units when
the pattern is symmetric , and at least one of them wi l l receive pos i t ive
input for every nonsymmetric pattern .

Th is problem was interesting to us because the learning system
developed a much more elegant solution to the problem than we had
previously considered . This problem was not the only one in which this
happened . The pari ty solution discovered by the learning procedure
was also one that we had not discovered prior to testing the problem
with our learning procedure . Indeed, we frequently discover these
more elegant solut ions by gi vi ng the system more hidden uni ts than i t
needs and observing that i t does not make use of some of those pro­
vided. Some analysis of the actual solutions discovered often leads us
to the discovery of a better solution involving fewer hidden units .

Addition

Another interesting problem on which we have tested our learn ing
algorithm is the s imple binary addit ion problem. This problem is
interesting because there i s a very elegant sol ut ion to it , because i t is
the one problem we have found where we can rel iably find local
minima and because the way of avoiding these local mi nima gi ves us
some insight into the condit ions under which local min ima may be
found and avoided . Figure 10 i l lust rates the basic problem and a
min imal sol ut ion to i t . There are four i nput units , three output units ,
and two hidden un i ts . The output patterns can be viewed as the binary
representation of the sum of two two-bit b inary n umbers represented
by the input patterns. The second and fourth input units in the
diagram correspond to the low-order bits of the two binary numbers
and the first and th ird units correspond to the two h igher order bits .
The hidden un i ts correspond to the carry bits in the summation . Th us
the hidden un i t on the far right comes on when both of the lower order
bits in the input patter�yrig/Dtedf �t8li8J the one on the left comes

342 BASIC M ECHANISMS

Output Units

Input U n its

Hidden
Units

FIGURE 1 0 . M i n imal network for add ing two two- bit binary numbers. There are fou r
i n put un its, t hree output uni ts , and two h idden u n i ts . T h e output patterns can b e v iewed
as the b i nary representat ion of the sum of two two-bit b inary numbers represented by the
i n put patterns . The second and fourth i n put un i ts in t h e d i agram correspond to t h e low­
order bits of the two b i nary n um bers, and t he fi rst and t h i rd uni ts correspond t o the t wo
h i gher order bits . The h idden un i ts correspond to the carry bits in the summat ion . The
hidden unit o n the far right comes on when both of t he lower order b i t s in the i n put pat­
tern are t urned on, and the one on the left comes on when both h i gher order bits are
turned on or when one of the higher order b i t s and the ot her hidden uni t is turned o n .
The weights on a l l l i n es a r e assumed t o be + I except where noted . Negat ive connec­
t ions are indicated by dashed l i nes. As usua l , the biases are i n d icated by the n um bers in
t h e circles .

on when both higher order bits are turned on or when one of the
higher order bi ts and the other hidden unit i s turned on . In the
diagram , the we igh ts on all l ines are assumed to be + 1 except where
noted . Inhi bitory connect ions are ind icated by dashed l i nes. As usual ,
the b iases are i ndicated by the numbers in the ci rcles. To understand
how th is network works , i t is useful to note that the lowest order out­
put bi t is determ i ned by an e xcl usi ve-or among the two low-order i n put
bits . One way to solve this XOR problem i s to have a hidden unit
come on when both l ow-order i n p ut bits are on and then have i t inh ibi t
the output unit . Otherwi se e i ther of the low-order i nput un i ts can t u rn
on the low-order outpu t bi t . The middle bit is somewhat more

Copyrighted Material

8. L EA R N I NG I NTER N A L R EPRES ENTATIONS 343

difficul t . Note that the middl e bit should come on whenever an odd
number of the set containing the two higher order i n put bits and the
lower order carry bit is t urned on . Observation wil l con firm that the
network shown performs that task. The left-most hidden unit receives
inputs from the t wo h i gher order bits and from the carry bit . I ts bias is
such that i t wi l l come on whenever two or more of its i n puts are turned
on . The middle output u n i t recei ves posi tive i nputs from the same
three u nits and a n egative input of - 2 from the second hidden unit .
This insures that whenever j ust one of the three are turned on , the
second h idden un i t wi l l remain off and the output bit wil l come on .
Whenever exactly t wo of the three are o n , the hidden u nit wi l l turn on
and counteract t h e two units excit i ng the output bit , so it wil l s tay off.
Final l y , when all three are t urned o n , the output bit wi l l receive - 2
from its carry bit and + 3 from i ts other three i n puts . The net is posi­
t ive , so the middle u nit wil l be on . Finally , the third output bit should
turn on whenever the second hidden unit i s on - that is, whenever
there is a carry from the second bit. Here then we have a min i mal net­
work to carry out the job at hand. Moreover, it should be noted that
the concept beh ind t h i s network i s general izable to an arbi trary n umber
of i n put and output bi ts. In general , for adding two m bit binary
numbers we wil l require 2m i nput u n i ts , m h idden u n i ts , and m+ I out­
put units .

Unfortunately, this is the one proble m we have found that reliably
leads the system i nto local min i ma . At the start in our l earn ing trials
on th is problem we al low any input u nit to connect to any output unit
and to any hidden u nit . We al low any hidden u n i t to con nect to any
output unit, and we a l low one of the hidden u n i ts to con nect to the
other hidden unit, but, since we can have no loops, the connect ion in
the opposite di rection is d i sal lowed. Somet i mes the system wil l discover
essentia l ly the same network shown in the figure . 4 Often , however, the
system ends u p i n a l ocal min im u m . The problem arises when the XOR
problem on the low-order bits i s not sol ved i n the way shown i n the
diagram. One way i t can fail is when the " higher " of the two hidden
units is " selected " to sol ve the XOR problem . Th is is a problem
because then the other hidden unit cann ot " see " the carry bit and there­
fore cannot final ly sol ve the problem. Th is problem seems to stem
from the fact that the learni ng of the second output b i t is al ways depen­
dent on l earning the fi rst (because i nformation about the carry is neces­
sary to learn the second bit) and therefore lags beh i nd the learn i ng of
the first bit and has no infl uence on the selection of a hidden un i t to

4 The network is the same except for the h ighest order b i t . The highest order bit i s
always o n whenever three or more o f t h e i n p u t u n i t s a r e on . This is always learned fi rst

and always learned with d i rect 9lJ).9� JW9R»Wipnits .

344 BAS IC M EC H A NISMS

sol ve the fi rst XOR problem . Th us , about half of the t i me (i n this
problem) the wrong unit i s chosen and the problem cannot be sol ved .
In th is case , the syste m finds a solu t ion for a l l of the sums except the
1 1 + 1 1 - 1 1 0 (3+ 3 = 6) case i n which i t misses the carry i nto the
middle bit and gets 1 1 + 1 1 - 1 00 i nstead . Th i s problem d iffers from
others we have sol ved i n as much as the h idden un i ts are not " equi­
potent ial " here . In most of our other problems the hidden un i ts have
been equi potent ia l , and th is problem has not arisen .

I t should be noted, however, that there i s a relat i vely s imple way out
of the problem - namely , add some extra h idden u n i ts . In th is case we
can afford to make a mistake on one or more select ions and the system
can st i l l solve the problems. For the problem of adding two-bi t
numbers we have found t hat the system always sol ves the problem wi th
one extra h idden uni t . With l arger n umbers i t may requi re two or three
more. For purposes of i l lustrat ion , we show the resul ts of one of our
runs wit h three rather than the min imum two hidden units . Figure 1 1
shows the state reached by the network after 3 ,020 presentat ions of
each i nput pattern and wi th a learning rate of "Y/ = 0 . 5 . For con ven i ­
ence , we show the network in four parts . I n Figure 1 1 A we show the
connections to and among the h idden un i ts . Th is figure shows the
internal representation generated for th i s problem. The " lowest " hid­
den unit turns off whenever either of the l ow-order bits are on . In
other words i t detects the case in which no low-order bit is turn on .
The " hi ghest " h i dden uni t is arranged so that it comes on whenever the
sum i s l ess than two. The condit ions under which the middle hidden
unit comes on are more complex . Table 8 shows the patterns of h idden
units which occur to each of the si xteen i nput patterns. Figure l I B
shows the connect i ons to the lowest order output u n i t . Not ing that the
relevant h idden unit comes on when neither low-order i n put unit i s on,
i t i s c lear how the system computes XOR. When both low-order inputs
are off, the output unit i s turned off by the h idden un i t . When both
low-order i n put uni ts are on , the output i s turned off directly by the
two i n put un i ts . If just one is on, the posi t i ve bias on the output unit
keeps i t on . Figure l l C gives the connect ions to the middle output
u n i t , and i n Figure 1 1 D we show those connect ions to the left-most ,
highest order output un i t . It i s somewhat d ifficult to see how these
connecti ons always lead to the correct output answer, but , as can be
verifi ed from the figures, the network is balanced so that th is works .

It should be poi nted out that most of the problems described thus far
have i n vol ved hidden u n i ts with qui te s i m ple in terpretat ions. It i s
much more often the case, espec ial ly when the number of hidden units
exceeds the min i mum number requi red for the task , that the hidden
uni ts are not readi ly i nterpreted . Thi s fol lows from the fact that there
is very l i t t le tendency for loealist representat ions to develop. Typically

Copyrighted Material

Output Un its

0 0 0

I nput Un i ts

A

Output U n its

8. LEA R N I NG I NTER N A L REPRESENTATIONS 345

Hidden
U n its

Hid den
Units

o

Output Un its

O O �
/ ,

I \ ' · ' 0
I \ \ Hidden

·5 / \ .• \
/ ' , U n its

0 / \ \ I \ \
/ \ 0 I \ '-J

I \ I \ / \

0 6 0 6

o

I nput Units

8

Output Uni ts

·· 0 0
/1\\,
1 1 1\ \
" 1 \ \
I I \ \ \
I 1 . ,1 \ \

. , Hidden
U n its

- - .:..' £":\ - -0

I I� \ I + 1 1 _ � - 2
I \ , - - _ _ I I \ \ - - ' 3

Input U n its

c

I , \ ' I I \ ' + 2 / " 2 ' 2 \ \+ 2

6 6 6 6
I nput Un its

D

FIG URE 1 1 . Network fou nd for I he summat i on problem . A : The connecl ions from the

input units to the three hidden units and the connections among the h idden u n i ts . B:
The connect ions from the i nput and h idden units to the lowest order output unit . C: The

connect ions from the input and hidden uni ts to the middle output uni t . D: The connec­

tions from the input and hidden u n i ts to t he h i.&.hes t order output un i t .
Copyrighted Material

346 BASIC MECHANISMS

TABLE 8

Input H idden Uni t Output
Pat terns Patterns Patterns

00 + 00 I I I 000

00 + 0 1 1 1 0 001

00 + 10 0 1 1 0 1 0

00 + 11 010 011

0 1 + 00 1 10 001

01 + 0 1 010 010

01 + 1 0 0 1 0 01 1

01 + 1 1 000 100

1 0 + 00 01 1 0 1 0

1 0 + 0 1 0 1 0 0 1 1

1 0 + 1 0 00 1 100

1 0 + I I 000 1 01

1 1 + 00 0 1 0 0 1 1

1 1 + 0 1 000 100

1 1 + 10 000 1 01

11 + I I 000 1 1 0

the internal representat ions are distributed and it is the pattern of
act i vi ty over the h idden units, not the mean ing of any particular hidden
unit that is important .

The Negat ion Problem

Consider a situation in which the i nput to a system consists of pat ­
terns of n+ 1 binary values and an output of n values. Suppose further
that the general ru le is that n of the input un i ts should be mapped
di rectly to the output patterns. One of the i nput bits, however, is spe­
cial . It is a negat ion b i t . When that bit is off, the rest of the pattern is
su pposed to map straight th rough , but when it is on , the complement
of the pattern is to be mapped to the output. Table 9 shows the
appropriate mappi ng. In this case the left element of the input pattern
is the negation bit, but the system has no way of knowing this and
must learn which bit i s the negat ion bit . In th is case , weights were
al lowed from any input un i t to any h idden or output unit and from any
hidden unit to any output un i t . The system learned to set al l of the
weights to zero except those shown in Figure 1 2 . The basic structure
of the problem and of the sol ution is evident i n the figure . Clearly the
problem was reduced to a set of three XORs between the negat ion bit

Copyrighted Material

8. L E A R N I NG INTER N A L REPRES ENTATIONS 347

TABLE 9

Input PaUerns Out put Pal lerns

0000

000 1

00 1 0

00 1 1

0 1 00

0 1 0 1

0 1 1 0

0 1 1 1

1 000

1 00 1

1 0 1 0

1 0 1 1
1 1 00

1 1 0 1

1 1 1 0

1 1 1 1

000
00 1

0 1 0

0 1 \

1 00

1 0 1

1 1 0

I I I
I I I
l lO
1 0 1

1 00

0 1 1

0 1 0

00 \

000

and each input . In the case of the two r ight-most input units, the XOR
problems were solved by re::rui t ing a h idden unit to detect the case in
which neither the negation uni t nor the corresponding input unit was on.
In the third case, the hidden unit detects the case i n which both the
negation unit and relevant input were on. In this case the problem was
solved in less than 5 ,000 passes through the st imulus set with TJ = 0.25 .

Ce) Cal
' 1 0 ·4 X,0 · 4 ",¥, 1 0 " / 1 \ /,,, I '

, / / .4 1 \ ", .4 1 \ '(;. "\ I , / 1 \ I � /
- 8 I Q I + 2

", I V 1 .8
+ :! r / _ - -t - -

- ... _ - 1'" ..,
- I / -�.- - 0·' (j.'

FIGURE 1 2 . The solution discovered for the negat ion prob lem . The left -most uni t is
the negat ion uni t . The problem has been reduced and so l ved as t h ree excl usi ve-ors
between the negation unit and each of the other th ree units .

Copyrighted Material

348 BASIC MECHANISMS

The T -C Problem

Most of the problems discussed so far (except the symmetry prob­
lem) are rather abstract mathematical problems . We now turn to a
more geometric problem - that of discriminating between a T and a
C- independent of translation and rotation . Figure 13 shows the
st imulus patterns used in these experi ments . Note, these patterns are
each made of five squares and differ from one another by a single
square. Moreover , as Minsky and Papert (969) point out, when con­
sidering the set of patterns over all possible translations and rotations
(of 90° , 1 80° , and 270°) , the patterns do not differ in the set of dis­
tances among their pairs of squares. To see a d ifference between the
sets of patterns one must look, at least , at configurations of t ri plets of
squares. Thus Minsky and Papert cal l this a problem of order three. 5
In order to fac i l i tate the learn ing, a rather d ifferent archi tecture was
employed for this problem. Figure 14 shows the basic structure of the
network we employed. Input patterns were now conceptualized as two­
dimensional patterns super imposed on a rectangular grid . Rather than
al lowing each input unit to connect to each h idden unit , the hidden
units themselves were organized into a two-dimensional grid with each
unit rece iving input from a square 3 x 3 region of the input space. In
this sense , the overlapping square regions const i tute the predefined
receptive field of the hidden units . Each of the hidden units, over the
entire field , feeds into a single output uni t which is to take on the value

FIGURE 13 . The st imulus set for the T-C problem . The set consists of a block T and a
block C in each of four orientations. One of the eight pat terns is presented on each trial .

5 Terry Sejnowski pointed out to us that the T-C problem was d ifficul t for models of

th is sort to learn and therefore worthy of study.

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 349

o
o
o

o
o

Output
Unit

Hidden
Un its

Input
Units

FIGURE 14 . The network for so l ving the T-C problem. See text for e x planat ion.

1 if the input i s a T (at any location or orientat ion) and 0 if the input is
a C. Further, in order that the learning that occurred be independent
of where on the field the pattern appeared , we constrain ed all of the
units to learn exactly the same pattern of weights. [n this way each uni t
was constrained to compute exactly the same function over i ts receptive
field -the recept i ve fields were constrained to all have the same shape .
This guarantees translat ion independence and avoids any possible " edge
effects " in the l earn ing. The learning can readily be extended to arbi ­
trari ly large fields of input units . This constraint was accompl i shed by
simply adding together the weight changes dictated by the delta rule for
each uni t and then chamzing all weil!hts

t
e�actly the same amount . In

copynghted�a enal

350 BASIC M ECHANISMS

this way, the whole fie ld of hidden units consists s imply of replications
of a single feature detector centered on d i fferent regions of the input
space , and the learning that occurs in one part of the field is automati­
cally general ized to the rest of the field. 6

We have run this problem in this way a number of times. As a
resul t , we have found a number of sol ut ions. Perhaps the simplest way
to understand the system is by looking at the form of the recepti ve
field for the h idden units . Figure 1 5 shows several of the receptive
fields we have seen. 7 Figure 1 5 A shows the most local representation
developed . This on-center-off-surround detector turns out to be an
excellent T detector. Since, as i l lust rated, a T can extend into the on­
center and achieve a net input of + 1 , this detector wi l l be turned on for
a T at any orientat ion. On the other hand, any C extending into the
center must cover at least two inhi bitory cel ls . Wi th this detector the
bias can be set so that only one of the whole field of inhibi tory units
wi l l come on whenever a T is presented and none of the h idden units
wi l l be turned on by any C. This is a kind of protrusion detector which
d ifferentiates between a T and C by detecti ng the protrusion of the T.

The recept ive field shown in Figure 1 5B is again a kind of T detector.
Every T act ivates one of the hidden units by an amount + 2 and none
of the hidden un i ts receives more than + 1 from any of the C 's. As
shown in the figure, T's at 90° and 270° send a total of + 2 to the hid­
den uni ts on which the crossbar l ines up. The T's at the other two
orientations receive + 2 from the way it detects the vertical protrusions
of those two characters . Figure 1 5C shows a more distr ibuted represen­
tation. As i l lustrated in the figure, each T acti vates fi ve different hid­
den units whereas each C excites only three hidden units . In this case
the system again is d ifferentiating between the characters on the basis
of the protruding end of the T which is not shared by the C.

Final ly , the receptive field shown in Figure 1 5 0 is even more
interesting. In this case every h idden unit has a posit ive bias so that it
is on unless turned off. The strength of the inhibi tory weights are such
that if a character overlaps the recepti ve field of a hidden unit , that unit
turns off. The system works because a C is more compact than a T and
therefore the T turns off more units that the C. The T turns off 2 1
hidden units , and the C turns off only 20. This i s a truly distributed

6 A simi lar procedure has been employed by Fukushima (980) in his neocognitron and
by Kienker, Sejnowski , Hinton , and Schumacher (985) .

7 The ratios of the weights are about right . The actual values can be larger or smaller
than the values gi ven in the figure.

Copyrighted Material

A

c

8. LEARNING INTER NAL REPRESENTATIONS 3 5 1

m[:: ��r:
i - 1 - 1 - 1

- 1
� 1 + 2 : - 1

0 - 2 -2
- 2 - 2
- 2 - 2

B

I :: pf - 1 1 - 1

.. · .. , · ,Jf�
��:: : :
U

· ·· ·

- 2
- 2
- 2

FIG U RE 1 5 . Recept i ve fields found i n d ifferent runs o f t h e T-C proble m . A : An on­
center-off-surround recept ive field for detect ing T 's. B: A vert ica l bar detector which
responds to T's more strongly than C 's. C: A d i agona l bar detector . A T act i vates fi ve
such detectors whereas a C act i vates only th ree such detectors . D: A compact ness detec­
tor . This i n h i bi tory recept i ve field t urns off whenever an input covers any region of i t s
recept i ve field . Si nce the C i s more compact t han the T i t t u rns off 20 such detectors
whereas the T t u rns off 21 of them.

representation . In each case, the solut ion was reached i n from about
5 ,000 to 1 0 ,000 presentations of the set of eight pat terns. 8

It is interest ing that the inh ibitory type of recept ive field shown i n
Figure 1 50 was t h e most common and that there i s a predominance of
inhibitory connect ions i n this and i ndeed all of our simulations. Th is
can be understood by considering the traject ory through wh ich the
learning typically moves. At fi rst , when the system is presented with a

8 Si nce translat ion independence was bu i l t into t he learn ing proced ure, it makes no
d ifference where t he i nput occu rs: the same t h i n g w i l l be learned wherever the pat tern is

presented . Thus, there are on�t5�pr@HiOO MWtIDfaP be presented to t h e system .

352 BASIC M ECHANISMS

difficult problem , the init ia l random connections are as l ikely to mislead
as to gi ve the correct answer. In this case, it is best for the output
units to take on a value of 0. 5 than to take on a more extreme value.
This fol lows from the form of the error function gi ven in Equation 2.
The output unit can achieve a constant output of 0.5 by turning off
those uni ts feeding into i t . Thus, the fi rst th ing that happens i n vi rtu­
ally every difficult problem is that the hidden units are turned off. One
way to achieve this is to have the input units inhib i t the hidden units.
As the system begins to sort things out and to learn the appropriate
function some of the connections wil l typical l y go posi t ive , but the
majority of the connections wi l l remain negat i ve . Th is bias for solu­
t ions involving inhibitory inputs can often lead to nonintui t ive results
in which hidden units are often on unless turned off by the i nput.

More Simulation Results

We have offered a sample of our results i n this sect ion. In addi t ion
to having studied our learning system on the problems discussed here ,
we have employed back propagation for l earning to mult iply binary
digits, to play t ic-tac-toe , to dist inguish between vert ical and horizontal
l ines, to perform sequences of actions , to recognize characters , to asso­
ciate random vectors , and a host of other applicat ions. In all of these
appl ications we have found that the genera l ized delta rule was capable
of generating the kinds of internal representations required for the
problems in quest ion . We have found local minima to be very rare and
that the system learns in a reasonable period of t ime. Sti l l more studies
of this type wi l l be requi red to understand precisely the condit ions
under which the system wi l l be plagued by local min ima. Suffice it to
say that the problem has not been serious to date . We now turn to a
pointer to some future developments.

SOME FURTHER GENERALIZATIONS

We have intensi vely studied the learn ing characteristics of the gen­
eral ized delta rule on feed forward networks and semi l i near activations
functions. In terest ingly these are not the most general cases to which
the learning procedure is applicable. As yet we have on ly studied a few
examples of the more fu l ly genera l ized system, but it is relatively easy
to apply the same learn ing rule to sigma-pi units and to recurrent net­
works . We wi l l s imply s�qg� here .

8. L E A R NING INTERNAL R EP R ESENTATIONS 353

The General ized Delta R u l e and S igma-Pi Uni ts

It wi l l b e recal led from Chapter 2 t h a t i n the case of sigma-pi u n i ts
we have

(I 7)

where i varies over the set of conj u ncts feed i ng i n t o u n i t j and k varies
over the elements of the conj uncts . For s i mpl ic i ty of exposit ion , we
restrict oursel ves to the case in which no conjuncts i n vo l ve more than
two elements. In this case we can notate the weight from the conj u nc­
t ion of u n i ts i and j to unit k by wkij ' The wei ght on the di rect con­
nection from unit i to unit j would, th u s , be wji; , and s ince the rel at ion
i s mult i pl icat i ve , Wkij = Wkj; ' We can now rewri te Equat ion 17 as

OJ = Ij (L Wjh; 0h 0;) .
; .h

We now set

Taking the deri vative and si m pl i fyi ng , we get a rule for sigma-pi un i ts
strictly analogous to the ru le for sem i l i near act i vat ion fu nctions:

!l.p wkij = 8 k o; oj .

We can see the correc t form of the error si gnal , 8 , for this case by
inspect ing Figure 1 6 . Consider the appropriate value of 8; for un i t U;
in the figure. As before, the correct val ue of 8 ; is given by the sum of
the 8 's for al l of the un i ts i nto wh ich U; feeds , wei ghted by the amount
of effect due to the acti vat ion of U; t i mes the deri vat i ve of the acti va­
tion funct i on. In the case of sem i l inear functions, the measure of a
unit's effect on another un i t is gi ven simply by the weight W connect­
i ng the fi rst u n i t to the second . In this case, the u, 's effect on Uk
depends not only on Wk;j , but also o n the value of Uj . Thus, we have

8; = I 'j (net;) L8 k Wk;j OJ
j ,k

if u; is not an output unit and, as before ,

8 ; = .1 '; (net;) (t;- o;)
i f i t is an output uni t .

Copyrighted Material

354 BASIC MECHANISMS

& . & .
J t

FIGU RE 1 6 . The genera l i zed delta rule for s igma -pi units . The products of act i vat ion
values of i nd iv idua l units act i vate output units . See text for explanation of how the 8

values are com puted in th is case .

Recurrent Nets

We have thus far restricted ourselves to /eed/orward nets. This may
seem l i ke a substant ial restrict ion, but as Mi nsky and Papert point out,
there is , for every recurrent network, a feed forward network wi th ident­
ical behavior (over a fin i te period of ti me) . We wi l l now indicate how
this construction can proceed and thereby show the correct form of the
l earning rule for the recurrent network. Consider the si mple recurrent
network shown in Figure 1 7 A. The same network in a feedforward
archi tecture is shown in Figure 1 7B. The behavior of a recurrent net­
work can be ach ieved in a feedforward network at the cost of dupl icat­
ing the hardware many t imes over for the feedforward version of the
network . 9 We have distinct units and distinct weights for each point in
t ime. For nami ng convenience , we subscri pt each uni t with i ts unit
number in the corresponding recurrent network and the t ime it
represents. As long as we constrain the weights at each level of the
feedforward network to be the same, we have a feedforward network
which performs identica l l y with the recurrent network of Figure 1 7 A.

9 Note that in th is d iscuss ion, and i ndeed in our ent i re development here, we have
assumed a discrete time system with synchronous upda te and with each connection
i n volving a un i t delay.

Copyrighted Material

A

B

·
·
·

8, LEAR NING INTER NAL REPRESENTATIONS 3 5 5

·
·
·

Ti me

t + 1

o

FIGURE 1 7 , A comparison of a recu rrent network and a feedforward network wi th
identical behavior, A : A completely connected recurrent network with two un i t s , B: A
feedforward network which behaves the same as the recurrent network , In t h is case, we
have a separate un i t for each t ime step and we requ i re that the weights connect ing each
layer of un i ts to the next be the same for a l l layers, Moreover, they m ust be the same as
the analogous weights in the recurrent case,

The appropriate method for maintain ing the constrai nt that all weights
be equal i s simply to keep track of the changes dictated for each weight
at each l evel and then change each of the weights according to the sum
of these indi vidual ly prescribed changes. Now, the general rule for
determin ing the change prescribed for a weight i n the system for a par­
ticular t ime is s imply CWf,lPighted � of an appropriate error

356 BASIC MECHANISMS

measure 8 and the input along the relevant l ine both for the appropriate
times. Thus, the problem of specifying the correct learning rule for
recurrent networks i s s imply one of determin ing the appropriate value
of 8 for each t ime. In a feedforward network we determine 8 by mult i­
plying the deri vat ive of the acti vation funct ion by the sum of the 8 's
for those un i ts it feeds into weighted by the connection strengths. The
same process works for the recurrent network - except in this case, the
value of 8 associated with a particular unit changes in t ime as a unit
passes error back, sometimes to i tself. After each i teration, as error is
being passed back through the network, the change in weight for that
i teration must be added to the weight changes specified by the preced­
ing iterations and the sum stored. This process of passing error
through the network should continue for a number of i terations equal
to the number of i terations through which the act ivation was originally
passed . At th is point, the appropriate changes to all of the weights can
be made.

In general , the procedure for a recurrent network is that an input
(general ly a sequence) i s presented to the system while i t runs for some
number of iterations. At certain specified ti mes during the operation of
the system, the output of certain units are compared to the target for
that unit at that t ime and error signals are generated. Each such error
signal is then passed back through the network for a number of i tera­
t ions equal to the number of i terations used in the forward pass .
Weight changes are computed at each i teration and a sum of all the
weight changes dictated for a part icular weight is saved . Finally, after
all such error signals have been propagated through the system , the
weights are changed . The major problem wi th this procedure is the
memory requi red. Not only does the system have to hold i ts summed
weight changes whi le the error is being propagated, but each unit must
somehow record the sequence of act i vat ion values through which it was
dri ven during the original processing. This fol lows from the fact that
during each i teration whi le the error is passed back through the system,
the current 8 is relevant to a point earl ier in t ime and the requ i red
weight changes depend on the act ivation levels of the units at that time.
It is not enti rely clear how such a mechan ism could be implemented in
the brain . Nevertheless , i t is tantal iz ing to rea l ize that such a procedure
is potential ly very powerfu l , since the problem it is attempting to solve
amounts to that of finding a sequential program (l i ke that for a digi tal
computer) that produces specified input-sequence/ output-sequence
pairs. Furthermore , the interaction of the teacher wi th the system can
be quite flexible , so that , for example, should the system get stuck in a
local min imum, the teacher cou ld in t roduce " h ints" in the form of
desi red output values for intermediate stages of processing. Our exper i ­
ence with recurrent net�Hmi�tePMII we have carried out some

8. LEARNING I NTERNAL REPRESENTATIONS 3 5 7

experiments . W e turn fi rst t o a very s imple problem in which the sys­
tem is induced to invent a shift register to solve the problem.

Learning to be a shift register. Perhaps the simplest class of
recurrent problems we have studied i s one in which the input and out­
put units are one and the same and there are no hidden units. We sim­
ply present a pattern and let the system process i t for a period of t ime .
The state of the system is then compared to some target state . If i t
hasn ' t reached the target state a t the designated t i me, error is i njected
into the system and it modifies its weights. Then it is shown a new
input pattern and restarted. In these cases , there is no constrai nt on
the connections in the system . Any unit can connect to any other uni t .
The simplest such problem we have studied is what we ca l l the shift
register problem. In th is problem, the units are conceptualized as a cir­
cular shift register. An arbi trary bit pattern is fi rst establ ished on the
units. They are then allowed to process for two t ime-steps. The target
state , after those two time-steps, is the original pattern shifted two
spaces to the l eft . The interesting question here concerns the state of
the uni ts between the presentation of the start state and the t ime at
which the target state is presented. One solution to the problem is for
the system to become a shift register and shift the pattern exactly one
unit to the left during each t ime period . If the system did this then it
would surely be shifted two places to the left after two t ime units. We
have t ried this problem with groups of three or five uni ts and , if we
constrain the biases on al l of the units to be negat ive (so the uni ts are
off unless turned on) , the system always learns to be a shift register of
this sort . IO Thus, even though in principle any unit can connect to any
other unit, the system actual ly learns to set al l weights to zero except
the ones connecting a uni t to i ts l eft neighbor. Si nce the target states
were determined on the assumption of a c i rcular register, the left-most
unit developed a strong connection to the right-most uni t . The system
learns this relatively quickly. With T/ = 0 .25 it learns perfectly in fewer
than 200 sweeps through the set of possible patterns with ei ther three­
or five-unit systems.

The tasks we have described so far are exceptional ly simple, but they
do i l lustrate how the algori thm works with unrestricted networks. We
have attempted a few more difficult problems with recurrent networks.

10 If the constraint that biases be negat ive is not imposed , other solutions are possible.
These so l ut io ns can i nvolve the units passing through the complements of the shifted
pattern or even through more complicated in termediate states. These trajectories are

interesting in that they match a s i m ple shift register on a l l even numbers of shifts, but do
not match following an odd num ber of shifts.

Copyrighted Material

358 BASIC M ECH ANISMS

One of the more interesting involves learni ng to complete sequences of
patterns. Our final example comes from this domain .

Learning to complete sequences. Table 10 shows a set of 25
sequences which were chosen so that the first two i tems of a sequence
uniquely determine the remain ing four . We used this set of sequences
to test out the learning abi l i t ies of a recurrent network . The network
consisted of five i nput units (A, B, C, D, E) , 30 hidden units, and
three output units (I , 2 , 3) . At Time 1 , the input unit corresponding
to the first i tem of the sequence is turned on and the other input units
are turned off. At Time 2 , the input uni t for the second item in the
sequence is turned on and the others are al l turned off. Then al l the
i nput units are turned off and kept off for the remain ing four steps of
the forward i terat ion . The network must learn to make the output units
adopt states that represent the rest of the sequence. Unli ke simple
feedforward networks (or thei r i terati ve equivalents) , the errors are not
only assessed at the final layer or t ime. The output units must adopt
the appropriate states during the forward i terat ion, and so during the
back-propagation phase, errors are injected at each t ime-step by com­
paring the remembered actual states of the output units with their
des ired states .

The learning procedure for recurrent nets places no constraints on
the al lowable connectivity structure. 1 1 For the sequence completion
problem, we used one-way connections from the input units to the hid­
den units and from the hidden units to the output units . Every hidden
unit had a one-way connection to every other h idden unit and to i tself,

TABLE 1 0

2 5 SEQUENCES TO B E LEARNED

AA 1 2 1 2 AB1 223 AC 1 23 1 A D l 2 2 1 AEI 2 1 3

BA23 1 2 BB2323 BC233 1 B023 2 1 BE23 1 3

CA3 1 1 2 CB3 1 23 CC3 1 3 1 C03 1 2 1 CE3 1 1 3

OA2 1 1 2 OB2 1 23 OC2 1 3 1 002 1 2 1 OE2 l l 3

EA 1 3 I 2 EB 1 3 23 EC 1 3 3 1 ED l 3 2 1 EEI3 1 3

1 1 The constra int i n feed forward networks is that i t must b e possible t o arrange the

units into l ayers such that uni ts do not infl uence units in the same or lower layers. In
recurrent networks this amounts to the constra int that during the forward iterat ion,
future states must not affect past ones.

Copyrighted Material

8. LEARNING INTERNAL R EPRESENTATIONS 359

and every output un i t was also connected to every other output unit
and to i tself. All the connections started with smal l random weights
uniformly distributed between - 0.3 and + 0. 3 . All the hidden and out­
put units started with an acti vi ty level of 0.2 at the beginning of each
sequence.

We used a version of the learning procedure in wh ich the gradient of
the error with respect to each weight i s computed for a whole set of
examples before the weights are changed . This means that each con­
nection must accumulate the sum of the gradients for all the examples
and for a l l the t ime steps i nvolved i n each example. During train i ng,
we used a part icular set of 20 examples , and after these were learned
almost perfectly we tested the network on the remain ing examples to
see if it had picked up on the obvious regularity that relates the fi rst
two i tems of a sequence to the subsequent four . The results are shown
in Table 1 1 . For four out of the fi ve test sequences , the output un i ts
all have the correct val ues at al l t imes (assu ming we treat val ues above
0.5 as 1 and values below 0.5 as 0) . The network has clearly captured
the rule that the fi rst item of a sequence determines the th ird and
fourth , and the second determines the fi fth and si xth . We repeated the
simulation with a d ifferent set of random in i t ial weights, and i t got a l l
five test sequences correct .

The learning requi red 260 sweeps through a l l 20 t rai ning sequences .
The errors in the output un i ts were computed as fol lows : For a uni t
that should be on, there was no error if i t s act i vity level was above 0 . 8 ,
otherwise the deri vati ve o f the error was t h e amount below 0 .8 . S imi ­
larly, for output uni ts that should be off, the deri vat ive of the error was
the amount above 0. 2 . After each sweep, each weight was decremented
by .02 t imes the total gradient accumulated on that sweep plus 0 .9
t imes the previous weight change.

We have shown that the learning procedure can be used to create a
network with interest ing sequential behav ior , but the part icular problem
we used can be sol ved by s imply usi ng the hidden un i ts to create " delay
l ines " wh ich hold information for a fi xed length of t ime before a l lowing
i t to influence the output . A harder problem that cannot be sol ved
with delay l ines of fi xed duration is shown in Table 1 2 . The output i s
the same as before , but the two input i tems can arri ve at var iable t imes
so that the i tem arriving at t ime 2, for example, could be either the
first or the second i tem and could therefore determine the states of the
output units at ei ther the fifth and s ixth or the seventh and eighth
ti mes. The new task is equi valent to requ i r ing a buffer that recei ves
two input " words " at variable t imes and outputs their " phonemic real i ­
zat ions " one after the other . This problem was solved successful ly by a
network si mi lar to the one above except that i t had 60 hidden uni ts and
half of their possi ble iItM1iynnmetf>Ma� omitted at random. The

360 BASIC M ECHANISMS

TABLE 1 1

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQU ENCES

Input Sequence A D

Desi red Outputs 2 2

Actual States of:
Output Uni t 1 0 .2 0. 1 2 0.90 0.22 0. 1 1 0.83
Output Unit 2 0.2 0. 1 6 0 . 1 3 0 .82 0 .88 0.03
Output Unit 3 0. 2 0.07 0.08 0.03 0 .01 0 .22

Input Sequence B E

Desired Outputs 2 3 3

Actual States of:
Output Unit 1 0 .2 0. 1 2 0.20 0.25 0.48 0.26
Output Unit 2 0 .2 0. 1 6 0.80 0.05 0.04 0.09
Output U nit 3 0 .2 0 .07 0 .02 0.79 0 .48 0.53

Input Sequence C A

Desired Outputs 3 2

Actual States of:
Output Unit 1 0 .2 0. 1 2 0. 1 9 0.80 0.87 0. 1 1
Output Unit 2 0 .2 0. 1 6 0. 1 9 0 .00 0. 1 3 0 .70
Output Unit 3 0 .2 0.07 0.80 0. 1 3 0.01 0 .25

Input Sequence D B

Desi red Outputs 2 2 3

Act ual States of:

Output Uni t 1 0 .2 0. 1 2 0. 1 6 0.79 0.07 0. 1 1
Output Uni t 2 0.2 0. 1 6 0.80 0. 1 5 0.87 0.05
Output Unit 3 0.2 0.07 0.20 0.01 0 . 1 3 0.96

Input Sequence E C
Desired Outputs 3 3

Actual States of:

Output Un i t 1 0.2 0 . 1 2 0 .80 0.09 0.27 0.78
Output Unit 2 0.2 0. 1 6 0.20 0. 1 3 0.01 0 .02
Output Unit 3 0.2 0.07 0.07 0 .94 0.76 0 . 1 3

learn ing was much slower, requir ing thousands of sweeps through all
1 36 training examples . There were also a few more errors on the 1 4
test examples , but the general i zation was st i l l good with most of the
test sequences being coll!RJp)9tgRfd'lieM»terial

8. LEA R N I NG INTERNAL R E P R ES ENTATIONS 3 6 1

TABLE 1 2

SIX VARIATIONS OF THE S EQUENCE EA \ 3 1 2 PRODUCED BY

PRES ENTING THE FI RST TWO ITEMS AT V A R I ABLE TI M ES

EA-- 1 3 1 2
- EA- 1 3 1 2

E - A - 1 J 1 2

- E - A I 3 1 2

E - - A I 3 l 2

- - EA \ 3 1 2

Note: With these temporal variat ions, t h e 2 5 sequences shown i n
Table 10 can be used to generate 1 50 different seque nces .

CONCLUSION

In the i r pess imist ic d iscussion of percept rons, Minsky and Papert
(1 969) finally d iscuss mult i layer mach ines near the end of their book .
They state:

The perceptron has shown i tself worthy of study despi te (and
even because of!) i ts severe l im i tat ions. It has many features
that attract attention: its l inearity; i ts i ntr iguing learning
theorem; i ts clear paradigmatic si mplicity as a k ind of paral lel
computat ion . There is no reason to suppose that any of these
vi rtues carry over to the many-layered version , Nevertheless,
we consider i t to be an important research problem to elucidate
(or reject) our intu i t i ve judgement that the extension is ster i le .
Perhaps some powerfu l convergence theorem wi l l be
discovered, or some profound reason for the fai lu re to produce
an interesting " learn i ng theorem " for the mult i layered machine
wi l l be found. (pp. 2 3 1 -232)

Although our learning resu lts do not guarantee that we can find a sol u­
t ion for a l l solvable problems, our analyses and resul ts have shown that
as a practical matter, the error propagation scheme leads to solut ions i n
vi rtually every case, In short, we bel ieve that we have answered Min ­
sky and Papert 's chal lenge and have found a learn ing result sufficient ly
powerful to demonstrate that thei r pessi mism about learning in mul­
t i layer machines was misplaced.

One way to view the procedure we have been descri bing is as a paral­
lel computer that , having been shown the appropriate input/ output
exemplars specifying some function , programs i tself to compute that
function in general . Paral lel computers are notoriously difficult to pro­
gram. Here we have a mechan ism whereby we do not actual ly have to
know how to write the program in order to get the system to do i t .
Parker (1 985) has emph�fflJIigHt-eB�rerial

362 BASIC M ECHAN ISMS

On many occasions we have been surprised to learn of new methods
of comput ing interest ing funct ions by observi ng the behavior of our
learn ing algori t h m . Th is also raised the question of genera l izat ion. In
most of the cases presented above, we have presented the system wi th
the ent i re set of exemplars. It i s in terest ing to ask what would happen
if we presented only a subset of the exemplars at trai n i ng t i me and then
watched the system general ize to remai n i ng exemplars . In small prob­
lems such as those presented here, t he system sometimes fi nds solu­
t ions to the problems which do not properly general ize. However, pre­
l i minary results on l arger problems are very encouraging i n this regard.
This research is st i l l i n progress and cannot be reported here . This is
currently a very act i ve interest of ours .

Fi nal ly , we should say that th is work is not yet i n a fi nished form.
We have only begun our study of recurren t networks and s igma-pi
uni ts . We have not yet appl ied o u r l earn ing procedure to many very
com plex problems . However, the results to date are encouragi ng and
we are cont i n u i ng our work .

Copyrighted Material

