
 

CHAPTER S 

Learning Internal Representations 
by Error Propagation 

D. E. RUMELHART, G. E. HINTON, and R. 1. WILLIAMS 

THE PROBLEM 

We now have a rather good understanding of simple two-layer associ­
ative networks in which a set of i nput patterns arriving at an input layer 
are mapped directly to a set of output patterns at an output layer. Such 
networks have no hidden uni ts. They involve only input and output 

units. In these cases there is no internal representation. The coding pro­
vided by the external world must suffice. These networks have proved 
useful i n  a wide variety of appl ications (cf. Chapters 2 ,  17, and 18). 
Perhaps the essent ial character of such networks is that they map simi­
lar i nput patterns to si mi lar output patterns. This  is what al lows these 
networks to make reasonable general izations and perform reasonably on 
patterns that have never before been presented. The s imilarity of pat­
terns in a PDP system is determi ned by their overlap . The overlap in 
such networks is  determi ned outside the learning system itself-by 
whatever produces the patterns. 

The constraint that similar input patterns lead to similar outputs can 
lead to an inabi lity of the system to learn certain mappings from input 
to output .  Whenever the representation provided by the outside world 
is such that the s imilarity structure of the input and output patterns are 
very different , a net\\C),*Jy�ijfltetttMatt8i8h1 representations (Le. , a 
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network without hidden un i ts) wi l l  be unable to perform the necessary 
mappings. A classic example of this case is the exclusive-or (XOR) 
problem illustrated in Table 1. Here we see that those patterns which 
overlap l east are supposed to generate identical output val ues .  This 
problem and many others l i ke it cannot be performed by networks 
without hidden units with which to create their own internal representa­
tions of the input patterns. It is interest ing to note that had the input 
patterns contained a thi rd input tak ing the value 1 whenever the fi rst 
two have value 1 as shown in Table 2 , a two-layer system would be able 
to solve the problem. 

Minsky and Papert (I969) have provided a very careful analysis of 
conditions under which such systems are capable of carrying out the 
required mappings . They show that in a large number of interest ing 
cases , networks of this ki nd are incapable of solving the problems. On 
the other hand, as Minsky and Papert also pointed out , if  there is a 
layer of simple perceptron-like h idden un i ts ,  as shown in Figure 1 ,  with 
which the original input pattern can be augmented, there is always a 
recoding ( i . e., an internal representat ion)  of the input patterns i n  the 
hidden units in  which the s imi larity of the patterns among the h idden 
units can support any required mapping from the input  to the output 
units. Thus, if we have the right connections from the input units to a 
large enough set of h idden units, we can always find a representat ion 
that wi l l  perform any mapping from input to output through these hid­
den units .  In the case of the XOR problem, the addit ion of a feature 
that detects the conjunction of the i nput units changes the similarity 
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FIGURE I. A multilayer network. In this case the information coming to the input 
units is reroded into an internal representation and the outputs are generated by the inter· 
nal representation rather than by the original pattern. Input patterns can always be 
encoded, if there are enough hidden units, in a form so that the appropr iate output pat· 
tern can be generated from any  input pattern. 

structure of the patterns sufficiently to al low the solution to be learned . 
As i l lustrated in  Figure 2 ,  this can be done wi th a single hidden uni t. 
The numbers on the arrows represent the strengths of the connections 
among the units .  The numbers wri tten i n  the ci rcles represent the 
thresholds of the units .  The value of + 1. 5 for the th reshold of the hid­
den unit  insures that it wi l l  be turned on only when both input units 
are on.  The value 0 . 5  for the output unit insures that i t  will tu rn on 
only when it receives a net posi tive input greater than 0 . 5 .  The weight 
of - 2 from the h idden uni t  to the output unit insures that the output 
unit wi l l  not come on when both input units are on. Note that from the 
po int of view of the outpu t unit, the hidden unit is treated as simply 
another input unit .  It is as jf the jOP'ut . p'atterns consisted of three 
rather than two uni ts . 

Copynghted Matenal 
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Hidden Unit 

Input Units 

FIGURE 2. A simple XOR network with one hidden unit. See text for explanation. 

The exi stence of networks such as t h i s  i l lustrates the potential power 
of hidden units and i n ternal rep resen tations. The problem, as noted by 
Minsky and Papert , is that whereas there is a very simple guaranteed 
learning rule for all problems that can be solved without hidden units, 
namely , the percept ron convergence procedure (or the variation due 
origi nally to Widrow and Hoff, 1960, wh ich we call the delta rule; see 
Chapter 1 1), there is no equally powerful rule for learning in ne tworks 
with hidden units. There have bee n  three basic responses to this lack. 
One response is represented by competit i ve learning (Chapter 5) in 
which si mple unsupervised learn ing ru les are employed so that useful 
hidden units develop. Although these approaches are prom i si ng , there 
is no external force to insure that hidden units appropriate for the 
requ ired mappi ng are developed. The second response is  to si mply 
assume an internal representation that, on some a priori grounds, seems 
reasonable. Thi s  is the tack taken in the chapter on verb learning 
(Chapter 18) and in the i nteracti ve activat ion model of word perception 
(McClelland & Rumelhart, 1981; Rumelhart & McClel land , 1982) . 
The third approach is to attempt to develop a learning procedure capable 
of learning an i nternal representation adequate for performing the task 
at  hand. One such development is  presented in the discuss ion of 
Boltzmann machines in Chapter 7. As we have seen, this procedure 
invol ves the use of stochastic units , requ i res the network to reach 
equi l ibri um in two d ifferent phases, and is l i m ited to symmetric net­
works. Another recent approach, also employing stochastic units, has 
been developed by Bart�18ed MlDaria/of his col leagues (cf. Barto 
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& Anandan , 1985). In this chapter we present another alternat ive that 
works with determinist ic units, that involves only l ocal computations, 
and that is a clear general ization of the delta rule .  We cal l  this the gen­
eralized delta rule. From other considerations, Parker (1985) has 
independently deri ved a s imi lar general ization , which he cal ls learning­
logic. Le Cun (1985) has also studied a roughly s imi lar learning 
scheme. In the remainder of this chapter we fi rst derive the general­
ized delta rule ,  then we i l lustrate its use by providing some results of 
our s imulations , and finally we indicate some further general izations of 
the basic idea. 

THE GENERALIZED DELTA RULE 

The learn ing procedure we propose involves the presentation of a set 
of pai rs of input and output patterns. The system fi rst uses the input 
vector to produce its own output vector and then compares this with 
the desired output, or target vector. If there is no difference, no learning 
takes place. Otherwise the weights are changed to reduce the differ­
ence. In this case , with no h idden units, this generates the standard 
delta rule as described in Chapters 2 and 11 .  The rule for changing 
weights following presentation of input/ output pai r  p i s  given by 

(1) 
where tpj is the target input for jth component of the output pattern for 
pattern p, Opj is the jth element of the actual output pattern produced 
by the presentation of input pattern p, ip; is the value of the ith ele­
ment of the input pattern , 8pi = tpi - 0pi' and flp wi} is  the change to be 
made to the weight from the ith to the jth uni t  fol lowing presentation 
of pattern p . 

The delta rule and gradient descent. There are many ways of deriv­
ing this rule. For present purposes, it is useful to see that for l inear 
units it minimizes the squares of the differences between the actual and 
the desi red output values summed over the output units and al l pairs of 
input/ output vectors . One way to show this is to show that the deriva­
t ive of the error measure with respect to each weight is proportional to 
the weight change dictated by the delta rule, with negative constant of 
proportionali ty. This corresponds to performing steepest descent on a 
surface in  weight space whose height at any point in weight space is 
equal to the error measure . (Note that some of the fol lowing sections 

Copyrighted Material 
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are written in ital ics .  These sections consti tute i n formal deri vations of 
the claims made i n  the surrounding text and can be omitted by the 
reader who finds such derivations tedious') 

To be more specific, then, let 

1 
Ep = 2'1;: «(pj - Opj)2 

I 

be our measure of the error on input/output pattern p and let E = LEp be our 

overall measure of the error. We wish to show that the delta rule implements a gra­
dient descent in E when the units are linear. We will proceed by simply showing 
that 

which is proportional to Lip Wj; as prescribed by the delta rule. When there are no 
hidden units it is straightforward to compute the relevant derivative. For this purpose 
we use the chain rule to write the derivative as the product of two parts: the deriva­
tive of the error with respect to the output of the unit times the derivative of the out­
put with respect to the weight. 

aEp aEp aOpj 
aWj; = aOpj aWj; • 

(]) 

The first part tells how the error changes with the output of the j th unit and the 
second part tells how much changing Wj; changes that output. Now, the derivatives 
are easy to compute. First, from Equation 2 

aEp 
-

!l
- = - (tpj - op) = - apj' 

uOpj 
(4) 

Not surprisingly, the contribution of unit Uj to the error is simply proportional to a pj . 
Moreover, since we have linear units, 

Opj = LWjlip;. 
i 

from which we conclude that 

aOpj . 
-!l - = 'pi' u Wj; 

Thus, substituting back into Equation 3, we see that 

aEp . 
- -!l- = apj/PI UWji 

Copyrighted Material 
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as desired. Now, combining this with the observation that 

aE 
= 

1: aEp 
aWj; p aWj; 

should lead us to conclude that the net change in Wj; after one complete cycle of pat­
tern presentations is proportional to this derivative and hence that the delta rule 
implements a gradient descent in E. In fact, this is strictly true only if the values of 
the weights are not changed during this cycle. By changing the weights after each 
pattern is presented we depart to some extent from a true gradient descent in E. 
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi­
ciently small, this departure will be negligible and the delta rule will implement a very 
close approximation to gradient descent in sum-squared error. In particular, with 
small enough learning rate, the delta rule will find a set of weights minimizing this 
error function. 

The delta rule for semilinear activation functions in feedforward 
networks. We have shown how the standard delta rule essentially 
implements gradient descent in sum-squared error for l inear activation 
functions.  In this case , without h idden units ,  the error surface is shaped 
like a bowl with only one minimum, so gradient descent  is guaranteed 
to find the best set of weights . With hidden units, however, it is not so 
obvious how to compute the deri vatives , and the error surface is not 
concave upwards , so there is the danger of gett ing stuck in local 
min ima. The main theoretical contri bution of this chapter is to show 
that there is an efficient way of computing the deri vat ives. The main 
empi rical contr ibut ion is to show that the apparently fatal problem of 
local min ima is  i rrelevant in a wide variety of learning tasks. 

At the end of the chapter we show how the general ized delta rule can 
be appl ied to arbitrary networks , but , to begin With , we confine our­
selves to layered feedforward networks . In  these networks , the input 
un i ts are the bottom layer and the output units are the top layer. There 
can be many layers of h idden units i n  between , but every unit  must 
send its output to h igher layers than its own and must receive i ts input 
from lower layers than i ts own. Given an i nput vector, the output vec­
tor is computed by a forward pass which computes the activity levels of 
each layer in turn using the already computed acti vity levels in the ear­
l ier layers. 

Since we are primari ly interested in extending th is  result to the case 
wi th h idden units and since, for reasons outl i ned in Chapter 2 ,  hidden 
units with l inear acti vat ion functions provide no advantage , we begin by 
general iz ing our analysis to the set of non l inear act i vation functions 
which we cal l semilinear (see Chapter 2). A semi l i near acti vation func­
t ion is one in  wh ich the output of a unit is a nondecreasi ng and dif­
ferentiable function of t�d>MfJl8tjal 
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where 0; = i; if u n it i is an i nput unit. Th us, a semi l i near act i vat i on 
function i s  one i n  which 

(8) 
and f is differen tiable and nondecreasi ng. The gene ral i zed del ta  rule 
works if  the network consists of units having semilinear activation func­
tions. Notice that li near threshold units do not sati sfy the requirement 
because their derivat i ve is infi nite at the threshold and zero elsewhere. 

To get the correct generalization of the delta rule. we must set 

aEp ap wji ex: - -!\-, 
V wji 

where E is the same sum-squared error function defined earlier. As in the standard 
delta rule it is again useful to see thiS derivative as resulting from the product of two 
parts: one part reflecting the change in error as a function of the change in the net 
input to the unit and one part representing the effect of changing a particular weight 
on the net input. Thus we can write 

aEp aEp anetpj 

aWji 
= 

ane/pj aWji . 

By Equation 7 we see that the second factor is 

Now let us define 

aEp 0 · = - --
PJ anel .. PJ 

(9) 

(JO) 

(By comparing this to Equation 4. note that this is consistent with the definition of 
o pj used in the original delta rule jor linear units since Opj = netpj when unit Uj is 
linear. ) Equation 9 thus has the equivalent form 

aEp 
--!\- = OpjOp;. 

VWji 

This says that to implement gradient descent in E we should make our weight 
changes according to 

6.p Wji = TjOpjOph (IJ) 
Copyrighted Material 
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just as in the standard delta rule. The trick is to figure out what 8pj should be for 
each unit U) in the network. The interesting result, which we now derive, is that 
there is a simple recursive computation 0/ these 8 's which can be implemented by 
propagating error signals backward through the network. 

aE 
To compute 8 p) = - �, we apply the chain rule to write this partial deriva-onetp) 

tive as the product 0/ two factors, one factor reflecting the change in error as a /unc­
tion 0/ the output 0/ the unit and one reflecting the change in the output as a /unc­
tion 0/ changes in the input. Thus, we have 

aEp aEp aop) 8p) = --- = ------, 

anetpj aOpj anetpj 

Let us compute the second factor. By Equation 8 we see that 

aOpj _ I 
-�-- - I ; (netpj), onetpj 

(1) 

which is simply the derivative 0/ the squashing /unction Ij for the j th unit, 
evaluated at the net input netp) to that unit. To compute the first factor, we con­
sider two cases. First, assume that unit Uj is an output unit 0/ the network. In this 
case, it /ollows /rom the definition 0/ Ep that 

aEp 
-�- = - (tpj - Opj), 
OOp) 

which is the same result as we obtained with the standard delta rule. Substituting 
for the two factors in Equation 11, we get 

(J3) 

for any output unit U). /fUj is not an output unit we use the chain rule to write 

12 flEp anetplc = 12 aEp -a-Lwk;op;= 12 aEp Wkj=-L8p1cWkj' k anetpk aOpj k anetpk aOpj ; k anetpk k 

In this case, substituting /or the two factors in Equation 12 yields 

8 pj = I 'j (netpj ) 128 pic Wkj (J4) 
k 

whenever u) is not an output unit. Equations J3 and 14 give a recursive procedure 
for computing the 8 's for all units in the network, which are then used to compute 
the weight changes in the network according to Equation 11. This procedure consti­
tutes the generalized delta rule for a /eed/orward network 0/ semilinear units. 

These results can be summarized in three equations. First, the gen­
eralized delta rule has exactly the same form as the standard delta rule 
of Equation 1 .  The weight on each line should be changed by an 
amount proportional to ctbp� MfJitftialrror signal, 8 ,  available to 
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the unit receiving input along that l ine and the output of the unit send­
ing activation along that l ine. In symbols ,  

The other two equations specify the error signal. Essential ly,  the deter­
mination of the error signal is a recursive process which starts wi th the 
output units. If a unit i s  an output uni t ,  i ts error signal is very simi lar 
to the standard delta rule. It is given by 

Spj = (tpj - Opj)/ j (netpj) 
where / j (netpj) is the derivati ve of the semi l inear act ivati on function 
which maps the total input to the uni t  to an output value. Finally, the 
error signal for hidden un i ts for which there is no specified target is  
determined recursively i n  terms of the error signals of the uni ts to 
which i t  di rectl y  connects and the weights of those connect ions. That is ,  

S pj = / j (netpj ) I,s pk Wkj 
k 

whenever the unit  is not an output uni t .  
The applicat ion of the general i zed delta rule ,  thus, involves two 

phases: During the first phase the i nput is presented and propagated 
forward through the network to compute the output value Opj for each 
unit. This output is  then compared wi th  the targets, resulting in an 
error signal Spj for each output unit . The second phase involves a 
backward pass through the network (analogous to the initial forward 
pass) during which the error signal is passed to each uni t  in  the net­
work and the appropriate weight changes are made. This second, back­
ward pass al lows the recursive computation of 8 as indicated above. 
The first step is to compute S for each of the output uni ts. This is s im­
ply the difference between the actual and desi red output values t imes 
the derivati ve of the squashing function. We can then compute weight 
changes for all connections that feed into the final layer. After this is 
done, then compute 8 's for all units in the penul timate layer. This 
propagates the errors back one layer, and the same process can be 
repeated for every layer. The backward pass has the same computa­
tional complexity as the forward pass , and so it is not unduly expensive. 

We have now generated a gradient descent method for findi ng 
weights in  any feedforward network wi th  semi l inear uni ts. Before 
reporting our resu l ts wi th these networks , it i s  useful to note some 
further observations. I t  i s  interesting that not all weights need be vari ­
able. Any number of weights i n  the network can be fixed . In this 
case, error is  st i ll propag��.YIfghrJW'M�"GOxed weights are simply not 
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modified . It should also be noted that there is  no reason why some 
output units might not recei ve inputs from other output un i ts i n  earl ier 
layers. In th is  case, those uni ts  recei ve two differen t  ki nds of error: 
that from the di rect comparison with the target and that passed through 
t he other output u n i ts whose acti vation it affects. In th is case , the 
correct procedure is  to si mply add the weight changes dictated by the 
direct comparison to that propagated back from the other output uni ts. 

SIMULATION RESULTS 

We now have a learn ing procedure which could, in principle, evolve 
a set of weights to produce an arbit rary mapping from input to output. 
However, the procedure we have produced is a gradient  descent pro­
cedure and, as such, is bound by all of the problems of any hill climb­
ing procedu re-namely, t h e  problem of local maxima or ( i n  our case) 
min i ma. Moreover, there is a quest ion of how long i t  might take a sys­
tem to learn. Even if we could guarantee t hat i t  would eventual ly find 
a solution , there is the question of whether  our procedure could learn 
in a reasonable period of t i me. It is  i n terest ing  to ask what hidden 
units the system actually develops in the solution of part icular prob­
lems. This is  the question of what kinds of in ternal representat ions the 
system actually creates. We do not yet have defin i tive answers to t hese 
quest ions. However, we have carried out many simulat i ons which lead 
us to be opt i mist ic about the local mi nima and t i me questi ons and to be 
surprised by the kinds of represen tations our learning mechan ism dis­
covers. Before proceeding with  our results, we must describe our simu­
lat ion system in more detail. In part icular, we must specify an activa­
t ion function and show how the system can compute the deri vative of 
th is  function. 

A useful activation function. In our above deri vations the derivative 
of the act i vation funct ion of unit u), r j (net), always played a role. 
This implies that we n eed an act i vation funct ion for wh ich a deri vative 
exists. It is in terest i n g  to note that the linear threshold funct ion, on 
whi ch the percept ron is based, is d iscontinuous and hence will not suf­
fice for the generalized delta rule. Simi larly, since a linear system 
achieves no advantage from hidden un i ts, a linear activat ion function 
will not suffice e i ther. Thus, we need a contin uous, nonlinear activa­
t ion function. In most of our experi ments we have used the logistic 
act i vation function i n  w��Jyrighted Material 
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( 1 5) 

where () j is a b ias similar i n  funct ion to a threshold . 1 I n  order to apply 
our l earning ru le, we need to  k now the derivative of th is  funct ion with 
respect to i ts total i nput,  netpj, where netpj = L, wJ; op; + () J. It is easy to 
show that this derivative is given by 

aOpj 
-!l-- = Opj 0- op) . 
unetpj 

Thus, for the  logist ic  act i vation function, the error signal, Bpj, for an 
output unit is given by 

Bpj = (tP) - Opj )op} (1 - op}), 

and the error for an arbitrary hidden Uj is given by 

Spj = op}O - op})L,SpkWk}' 
k 

It should be n oted that the derivative, Opj (1 - op), reaches its max­
imum for Opj = 0.5 and, since 0::::; Opj::::; 1, approaches i ts m i n i mum as 
Opj approaches zero or one. Since the amount of change in  a given 
weight is proportional to this deri vat i ve, weights will be changed most 
for those units that are near the i r midrange and, in some sense, not yel 
committed to being e i ther on or off. Th is feature, we bel ieve, contri­
butes to the stability of the learning of the system. 

One other feature of this activation function should be noted. The 
system can not actual ly  reach its extreme values of 1 or 0 without infin­
itely large weights. Therefore, in a pract ical learni ng situation i n  which 
the desired outputs are b inary (O, 1), the system can never actually 
ach ieve these val ues. The refore, we typ ica l ly use the val ues of 0 .1  and 
0.9 as the targets, e ven though we wi l l  talk as if values of (0, I} are 
sought. 

The learning rate. Our l earn i ng procedu re requires only that  the 
change in weight be proportional to aEp/aw. True gradient descent 
requires that infinitesimal steps be taken. The constant of proport ional­
ity is the learning rate in o u r  procedure . The large r th is  constant, the 
larger the changes in the weights. For practical purposes we choose a 

I Note that the values of the bias, OJ, can be learned just like any other weights. We 

simply i magin e  that OJ is the w.s:.ight frpm a unit that i!l always on. 
c;opynghted Matenal 
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learning rate that is as large as possi ble wi thout leading to osci l lation . 
This offers the most rapid learning. One way to increase the learning 
rate without leading to osc i l lation is  to modify the general ized delta rule 
to include a momentum term. This  can be accomplished by the follow­
ing rule: 

(16) 

where the subscript n i ndexes the presentation number, 'T/ i s  the learn­
i ng rate, and a i s  a constant which determi nes the effect of past weight 
changes on the current di rection of movement in weight space . This 
provides a kind of momentum in  weight space that effecti vely fi l ters 
out high-frequency variations of the error-surface i n  the weight space. 
This is useful i n  spaces containing long ravines that are characterized by 
sharp curvature across the ravine and a gently sloping floor.  The sharp 
curvature tends to cause divergent  osci l l ations across the ravine. To 
prevent these i t  is necessary to take very small steps, but this causes 
very slow progress along the ravine. The momentum fi l ters out the 
high curvature and thus al lows the effect ive weight steps to be bigger. 
In most of our simulations a was about 0.9. Our experience has been 
that we get the same solutions by sett i ng a = 0 and reducing the size of 
'T/, but the system learns much faster overall wi th larger values of a 
and TJ. 

Symmetry breaking. Our learning procedure has one more problem 
that can be readi ly overcome and this is the problem of symmetry 
breaking. If al l  weights start out with equal values and if the solution 
requi res that unequal weights be developed, the system can never learn . 
Th is is because error is propagated back through the weights in propor­
tion to the values of the weights. This means that all hidden uni ts con­
nected directly to the output inputs wi l l  get identical error signals ,  and, 
since the weight changes depend on the error signals , the weights from 
those units to the output units must always be the same. The system is  
start ing out at a k ind of local maximum. which keeps the weights equal , 
but i t  is a maximum of the error function , so once i t  escapes i t  wil l  
never return. We counteract this problem by start ing the system with 
smal l random weights. Under these condit ions symmetry problems of 
this kind do not arise. 

The XOR Problem 

It is useful to begin wi th the exclusive-or problem since i t  is the clas­
sic problem requi ring h idden units and since many other difficul t  

Copyrighted Material 
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problems involve an XOR as a subproblem. We have run the XOR 
problem many times and with a couple of exceptions discussed below, 
the system has always solved the problem. Figure 3 shows one of the 
solutions to the problem. This solution was reached after 558 sweeps 
through the four stimulus patterns with a learn ing rate of." = 0.5. In 
this case, both the hidden unit and the output unit  have positive biases 
so they are on unless turned off. The hidden unit turns on if neither 
input unit is on. When it is on, it turns off the output unit. The con­
nections from input to output units arranged themselves so that they 
turn off the output unit whenever both inputs are on. In this case, the 
network has sett led to a solution which is a sort of mirror image of the 
one illustrated in Figure 2. 

We have taught the system to solve the XOR problem hundreds of 
times. Sometimes we have used a single hidden unit and di rect con­
nections to the output unit  as il l ustrated here, and other times we have 
allowed two hidden uni ts and set the connections from the input units 
to the outputs to be zero, as shown in Figure 4. In only two cases has 
the system encountered a local minimum and thus been unable to solve 
the problem. Both cases involved the two hidden units version of the 

Output Unit 

-4.2 I 1 
I 

\-42 
\ 

\ I -9.41 

I
I � 

I __ X 
\ Hidden Unit 

\ 
\ --

-6.4 

Input Units 

FIGURE 3. Observed XOR network. The connection weights are written on the arrows 

and the biases are written in eO circle�
1t
fcf��&���ve bias means that the unit is on 

unless lltrned off. pyn!} 
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FIGURE 4. A s imple architecture for solving XOR with two hidden units and no direct 
connections from input to output. 

problem and both ended up i n  the same local mInimum. Figure 5 
shows the weights for the local minimum. In this case, the system 
correctly responds to two of the pat terns-namely, the patterns 00 and 
10. In the cases of the other two patterns 11 and 0 1 ,  the output unit 
gets a net input of zero. This leads to an output value of 0.5 for both 
of these patterns. This state was reached after 6,587 presentations of 
each pattern wi th 'T/=O.25. 2 Although many problems require more 
presentations for l earning to occur, further trials on this problem 
merely increase the magni tude of the weights but do not lead to any 
improvement in performance. We do not know the frequency of such 
local min ima,  but our experience wi th this and other problems is that 
they are quite rare. We have found only one other s i tuation in  which a 
l ocal min imum has occurred i n  many hundreds of problems of various 
sorts. We wi l l  discuss this case below.  

The XOR problem has proved a useful  test case for a number of 
other studies.  Using  the architecture illustrated in Figure 4, a student 
in our laboratory, Yves Chauvin, has studied the effect of varying the 

2 If we set 11 � 0.5 or abov'Cb'*�,s.t,I;m.AS�1!Wt minimum. In general, however, 
the best way to avoid local minlrnf(.f� 'tWb'6�y'lb ... t.l�'li'�ry small values of 11. 
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FIGURE 5. A network at a local minimum for the exclusive-or problem. The dotted 
lines indicate negative weights. Note that whenever the right most input unit is on it 
turns on both hidden units. The weights con necting the hidden units to the output are 
arranged so that when both hidden units are on, the output unit gets a net input of zero. 
This leads to an output value of 0.5. In the other cases the network provides the correct 
answer. 

number of hidden units and varying the learning rate on t ime to solve 
the problem. Using as a learning criterion an error of 0 .01 per pattern , 
Yves found that the average number of presentations to solve the prob­
lem with '1/ = 0.25 varied from about 245 for the case with two hidden 
units to about 120 presentations for 32 hidden units . The results can 
be summarized by P = 280 - 3310g2H, where P is the required 
number of presentations and H i s  the number of hidden units 
employed. Thus, the t ime to solve XOR is reduced l inearly with the 
logari thm of the number of hidden units. This result holds for values of 
H up to about 40 i n  the case of XOR. The general result that the time 
to solut ion is  reduced by increasing the number of hidden uni ts has 
been observed in  virtually a l l  of our s imulations. Yves also studied the 
time to solut ion as a function of learn ing rate for the case of eight h id· 
den un i ts .  He found an average of about 450 presentations wi th 
'1/ = 0.1 to about 68 presentations with '1/ = 0.75. He also found that 

Copyrighted Material 
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learning rates larger than this led to unstable behavior. However, 
within this range larger learning rates speeded the learning substantially. 
In most of our problems we have employed learning rates of '11 = 0.25 
or smaller and have had no difficulty. 

Parity 

One of the problems given a good deal of discussion by Minsky and 
Papert (t 969) is the parity problem, in which the output required is 1 if  
the input pattern contains an odd number of Is and 0 otherwise . This 
is a very difficult problem because the most similar patterns (those 
which differ by a single bit) require different answers . The XOR prob­
lem is a parity problem with input patterns of size two. We have tried a 
number of parity problems with patterns ranging from size two to eight .  
Generally we have employed layered networks in  which di rect connec­
t ions from the input to the output units are not al lowed, but must be 
mediated through a set of hidden units. In thi s  archi tecture, it requires 
at least N hidden units to solve parity with patterns of length N. Fig­
ure 6 i llustrates the basic paradigm for the solutions discovered by the 
system. The solid lines in the figure indicate weights of + 1 and the 
dotted l ines indicate weights of -1 . The numbers in the circles 
represent the biases of the uni ts. Basically, the hidden units arranged 

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn­
ing system. See text for explanation. 
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themselves s o  that they count the number o f  inputs. In  the d iagram, 
the one at the far left comes on if one or more input un its are on , the 
next comes on if two or more are on ,  etc . All of the h idden units 
come on if all of the input l ines are on. The fi rst m h idden units come 
on whenever m bits are on in the input pattern . The hidden units then 
connect with alternately positi ve and negative weights . In this way the 
net i nput from the h idden units is  zero for even numbers and + 1 for 
odd numbers. Table 3 shows the actual �ol ution attained for one of our 
simulations with fou r  input l ines and four h idden units .  This solution 
was reached after 2 ,825 presentations of each of the si xteen patterns 
with "fI = 0 . 5 .  Note that the solution is roughly a mirror image of that 
shown in Figure 6 in that the number of h idden units turned on is 
equal to the number of zero i nput values rather than the number of 
ones. Beyond that the princi ple is that shown above. It should be noted 
that the i nternal representation created by the learni ng rule is to 
arrange that the number of h idden units that come on is equal to the 
number of zeros in the i nput and that the particular hidden units that 
come on depend only on the number, not on which i nput un its are on .  
This is exactly the sort of recoding required by parity . I t  is not the k ind 
of  representation readi ly d iscovered by unsupervised learning schemes 
such as competitive learning. 

The Encoding Problem 

Ackley, Hinton,  and Sejnowski ( 1 985) have posed a problem i n  
which a set o f  orthogonal input patterns are mapped to a set o f  orthogo­
nal output patterns through a small set of hidden units. In such cases 
the internal representations of the patterns on the h idden units must be 
rather efficient. Suppose that we attempt to map N input patterns onto 
N output patterns. Suppose further that log2N h idden units are pro­
vided. In th is case, we expect that the system wi l l  learn to use the 

Number of On 
Input Units 

TABLE 3 

Hidden Unit 
Patterns 

o 1111 

1 1011 

2 1010 

3 0010 

4 Copynghted lIfINerial 

Output 
Value 

o 
1 
o 
1 
o 
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N Output Units 

log N Hidden Units 2 

N Input Units 

FIGURE 7. A network for solving the encoder problem. In this problem there are N 
orthogonal input patterns each paired with one of N orthogonal output patterns. There 
are only log2N hidden units. Thus, if the hidden units take on binary values, the hidden 
units must form a binary number to encode each of the input patterns. This is exactly 

what the system learns to do. 

hidden units to form a binary code with a distinct binary pattern for 
each of the N input patterns. Figure 7 i llustrates the basic archi tecture 
for the encoder problem. Essential ly ,  the problem � tt. learn an encod­
ing of an N bit pattern into a l og2N bit pattern and then learn to 
decode this representat ion into the output pattern . We have presented 
the system with a number of these problems. Here we present a prob­
lem with eight input patterns,  eight output patterns, and three hidden 
units. In this case the required mapping is the identity mapping illus­
trated in Table 4 .  The problem is simply to turn on the same bit in the 

Input Patterns 

10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 

TABLE 4 

Output Patterns 

10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 
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output as in the input . Table 5 shows the mapping generated by our 
learning system on this example . I t  i s  of some interest that the system 
employed i ts  abil ity to use intermediate values in solving this problem. 
I t  could , of course, have found a solut ion in which the hidden units 
took on only the values of zero and one . Often i t  does just that , but in 
this instance, and many others , there are solutions that use the inter­
mediate values ,  and the learning system finds them even though i t  has 
a bias toward extreme values . It is possible to set up problems that 
require the system to make use of intermediate values in order to solve 
a problem. We now turn to such a case. 

Table 6 shows a very simple problem in which we have to convert 
from a distributed representation over two units into a local representation 
over four  uni ts .  The similarity structure of the distributed input pat­
terns is simply not preserved in the local output representation. 

We presented this problem to our learning system with a number of 
constraints which made i t  especially difficu l t .  The two input units were 
only allowed to connect to a single hidden unit which , in turn, was 
allowed to connect to four  more h idden uni ts. Only these four hidden 
uni ts were allowed to connect to the four output uni ts. To solve 
this problem,  then , the system must first convert the distributed 

TABLE 5 

Input  Hidden Unit  Output 

Patterns Patterns Patterns 

10000000 .5 0 0 10000000 
01000000 0 1 0 0 1 000000 

00100000 1 1 0 00100000 

00010000 1 1 1 00010000 

00001 000 0 1 1 00001000 

00000100 .5 0 1 00000100 

00000010 1 0 .5 00000010 

00000001 0 0 .5 00000001 

TABLE 6 

Input Patterns Output Patterns 

00 

01 

10 

11 

1000 
0100 

0010 

0001 

Copynghled Malerial 
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representation of the input patterns into various intermediate values of 
the s ingleton hidden unit  in which different activation values 
correspond to the different input patterns. These cont inuous val ues 
must then be converted back through the next layer of hidden uni ts­
first to another distributed representation and then , final ly,  to a local 
representation. This problem was presented to the system and i t  
reached a solution after 5,226 presentations with", = 0.05.3 Table 7 
shows the sequence of representations the system actual ly developed in 
order to transform the patterns and solve the problem. Note each of 
the four input patterns was mapped onto a particular activation value of 
the singleton hidden unit . These values were then mapped onto distr i­
buted patterns at the next layer of h idden uni ts which were finally 
mapped into the required local representation at the output level . In 
pri nci ple, this trick of mapping patterns in to activation values and then 
converting those act i vation values back into patterns could be done for 
any number of patterns,  but i t  becomes increasingly difficult for the 
system to make the necessary distinctions as ever smal ler differences 
among acti vation values must be dist inguished. Figure 8 shows the 
network the system developed to do this job. The connection weights 
from the hidden un i ts to the output units have been suppressed for 
clarity.  (The sign of the connection, however, is i ndicated by the form 
of the connection -e.g. ,  dashed l ines mean inh ibi tory connections) . 
The four different acti vation values were generated by having relatively 
large weights of opposite sign . One input l ine turns the hidden unit full 
on, one turns it fu l l  off. The two d iffer by a relati vely smal l amount so 
that when both turn on , the unit  attains a value intermediate between 0 
and 0.5. When nei ther turns on , the near zero bias causes the unit to 
attain a value sl ightly over 0.5. The connections to the second layer of 
hidden uni ts is l i kewise i nteresti ng .  When the hidden unit  is ful l  on, 

TABLE 7 

Input Singleton Remaining Output 
Patterns Hidden Unit Hidden U nits Patterns 

1 0  0 1 1 1 0 0010 
1 1  .2 1 1 0 0 0001 
00 .6 .5 0 0 . 3  1000 
0 1  1 0 0 0 1 0 1 00 

3 Relati vely small learning rates make un its  employing intermediate values easier to 
obta in. 
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Output  
Un its 

H idden 
U n i ts  

I n p u t  
U n i ts  

FIG U R E  8 .  The network i l lustrat ing t he  use o f  intermediate values i n  sol ving a problem .  
See text for explanation .  

the right-most of these hidden uni ts is turned on and all others turned 
off. When the h idden uni t  i s  turned off, the other three of these hid­
den uni ts are on and the left-most un i t  off. The other connections 
from the si ngleton hidden unit  to the other hidden units are graded so 
that a distinct pattern i s  turned on for i ts other two values. Here we 
have an example of the flexib i l i ty of the learning system . 

Our experience i s  that there is a propensity for the hidden uni ts to 
take on extreme values ,  but,  whenever the learn ing problem cal ls  for i t ,  
they can learn to take on graded values. It is  l i kely that the propensity 
to take on extreme values fol lows from the fact that the logistic is a sig­
moid so that increas ing magnitudes of its inputs push i t  toward zero or 
one. This means that in  a problem in which in termediate values are 
required, the i ncoming weights must remain of moderate size . It i s  
interesti ng that the derivation of the  general ized delta ru le  does not 
depend on all of the units having identical acti vat i on functions. Thus, 
i t  would be possible for some units ,  those requi red to encode informa­
tion in a graded fashion , to be l i near whi le  others might be logisti c .  
The l inear unit  would have a much wider dynamic range and could 
encode more different values. This would be a useful  role for a l inear 
uni t in a network with h�8p9r_d Material 
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Symmetry 

Another interesting problem we studied i s  that of class ifying input 
strings as to whether or not they are symmetric about the ir  center. We 
used patterns of various lengths with various numbers of hidden units. 
To our surprise, we discovered that the problem can always be solved 
with only two hidden units .  To understand the derived representat ion, 
consider one of the solutions generated by our system for strings of 
length s ix .  This solut ion was arri ved at after 1 ,208 presentat ions of each 
s ix-bit  pattern with 'T1 = 0. 1 .  The final network is shown in Figure 9 .  
For simplici ty we  have shown the s ix  input un i ts i n  the  center of  the 
diagram with one hidden unit above and one below. The output unit ,  
which signals whether or not the string is  symmetric about i ts center, is 
shown at the far right . The key point to see about this solut ion is  that 
for a given hidden unit ,  weights that are symmetric about the middle 
are equal in magnitude and opposi te i n  sign . That means that if  a sym­
metric pattern is on ,  both hidden un i ts will rece ive a net i nput of zero 
from the input units ,  and, since the h idden units have a negative bias, 
both wil l  be off. In this case , the output unit, having a posi t ive bias, 

." 
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..... ........ 9 .44 ..... 
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'Q output Y Unit  .,; .,; .,; 

FIGURE 9. Network for solv ing the symmetry problem.  The s i x  open ci rcles represent 
the i nput units .  There are two hidden units, one shown above and one below the input 
units. The output unit i s  shown to the far right. See text for explanation. 
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wil l  be on . The next most important th ing to note about the sol ution is 
that the weights on each side of the midpoint of the str ing are in  the 
ratio of 1 : 2:4 .  This i nsures that each of the eight patterns that can 
occur on each side of the midpoint sends a unique activat ion sum to 
the hidden uni t .  This  assures that there is no pattern on the left that 
wi l l  exactly balance a non-mi rror- image pattern on the right . Final ly ,  
the  two hidden uni ts have ident ical  patterns of  weights from the in put 
units except for sign. This insures that for every nonsymmetric pat­
tern , at least one of the two hidden units wi l l  come on and turn on the 
output uni t .  To summarize,  the network is arranged so that both hid­
den units wi l l  receive exact ly  zero activation from the input units when 
the pattern is  symmetric ,  and at least one of them wi l l  receive pos i t ive 
input for every nonsymmetric pattern . 

Th is problem was interesting to us because the learning system 
developed a much more elegant solution to the problem than we had 
previously considered . This problem was not the only one in which this 
happened . The pari ty solution discovered by the learning procedure 
was also one that we had not discovered prior to testing the problem 
with our learning procedure .  Indeed, we frequently discover these 
more elegant solut ions by gi vi ng the system more hidden uni ts than i t  
needs and observing that i t  does not make use of  some of those pro­
vided. Some analysis of the actual solutions discovered often leads us 
to the discovery of a better solution involving fewer hidden units .  

Addition 

Another interesting problem on which we have tested our learn ing 
algorithm is the s imple binary addit ion problem. This problem is 
interesting because there i s  a very elegant sol ut ion to it , because i t  is 
the one problem we have found where we can rel iably find local 
minima and because the way of avoiding these local mi nima gi ves us 
some insight into the condit ions under which local min ima may be 
found and avoided . Figure 10 i l lust rates the basic problem and a 
min imal sol ut ion to i t .  There are four  i nput units ,  three output units ,  
and two hidden un i ts .  The output patterns can be viewed as the binary 
representation of the sum of two two-bit  b inary n umbers represented 
by the input patterns. The second and fourth input units in the 
diagram correspond to the low-order bits of the two binary numbers 
and the first and th ird units correspond to the two h igher order bits .  
The hidden un i ts correspond to the carry bits in  the summation .  Th us 
the hidden un i t  on the far right comes on when both of the lower order 
bits in  the input patter�yrig/Dtedf �t8li8J the one on the left comes 
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Output Units 

Input  U n its 

Hidden 
Units 

FIGURE 1 0 .  M i n imal  network for add ing two two- bit  binary numbers.  There are  fou r  
i n put un its,  t hree output uni ts ,  and two h idden u n i ts .  T h e  output patterns can  b e  v iewed 
as the b i nary representat ion of the sum of two two-bit  b inary numbers represented by the 
i n put patterns .  The second and fourth i n put un i ts in  t h e  d i agram correspond to t h e  low­
order bits of the two b i nary n um bers, and t he fi rst and t h i rd uni ts  correspond t o  the t wo 
h i gher  order bits .  The h idden un i ts  correspond to the carry bits  in the summat ion .  The 
hidden unit o n  the far right comes on when both of t he lower order b i t s  in the i n put  pat­
tern are t urned on, and the one on the left comes on when both h i gher order bits are 
turned on or when one of the higher order b i t s  and the ot her hidden uni t  is turned o n .  
The weights on a l l  l i n es a r e  assumed t o  be + I except where noted . Negat ive connec­
t ions are indicated by dashed l i nes. As usua l ,  the  biases are i n d icated by the  n um bers in  
t h e  circles .  

on when both higher order bits are turned on or when one of the 
higher order bi ts and the other hidden unit i s  turned on . In the 
diagram , the we igh ts on all l ines are assumed to be + 1 except where 
noted .  Inhi bitory connect ions are ind icated by dashed l i nes. As usual , 
the b iases are i ndicated by the numbers in the ci rcles. To understand 
how th is  network works ,  i t  is useful to note that the lowest order out­
put bi t is  determ i ned by an e xcl usi ve-or among the two low-order i n put 
bits .  One way to solve this XOR problem i s  to  have a hidden unit 
come on when both l ow-order i n p ut bits are on and then have i t  inh ibi t  
the output unit . Otherwi se e i ther of the low-order i nput un i ts can t u rn 
on the low-order outpu t bi t .  The middle bit  is somewhat more 
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difficul t .  Note that the middl e  bit should come on whenever an odd 
number of the set containing the two higher  order i n put bits and the 
lower order carry bit is  t urned on . Observation wil l con firm that the 
network shown performs that task. The left-most hidden unit receives 
inputs from the t wo h i gher order bits and from the carry bit . I ts bias is 
such that i t  wi l l  come on whenever two or  more of its i n puts are turned 
on . The middle output u n i t  recei ves posi tive i nputs from the same 
three u nits and a n egative input of - 2 from the second hidden unit . 
This insures that whenever j ust one of the  three are turned on ,  the 
second h idden un i t  wi l l  remain off and the output bit wil l come on .  
Whenever exactly t wo of the three are o n ,  the hidden u nit wi l l  turn on 
and counteract t h e  two units excit i ng the output  bit , so it  wil l s tay off. 
Final l y ,  when all three are t urned o n ,  the  output  bit  wi l l  receive - 2 
from its carry bit and + 3 from i ts  other three i n puts .  The net is posi­
t ive , so the middle u nit wil l be on .  Finally ,  the third output  bit should 
turn on whenever the second hidden unit  i s  on - that is, whenever 
there is a carry from the second bit. Here then we have a min i mal net­
work to carry out the job at hand. Moreover, it should be noted that 
the concept beh ind  t h i s  network i s  general izable to an arbi trary n umber 
of i n put and output bi ts. In general , for adding two m bit binary 
numbers we wil l require 2m i nput u n i ts ,  m h idden u n i ts ,  and m+ I out­
put units .  

Unfortunately, this is  the one proble m  we have found that reliably 
leads the system i nto local min i ma .  At the start in our l earn ing trials 
on th is  problem we al low any input u nit to connect to any output  unit 
and to any hidden u nit . We al low any hidden u n i t  to con nect to any 
output unit, and we a l low one of the hidden u n i ts to con nect to the 
other hidden unit, but, since we can have no loops, the connect ion in 
the opposite di rection is d i sal lowed. Somet i mes the system wil l discover 
essentia l ly  the same network shown in the figure .  4 Often , however, the 
system ends u p  i n  a l ocal min im u m .  The problem arises when the XOR 
problem on the low-order bits i s  not sol ved i n  the way shown i n  the 
diagram. One way i t  can fail is  when the " higher "  of the two hidden 
units is " selected " to sol ve the XOR problem . Th is  is a problem 
because then the other hidden unit  cann ot " see " the carry bit and there­
fore cannot final ly sol ve the problem.  Th is problem seems to stem 
from the fact that the learni ng of the second output b i t  is al ways depen­
dent on l earning the fi rst ( because i nformation about the carry is neces­
sary to learn the second bit ) and therefore lags beh i nd the learn i ng of 
the first bit and has no infl uence on the selection of a hidden un i t  to 

4 The network is the same except for the h ighest order b i t .  The highest order bit i s  
always o n  whenever three or more o f  t h e  i n p u t  u n i t s  a r e  on .  This  is  always learned fi rst 

and always learned with d i rect 9lJ).9� JW9R»Wipnits .  
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sol ve the fi rst XOR problem . Th us ,  about half of the t i me ( i n  this 
problem) the wrong unit  i s  chosen and the problem cannot be sol ved . 
In th is  case , the syste m  finds a solu t ion for a l l  of the sums except the 
1 1  + 1 1  - 1 1 0 (3+ 3 = 6) case i n  which i t  misses the carry i nto the 
middle bit and gets 1 1  + 1 1  - 1 00 i nstead . Th i s  problem d iffers from 
others we have sol ved i n  as much as the h idden un i ts are not " equi­
potent ial " here . In  most of our other problems the hidden un i ts have 
been equi potent ia l ,  and th is  problem has not arisen .  

I t  should be  noted, however,  that there i s  a relat i vely s imple  way out 
of the problem - namely ,  add some extra h idden u n i ts .  In  th is  case we 
can afford to make a mistake on one or more select ions and the system 
can st i l l  solve the problems.  For the problem of adding two-bi t 
numbers we have found t hat the system always sol ves the problem wi th 
one extra h idden uni t .  With  l arger n umbers i t  may requi re two or three 
more. For purposes of i l lustrat ion , we show the resul ts  of one of our 
runs wit h  three rather than the min imum two hidden units .  Figure 1 1  
shows the state reached by the  network after 3 ,020 presentat ions of 
each i nput pattern and wi th a learning rate of "Y/ = 0 . 5 .  For con ven i ­
ence , we show the  network in  four parts .  I n  Figure 1 1  A we show the 
connections to and among the h idden un i ts .  Th is figure shows the 
internal representation generated for th i s  problem. The " lowest " hid­
den unit turns off whenever either of the l ow-order bits are on . In 
other words i t  detects the case in which no low-order bit is  turn on . 
The " hi ghest " h i dden uni t  is arranged so that it comes on whenever the 
sum i s  l ess than two. The condit ions under which the middle hidden 
unit comes on are more complex .  Table 8 shows the patterns of h idden 
units  which occur to each of the si xteen i nput patterns. Figure l I B 
shows the connect i ons to the lowest order output u n i t .  Not ing that the 
relevant h idden unit comes on when neither low-order i n put unit i s  on, 
i t  i s  c lear how the system computes XOR. When both low-order inputs 
are off, the output unit i s  turned off by the h idden un i t .  When both 
low-order i n put uni ts  are on , the output i s  turned off directly by the 
two i n put  un i ts .  If  just one is  on, the posi t i ve bias on the output unit  
keeps i t  on . Figure l l C gives the connect ions to the middle output 
u n i t ,  and i n  Figure 1 1  D we show those connect ions to the left-most , 
highest order output un i t .  It i s  somewhat d ifficult  to see how these 
connecti ons always lead to the correct output answer,  but ,  as can be 
verifi ed from the figures,  the network is balanced so that th is  works . 

It should be poi nted out that most of the problems described thus far 
have i n vol ved hidden u n i ts with qui te  s i m ple in terpretat ions.  It i s  
much more often the case, espec ial ly  when the number of hidden units 
exceeds the min i mum number requi red for the task ,  that the hidden 
uni ts are not readi ly  i nterpreted . Thi s  fol lows from the fact that there 
is very l i t t le  tendency for loealist representat ions to develop. Typically 
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FIG URE 1 1 . Network fou nd for I he summat i on problem . A :  The connecl ions from the 

input units  to the three hidden units and the connections among the h idden u n i ts .  B: 
The connect ions from the i nput and h idden units to the lowest order output unit .  C: The 

connect ions from the input  and hidden uni ts to the middle output uni t .  D: The connec­

tions from the input  and hidden u n i ts to t he h i.&.hes t order output un i t .  
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TABLE 8 

Input H idden Uni t  Output 
Pat terns Patterns Patterns 

00 + 00 I I I  000 

00 +  0 1  1 1 0 001 

00 + 10 0 1 1 0 1 0  

00 + 11 010 011 

0 1  + 00 1 10 001 

01 + 0 1  010 010 

01 + 1 0  0 1 0  01 1 

01 + 1 1  000 100 

1 0 + 00 01 1 0 1 0  

1 0 + 0 1  0 1 0  0 1 1 

1 0 + 1 0  00 1 100 

1 0 + I I  000 1 01 

1 1  + 00 0 1 0  0 1 1 

1 1  + 0 1  000 100 

1 1  + 10 000 1 01 

11 + I I  000 1 1 0 

the internal representat ions are distributed and it is the pattern of 
act i vi ty over the h idden units,  not the mean ing of any particular hidden 
unit that is important .  

The Negat ion Problem 

Consider a situation in which the i nput to a system consists of pat ­
terns of n+ 1 binary values and an output of n values. Suppose further 
that the general ru le is that n of the input  un i ts should be mapped 
di rectly to the output patterns. One of the i nput bits, however,  is spe­
cial . It is a negat ion b i t .  When that bit is off, the rest of the pattern is 
su pposed to map straight th rough , but when it is  on , the complement 
of the pattern is  to be mapped to the output. Table 9 shows the 
appropriate mappi ng.  In this case the left element of the input pattern 
is the negation bit, but the system has no way of knowing this and 
must learn which bit i s  the negat ion bit . In  th is  case , weights were 
al lowed from any input un i t  to any h idden or output unit and from any 
hidden unit  to any output un i t .  The system learned to set al l of the 
weights to zero except those shown in  Figure 1 2 . The basic structure 
of the problem and of the sol ution is evident i n  the figure .  Clearly the 
problem was reduced to a set of three XORs between the negat ion bit 
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TABLE 9 

Input  PaUerns Out put Pal lerns  

0000 

000 1 

00 1 0  

00 1 1 

0 1 00 

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 000 

1 00 1  

1 0 1 0  

1 0 1 1 
1 1 00 

1 1 0 1  

1 1 1 0 

1 1 1 1  

000 
00 1 

0 1 0  

0 1 \ 

1 00 

1 0 1  

1 1 0 

I I I  
I I I  
l lO 
1 0 1  

1 00 

0 1 1 

0 1 0  

00 \ 

000 

and each input . In the case of the two r ight-most input units,  the XOR 
problems were solved by re::rui t ing a h idden unit  to detect the case in 
which neither the negation uni t nor the corresponding input unit was on. 
In the third case, the hidden unit  detects the case i n  which both the 
negation unit and relevant input were on.  In this case the problem was 
solved in less than 5 ,000 passes through the st imulus set with TJ = 0.25 . 

Ce) Cal 
' 1 0 ·4 X,0 · 4  ",¥, 1 0  " / 1 \  /,,, I '  

, / / .4 1 \ ",  .4 1 \ '( ;. .... "\ I ,  / ...... 1 \ I � / 
- 8  ...... I Q I + 2  

", I V 1 .8 
+ :! ...... r ..... / _ - ...... -t - -

- ... _ - 1'" ..,
- I / -�.- - 0·' (j.' 

FIGURE 1 2 .  The solution discovered for the negat ion prob lem . The left -most uni t is 
the negat ion uni t .  The problem has been reduced and so l ved as t h ree excl usi ve-ors 
between the negation unit and each of the other th ree units .  
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The T -C Problem 

Most of the problems discussed so far (except the symmetry prob­
lem) are rather abstract mathematical problems . We now turn to a 
more geometric problem - that of discriminating between a T and a 
C- independent of translation and rotation . Figure 13 shows the 
st imulus patterns used in these experi ments . Note, these patterns are 
each made of five squares and differ from one another by a single 
square. Moreover ,  as Minsky and Papert ( 969) point  out,  when con­
sidering the set of patterns over all possible translations and rotations 
(of 90° , 1 80° , and 270°) , the patterns do not differ in the set of dis­
tances among their pairs of squares. To see a d ifference between the 
sets of patterns one must look, at least , at configurations of t ri plets of 
squares. Thus Minsky and Papert cal l this a problem of order three. 5 
In order to fac i l i tate the learn ing, a rather d ifferent archi tecture was 
employed for this problem. Figure 14  shows the basic structure of the 
network we employed. Input patterns were now conceptualized as two­
dimensional patterns super imposed on a rectangular grid .  Rather than 
al lowing each input unit  to connect to each h idden unit ,  the hidden 
units themselves were organized into a two-dimensional grid with each 
unit rece iving input from a square 3 x 3 region of the input space. In 
this sense , the overlapping square regions const i tute the predefined 
receptive field of the hidden units .  Each of the hidden units, over the 
entire field , feeds into a single output uni t  which is to take on the value 

FIGURE 13 .  The st imulus set for the T-C problem .  The set consists of a block T and a 
block C in each of four orientations. One of the eight pat terns is presented on each trial .  

5 Terry Sejnowski pointed out to us that the T-C problem was d ifficul t  for models of 

th is  sort to learn and therefore worthy of study. 
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FIGURE 14 .  The network for so l ving  the T-C problem. See text  for e x planat ion.  

1 if the input i s  a T (at any location or orientat ion) and 0 if the input is 
a C. Further, in order that the learning that occurred be independent 
of where on the field the pattern appeared , we constrain ed all of the 
units to learn exactly the same pattern of weights. [n this way each uni t  
was constrained to compute exactly the same function over i ts  receptive 
field -the recept i ve fields were constrained to all have the same shape . 
This  guarantees translat ion independence and avoids any possible " edge 
effects " in the l earn ing. The learning can readily be extended to arbi ­
trari ly  large fields of input units . This constraint was accompl i shed by 
simply adding together the weight changes dictated by the delta rule for 
each uni t  and then chamzing all weil!hts

t 
e�actly  the same amount . In 

copynghted�a enal 
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this way, the whole  fie ld of hidden units consists s imply of replications 
of a single feature detector centered on d i fferent regions of the input 
space , and the learning that occurs in one part of the field is automati­
cally  general ized to the rest of the field.  6 

We have run this problem in  this way a number of times. As a 
resul t ,  we have found a number of sol ut ions.  Perhaps the simplest way 
to understand the system is by looking at the form of the recepti ve 
field for the h idden units .  Figure 1 5  shows several of the receptive 
fields we have seen.  7 Figure 1 5 A  shows the most local representation 
developed . This on-center-off-surround detector turns out to be an 
excellent T detector. Since, as i l lust rated, a T can extend into the on­
center and achieve a net input of + 1 ,  this detector wi l l  be turned on for 
a T at any orientat ion.  On the other hand, any C extending into the 
center must cover at least two inhi bitory cel ls .  Wi th this detector the 
bias can be set so that only one of the whole field of inhibi tory units 
wi l l  come on whenever a T is presented and none of the h idden units 
wi l l  be turned on by any C. This is a kind of protrusion detector which 
d ifferentiates between a T and C by detecti ng the protrusion of the T. 

The recept ive field shown in  Figure 1 5B is again a kind of T detector. 
Every T act ivates one of the hidden units by an amount + 2 and none 
of the hidden un i ts receives more than + 1 from any of the C 's.  As 
shown in the figure, T's at 90° and 270° send a total of + 2 to the hid­
den uni ts on which the crossbar l ines up.  The T's at the other two 
orientations receive + 2  from the way it detects the vertical protrusions 
of those two characters .  Figure 1 5C shows a more distr ibuted represen­
tation. As i l lustrated in the figure, each T acti vates fi ve different hid­
den units whereas each C excites only three hidden units .  In this case 
the system again is d ifferentiating between the characters on the basis 
of the protruding end of the T which is  not shared by the C. 

Final ly ,  the receptive field shown in  Figure 1 5 0  is  even more 
interesting. In this case every h idden unit  has a posit ive bias so that it 
is on unless turned off. The strength of the inhibi tory weights are such 
that if a character overlaps the recepti ve field of a hidden unit ,  that unit 
turns off. The system works because a C is  more compact than a T and 
therefore the T turns off more units that the C. The T turns off 2 1  
hidden units ,  and the C turns off only 20. This i s  a truly distributed 

6 A simi lar procedure has been employed by Fukushima ( 980) in his neocognitron and 
by Kienker, Sejnowski , Hinton , and Schumacher ( 985) . 

7 The ratios of the weights are about right . The actual values can be larger or smaller 
than the values gi ven in the figure. 
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FIG U RE 1 5 . Recept i ve fields found i n  d ifferent  runs o f  t h e  T-C proble m .  A :  An on­
center-off-surround recept ive field for detect ing T 's. B: A vert ica l  bar detector which 
responds to T's  more strongly than C 's. C:  A d i agona l  bar detector .  A T act i vates fi ve 
such detectors whereas a C act i vates only th ree such detectors .  D: A compact ness detec­
tor . This i n h i bi tory recept i ve field t urns off whenever an input covers any region of i t s  
recept i ve field . Si nce the C i s  more compact t han  the T i t  t u rns off 20 such detectors 
whereas the T t u rns off 21 of them. 

representation .  In each case, the solut ion was reached i n  from about 
5 ,000 to 1 0 ,000 presentations of the set of eight pat terns. 8 

It is interest ing that the inh ibitory type of recept ive field shown i n  
Figure 1 50 was t h e  most common and that there i s  a predominance of 
inhibitory connect ions i n  this and i ndeed all of our simulations. Th is 
can be understood by considering the traject ory through wh ich the 
learning typically moves. At fi rst , when the system is  presented with a 

8 Si nce translat ion  independence was bu i l t into t he learn ing  proced ure, it makes no 
d ifference where t he i nput  occu rs: the same t h i n g  w i l l  be learned wherever the  pat tern is 

presented . Thus, there are on�t5�pr@HiOO MWtIDfaP be presented to t h e  system . 
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difficult  problem , the init ia l  random connections are as l ikely to mislead 
as to gi ve the correct answer. In this case,  it is best for the output 
units to take on a value of 0. 5 than to take on a more extreme value. 
This fol lows from the form of the error function gi ven in  Equation 2. 
The output unit can achieve a constant output of 0.5 by turning off 
those uni ts feeding into i t .  Thus,  the fi rst th ing that happens i n  vi rtu­
ally every difficult  problem is  that the hidden units are turned off. One 
way to achieve this is to have the input units inhib i t  the hidden units. 
As the system begins to sort things out and to learn the appropriate 
function some of the connections wil l  typical l y  go posi t ive ,  but the 
majority of the connections wi l l  remain negat i ve .  Th is bias for solu­
t ions involving inhibitory inputs can often lead to nonintui t ive results 
in  which hidden units are often on unless turned off by the i nput. 

More Simulation Results 

We have offered a sample of our results i n  this sect ion.  In addi t ion 
to having studied our learning system on the problems discussed here , 
we have employed back propagation for l earning to mult iply binary 
digits, to play t ic-tac-toe , to dist inguish between vert ical and horizontal 
l ines, to perform sequences of actions , to recognize characters , to asso­
ciate random vectors , and a host of other applicat ions.  In all of these 
appl ications we have found that the genera l ized delta rule was capable 
of generating the kinds of internal representations required for the 
problems in quest ion .  We have found local minima to be very rare and 
that the system learns in a reasonable period of t ime.  Sti l l  more studies 
of this type wi l l  be requi red to understand precisely the condit ions 
under which the system wi l l  be plagued by local min ima. Suffice it to 
say that the problem has not been serious to date .  We now turn to a 
pointer to some future developments. 

SOME FURTHER GENERALIZATIONS 

We have intensi vely studied the learn ing characteristics of the gen­
eral ized delta rule on feed forward networks and semi l i near activations 
functions.  In terest ingly these are not the most general cases to which 
the learning procedure is applicable. As yet we have on ly studied a few 
examples of the more fu l ly  genera l ized system, but it is relatively easy 
to apply the same learn ing rule to sigma-pi units and to recurrent net­
works . We wi l l  s imply s�qg� here . 
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The General ized Delta R u l e  and S igma-Pi Uni ts  

It  wi l l  b e  recal led from Chapter 2 t h a t  i n the case of sigma-pi u n i ts 
we have 

( I 7 ) 

where i varies over the set of conj u ncts feed i ng i n t o  u n i t  j and k varies 
over the elements of the conj uncts .  For s i mpl ic i ty of  exposit ion , we 
restrict oursel ves to  the case in which no conjuncts i n vo l ve more than 
two elements.  In this case we can notate the weight from the conj u nc­
t ion of u n i ts i and j to unit  k by wkij ' The wei ght on the di rect con­
nection from unit  i to  unit  j would,  th u s ,  be wji; , and s ince the rel at ion 
i s  mult i pl icat i ve ,  Wkij = Wkj; '  We can now rewri te Equat ion 17 as 

OJ = Ij (L Wjh; 0h 0; ) .  
; .h 

We now set 

Taking the deri vative and si m pl i fyi ng , we get a rule for sigma-pi un i ts 
strictly analogous to the ru le  for sem i l i near act i vat ion fu nctions:  

!l.p wkij = 8 k o; oj . 

We can see the correc t form of the error si gnal , 8 ,  for this case by 
inspect ing Figure 1 6 .  Consider the appropriate value of 8; for un i t  U; 
in the figure. As before,  the correct val ue of 8 ;  is given by the sum of 
the 8 's for al l of the un i ts i nto wh ich U; feeds , wei ghted by the amount 
of effect due to the acti vat ion of U; t i mes the deri vat i ve of the acti va­
tion funct i on.  In the case of sem i l inear functions, the measure of a 
unit's effect on another un i t  is gi ven simply by the weight W connect­
i ng the fi rst u n i t  to the second . In  this case,  the u, 's effect on Uk 
depends not only on Wk;j , but also o n  the value of Uj . Thus, we have 

8; = I 'j (net; ) L8 k Wk;j OJ 
j ,k 

if u; is not an output unit and, as before , 

8 ; = .1 '; (net; ) (t;- o; )  
i f  i t  is an output uni t .  
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& .  & .  
J t 

FIGU RE 1 6 .  The genera l i zed delta rule for s igma -pi units .  The products of act i vat ion 
values of i nd iv idua l units act i vate output units .  See text  for explanation of how the 8 

values are com puted in th is  case . 

Recurrent Nets 

We have thus far restricted ourselves to /eed/orward nets. This may 
seem l i ke a substant ial restrict ion,  but as Mi nsky and Papert point out, 
there is ,  for every recurrent network, a feed forward network wi th ident­
ical behavior (over a fin i te period of ti me) . We wi l l  now indicate how 
this construction can proceed and thereby show the correct form of the 
l earning rule for the recurrent network. Consider the si mple recurrent 
network shown in Figure 1 7  A. The same network in a feedforward 
archi tecture is shown in Figure 1 7B. The behavior of a recurrent net­
work can be ach ieved in  a feedforward network at the cost of dupl icat­
ing the hardware many t imes over for the feedforward version of the 
network . 9 We have distinct units and distinct weights for each point in 
t ime. For nami ng convenience , we subscri pt each uni t  with i ts unit 
number in the corresponding recurrent network and the t ime it 
represents. As long as we constrain the weights at each level of the 
feedforward network to be the same, we have a feedforward network 
which performs identica l l y  with the recurrent network of Figure 1 7  A. 

9 Note that in  th is  d iscuss ion,  and i ndeed in  our  ent i re  development here, we have 
assumed a discrete time system with synchronous upda te and with each connection 
i n volving a un i t  delay. 
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FIGURE 1 7 , A comparison of a recu rrent network and a feedforward network wi th  
identical behavior, A :  A completely connected recurrent network with two un i t s , B: A 
feedforward network which behaves the  same as the recurrent network , In t h is case, we 
have a separate un i t  for each t ime step and we requ i re that the weights connect ing each 
layer of un i ts  to the next  be the same for a l l  layers, Moreover, they m ust be the same as 
the analogous weights in the recurrent case, 

The appropriate method for maintain ing the constrai nt that all weights 
be equal i s  simply to keep track of the changes dictated for each weight 
at each l evel and then change each of the weights according to the sum 
of these indi vidual ly prescribed changes. Now, the general rule for 
determin ing the change prescribed for a weight i n  the system for a par­
ticular t ime is s imply CWf,lPighted � of an appropriate error 
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measure 8 and the input along the relevant l ine both for the appropriate 
times. Thus, the problem of specifying the correct learning rule for 
recurrent networks i s  s imply one of determin ing the appropriate value 
of 8 for each t ime. In a feedforward network we determine 8 by mult i­
plying the deri vat ive of the acti vation funct ion by the sum of the 8 's 
for those un i ts it feeds into weighted by the connection strengths. The 
same process works for the recurrent network - except in this case, the 
value of 8 associated with a particular unit changes in  t ime as a unit 
passes error back,  sometimes to i tself. After each i teration, as error is 
being passed back through the network, the change in  weight for that 
i teration must be added to the weight changes specified by the preced­
ing iterations and the sum stored. This process of passing error 
through the network should continue for a number of i terations equal 
to the number of i terations through which the act ivation was originally 
passed . At th is  point, the appropriate changes to all of the weights can 
be made. 

In general , the procedure for a recurrent network is  that an input 
(general ly a sequence) i s  presented to the system while i t  runs for some 
number of iterations. At certain specified ti mes during the operation of 
the system, the output of certain units are compared to the target for 
that unit at that t ime and error signals are generated. Each such error 
signal is then passed back through the network for a number of i tera­
t ions equal to the number of i terations used in the forward pass . 
Weight changes are computed at each i teration and a sum of all the 
weight changes dictated for a part icular weight is  saved . Finally, after 
all such error signals have been propagated through the system , the 
weights are changed . The major problem wi th this procedure is the 
memory requi red. Not only does the system have to hold i ts summed 
weight changes whi le  the error is being propagated, but each unit must 
somehow record the sequence of act i vat ion values through which it was 
dri ven during the original processing. This fol lows from the fact that 
during each i teration whi le the error is passed back through the system, 
the current 8 is  relevant to a point earl ier in t ime and the requ i red 
weight changes depend on the act ivation levels of the units at that time. 
It is not enti rely clear how such a mechan ism could be implemented in  
the brain .  Nevertheless , i t  is  tantal iz ing to rea l ize that such a procedure 
is potential ly very powerfu l ,  since the problem it is attempting to solve 
amounts to that of finding a sequential program ( l i ke that for a digi tal 
computer) that produces specified input-sequence/ output-sequence 
pairs. Furthermore , the interaction of the teacher wi th the system can 
be quite flexible ,  so that , for example, should the system get stuck in a 
local min imum,  the teacher cou ld in t roduce " h ints"  in the form of 
desi red output values for intermediate stages of processing.  Our exper i ­
ence with recurrent net�Hmi�tePMII we have carried out some 
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experiments .  W e  turn fi rst t o  a very s imple problem in  which the sys­
tem is induced to invent a shift register to solve the problem. 

Learning to be a shift register. Perhaps the simplest class of 
recurrent problems we have studied i s  one in  which the input and out­
put units are one and the same and there are no hidden units. We sim­
ply present a pattern and let  the system process i t  for a period of t ime .  
The state of the system is then compared to some target state . If i t  
hasn ' t  reached the target state a t  the designated t i me, error is  i njected 
into the system and it modifies its weights. Then it is shown a new 
input pattern and restarted. In these cases , there is no constrai nt on 
the connections in  the system .  Any unit can connect to any other uni t .  
The simplest such problem we have studied is what we ca l l  the shift 
register problem. In th is  problem, the units are conceptualized as a cir­
cular shift register. An arbi trary bit pattern is fi rst establ ished on the 
units. They are then allowed to process for two t ime-steps. The target 
state , after those two time-steps, is the original pattern shifted two 
spaces to the l eft . The interesting question here concerns the state of 
the uni ts between the presentation of the start state and the t ime at 
which the target state is presented. One solution to the problem is for 
the system to become a shift register and shift the pattern exactly one 
unit to the left during each t ime period . If the system did this then it 
would surely be shifted two places to the left after two t ime units. We 
have t ried this problem with groups of three or five uni ts and , if we 
constrain the biases on al l of the units to be negat ive (so the uni ts are 
off unless turned on) , the system always learns to be a shift register of 
this sort . IO Thus, even though in principle any unit  can connect to any 
other unit, the system actual ly learns to set al l  weights to zero except 
the ones connecting a uni t  to i ts l eft neighbor. Si nce the target states 
were determined on the assumption of a c i rcular register, the left-most 
unit developed a strong connection to the right-most uni t .  The system 
learns this relatively quickly. With T/ = 0 .25  it learns perfectly in fewer 
than 200 sweeps through the set of possible patterns with ei ther three­
or five-unit  systems. 

The tasks we have described so far are exceptional ly  simple, but they 
do i l lustrate how the algori thm works with unrestricted networks. We 
have attempted a few more difficult problems with recurrent networks. 

10 If the constraint that biases be negat ive is not imposed , other solutions are possible.  
These so l ut io ns can i nvolve the units passing through the complements of the shifted 
pattern or even through more complicated in termediate states. These trajectories are 

interesting in that they match a s i m ple shift register on a l l  even numbers of shifts, but do 
not match following an odd num ber of shifts. 
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One of the more interesting involves learni ng to complete sequences of 
patterns. Our final example comes from this domain .  

Learning to complete sequences. Table 10 shows a set of 25 
sequences which were chosen so that the first two i tems of a sequence 
uniquely determine the remain ing four .  We used this set of sequences 
to test out the learning abi l i t ies of a recurrent network . The network 
consisted of five i nput units (A, B, C, D, E) , 30 hidden units, and 
three output units ( I ,  2 ,  3 ) . At Time 1 , the input unit  corresponding 
to the first i tem of the sequence is  turned on and the other input units 
are turned off. At Time 2 ,  the input uni t  for the second item in the 
sequence is turned on and the others are al l turned off. Then al l the 
i nput units are turned off and kept off for the remain ing four  steps of 
the forward i terat ion .  The network must learn to make the output units 
adopt states that represent the rest of the sequence. Unli ke simple 
feedforward networks (or thei r i terati ve equivalents) , the errors are not 
only assessed at the final layer or t ime.  The output units must adopt 
the appropriate states during the forward i terat ion, and so during the 
back-propagation phase, errors are injected at each t ime-step by com­
paring the remembered actual states of the output units with their 
des ired states . 

The learning procedure for recurrent nets places no constraints on 
the al lowable connectivity structure. 1 1  For the sequence completion 
problem, we used one-way connections from the input units to the hid­
den units and from the hidden units to the output units . Every hidden 
unit had a one-way connection to every other h idden unit  and to i tself, 

TABLE 1 0  

2 5  SEQUENCES TO B E  LEARNED 

AA 1 2 1 2  AB1 223 AC 1 23 1  A D l 2 2 1  AEI 2 1 3  

BA23 1 2  BB2323 BC233 1  B023 2 1  BE23 1 3  

CA3 1 1 2  CB3 1 23 CC3 1 3 1  C03 1 2 1  CE3 1 1 3 

OA2 1 1 2  OB2 1 23 OC2 1 3 1  002 1 2 1  OE2 l l 3  

EA 1 3 I 2  EB 1 3 23 EC 1 3 3 1  ED l 3 2 1  EEI3 1 3  

1 1 The constra int  i n  feed forward networks is that i t  must b e  possible t o  arrange the 

units into l ayers such that uni ts  do not infl uence units in the same or lower layers. In 
recurrent networks this amounts to the constra int  that during the forward iterat ion,  
future states must not affect past  ones. 

Copyrighted Material 
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and every output un i t  was also connected to every other output unit  
and to i tself. All  the connections started with smal l  random weights 
uniformly distributed between - 0.3  and + 0. 3 .  All the hidden and out­
put units started with an acti vi ty level of 0.2 at the beginning of each 
sequence. 

We used a version of the learning procedure in  wh ich the gradient of 
the error with respect to each weight i s  computed for a whole set of 
examples before the weights are changed . This means that each con­
nection must accumulate the sum of the gradients for all the examples 
and for a l l  the t ime steps i nvolved i n  each example.  During train i ng, 
we used a part icular set of 20 examples , and after these were learned 
almost perfectly we tested the network on the remain ing examples to 
see if it had picked up on the obvious regularity that relates the fi rst 
two i tems of a sequence to the subsequent four .  The results are shown 
in Table 1 1 .  For four  out of the fi ve test sequences , the output un i ts 
all have the correct val ues at al l  t imes (assu ming we treat val ues above 
0.5 as 1 and values below 0.5 as 0) . The network has clearly captured 
the rule that the fi rst item of a sequence determines the th ird and 
fourth ,  and the second determines the fi fth and si xth . We repeated the 
simulation with a d ifferent set of random in i t ial  weights, and i t  got a l l  
five test sequences correct . 

The learning requi red 260 sweeps through a l l  20 t rai ning sequences .  
The errors in  the output un i ts were computed as fol lows : For a uni t  
that should be on,  there was no error  if  i t s  act i vity level was above 0 . 8 ,  
otherwise the deri vati ve o f  the error was t h e  amount below 0 .8 .  S imi ­
larly, for output uni ts that should be off, the deri vat ive of the error was 
the amount above 0. 2 .  After each sweep, each weight was decremented 
by .02 t imes the total gradient accumulated on that sweep plus 0 .9  
t imes the previous weight change. 

We have shown that the learning procedure can be used to create a 
network with interest ing sequential behav ior ,  but  the part icular problem 
we used can be sol ved by s imply  usi ng the hidden un i ts to create " delay 
l ines " wh ich hold information for a fi xed length of t ime before a l lowing 
i t  to influence the output .  A harder problem that cannot be sol ved 
with delay l ines of fi xed duration is shown in Table 1 2 . The output i s  
the same as  before , but  the two input i tems can arri ve at var iable t imes 
so that the i tem arriving at t ime 2, for example, could be either the 
first or the second i tem and could therefore determine the states of the 
output units at ei ther the fifth and s ixth or the seventh and eighth 
ti mes. The new task is  equi valent to requ i r ing  a buffer that recei ves 
two input " words " at variable t imes and outputs their " phonemic real i ­
zat ions " one after the other .  This  problem was solved successful ly by a 
network si mi lar  to the one above except that i t  had 60 hidden uni ts and 
half of their possi ble iItM1iynnmetf>Ma� omitted at random. The 
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TABLE 1 1  

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQU ENCES 

Input Sequence A D 

Desi red Outputs 2 2 

Actual States of: 
Output Uni t  1 0 .2  0. 1 2  0.90 0.22 0. 1 1  0.83 
Output Unit 2 0.2 0. 1 6  0 . 1 3  0 .82  0 .88  0.03 
Output Unit 3 0. 2 0.07 0.08 0.03 0 .01  0 .22 

Input Sequence B E 

Desired Outputs 2 3 3 

Actual States of: 
Output Unit  1 0 .2 0. 1 2  0.20 0.25 0.48 0.26 
Output Unit  2 0 .2 0. 1 6  0.80 0.05 0.04 0.09 
Output U nit 3 0 .2 0 .07 0 .02 0.79 0 .48 0.53 

Input  Sequence C A 

Desired Outputs 3 2 

Actual States of: 
Output Unit  1 0 .2  0. 1 2  0. 1 9  0.80 0.87 0. 1 1  
Output Unit  2 0 .2  0. 1 6  0. 1 9  0 .00 0. 1 3  0 .70 
Output Unit  3 0 .2  0.07 0.80 0. 1 3  0.01 0 .25 

Input Sequence D B 

Desi red Outputs 2 2 3 

Act ual States of: 

Output Uni t  1 0 .2 0. 1 2  0. 1 6  0.79 0.07 0. 1 1  
Output Uni t  2 0.2 0. 1 6  0.80 0. 1 5  0.87  0.05 
Output Unit 3 0.2 0.07 0.20 0.01 0 . 1 3  0.96 

Input Sequence E C 
Desired Outputs 3 3 

Actual States of: 

Output Un i t  1 0.2 0 . 1 2  0 .80 0.09 0.27 0.78 
Output Unit  2 0.2 0. 1 6  0.20 0. 1 3  0.01 0 .02 
Output Unit  3 0.2 0.07 0.07 0 .94 0.76 0 . 1 3  

learn ing was much slower, requir ing thousands of  sweeps through all 
1 36 training examples . There were also a few more errors on the 1 4 
test examples , but the general i zation was st i l l  good with most of the 
test sequences being coll!RJp)9tgRfd'lieM»terial 
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TABLE 1 2  

SIX VARIATIONS OF THE S EQUENCE EA \ 3 1 2  PRODUCED BY 

PRES ENTING THE FI RST TWO ITEMS AT V A R I ABLE TI M ES  

EA-- 1 3 1 2  
- EA- 1 3 1 2  

E - A - 1 J 1 2  

- E - A I 3 1 2  

E - - A I 3 l 2  

- - EA \ 3 1 2  

Note: With these temporal variat ions,  t h e  2 5  sequences shown i n  
Table 10  can be used to generate 1 50 different seque nces . 

CONCLUSION 

In the i r  pess imist ic  d iscussion of percept rons, Minsky and Papert 
( 1 969) finally d iscuss mult i layer mach ines near the end of their book .  
They state: 

The perceptron has shown i tself worthy of study despi te (and 
even because of! ) i ts severe l im i tat ions. It has many features 
that attract attention: its l inearity;  i ts i ntr iguing learning 
theorem; i ts clear paradigmatic si mplicity as  a k ind of paral lel 
computat ion . There is  no reason to suppose that any of these 
vi rtues carry over to the many-layered version ,  Nevertheless, 
we consider i t  to be an important  research problem to elucidate 
(or reject ) our intu i t i ve judgement that the extension is  ster i le .  
Perhaps some powerfu l  convergence theorem wi l l  be 
discovered, or some profound reason for the fai lu re to produce 
an interesting " learn i ng theorem " for the mult i layered machine 
wi l l  be found. (pp.  2 3 1 -232)  

Although our learning resu lts do not  guarantee that we can find a sol u­
t ion for a l l  solvable problems, our analyses and resul ts  have shown that 
as a practical matter, the error propagation scheme leads to solut ions i n 
vi rtually every case,  In short, we bel ieve that we have answered Min ­
sky and Papert 's  chal lenge and have found a learn ing result  sufficient ly 
powerful to demonstrate that thei r pessi mism about learning in mul­
t i layer machines was misplaced. 

One way to view the procedure we have been descri bing is as a paral­
lel computer that , having been shown the appropriate input/  output 
exemplars specifying some function , programs i tself to compute that 
function in general . Paral lel computers are notoriously difficult to pro­
gram. Here we have a mechan ism whereby we do not actual ly have to 
know how to write the program in order to get the system to do i t .  
Parker ( 1 985) has emph�fflJIigHt-eB�rerial 
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On many occasions we have been surprised to learn of new methods 
of comput ing interest ing  funct ions by observi ng the behavior of our 
learn ing algori t h m .  Th is  also raised the question of genera l izat ion. In 
most of the cases presented above, we have presented the system wi th 
the ent i re set of exemplars. It  i s  in terest ing to ask what would happen 
if we presented only a subset of the exemplars at trai n i ng t i me and then 
watched the system general ize to remai n i ng exemplars .  In  small  prob­
lems such as those presented here, t he system sometimes fi nds solu­
t ions to the problems which do not properly general ize.  However, pre­
l i minary results  on l arger problems are very encouraging i n  this  regard. 
This research is st i l l  i n  progress and cannot be reported here .  This is  
currently a very act i ve interest of ours .  

Fi nal ly ,  we should say that th is  work is not yet i n  a fi nished form. 
We have only begun our study of recurren t  networks and s igma-pi 
uni ts .  We have not yet appl ied o u r  l earn ing procedure to many very 
com plex problems . However, the results  to date are encouragi ng and 
we are cont i n u i ng our work . 
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